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Abstract 

Nonsymbolic comparison tasks are commonly used to index the acuity of an individual’s 

approximate number system (ANS), a cognitive mechanism believed to be involved in the 

development of number skills. Here we asked whether the time that an individual spends 

observing numerical stimuli influences the precision of the resultant ANS representations. 

Contrary to standard computational models of the ANS, we found that the longer the stimulus 

was displayed, the more precise was the resultant representation. We propose an adaptation 

of the standard model, and suggest that this finding has significant methodological 

implications for numerical cognition research. 
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SAMPLING FROM THE MENTAL NUMBER LINE: HOW ARE APPROXIMATE 

NUMBER SYSTEM REPRESENTATIONS FORMED? 

 

Fluency with mathematics is essential for day-to-day life. To successfully interact in a 

modern society it is frequently necessary to interpret, compare and calculate with numerical 

quantities. Along with a capacity to understand numerical ideas when represented 

symbolically, humans also have an Approximate Number System (ANS) which can be used 

to perform arithmetic operations on non-symbolic quantities such as arrays of dots or tones. 

The ANS is present in very young infants and some non-human animals (for a review see 

Dehaene, 1997), and recently some theorists have begun to speculate that it serves as the 

cognitive basis for symbolic mathematics (e.g. Halberda, Mazzocco, & Feigenson, 2008). 

The ANS is widely believed to follow Weber’s law: the standard model proposes that 

when we encounter non-symbolic stimuli, a box of n oranges say, the distribution of possible 

ANS representations follows a normal distribution with mean n and standard deviation wn. 

Here w is the Weber fraction, a parameter which represents the acuity of an individual’s ANS 

(e.g., Barth, La Mont, Lipton, Dehaene, Kanwisher & Spelke, 2008). Several recent studies 

have shown that individuals’ ANS acuities are correlated with achievement in symbolic 

mathematics (e.g. Gilmore, McCarthy & Spelke, 2010; Halberda et al., 2008; Libertus, 

Feigenson & Halberda, 2011; Mazzocco, Feigenson & Halberda, 2011a, 2011b; but see 

Inglis, Attridge, Batchelor & Gilmore, 2011; Price, Palmer, Battista & Ansari, 2012), lending 

credence to the suggestion that the ANS is implicated in the development of symbolic 

mathematics competence. 

Although the capabilities of the ANS are now fairly well understood, the process by 

which the ANS forms representations from visual numerical stimuli is less clear. Several 

researchers have proposed that a mental ‘accumulator’ is central to this process (e.g. Dehaene 
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& Changeux, 1993; Gallistel & Gelman, 2000; Piazza & Izard, 2009; Verguts & Fias, 2004). 

Gallistel and Gelman drew an analogy between filling up a beaker with cups of liquid, and 

filling up the accumulator with “accumulator units”. They suggested that when an array of 

objects is observed, the scene is first normalized to remove numerically-irrelevant between-

object differences (color, shape, size etc), then one cupful of ‘liquid’ is added to the 

accumulator per item. The contents of the accumulator are then emptied into memory which 

introduces noise proportionate to the accumulator’s contents (the “sloshing” of liquid in the 

memory beaker, in Gallistel and Gelman’s analogy). It is this noise, when the contents of the 

memory beaker are read off (converted into a numerical quantity), which causes the 

approximate nature of ANS representations. 

It is notable that both Barth et al.’s (2008) computational model of the ANS, and 

Gallistel and Gelman’s (2000) accumulator beaker analogy assume that the duration for 

which a numerical stimulus is displayed is irrelevant to the ANS representation that an 

individual encodes from it. To date this assumption has not been tested. We see two reasons 

for questioning it. First, earlier researchers have reported different Weber fractions in studies 

which have used different display times. For example, a dot comparison task with a stimuli 

duration of 200ms resulted in less precise ANS representations (mean w = 0.3, Halberda et 

al., 2008) than one with a display time of 750ms (mean w = 0.1, Halberda & Feigenson, 

2008). Second, it is well known that performance on many other visual tasks is dependent on 

stimuli durations (e.g., visual search: Guest & Lamberts, 2011; McElree & Carrasco, 1999; 

absolute identification: Guest, Kent & Adelman, 2010). 

