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Abstract 
In tribology, the Rayleigh step is known as a bearing with the highest load capacity 
amongst all other possible bearing geometries. In classical resources on tribology, it is 
also shown that there is an optimum geometry for the Rayleigh step providing the highest 
load capacity. However, the analyses are confined to a special case where the effect of 
hydrostatic pressure is neglected. Furthermore, the possible optimum parameters in terms 
of the friction force and/or friction coefficient as well as the lubricant flow rate have not 
been discussed. In this study, the Rayleigh step is comprehensively analysed including 
the effect of variations of pressure at the boundaries on the optimum parameters. In 
addition, the bearing is also optimised considering lubricant flow rate, friction force and 
friction coefficient. It is shown that the optimum bearing parameters are strictly 
dependent on the variations of the pressure at the boundaries. It is also verified that the 
optimum point(s) in terms of load capacity are not necessarily equal to the optimum 
point(s) considering friction coefficient and/or lubricant flow rate even though if there is 
no pressure difference between bearing endings. 
 
Keywords: Rayleigh step; optimisation; load capacity; friction coefficient; lubricant flow 
rate 
 
1. Introduction 

In 1918, Lord Rayleigh discovered a method of introducing a fixed variation in 
the lubricant film thickness without the use of tilting [1]. In fact, he used the calculus of 
variations to see which film shape (for the infinite bearing) had the largest load carrying 
capacity. He discovered that the best form was two parallel zones [2]. In this bearing, 
there are two surfaces, one parallel to the other (bottom) surface, which divides the 
lubricant film into two zones. His result is true also for the viscosity of the more general 
case when the viscosity of lubricant is considered as a function of pressure [3]. Since 
then, there have been some studies on the characteristics of this bearing. Archibald [4] 
considered a stepped slider with finite width to calculate the side-leakage effect on the 
bearing tribological properties. He found that when side leakage is considered, the 
optimal step shape changed considerably from that obtained by Rayleigh, and the load 
capacity was lower. In his later work, Archibald [5] extended the analysing of Rayleigh 
step bearing where it was used in the journal bearings. He resulted in an optimal film 
thickness ratio of 1.68. Hamrock and Andersson [6] studied the pressure distribution, load 
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capacity, load angle and friction force theoretically, for a single-step concentric Rayleigh 
step journal bearing (see also [7]) and for an eccentric Rayleigh step journal bearing with 
varying numbers of steps and infinite length Rayleigh step journal bearing (see also [8]). 
In the both of cases, they have reported an optimal film thickness ratio of 1.7. In addition, 
their results indicated that a single step placed around the journal was optimal. The 
previous analytical results encouraged Schuller [9] to investigate the stability of the 
Rayleigh step hydrodynamic journal bearings in four different configurations with low 
viscosity lubricants at zero loads, experimentally. Auloge et al [10], and Jianming and 
Gaobing [11] have presented the optimum design of one-dimensional Rayleigh step 
bearing with non-Newtonian lubricants. Tello [12] has theoretically studied the regularity 
of the solution to the Reynolds equation in Rayleigh step type bearings for both 
compressible and incompressible fluids by employing a rigorous mathematical approach. 
Zhu [13] has investigated both numerically and experimentally the response of a rotor 
supported on Rayleigh step gas bearing using Galerkin finite element method. 
Thermohydrodynamic lubrication (THL) analysis method has also been applied to the 
study of (Rayleigh) step bearing by Hideki [14]. Using singular perturbation method, 
Farmer and Shepherd [15] have analysed the isothermal operation of the Rayleigh step 
bearing, considering rarefied gas lubrication and thus slip flow condition. The influence 
of step geometry and degree of slip on the pressure field and bearing performance has 
been discussed in details in [15]. In a most recent work, Naduvinamani and Siddangouda 
[16] have also studied the effect of surface roughness on the hydrodynamic lubrication of 
porous step-slider bearings with couple stress fluids theoretically. 

