
 
 
 

 
This item was submitted to Loughborough’s Institutional Repository 

(https://dspace.lboro.ac.uk/) by the author and is made available under the 
following Creative Commons Licence conditions. 

 
 

  
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Tribology Letters, June 2013, DOI: 10.1007/s11249-013-0163-5 

(Accepted Version) 

1 

 

Thermo-mixed hydrodynamics of Piston Compression Ring Conjunction  

H. Shahmohamadi, R. Rahmani*, H. Rahnejat, C.P. Garner and P.D. King 

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, 

Loughborough, LE11 3TU, Leicestershire, UK 

*Corresponding author, Email: r.rahmani@lboro.ac.uk 

Abstract 

A new method, comprising Navier-Stokes equations, Rayleigh-Plesset volume fraction 

equation, an analytical control-volume thermal mixed approach and asperity interactions is 

reported. The method is employed for prediction of lubricant flow and assessment of friction 

in the compression ring-cylinder liner conjunction. The results are compared with Reynolds-

based laminar flow with Elrod cavitation algorithm. Good conformance is observed for 

medium load intensity part of the engine cycle. At lighter loads and higher sliding velocity, 

the new method shows more complex fluid flow, possessing layered flow characteristics on 

account of pressure and temperature gradient into the depth of the lubricant film, which leads 

to a cavitation region with vapour content at varied volume fractions. Predictions also 

conform well to experimental measurements reported by other authors. 

 

Keywords: Piston Ring conjunction, mixed mode friction, Navier-Stokes equations, Raleigh-

Plesset volume fraction  

 

1. Introduction 

The primary function of the piston compression ring is to seal the combustion chamber. This 

prevents the escape of high-pressure gases from the combustion chamber and conversely 

lubricant leakage into the chamber. However, effective sealing function of the compression 

ring can result in increased friction and thus parasitic losses [1].The piston assembly accounts 

for approximately 35-45% of engine frictional losses [2, 3]. Therefore, in order to improve 

engine performance as well as reducing emission levels, it is important to have a deeper 

understanding of frictional behaviour of piston-cylinder system as a prerequisite. The current 
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work addresses these issues with regard to the piston compression ring. 

There have been many numerical predictions of compression ring-cylinder liner conjunction, 

where the analyses have included a host of parameters which interact with each other, making 

the tribology of ring-liner conjunction particularly complex. These parameters include the 

effect of the ring’s axial profile along its contacting face-width with the cylinder liner and its 

surface topography [4], and the effect of evolving wear process upon friction and sealing 

effectiveness of the ring in an out-of-round bore [5,6]. These and similar analyses [7-13] have 

included mixed regime of lubrication, where direct interaction of surfaces can occur at piston 

dead centre reversals with momentary cessation of lubricant entraining motion into the 

contact under assumed fully flooded or starved inlet conditions. Although ring fitment 

analysis is taken into account in the works reported in [5,6,11,12], including in some cases 

with bore out-of-roundness, the ring bore conformability should also take into account the 

modal behaviour of the ring as described, for example, by Baker et al [14]. They showed that 

ring elastodynamics in fact conforms it to the bore in the high pressure region with a low 

sliding velocity (i.e. at the reversals). This ensures good ring sealing at the expense of 

increased friction. However, in some parts of the engine cycle, ring elastodynamics as well as 

its axial profile can exacerbate the convergent-divergent conjunctional passage and clearance, 

which suggests lubricant film rupture and the emergence of a cavitation region. This can also 

affect the compression ring sealing function. The effect of cavitation is studied by Chong et al 

[15], who used Elrod’s approximation [16] to the Jakobsson and Floberg [17] and Olsson 

[18] (JFO) cavitation boundary condition. Chong et al [15] showed that cavitation formed at 

the lubricant film contact exit in the compression stroke reduces the lubricant availability at 

the TDC (Top Dead Centre) reversal, thus causing a starved contact in parts of the power 

stroke in the vicinity of the TDC. 

Therefore, the multivariate nature of the problem is quite apparent. The current analysis 

combines the use of an open (free) exit boundary condition instead of an imposed cavitation 

boundary condition. This is achieved by solving the Navier-Stokes equations for multi-phase 

flow dynamics instead of the usual Reynolds equation. Additionally, this approach readily 

enables simultaneous solution with the energy equation. Thus, the effect of surface 

temperatures, and that caused through viscous shear of the lubricant in the conjunction, upon 

lubricant film formation and viscosity variation into the depth of the film are included in the 

solution. Unlike Reynolds or Elrod flow equations, with the Navier-Stokes equations the 
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pressure gradient across the film is retained. This enables more accurate prediction of viscous 

friction due to Poiseuille flow as well as in Couette shear. This approach together with 

inclusion of lubricant rheological state and asperity interactions, to represent boundary 

friction, has not hitherto been reported in literature. 

 

2. Problem Description 

Figure 1 is a schematic representation of ring-liner conjunction along the ring axial face-

width. The ring profile )(xhs  is assumed to be parabolic with a maximum crown height of c  

and a face-width of b : 

2

2

)2/(
)(

b
cxxhs =            (1) 

The current analysis assumes good conformance of the ring to the liner surface in the 

circumferential direction of the bore. This simplifies the problem to a one dimensional 

contact, which is valid for ring-bore contact of bore diameter-to-ring face-width ratio: 

302 0 ≥brπ  as shown by Haddad and Tian [19], which is applicable to the engine studied 

here. The engine studied here is a high performance V12 4-stroke naturally aspirated engine 

with specifications as detailed in Table 1. 