Our goal in this paper is to explore whether the precision of an individual’s ANS 

representation varies with the length of time they spend studying the numerical stimulus. This 

question is important for at least two reasons. First because, as discussed above, it sheds light 

on the underlying mechanism that the ANS uses to form representations. Second, because 
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numerical cognition researchers have to date adopted widely varying methods when 

conducting experimental studies. When presenting numerical comparison tasks (where 

participants are shown two dot arrays and asked to determine which is more numerous), some 

researchers have permitted participants to decide how long to study the stimuli before 

reaching a judgement (e.g., Inglis et al., 2011; Pica et al., 2004), whereas others have 

displayed the stimuli for a fixed period. Among those who have used fixed stimuli durations, 

some have displayed stimuli for as little as 200ms (e.g., Halberda et al., 2008) whereas others 

have used up to 2500ms (e.g., Halberda & Feigenson, 2008), and some researchers have used 

different stimuli durations for different participants within the same experiment (e.g., 

Halberda & Feigenson, 2008; Mazzocco, Feigenson & Halberda, 2011b). All these authors 

have assumed that these methods investigate the same underlying process, but if the 

formation of ANS representations is time dependent then it is questionable whether results 

from these studies are comparable.  

Here we report two experiments which directly investigated whether the acuity of 

ANS representations encoded from visual stimuli varies with stimuli duration. In Experiment 

1 we demonstrate that individuals’ accuracies and Weber fractions are strongly dependent on 

stimuli duration, in Experiment 2 we show that this is not the result of differing onset-to-

decision latencies, and in the general discussion we propose an adaptation of the standard 

model of the ANS which accounts for these data. 

Experiment 1 

Method 

Participants. Participants were 12 staff or students of Loughborough University with 

normal or corrected-to-normal vision, who participated in exchange for a small 

inconvenience allowance. The study took place in a quiet laboratory using a 15” laptop. 
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Procedure. Each of 400 trials began with a fixation cross which was displayed for 

1000ms. This was followed by two dot arrays (a red array on the left of the screen and a blue 

array on the right) which were displayed for either 16ms (the refresh rate of the monitor),  

300ms, 600ms, 1200ms or 2400ms. After the alloted time period the dot arrays were replaced 

by two red and blue masks and a question mark. Participants were then required to select 

which of the arrays was the more numerous by pressing either a blue or red key on a response 

box. No feedback was given to participants. Trials were blocked by display time, and each 

participant was given the blocks in a random order. Each block consisted of 80 trials (which 

were identical between blocks) and was preceeded by a practice block of 10 trials. The 

problems used numerosities in the range 5 to 21, with comparison ratios of approximately 

0.5, 0.6, 0.7 and 0.8. Each problem appeared twice, once where the larger numerosity was on 

the left hand side of the screen, and once when it was on the right. Stimuli were created using 

Gebuis and Reynvoet’s (2011) method. The paradigm is summarised in Figure 1.  

 

 

Figure 1. An illustration of the procedure used in Experiment 1. 
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Modelling. As well as calculating each individual’s accuracy, we fitted participants’ 

data to the standard computational model of the ANS (Barth et al., 2008) using the log 

likelihood method. According to the standard model, accuracy on a given trial is a function of 

the numerosities involved and the individual’s Weber fraction: 

acc(n1,n2;w) =
1
2
+
1
2
erf

n1 − n2
2w n1

2 + n2
2

"

#
$
$

%

&
'
'     

 

Where n1 and n2 are the to-be-compared numerosities, w is the Weber fraction and erf is the 

error function.

 

Results. 

