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Abstract

We study synchronization as a means of control of collective behavior of an ensemble
of coupled stochastic units in which oscillations are induced merely by external noise.
We determine the boundary of the synchronization domain of a large number of one-
dimensional continuous stochastic elements with time delayed non-homogeneous
mean-field coupling. Exact location of the synchronization threshold is shown to
be a solution of the boundary value problem (BVP) which was derived from the
linearized Fokker-Planck equation. Here the synchronization threshold is found by
solving this BVP numerically. Approximate analytics is obtained by expanding the
solution of the linearized Fokker-Planck equation into a series of eigenfunctions of
the stationary Fokker-Planck operator. Bistable systems with a polynomial and
piece-wise linear potential are considered as examples. Multistability and hysteresis
is observed in the Langevin equations for finite noise intensity. In the limit of small
noise intensities the critical coupling strength was shown to remain finite.
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1 Introduction

Collective behavior in a network of globally coupled elements [1], including
the stochastic ones, has recently attracted much interest due to its relevance
in physics, biology, medicine, economics and social sciences. Depending on
the nature of the elements which compose the network, the whole variety
of these networks can be roughly divided into two classes. The first class is
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formed by networks of coupled oscillators or coupled excitable units which find
applications in neuroscience [2,3], biology [4–8], chemistry [1,9], physics [10]
and medicine [11,12]. The second class consists of ensembles, formed by the
(non-excitable) units which cannot oscillate on their own. Prominent example
of the latter class of networks is an ensemble of bistable stochastic elements
which was previously used in physics, to describe critical phenomena [13] and
phase transitions in spin systems [14], in biology, to study neural networks
[15–17] and in social sciences to model decision making processes [18].

When decoupled, the elements in the network evolve independently of each
other. In networks of stochastic elements the information about the initial
distribution of their states is lost after a certain relaxation period, and the
mean field approaches some constant value in the long time limit. The system
is then known to be in the disordered state.

When coupling between the elements is introduced, two different phenomena
can occur depending on the type of the elements the network is made of
and on the type and the strength of the coupling. These phenomena are the
first- and second-order phase transitions and synchronization. Some authors
identify synchronization with the phase transition, implying that the latter
occurs from the trivial non-oscillating to the oscillating state. However, this
notation may lead to confusion, in case when a network of oscillators exhibits
both kinds of transitions: from the non-oscillating to the oscillating state, and
between two different non-oscillating states. To avoid a possible jumble we
distinguish here between synchronization and phase transitions.

In the case of the phase transitions, the disordered state becomes unstable
and the system undergoes a transition to a new (ordered) state with the new
constant value of the mean field which is different from its value in the dis-
ordered state. If at the transition point the absolute value of the mean field
changes continuously (discontinuously), the transition is regarded as second
(first) order. Theory of the phase transition in a network of stochastic elements
described by one-dimensional continuous equations with linear coupling was
developed in Ref. [19].

Phenomenon of synchronization differs from the phase transition qualitatively.
Suppose that each single element in the network exhibits noise-induced oscil-
lations whose spectra do not contain peaks at non-zero frequencies. At some
parameters of the network the individual elements are not synchronized, and
the mean field is constant. Under certain conditions however, the motion of
the elements can become synchronized resulting in an oscillating mean field.
From the point of view of the bifurcation theory, the phase transition is as-
sociated with the (sub- or supercritical) pitchfork, while synchronization with
the Andronov-Hopf bifurcation. Synchronization can be regarded as the mech-
anism for the control of the collective behavior of an ensemble of units. How-
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ever, synchronization is not guaranteed to occur in a network with arbitrary
structure of individual elements or arbitrary coupling between them.

Namely, synchronization was recently observed in a network of one-dimensional
elements coupled through the time delayed mean field, where each single ele-
ment represents a particle moving in a symmetric polynomial bistable poten-
tial [20,21], in a network of one-dimensional phase oscillators with non-linear
coupling [22], and in a network of two-dimensional excitable elements with
global linear coupling [23]. The simplest non-invasive way to induce synchro-
nization in a network without interfering with its structure seems to be the
use of delay in the coupling terms.

Here we consider a network of N one-dimensional elements, with i-th element
described by

ẋi = −dU(xi)

dxi

+ αh(xi)
1

N

N∑

j=1

f [xj(t− τ)] +
√

2Dξi(t), (1)

where U(x) is the potential each of the N particles is moving in, α is the
coupling strength, h(x) is the inhomogeneity of the coupling, D is the noise
intensity and ξi(t) is the white Gaussian noise with the correlation function
given by 〈ξi(t)ξk(t′)〉 = δikδ(t− t′), where δik is the Kronecker delta and δ(x)
is the Dirac delta function.

The elements in Eqs. (1) are coupled globally through the delayed average
f̄(t − τ) = (1/N)

∑
i=1,N f [xi(t − τ)]. For large N we make an assumption

that the individual elements of the network are statistically independent and
therefore their joint probability density distribution is a product of the re-
spective one-dimensional densities of individual elements. The latter is some-
times called molecular chaos approximation. Since all elements are identical,
their probability densities are also identical. This allows us to describe the
network of interacting elements Eqs. (1) using the one-particle distribution
function P (x, t). Previous studies have shown that the above approximation
gives quite accurate results, provided that the function f is either a growing
function [24,25], or a periodic one [22,23]. The Fokker-Planck equation for the
one-particle distribution function is essentially nonlinear

∂P

∂t
=

∂

∂x

[
∂U

∂x
P − αh(x)f̄(t− τ)P

]
+D

∂2P

∂x2
, (2)

where the delayed mean field is calculated self-consistently f̄(t−τ)=
∫∞
−∞ f(x)P (x, t−

τ) dx.

