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We consider the unidirectional particle transport in a suspension of colloidal particles which interact with each
other via a pair potential having a hard-core repulsion plus an attractive tail. The colloids are confined within a
long narrow channel and are driven along by a dc or an ac external potential. In addition, the walls of the channel
interact with the particles via a ratchetlike periodic potential. We use dynamical density functional theory to
compute the average particle current. In the case of dc drive, we show that as the attraction strength between the
colloids is increased beyond a critical value, the stationary density distribution of the particles loses its stability
leading to depinning and a time-dependent density profile. Attraction induced symmetry breaking gives rise to the
coexistence of stable stationary density profiles with different spatial periods and time-periodic density profiles,
each characterized by different values for the particle current.
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I. INTRODUCTION

Much attention has been given to studying the transport
of particles along narrow channels [1]. Such strong confine-
ment occurs, for example, in the ion channels of biological
membranes [2], in zeolites and other porous materials [3], and
in microfluidic devices [4]. Experimental studies of colloidal
particles confined within grooves etched on a surface [5] have
already addressed the case when confinement is so extreme that
particles cannot pass one another and so single-file diffusion
sets in [6]. In many cases, the motion of a file occurs in
the presence of a periodic pinning potential. The latter can
be induced, for instance, by defects, such as in the case of
superconducting vortices moving in easy-flow channels [7],
by other particles, as in the case of a fluctuating quasi-one-
dimensional (quasi-1D) channel [8], by a periodic distribution
of charges, as in the case of the motor proteins moving
along a microtubulus [9], or, more generally, by a periodic
corrugation of the channel walls [10,11]. When the left-right
symmetry of the pinning potential is broken, an externally
applied center-symmetric ac drive induces a net drift of the
file in a certain direction. The efficiency of such a rectification
mechanism strongly depends on the number of particles in the
file, their size, and frequency of the drive [12].

In addition to the interaction with the channel, the colloids
have an excluded volume interaction between them [12,13]
and may also exhibit mutual attraction, either due to van der
Waals forces [14] or because of the presence of other
passive molecules in the solution, such as in the case of
colloid-polymer mixtures [15–17]. It has been recognized that
attractive forces lead to the formation of particle clusters and,
consequently, to a dramatic increase in particle diffusion and
mobility [18]. Such enhancement is explained by the mismatch
between the size of the particle clusters and the characteristic
length scale of the corrugated potential induced by the walls
of the channel. In the case of the diffusion of long alkane
chains in zeolites, a similar phenomenon is called the “window

effect” [19]; specifically, the mobility of the alkane chain
becomes enhanced whenever its length is not commensurate
with the zeolite cage. More generally, the incommensurability
between the lateral dimensions of a biological molecule and
the size of a catalyst is known as “shape selectivity” [20],
a recurrent scheme utilized by nature to control enzymatic
reactions in living cells.

Recently, we developed a theory [21], based on dynamical
density functional theory (DDFT) [22–25], that captures
the essential features of the condensation process from the
disordered to the condensed state in a randomly distributed
single file of interacting particles. Pair attraction can be used
to enhance the transport of colloidal particles in 1D. For in-
stance, entrained attracting particles can be effectively shuttled
along an asymmetric corrugated channel by means of a low
frequency ac field. Collective shuttling of entrained particles
directly applies to the problem of diffusion of long molecular
chains in zeolites and shape selective catalytic reactions in
living cells. In particular, we stress that collective shuttles can
be much more efficient than some other shuttle mechanisms,
as they allow one to control the rate of transport by adding
(removing) a single molecule to (from) the molecular chain.

The present paper is organized as follows: Our main goal
is to analyze the effects of the pair attraction between the
particles on the rectification current of single files of colloidal
particles which are confined within a narrow channel with
corrugated walls and subjected to dc or ac drives. The general
theoretical framework for our analysis of our model system,
which is based on DDFT, is presented in Sec. II. The one-body
density distribution ρ(x,t) of the diffusing particles, which
is a function of position x and time t , obeys a nonlinear
Fokker-Planck equation and DDFT [22–25] provides a closure
approximation that allows us to solve for the dynamics of
ρ(x,t). The DDFT dynamical equation for the system takes
the form of a conserved gradient dynamics, which requires as
input a suitable approximation for the Helmholtz free energy
functional for the system [22–25]. In the presence of a dc drive,
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the free energy contains a potential energy term proportional
to x that acts as a continuous external energy source; that
is, the system remains permanently out of thermodynamic
equilibrium. In consequence, the free energy of a single file
of interacting particles is not necessarily a monotonically
decreasing function of time. Therefore, the system can exhibit
stable time-periodic density profiles and currents. In particular,
in Secs. III and IV we discuss the relation of the onset
of time-periodic density variations to the condensation of
particles into compact clusters and the depinning of these
clusters from the channel corrugations.

In Sec. IV A we examine the dynamics of pointlike particles
and we demonstrate that spontaneous symmetry breaking
induced by attraction leads to the coexistence of stable
time-periodic and stationary densities. Multistability of the
long-time density distributions indicates that for the same
combination of parameters in our model, the channel can
operate in two different regimes, transporting the particles with
either high or low efficiency. For finite-sized particles the range
of values of the system parameters that allows for time-periodic
density profiles is much broader than for pointlike particles, as
explained in Sec. IV B.

In Sec. V we discuss the low frequency rectification current
for particles driven by an ac (square wave) drive through a
channel with a spatially asymmetric potential. In Sec. V A
we show that the effect of the spatial asymmetry is that the
rectification current may be maximized, using the strength of
the attraction between the particles as the control parameter.
In Sec. V B we derive an effective equation of motion for a
condensate in the limit of infinitely strong attraction between
the particles. We show that the low frequency transport
efficiency can be increased by several orders of magnitude
for strongly attracting particles as compared to noninteracting
particles. Finally, in Sec. VI we close with a few concluding
remarks.

II. DDFT FOR INTERACTING HARD RODS IN A
PERIODIC POTENTIAL

When finite-sized colloids are confined within a long
narrow channel, the particle motion becomes 1D, and the
particles can be modeled as 1D hard rods of length h. We model
the dynamics of N hard rods using overdamped stochastic
equations of motion. The particles move in a channel of total
length S and interact with the channel walls via a periodic
corrugated potential U (x) with spatial period L. In a system
with periodic boundary conditions (e.g., a circular geometry),
S is an integer multiple of L; that is, S = ML. The integer
M determines the average number of particles per unit cell of
length L, to be N/M . To ensure that the combined length of
the N rods is smaller than the total system size, we require
Nh � S.

The total instantaneous potential energy of the N rods,
which move in the periodic external potential U (x) under the
action of a time-dependent external drive A(t), is

�({xj },t) =
∑

i

[U (xi) − A(t)xi] + 1

2

∑
(i,j ),j �=i

w(|xi − xj |),

(1)

where w(x) denotes the interaction potential between a pair
of particles i and j , where i,j = 1, . . . ,N , which are located
at positions xi and xj , respectively, and are separated by the
distance x = |xi − xj |. In general, the potential w(x) can be
decomposed into two terms. One accounts for the attraction
(denoted by subscript “at”) between the particles and the other
for the hard-core repulsion (subscript “hc”); that is, w(x) =
wat(x) + whc(x). The hard-core repulsive potential ensures that
the rods are impenetrable; that is,

whc(x) =
{∞, x < h,

0, x � h.
(2)

We assume that wat(x) becomes negligible at distances x much
larger than a certain effective interaction range lint.