Rayleigh step bearings have been of interest in industry from shaft-bearing 
systems such as (high-speed) turbomachinery to microelectromechanical systems 
(MEMS) as well as the computer industry in devices such as magnetic head recording or 
hard/floppy disc drives [12-14]. Their higher load capacity and cheap/easy manufacturing 
has made them more favourable to be used especially in situations wherever the air or 
gases are used as a lubricant in which because of their lower viscosity application of a 
hybrid hydrostatic/hydrodynamic mode is inevitable. Because of these advantages, the 
Rayleigh step profile is still used in thrust and pad bearings. In addition, in journal 
bearings a series of Rayleigh steps are used to form a grooved bearing with higher 
performance [1]. 

In classical literature on tribology, using a relatively simple calculation, it is 
usually shown that based on the load capacity it is possible to introduce an optimum 
geometry for the Rayleigh step bearing (e.g. [1-3, 17]). For example, Pinkus and 
Strenlicht [3] have shown that the optimum height and length ratio for the Rayleigh step – 
when the pressure difference between two ends of bearing is zero – are 1.866 and 2.549 
respectively and the same optimum point is suggested in other resources as well. 

In this study, the infinite width Rayleigh step slider bearing is analysed 
analytically based on the Reynolds hydrodynamic lubrication equation considering the 
existence of hydrostatic pressure difference between the bearing ends; the situation likely 
happen in practice as well. For this purpose, the 1D/2D form of the Reynolds equation is 
solved analytically for the Rayleigh step bearing using direct integration method. Then, a 
suitable form of the analytical relations for the desired parameters such as load capacity, 
friction force, etc. have been developed and subjected to a rather extensive optimum 
seeking examinations. 
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2. Problem Formulization 

The 1D/2D form of steady Reynolds equation for an incompressible lubricant 
with constant viscosity can be expressed in the following form (see Figure 1) [3]: 
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Double integrating of this equation with respect to x, will result in the pressure 
distribution along the bearing surface as below: 
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in which a and c are the coordinates of the bearing leading and trailing ends (see Figure 
1) and c1 and c2 are integration constants, which can be found from boundary condition. 
The boundary conditions for pressure may be expressed as below: 
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Employing these boundary conditions, the integration constants would be determined as 
follows: 
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The surface profile for a given Rayleigh step (see Figure 1) can be defined as: 
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Using this surface profile, the pressure distribution for the first and second ‘zones’ or 
‘regions’ of the bearing (specified by I and II in Figure 1) can be expressed respectively 
in the following forms: 
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In addition, the integration constant c1 can be determined as follows: 
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Having the pressure distribution, the load capacity of the bearing4 is calculated using the 
pressure distribution as below: 

( ) ( )








+

+
+








+

+
== ∫ 3

2

2
2

3
1

2111
2

2

2
2

2
1

211
1

2
2

23)(
h
l

h
lllc

h
l

h
lllUdxxpW

c

a

µ                (8) 

In order to introduce the associated relation for friction force, the velocity profile 
inside the lubricant film is considered as below [3]: 
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The wall shear stress for the lower surface is defined as below: 
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Replacing the velocity profile from (9) and the pressure gradient – which is calculated 
from (6) – would result in the wall shear stress for the lower surface as below: 
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Using the wall shear stress from (11) and integrating over the entire bearing length, the 
friction force for the lower surface can be stated as below: 
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Now, the friction coefficient for the lower surface can be defined as follows: 

W
F

=η                                                               (13) 

in which F and W are replaced from (12) and (8) respectively. 
Finally, the volume flow rate of the lubricant can be calculated from the following 

relation [3]: 
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if the pressure gradient is calculated from the first pressure distribution relation given in 
equation (6) that is for the region I in Figure 1. Correspondingly, if the pressure gradient 
is calculated for the region II, then h1 must be replaced with h2 in equation (14). 