General question about whether or not synchronization can occur in the sys-
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tem Eqs. (1) in the case of τ = 0 and arbitrary f is still open. The answer is
known only for the very special case of linear homogeneous coupling, i.e. for
f(x) = x and h = const. In Ref. [19] the so-called H-theorem was proven for
Eqs. (1) with f(x) = x, h = const and τ = 0. According to the H-theorem,
there exists a Lyapunov functional H[P ], such that dH[P ]/dt ≤ 0 if P is the
solution of the Fokker-Planck Eq. (2). This excludes the possibility of any oscil-
lating behavior in the system (1) without the delay. As the consequence of the
H-theorem, synchronization of the large number of one-dimensional elements
with linear mean-field coupling is not possible.

However, it should be emphasized that the H-theorem in Ref. [19] was proven
under the assumption of periodic boundary conditions. For general boundary
conditions the H-theorem is not valid and synchronization can occur even
in the case of linear coupling without delay, as it was demonstrated for the
ensemble of leaky integrate-and-fire neurons in Refs. [26,27].

Moreover, one-dimensional systems without delay can be synchronized if the
coupling contains more than one term of the mean-filed type, i.e. if it can be
represented in the form h1(xi)f̄1 +h2(xi)f̄2, with f̄1,2 = (1/N)

∑
j=1,N f1,2(xj).

This was shown in Ref. [22] for the system of non-linearly coupled phase
oscillators. The oscillators are coupled via sin(xi)c − cos(xi)s, where c =
(1/N)

∑
j=1,N cos(xj) and s = (1/N)

∑
j=1,N sin(xj). At the onset of the syn-

chronization, c and s oscillate with identical frequency and certain phase shift.

For non-zero delay time τ 6= 0, synchronization in Eqs. (1) was observed in the
case of the bistable potential U [20,21]. The boundary of the synchronization
domain was calculated using a dichotomous approximation, which is based on
the assumption of a small noise intensity D.

Apart from the general question of whether or not coupled stochastic ele-
ments can actually be synchronized, a more detailed information about the
location of the synchronization threshold in the parameter space is often re-
quired. Depending on the nature of the elements in the network and on the
coupling between them a number of methods exist which can be used to de-
termine the location of the point of transition from the asynchronous to the
synchronous regimes approximately. Among such methods are the above men-
tioned dichotomous approximation [20,21], Gaussian approximation [22] and
mode expansion [28].

However all the above approximations work sufficiently well only under spe-
cific conditions. Thus, the dichotomous approximation is valid only for bistable
potentials and small noise intensities. Gaussian approximation can be used in
case when the distribution possesses a single Gauss-like peak, i.e. the shape
of the distribution function is close to Gaussian function. Expansion of the
probability density P (x, t) into a series of orthonormal polynomials, e.g. Her-
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mite polynomials [28], does not work for non-smooth functions and also for
very small noise intensities, as will be discussed in detail below. Alternatively,
the synchronization threshold can be computed straightforwardly by solving
the Langevin equations for different system parameters. This method, how-
ever, requires significant computational power and suffers from the lack of
precision.

Here we formulate a boundary value problem (BVP), whose solution gives the
exact location of the boundary of the synchronization domain in the network
of stochastic elements Eqs. (1) with arbitrary potential U , coupling function f
and heterogeneity function h. We solve this boundary value problem numer-
ically using continuation technique of [29] for linear homogeneous coupling
f(x) = x, h = const, and two types of the symmetric bistable potential U :
polynomial and piece-wise linear.

Following Ref. [30] we expand the solution of the linearized Fokker-Planck
equation Eq. (2) into a series of eigenfunctions of the stationary Fokker-Planck
operator and reduce the formulated BVP to a system of algebraic equations
which determine the synchronization threshold as a codimension-one line in
the parameter space together with the frequency of the synchronized oscilla-
tions at the onset of synchronization. For brevity, throughout the paper we
will call the latter the onset frequency.

For a bistable polynomial potential U we demonstrate the existence of mul-
tistability and hysteresis at finite noise intensities. For both the polynomial
and the piece-wise linear potential U we show that in the limit of small noise
intensities D the critical coupling strength α which determines the point of
transition from the asynchronous to the synchronous behavior remains finite.

2 Self-consistent approach: synchronization threshold

2.1 Boundary value problem

Stationary one-particle distribution P0(x) obtained from Eq. (2) reads

P0(x) =
1

C
exp

[
1

D

(
−U(x) + αh̃(x)f̄0

)]
,

C =
∫ ∞

−∞
exp

[
1

D

(
−U(x) + αh̃(x)f̄0

)]
dx, (3)

where h̃(x) =
∫
h(x) dx and stationary mean field f̄0 is computed self-consistently

f̄0 =
∫∞
−∞ P0(x)f(x) dx.
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Note that since synchronization arises as a result of sub- or supercritical
Andronov-Hopf bifurcation of the mean field, at the instant of bifurcation
the latter oscillates harmonically. Then assume that near, but slightly above
synchronization threshold the mean field f̄(t− τ) also oscillates harmonically
with a small amplitude ε and some (unknown) frequency ω around its station-
ary value, i.e. we can put f̄(t− τ) = f̄0 + ε cosωt. We have chosen the initial
phase of these oscillations to be zero at the initial time moment. With the
ansatz P (x, t) = P0(x)+ εP̃ (x, t), the linearized Fokker-Planck equation reads