Participants’ accuracies varied from .77 to .92 (M = .85, SD = 0.05), and their overall 

Weber fractions varied between 0.18 and 0.39 (M = 0.27, SD = 0.06). We first calculated 

participants’ Weber fractions separately for each of the five display durations. The mean ws 

were 0.57, 0.29, 0.25, 0.19 and 0.17 for the 16ms, 300ms, 600ms, 1200ms and 2400ms 

conditions respectively, F(1.081, 0.065) = 16.636, p = .001, ηp
2 = .602 (Greenhouse-Geisser 

correction), which represented a significant linear trend, F(1, 10) = 23.348, p = .001, ηp
2 = 

.680.  

Mean accuracies for each of the comparison ratios are shown in Figure 2, and were 

analysed using a 4 (comparison ratio: 0.5, 0.6, 0.7, 0.8) × 5 (stimuli duration: 16ms, 300ms, 

600ms, 1200ms, 2400ms) within-subjects analysis of variance (ANOVA). As is characteristic 

of ANS tasks, the main effect of ratio was significant, F(3, 33) = 143.076, p < .001, ηp
2 = 

.929, and also showed a significant linear trend, F(1, 11) = 408.307, p < .001, ηp
2 = .974. 

Critically, there was also a significant effect of stimuli duration, F(4, 44) = 28.638, p < .001, 

ηp
2 = .722, which also showed a significant linear trend, F(1, 11) = 49.075, p < .001, ηp

2 = 
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.817. The longer the stimuli duration, the more accurate participants were. The interaction 

effect did not approach significance, F(12, 132) = 1.550, p = .114. 

 

Figure 2. Participants’ mean accuracies in each of the five stimuli duration conditions in 

Experiment 1, by comparison ratio. Error bars show ±1 SE of the mean. 
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Next we used one-sample t-tests to assess each mean accuracy figure to determine 

whether participants were performing at above chance levels. Every mean was well above 

50%, all ps < .001, suggesting that participants were able to perform comparisons of 

numerosities with ratios 4:5 in only 16ms. To check whether participants’ relatively high 

accuracies in the 16ms condition was the result of cross-block learning, we considered the 

performance of the three participants who received the 16ms block first. Each performed at 

above chance levels (74%, 66% and 63%, all ps < .02) and were well within the range of 

other participants (59% to 88%), suggesting that the ANS is capable of processing 

numerosities under extreme time pressure. No participant reported failing to see the stimuli in 

the 16ms condition, perhaps because we did not use a forward mask; it therefore remains to 

be seen whether the ANS can process numerical concepts subliminally. 

Discussion 

Two notable findings emerged from Experiment 1. First, participants were able to 

successfully encode ANS representations from stimuli displayed for as little as 16ms, 

suggesting that the process of forming ANS representations is automatic, or at least 

extremely rapid. Second, although participants were reliably able to complete the comparison 

task in 16ms, they were significantly more accurate with longer display times.  

These findings indicate that forming ANS representations and using them to generate 

behavior is a time-dependent process. An obvious question concerns where in Gallistel and 

Gelman’s (2000) analogy a time dependency could occur. We see three possibilities, which 

we discuss in turn. First, it could be that the input to the ANS becomes more precise with 

more time. In other words, that when participants view arrays of dots the precision of their 

initial visual processing increases with time. Below we suggest that there are theoretical and 

empirical reasons for doubting this account. A second possibility is that the output of the 

ANS is processed differently under different time constraints. Perhaps representations from 



 Sampling from the Mental Number Line 
 10 

the ANS are generated extremely rapidly upon stimuli onset, but the process used to compare 

the two representations – the last stage in Gallistel and Gelman’s analogy – is time 

dependent. We rule out this possibility in Experiment 2. Finally, it could be that the precision 

of participants’ ANS representations themselves increase with time. We discuss a possible 

mechanism for this latter account in the general discussion at the end of the paper. 