 

 
Figure1: 2D Diagram of piston ring-liner conjunction 
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Table1: Engine data 

Parameters Values Units 

Crank-pin radius, r  39.75 Mm 

Connecting rod length, l  138.1 Mm 

Bore nominal radius, 0r  44.52 Mm 

Ring crown height, c  10 µm 

Ring axial face-width, b  1.15 Mm 

Ring radial width, d  3.5 Mm 

Ring free end gap, g  10.5 Mm 

 

 

It is assumed that the ring does not undergo any relative motion with respect to the piston 

sliding at the velocity U. In practice, the ring may be subject to axial motion within its 

retaining groove; a motion termed as ring flutter. Thus, according to Rahnejat [20]: 
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where ϕ  is the crank-angle, l  is the connecting rod length, r  the crank pin radius and ω  is 

the engine rotational speed. Figure 2 shows the piston sliding speed variation for the engine 

speeds of 1500 and 6000 rpm respectively. 
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Figure 2: piston sliding speed for engine speeds of 1500 and 6000 rpm 

 

Forces acting on the ring are considered as radial in-plane forces. In its radial plane, the ring 

is subjected to two outward forces: ring elastic tension force TF  and the gas force GF , acting 

on the inner rim of the ring. These forces strive to conform the ring to the bore surface. Thus, 

the total outward force (towards the liner interface), acting on the ring is: GT FFF += . The 

ring tension force, TF , is obtained as [21]: 

0rbpF eT =  )
3

where( 4
0br

gEIpe π
=        (3) 

where, ep  is the elastic pressure, 0r  is the bore nominal radius and g  is the ring end gap in 

its free (unfitted) state. The gas force acting on the back of the ring varies according to the 

chamber pressure in an engine cycle, thus: 

)(2)( 0 ϕπϕ gG pbrF =           (4) 

A gas blow-by analysis is required to obtain the exact value of gas pressure acting behind the 

ring. In the current analysis it is assumed that the gas pressure behind the ring is equal to the 

in-cylinder gas pressure. 
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These outward forces (ring elastic tension and the gas force) are opposed by the contact force 

generated as the result of combined actions of generated conjunctional hydrodynamic 

pressures and the load share carried by the direct contact of surfaces themselves. The latter is 

often the load shared by a small portion of asperities on the opposing surfaces. Thus, the 

instantaneous contact load is determined as )()()( ϕϕϕ ha WWW += , where the load carried 

by any film of lubricant is the integrated pressure distribution as: 

0 0
( ) 2 ( )

b

h hW r p dxdyφ π φ= ∫          (5) 

As shown in Figure 1, in general, the contact region may be considered as comprising of 

three distinct regions: (i) full film (a coherent lubricant film region), (ii) film rupture and 

cavitation, and (iii) lubricant film reformation. The Elrod cavitation model is the usual basis 

for the tribological analysis, taking into account these various conjunctional regions. To 

describe the physics of fluid flow in the cavitated region, in which at least these various states 

of lubricant film co-exist, a suitable two-phase flow model needs to be employed alongside 

the use of the Navier-Stokes equations. This would be an elegant approach which for 

moderately and heavily loaded conditions represents a reasonable compromise between 

computational speed and predictive accuracy [22]. However, it can be fairly complex to 

implement. 

 

3. Numerical Model 

3.1.  General Navier-Stokes and energy equations 

The general continuity and Navier-Stokes momentum equations for compressible viscous 

fluid flow can be described as [23]: 

0. =∇+ V
Dt
D 

ρρ            (6) 

Fp
Dt

VD
ij




+∇+−∇= )(. τρ          (7) 

where 
Dt
D  is the covariant derivative operator, ρ  is the lubricant density, p  is the pressure, 

ijτ  is the viscous stress tensor and F


 is the body force field vector. In addition, 
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ˆˆ ˆV Ui Vj Wk= + +


 is the velocity vector in which U  is the component of velocity in the 

direction of axial lubricant flow entrainment, V  is that in the side-leakage direction; along 

the y -axis (which may reasonably be discarded as there is negligible side-leakage in the thin 

film ring-bore conjunction), and W  is the squeeze film velocity, h
t

∂
∂

. The viscous stress 

tensor is: 

2 .
3

ji
ij ij

j i

UU V
x x

τ η δ
 ∂∂

= + − ∇  ∂ ∂ 

          (8) 

where η  is the effective lubricant dynamic viscosity, ijδ  is the Kronecker delta and it is 

defined as: 





=
≠

=
ji
ji

ij if1
          if0

δ                                                                                                    (9) 

One possibility in a CFD model is to evaluate fluid viscosity as a function of pressure and 

temperature along the liner and into the depth of the lubricant film. The latter is neglected in 

the conventional hydrodynamic lubrication approaches, which are based on Reynolds 

equation. Finally, the energy equation can be stated as [23]: 

.( ) i
ij

j

UDH Dp k
Dt Dt x

ρ θ τ ∂
= +∇ ∇ +

∂
                   (10) 

where H  is the fluid enthalpy, θ  is the temperature and k  is the lubricant thermal 

conductivity. 