∂P̃

∂t
= L0[P̃ ]− ∂

∂x
[αh(x)(f̄0P̃ + cosωtP0)], (4)

where the operator L0 is given by L0 = ∂2U/∂x2 + (∂U/∂x)∂/∂x+D∂2/∂x2.
We look for the solution of Eq. (4) in the form

P̃ (x, t) = u(x) sinωt+ v(x) cosωt, (5)

where u(x) and v(x) are often called response functions. Consequently, the
mean field f̄(t) becomes

f̄(t) =
∫
P (x, t)f(x) dx

= f̄0 + ε[〈uf〉 sinωt+ 〈vf〉 cosωt], (6)

and f̄(t− τ) is given by

f̄(t− τ) = f̄0 + ε[〈uf〉 cosωτ + 〈vf〉 sinωτ ] sinωt
+ ε[〈vf〉 cosωτ − 〈uf〉 sinωτ ] cosωt

= f̄0 + ε cosωt, (7)

where 〈uf〉= ∫∞
−∞ u(x)f(x) dx and 〈vf〉= ∫∞

−∞ v(x)f(x) dx.

Substituting Eq. (5) into the Eq. (4) we arrive at the following coupled equa-
tions for the unknown functions u, v and the onset frequency ω

ωu=L0[v]− α
∂

∂x
[h(x)(f̄0v + P0)],

−ωv=L0[u]− α
∂

∂x
[h(x)f̄0u]. (8)

Additional coupling between the functions u and v is introduced from the
self-consistent Eq. (7)
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〈uf〉 cosωτ + 〈vf〉 sinωτ = 0,

〈vf〉 cosωτ − 〈uf〉 sinωτ = 1. (9)

In order to solve Eqs. (8,9) one should set the appropriate boundary conditions
for u and v. Here we employ natural boundary conditions, i.e. we assume that
the probability density vanishes at the infinity together with its first derivative.
Therefore, the same applies to the functions u(x) and v(x).

Similar approach was used in Ref. [27] to compute the location of the synchro-
nization threshold for the ensemble of coupled leaky integrate-and-fire neurons
with different boundary conditions. Here we solve this problem for a general
network of stochastic units with delay and with arbitrary boundary condi-
tions. The boundary value problem Eqs. (8,9) determines the frequency ω and
the codimension-one line in the parameter space where the transition from the
asynchronous to the synchronous motion occurs.

Once any particular solution of the Eqs. (8,9) is known for a given set of
control parameters α, D and those defining the shape of the potential U(x),
it can be continued in the parameter space using the continuation technique
[29]. We specify the functions h(x), f(x) and U(x) and find the starting point
for the continuation employing the following strategy. First we discretize the
differential operators L0 and ∂/∂x on the interval of x ∈ [−L;L], where L
is some large number, and write the system Eqs. (8) as a system of linear
algebraic equations with respect to the values of u and v at the nodes of
discretization. We solve this system for arbitrary frequency ω and arbitrary
system parameters. Then we continue this solution of Eqs. (8) without the
conditions Eqs. (9) in parameter ω until the two average values 〈uf〉 and 〈vf〉
of the coupling function f satisfy Eqs. (9), or, equivalently, fall on the unit
circle, i.e. until 〈uf〉2 + 〈vf〉2 = 1. Then we find the smallest τ which solves
the Eqs. (9). This is the starting point for the continuation of the solution of
the boundary value problem Eqs. (8) with the conditions Eqs. (9).

2.2 Eigenfunction expansion: analytic results

The boundary value problem Eqs. (8,9) can be formally solved by expanding
the response functions u and v into a series of eigenfunctions of the stationary
Fokker-Planck operator Lst = L0 − αf̄0h(x)(∂/∂x) − αf̄0(∂h/∂x), as it was
done in Ref. [30] in the case of h = const.

Denote by ψn the n-th right-eigenfunctions of the operator Lst, i.e.

Lstψn = λnψn, (10)
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where λn is the corresponding eigenvalue. Because the Fokker-Planck oper-
ator Lst is non-Hermitian, the eigenfunctions ψn are not orthonormal, i.e.∫∞
−∞ ψn(x)ψm(x) dx 6= δnm. In order to be able to find the expansion coefficients

for u and v, we need to know the left eigenfunctions ψ̃n(x) (eigenfunctions of
the conjugate operator) of Lst that would satisfy the required orthonormality
condition

∫∞
−∞ ψ̃n(x)ψm(x) dx = δnm.

Standard technique is to transform the right-eigenfunctions ψn as follows [31]

ψn(x) = P0(x)
1/2Φn(x), (11)

where P0(x) is given by Eq. (3). Functions Φn(x) then satisfy the stationary
Schrödinger equation

HΦn(x) = λnΦn(x), (12)

where the Hamiltonian H is given by

H =


1

2

(
∂2U

∂x2
− α

∂h

∂x
f̄0

)
− 1

4D

(
∂U

∂x
− αhf̄0

)2



+D
∂2

∂x2
. (13)

Eigenfunctions Φn of the Hermitian operator Eq. (13) are orthonormal, i.e.