The overdamped dynamics of the particles is described by
N coupled Langevin equations

1

�

∂xi

∂t
= −∂�({xj },t)

∂xi

+
√

2kBT ξi(t), (3)

where T is the temperature of the system, kB is the Boltzmann
constant, and ξi(t) are independent Gaussian white noises with
the correlation functions 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′). Hence-
forth, we set the solvent friction constant � = 1 and replace
kBT by T for the sake of brevity.

In the case of a circular geometry, Eqs. (3) are supplemented
with periodic boundary conditions (BC) with the period equal
to the system size S. This requires that all functions in
Eqs. (3) are periodic with period S. This is not the case if
the contribution to the interaction potential w(x) from the
potential wat(x) is long ranged, as particles would interact
then with themselves. However, w(x) can be made compatible
with the desired periodic BC by taking the interaction range
lint to be sufficiently small compared with the system size.
Therefore, throughout we impose the condition wat(S) ≈ 0.

The Fokker-Planck (Smoluchowski) equation for the
time evolution of the one-body density distribution ρ(x,t)
is [22–25]

∂ρ(x,t)

∂t
= T

∂2ρ(x,t)

∂x2
+ ∂

∂x

[
ρ(x,t)

∂Ueff(x,t)

∂x

]

+ ∂

∂x

[ ∫ S
2

− S
2

dx ′ρ(2)(x,x ′,t)
∂

∂x
w(|x − x ′|)

]
, (4)

where ρ(2)(x,x ′,t) is the nonequilibrium two-body distribution
function for the particles in the system and Ueff(x,t) = U (x) −
A(t)x is the effective external potential. Note that the density
profile ρ(x,t) is normalized, so that the spatial integral over
ρ(x,t) is equal to the total number of particles in the system;
that is,

∫ S/2
−S/2 ρ(x,t) dx = N .

In order to solve Eq. (4), a suitable closure approximation
for ρ(2)(x,x ′,t) is required. The approach taken in DDFT is to
approximate ρ(2)(x,x ′,t) by the two-body distribution function
of an equilibrium fluid with the same one-body density profile
as the nonequilibrium system [22–25]. This closure relates
the integral in the final term in Eq. (4) to the functional
derivative of the excess part of the Helmholtz free energy
functional F [ρ], which is the central quantity of interest in
equilibrium density functional theory [14,26,27]. Making this
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approximation yields the following equation for the dynamics
of the one-particle density distribution ρ(x,t):

∂ρ(x,t)

∂t
= ∂

∂x

[
ρ(x,t)

∂

∂x

δF [ρ(x,t)]

δρ(x,t)

]
. (5)

For the case with periodic BC, the Helmholtz free energy
functional F [ρ] is of the form [14,26]

F [ρ(x,t)] = T

∫ S
2

− S
2

dx ρ(x,t)[ln ρ(x,t) − 1]

+
∫ S

2

− S
2

dx Ueff(x,t)ρ(x,t)

+ Fhc[ρ] + Fat[ρ], (6)

where the first term on the right-hand side is the ideal-gas
contribution to the free energy, Fhc is the excess contribution to
the free energy due to the hard-core repulsion between the par-
ticles, and Fat represents the contribution due to the attractions
between the particles. In a mean-field approximation [26], Fat

is given by

Fat[ρ] = 1

2

∫ S
2

− S
2

dx

∫ x+ S
2

x− S
2

dx ′ wat(| x − x ′ |)ρ(x)ρ(x ′). (7)

The exact expression for the equilibrium excess Helmholtz free
energy for hard rods of length h, Fhc[ρ], was first presented in
Ref. [28]. The result is

Fhc[ρ] = 1

2

∫ S
2

− S
2

dx φ[ρ(x)]

{
ρ

(
x + h

2

)
+ ρ

(
x − h

2

)}
,

(8)

where φ[ρ(x,t)] = −T ln [1 − η(x,t)] and η(x,t) =∫ x+h/2
x−h/2 dx ′ ρ(x ′,t). It should be emphasized that the functional

in Eq. (8) is strictly only exact for 1D equilibrium systems of
hard rods treated in the grand canonical ensemble [26,28].
However, as the (average) number of particles in a system
is increased, the difference between results from treating a
system canonically or grand canonically diminishes, so that
the theory can safely be extended to describe single files with
a fixed but large numbers of rods.

In earlier work, the DDFT approach was used to study
the dynamics of an ensemble of pure hard rods (i.e., with no
attractive interactions) [22,23,29]. More recently [21], we have
applied the DDFT formalism to describe a file of hard rods
interacting via a pair potential with an attractive contribution.
In both cases, the free energy functional given in Eq. (8) was
shown to reproduce fairly closely the results from Brownian
dynamics computer simulations [i.e., results from numerically
integrating Eqs. (3)], even for relatively small numbers of
particles, N � 10.

Using Eqs. (6) and (8), Eq. (5) can be rewritten in the form
of a conservation law, that is, in terms of the instantaneous
current density J (x,t),

∂ρ(x,t)

∂t
= −∂J (x,t)

∂x
, (9)

where

J (x,t) = ρ(x,t)

[
−T

∂

∂x
ln ρ(x,t) − dU (x)

dx
+ A(t)

− T

(
ρ(x + h,t)

1 − η(x + h/2,t)
− ρ(x − h,t)

1 − η(x − h/2,t)

)
−

∫ x+ S
2

x− S
2

dx ′ ρ(x ′,t)
∂wat

∂x
(x − x ′)

]
. (10)

Before we discuss our results for solutions of Eqs. (9) and (10),
we would like to point out that we see many parallels between
the dynamics described by the partial integro-differential
Eqs. (5) with (6) and the dynamics of partially wetting drops
and films on solid substrates described by so-called thin film
equations (fourth order partial differential equations) [30].
Formal similarities between thin film equations and some
Fokker-Planck equations for interacting particles have recently
been pointed out in the case of spatially asymmetric ratchets
with a temporal ac drive [31]. In the present case, we find
that some of our results are similar to results for the case of
liquid drops on horizontal [32] and inclined [33] heterogenous
solid substrates. These similarities arise due to (i) the similar
gradient dynamics form of the evolution equation for the
conserved field (here ρ) and (ii) the presence of similar
physical effects. The role of the attractive and repulsive
force between particles is taken by the partial wettability
of the liquid [34], the stabilizing role of diffusion is played
by surface tension, the channel corrugations are similar to
substrate heterogeneities, the dc drive corresponds to constant
driving parallel to the substrate (e.g., drop on an incline), and
the present ac drive is similar to substrate vibrations [35] or
oscillating electric fields [36].