 

3.2.  Cavitation model – vapour mass fraction and vapour transport equations 

With cavitation, the liquid-vapour mass transfer (evaporation and condensation) is governed 

by the vapour transport equation as [24]: 

cevvvv RRV
t

−=∇+
∂
∂ )(.)( υραρα


                  (11) 

where vρ  is the vapour density, υV


 is the velocity vector of the vapour phase, eR  and cR are 

mass transfer source terms related to the growth and collapse of the vapour bubbles 

respectively. The growth and collapse of a bubble cluster are modelled based on the 

Rayleigh-Plesset equation, describing the growth of a single vapour bubble in a liquid, which 
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provides the rate equation, controlling vapour generation and condensation. Singhal et al [25] 

assumed that a working fluid is a mixture of liquid and vapour and introduced a modified 

form of the above equation, based upon the vapour mass fraction, massf  as: 

cemassmassmmassm RRffVf
t

−+∇Γ∇=∇+
∂
∂ )(.)(.)( υρρ


               (12) 

where mρ  is the mixture density and Γ  is the diffusion coefficient. The mass transfer rate 

expressions are derived from the Rayleigh-Plesset equations, based upon limiting bubble size 

considerations (interface surface area per unit volume of vapour). These rates are functions of 

the instantaneous, local pressure and are given by: 

satmass
l
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l
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ee ppfppVCR <−
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= for            ),1(
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)(2
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σ υ                (13) 
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l
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l
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cc ppfppVCR >

−
= for                    ,

3
)(2

ρ
ρρ

σ υ               (14) 

where the suffices l  and υ  denote the liquid and vapour phases respectively, chV  is a 

characteristic velocity, sσ  is the surface tension coefficient of the liquid, satp  is the liquid 

saturation vaporisation pressure at a given temperature and eC  and cC  are empirical 

constants and are considered to be 50 and 0.01 respectively according to Kubota et al [26]. 

 

3.3.  Conventional hydrodynamic cavitation model (Elrod’s method) 

For the engine under investigation, the ring perimeter-to-width ratio is over 100. Therefore, 

as a first approximation, the piston ring/liner conjunction can be viewed as an infinitely long 

slider bearing [7] (envisaged as unwrapped). Although this assumes uniform radial loading 

and neglects piston secondary motion as well as ring dynamics, the final results can provide 

some valuable predictions. If the flow is considered as laminar, the behaviour of most 

lubricated conjunctions can be predicted using Reynolds equation: 

( ) )(2
6
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h

dt
dh

x
U

x
ph

x
ρρ

η
ρ

+
∂
∂

=










∂
∂

∂
∂                   (15) 

Elrod’s modification [16] provides an acceptable solution if cavitation is present: In the full 

film region of the contact both Couette and Poiseuille terms are considered, while in the 
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cavitation region only Couette flow is taken into account and lubricant squeeze film motion 

[27]. To account for this, a switching term, sg  is defined as: 

1 if 1           (full film region)
0 if 0< <1    (cavitation region)sg

ξ
ξ
≥

= 


                 (16) 

in which ξ  is defined as the fractional film content. This allows defining the contact pressure 

distribution as a function of film ratio ξ  as: 

cs pgp += ξβ ln                     (17) 

where cp  is the lubricant’s cavitation vaporisation pressure and β  is the lubricant’s bulk 

modulus. Reynolds equation is now modified using equations (15) and (17) as: 
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Lubricant viscosity and density vary with contact pressures and temperatures as described in 

Section 3.5 below. 

 

3.4.  Boundary conditions 

In both the Navier-Stokes and Elrod’s models the following boundary conditions are used 

along the axial x-direction of the contact (i.e. along the ring face-width) 


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
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

=
=+
=−

cch

Uh

Lh
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pbp
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)(
)2/(
)2/(

                    (19) 

However, the Elrod model satisfies another pressure gradient boundary condition 

0)(
=

= cxxdx
xdp  at the film rupture point ( cx  is the location of rupture point), whereas no 

artificial exit boundary condition needs to be stated with the Navier-Stokes approach. 

 

3.5.  Lubricant rheology 

The lubricant bulk rheological properties including density and viscosity are affected by 

pressure and temperature [5]. The density–pressure relationship is [28]: 
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in which atmp  is the atmospheric pressure and 0Θ  is temperature in K  (i.e. )27300 +=Θ θ . 

Lubricant density at atmospheric pressure, 0ρ , is given in Table 2. 

Variations of lubricant dynamic viscosity with pressure and temperature can be expressed 

based on Roelands’ equation [29] and further developed by Houpert [30], as follows: 
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in which, 0η  is the lubricant dynamic viscosity at atmospheric pressure and temperature, and 

Z  and 0S  are constants: 

]67.9)[ln(101.5 0
9

0

+×
=

− η
α

Z  and 
67.9)ln(

)138(

0

00
0 +

−Θ
=

η
βS                (22) 

where 0α  and 0β  are constants at atmospheric temperature and pressure. Details of lubricant 

rheological parameters are given in Table 2. It should be noted that the rheological 

parameters are for fresh lubricant. In practice, the lubricant is subject to shear thinning, 

oxidation and contamination [31]. 