The ‘base length ratio, ε, and the ‘(step) height ratio’, ξ, are defined for the 
bearing as follows respectively: 

L
l1=ε ;    (0<ε<1)                                            (15) 

and 

1

2

h
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=ξ ;    (ξ>1)                                               (16) 

                                                 
4 Note that since the analyses are confined to 1D/2D form, the load capacity and friction force are per unit 
width. 
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Using these notions, and considering U1=-U (U>0), the equations (8), (12) and (14) for 
the load capacity, friction force and lubricant flow rate can be recast in the following 
form: 
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respectively, in which Λ, ΛW, ΛF and Λq are: 
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and can be considered as ‘modified bearing number’, dimensionless load capacity, 
dimensionless friction force and dimensionless volume flow rate of lubricant 
respectively. 

The friction coefficient on the lower surface also would be: 
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Based on equation (21), the modified friction coefficient can be defined as: 
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It is noted that for simplicity, the term ‘dimensionless’ would be dropped down 
before load capacity, friction force and volume flow rate of lubricant in the rest of this 
article. It is so for the term ‘modified’ before the bearing number and friction coefficient 
as well as the terms ‘step’ before the height ratio. 
 
3. Optimisation Results and Discussion 

In this section, the resulted relations above will be examined in order to find the 
possible optimum parameters or combinations of them, which will provide the maximum 
load capacity, or minimum friction force or friction coefficient as well as minimum 
lubricant flow rate in different conditions. 
 
3.1 The load capacity 

Based on the pressure difference between leading and trailing edges of the 
bearing, the load capacity can mathematically be positive or negative. However, the 
maximum positive load capacity would be of interest. Solving the equation ΛW=0 for 
modified bearing number and determining the limitations of variations of Λ based on ε 
and ξ shows that for Λ<-0.295, the load capacity is always negative. For Λ in the range 
between -0.295 and 0 (including Λ=0), the load capacity can be negative or positive 
dependent to the ε and ξ in which the maximum load capacity would be apparently 
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positive. Finally, for Λ>0 the load capacity is always positive. Therefore, the lower limit 
of the variations of Λ – whenever load capacity is involved – would be -0.295. 

From equation (17), it can be seen that the load capacity would increase linearly 
with Λ; making it impossible to determine a specific optimum modified bearing number 
that makes the load capacity maximum. However, the probable optimum ε and/or ξ, 
which make ΛW maximum, can be a function of modified bearing number.  

By differentiating modified load capacity from equation (17) with respect to 
height and base length ratios and examining the second derivatives, it results that the 
optimum height and/or base length ratios can be attained by solving the set of equations 
below, 
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in which 
( ) ( )εεε −++Λ= 14326 23

1A                                        (23-1) 
( ) ( )εεε −++Λ= 12166 23

2A                                        (23-2) 
Apparently, in the case of having more than one set of answers, which might 

happen for some Λ – more likely representing the local minimum point(s) – the results 
should be re-examined to determine the optimum set providing highest load capacity for 
the given Λ. As can be observed from equation (23), the optimum base length ratio is a 
function of height ratio solely and for any given ξ provides the correspondent base length 
ratio which supplies the maximum load capacity regardless of the value of Λ . Figure 2 
shows the variations of maximum ΛW based on ε with height ratio for different modified 
bearing numbers. As it can be seen from this figure for -0.295<Λ<1.095, it is possible to 
introduce a unique set of optimum length and height ratios which provides the highest 
load capacity for any given Λ in this range. For Λ≈1.095, the maximum ΛW based on ε, 
increases with ξ for ξ<6.129 and after this point it remains constant. For Λ>1.095, there is 
not any specific optimum height ratio and the maximum ΛW based on ε increases 
uniformly with the height ratio. In addition, it can be seen that for all possible range of 
variations of the height ratio the optimum base length ratio would only vary from 0.5 to 
0. 
 
