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Classical correlations of defects in lattices with geometrical frustration in the motion of a particle
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We map certain highly correlated electron systems on lattices with geometrical frustration in the motion of
added particles or holes to the spatial defect-defect correlations of dimer models in different geometries. These
models are studied analytically and numerically. We consider different coverings for four different lattices:
square, honeycomb, triangular, and diamond. In the case of a hard-core dimer covering, we verify the existing
results for square and triangular lattices and obtain new ones for the honeycomb and diamond lattices while in
the case of a loop covering we obtain new numerical results for all the lattices and use the existing analytical
Liouville field theory for the case of a square lattice. The results show power-law correlations for the square
and honeycomb lattices, while exponential decay with distance is found for the triangular lattice and exponen-
tial decay with the inverse distance on the diamond lattice. We relate this fact to the lack of bipartiteness of the
triangular lattice and in the latter case to the three dimensionality of the diamond. The connection of our
findings to the problem of fractionalized charge in such lattices is pointed out.
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I. INTRODUCTION

There has been enormous interest in the properties of
quantum frustrated magnets, with recent studies showing
fractionalization of quantum numbers �see Refs. 1 and 2, and
citations therein�. More recently, attention has shifted to
charge degrees of freedom on lattices with frustrated geom-
etries where the number of classical ground-state configura-
tions increases exponentially with the number of sites. It has
been noticed that hopping of fermions from site to site in
frustrated lattices can lead, under certain conditions, to frac-
tionalization of the fermionic charge in a rather natural
way.4,5

The motion of spinless fermions �or hardcore bosons� on
a lattice can be mapped to an Ising spin problem or to a
dimer configuration for any given lattice geometry and filling
fraction as we will see in the next paragraph. The addition of
a fermion �or boson� leads to a flip of an Ising spin or,
equivalently, to a new dimer. The ground states of the con-
sidered systems fulfill a local constraint of having a certain
number of particles on each unit cell or, equivalently, a cer-
tain number of dimers at each site.

For a specific implementation of local constraints in the
Hamiltonian language for fermions, let us consider the model
Hamiltonian

H = − t�
�i j�

�ci
†cj + H.c.� + V�

�i j�
ninj . �1�

Here �i j� denotes the sum over nearest neighbors i and j.
The operators ci �ci

†� annihilate �create� a particle on site i,
and ni=ci

†ci. For a moment, let us set the hopping integral t
to zero. We are interested in lattices for which the ground
state of the Hamiltonian �1� with repulsive nearest-neighbor
interaction term V only has at certain fillings a macroscopic
degeneracy, which increases exponentially with the system
size. In other words, the system has a finite T=0 entropy �for
possible technical applications, see Ref. 6�. Examples of
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such lattices are the pyrochlore lattice and the crisscrossed
checkerboard lattice �two-dimensional pyrochlore�, shown as
Figs. 1�a� and 1�b�. At half filling, all classical ground states
fulfill the so-called tetrahedron rule of having exactly two
particles on each tetrahedron �crisscrossed square�.3 The
dimer coverings of the dual lattice are constructed as usual
by connecting all centers of the tetrahedra and drawing a
dimer whenever the traversed site of the original lattice is
occupied. The tetrahedron rule translates into the constraint
of having exactly two dimers at each site of the dual lattice.
Similarly, for the kagomé lattice with nearest-neighbor repul-

FIG. 1. �Color online� Mapping of lattices which show frustra-
tion �black� to dual lattices �red�. �a� Checkerboard lattice with
nearest-neighbor repulsion → square lattice, �c� pyrochlore lattice
with nearest-neighbor repulsion → diamond lattice �c� kagomé with
nearest-neighbor repulsion → honeycomb lattice, and �d� kagomé
with repulsion interaction on hexagons only → triangular lattice.
The constraint of having a certain number of particles on each unit
cell translates into the constraint of having a fixed number of dimers
touching each site of the dual lattice, leading to a hard-core dimer

or loop dimer covering.
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sion the dual lattice is the honeycomb; see Fig. 1�c�. If the
repulsive interaction on the kagomé lattice is restricted to
hexagons only, the dual lattice is a triangular lattice; see Fig.
1�d�.