∫ ∞

−∞
Φn(x)Φk(x) dx = δnk. (14)

From Eqs. (11,14) we deduce that the left-eigenfunctions ψ̃n of the operator
Lst satisfying the condition

∫ ∞

−∞
ψ̃n(x)ψk(x) dx = δnk, (15)

are related to ψn via

ψ̃0(x) = 1, ψ0(x) = P0,

ψ̃n(x) =P−1
0 ψn(x), n = 1, 2, . . . (16)

For further calculations it is important to notice that the eigenvalues λn are
non-positive, i.e. λ0 = 0, 0 > λ1 > λ2 > · · · > λn [31].
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Now we expand the response functions u and v into series of the right-
eigenfunctions ψn,

u =
∞∑

n=0

unψn, v =
∞∑

n=0

vnψn. (17)

The coefficients un and vn of the expansions Eqs. (17) are determined from
Eqs. (8) by multiplying both sides with ψ̃n and integrating over x from −∞
to ∞, namely,

un =− αω

λ2
n + ω2

(∫ ∞

−∞
ψ̃n
∂h

∂x
ψ0 dx+

∫ ∞

−∞
ψ̃nh

∂ψ0

∂x
dx

)
,

vn =−λnun

ω
. (18)

From Eqs. (18) the mean field f̄ is given by

¯f(t) = f̄0 − αε
∞∑

i=1

gnω

λ2
n + ω2

sinωt

+αε
∞∑

i=1

gnλn

λ2
n + ω2

cosωt, (19)

where the coefficients gn read

gn =
(∫ ∞

−∞
fψn dx

) [∫ ∞

−∞
ψ̃n
∂h

∂x
ψ0 dx

+
∫ ∞

−∞
ψ̃nh

∂ψ0

∂x
dx

]
. (20)

From Eq. (19) and Eqs. (9) we obtain the following system of algebraic equa-
tions which determines the synchronization threshold together with the un-
known onset frequency ω

−α
∞∑

i=1

gnω

λ2
n + ω2

= − sinωτ, α
∞∑

i=1

gnλn

λ2
n + ω2

= cosωτ.

(21)

If the coefficients gn decrease rapidly with n, one can truncate the sums in
Eqs. (21) after a few first terms. Truncation after the first term yields

9



cosωτ = sign(αg1)
λ1√

λ2
1 + ω2

, 1 =
|αg1|√
λ2

1 + ω2
,

sinωτ = sign(αg1)
ω√

λ2
1 + ω2

. (22)

As it will be shown below on the example of a symmetric bistable potential,
the coefficients gn are negative. With this assumption we analyze qualitatively
the solution of the Eqs. (22).

For α > 0 it follows from the second equation in Eqs. (22) that the smallest
critical α corresponds to vanishing onset frequency ω = 0, i.e. α = λ1/g1.
This is the point of the phase transition which is associated with the pitch-
fork bifurcation of the stationary state. Interestingly, for a bistable symmetric
polynomial potential U and homogeneous coupling h = const, α given by the
approximate Eqs. (22) coincides with its exact value, as shown in Ref. [19]. The
latter is given by αp = D/〈x2〉0, where 〈x2〉0 is the variance in the stationary
state P0 [19].

The next solution of Eqs. (22) for α > 0 corresponds to some finite frequency

ω1 and critical coupling α1 = −
√
λ2

1 + ω2
1/g1 > αp. This means that the

Andronov-Hopf bifurcation of the stationary state occurs within the region
where the stationary state is already unstable as a result of primary pitch-
fork bifurcation at α = αp. Consequently, synchronization can not occur for
positive coupling strength α > 0.

For negative coupling α < 0, the vanishing frequency ω = 0 is no longer
a solution of Eqs. (22), because λ1 < 0. The smallest critical frequency be-
longs to the interval ω ∈ [π/(2τ), 3π/(2τ)], as it follows from the first and
the third Eqs. (22). Therefore, the primary bifurcation of the stationary sate
is the Andronov-Hopf bifurcation which corresponds to the synchronization
threshold. For the special case of bistable symmetric polynomial potential U
and homogeneous coupling h = const the above findings were confirmed in
Refs. [20,21].

3 Bistable polynomial potential

To solve the boundary value problem Eqs. (8) with the integral conditions
Eqs. (9) and also to test the validity of the truncated eigenmode expansion
Eqs. (22) we revisit the case of symmetric polynomial potential and homoge-
neous linear coupling considered in Refs. [20,21]
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Fig. 1. (color online) (a) Synchronization in a network of stochastic bistable elements
described by Eqs. (1),(23). Synchronization threshold in the parameter space (α,D)
at fixed delay time τ = 1. (b) and (c) Onset frequency ω as a function of D and α,
respectively. Line coding as in the main text.

U =−x
2

2
+
x4

4
, f(x) = x, h(x) = 1. (23)

Transition to synchronization occurs from the trivial solution f̄0 = x̄0 = 0 at
negative coupling strength α < 0.

The first coefficient g1 as well as the first eigenvalue λ1 in Eqs. (22) can be
expressed as functions of the noise strength D using the well-known asymp-
totic results [31,30,32]. In the small D limit one obtains λ1 = 2qk and g1 =

〈x2〉0λ1/D, where qk = (1/2π)
√
U ′′(0)U ′′(c) exp [−(U(0)− U(c))/D] stands

for the Kramer’s transition rate, c is the location of the minimum of the po-
tential U and 〈x2〉0 is the variance of x in the stationary (non-synchronous)
state. This simplifies Eqs. (22) to
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cos (ωτ) =± 2qk√
4q2

k + ω2
, 1 = ±α〈x

2〉0
D

2qk√
4q2

k + ω2
,

sin (ωτ) =∓ ω√
4q2

k + ω2
, (24)

where the upper (lower) sign corresponds to positive (negative) coupling α.

