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We consider an ordered ferromagnet in the vicinity of a T=0 transition into a paramagnet. We show that the
free energy and the transverse and longitudinal static susceptibilities contain nonanalyticities which destroy a
continuous second-order transition. Depending on the parameters, the transition either becomes first order or
occurs via an intermediate spiral phase.
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I. INTRODUCTION

In recent years, there has been a strong interest to under-
stand hidden features of a T=0 ferromagnetic transition in
itinerant fermionic systems. A much studied
Hertz-Millis-Moriya1–3 �4 model of a ferromagnetic quan-
tum criticality predicts that the transition should be continu-
ous in all dimensions D�1, with mean-field exponents, like
a classical transition in D�4=1+z, where z=3 is the dy-
namical exponent. Meanwhile, experimentally,4 pressure-
tuned ferromagnetic transition in itinerant ferromagnets ei-
ther becomes first order at low T, as in ZrZn2 or FeGe, or
involves spiral spin ordering, as in MnSi.

Recent theoretical studies5–8 revealed that the difference
between quantum and classical cases is more than the change
of the effective dimension—in the quantum case, the �4 and
higher-order terms in the expansion in the order parameter
field contain singular dynamic prefactors which reflect the
fact that fermions give rise to long-range, dynamical interac-
tion between collective spin excitations. These dynamic
terms have been analyzed on the paramagnetic side of the
transition, both in D=3 �Ref. 6� and D=2 �Ref. 9�, and have
been found to give rise to two competing effects: �i� the
expansion of the free energy in the magnetic field is nonana-
lytic, and the nonanalytic term favors a preemptive first-
order transition to a state with a finite magnetization, �ii� the
static spin susceptibility ��q� is nonanalytic in q and be-
comes negative at some q0, signaling another preemptive in-
stability, this time toward a spiral phase. Which instability of
a paramagnet comes first depends on the interplay between
the prefactors for the analytic �4 and q2 terms, but in any
event, a continuous second-order ferromagnetic transition
point is internally unstable.

In this Rapid Communication, we consider what happens
when the system approaches a ferromagnetic quantum-
critical point �QCP� from the ordered state. We show that the
free energy of a quantum ferromagnet is nonanalytic in the
order parameter field �, and the nonanalytic term favors a
first-order transition into a paramagnet at some �c. We ana-
lyze the static spin susceptibility, which in the ferromagnetic
phase has nonequal longitudinal and transverse components,
���q� and ���q�, and show that both are nonanalytic in mo-
mentum q and both become negative at a finite q inside the
ferromagnetic case, when � becomes smaller than some
critical �c� and �c�. The negative ��,��q� implies the devel-

opment of the spiral order, either along the direction of the
magnetization, or in a transverse direction. We argue that
�c ,�c� and �c� all scale with the Fermi energy �F and de-
pend on a single dimensionless parameter of the model . If
�c��c� ,�c�, the transition is first order, otherwise, the fer-
romagnetic phase first becomes unstable against a spiral.

Our analysis is based on the Eliashberg-type consideration
near a ferromagnetic QCP. Such approximation has been jus-
tified in Refs. 7–9 and we assume that it is valid. For defi-
niteness, we only consider 2D case, but we verified that the
conclusions are valid also for 3D systems.

The point of departure of our analysis is the spin-fermion
model near a QCP. It describes fermions interacting with
their own collective excitations in the spin channel, de-
scribed by spin variables S=c�

†���c�. The model does not
assume a long-range order a priori and is described by the
Hamiltonian with three terms: Hf =�k,�=↑,↓�kck,�

† ck,�, which
describes low-energy fermions with the dispersion
�k��F+vF�k−kF�, Hs=�q�0

−1�q�SqS−q, which describes
collective bosonic excitations with a bare static propagator
�0�q�, and the spin-fermion interaction term Hint
=g�1 /N��k,q,�,��ck,�

† ��,��Sqck+q,��. Within this model,
��q ,	m�=�0�q� / �1−2g2�0�q�
�q ,	m��, where �0�q� is the
static susceptibility of free fermions, and 
�q ,	m� is the
polarization operator �here and below we set the Bohr
magneton �B=1�. Near a ferromagnetic transition,
��q�=2���F� / �+ �aq�2�, where ���F� is the density of states
per particle at the Fermi surface ����F�=m / �2�� for
�0�k�=k2 / �2m��, =1− �2g���F��2, and the length a is pro-
portional to the radius of the interaction.9 The dynamic fer-
mionic self-energy and the dynamic part of 
�q ,	m� are
computed self-consistently within the model. The fully
renormalized spin susceptibility in the paramagnetic phase is

�ij�q,	m� = ij
2���F�

 + �aq�2 + 
̄�q,	m�
, �1�

where 
̄�q ,	m�=
�q ,	m�−
�q ,0�. For free fermions,


̄�q ,	m�= �	m� /	�vFq�2+	m
2 .