Here we solve Eq. (9) imposing periodic BC on the
domain x ∈ [−S/2,S/2] which is centered at the origin,
x = 0. Due to the external driving force the system remains
permanently out of thermodynamic equilibrium. Therefore, in
an infinite domain or in a finite domain with periodic BC, the
nonequilibrium dynamics of the system with dc drive is not
relaxational, in contrast to the case of zero-flux BC that would
correspond to a closed finite system [22]. Note, however,
that the channel corrugations may result in local equilibria.
An ac drive keeps the system out of equilibrium for any BC.
The nonrelaxational character is reflected by the finding that
with periodic BC, the free energy F [ρ(x,t)] in Eq. (6) is
not necessarily a monotonically decreasing function of time;
that is, it does not play the role of a Lyapunov functional
for the gradient dynamics Eq. (5). This can best be seen by
considering the total time derivative of the free energy,

dF [ρ]

dt
=

∫ S
2

− S
2

δF

δρ

∂ρ(x,t)

∂t
dx

=
∫ S

2

− S
2

δF

δρ

∂

∂x

[
ρ(x,t)

∂

∂x

δF

δρ

]
dx

=
[
δF

δρ
ρ

∂

∂x

δF

δρ

] S
2

− S
2

−
∫ S

2

− S
2

ρ

[
∂

∂x

δF

δρ

]2

dx, (11)

where we have used Eq. (5) and integrated by parts. The
functional derivative δF/δρ is not periodic in x, due to
the “tilted” effective potential Ueff = U (x) − A(t)x, and
so the boundary term in the last line of Eq. (11) does not
normally vanish. It is equal to ASJS/2 > 0, where JS/2

is the current density on the boundary, and JS/2 < 0 for
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A < 0. It then follows that for A �= 0 the time derivative
dF [ρ(x,t)]/dt is not necessarily a negative quantity. This
allows for time-oscillatory behavior of the system, even in the
long-time limit. In other words, Eq. (9), with A(t) = A, may
admit stable cyclostationary or time-periodic solutions, the
existence of which is discussed in the next section.

For stable time-periodic solutions, the average particle
current J̄ is obtained from Eq. (10) by averaging J (x,t) over
position and over time, namely,

J̄ = 1

τ

∫ S
2

− S
2

dx

∫ t ′+τ

t ′
dt J (x,t), (12)

where τ is the period of the oscillations. Throughout this paper
we use the average current per particle J , which is related to
the total current in Eq. (12) via J = J̄ /N .

III. SPONTANEOUS CONDENSATION

In the absence of the channel potential and without ac
or dc drive, that is, for Ueff(x) = 0, the DDFT equation (5)
admits a stationary homogeneous solution ρ(x) = ρ0, with
constant average density ρ0 = N/S. Because of the com-
petition between the destabilizing attractive forces and the
stabilizing effect of the thermal motion of the particles
(diffusion), the homogeneous density distribution is not always
stable. In order to minimize their free energy, the attracting
particles tend to condense into a set of clusters. This tendency
is opposed by the stabilizing action of diffusion, which leads to
a spreading of the particles away from one another. Depending
on which process dominates, the homogeneous state ρ(x) = ρ0

may either be (linearly) stable or unstable. Note that in this
case the dynamics is relaxational and the functional (6) is a
Lyapunov functional [cf. Eq. (11)].

One may alternatively take a thermodynamic rather than
a dynamical point of view for understanding this instability:
Recall that the Helmholtz free energy of the system F = U −
T S, where U = 〈�〉 is the internal energy, S is the entropy
of the system, and 〈· · ·〉 denotes a statistical average [14]. At
equilibrium, F is minimal. At high temperatures T , this is
achieved by maximizing S (i.e., by dispersing the particles
throughout the system in a maximally disordered way), since
the term −T S is the dominant contribution to the free energy
at high temperatures T . However, at low temperatures, the
internal energy contribution U dominates the free energy F

and so the attracting particles minimize the free energy by
gathering together to minimize the internal energy U .

We model the attractive contribution to the pair potential
between the particles by a simple exponential function of the
form

wat(x) = −α exp (−λx), (13)

where the parameters α and λ characterize the strength of
attraction and the attraction range lat = 1/λ, respectively. It
should be noted that the mean-field approximation for the
contribution to the Helmholtz free energy due to the attractive
interactions (7) used here is only quantitatively reliable when
λh � 1, that is, when any given particle is interacting with
several of its neighbors so that a mean-field approximation
is appropriate. However, even when the attraction range is

somewhat shorter than this, the mean-field approximation
remains qualitatively correct.

In order to study the stability of the homogeneous state,
we linearize Eq. (5) using the standard plane wave ansatz
ρ(x,t) = ρ0 + εeβ(k)t+ikx , where the sign of the growth rate
β(k) determines the stability of the homogeneous solution ρ0.
Note that for the stable fluid the dispersion relation β(k) is
closely related to the static structure factor S(k), via β(k) =
−T k2/S(k) [24]. Neglecting exponentially small terms of the
order of exp (−λS), we obtain to leading order in ε

β(k) = −T k2 − 2T kρ0 sin (kh)

1 − ρ0h
− 4Tρ2

0 [sin (kh/2)]2

(1 − ρ0h)2

+2αλρ0k
2

k2 + λ2
. (14)

Inspection of Eq. (14) shows that two different scenarios
exist where the homogeneous density ρ0 is linearly unstable.
On the one hand, the solution ρ(x,t) = ρ0 can become unstable
via the standard spinodal phase separation mechanism where
the material separates into regions of low density (gas) and
hight density (liquid), which we call the “spinodal mode”
(denoted by “sp”). It is associated with an instability against
harmonic perturbations with wave numbers 0 < k < k0, where
k0 is an upper value obtained by solving the equation β(k0) =
0. The spinodal instability sets in when the leading coefficient
of the expansion of β(k) in powers of k2 (i.e., the coefficient of
the k2 term) vanishes; that is, the wave number at onset is zero.
This corresponds to a type IIs instability in the classification of
Cross and Hohenberg [37]. Based on the Taylor expansion of
the relation (14) one obtains T̃ = 2ρ̃ (1 − ρ̃2) as the condition
for the onset of the spinodal mode [cf. Fig. 1(b)]. Here we
have introduced the reduced temperature T̃ = T hλ/α and the
reduced density ρ̃ = ρ0h. The critical point for decomposition
is found at T̃c = 8/27 and ρ̃c = 1/3.

The stability condition is equivalent to the thermodynamic
stability criterion requiring that the isothermal compress-
ibility be negative. This corresponds to the Helmholtz free
energy per unit length of the system becoming concave,
namely, the boundary of the spinodally unstable region is given
by δ2F [ρ]/δρ2|ρ0 = 0. When δ2F [ρ]/δρ2|ρ0 > 0 the uniform
solution is linearly stable and when δ2F [ρ]/δρ2|ρ0 < 0 the
uniform solution is linearly unstable. The dispersion relation
β(k) close to the onset of the spinodal mode is shown in
Fig. 1(a) by dashed lines, which correspond to three different
values of the attraction strength α, chosen close to the spinodal
instability threshold as obtained from Eq. (14).

On the other hand, the solution ρ(x,t) = ρ0 can become
unstable via a freezing mode of the system, where the particles
become localized and the density profile exhibits a series
of sharp peaks separated by distances smaller than L. This
instability corresponds to type Is in the classification of
Ref. [37]. In the context of reaction-diffusion systems it is
sometimes referred to as a Turing instability [38]. This mode
(which we denote by “fr”) sets in at a nonzero critical wave
number kc, as illustrated in Fig. 1(a) by the solid lines for
ρ0 = 0.6. Beyond onset, the freezing mode gives rise to the
growth of periodic modulations in the density profile with a
wavelength ≈2π/kc.
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FIG. 1. (Color online) (a) Typical disper-
sion relations β(k) close to the onset of the
spinodal mode (sp), as shown by dashed lines
and the freezing mode (fr), as shown by
solid lines. The β(k) curves near the spinodal
instability are for ρ0 = 0.2 and α = 10, 11.8,
and 17, which are close to the onset of
the instability. The curves for the freezing
instability are for ρ0 = 0.6 and α = 4, 4.9,
and 6. The other parameters are T = 1, λ =
3, h = 1. (b),(c) Stability diagram for the
system with uniform constant density ρ(x) =
ρ0, in the plane spanned by T̃ = T hλ/α and
ρ̃ = ρ0h for (b) ξ = λh = 3 and (c) ξ = 1.5.
The labels “sp” and “fr” denote (hatched)
regions where the uniform density is only
linearly unstable to the spinodal and freezing
instability, respectively. In the cross-hatched
region both modes are unstable.