In the long run, one wants to understand the behavior of
mobile, fractionally charged, excitations resulting from weak
particle or hole doping of such systems.

As a first step, we present the study of classical defect-
defect correlations. A defect here means a cell where the rule
of a fixed number of particles �or dimers� is violated �Fig. 2�.
The study includes bipartite and nonbipartite two-dimen-
sional lattices �checkerboard, honeycomb, and triangular lat-
tices� as well as a three-dimensional diamond lattice, with
two different fillings corresponding to �i� the loop dimer and
the �ii� hard-core dimer covering. Wherever possible, we ob-
tain analytical results and compare them to numerical simu-
lations. These classical correlation provide information about
correlations near the Rokshar-Kivelson �RK� point of the
quantum Hamiltonian because at the RK point the quantum-
mechanical ground state is given by an equal-weighted su-
perposition of all configurations.7 Furthermore, in our case,
one can expect classical correlations to hold more generally
since the low-energy excitations can be described equiva-
lently by hard-core bosons or fermions.8

Historically, studies of monomer and dimer models
started very early.9 At zero doping, the Pfaffian method in-
troduced by Kasteleyn allows the derivation of the classical
correlations analytically.10 For the square lattice with hard-
core dimer covering, the correlation of a pair of monomers
has been obtained.11,12

The main findings of the present work are the following:
For the square and the honeycomb lattice, correlations as a
function of distance show a power-law behavior, with an

FIG. 2. Hard-core dimer �a� and loop dimer �b� covering on the
square lattice. �c� and �d� show two defects in the different cover-
ings at positions marked by arrows.
exponent 1/2 for the hard-core dimer covering on the square
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lattice and 1/3 for a loop dimer covering. The honeycomb
lattice has an exponent of 1/2 for both coverings. An expo-
nential decay with distance is found for the triangular lattice,
and the diamond lattice shows exponential decay with in-
verse distance.

In the next section, we present the results and the methods
in detail. We start with the square lattice where, for com-
pleteness, we summarize the Liouville theory of the fully
packed loop model with two colors,13 which provides the
exponent for the loop covering analytically, and we subse-
quently show the numerical results. We then present the rel-
evant results for the honeycomb, the triangular, and the dia-
mond lattices and, finally, we conclude.

II. RESULTS FOR DIFFERENT LATTICES

A. Square lattice

As described above, the half-filled checkerboard lattice
with nearest-neighbor repulsion is mapped to a loop dimer
model on the square lattice, meaning that each site is con-
nected to exactly two dimers. This can then be interpreted as
covering in the fully packed loop model with two colors,
assigning different colors to occupied and unoccupied bonds.
Using the machinery developed for this model,13 we can read
off the appropriate exponent of the defect-defect correlation
function: In order to obtain the Liouville theory of the model,
the first step is to map the oriented loops to an interface
model, where they can be interpreted as contour lines. The
microscopic heights are defined at the center of the lattice
plaquettes, and each bond is in one of four possible states

�A� ,B� ,C� ,D� �. We write the partition function as Z
=�Gnb

Nbng
Ng where Nb and Ng are the numbers of the loops of

the two colors and 0�nb and ng�2 are the fugacities ac-
cordingly. Assigning weights exp�±i�eb�
or exp�±i�eg� to the different orientations, with nb

=2 cos��eb� and ng=2 cos��eg�, allows a local definition of
the statistical weight of oriented loop, and in turn the weights
leads to a local field theory.13

Our problem at hand �which can be equivalently mapped
to a six-vertex model� corresponds to fugacities nb=ng=1.
Therefore eb=eg=1/3. Adopting the same convention as in

