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An atom in open space can be detected by means of resonant absorption and ree-

mission of electromagnetic waves, known as resonance fluorescence, which is a funda-

mental phenomenon of quantum optics. We report on the observation of scattering

of propagating waves by a single artificial atom. The behavior of the artificial atom,

a superconducting macroscopic two-level system, is in a quantitative agreement with

the predictions of quantum optics for a pointlike scatterer interacting with the elec-

tromagnetic field in one-dimensional open space. The strong atom-field interaction as

revealed in a high degree of extinction of propagating waves will allow applications of

controllable artificial atoms in quantum optics and photonics.

A single atom interacting with electromagnetic modes
of free space is a fundamental example of an open quan-
tum system (Fig. 1A) [1]. The interaction between
the atom (or molecule, quantum dot, et cetera) and a
resonant electromagnetic field is particularly important
for quantum electronics and quantum information pro-
cessing. In three-dimensional (3D) space, however, al-
though perfect coupling (with 100% extinction of trans-
mitted power) is theoretically feasible [2], experimentally
achieved extinction has not exceeded 12% [3–7] because
of spatial mode mismatch between incident and scattered
waves. This problem can be avoided by an efficient cou-
pling of the atom to the continuum of electromagnetic
modes confined in a 1D transmission line (Fig. 1B) as
proposed in [8, 9]. Here we demonstrate extinction of
94% on an artificial atom coupled to the open 1D trans-
mission line. The situation with the atom interacting
with freely propagating waves is qualitatively different
from that of the atom interacting with a single cavity
mode; the latter has been used to demonstrate a series of
cavity quantum electrodynamics (QED) phenomena [10–
18]. Moreover in open space, the atom directly reveals
such phenomena known from quantum optics as anoma-
lous dispersion and strongly nonlinear behavior in elastic
(Rayleigh) scattering near the atomic resonance[1]. Fur-
thermore, spectrum of inelastically scattered radiation is
observed and exhibits the resonance fluorescence triplet
(the Mollow triplet) [19–23] under a strong drive.

Our artificial atom is a macroscopic superconducting
loop, interrupted by Josephson junctions (Fig. 1B) [iden-
tical to a flux qubit [24]] and threaded by a bias flux
Φb close to a half flux quantum Φ0/2, and shares a seg-
ment with the transmission line [25], which results in
a loop-line mutual inductance M mainly due to kinetic
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inductance of the shared segment [26]. The two lowest
eigenstates of the atom are naturally expressed via super-
positions of two states with persistent current, Ip, flowing
clockwise or counterclockwise. In energy eigenbasis the
lowest two levels |g〉 and |e〉 are described by the trun-

cated Hamiltonian H = ~ωaσz/2, where ωa =
√

ω2
0 + ε2

is the atomic transition frequency and σi (i = x, y, z) are
the Pauli matrices. Here, ~ε = 2Ip δΦ (δΦ ≡ Φb − Φ0/2)
is the energy bias controlled by the bias flux, and ~ω0 is
the anticrossing energy between the two persistent cur-
rent states. The excitation energies of the third and
higher eigenstates are much larger than ~ωa; therefore
they can be neglected in our analysis.

We considered a dipole interaction of the atom with
a field of an electromagnetic 1D wave. In the semiclas-
sical approach of quantum optics, the external field of
the incident wave I0(x, t) = I0e

ikx−iωt (where ω is the
frequency and k is the wavenumber) induces the atomic
polarization. The atom with characteristic loop size of
∼ 10 µm (which is negligibly small as compared with the
wavelength λ ∼ 1 cm) placed at x = 0 generates waves
Isc(x, t) = Isce

ik|x|−iωt, propagating in both directions
(forward and backward). The current oscillating in the
loop under the external drive induces an effective mag-
netic flux φ (playing a role of atomic polarization). The
net wave I(x, t) = (I0e

ikx + Isce
ik|x|)e−iωt satisfies the

1D wave equation ∂xxI−v−2 ∂ttI = c δ(x)∂ttφ, where the

wave phase velocity is v = 1/
√
lc (l and c are inductance

and capacitance per unit length, respectively) and the
dispersion relation is ω = vk.