In Fig. 1 we compare synchronization threshold obtained by solving numeri-
cally the boundary value problem Eqs. (8,9), with the one obtained by trun-
cating the eigenmode expansion Eqs. (21) after the first, or the first three
non-vanishing terms. Note that for even functions U(x) and h(x) and for even
n, the eigenfunctions ψn are symmetric yielding gn = 0. The coefficients gn

as well as the eigenvalues λn are computed by solving the eigenvalue problem
Eq. (10) with the continuation technique [29]. This data is then used to solve
the algebraic Eqs. (21) and Eqs. (22) to determine the location of the syn-
chronization threshold in the parameter space (α,D) together with the onset
frequency ω. We also compare these results with the dichotomous approxima-
tion [20,21] and with the threshold obtained by solving Eqs. (24).

Fig. 1(a) shows the boundary of the synchronization domain in the parameter
space (α,D) at fixed delay time τ = 1. The boundary, obtained by solving
the boundary value problem Eqs. (8,9), is given by the thick solid line. In
the shaded area below this line stable periodic solutions of the non-linear
Fokker-Planck Eq. (2) exist, whereas above this line the trivial solution with
x̄0 = 0 is stable. Dotted-dashed line was obtained by keeping only the first non-
vanishing term g1 in Eqs. (21). Thin solid line corresponds to the first three
non-vanishing terms gn, (n = 1, 3, 5) in Eqs. (21). Dotted line was obtained
from the approximation Eqs. (24) and dashed line shows the prediction of the
dichotomous model [20,21]. Circles correspond to a direct simulation of the
Langevin Eqs. (1).

As we see, the roughest prediction gives the dichotomous approximation, fol-
lowed by the asymptotic Eqs. (24). The best agreement with the threshold
obtained by solving the BVP Eqs. (8,9) is given by Eqs. (21) truncated after
three non-vanishing terms gn.

Figs. 1(b,c) show the frequency ω at the synchronization threshold as a func-
tion of the noise strength D and of the coupling strength α, respectively.
Horizontal dotted line corresponds to the level of π/(2τ).

From Fig. 1(a) we see that for large noise intensities D it is sufficient to keep
only a few first non-vanishing terms in expansion Eq. (19). However, for small
D the error produced by the truncation of Eqs. (19) becomes significant. In
fact, in the limit D → 0, the critical α remains finite, whereas the dichotomous
approximation and the first term truncation of Eqs. (21) give the value of the
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Fig. 2. (a) The first seven eigenvalues λn, including λ0 = 0, of the Fokker-Planck
operator Eq. (2) with U from Eq. (23) vs D. (b) The first three non-vanishing coef-
ficients gn.

critical coupling strength which diverges as D approaches zero. For instance,
the asymptotic behavior of α in the approximation Eqs. (24) can be computed
analytically. First, we notice that the onset frequency ω remains finite as D
approaches zero. In fact, ω is close to π/(2τ) when D ¿ 1. This allows us to
neglect 4q2

k as compared to ω2 in the second equation in Eqs. (24) and obtain

α ≈ −π
2D

2τ

1√
U ′′(0)U ′′(c)

exp

[
U(0)− U(c)

D

]
, (25)

where we put approximately 〈x2〉0 = 1.

This mismatch can be understood from Fig. 2(a) and Fig. 2(b) where the
first seven eigenvalues λn and the first three non-vanishing coefficients gn

are plotted as functions of the noise intensity D, respectively. The coefficient
g1 becomes comparable with all the other coefficients gn, (n = 3, 5, . . . ) for
D ≤ 0.2. Simultaneously, the eigenvalue λ1 tends to zero as D → 0, whereas
λn, (n = 3, 5, . . . ) and the threshold frequency ω remain finite. This shows
that the first term in Eqs. (21) becomes negligibly small as compared to the
next terms in the series. Therefore, more terms should be taken into account
as D → 0.

3.1 Multistability and hysteresis

The approach based on the linearization of the Fokker-Planck Eq. (2) deter-
mines the location of the Andronov-Hopf bifurcation of the mean field but does
not indicate whether this bifurcation is super- or subcritical. If the bifurcation
is supercritical, the transition from the asynchronous to the synchronous states
occurs continuously. However, if the bifurcation is subcritical, a hysteretic be-
havior becomes possible implying multistability, i.e. coexistence of the stable
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trivial (zero non-oscillating mean field) and stable periodic solutions.

To find the boundary of the hysteretic behavior, we follow [28] and expand
the distribution density P (x, t) in the series of Hermite polynomials

P (x, t) =
∞∑

n=0

rn(t)Hn(x)e−x2

, r0 =
1√
π
. (26)

As shown in Ref. [28], with the ansatz Eq. (26) one obtains from Eq. (2) and
natural boundary conditions a system of infinitely many coupled nonlinear
equations with time delay for the coefficients rn(t) [28]. We keep the first
18 equations in this hierarchy and analyze it for the bifurcations with DDE-
BIFTOOL [33] and PDDE-CONT [34].

Note that the mode expansion Eq. (26) fails when the noise intensity D be-
comes small. As D approaches zero, the stationary distribution Eq. (3) be-
comes delta-like shaped at x = ±1 so that the coefficients rn in Eq. (26)
decrease only slowly with n. Therefore, the results obtained using Eq. (26) for
small values of D are less accurate than for large D.

For the bistable potential Eqs. (23), we found hysteresis for negative coupling
α and intermediate noise intensities D, as it is shown in Fig. 3(a). The bound-
ary of the hysteresis domain is formed, from one side, by the sub-critical
Andronov-Hopf bifurcation of the fixed point, and, from the other side, by the
saddle-node bifurcation of the limit cycle which emerged at the Andronov-
Hopf point. The locus of the saddle-node bifurcation was found using the
expansion Eq. (26). Eqs. (1) was rewritten in terms of rn(t) and then analyzed
for bifurcations using PDDE-CONT [34]. The existence of the hysteresis was
confirmed by a direct numerical simulation of the Langevin equations Eqs. (1),
as shown in Fig. 3(b).