In Figs. 1(b) and 1(c) we plot the linear stability diagram of
the system with uniform density ρ0, in the plane spanned by
T̃ = T hλ/α and ρ̃ = ρ0h for the interaction length ratio (b)
ξ ≡ λh = 3 and (c) ξ = 1.5. The labels “sp” and “fr” mark
regions where the uniform system is linearly unstable to the
spinodal and freezing mode, respectively. As discussed above,
the onset of the spinodal mode only depends on the reduced
temperature T̃ and reduced density ρ̃. In contrast, the onset
of the freezing mode also depends on the value of ξ . For
relatively long rods with ξ = 3, where the attraction range is
short compared to the core size h, the region of the freezing
instability extends down to moderate values of the reduced
density ρ̃ ≈ 0.5. For a reduced temperature above T̃c = 8/27
only the freezing instability exists at large and moderate ρ̃.
For small values of ξ , corresponding to the attraction range
λ−1 being large compared to h, and for which the mean-field
approximation for the free energy used is expected to be most
reliable, the freezing mode is only found at extremely high
packing fractions, ρ̃ ≈ 1. At such high densities, the critical
wave number kc of the freezing mode is approximately kc ≈
2π/h, giving rise to the formation of density peaks separated
by a distance ≈h, as one would expect for a frozen system.

Below T̃c, the spinodal mode exists for a range of ρ̃ that
with decreasing T̃ extends on both sides of the critical value
ρ̃ = 1/3. This implies that the spinodal mode sets in at smaller
and smaller values of the density as T̃ is decreased. At large
ρ̃ there exists a region where both linear modes are unstable
[cross-hatched in Figs. 1(b) and 1(c)]. The region where only
the freezing mode exists is shifted toward higher densities
as T̃ decreases. The definition of T̃ implies that for any
given physical temperature T , a decrease in the interaction
strength α below the threshold value αc = 27T hλ/8 stabilizes
the spinodal mode. For any finite temperature the system can
be quenched into the freezing unstable region by increasing
the average density in the system.

IV. dc DRIVE

Having considered the stability of the uniform system,
we now consider the nonuniform system that is subject to
a periodic external potential U (x) and the dc driving force A.
We model the periodic potential, induced by the corrugated
channel walls, by the standard biharmonic ratchet potential
U (x) = sin (2πx) + 0.25 sin (4πx) [1] which has period
L = 1. Recall that to drag a single particle over one of the
barriers in U (x) one must apply a force AR = 3π to pull the
particle over the barrier to the right and a force AL = 3π/2 to
pull it to the left. AL and AR are termed the left and the right
depinning thresholds, respectively [1]. Note that all the results
reported in this section for a dc drive remain qualitatively
valid even for a simpler symmetric periodic external potential,
such as U (x) = sin (2πx). The case of a periodic external
potential without and with dc drive shows some similarities to
liquid drops or films on periodically heterogeneous substrates
without [32] and with [39] a driving force parallel to the
substrate, respectively. The former case will be explored
elsewhere. Below we discuss similarities and differences for
the case with dc driving.

A. Zero rod length and finite interaction range

As a reference system we first consider a file of pointlike
particles, that is, with h = 0, interacting solely via the expo-
nential soft-core potential wat(x) and driven by a dc external
force. When the characteristic interaction range lat between the
pointlike rods is small, that is, when lat = 1/λ → 0, a local
approximation can be made for the dynamical equations for
the system, as shown in Refs. [40,41]. In this limit, the integral
involving wat in Eq. (10) can be reduced to a local function
of the form ∼gρ(x,t)∂ρ(x,t)/∂x, where the coefficient g is
a parameter determined by the strength of the interactions
between the particles. In Refs. [40,41] it was shown that when
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g is increased beyond a certain critical value, the density
distribution of the attracting particles exhibits a spontaneous
symmetry breaking transition, where the stationary periodic
density profile with period L [the period of the modulations in
U (x)] becomes unstable and evolves toward a stable stationary
distribution with period S (the total system length). We now
go beyond the analysis of Refs. [40,41] and consider such a
symmetry breaking mechanism for particles interacting via a
potential with a nonzero interaction range, lat �= 0.

For convenience we fix the average particle density to be
ρ̄L = 1, corresponding to one particle per period L of the
channel, and we set the constant drive, A = −1. Using
the numerical continuation package AUTO [42], we follow
the branch of solutions corresponding to a stationary density
distribution ρs(x), which originates from the stationary density
profile for the case when α = 0 (i.e., a noninteracting ideal gas
of particles). Note that in the long-time limit, the density profile
for the ideal gas remains stable and stationary, regardless of
the form of the channel potential, U (x), the magnitude of the
drive, A, or the temperature of the system, T [43,44].

We determine the stationary solutions of Eq. (9) with the
current given by Eq. (10) that contains nonlocal terms, by
means of the Fourier mode method described in Ref. [45].
The density profile is discretized over the domain [−S/2,S/2],
derivatives are obtained using finite difference approximations,
and the nonlocal terms are calculated using a fast Fourier
transform. We start from the equation for the stationary
solution of Eq. (9), ∂J (x,t)/∂x = 0, which is then written
as a set of algebraic equations for the Fourier components of
the current J (x,t) and from this we obtain our solutions for
the stationary density profile ρs(x). Using the continuation
package AUTO allows us to detect the presence of Hopf
bifurcations as well as to trace the solution branches for both
the stationary solutions and the time-periodic ones that emerge
from them.

We begin by discussing the bifurcation diagrams of the
stationary solutions of Eq. (9) on varying the interaction
strength, α, for a fixed value of the range parameter of the
pair potential, λ = 5, and the fixed U (x). These are shown
in Figs. 2(a)–2(c) for three different systems with lengths,
S = 2L, 3L, and 4L, respectively. The solid lines correspond
to stable solutions and the dashed lines to unstable (saddle
point) solutions. The labels “HB” and “BP” stand for Hopf
bifurcation and branching point, respectively.

As the interaction strength is increased beyond a critical
value αc, the 1L-periodic solution that is stable for small
α becomes unstable either via a (period-doubling) pitchfork
bifurcation (for S = 2L) or via a Hopf bifurcation (for S >

2L). In the case of the pitchfork bifurcation, displayed in
Fig. 2(a), a double branch of stable solutions emerges at the
bifurcation point. The two branches are related by the discrete
translation symmetry x → x + L and can therefore not be
distinguished in Fig. 2(a). This new branch corresponds to a
solution with a larger spatial period, equal to the system size
S = 2L, and a smaller value for the particle current J . One may
say that for α > αc, the periodic potential is not strong enough
to pin the clusters against their natural tendency to coarsen. For
S = 2L, we know on general grounds that [in a homogeneous
system without driving A = U (x) = 0] there are two possible
coarsening modes: a translation mode, where the two clusters

move toward each other, and a volume transfer mode, where
material is transferred from one cluster to the other [30]. It
is known that both are stabilized by substrate heterogeneities
exerting a strong enough pinning influence [32]. Not much
is known, however, for driven systems (A �= 0). Our DDFT
simulations show that in the present system, the instability
is related to the volume transfer mode of coarsening. The
corresponding stable (solid line) and unstable (dashed line)
stationary density profiles are displayed in Fig. 2(d) for the
case when α = 2.2.