The first account suggests that participants’ initial visual processing is more precise in 

the slower conditions, and that therefore the input to the ANS is more precise as well. We see 

three reasons to doubt this account. First, the initial stages of Gallistel and Gelman’s (2000) 

account can be seen as equivalent to the initial preattentive stage of accounts of visual search 

behavior (e.g. Triesman & Gelade, 1980; Wolfe, 1994). Since the two dot arrays on typical 

comparison tasks differ on only one salient feature (typically color), the initial visual 

processing on each trial is directly analogous to that on single feature visual search tasks (i.e. 

where participants are asked to, for example, find a blue A among red As). According to the 

Guided Search account (Wolfe, 1994), when faced with blue- and red-colored stimuli of the 

type presented in our dot comparison tasks, a color ‘feature map’ is preattentively and 

automatically constructed. This map contains tagged activation levels corresponding to each 

blue or red item in the visual scene. It is only when different feature maps need to be 

integrated that slow serial visual processing is recruited (e.g. where an individual is searching 

for a blue A among red As and blue Hs then information from both the color and the shape 

feature maps needs to be integrated). We suggest that it is the number of blue and red 

activation locations in this preattentive feature map which provides an input to the ANS. If 

this account is correct, then the initial visual processing would not be time dependent as the 

feature map is constructed automatically in parallel. 

Second, if the initial visual processing of the dots were a time-dependent serial 

process, we would expect the number of dots in each trial to be predictive of the trial’s 
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difficulty and, moreover, that the number of dots would interact with the stimuli duration (on 

short trials we would expect that the difficulty difference between problems with large 

numbers of dots and those with small numbers of dots would be lower than on long trials). To 

investigate this we categorized each trial as being either ‘large’ or ‘small’ (based on a median 

split of the total number of dots on each trial), and analyzed participants’ accuracy data using 

a 5 (duration) × 2 (size) within-subjects ANOVA. We found neither an interaction effect, 

F(4,44) = 1.015, p = .410, nor a main effect of size, F(1,44) = 3.680, p = .081. Both these 

findings are consistent with the suggestion that the initial visual stage of processing in dot 

comparison tasks takes place in parallel. 

Finally, if the initial stage of processing were, in part at least, driving individuals’ 

ANS acuities, then we would expect individual differences in visual processing speeds to be 

related to ANS acuities. But Simms, Clayton, Cragg, Gilmore, Marlow, & Johnson (2013) 

found no relationship between performance on Anderson, Reid and Nelson’s (2001) measure 

of visual processing speed, and a typical ANS dot comparison task, r = .001, p = .991. 

The second and third accounts of where the time dependency could occur in Gallistel 

and Gelman’s (2000) analogy are both consistent with the data reported in Experiment 1. In 

particular, in Experiment 1 stimuli duration was confounded with the latency between stimuli 

onset and participants’ decision points. In other words, it might be possible that participants’ 

increased accuracy in conditions with longer display times was not due to more precise ANS 

representations (as proposed by the third account), but rather to having longer to perform the 

arithmetical comparison operation upon representations which were automatically generated 

at the stimuli onset (as proposed by the second account). This is especially plausible given 

Guest et al.’s (2010) finding that in absolute identification tasks it is the onset-to-decision 

latency that influences accuracy, not stimuli display time. We conducted a second experiment 

to disentangle these factors. 
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Experiment 2 

The primary goal of Experiment 2 was to determine whether the effect found in 

Experiment 1 was due to stimuli duration, or the onset-to-decision latency. Here we held 

stimuli duration constant and varied the onset-to-decision latencies. 

Method 

Participants were 11 staff or students of Loughborough University. The procedure and 

stimuli were identical to Experiment 1 except that the two dot arrays were displayed for 48ms 

on each trial. After the 48ms had elapsed the red-blue masks were displayed and then, after 

either 0ms, 252ms, 552ms, 1152ms or 2352ms, a question mark appeared to signal that 

participants should select which array was the more numerous. This paradigm is summarized 

in Figure 3. If the main factor driving the findings in Experiment 1 were the onset-to-decision 

latency, we would expect a similar set of data in Experiment 2. 