 

 

Table 2: Lubricant properties in atmospheric pressure and 40○C 

Parameters Values Units 

Lubricant viscosity, 0η  05.0  kg/m-s 

Lubricant density, 0ρ  833   kg/m3 

Lubricant specific heat, pC   1968 J/kg-K 

Lubricant thermal conductivity, k  145.0  w/m-K 

0α  8101 −×   m2/N 

0β  2104 −×  - 

 

 

3.6.  Heat generation and thermal boundary conditions 
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Lubricant temperature rises due to internal friction. In the Navier-Stokes approach, solving 

the energy equation (10) with the appropriate boundary conditions provides a prediction of 

heat generated in the contact conjunction due to viscous shear. However, temperatures of 

contacting surfaces also increase with the rising contact temperature of the lubricant. 

Therefore, temperature boundary conditions are themselves a function of internal heat. For 

the liner the measured temperature, using a thermocouple very close to the sliding surface, is 

used as shown in Figure 3. Therefore, instantaneous temperature boundary condition for the 

liner is that measured. The compression ring temperature is obtained through internal heat 

partitioning, thus is not adiabatic. To obtain the temperature rise of the bounding surfaces, a 

thermal heat transfer partitioning model needs to be used which takes into account the 

transferred heat to the contacting surfaces (boundaries) as well as the heat which is carried 

away by the lubricant flow though the contact. Morris et al [4] have described an analytical 

model, based on a control volume approach which takes into account the local temperature 

rise on the contacting surfaces due to conduction from the lubricant and also direct asperity 

contacts. The method described by Morris et al [4] is also adopted here in conjunction with 

the Navier-Stokes analysis. 

In the thermal heat transfer model, at any instant of time, corresponding to a crank angle 

position, the equality of inlet and outlet flows is maintained. This is an outcome of the 

instantaneous quasi-static equilibrium at any given crank angle. However, the flow rate is 

subject to change between subsequent crank angle positions as the variations of the film 

thickness with time h
t

∂ 
 ∂ 

 is taken into account. In addition, there is a convection thermal 

flux at the inlet nib to the conjunction from the solid boundaries to the entrant lubricant 

supply at a lower temperature inθ . This raises the inlet lubricant to 0θ  from its assumed bulk 

flow temperature (inlet heating): 

21

2211
0 UU

UU ss

+
+

=
θθ

θ                     (23) 

where 1sθ  and 2sθ  are the initial surface temperatures of the bore/liner and ring surface. Since 

one of the surfaces is stationary, therefore from equation (23), 10 sθθ =  at the inlet due to the 

convective thermal flux. The liner temperature is measured from the engine liner surface and, 

therefore, is known a priori at any given crank angle location (see Figure 3). 
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Figure 3: The temperature of the liner at the ring contact location  

throughout the engine strokes 

 

The oil temperature distribution obtained through solution of energy equation (10) is based 

upon an initially assumed temperature for the ring surface. Therefore, the heat partitioning 

method described by Morris et al [4] can predict the quantity of heat transfer from the ring, 

contributing to the rise in its temperature when considering the heat removal through 

convection cooling by the lubricant, flowing through the contact exit (see Figure 4). 

 

 
Figure 4: Thermal flow within the contact (Morris et al [4]) 

 



Tribology Letters, June 2013, DOI: 10.1007/s11249-013-0163-5 

(Accepted Version) 

13 

 

Since the thermal model is a control-volume based approach, the effective temperature of the 

lubricant, obtained from solving equation (10) is averaged throughout the contact as: 

∫ ∫
∫ ∫= b xh

b xh

e
dzdx

dzdxzx

0

)(

0

0

)(

0
),(θ

θ                     (24) 

The rise in the ring surface temperature is obtained from the following relationship (Morris et 

al [4]): 

)( 22 se
fvl

f
s RRR

R
θθθ −

++
=∆                    (25) 

in which, 2sθ  is the initial ring surface temperature and 𝑅𝑙, 𝑅𝑣 and 𝑅𝑓 are the thermal 

resistances associated with conduction through the lubricating film, convective heat transfer 

through the boundary layer and the rise in the solid surface flash temperature respectively 

(Olver and Spikes [32]). These parameters were calculated according to the given 

relationships in Morris et al [4]. In addition, ring and liner mechanical/thermal properties are 

provided in Table 3, Section 3.7. 

 

3.7.  Asperity interaction 

The share of load carried by the interacting asperities in the contiguous is obtained as [5]: 

)()(
15

216
2/5

*2 λ
κ
σζκσπ AFEWa =                   (26) 

The dimensionless group ζκσ  is known as the roughness parameter, whilst κσ  is a 

measure of a typical asperity slope. These can be obtained through topographical 

measurements. *E  is the composite elasticity modulus and it is obtained as: 

2

2
2

1

2
1

*

111
EEE
νν −

+
−

=                    (27) 

where 1ν  and 2ν  are the Poisson’s ratios, and 1E  and 2E  the moduli of elasticity for the 

materials of bounding solid surfaces. The statistical function )(2/5 λF  is introduced to match 

the assumed Gaussian distribution of asperities as a function of the Stribeck oil film 

parameter, σλ /h= . 
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Using a fifth-order polynomial curve fit this statistical function can be described as [5]: 

616700776178440295800574000460) 2345
25 .λ.λ.λ.λ.λ.(λF / +−+−+−=              (28) 

Table 3 lists the material properties as well as the surface topographical parameters for both 

the compression ring and the liner samples used in this analysis. 