The bifurcation diagram for the system with length S = 3L

is qualitatively different from the one for the S = 2L case, as
can be seen in Fig. 2(b). One observes that the 1L-periodic
solution becomes unstable via a Hopf bifurcation. There
exist branches of stationary solutions where the x → x + L

translational symmetry is broken. However, they do not
touch the primary branch of the 1L-periodic solutions but
are generated through a saddle-node bifurcation at the point
marked by “LP”. Solutions on these branches have period
S = 3L and are either stable (upper branch) or unstable (lower
branch). An example of a stable 3L-periodic solution for
α = 2.2 is displayed as the solid line in Fig. 2(e).

The bifurcation scenario for S = 4L, displayed in
Fig. 2(c), is substantially more complex. The 1L-periodic
solution becomes unstable through a Hopf bifurcation. Very
close to the HB point, the unstable stationary solution
undergoes a primary period-doubling pitchfork bifurcation BP.
Note that this first BP point for S = 4L coincides as expected
with the BP point for S = 2L. The newly formed 2L-periodic
solution is unstable and undergoes a further period-doubling
pitchfork bifurcation at a second BP, which lies very close to
the first BP, as shown in the inset of Fig. 2(c).

For interaction strengths significantly larger than the critical
values corresponding to the BP and the HB points, the
only stable stationary solution of the DDFT equation (5)
has a period equal to the total system size S. Note that
the multiplicity of the branch of the solutions with broken
x → x + L symmetry depends on the total system size. For
instance, for S = 4L there exist four such branches with
spatial period S, as can be seen in Fig. 2(f). Each solution
exhibits a prominent maximum centered around one of the
four minima of the external potential U (x). The solutions on
the four branches are related by the symmetry x → x + L.
Therefore, all of them correspond to the same value for the
particle current J and they cannot be distinguished from one
another in Fig. 2(c).

From the results displayed in Fig. 2 we may draw two
important conclusions: First, the detected Hopf bifurcations
of the pinned stationary solutions signals the onset of time-
periodic solutions of the DDFT equation (5), even in the
presence of a time-independent drive. Second, for certain
values of the interaction strength α, two stable stationary
solutions may coexist, giving rise to current multiplicity.

These two findings are illustrated in detail in Fig. 3,
where we display a magnification of the region close to the
bifurcations in Fig. 2(b). In addition to the Hopf bifurcation
(HB) and the saddle-node bifurcation (LP) of the stationary
3L-periodic solutions, we display the branch of time-periodic
solutions of Eq. (5). It emerges at the HB point and terminates
in a homoclinic bifurcation (labeled by “hm”) where the
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FIG. 2. (Color online) Panels (a), (b), and (c) display bifurcation diagrams for the stationary density distributions in terms of the average
current J versus the interaction strength α, for λ = 5, ρ̄ = 1, A = −1, h = 0, and total system length (a) S = 2L, (b) 3L, and (c) 4L. The solid
and dashed lines correspond to stable and unstable solutions, respectively. The points labeled “HB” and “BP” denote Hopf bifurcation and
branching points, respectively. Panels (d), (e), and (f) display selected corresponding density profiles. The solid lines are profiles with spatial
periods 2L, 3L, and 4L, respectively, for α = 2.2. The dashed lines represent the unstable solution with period L. In (f) the solid and dotted
lines represent all four possible 4L-periodic solutions.

time-periodic solution (limit cycle) collides simultaneously
with all three unstable 3L-periodic solutions (unstable
equilibria) [46]. The inset of Fig. 3 gives the temporal period
τ as a function of the distance to the homoclinic bifurcation
αhm − α. It shows a logarithmic dependence as expected
close to a homoclinic bifurcation. We emphasize that these
time-periodic solutions are stable; that is, the corresponding
Floquet multipliers are always located within the unit circle
(not shown). Note that for clarity we not only suppress the
branch of time-periodic solutions in Fig. 2(b), but also a
similar branch in Fig. 2(c), for the system with S = 4L.

In nonequilibrium driven systems, the loss of stability of
the stationary solutions and the appearance of time-periodic
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FIG. 3. (Color online) Magnification of the region of Fig. 2(b)
close to HB point. The line connecting HB and “hm” corresponds
to stable time-periodic solutions of Eq. (5). The label “hm” stands
for homoclinic bifurcation point. (Inset) Temporal period τ of the
time-periodic solutions as a function of αhm − α.

solutions with a larger mean flow is sometimes associated
with the concept of depinning. For example, in the study of
liquid droplets on an inclined heterogeneous solid substrate,
the dynamics of drop depinning has been studied in great
detail (see, for example, Refs. [39,47] and references therein).
In this situation the depinning is generally a transition from a
steady droplet, pinned by the heterogeneity of the substrate, to
a moving droplet, sliding down the incline under the action of
gravity (or other driving forces parallel to the substrate). The
depinning is usually investigated by increasing the driving
force with all other parameters kept fixed. In such a case the
dominant depinning mechanism is often related to a saddle
node infinite period (sniper) bifurcation, although depinning
via a Hopf bifurcation may also be observed in certain
parameter regions [33,39,47]. The depinning exhibited by
the present system is observed when increasing the particle
attraction α, for a fixed value of the external drive A and
potential U (x). This would correspond to a decrease in
wettability for a droplet depinning in the thin film model.
Note also that this collective depinning is very distinct from
the T = 0 transition that is also referred to as “depinning,”
when the drive on a single particle exceeds either AL or AR ,
the left and right single particle depinning thresholds [1].

At the HB point, the newly formed stable time-periodic
solution has a finite period, as can be seen from Fig. 3. In order
to illustrate the dynamics of the depinning of the stationary
solution, we set α = 2.08 and plot in Fig. 4(a) snapshots of
the time-periodic solution ρ(x,t) at three subsequent times,
t0, t0 + τ/3, and t0 + 2τ/3, where t0 was chosen as described
below and τ is the temporal period of the solution. Inspection
of the density profiles indicates that the depinned solution
can be seen as a superposition of two parts: a stationary part
with spatial period L and a time-periodic part with spatial
period S = 3L, that slides “on top” of the stationary part. The
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FIG. 4. (Color online) (a) Snap-
shots of the time-periodic density,
ρ(x,t), for α = 2.08 at three times,
t0 (dashed line), t0 + τ/3 (dot-dashed
line), and t0 + 2τ/3 (solid line). The
temporal period of the solution is τ =
30; the remaining numerical parame-
ters are as in Fig. 2(b). The channel po-
tential U (x) is also displayed (heavy
solid line limiting the shaded area).
(b) The time-dependent current
J (t) = (1/N )

∫ S/2
−S/2 J (x,t) dx, corre-

sponding to the solution in (a).

time-periodic part corresponds to a wave traveling to the left,
that is, in the direction of our negative constant drive. Here, at
t = t0, the absolute maximum of the density profile is located
at the rightmost minimum of the channel potential, U (x). After
one-third of the temporal period τ , the absolute maximum has
moved to the central well of the channel and after two-thirds
of τ , the maximum has finally reached the leftmost well. After
one full period τ , the cycle is repeated.