 

Figure 3. An illustration of the procedure used in Experiment 2. 
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Results and Discussion 

Participants’ w parameters were calculated for each of the five delay times. The mean 

ws from the five conditions (0.49, 0.54, 0.42, 0.44 and 0.39) were not significantly different, 

F(2.154, 21.537) = 2.623, p =.092 (Greenhouse-Geisser correction). The accuracy data are 

shown in Figure 4. These data were analyzed using a 4 (comparison ratio: 0.5, 0.6, 0.7, 0.8) × 

5 (onset-to-decision latency: 48ms, 300ms, 600ms, 1200ms, 2400ms) within-subjects 

analysis of variance (ANOVA). As before, the main effect of ratio was significant, F(3, 30) = 

38.724, p < .001, ηp
2 = .795, and also showed a significant linear trend, F(1, 10) = 70.239, p < 

.001, ηp
2 = .875. However, critically, the main effect of onset-to-decision latency did not 

approach significance, F(4, 40) = 1.478, p = .227, suggesting that there were no systematic 

accuracy differences between the five different conditions. Consequently we can rule out the 

possibility that the accuracy differences between display times observed in Experiment 1 

were due to differences in the onset-to-decision latencies of the different conditions. 
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Figure 4. Participants’ mean accuracies in each of the five onset-to-decision conditions in 

Experiment 2, by comparison ratio. Error bars show ±1 SE of the mean. 

 

 

 

General Discussion 

Summary of Main Findings 

Our primary goal was to investigate how the duration of numerical stimuli influences 

the acuity of resultant ANS representations. Noting that earlier researchers have used 

dramatically different display times to estimate the acuity of individuals’ ANSs, in 

48ms + 0ms
48ms + 252ms
48ms + 552ms
48ms + 1152ms
48ms + 2352ms

Ac
cu

ra
cy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Comparison Ratio
0.50 0.55 0.60 0.65 0.70 0.75 0.80



 Sampling from the Mental Number Line 
 15 

Experiment 1 we systematically varied stimuli display times on a dot comparison task. We 

found that participants were able to perform at above chance levels when stimuli were 

displayed for only 16ms, but that, contrary to the assumption of the standard model, when 

stimuli were displayed for longer participants responded more accurately. In Experiment 2 

we rejected the suggestion that this effect could be due to different onset-to-decision latencies 

rather than stimuli display times. It therefore seems plausible to suppose that, instead of the 

higher accuracies in longer conditions found in Experiment 1 being the result of more 

successful manipulation of similarly precise ANS representations, it was the precision of the 

ANS representations themselves which varied between conditions. 

 

Taking multiple samples from visual numerical stimuli 

In this section of the paper we propose a modification of the standard computational 

model of the ANS which takes account of our results. Recall that an individual’s ANS 

representation for a numerosity n is traditionally said to follow a normal distribution with 

mean n and standard deviation wn, in other words N ~ N n, wn( )2( ) . We propose that when 

an individual observes a numerical stimuli, rather than taking a single sample from this 

distribution, they actually take many (the number determined by a function of the display 

time) and use the mean as the resultant ANS representation. In other words, we suggest that 

participants go through the first stages of Gallistel and Gelman’s (2000) analogy multiple 

times (perceptual encoding, normalizing the visual scene, filling up the accumulator with 

liquid, transferring the liquid to the ‘memory beaker’ and taking a reading), before using the 

average of their multiple samples – or ‘beaker readings’ – as the final ANS representation. 

Assuming that the individual takes f(t) samples, then the resultant ANS representation will 

follow the distribution of sample means from N: N ~ N n,
wn( )2

f (t)

!

"
#
#

$

%
&
& . 
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A natural question concerns the identity of the function f(t). Information accumulation 

models typically assume that stimuli onset is accompanied by rapid information 

accumulation, the rate of which gradually decreases towards some asymptotic limit (e.g. 