3.2 Limit of small noise intensities

As we have seen in Fig. 1(a), as D vanishes the critical coupling α remains
finite, i.e. limD→0 α = α0. The physical implication of this result is as fol-
lows. Suppose that we start with a deterministic system of coupled equations
Eqs. (1). Because each element in the network cannot oscillate without noise
at least for the range of the values of τ considered, synchronization in the
ensemble of the elements is not possible with D = 0. However, if arbitrarily
small additive noise is present D 6= 0, there exists a finite coupling strength
α0 such that the dynamics of the elements becomes coherent resulting in the
oscillating mean field.
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Fig. 3. (color online) (a) Region of hysteretic behavior h in the parameter plane
(α, D) at τ = 1. (b) Amplitude of the oscillations of the mean field as a function
of the coupling strength α at fixed noise intensity D = 0.2. Solid (dashed) lines
correspond to stable (unstable) solutions. Squares are the result of a direct numerical
simulation of the Langevin equations Eqs. (1).

To show that the finiteness of α as D approaches zero is not a numerical
artifact, we study analytically the asymptotic solution of the boundary value
problem Eqs. (8) in this limit. To this end we notice that

Lst

[
∂P0

∂x

]
= −UxxxP0 + Uxx

Ux

D
P0. (27)

For small D, the first term in Eq. (27) can be neglected as compared with the
second one. The derivative of the stationary distribution ∂P0/∂x = −UxP0/D
differs significantly from zero only close to x = ±1, where the second deriva-
tive of the potential Uxx = −(1 − 3x2) is finite. By expanding Uxx around
x = ±1 into Taylor series and keeping first two terms in this expansion, we
approximately set Uxx ≈ 2± 6(x∓ 1) and rewrite Eq. (27) in the form

Lst

[
∂P0

∂x

]
≈ −2

∂P0

∂x
∓ 6(x∓ 1)

∂P0

∂x
, (28)

where the upper (lower) sign corresponds to positive (negative) x. Similarly
we have

Lst

[
(x∓ 1)

∂P0

∂x

]
≈ −4(x∓ 1)

∂P0

∂x
, D → 0. (29)

This suggests the following substitution for the response functions u and v

u=A
∂P0

∂x
± A′(x∓ 1)

∂P0

∂x
,

v=B
∂P0

∂x
±B′(x∓ 1)

∂P0

∂x
, (30)
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Fig. 4. (color online) (a) The limiting value of coupling strength α = α0 as a
function of the delay time τ computed (solid line) from the BVP Eqs. (8,9) and its
approximate value (dashed line) obtained from Eqs. (33). (b) Limiting value of the
onset frequency limD→0 ω = ω0 vs delay time.

where A, A′, B and B′ are some unknown constants. Substituting Eqs. (30)
into Eqs. (8) with Eqs. (28,29) and comparing the coefficients before ∂P0/∂x
and x∂P0/∂x, we determine the constants A, A′, B and B′

A′ =
36ω0α0

(ω2
0 + 4)(ω2

0 + 16)
, B′ = − 6α0(ω

2
0 − 8)

(ω2
0 + 4)(ω2

0 + 16)
,

A=− ω0α0

ω2
0 + 4

, B = − 2α0

ω2
0 + 4

, (31)

where α and ω were replaced by their limiting values α0 and ω0, respectively.

Now notice that the integrals 〈ux〉 and 〈vx〉 can be calculated analytically.
For instance 〈ux〉 is given by

∫ ∞

−∞
xu dx =

∫ ∞

−∞
x(A− A′)

∂P0

∂x
dx = −(A− A′). (32)

From the integral conditions Eqs. (9), Eqs. (31) and Eqs. (32) we then obtain
the following two coupled equations for the critical α0 and ω0

4α0(ω
2
0 − 20)

(ω2
0 + 4)(ω2

0 + 16)
+ cosω0τ = 0,

α0ω0(ω
2
0 + 52)

(ω2
0 + 4)(ω2

0 + 16)
+ sinω0τ = 0. (33)

Fig. 4(a) and Fig. 4(b) show how α0 and ω0 depend on the delay time τ . Solid
lines correspond to α0 computed from the BVP Eqs. (8,9), dashed lines ob-
tained by solving Eqs. (33). As we see, with growing τ the limiting critical
coupling α0 increases from α0 = −∞ to some finite negative value, whereas
ω0 decreases monotonically to zero. The significance of this observation is as
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follows: without delay in coupling (τ = 0), no coupling was strong enough to
induce synchronization in the network. However, an arbitrary small but finite
τ grants the network the capacity to synchronize at finite noise intensity.

4 Piece-wise linear symmetric bistable potential

As the next example, we consider a symmetric bistable piece-wise linear po-
tential

U =





−x− 1, x < −1

x+ 1, −1 < x < 0

−x+ 1 0 < x < 1

x− 1, x > 1.

, h(x) = 1, (34)

which is shown by the solid line in Fig. 5(a).

This case is qualitatively different from the the polynomial potential Eq. (23).
Neither dichotomous approximation, nor the truncated eigenmode expansion
can be used for Eq. (34) for the following reasons.

Dichotomous approximation fails because the second derivative ∂2U/∂x2 of
the potential Eq. (34) is given by the delta-function at x = ±1 and x = 0, i.e.