The time-periodic solution changes its character along the
branch in a continuous manner. With increasing attraction
strength the amplitude of the time-periodic part becomes larger
as compared to the steady part until finally most of the particles
travel. They travel, however, not in the form of a translation
of a compact cluster, but rather in the form of a volume
transfer of the cluster from one potential well to the next.
The temporal period becomes larger with increasing α and the
overall flux oscillates between a low absolute value (when the
cluster sits in a well) and a large absolute value (when the
cluster is transferred to the next well). This is shown in Fig.
4(b). With increasing α the dependence of the flux on time
becomes increasingly nonharmonic as the cluster spends an
increasing fraction of the time period around the three maxima
of the channel potential. In the vicinity of the homoclinic
bifurcation the density profiles for clusters mainly localized at
one of the three maxima closely resemble the corresponding
profiles on the three unstable stationary 3L-periodic solutions.
This also implies that at the homoclinic bifurcation the
stable cycle collides with all three unstable equilibria at
once.

Summarizing the results displayed in Figs. 3 and 4, we
conclude that, for values of α between the points labeled by
LP and HB, there exist two stable stationary solutions, with
spatial period L and 3L, respectively. Moreover, between
the points HB and hm, a stable time-periodic solution
coexists with the stable stationary 3L-periodic solutions.
By perturbing the time-periodic density profile with a finite

amplitude disturbance, one can induce the transition to the
stable stationary 3L-periodic solution. To do so, one starts a
simulation in time with a stable time-periodic solution and adds
a finite (mass-conserving) perturbation. If the perturbation is
large enough, the solution evolves after a short transient toward
the stable 3L periodic stationary solution. Note also that we
were not able to find the opposite transition: Perturbing the
stable stationary 3L-periodic solution by shifting it slightly in
the direction of the drive will “depin” the cluster only for a short
transient. It moves to the left and settles into the next potential
well; that is, it moves to the stable stationary 3L-periodic
branch that is related by the translation x → x − L.

B. Finite rod length and short-range attraction

We discuss now the effects of having a finite rod length in
addition to the attraction between the particles. In Fig. 5(a)
we display the bifurcation diagram in terms of the stationary
current J as a function of α for rod lengths h = 0, 0.1, and
0.2 for a domain length S = 4L. A relatively small change in
the size of the rods is sufficient to cause a significant change
in the current. First, one observes that the magnitude of the
current at α = 0 increases with h; this also remains true for
α > 0. Second, the critical interaction strength, αc, at which the
1L-periodic solution loses its stability via a Hopf bifurcation,
increases with h; that is, as expected, a system of finite-length
rods is more stable than the reference system with h → 0.
Third, the region in parameter space in which the stationary
1L-periodic and the 4L-periodic solutions coexist shrinks as
h is increased.

This can be explained as follows: For the 4L-periodic
solution to be stable at relatively small values of α, one
must squeeze all the particles (there are four particles in the
system with length S = 4L and ρ̄ = 1) into a small part
of the total system, not larger than half a ratchet period,
4h < L/2. As a consequence, the critical rod length above
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FIG. 5. (Color online) (a) Current J versus α for h = 0, 0.1, and 0.2, as indicated on the curves. The other system parameters are T = 1,
λ = 5, S = 4L, A = −1, and ρ̄ = 1. The symbols denote the Hopf bifurcation (HB) and the branching points (BP). The primary bifurcation
is always a HB. The solid and dotted lines for h = 0.1 and h = 0.2 represent stable and unstable solution branches, respectively. For h = 0.2,
the branch originating from the HB point is the branch of stable time-periodic solutions. Next to each stable branch is a label indicating the
spatial periodicity of the corresponding solutions. Panel (b) displays a magnification of the region in the vicinity of the HB point for h = 0.1.
The branch of stable time-periodic solutions starts at the HB point and terminates at the hm point. Panel (d) shows the average free energy
〈F/S〉 for h = 0.1 and the same range of values of α as in (b). Panel (c) shows the free energy of the various solution branches, for h = 0.2.
Panel (e) shows a snapshot of a typical time-periodic solution, obtained for parameters as in (c) and α = 8. Panel (f) represents the temporal
period of the stable time-periodic solutions in (b) as a function of the distance from the hm point, that is, (αhm − α). Dashed line is the decay
law τ ∼ ln (αhm − α).

which the 4L-periodic and the 1L-periodic solutions are
unlikely to coexist, is approximately h = 0.125, for L = 1. A
magnification of the bifurcation diagram for h = 0.1 slightly
below this critical value is displayed in Fig. 5(b). There,
the stationary 1L-periodic solutions become unstable at the
Hopf bifurcation (HB) and a stable branch of time-periodic
density profiles emerges supercritically [heavy green solid
line in Fig. 5(b)]. Slightly beyond the Hopf bifurcation, the
unstable branch of stationary 1L-periodic solutions undergoes
a supercritical period-doubling pitchfork bifurcation (BP) at
α ≈ 3.35. The emerging branch of stationary 2L-periodic
solutions is unstable with respect to two modes. It becomes
more unstable at a secondary period-doubling pitchfork bifur-
cation at α ≈ 3.45 (BP). The bifurcating branch consists of
stationary unstable 4L-periodic solutions with two unstable
eigenmodes. One of them is stabilized at a first saddle-node
bifurcation at α ≈ 3.55 where the branch turns back toward
smaller α. The branch of stationary 4L-periodic solutions
finally becomes stable at another saddle-node bifurcation at
α ≈ 3.47, where it turns again toward larger α. The branch
of stable time-periodic solutions terminates as in the case of
h = 0 length rods in a homoclinic bifurcation on the branch of
unstable stationary 4L-periodic solutions. The exact location

of the homoclinic bifurcation (labeled “hm”) is very close to
(but numerically clearly distinguished from) the saddle-node
bifurcation. The temporal period of the time-periodic solutions
diverges logarithmically on approaching the “hm” point, as
shown in Fig. 5(f).

To obtain some indication as to which stable solution
might be selected in time evolutions of the DDFT, starting
from various initial states, we compute the (time-averaged)
Helmholtz free energy per unit length, 〈F/S〉, for all stable
solutions. They are displayed in Fig. 5(c) and (d) for h = 0.2
and h = 0.1, respectively. In calculating these, we subtract the
nonperiodic potential energy term,

∫ S/2
−S/2 Aρ(x) dx, associated

with the dc drive, from the full expression in Eq. (6). This
ensures that solutions on branches that are related by the
discrete x → x + L translational symmetry have an identical
value for the free energy under periodic BC.

For h = 0.2, we observe in Fig. 5(a) that there exists no
branch of stationary 4L-periodic solutions; instead the stable
branch of 2L-periodic solutions continues toward large α. Note
that this branch is unstable when it bifurcates from the 1L

solutions, but becomes stable as a result of a another Hopf
bifurcation at α ≈ 5.6. The emerging time-periodic branch is
unstable and will not be further considered here. The only
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stable solutions with spatial period equal to the system size,
S = 4L, are the time-periodic ones, which correspond along
most of the branch to a single compact cluster of particles
traveling in the direction of the drive. Close to the Hopf
bifurcation, it resembles a small amplitude wave moving
“on top” of the stationary 1L state. Further away from the
bifurcation the behavior resembles the one described above
in connection with Fig. 4: Most of the particles travel in the
form of a volume transfer of the cluster from one potential
well to the next. Increasing α further, at about α ≈ 7 the flux
increases by about 50% over a very small α range. The cluster
morphology also changes from a compact “droplike” shape to
a multihump localized structure as depicted in Fig. 5(e), with
an arrow indicating the direction of motion of the cluster.
Each hump corresponds to a single particle. The particles
in the cluster are strongly bound together and the distance
between the particles remains almost constant as the cluster
moves through the system as a single unit. This implies that at
α ≈ 7 the transport mode also changes from a volume transfer
mode to a translation mode.