McElree & Carrasco, 1999). In contrast, in the case of taking samples from the N distribution, 

there appears to be no a priori reason to suppose that there would be a theoretical maximum 

number of samples that an individual could take. Consequently we suggest that a reasonable 

candidate function is f (t) =α tk , where α and k are parameters which determine the rate of 

information accumulation and which vary between individuals. Notice that the standard 

model of the ANS, which assumes a single sample is taken, is a restriction of this proposal, as 

f(t) = 1 when α = 1 and k = ∞. 

Given this proposal we would expect participants’ accuracies on a given trial to be a 

function of the to-be-compared numerosities n1 and n2, the display duration t, their Weber 

fraction w, α and k: 

acc(n1,n2, t;w,α,k) =
1
2
+
1
2
erf

t2k α n1 − n2
2w n1

2 + n2
2

"

#
$
$

%

&
'
'

 

We fitted each participants’ data from Experiment 1 to this model, treating w
α

 as a single 

parameter. Values of w
α

 ranged from 0.26 to 3.90 (M = 1.23, SD = 1.08), and values of k 

ranged from 0.66 to 8.07 (M = 1.88, SD = 2.04), indicating that there were substantial 

individual differences in the rate at which samples were taken. Overall the time-dependent 

model proved to have a significantly better fit to the data than the standard model, likelihood 

ratio test, χ2(1) = 238.3, p < .001.  

Given the large individual differences in the k parameter, we investigated the 

relationship between individuals’ acuity parameters from the two models (w from the 
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standard model and w
α

 from the time-based model). Although these parameters were 

correlated, r = .71, p = .009, this relationship was far from exact, as shown in Figure 5. This 

observation is important, because if our analysis is correct then what earlier researchers have 

reported as w parameters have actually been figures for w
α t2k

, suggesting that comparing 

Weber fractions between studies which have used different display times is flawed. We 

expand upon this remark in the remaining section of the paper. 

 

Figure 5. Participants’ w parameters (derived from the standard model) plotted against their 

w
α

 parameters (derived from the time-based model). 
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Methodological implications 

Our finding that stimuli durations influence the acuity of ANS representations has 
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paper by highlighting two.  

First, we believe that the comparison of Weber fractions between tasks which have 

used different methods is problematic. For example, Gilmore, Attridge & Inglis (2011) gave 

participants a nonsymbolic comparison task and a nonsymbolic addition task (where 

participants were asked to determine the larger of n1+n2 and n3), and surprisingly found that 

r = .717

Ti
m

e-
ba

se
d 

m
od

el
 (w

 /
α)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Standard model (w)
0.20 0.25 0.30 0.35 0.40



 Sampling from the Mental Number Line 
 19 

the ws derived from each did not correlate. They argued that this called into question the 

suggestion that a single system, the ANS, was used to complete these tasks. Our findings here 

suggest an alternative account. As is common, Gilmore et al. presented their comparison task 

concurrently (i.e. both n1 and n2 were onscreen at the same time), and allowed participants to 

respond at their own pace; but on their addition task, they presented n1, n2 and n3 

consecutively, each for 500ms. It may be that this discrepancy in stimuli duration was the 

cause of the lack of correlations between performance observed on the two tasks. 

Second, researchers who have investigated how the ANS develops through childhood 

have typically used different display times with different aged children. For example, 

Halberda and Feigenson (2008) used displays of 2500ms for 3-year-olds, 1200ms for 4-, 5- 

and 6- year olds, and 750ms for adults, and Mazzocco et al. (2011b) used display times of 

1200ms and 2500ms for the two age groups in their study, combining the data into a single 

analysis. Our findings indicate that this analysis strategy may be flawed, and that Weber 

fractions derived from tasks with different display times are not comparable. In future, 

researchers interested in individual differences in ANS acuities should pay attention to how 

their stimuli are displayed. 
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