∂2U

∂x2
= 2δ(x+ 1)− 2δ(x) + 2δ(x− 1). (35)

Therefore, the Kramers rate qk in Eq. (24) is ill-defined.

The truncated eigenmode expansion can not be used either, because the eigen-
value problem Eq. (10) has only two discrete eigenvalues λ, whereas the rest of
the eigenvalues form a continuum. This can be seen by solving the stationary
Schrödinger Eq. (12) with ∂U/∂x = ±1 and ∂2U/∂x2 from Eq. (35)

D
∂2Φn

∂x2
− Φn

4D
+

1

2

∂2U

∂x2
Φn = λnΦn. (36)

For x 6= 0 and x 6= ±1, the solution of the Eq. (36) is given by a linear
combination of the exponents

Φn = C1 exp (γnx) + C2 exp (−γnx), (37)
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where γn =
√
λn/D + 1/(4D2). Because the eigenvalues λn in Eq. (12) and

Eq. (36) are real and non-positive, the exponent γn can be either real or purely
imaginary.

Consider first the case when γn is real, i.e. λn≥−1/(4D). The eigenfunctions
Φn can be divided into classes: symmetric (even) Φs

n or antisymmetric (odd)
Φa

n . Obviously, antisymmetric eigenfunctions Φa
n take the form

Φa
n =C1 exp (γnx), if x ≤ −1

Φa
n =C2 [exp (γnx)− exp (−γnx)] , if − 1 ≤ x ≤ 0

(38)

The two constants C1 and C2 are determined from the following three condi-
tions: the normalization condition Eq. (14), continuity of the eigenfunction Φa

n

at x = −1 and one extra condition which is obtained by integrating Eq. (36)
over x from x = −1−∆ to x = −1+∆, with some small ∆. The last condition
yields

lim
∆→0

D

[
∂Φa

n(−1 + ∆)

∂x
− ∂Φa

n(−1−∆)

∂x

]
+ Φa

n(−1) = 0.

(39)

From the continuity condition at x = −1 and Eq. (39) we obtain the following
two equations for C1 and C2

0 = 2DγnC2 cosh γn −DγnC1e
−γn + C1e

−γn ,

0 =C1e
−γn − 2C2 sinh γn. (40)

Eqs. (40) have a non-trivial solution only if γn satisfies the following transcen-
dental equation

2Dγne
γn + e−γn − eγn = 0. (41)

From Eq. (41) it is clear that a single non-zero γn exists if D < 1. Denote this
value of γn by γ1. The corresponding eigenvalue λn then reads

λ1 = Dγ2
1 −

1

4D
. (42)

Now consider a symmetric eigenfunction Φs
n, which can be represented in the

form
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Φs
n =C1 exp (γnx), if x ≤ −1

Φs
n =C2 exp (γnx) + C3 exp (−γnx), if − 1 ≤ x ≤ 0

(43)

There are four conditions for three unknown coefficients Ci in Eqs. (43). These
are the continuity condition for Φs

n at x = −1, the normalization condition
Eq. (14), the Eq. (39) and one extra condition obtained by integrating Eq. (36)
near x = 0, i.e.

lim
∆→0

D

[
∂Φs

n(∆)

∂x
− ∂Φs

n(−∆)

∂x

]
− Φs

n(0) = 0.

(44)

From Eq. (39), Eq. (44) and the continuity condition at x = −1 we obtain
three linear homogeneous equations for C1, C2 and C3

0 =C1e
−γn = C2e

−γn + C3e
γn ,

0 = γnD
[
C2e

−γn − C3e
γn − C1e

−γn

]
+ C1e

−γn ,

0 = 2γnD(C3 − C2)− (C2 + C3). (45)

System Eqs. (45) has a non-trivial solution only if γn satisfies

(1− 2γnD)(1 + 2γnD − e−2γn) = 0. (46)

The only non-trivial solution of Eq. (46) is γ0 = 1/(2D), which corresponds to
zero eigenvalue λ0 = Dγ2

0 − 1/(4D) = 0.

If λn < −1/(4D), the exponent γn is purely imaginary. In this case the spec-
trum λn = λ(k) forms a continuum. It coincides with the spectrum of the
Fokker-Planck operator with the V-shaped potential [31,35]

λ(k) = −
(

1

4D
+Dk2

)
. (47)

Summarizing, we see that the spectrum of the stationary Schrödinger Eq. (12)
with the symmetric bistable piece-wise linear potential Eq. (34) has at most
two discrete eigenvalues: zero eigenvalue λ0 = 0 which corresponds to a sym-
metric eigenfunction Φ0 and a non-zero one, given by Eq. (42) which exists
only for D < 1 and corresponds to the antisymmetric eigenfunction Φ1. The
rest of the spectrum forms a continuum Eq. (47).
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Fig. 5. (color online) (a) (solid line) Piece-wise linear potential Eq. (34), (dashed
line) approximation by the differentiable potential Eq. (48) with K = 10, (dotted
line) derivative dU/dx of the potential given by Eq. (48). (b) Entrainment of the
unbounded oscillations of the mean field 〈x〉 at D = 0.8 and α = −2.1: solid line –
oscillation of a single element, dashed-line – mean field 〈x〉 vs. time.