At the degeneracy point (ε = 0), ωa = ω0, and the
dipole interaction of the atom with the electromagnetic
wave in the transmission line Hint = −φpRe[I0(0, t)]σx

is proportional to the dipole moment matrix element
φp = MIp. In the rotating wave approximation, the
standard form of the Hamiltonian of a two-level atom in-
teracting with the nearly resonant external field is H =
−(~δωσz + ~Ωσx)/2. Here δω = ω − ω0 is the detuning
and ~Ω = φpI0 is the dipole interaction energy. The time-
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FIG. 1: Resonance fluorescence: Resonant wave scattering on
a single atom. (A) Sketch of a natural atom in open space.
The atom resonantly absorbs and reemits photons in a solid
angle of 4π. (B) False-colored scanning-electron micrograph
of an artificial atom coupled to a 1D transmission line. A
loop with four Josephson junctions is inductively coupled to
the line. The incident wave (blue arrow) is scattered only
backward and forward (red arrows) and can be detected in
either direction. The transmitted wave is indicated by a ma-
genta arrow. (C) Spectroscopy of the artificial atom. Power
transmission coefficient |t|2 versus flux bias δΦ and incident
microwave frequency ω/2π. When the incident radiation is
in resonance with the atom, a dip of |t|2 reveals a dark line.
Inset: Power transmission coefficient |t|2 at δΦ = 0 as a func-
tion of incident wave detuning δω/2π from the resonance fre-
quency ω0/2π = 10.204 GHz. The maximal power extinction
of 94% takes place at the resonance(δω = 0).

dependent atomic dipole moment can be presented for a
negative frequency component as 〈φ(t)〉 = φp〈σ−〉e−iωt,
and the boundary condition for the scattered wave gener-
ated because of the atomic polarization satisfies the equa-
tion 2ik(Isc/2) = −ω2cφp〈σ−〉, where σ± = (σx±iσy)/2.
Assuming that the relaxation of the atom is caused solely
by the quantum noise of the open line, we obtain the re-
laxation rate Γ1 = (~ωφ2

p)/(~
2Z) (where Z =

√

l/c is
the line impedance) [27] and find

Isc(x, t) = i
~Γ1

φp
〈σ−〉eik|x|−iωt. (1)

This expression indicates that the atomic dissipation into
the line reveals itself even in elastic scattering.
The atom coupled to the open line is described by

the density matrix ρ, which satisfies the master equa-

tion ρ̇ = − i
~
[H, ρ] + L̂[ρ]. At zero temperature, the sim-

plest form of the Lindblad operator L̂[ρ] = −Γ1σzρe −
Γ2(σ

+ρeg + σ−ρge) describes energy relaxation (the first
term) and the damping of the off-diagonal elements of the
density matrix with the dephasing rate Γ2 = Γ1/2 + Γϕ

(the second term), where Γϕ is the pure dephasing rates.
It is convenient to define reflection and transmission coef-
ficients r and t according to Isc = −rI0 and I0+Isc = tI0,
and, therefore, t = 1 − r. From Eq. 1 we find the sta-
tionary solution

r = r0
1 + iδω/Γ2

1 + (δω/Γ2)2 +Ω2/Γ1Γ2

, (2)

where the maximal reflection amplitude r0 = ηΓ1/2Γ2 at
δω = 0. Here η presents dimensionless coupling efficiency
to the line field, including non-radiative relaxation. The
maximal possible power extinction (1 − |t|2) can reach
100% when |r0| = 1. It takes place for η = 1 and Γ2 =
Γ1/2, that is, in the absence of pure dephasing, Γϕ = 0.
In such case, the wave scattered forward by the atom is
canceled out because of destructive interference with the
incident wave (Isc = −I0). Although Eq. 2 is obtained
for the degeneracy point (ε = 0), it remains valid in the
general case of ε 6= 0 if the dipole interaction energy ~Ω
is multiplied by ω0/ωa.
The excitation energy of the atom was revealed by

means of transmission spectroscopy (Fig. 1C). Owing to
the broadband characteristics of the transmission line, we
swept the frequency of the incident microwave in a wide
range and monitored the transmission. As shown in the
inset of Fig. 1C, the resonance is detected as a sharp dip
in the power transmission coefficient |t|2. At resonance,
the power extinction reaches its maximal value of 94%,
which suggests that the system is relatively well isolated
from other degrees of freedom in the surrounding solid-
state environment and behaves as a nearly isolated atom
in open space, coupled only to the electromagnetic fields
in the space. The resonance frequency ωa is traced as a
function of the flux bias δΦ. By fitting the data, we ob-
tained ω0/2π = 10.204 GHz at δΦ = 0 and the persistent
current Ip = 195 nA.
The elastic response of the artificial atom shows typical

anomalous dispersion. Figure 2A represents the reflec-
tion coefficient derived from the transmission according
to r = 1 − t and obtained at δΦ = 0. Similarly to the
case of a natural atom, we can define the polarizability
α = α′ + iα′′ as 〈φ〉 = αI0 and, therefore, α ∝ ir. In
the vicinity of the resonance, Re(r) (∝ α′′) is positive
and reaches maximum at the resonance, whereas Im(r)
(∝ −α′) changes the sign from positive to negative.
With a weak driving field of Ω2/(Γ1Γ2) ≪ 1 (Fig. 2A,

topmost curve), a peak in Re(r) {Re(r) = ηr0[1 +
(δω/Γ2)