The ferromagnetic transition occurs when g=1 / �2���F��.
At larger g,  becomes negative, and the system develops a
ferromagnetic long-range order with the magnetization
M = 
Sz�= �N↑−N↓�. We assume that such long-range order
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does exist and search for preemptive instabilities upon ap-
proaching QCP from the ferromagnetic side.

II. MEAN-FIELD ANALYSIS

At the mean-field level, the interaction term reduces to
g
Sz��k,�sign�ck,�

† ck,�, and the fermionic propagator be-
comes

G↑,↓
−1 �k,�m� = i�m − ��k − �� � �0, �2�

where �0=g
Sz�=g�N↑−N↓�, and �=���0� is the exact
chemical potential �to order �0

2, ���0�=��0�−�� / �2���0
2,

where �� is the derivative of the density of states at the Fermi
surface�. Because �0 is finite, the longitudinal and transverse
spin propagators become unequal already in the static limit.
We have

�zz�q� =
�0

zz

1 − �g�0
zz�2 + �aq�2 ,

�xx�q� =
�0

xx

1 − �g�0
xx�2 + �aq�2 , �3�

where

�0
zz = −� d�m

2�
� ����d��G↑

2��,�m� + G↓
2��,�m�� ,

�0
xx = − 2� d�m

2�
� ����d�G↑��,�m�G↓��,�m� . �4�

A simple calculation shows that �xx�0�= �N↑−N↓� /�0=1 /g,
such that �xx�q� diverges at q→0, in agreement with the
Goldstone theorem. For longitudinal susceptibility,
�zz�q�=2���F� / �F+ �aq�2�, where F=−2=K�0

2, and
K=−�2 /3��� /�. The theory is only valid when K�0, other-
wise, the transition is first order by trivial reasons. By order
of magnitude, F��0 /�F�2.

The dynamic terms 
̄xx�q ,	m� and 
̄zz�q ,	m� also differ
at �0�0. Evaluating them using fermionic propagators from
Eq. �2�, we obtain


̄zz�q,	m� =
�	m�

	�vFq�2 + 	m
2

,


̄xx�q,i	m� =
�	m�

	�vFq�2 + �	m + 2i�0�2
. �5�

The mean-field dynamic spin susceptibilities in the ferro-
magnetic phase are then given by

�zz�q,	m� =
2���F�

F + �aq�2 + 
̄zz�q,	m�
,

�xx�q,i	m� =
2���F�

�aq�2 + 
̄xx�q,	m�
. �6�

At small 	m and q, 
̄xx�−i	m /�. In this limit, �xx

� ��aq�2− i	m /�0�−1 describes transverse Goldstone excita-

tions with 	=�0�aq�2, while �zz describes overdamped
longitudinal excitations.

III. ELIASHBERG THEORY

Equations �2�–�6� constitute the mean-field description of
the ferromagnetic phase. Within this description, the transi-
tion is continuous, i.e., the ferromagnetic phase is stable up
to a point where �0 ,=0. The Eliashberg theory goes be-
yond this approximation—it self-consistently takes into ac-
count �-dependent fermionic self-energy, but neglects
k-dependent self-energy and vertex corrections. Vertex cor-
rections generally are not small if the interaction involves
small momentum transfers and are necessary to satisfy Ward
identities related to the conservation laws. However, the
analysis of vertex corrections on the paramagnetic side have
shown8,9 that they can be rigorously neglected in the calcu-
lations of the nonanalytic terms in the free energy and spin
susceptibilities, if the interaction is sufficiently long-ranged
such that akF�1, which we assume to hold.10

The calculations proceed in three steps, like in the para-
magnetic phase. First, we obtain self-consistent one-loop ex-
pressions for the fermionic self-energy and dynamic spin
susceptibilities. Second, we use these one-loop expressions
as inputs, obtain the free energy within Eliashberg theory,
and show that it is nonanalytic in �. Third, using the same
inputs, we compute static spin susceptibilities at the two-loop
level and find terms which are nonanalytic in momentum.
We argue that the nonanalytic terms in the free energy favor
a first-order transition, while the nonanalytic terms in the
susceptibilities favor an intermediate spiral phase.