This shows that in case of the piece-wise linear potential Eq. (34) one should
rely on the numerical solution of the BVP Eqs. (8,9). When using the continua-
tion technique [29], all the functions involved, including their derivatives, must
be continues which does not allow us to use the potential Eq. (34) directly. To
overcome this problem, we notice that with sufficiently large number K, the
modulus |x| can be replaced by (2x/π) arctan (Kx) [29]. With this approxima-
tion we rewrite the potential Eq. (34) in terms of continuously differentiable
functions

U(x) =
2(e(x)− 1)

π
arctan [K(e(x)− 1)],

e(x) =
2x

π
arctan (Kx). (48)

Fig. 6(a) shows the synchronization threshold for K = 10 and different delay
times τ , as indicated in the legend. Fig. 6(b) represents the onset frequency ω
as a function of the noise intensity D. Circles in Fig. 6(a) show the boundary
of the synchronization domain and in Fig. 6(b) the onset frequency obtained
by directly solving the Langevin Eqs. (1) with the original piece-wise linear
potential Eq. (34).

As we see from Fig. 6(a), as τ decreases, the boundary of the synchronization
domain moves towards larger (by the absolute value) coupling strength α and
eventually disappears as τ approaches zero. The onset frequency ω increases
with decreasing τ .

An other pecularity of the piece-wise linear potential is a relatively weak sta-
bility of the two equilibria at x = ±1 as compared to the polynomial potential.
The force F that returns each single oscillator to the equilibrium is constant for
the piece-wise linear potential, F = ±1, while it increases with x as F = ±x3
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Fig. 6. (color online) (a) Synchronization threshold for the ensemble of bistable
elements Eqs. (1) with the piece-wise linear potential Eq. (48) with K = 10. Circles
represent the results of the direct simulation of the Langevin Eqs. (1) with the
potential Eq. (34). (b) Onset frequency ω as a function of the noise intensity D for
three different values of the delay time τ , as in the legend in (a).

for the polynomial potential.

This leads to an interesting effect in case of the piece-wise linear potential.
There appears to be no stable limit cycle with finite amplitude in the region
of synchronous behaviour. Single elements in the network oscillate in phase
with one-another (and, therefore, with the mean field 〈x〉) with the exponen-
tially increasing amplitude, as shown in Fig. 5(b). In our simulations with 104

oscillators we observed unlimited exponential growth of the amplitude of os-
cillations as soon as the parameters were changed to be within the region of
synchronous behaviour.

5 Conclusion

To conclude, we formulated a boundary value problem Eqs. (8,9) which al-
lows us to compute exactly the boundary of the synchronization domain of a
system of stochastic one-dimensional elements with non-homogeneous time-
delayed coupling. By expanding response functions u and v into a series of
eigenfunctions of the stationary Fokker-Planck operator, we reduced the BVP
Eqs. (8,9) to a system of two algebraic equations which determine the critical
coupling strength α as well as the frequency ω at the onset of synchroniza-
tion with the given noise intensity D and delay time τ . The validity of the
truncated expansion Eqs. (21) was demonstrated on the example of the sys-
tem of bistable stochastic oscillators in a symmetric polynomial potential. We
show that the first term truncation Eqs. (22) as well as the previously used di-
chotomous approximation [20,21] fail to give an acceptable estimation for the
synchronization threshold for small noise intensities D. The smaller the value
of D is, the larger number of expansion terms should be taken into account.
In the limit of D → 0 the BVP Eqs. (8,9) was solved numerically using the
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continuation technique [29].

For a symmetric bistable polynomial potential we demonstrated the existence
of multistability and hysteresis in the system of Eqs. (1) for moderate values of
the noise intensity D. To this end we compared in Fig. 3(b) the amplitude of
the mean field x̄(t) computed by numerically solving the Langevin equations
Eqs. (1) with that obtained using the mode expansion Eq. (26). We found that
for moderate noise intensities D (D . 0.75 at τ = 1), the time-periodic solu-
tion of Eqs. (1) looses its stability at a certain value of the coupling strength
α via a saddle-node bifurcation. Hereby if α increases, the stable periodic so-
lution disappears and the amplitude of the mean field changes abruptly to
zero up to the fluctuations of order 1/

√
N , where N is the number of elements

in the network [36]. Conversely, if α decreases, the mean field remains con-
stant until the point of the subcritical Andronov-Hopf bifurcation where the
solution jumps to a stable periodic orbit with finite amplitude.

The case of a piece-wise linear bistable potential is considered as an example
where the truncated eigenmode expansion Eqs. (21) as well as the dichotomous
approximation fail by definition. Firstly, continuous spectrum of eigenvalues of
the stationary Fokker-Planck operator does not allow us to use the eigenmode
expansion. Secondly, piece-wise linearity leads to a divergent second derivative
of the potential and, therefore, to the failure of the Kramers formula for the
transition rates which is used in the dichotomous approximation.

For both the polynomial and the piece-wise linear potentials, we show that in
the limit of vanishing noise intensities D the onset coupling strength α which
determines the point of transition from the asynchronous to the synchronous
regime, remains finite. For the polynomial potential this result was confirmed
analytically by finding small-D asymptotic solution of the BVP Eqs. (8,9).

Finally, the practical implication of this study is the possibility to use delay
in the coupling term in order to control the collective behavior of network
elements. Namely, if each network element is one-dimensional, the removal of
the delay guarantees that the system with periodic boundary conditions will
never be synchronized at any coupling strength, whatever large. This can be
important in applications related to neurobiology where synchronization of
neurons in certain brain areas is associated with conditions like epilepsy and
Parkinson’s disease. On the other hand, by changing the positive value of the
delay one can control the location of synchronization threshold and thus make
the system more or less robust with respect to the possible fluctuations in
coupling strength or noise intensity. In fact, we have shown that by making τ
small, we force the system to enter the regime when the absolute value of the
critical coupling strength α becomes very large implying that synchronization
is suppressed disregarding the value of the noise intensity.
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