Ref. 10 �A� = �−1, +1, +1�, B� = �+1, +1,−1�, C� = �−1,−1,−1�,
D� = �+1,−1, +1��, the topological charge �±m� � is m� =C� −A�

= �0,−2,−2� and 2x1,1 is the dimension of an operator with
total charge �e�0 ,m� 1,1�, where e�0=−� /2�eg+eb ,0 ,eg−eb�
=��1/3 ,0 ,0�. The effective field theory for the coarse-
grained heights is given by the action

S = SE + SB + SL,

SE =
1

2
� d2xK�,� � h� � h�, SB =

i

4�
� d2x�e�0 · h��R ,

SL =� d2x �
e��R�

*

�̃e� exp�ie� · h��x�� .

Here, SE is the elastic term �entropy of the oriented loops�

with the tensor K of elastic constants K11=K33 and K12
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=K23=0 and h��x�� is the height field �coarse-grained field of
the integer-valued height h�. SB is the boundary term with the
scalar curvature R, which vanishes everywhere except at the
boundary. This term inserts the vertex operator at the far
ends and supplies winding loops. Finally, SL is the Liouville
term. The Liouville potential is the coarse-grained version of
the local weight assigned to an oriented loop configuration
	x���x�� : ��x��=−ln���x��� is defined in height space, which is
the bcc lattice R�. The Fourier-transformed values of ��x��
=�e��R

�
* �̃e� exp�ie� ·h��x�� in the reciprocal lattice R�

* �a fcc lat-
tice� enter SL.

The scaling dimension of a general operator with both
electric and magnetic charge is given by

x�e�,m� � =
1

4�
�e� · K−1 · �e� − 2e�0� + m� · �K · m� �� , �2�

where in our case K11= �
8 �2−eb−eg�= �

6 , K13= �
8 �eb−eg�=0,

and

K22 =
�

2

�1 − eb��1 − eg�
2 − eb − eg

=
�

6
.

Therefore the critical exponent of interest is simply

2x1,1 =
1

4
��1 − eb� + �1 − eg�� +

�1 − eb��1 − eg�
2 − eb − eg

− 
 eb
2

1 − eb
+

eg
2

1 − eg
� =

1

3
. �3�

The result �3� will be next verified numerically by Monte
Carlo simulations.

The dimer models on dual lattices are numerically prefer-
able over the original lattices, because the constraints are
included in a more natural way. Even though dimer models
have been intensively investigated in the study of spin
models,2 not much is known about defect-defect correla-
tions. The defect-defect correlation function, e.g., C�0 ,r�
��N0Nr�, which gives the probability to find two defects at a
certain distance r. The defect-defect correlation is propor-
tional to the restricted partition function Z11�0 ,r��
r
−2x11 of
the two-color fully packed loop model. It is counting the
number of configurations with defects at 0 and r connected
by one string of each color. Thus C�0 ,r� is expected to be-
come isotropic at large distances and to decay algebraically
Z�0 ,r��
r
1/3.

In the following, we measure numerically the correlations
along a coordinate axis �r= �x ,0�� and refer to it as C�x�. The
classical two-point correlation functions at zero temperature
are delivered as averages over all degenerate ground states.
The number of degenerate ground states grows exponentially
with system size. At the start, an allowed configuration with
fixed filling; i.e., a ground state of the undoped system with
no violation of any local constraint is generated. Then we
add a dimer onto an unoccupied random link. This leads to
two defects on adjacent sites of the dual lattice, which sub-
sequently propagate via local dimer moves through the sys-
tem without creating any new defects. At each step the

defect-defect distance x is counted in a histogram Z�x�,
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which after normalization yields the correlation function
C�x�=Z�x� /Z0. The normalization is somewhat arbitrary; we
chose it in such way that C�1�=1. The algorithm is termi-
nated when the standard deviation of the measured quantity
falls below a certain threshold. Results of simulations with
different initial configurations are compared for verification.
For the two-dimensional �2D� lattices about 107–108 sam-
plings were necessary. For the 3D diamond lattice it took
about 1010 steps until convergence. We also applied an alter-
native Monte Carlo algorithm with loop updates14 which is
known to be ergodic and unbiased but shows considerable
slower convergence.