In contrast to the case h = 0.1, the time-periodic branch
continues toward large α. In other words, for h = 0.2 all
4L-periodic solutions are depinned. In Fig. 5(c) we see that the
time-periodic solutions have on average a lower free energy
than the stable stationary 2L-periodic solutions. However, as
the system is permanently out of equilibrium, in general, the
solution of lower free energy is not necessarily the one that the
system converges to in the long-time t → ∞ limit. Thus, for
h = 0.2 the onset of the time-periodic solutions of the DDFT
equation is associated with a transition between two major
transport modes: (i) At small values of the attraction strength
α or, equivalently, for high temperatures, stationary density
distributions exist, with the particles uniformly distributed
among the wells of the channel potential. Under the action of
the stochastic (thermal) noise, the particles jump occasionally
either to the right or to the left, but with a higher probability
for jumps in the direction of the applied drive. One may
call this the “stationary mode.” (ii) At larger α (or smaller
temperature), time-periodic density profiles seem to dominate.
They either correspond to transport from well to well by a
volume transfer mode or by a translation mode. The latter
correspond to depinned compact clusters in which strongly
attracting particles travel together. One may call this the
“condensed traveling mode.” Such a traveling cluster has a
characteristic length ∼hN and, in the limit where the attraction
α is strong (i.e., when α � T ), it moves as a whole in the
direction of the drive.

Figure 5(a) shows that the magnitude of the average particle
current J is substantially larger (at the same α) when transport
occurs through the condensed traveling mode, than when
in the stationary mode. This can be understood by noticing
that for well separated particles, which are effectively not
interacting, the average drifting motion of the particles is only
resisted by the periodic channel potential. However, when
N particles are clustered (bonded) together, then the total
pinning force exerted by the channel walls on the cluster is
f = −∑N

i=1 dU (xi)/dxi . As we show in detail below, the
value of this net force is very sensitive to the cluster size, and
when the length of the cluster hN is an integer multiple of the
period of the channel potential L, the total pinning force on

the cluster vanishes, leading to a maximal drift velocity equal
to A [21].

V. LOW FREQUENCY ac DRIVE

In this section we discuss the behavior of the system
when driven by an unbiased ac (square-wave) drive A(t) =
A sgn [cos (ωt)] in the low frequency limit, that is, in the
limit ω → 0. We focus in particular on the behavior of
the average rectification current 〈J 〉. For vanishingly small
frequencies, 〈J 〉 is obtained as the arithmetic average of the
two unidirectional currents J+ and J−, with J± denoting the
average currents induced by the dc drives ±A.

A. Maximization of the rectification current

As shown in the previous section, for constant drive A,
increasing the pair attraction strength α, leads to the onset
of a condensed traveling transport mode associated with the
clustering of the particles traveling in the direction of the
drive. As the condensation sets in, the opposite unidirectional
currents J± increase in magnitude. However, due to the
asymmetry of the channel potential, the condensation sets in
at different values of α, depending on the orientation of the
drive. This phenomenon is illustrated in Fig. 6(a), where the
two relevant HB points are marked, for the case when h = 0.2.
Owing to the spatial asymmetry of U (x), the depinning of the
stationary density profile when the drive is −A, with current
J−, occurs at a lower value of α than when the drive is +A,
with current J+. Therefore, when α is gradually increased
beyond the value at the HB point for negative drive −A,
the cycle averaged rectification current 〈J 〉 = (1/2)(J+ + J−)
is negative and increases in absolute value, as shown in
Fig. 6(b). As α is further increased to the value at the HB point
for positive drive +A, the magnitude of 〈J 〉 reaches a local
maximum as a function of α. Increasing α even further results
in a decrease in the magnitude of 〈J 〉. This occurs because the
particles are now transported as a condensed traveling mode
in both directions.

A qualitatively similar behavior of 〈J 〉 is found for a
range of different values of the particle size h. However, on
increasing α even further, so that it is well above the value at the
HB points, the dependence of 〈J 〉 on α becomes very sensitive
to the value of h. For instance, in Fig. 6(b) the rectification
current attains a second minimum at around α = 6 for h = 0.2,
whereas for h = 0.16 the second minimum disappears and 〈J 〉
increases monotonically as a function of α.

To confirm the validity of the (mean-field) DDFT results,
we performed Brownian dynamics computer simulations; that
is, we numerically integrated the Langevin equations of motion
(3), in order to compare with our DDFT results. In order
to make the simulations more convenient to implement, we
replace the hard-core potential, whr, by an equivalent, more
tractable soft-core potential, ws(xij ) = ε(h∗/xij )19, where the
constants ε and h∗ can be tuned to reproduce the desired
effective hard-core length of the potential. For fixed ε and h∗
the effective hard-core length heff of the particles becomes a
function of α, T , and, in general, also of the number of particles
N [48]. In our simulations we set ε = 0.01 and h∗ = 0.2,
which corresponds to an effective hard-core heff ≈ 0.16, for
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FIG. 6. (Color online) (a) The unidirectional currents J ± as functions of α, calculated using the DDFT, for S = 5, N = 5, A = ±1, λ = 3,
and T = 0.5 and for h = 0.2 (solid line) and h = 0.16 (dashed line). Symbols (solid squares) mark the corresponding Hopf bifurcation of the
stationary density distribution for h = 0.2. Note that to left of the Hopf bifurcation we show the current for the stationary solutions and to the
right for the time-periodic solution. (b) The rectification current 〈J 〉 versus α, computed as the arithmetic mean of J+ and J − in (a) (curves)
and from direct Brownian dynamics simulations with heff = 0.16 (symbols). All other system parameters are as in (a). Panel (c) gives the
unidirectional currents J ± obtained from Brownian dynamics simulations as functions of α for T = 0.5 (solid line) and T = 0.2 (dashed line).
The remaining parameters are S = 10, N = 10, A = ±1, λ = 3, and heff = 0.16. (d) The rectification currents 〈J 〉, computed as the arithmetic
mean of the currents J + and J − in (c).

α = 10. Our numerical data suggest that the dependence of
heff on T and N is rather weak and can therefore be neglected.

In Fig. 6(b) we compare the DDFT predictions for h = 0.16
with the corresponding simulation results for heff ≈ 0.16.
The first minimum in the current 〈J 〉 as a function of α

is clearly confirmed by the Brownian dynamics simulation
results for N = 5 particles. The simulation results displayed in
Figs. 6(c) and 6(d) also show that the overall structure of 〈J 〉
as a function of α does not change much as N is increased
up to 10. Moreover, as the temperature is decreased from
T = 0.5 down to T = 0.2, the maximum in the magnitude of
the current curve, |〈J 〉|, becomes even more pronounced, with
the magnitude of the peak rectification current increasing by
one order of magnitude. This effect, which is well established
in the ratchet literature [1], underlines the key role of noise in
activating transport (in either direction) when the amplitude of
the drive is smaller than both of the depinning thresholds, AL

and AR , of the ratchet potential, U (x).