2]−1/2} appears. Fitting by using Eq. 2 with
η = 1 gives Γ1 = 6.9 × 107 s−1 (Γ1/2π = 11 MHz) and
Γ2 = 4.5 × 107 s−1 (Γ2/2π = 7.2 MHz). From the ex-
pression for Γ1 the mutual inductance between the atom
and the transmission line is estimated to be M = 12 pH.
Although our assumption of η = 1 has not been checked
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FIG. 2: Elastic scattering of the incident microwave. The
reflection coefficient r at δΦ = 0 (measured at different pow-
ers), being proportonal to the atomic polarizability, exhibits
“anomalous dispersion”. (A) Real and imaginary parts of r
as a function of the detuning frequency δω/2π from the reso-
nance at ω0 = 10.204 GHz. The driving power W0 is varied
from −132 dBm (largest r) to −84 dBm (smallest r) with an
increment of 2 dB. (B) Smith charts of the microwave reflec-
tion. Upper panel: Experimentally obtained r is plotted in
the coordinates of Re(r) and Im(r) for powers from −132 dBm
to−102 dBm with a step of 2 dB. The color coding is the same
as in A. Lower panel: Calculation using Eq. 2 for the same
signal powers as in the upper panel.

experimentally, it may be reasonable because (i) all the
line current should effectively interact with the atom
and (ii) the possible relaxation without emission mea-
sured for isolated atoms is weak being typically less than
106 s−1[28]. In a case of imperfect coupling (η < 1) the
actual Γ1 could be slightly higher.

The nonlinearity of the atom manifests in the satura-
tion of the atom excitation. With increasing the power of
the incident microwave W0, |r| monotonically decreases,
and in the Smith chart (Fig. 2B) the shape of the trajec-
tory changes from a large circle to a small ellipse. As a
single two-level system, the atom is saturated at larger
powers and can have large reflectance only for the weak
driving case. Again, the nearly perfect agreement be-
tween the calculations and the measurements supports
our model of a two-level atom coupled to a single 1D
mode. Any artificial medium built of such “atoms”[29]
will also have a strongly nonlinear susceptibility.

So far we have investigated elastic Rayleigh scatter-
ing in which the incident and the scattered waves have
the same frequency. However, the rest of the power
W ′

sc = W0

(

1− |t|2 − |r|2
)

is scattered inelastically and
can be observed in the power spectrum. The spectrum
was measured at the degeneracy point (δΦ = 0) un-
der a resonant drive with the power corresponding to
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FIG. 3: Resonance fluorescence triplet: Spectrum of inelas-
tically scattered radiation. (A) Linear frequency spectral
density (S = 2πS(ω)) of emission power under a resonant
drive with the Rabi frequency of Ω/2π = 57 MHz correspond-
ing to the incident microwave power of W0 = −112 dBm or
6.3×10−15 W. Experimental data is shown by the open circles.
The red solid curve is the emission calculated from Eq. 3 with
no fitting parameters. A schematic of the triplet transitions in
the dressed state picture is presented in the inset: The atomic
levels split by Ω due to strong driving, and transitions with
frequencies ω0−Ω, ω0 and ω0+Ω, marked by colored arrows,
give rise to three emission peaks. (B) Resonance fluorescence
emission spectrum as a function of the driving power. The
dashed white lines indicate the calculated position of the side
peaks shifted by ± Ω/2π from the main resonance. The split
peak was used for calibration of the field amplitude at the
atom.