The algorithms have been applied to different lattice
structures and filling factors �see Fig. 1�. To test the imple-
mentation of the algorithm, we first reproduced the known
monomer two-point correlations on the hard-core dimer cov-
ering on the square and triangular lattice �see Figs. 3 and 5�
as well as the dipolar correlations in the undoped system on
a square lattice14,15

The square lattice is a bipartite lattice and the two defects
are on different sublattices. We extracted the exponent from
the numerical data by linear interpolation of log-log plots
and verified the results by finite-size scaling C�x /L�
=L	�x /L�	c�x /L� with exponent 	 and system size L. Figure
3 compares the numerical data and the analytical results. For
a rescaled distance variable x�=L sin��x /L� /� is used the
numerical fit in order to account for the periodic boundary
conditions.

In the case of a hard-core dimer covering �quarter-filled
checkerboard lattice� the exponent agrees with the results
from Ref. 16—i.e., C�x��1/x1/2. The correlations in the
case of a loop dimer covering �half-filled checkerboard� are
very well fitted with the power law 1/x1/3, obtained analyti-
cally �see above�. As expected, the correlations do not show
any angle dependence at large distances. In both cases, the
decay of the correlation function is algebraic which is ex-
pected for two-dimensional bipartite lattices: The two defects
have long-range correlation and feel each other’s presence at
all distances. The bipartiteness is also seen by the strictly
zero correlations C�x� for distances which connect sites that

FIG. 3. Classical defect-defect correlation functions on a square
lattice with hard-core dimer �upper panel� and loop dimer coverings
�lower panel� along a coordinate axis. Results are shown for lattices
with L=64 and L=128. The numerical data are fitted by the exact
asymptotic results. The periodic boundary conditions are taken into
account by plotting the fit against a rescaled distance variable.
reside in the same sublattice.
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B. Honeycomb lattice

The kagomé lattices with nearest-neighbor repulsion at
one-third and two-thirds filling are mapped to the hard-core
dimer and the loop dimer model on the honeycomb lattice,
respectively. The numerically obtained correlations along the
axes of the bravais lattice are both C�x��1/x1/2 �see Fig. 4�.
Note that the two models—i.e., filling factors—are equiva-
lent in the absence of defects. They can be identified by
exchanging links which are occupied by a dimer and those
which are not occupied. The faster algorithm described
above did not show the equivalence of the two models.
Therefore, we used the loop algorithm for this lattice.

C. Triangular lattice

The kagomé lattices with repulsion on the hexagons only
is mapped at one-sixth filling to a hard-core dimer model and
at one-third filling to a loop dimer model on the triangular
lattice. The correlation function decays exponentially in both
cases �see Fig. 5� with decay length of the order of one
lattice spacing. The values obtained for the hard-core dimer
model are in agreement with those obtained in Ref. 18. For
distances farther than a few lattice spacings, C�x� is constant
within the noise ratio and tends to a finite value in the limit
x→
.19 This implies that the free energy difference �F�
�

FIG. 4. Classical defect-defect correlation functions on a hon-
eycomb lattice with hard-core dimer and loop dimer coverings
along an axis of the bravais lattice. Numerical results are shown for
lattices with L=64 and L=128 together with a fit to a power law
�x1/2. The periodic boundary conditions are taken into account by
plotting the fit against a rescaled distance variable.

FIG. 5. Classical defect-defect correlation functions on a trian-
gular lattice with hard-core dimer �upper panel� and loop dimer
coverings �lower panel� along a coordinate axis. Results are shown

for a lattice with L=16.
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�−T�ln C�
�−ln C�1�� of two infinitely separated defects in
the classical hard-core dimer and loop dimer model is finite
and the two defects are deconfined.