 

Table 3: Material properties and surface topographical parameters 

Parameters Values Units 

Liner material Grey cast iron - 

Modulus elasticity of liner material 3.92   GPa 

Poisson ratio for liner material 211.0   - 

Density for liner material 7200  Kg/m3 

Thermal conductivity for liner material 55  W/m.K 

Specific heat capacity for liner material 460  J/Kg.K 

Ring material Steel SAE 9254 - 

Modulus elasticity of ring material 203 GPa 

Poisson ratio for ring material 3.0  - 

Roughness parameter )(ζκσ  04.0  - 

Measure of asperity gradient )( κσ  001.0  - 

Density for ring material 7700  Kg/m3 

Thermal conductivity for ring material 25  W/m.K 

Specific heat capacity for ring material 460  J/Kg.K 

 

 

3.8.  Conjunctional friction 

At any instant of time, viscous shear of a film of lubricant, h, is obtained as [1] 

h
Vph ητ


∆−∇±=
2

                    (29) 
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If this shear stress is below the limiting Eyring [33] shear stress of the lubricant used; 

MPa20 =τ  (in this case), then, the lubricant follows a Newtonian shear behaviour, and 

friction is obtained as ,Afv τ=  where 02A r bπ=  is the apparent contact area. 

Under the mixed elastohydrodynamic analysis and at high shear, the lubricant film is usually 

quite thin and subject to non-Newtonian traction )>( 0ττ  at the tip of asperities [1]. The total 

friction is, therefore, a summation of viscous shear of the lubricant and boundary contribution 

due to asperity interactions on the contiguous surfaces: 

bvt fff +=                      (30) 

The boundary friction is obtained as [34] 

aab WAf µτ += 0                     (31) 

where µ  is the pressure coefficient for boundary shear strength of asperities on the softer 

counterface. A value of 17.0=µ  for ferrous-based surfaces was chosen. In addition, the 

cumulative area of asperity tips, aA , is found as [34] 

)()( 2
22 λ

κ
σζκσπ AFAa =                    (32) 

where )(2 λF  is a function representative of the Gaussian distribution of asperities in terms of 

λ  (the Stribeck oil film parameter) [5]: 

500308043052580172800281000180) 2345
2 .λ.λ.λ.λ.λ.(λF +−+−+−=              (33) 

The viscous friction force, vf  is obtained as: 

)( av AAf −= τ                     (34) 

The total power loss from ring-bore conjunction is because of both viscous and boundary 

contributions to the overall friction. The power loss due to boundary friction is: 

UfP bfb .=                      (35) 

Therefore, the total friction loss is fvfbf PPP += . 
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4. Solution Procedure 

A 2D simulation model is developed using the CFD package FLUENT 14.0. The pre-

processor ANSYS Design Modeller and Meshing is used for the grid generation. The 

geometrical nature of the problem examined here (the film thickness is very small compared 

with bore radius) imposes the use of only quadrilateral cells. After conducting a grid 

sensitivity test on the accuracy of predictions, forty divisions were employed across the film 

thickness and 1,500 divisions along the ring face-width, thus a mesh of 60,000 cells. 

Calculation of Reynolds number for the studied conditions showed that the flow is well 

within the laminar region. The operating pressure and vaporization (cavitation) pressure are 

set to the atmospheric pressure of 101.3 kPa. 

Pressure inlet and outlet boundary conditions are used for the leading and trailing edges of 

the ring/liner contact. Therefore, when the piston undergoes upstroke motion, the inlet 

pressure is that of the combustion chamber as given in Figure 5, whilst at the exit the crank-

case pressure is assumed, which also is assumed to be the atmospheric pressure. On the other 

hand, for the down-stroke sense of the piston, the inlet pressure is set to that of the crank-case 

(atmospheric) pressure, whilst the outlet pressure is that of the combustion chamber. The 

chamber (combustion) pressure varies with engine stroke, speed and throttle demand. Figure 

5 shows the in-cylinder pressure for the engine speeds of 1500 and 6000 rpm with 63% 

throttle. 

 



Tribology Letters, June 2013, DOI: 10.1007/s11249-013-0163-5 

(Accepted Version) 

17 

 

 
Figure 5: Variation of chamber pressure with crank angle for  

engine speeds of 1500 and 6000 rpm 
 

The pressure-based mixture model [35] is chosen for the present CFD analysis. The velocity–

pressure coupling is treated using the SIMPLE algorithm and the second-order upwind 

scheme is used for the momentum to reduce the discretisation-induced errors in the 

calculations. For greater accuracy, a value of 610− is used for the all residual terms. 

For solution of Elrod’s cavitation model is an analytical method, originally described by 

Sawicki and Yu [36]. However, the method is modified to include the variations of viscosity 

and density/bulk modulus with pressure and temperature, using the equations given in 

Section 3.5. Once the pressure distribution is obtained either from CFD analysis or the 

Elrod’s method, it is integrated over the contact area to obtain the hydrodynamic reaction (see 

equation (5)). 

The solution procedure is as follows: 

Step 1: At a given crank angle, calculate the total force exerted on the ring due to combustion 

gas pressure and ring elastic force (equations (3) and (4)). 

Step 2: Assuming an initial value for the minimum film thickness, lubricant film temperature 

and pressure distribution, and the lubricant bulk rheological properties are calculated. In 

addition, an initial value for the ring surface temperature is assumed. 
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Step 3: The contact pressure distribution is obtained using two-phase flow CFD analysis 

described in Sections 3.1 and 3.2, or the Elrod’s cavitation model described in Section 3.3. 