B. Strong attraction limit

In order to study the properties of the system when the
attraction between the particles dominates over the thermal
motion of the particles and the pinning by the external
potential, we consider the limit α → ∞. This allows us
to reduce the system of Eqs. (3) to a single equation of

motion for the center of mass of the particle condensate,
y = (1/N )

∑N
i=1 xi . As noted above in Sec. IV B, the total

force exerted by the channel potential on the condensate is
f = −∑N

i=1 dU (xi)/dxi . If we assume that the pair attraction
is so strong that the rods are closely packed together in a single
condensate with their ends touching, the total force f can
be rewritten as f = −∑N

i=1 dU [x + (i − 1)h]/dx, where x

denotes the coordinate of the center of the first particle in the
file. Now, if we assume that h is small compared to the period
L of the channel potential, then the sum can be replaced by an
integral,

f ≈ − 1

hN

∫ x+hN

x

dU (y)

dy
dy

= −U (x + hN ) − U (x)

hN
, (15)

leading to the following effective equation of motion for the
center of mass:

dx

dt
= −U (x + hN ) − U (x)

hN
+ A(t) +

√
2T

N
ξ (t). (16)

Here ξ (t) has the same statistics as ξi(t) in Eq. (3). To derive
Eq. (16), we use the fact that the sum of N independent sources
of Gaussian white noise with variance 1 is also a Gaussian
noise, but with variance 1/N .
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FIG. 7. (Color online) (a) The unidirectional currents J± as
functions of the number of particles N , in a system with total
length S = 10. The heavy solid and dashed curves correspond to
the currents in the limit of very strong attraction (α → ∞) for
h = 0.1 and h = 0.2, respectively. The thin dashed curves represent
the currents for nonattracting particles (α = 0) with h = 0.1. In the
inset we display the T = 0 limiting values for the critical amplitude A

required for a current to flow, as a function of hN . In (b) we display
the rectification currents 〈J 〉 obtained from the currents displayed
in (a).

Equation (16) corresponds to the equation of motion for
a single Brownian particle diffusing in the effective external
potential Veff(x) = 1

hN

∫
[U (x + hN ) − U (x)] dx, in contact

with a thermal bath with temperature T/N . The first obser-
vation from Eq. (16) is that for large condensates, diffusion
becomes negligible, so that J± become sizable only if the
drive amplitude, A, overcomes the pinning force induced by
the effective potential Veff(x). For T ≡ 0, this critical ampli-
tude A is plotted in the inset of Fig. 7(a), as a function of
the size of the condensate hN . Within the shaded area, the
condensate is pinned by the effective external potential Veff ;
depinning occurs either to the left or to the right, depending on
the drive orientation. Note that for hN → 0, the right and left
critical amplitudes coincide with the single particle depinning
thresholds, AL and AR , introduced in Sec. IV. Similarly to
the case for pointlike particles [40], selecting an appropriate
combinations of h and N , one can achieve the complete
locking of the condensed mode in one direction, but not in
the other [21], which yields the upper bound |A|/2 for the
modulus of 〈J 〉.

Finally, using Eq. (16), we compare in Fig. 7 the efficiency
of the low-frequency transport of strongly attracting (α → ∞)
and noninteracting (α = 0) particles. We fix the size of the
particles h and change the average density ρ̄ by changing
the number of particles N in the system. The unidirectional
currents for the condensate oscillate with N and hit the
respective upper (lower) bound, J± = ±|A|, for hN equal
to a multiple of L. In the absence of particle attraction,
|J±| increases monotonically with N and attains the same

upper bound only for hN = S. The corresponding rectification
currents are shown in Fig. 7(b). For certain combinations of
h and N , the magnitude of the current of the condensate
is several orders of magnitude larger than for nonattracting
particles.

VI. CONCLUDING REMARKS

In this paper we have developed a DDFT for studying the
dynamics of a file of attracting colloidal particles confined
within a channel that exerts a periodic ratchet potential on
the colloids. We find that the attraction between the colloids
leads to rather rich behavior in the DDFT model when the
particles are driven, including transitions from stationary to
time-periodic density profiles as the strength of the attraction
between the particles is increased. We also find that for strong
enough attraction, there can be coexistence of stable stationary
density profiles with different spatial periods and time-periodic
density profiles, each with different values for the particle
current J .

These dynamical transitions in our model stem from the
fact that the approximate free energy functional (6) on which
our DDFT is based, predicts that the system exhibits gas-
liquid phase separation for sufficiently large values of the
ratio α/T hλ. This prediction comes as a consequence of
the mean-field approximation made in constructing the free
energy. In reality, for a system containing a finite number of
particles, there is no true phase transition. Furthermore, since
the system is one-dimensional, there is no phase transition even
in the infinite-sized system (i.e., in the thermodynamic limit
when N,S → ∞, with average density ρ̄ = N/S remaining
constant). In 1D systems such as that studied here, as the
attraction strength α is increased, the particles increasingly
tend to gather together, but no true phase transition can be
defined. Thus, in reality, as can be inferred from our Brownian
dynamics simulation results, there are no “sharp” transitions
from the pinned to the depinned (time-periodic) state, as α

is increased. Thus, we expect that fluctuations will round the
predicted transitions. Nonetheless, as the comparison with the
Brownian dynamics simulations show, the results from our
DDFT do capture the main features of the system, that is, that
for lower values of the attraction strength α the particles are
uniformly distributed, that at higher values of α the particles
gather to form a cluster, and that if the system length S is
sufficiently long, this clustering leads to time-periodic currents
J when the system is driven.

In our discussions above we have pointed out that simi-
larities exist between the DDFT equation (5) for the particle
density employed here and thin film equations that are used to
model the dynamics of films and drops of partially wetting
liquids on heterogenous solid substrates with and without
additional driving forces [30]. The similarities result from the
fact that in both cases kinetic equations for conserved fields
are used and that the respective free energy functionals contain
terms which result in similar physical effects. For instance, the
role of the particle-particle interactions in the present work is
taken by wettability effects in the context of droplet dynamics.
The parallels between the two systems have allowed us to use
the knowledge gained from studying one system to understand
aspects of the other. In particular, in the present work we
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have drawn on the understanding of depinning mechanisms
developed for thin films in Refs. [33,47]. Furthermore,
Ref. [47] indicates that one might encounter rich nonlinear
behavior when considering the behavior of attractive hard-core
particles in wider corrugated channels, that is, without the
“restriction” of single-file motion. Note, however, that there
are clear limits to the similarities: The thin film models referred
to above do not account for any effect that is equivalent to the
freezing instability discussed above. We believe that studying
in detail the similarities and differences between DDFT and
thin film models is worthwhile, as it will allow for much cross
fertilization of ideas and techniques between the two fields.

One of the most striking features of our system is that
the current J depends very sensitively on the size of the
particles h and on the total number of particles in the system
N , particularly when the particles are strongly attracted to
one another so that they are bound together to form a cluster
that moves as a unit through the system, when there is an
external drive on the system. In fact, the direction of travel can
be completely reversed when the system is driven by an ac
potential, simply by changing the number of particles in the
file by one; that is, adding an extra particle to a file can cause it
to reverse its direction of motion without changing the external

drive. This means that one can use the present system to form
a molecular shuttle that moves back and forth between two
docking stations, loading and unloading single particles from
a source to a sink docking station [21]. As the process repeats,
a steady flux is established along the channel. This mechanism
can be highly efficient if the system parameters are carefully
tuned.

The present model thus provides a useful system for devel-
oping a deep understanding of the behavior of driven macro-
molecular and colloidal systems occurring in nanoscience and
biology. In particular, by using DDFT, which is based on a
fully microscopic expression for the Helmholtz free energy
functional (6), we are able to build into our theory a reliable
description of the correlations between the particles and their
influence on the dynamics of the system as a whole.
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