D. Diamond lattice

The mapping of particles with local constraints due to
large repulsive interactions to hard-core dimer or loop-loop
models can be applied to three-dimensional systems as well.
For example, the pyrochlore lattices at one-fourth and one
half-filling correspond to the hard-core dimer and the loop
dimer model on the diamond lattice, respectively.

Monte Carlo simulations for two different lattice sizes
are shown in Fig. 6. Much more samplings are needed to
achieve a good signal-to-noise ratio, because the phase space
is considerable larger than in the case of the 2D lattice. From
a logarithmic plot, we found that the correlation functions
decay approximately exponentially with respect to the in-
verse distance along the axes of the bravais lattice as
C�x��exp� 1

4x
� for the hard-core dimer covering and C�x�

�exp� 1
6x

� for the loop covering. The reason that this bipartite
lattice shows these short-range correlations is because the
monomers follow a 3D Coulomb law with potential �V�r�
�1/r� as opposed to the divergence at large distances V�r�
� log r found in 2D.20 The restricted partition function then
decays exponentially with distance in the case of the dia-
mond lattice. A recent work on spin-1/2 Heisenberg antifer-
romagnets on pyrochlore lattices21 reveals a fractionalized
spin liquid with U�1� gauge structure where this 1 /r potential
acts between pairs of spinons and pairs of monopoles.

III. DISCUSSION

In summary, we calculated the classical defect-defect cor-
relations for different fillings and different lattices with ge-
ometry that causes frustration in the motion of particles. �See
Table I.� Recent studies on bipartite and nonbipartite three-
dimensional lattices20 lead to the conjecture that extended
critical phases are realized only in bipartite lattices. This is
supported by our results: For two-dimensional bipartite-
lattice–dual-lattice pairs �checkerboard-square lattice and

FIG. 6. Classical defect-defect correlation functions on a dia-
mond lattice with hard-core dimer �upper panel� and loop coverings
�lower panel� along a coordinate axis. Results are shown for lattices
with L=32 and L=64. The numerical data are fitted to exponential
functions. The periodic boundary conditions are taken into account
by plotting the fit against a rescaled distance variable.
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kagomé-honeycomb lattice� the correlation functions decay
with distance following a power law and tend to zero for x
→
. Otherwise �“modified kagomé with repulsive interac-
tion on hexagons only �triangular� lattice and three-dimen-
sional pyrochlore �diamond� lattice”� an exponential decay
with distance or inverse distance, respectively, and a finite
value for x→
 are found.

Where analytical values for power-law exponents were
known in the literature, these could be confirmed. For the

TABLE I. The summary of the defect-defect correlations we
obtained for the four different lattices and the two distinct dimer
coverings. In the case of the triangular lattice there is an exponential
decay with decay distance of one lattice constant, tending to a finite
value at x→
.

Lattice Hard-core Loop

Square x−1/2 x−1/3

Triangle exp�−x� exp�−x�
Honeycomb x−1/2 x−1/2

Diamond exp�1/4x� exp�1/6x�
checkerboard lattice—i.e., two-dimensional pyrochlore lat-

P. W. Kasteleyn, Physica �Amsterdam� 27, 1209 �1961�.
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tice—we could relate the defect-defect correlations to the
solved two-color fully packed loop model.13 This predicts
C�x��x−1/3 which is in perfect agreement with the data from
our Monte Carlo simulation.

The different behavior of the defect-defect correlations
leads to two different scenarios with respect to the separation
of defects at small finite temperatures. A separation of two
defects to an infinite distance leads to an increase of the
free energy, �F�
��−T�ln C�
�−ln C�1��. Consequently,
�F�
� is infinite for the defect on the square and honeycomb
lattices �confinement� and remains finite for the triangular
and diamond lattice �deconfinement�.

The results are useful for the quantum version of the prob-
lem at the RK point of the Hamiltonian in general.7 In par-
ticular, our results can be extended to the motion of strongly
correlated spinless fermions on the checkerboard lattice.8
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