Step 4: The predicted pressures are used to update the rheological properties and Step 3 is 

repeated until the pressure in the Elrod’s method in two successive iteration steps remains 

within the stated convergence criterion. It is noted that in the CFD approach the lubricant 

rheological properties are updated internally for the generated pressure and temperature 

distributions as the solution proceeds. In addition, using the heat partitioning model described 

in Section 3.6, the rise in the ring surface temperature is also calculated. 

Step 5: The load carried by asperities is calculated using equation (26). 

Step 6: The pressure distribution is used to obtain the hydrodynamic reaction. Since the 

method of solution is quasi-static, this conjunctional reaction together with the asperity- 

carried load should support the total applied load exerted by the gas and ring elastic forces at 

each crank angle. The quasi-static balance of applied forces on the ring is sought through: 

3100.1
)(

)()( −×≤
−

=
ϕ

ϕϕ
F

WF
Errload

                  (36) 

where loadErr  is the error in the load balance condition. If this criterion is not met, then, the 

minimum film thickness is updated using the following equation: 

o
m

n
m hh )1( Χ+= δ                     (37) 

where Χ  is an adjusting parameter, )}(),(max{)()( ϕϕϕϕ WFWF −=Χ . Superscripts n  

and o  denote new and old steps in the iteration process. A damping coefficient 05.0=δ  is 

used to achieve faster load convergence, whilst maintaining numerical stability. It is noted 

that the ‘dynamic mesh’ concept [37] is employed for variations in the minimum film 

thickness in the CFD analysis. In this method, the corresponding user-defined function (UDF) 

determines the desired position of the ring using the dynamic mesh technique. To achieve 

this, a smoothing mesh method is used with a convergence tolerance of .10 5−  

With a new value for the minimum film thickness, the Steps 2 to 6 are repeated until the 

convergence criterion in Step 6 is met. 

Step 7: Calculate the corresponding viscous and boundary friction contributions, and hence 

the total friction, using equations (34), (31) and (30). Then, proceed to the next crank angle, 

repeating all the above steps. 
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5. Results and Discussion 

5.1. Pressure distributions in isothermal condition 

As the first step, it would be interesting to note the validity of the CFD approach developed 

here. A good comparison can be made with the Elrod’s approach, which is traditionally used 

for such tribological contacts. Furthermore, an isothermal analysis somewhat simplifies the 

problem.   

Figures 6-8 present the results for axial pressure profiles along the ring face-width at crank-

angles: °±1 , °± 21  and °±90  under assumed isothermal conditions. The predictions are 

made by two different methods: (I) Two-phase flow Navier-Stokes equations and (II) the 

Elrod’s modified approach to Reynolds equation. Good agreement is observed in all cases. 

Note that the crank-angle of 0  corresponds to the position of TDC in transition from the 

compression to the power stroke. The region bounded by the crank-angles 1±   corresponds to 

quite low speeds of entraining motion of the lubricant. Inlet reversals can be noted as the 

piston sense of motion alters (Figure 6a and b). Figure 7b corresponds to the detonation point, 

where the maximum combustion pressure occurs. The differences between the two methods 

of analysis emerge in Figures 7a, and 8a and b. These correspond to relatively lightly loaded 

contact conditions with higher speeds of entraining motion of the lubricant into the 

conjunction. These differences are as the result of outlet boundary conditions, which are 

clearly based on the film rupture point, beyond which cavitation region occurs. With the 

Elrod’s approach there are prescribed contact outlet boundary conditions, which are based on 

the value of film ratio 1ξ < . The CFD approach is based on open boundary condition (i.e. 

there is no prescriptive outlet boundary condition for the lubricant film rupture location). 

Since lightly loaded conditions with higher lubricant entraining velocity (in cases of 

90ϕ = ±  , mid-span piston position) lead to film rupture and cavitation any prescriptive outlet 

conditions may be regarded as somewhat artificial. The difference is more significant in 

terms of friction than pressure distribution (see later). 
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Figure 6: Pressure distribution along the ring face-width (x-direction) for (a) °−= 1ϕ and (b) 

,1°+=ϕ at engine speed of 1500 rpm 
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Figure 7: Pressure distribution along the ring face-width ( x -direction) for (a) °−= 21ϕ

(compression stroke prior to TDC) and (b) °+= 21ϕ (detonation in power stroke), at engine 

speed of 1500 rpm 
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Figure 8: Pressure distribution along the ring face-width ( x -direction) for (a) °−= 90ϕ (mid-

compression stroke) and (b) °+= 90ϕ (mid power stroke), at engine speed of 1500 rpm 

 

5.2.  Minimum lubricant film thickness 

The key parameter predicted by the lubrication model is the cyclic variation in minimum film 

thickness. There is clearly a direct correlation between film thickness and friction. Therefore, 

it is particularly important to investigate parts of engine cycle where the film thickness is 

insufficient to guard against direct surface interactions.  Figure 9 shows the CFD predicted 
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minimum film thickness variation for the parabolic ring profile at the engine speed of 1500 

rpm in comparison with that predicted by the Elrod’s model, both under assumed isothermal 

conditions. The results of these analyses are quite close. Both solutions exhibit the expected 

characteristic shape of the curve with instances of thin films occurring around the dead centre 

reversals, where the lubricant entrainment velocity is negligible. Sufficient film thickness 

exists at the mid-stroke positions, where there is adequate entrainment velocity. The thickness 

of lubricant film is generally thinner during the power stroke owing to the higher gas loading 

of the ring. The figure also includes the CFD predicted minimum film thickness variations for 

thermal condition at the same engine speed. With thermal effects taken into account, the film 

thickness is considerably reduced and the ring-bore conjunction resides in mixed or boundary 

regimes of lubrication for a significant proportion of the engine cycle. This is a more realistic 

result with regard to observed and measured friction, for instance by Furuhama and Sasaki 

[38] and Gore et al [39]. Therefore, the significant differences between isothermal and 

thermal analyses shown by Gosh and Gupta [40] is justified, but not often noted in much of 

the reported studies. 