3.2 The friction force 

Based on equation (12) and the dimensionless form of it in (18), one may seek for 
situation(s) in which ΛF=0. Solving of the equation ΛF=0 for modified bearing number 
and determining the limitations of variations of Λ based on ε and ξ shows that for 0<Λ<2, 
there is a pair of height and length ratios, making the net friction force on the lower 
surface zero. By solving ΛF=0 for the base length ratio, it is possible to introduce the base 
length ratio(s) that makes the net friction force to be zero for any given height ratio and Λ 
in a specified range as follow: 
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are the prerequisites to have 0<ε<1. Therefore, in these ranges there is a wide variety of 
options to have the minimum possible friction force. 

On the other hand, examining equation (18) for Λ<0 and Λ>2 shows that the net 
friction force is always positive and negative respectively for all values of base length 
and height ratios. To find the minimum absolute value of friction force in these ranges, 
calculating the first differentiation of ΛF in equation (18) with respect to ε and examining 
of the second correspondent derivative for resulted ε shows that in the range of Λ<0 it is 
possible to introduce a minimum friction force for any given height ratio considering 
some limitations: 
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The resulting friction force, which would be a function of height ratio for any given 
modified bearing number, will reduce by increasing the height ratio so that if ξ→∞,5 then 
(ΛF)min=-Λ/2. 

If the condition in (25-1) does not hold and Λ<-2, the minimum friction force 
would happen when ε→1 for any given ξ resulting in (ΛF)min=1-Λ/2. However, if -
2<Λ<0, the minimum friction force would happen when ε→0 and ξ=(2/|Λ|)½ resulting in 
(ΛF)min=(2Λ)½. For Λ>2, there is not any stationary point for friction force based on the 
base length ratio and the friction force reduces with increasing of the base length ratio 
resulting minimum friction force (ΛF)min=1-Λ/2 based on the base length ratio when ε→1. 

Applying the same procedure for the height ratio indicates that in the range of Λ<-
2, for any given base length ratio and Λ, the relation below 
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indicates the locus of global maximum for friction force. However, for the range of -
2<Λ<0 equation (27) reveals the locus of local maximum point for any given base length 
ratio. For Λ>2, equation (26) represents locus of local maximum for absolute value of 
friction force. In addition, the height ratios providing local minimum friction force for 
any given base length ratio and modified bearing numbers in the ranges of -2<Λ<0 and 
Λ>2 are as follow, 
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5 Here it should be noted that since the analyses in this study are based on the Reynolds lubrication 
equation, the following limitation on the height ratio should be implemented to make sure that the analyses 
are not violating the essential assumptions made to derive the Reynolds equation: 
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for (Λ≠-6ε, -2<Λ<0 or Λ>2) 
in which 

( ) ( )εεε −++Λ= 14326 23
1A                                    (27-1) 

( ) ( )εεε −++Λ= 12166 23
2A                                    (27-2) 

Generally, the global minimum for friction force based on the height ratio for any 
given base length ratio and Λ<0 happens if ξ→∞. In this case, the minimum friction force 
will be (ΛF)min=ε-Λ/2. On the other hand, for Λ>2, the global minimum for absolute value 
of friction force happens if ξ→1. In this case, the minimum friction force will be 
(ΛF)min=|1-Λ/2|. Moreover, in this range, if ξ→∞, the absolute value of the friction force 
would be the maximum for any given base length ratio and Λ. 

Equations (26) and (27) also represent the locus of local maximum and minimum 
points for friction force in the range of 0<Λ<2. In this case, if the resulted height ratios 
are less than the height ratio that provides zero friction force, then the resulted height 
ratio from equation (26) would represent the locus of local minimum point and the 
resulted height ratio from equation (27) would represent the locus of local maximum 
point. If the resulted height ratios are greater than the height ratio that provides zero 
friction force, then the trend is reversed. Figure 3 shows the variation of friction force 
with height ratio for some different Λ when ε=0.35. It should be noted that the results in 
Figure 3 are scaled between 0 and 1 for better representation. As it can be seen from this 
figure, for Λ≤0 and Λ≥2 the minimum friction force happens when ξ→∞ and ξ→1 
respectively. 