IV. FERMIONIC SELF-ENERGY

The one-loop fermionic self-energy in the ordered phase
is given by

� f��m� = ����k��m for �m � �0/�3

�0
1/3�m

2/3 for �m � �0/�3� ,

where �0=3	3�F / �4�akF�4�, �F=vFkF /2, and ���k� depends
in a nonsingular way on the ratio of �k and �0. For �k=�,

� =
1

4akF
� vF

a�0
+

1
	F + �2a�0/vF�2� . �7�

The self-energy is linear in �m at the smallest frequencies,
but crosses over to the quantum-critical, �m

2/3 behavior at
frequencies larger than �0 /�3�0

3 / ��F
2�akF��. Such self-

energy does not destroy the ferromagnetic order and pre-
serves a Fermi surface, but it is larger than �m near QCP and
has a nonFermi liquid form in between �0 /�3��0 and �0.
The nonFermi liquid behavior in the ferromagnetic state has
been discussed from a different point of view in Ref. 11.

The one-loop dynamic polarization operators 
̄1
xx�q ,	m�

and 
̄1
zz�q ,	m�, reevaluated with dressed fermions, are given

by rather complex expressions. Like in previous studies,8,9

we found that, for the calculations of the nonanalytic terms
in the free energy and spin susceptibilities, we only need
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terms up to order 1 /q3 in the 1 /q expansion of 
̄�q ,	m�.
Such terms are not affected by vertex corrections.8 We ob-
tained


̄1
xx�q,�� =

���
vFq

�1 −
�� + c�� f��� + 2i�0�2

2vF
2q2 � ,


̄1
zz�q,�� =

���
vFq�1 −

�� + c�� f����2

2vF
2q2 � , �8�

where c� interpolates between c�=0=1 and c��1.20 for
�0 /�3����0.

V. FREE ENERGY

The free energy per particle for the ferromagnetic spin-
fermion model in the Eliashberg approximation is given by

� = �0��0� + �zz + 2�xx,

where �0���= 2m
pF

2 �−�1 /4�F�2+ �K /8��4+ . . .� is analytic in
�. Minimizing �0 and expanding around the minimum, we
obtain the equilibrium �=�0= �F /K�1/2 and reproduce the
mean-field expression for the static �zz�q→0�. Further,

�zz =
V

2N
� d	md2q

�2��3 ln
�zz�0,0�

�zz�q,	m�
,

�xx =
V

2N
� d	md2q

�2��3 ln
�xx�0,0�

�xx�q,	m�
, �9�

where �ii�q ,	m� include one-loop polarization operators


̄1
ii�q ,	m�. Both �zz and �xx contain analytic contributions

which renormalize constants in �0���. These renormaliza-
tions are small in 1 / �akF� �Ref. 9� and we neglect them. In
addition, �xx contains the nonanalytic term in �, which is
our primary interest. Substituting �xx with the polarization
operator from Eq. �8� into Eq. �9�, integrating over momen-
tum, and neglecting regular terms, we obtain at QCP,

�xx =
	2

2�c3/2
�7/2

�F
2�0

1/2Z , �10�

where Z is the universal �cutoff independent� part of the
integral

Z = 2�
0

A

dy Re��y2/3 − i�2 log�y2/3 − i�2� . �11�

The evaluation of the integral yields Z=−8�	2 /35�−1.02.
Combining nonanalytic and analytic terms, we obtain in the
immediate vicinity of the QCP,

� =
1

�F
�−

F

4
�2 +

K

8
�4 −

�7/2

E3/2� , �12�

where E=d�F / �akF�4/3, and d�3.50. Apart from a small nu-
merical difference in d, this expression coincides with the
one obtained in Ref. 9 where QCP was approached from the
paramagnetic side. There is, however, an important distinc-

tion between paramagnetic and ferromagnetic phases away
from QCP. In the paramagnetic phase, the �7/2 dependence is
replaced by �3 when � /�F / �akF�2�. In the ferromag-
netic phase, →F, which by itself scales as �� /�F�2. As a
result, the nonanalytic �7/2 dependence of � survives in the
wide range away from a QCP, as long as � /�F��, where
�= �akF�2 / �K�F

2�.
The negative �7/2 term in the free energy shifts the equi-

librium value �0 such that it remains finite even on the para-
magnetic side of the transition, when F changes sign and
becomes negative. For a generic F, �0 is the solution of
K�0

2−7��0 /E�3/2=F. One can easily verify �see Fig. 1� that
the free energy �Eq. �12�� describes a first-order transition to
a paramagnet at F=−��0 /E�3/2�0 �i.e., 2=−F�0�. The
value of the equilibrium �0 at such a transition is �c
=36 / �K2E3��0.84�2�F. We also note that a prefactor for
��−�0�2 /2 in the free energy changes from F to F

eff=F
+ �7 /4���0 /E�3/2, and remains positive for all �0��c. At
�0=�c, F

eff= �3 /4��F�.