 

 
Figure 9: Minimum film thickness at engine speeds of 1500 rpm 

 

5.3.  Prediction of Friction 
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Piston-cylinder friction is a dominant source of parasitic mechanical losses in IC engines, 

accounting for nearly 9% of the input fuel energy expended [41]. Therefore, one of the 

overriding industrial objectives is to predict frictional losses from all the conjunctions of the 

piston-cylinder system. Figure 10 shows the CFD predicted friction compared with the 

experimental measurements by Furuhama and Sasaki [38] from a 2 cylinder rig made from an 

8-cylinder Chevrolet engine running at the engine speed of 1200 rpm. The other predictions 

in the figure are those by Mishra et al [12]. The CFD predictions conform well to the 

experimental results and are an improvement upon those of Mishra et al [12] which are 

isothermal and use Reynolds equation with Swift-Stieber exit boundary condition for the 

hydrodynamic contribution. The agreement is particularly striking for the power stroke and 

for the later stages of the compression stroke. There are some differences at mid-span in the 

power stroke. There seems to be more boundary interactions in the experimental results. This 

may well be because of bore out-of-roundness, thus some reduced clearance, which would be 

expected of all cylinder bores in practice. However, such data is not provided in [38]. The 

current analysis assumes a right circular cylindrical bore with circumferentially conforming 

ring-bore contact.    

 

 

Figure 10: Comparison of current work with experimental measurements for friction force 
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Comparison of friction forces for isothermal and thermal cases is demonstrated in Figure 11. 

Note that the isothermal analysis would be representative of cold steady state condition, for 

example, similar to those at low engine speed emission tests defined by the NEDC (New 

European Drive Cycle) [42], where the lubricant viscosity used in the analysis corresponds to 

the temperature of 40○C. Various regions of predicted engine cycle frictional characteristics 

are marked on the figure. Under isothermal (cold engine condition) viscous friction is 

generally higher because of a higher lubricant viscosity. Furthermore, the dominant source of 

viscous shear is Couette flow, which follows the piston sliding speed (second term in 

equation (29)). The exception is the region in transition from compression to the power stroke 

and extending past the detonation point. Under cold engine condition, it can be seen that the 

pure proportionality v Uτ ∝ is lost in this region, because there is significant pressure loading 

of the ring conjunction (combustion curves in Figure 5). In this region lubricant action is 

dominated by Poiseuille shear (the first term in equation (29)).  

The important point to note is that viscous friction, in general, is lower in the thermal case 

due to reduced lubricant viscosity. However, at the dead centre reversals, because of low 

entraining velocity the film thickness is significantly reduced (Figure 9), which leads to 

boundary interactions in the case of thermal case. This can be representative of hot steady 

state portion of the NEDC emission cycle [42]. The sharp rise rate in friction characteristics 

at dead centre reversals, due to mixed or boundary regime of lubrication, are also marked on 

Figure 11. In particular, the results show that friction at TDC reversal in transition from 

compression to the power stroke corresponds to a significant proportional of all cyclic 

frictional losses. 
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Figure 11: Predicted friction under isothermal and thermal conditions with CFD and Elrod-

type analyses 

 

5.4. Fluid properties and flow parameters changes along depth of film 

Predictive methods based on Reynolds equation with appropriate boundary conditions, for 

example that of Elrod [16] or Sawicki and Yu [36] determine lubricant film rupture and 

reformation boundaries (Figure 1). The cavitation region is regarded to be contained within 

the contact zone, where 1ξ < . However, as Reynolds equation assumes no pressure gradient 

through the thickness of the lubricant film due to its thinness (i.e. dp/dz=0), there is no 

prediction of disposition of the fluid phases. The use of Navier-Stokes equations with 

Rayleigh-Plesset equation and analytical control-volume thermal model, described here, 

enables the presence of fluid phases to be surmised according to void fraction as shown in 

Figure 12, in this case at the engine speed of 6000 rpm and at crank angle of 90  . The choice 

of these conditions is because at higher piston sliding velocity and relatively lighter contact 

load a larger variation in fluid volume fraction results in the cavitation region as shown in 

Figure 12. With the Reynolds-based approaches, there is no significant contribution to 
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friction nor to the contact load carrying capacity as the cavitation region is assumed to remain 

under atmospheric conditions. In the Navier-Stokes equations, there exists some contribution 

due to the presence of a volume of liquid lubricant. 