In general, the direction of friction force on the bearing surface(s) can be variable 
dependent to Λ, ε and ξ. In some cases, it is possible that the direction of friction force on 
the bearing surfaces (e.g. lower surface) changes before and after the step (regions I and 
II in Figure 1). This happens when the lubricant velocity originated from the pressure 
difference becomes greater than the velocity of moving bearing surface (naturally in the 
stepped region). Therefore, if the magnitude of these local friction forces in the opposite 
directions becomes equal, as an outcome the bearing surface would experience no net 
resultant friction force based on equation (12) or consequently equation (18). In fact, the 
given discussion on the optimisation of the friction force above is based on minimisation 
of net force exerted on the bearing surface(s) by means of shear. As Archibald [4] states, 
in the former case, the required force to move the surface is calculated and hence it might 
have been more suitable to use the term ‘exerted moving force on the surface” instead of 
friction force. This is because considering the entropy generation associated to the shear 
between lubricant and bearing surface, even in the cases in which the net friction force is 
zero, there is ‘entropy generation’ considering absolute value of local shear stresses in 
non-stepped and stepped regions of the bearing (specified by I and II in Figure 1). The 
mechanism is similar to that of a cable being pulled by two equal forces in the opposite 
directions. In this case, although the cable would not move towards either of sides, the 
entropy of the ‘system’ will increase. Therefore, minimising the friction force based on 
the ‘entropy generation’ concept needs to consider the sum of absolute values of local 
friction forces in regions I and II in Figure 1, i.e.: 

( ) ( )IIFIFF Λ+Λ=Λ′                                                (28) 
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in which the first term in the right hand side is the friction force associated to the region I 
and the second term in the right hand side is the friction force associated to the region II 
(stepped region). These parameters are given as below: 
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( ) ( ) ( ) ( )[ ]
( )[ ]112

12681
3

23

+−
−++Λ−−

=Λ
ξεξ

εξεξε
IIF                           (28-2) 

In this case, considering the absolute value of the terms constituting the friction 
force and the fact that the friction force is a dependent function of three independent 
variables, it needs to determine the sign of (ΛF)I and (ΛF)II for different ranges of 
variations of independent variables. Examination of equations (28-1) and (28-2) based on 
the variations of Λ shows that the behaviour of Λ′

F could be analysed in three different 
ranges for Λ: 

i) For Λ<0, in general, the minimum of Λ′
F takes place for base length ratios 

calculated from equation (25) for any given Λ and ξ and the global 
minimum for any given Λ happens when ξ→∞ which results in 
(Λ′F)min=|Λ/2|. 

ii) In the range of 0<Λ<2, for any given ξ, the minimum of Λ′
F occurs either 

when 

( ) ( )432
86

3

3

1 −+
−+Λ

==
′ ξξ

ξξεε
Fopt                                      (29-1) 

or  

( ) ( )1342
2
23

2

2 −−
−Λ

==
′ ξξ

ξεε
Fopt                                   (29-2) 

which dependent to the value of Λ one of them would be global and the 
other local minimum point for the given height ratio. However, 
considering the limits of variations of height and base length ratios, the 
global minimum for friction force happens when ε→0 and ξ=(2/Λ)½ or 
ξ→∞ and ε=ε2 (resulting in ε=Λ/2) both which offer (Λ′

F)min=0. 
iii) For Λ≥2, the minimum of Λ′

F happens either ε→1 for all ξ or ξ→1 for all 
ε both resulting in (Λ′F)min=|1-Λ/2|. In addition, ε=ε2 provides the local 
minimum Λ′

F for any given ξ. 
Figure 4 demonstrates variations of Λ′

F with height ratio for some different Λ 
when ε=0.35. Comparing Figures 3 and 4 indicates that for Λ≤0, the trend of the results 
is the same, whilst for Λ>0 the results change considerably. It should be noted that the 
results in Figure 4 are also scaled between 0 and 1 for better representation. 