VI. STATIC SPIN SUSCEPTIBILITIES

We next show that the static spin susceptibilities �xx�q ,0�
and �zz�q ,0� also display nonanalytic behavior, and that
these nonanalyticities compete with the one in the free en-
ergy and may give rise to preemptive spiral instabilities. The
nonanalytic term in ��q ,0� has been previously analyzed on
the paramagnetic side.8,9 We performed the calculations in
the ordered phase.

The nonanalytic behavior of ��q ,0� originates from
nonanalytic q-dependencies of 
zz and 
xx, which acquire
static parts at the two-loop order.

The computational steps are similar to those in Ref. 8 and
we refrain from discussing them. The nonanalytic contribu-
tions 
2

zz and 
2
xx come from the processes in which fermi-

ons and spin fluctuations are vibrating near a fermionic mass
shell and are far away from a bosonic mass shell7,8 �the same
processes lead to fermionic self-energy � f��m��. We found
that the nonanalyticity comes from the exchange processes
involving transverse spin fluctuations.

There are two types of nonanalyticities in an ordered fer-
romagnet. First, there are corrections to static, uniform

zz�0,0�. They change F into F

eff, which is the same as the

�

����
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FIG. 1. The free energy ����, Eq. �12�, for different values of
F, going from positive �F�1 to negative �F�2,3,4. The first-order
transition occurs at �F�3.
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stiffness obtained by expanding the free energy. Second,
there are nonanalytic terms in the momentum expansion of
the static 
zz�q ,0� and 
xx�q ,0� Combining both, we found

�zz�q,0� =
2���F�

a2

1
F

eff

a2 + q2 − q3/2kF
1/2Fzz� 2�0

vFq �
,

�xx�q,0� =
2���F�

a2

1

q2 − q3/2kF
1/2Fxx� 2�0

vFq �
. �13�

For �0�vFq, Fzz�0�=Fxx�0��0.25, in agreement with Ref.
8. For vFq��0, the two scaling functions differ. The scaling
function Fzz�y� remains close to Fzz�0� as long as the argu-
ment y��F /�0. The function Fxx�y� crosses over to
Fxx�y�1��0.15 /	y such that 
2

xx�q ,0� becomes analytic,

2

xx�q ,0��q2. The function 	yFxx�y� is plotted in Fig. 2.
Analyzing Eq. �13�, we find that both susceptibilities become
negative at a finite q when �0 reduces below some critical
value. The transverse susceptibility becomes negative at
�0=�c,�=�F�	yF�y��max

2 =0.06�F, whereas longitudinal sus-
ceptibility becomes negative at �0=�c,�, which is the solu-
tion of

�c,�

�F
�1 −

21

4

�

d3/2	 �F

�c,�
�1/2

= 0.02	� .

Whether the transition is the first order or involves an
intermediate spiral phase depends on which of �c, �c,�, and
�c,� is the largest. All three critical � scale with �F, but they

depend differently on the parameter �. In Fig. 3 we plotted
the three critical � vs �. We see that for ��0.26,
�c,���c,� ,�c, and the system first develops a transverse spi-
ral order, while for ��0.26, �c��c,� ,�c,�, and the transi-
tion is first order.

In summary, we analyzed the nonanalytic terms in the free
energy and in static susceptibilities in an ordered itinerant
ferromagnet. We found that, because of these nonanalytici-
ties, the transition to a paramagnet is either first order, or
involves an intermediate spiral phase. Nonanalyticities in the
dispersion of Goldstone modes in itinerant ferromagnets
were discussed in Ref. 12. They found in 2D 	�0�q2 /�0,
i.e., 	�q2, with the prefactor independent on �0. Our
result differs from theirs—from Eq. �1�, we extract �
=q2�0�1− ��c,� /�0�1/2�. This is due to different sign of the
nonanalytic term in our case, and its different dependence on
�0 because of fermionic self-energy.
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