 

 

 
Figure 12: Changes of vapour volume fraction into the depth of the lubricant film at the crank 

angle position 90  at the engine speed 6000 rpm (cavitation zone, mmx 2.0= ) 

 

Unlike other models, in the current CFD approach all operating and lubricant rheological 

parameters alter with the depth of the lubricant film. The changes of lubricant properties and 

flow parameters in the z direction (film depth) for crank angle 90  at engine speed 6000 rpm, 

in high pressure zone (region of full film, mmx 1.0−= ) are plotted in Figures 13 and 14. The 

parametric variations show that the flow of lubricant through the contact may be viewed as 

layered streamlines at different rheological states. This means that in practice there would be 

internal friction and load carrying capacity contained within the streamlined flow, which 

would be more realistic than the idealised conditions belying Reynolds equation. 
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Figure 13: The changes in lubricant viscosity (a) and density (b) into the depth of the 

lubricant film at the crank angle of 90  and engine speed of 6000 rpm (full film region, 

mmx 1.0−= ) 
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Figure 14: Changes in lubricant pressure (a) and temperature (b) in into the depth of the 

lubricant film at the crank angle of 90 and engine speed of 6000 rpm (full film region, 

mmx 1.0−= ) 

 

6. Conclusions 

A new thermo-mixed hydrodynamic analysis method to study transient conditions in piston 

compression ring-cylinder liner conjunction is presented. The method makes use of Navier-

Stokes equations, combined with Rayleigh-Plesset equation and analytical control-volume 

thermal model. It also incorporates the Greenwood and Tripp method to take into account the 
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effect of asperity interactions in the region of thin films. This approach has not hitherto been 

reported in literature and highlights some important findings, when compared with the 

traditional approaches, such as Elrod’s modification to Reynolds equation, based on the JFO 

boundary conditions.  

Firstly, the lubricant flow may be envisaged as streamlined flow with variable layered 

potential energy contributing to load carrying capacity and internal friction. The layered 

characteristic flow leads to regions with varied volume fraction of vapour in the cavitation 

region of the contact. The exact disposition of vapour cavities in the form of bubbles and 

their flow dynamics would constitute the use of Lagrange-Euler method for discrete phases in 

the future extension of the current research.  

Secondly, the results show that except at dead centre piston reversals, the underlying 

mechanism for friction is through viscous shear of the lubricant. This implies that reduced 

viscosity of the lubricant would be beneficial in reducing friction, if an alternative palliative 

measure can be identified to reduce the effect of boundary friction at piston TDC reversal 

particularly in transition from compression to power stroke. However, reducing lubricant 

viscosity cannot be accommodated because the same engine oil flows through the higher load 

intensity contacts such as the cam-follower pair, where high loads necessitate use of 

lubricants which have sufficient load carrying capacity; i.e. high viscosity. Palliative action at 

the TDC may be achieved through fabrication of surface textured reservoirs as shown by 

Rahnejat et al [43] and Ryk and Etsion [44]. However, this action may lead to oil loss and 

lubricant degradation in fully flooded parts of the engine cycle. The current analysis indicates 

that in the lightly loaded parts of the engine cycle at high sliding speeds regions of cavitation 

may occupy these intended textured reservoirs and reduce the load carrying capacity of the 

contact. Further investigation of these effective micro-bearing would be required with the 

approach expounded in the current analysis. 
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E ′   equivalent (reduced) modulus of elasticity 

bf   boundary friction 

tf   total friction 

vf   viscous friction 

TF   ring tension force 

GF   combustion gas force 

http://pid.sagepub.com/content/220/9/1309.short
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2/52 , FF  statistical functions 

g   ring end gap 

sg   switch function 

H   enthalpy 

h   elastic film shape 

mh   minimum film thickness 

sh   ring axial profile 

th   heat transfer coefficient of boundary layer 

I   ring cross-sectional second area moment of inertia 

k   lubricant thermal conductivity 

1sk   thermal conductivity of the bore/liner 

2sk   thermal conductivity of the ring 

l   connecting rod length 

L   ring peripheral length 

atmp   atmospheric pressure 

cp   cavitation/lubricant vaporisation pressure 

hp   hydrodynamic pressure 

gbp   gas pressure acting behind the ring 

1Q   conductive heat flow rate through the liner  

2Q   conductive heat flow rate through the ring 

cvQ   convective heat flow rate 

r   crank-pin radius 

0r   nominal bore radius 
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lR   conductive thermal resistance for the lubricant layer 

vR   convective thermal resistance of the boundary layer (between film and 
surface) 

Re   Reynolds number 

t   time 

U   ring sliding velocity 

21,UU   surface velocities of contacting bodies 

V


  velocity vector 

W   contact load 

aW   load share of asperities 

hW   load carried by the lubricant film 

cx   oil film rupture point 

Z   pressure-viscosity index 

Greek symbols 

0α   pressure/temperature–viscosity coefficient 

β   lubricant bulk modulus 

ϕ   crank angle 

ζ   number of asperity peaks per unit contact area 

η   lubricant dynamic viscosity 

0η   lubricant dynamic viscosity at atmospheric pressure 

κ   average asperity tip radius 

λ   Stribeck’s oil film parameter 

µ   pressure coefficient for boundary shear strength of asperities 

1ν   Poisson’s ratio of the ring material 
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2ν   Poisson’s ratio of the liner material 

ρ   lubricant density 

0ρ   lubricant density at atmospheric pressure 

rσ   liner surface roughness 

lσ   ring surface roughness 

τ   shear stress 

0τ   Eyring shear stress 

Γ   diffusion coefficient  

θ   temperature 

eθ   average (effective) lubricant temperature 


	[27] De la Cruz, M., Chong, W.W.F., Teodorescu, M., Theodossiades, S., Rahnejat, H.: Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions. Trib. Int. 49, 17-29 (2012)