Ω/2π ≈ 57 MHz (Fig. 3A). It manifests the resonance
fluorescence triplet, also known as the Mollow triplet [19–
23]. In the case of a strong driving field (Ω2 ≫ Γ2

1), the
expression for the inelastically scattered power simplifies
to W ′

sc ≈
(

Γ2
1/Ω

2
)

W0, which is independent of the inci-
dent power and can be rewritten as W ′

sc ≈ ~ωΓ1/2: The
atom is half populated by the strong drive and sponta-
neously emits with rate Γ1. Assuming η = 1, the spectral
density measured in one of the two directions is expected
to be

S(ω) ≈ 1

2π

~ωΓ1

8

( γs
(δω +Ω)2 + γ2

s

+

+
2γc

δω2 + γ2
c

+
γs

(δω − Ω)2 + γ2
s

)

, (3)

where half-width of the central and side peaks are γc =
Γ2 and γs = (Γ1 + Γ2)/2, respectively. The red curve
in Fig. 3A is drawn by using Eq. 3 without any fitting
parameters. The good agreement with the theory indi-
cates the high collection efficiency of the emitted pho-
tons, which is due to the 1D confinement of the mode.
The shift of the side peaks, ± Ω, from the main reso-
nance depends on the driving power. The intensity plot
in Fig. 3B shows how the resonance fluorescence emission
depends on the driving power. The dashed white lines
mark the calculated position of the side peaks as a func-
tion of the driving power, showing good agreement with
the experiment.
The demonstrated resonance wave scattering from a

macroscopic “artificial atom” in an open transmission
line, indicates that such superconducting quantum de-
vices can be used as building blocks for controllable,
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quantum coherent macroscopic artificial structures, in
which a plethora of effects can be realized from quan-
tum optics of atomic systems.
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and M. S. Ünlü, Nano Lett. 7, 2892 (2007).

[7] A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G.
Deppe, J. Z. W. Ma, G. J. Salamo, M. Xiao, and C. K.
Shih, Phys. Rev. Lett. 99, 187402 (2007).

[8] J. T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001
(2005).

[9] D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D.
Lukin, Nature Phys. 3, 807 (2007).

[10] J. M. Raimond, M. Brune, and S. Haroche,
Rev. Mod. Phys. 73, 565 (2001).

[11] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature 431, 162 (2004).

[12] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff,
J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. John-
son, M. H. Devoret, et al., Nature 445, 515 (2007).
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Material and Methods

S1. Sample design and fabrication

The coplanar transmission line with a characteristic
impedance Z ≃ 50Ω is made by patterning a gold film
deposited on a silicon substrate. In the middle of the chip
the central conductor of the waveguide is narrowed and
replaced by aluminium. The latter is deposited together
with the artificial atom, using shadow evaporation. The
experiment is performed in a dilution refrigerator at a
temperature of 40 mK.
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FIG. S1: Experimental setup diagram. (A) Experimental
setup diagram for measuring transmission and reflection coef-
ficient. For measuring the transmission (reflection) coefficient
we use t (r) channel for input and the signal is measured from
the channel “out”. Both input lines are filtered using 20 dB
attenuator at 1 K stage and another 20 dB attenuator at the
base temperature. For filtering channel “out” we use two iso-
lator in total giving 40 dB attenuation and another isolator
at the 1 K stage. The signal is amplified using a cryogenic
amplifier at 4.2 K and at room temperature. The atom is
is controlled using a coil. (B). Experimental setup for mea-
suring the spectrum of resonance fluorescence. We drive the
atom using via t channel and measure the spectrum using a
spectrum analyzer.

S2. Transmission and reflection coefficients of the

elastic scattering

We measure the complex transmission and reflection
coefficients, t and r, by a phase-sensitive vector net-
work analyzer. The transmission characteristics of the
microwave line are calibrated with the artificial atom ef-
fectively removed: It is offset by a dc flux bias such that
its transition frequency does not fall in the measurement
frequency range. By comparing the transmitted and re-
flected powers we verify that the relation |1 − t| = |r|
holds with an accuracy less than 5%. However, the re-
fection coefficient r presented in the text is calculated
from measured t by using the relation r = 1− t, because
the phase of the weak reflected wave is not easy to cali-
brate. Schematic diagram of the experimental setup for
measuring the coherent transmission and reflection co-
efficient is presented in Fig. S1A. For transmission and
reflection measurements we use two different input lines
and a single output line.

S3. Spectrum of the inelastic scattering

To measure weak resonance fluorescence emission on
the background of the amplifier noise, we modulate the
excitation power and use digital differentiation. The
noise spectral density of the preamplifier placed at 4 K
is 2πS(ω) = kBTn ≃ 1.9 × 10.22W/Hz, which corre-
sponds to the effective noise temperature of the amplifier
at the sample Tn = 14K. A narrow elastic scattering
peak at zero detuning, with a width determined by the
1-MHz resolution bandwidth of the spectrum analyzer,
is eliminated by analog cancelation using destructive in-
terference and additional digital filtering. In Fig. S1B,
the schematic diagram of the setup for measuring the
resonance fluorescence spectrum is presented.
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