 
3.3 The friction coefficient 

Based on what definition for friction force introduced in the previous section is 
intended, the modified friction coefficient can be calculated from equation (22). If the 
friction coefficient is calculated as an absolute value of dimensionless friction force given 
in equation (18), the minimum friction coefficient for 0<Λ<2 would happen when ΛF=0. 
In the ranges of -0.295<Λ<0 (considering the limitations to have possible positive load 
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capacity) and Λ>2, the minimum friction coefficient would happen if the set of equations 
below were solved for ε and ξ: 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )
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21
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1
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ξξξ
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εεεεεε
ε

ξ

η

η

 (30) 

in which 
( ) ( )εεε −++Λ= 14326 23

1A                                      (30-1) 
( ) ( )εεε −++Λ= 12166 23

2A                                      (30-2) 
and 

( ) ( )( ) 124121 222
1 −Λ−−−Λ++= ξξξξξξB                         (30-3) 

( ) ( ) ( ) 24144564212 22233
2 +Λ−−Λ+−−Λ+= ξξξξξξξB               (30-4) 

( )( ) ( ) ( )( )111242211 224222
3 ++−Λ+−+−Λ+++= ξξξξξξξξξξB       (30-5) 

The positive sign in (εopt)η is for the range of Λ>2 and the negative sign is for the range of 
-0.295<Λ<0. It should be noted that for 2<Λ<8 the set of equations in (30) provides a 
unique optimum point based on length and height ratios; offering the minimum friction 
coefficient for any Λ in this range. 

Figures 5 and 6 show the variations of minimum modified friction coefficient 
with base length ratio for some different modified bearing in the ranges of -0.295<Λ≤0 
and 2<Λ≤8 respectively. For the range of Λ>8, the minimum friction coefficient can be 
achieved when ε→0 and ξ→∞ which would be (ηM)min=1/2. 

Alternatively, if the (modified) friction coefficient is calculated based on friction 
force stated in equation (28), which will be demonstrated in the form of η′M, the optimum 
cases for different ranges of Λ can be summarised as below: 

i) For Λ<0, the minimum of η′M mainly happens at height and base length 
ratios resulted from solving the set of equations in (30). 

ii) In the range of 0<Λ<2, for any given ξ, the minimum of η′M takes place 
either when ε=ε1 or ε=ε2 (considering equations 29-1 and 29-2), which 
dependent to the value of Λ, one of these base length ratios would be the 
global and the other local minimum point for any given height ratio. 
However, considering the limits of variations of the height and base length 
ratios, the global minimum for friction coefficient happens when ε→0 and 
ξ=(2/Λ)½ or ξ→∞ and ε=ε2 (resulting in ε=Λ/2), both which offer 
(η′M)min=0. 

iii) For Λ=2, the minimum of friction coefficient occurs when ε→1 for all ξ or 
ξ→1 for all ε both resulting in (η′M)min=0. In addition, ε=ε2 provides the 
local minimum friction coefficient for any given ξ. 

iv) In the range of 2<Λ<4.8, the minimum of η′M happens when ε=ε2 and for 
the height ratio resulting from solving the equation below: 

( )
0

2

=
∂
′∂

=

Μ

εεξ
η                                             (31) 

v) For Λ>4.8, the minimum of η′M happens when ε=ε2 and ξ→∞, which 
results in (η′M)min=1/2. 
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3.4 The volume flow rate of lubricant 

Examining of the first derivative of the lubricant flow rate with respect to base 
length ratio, ε shows no specific critical point. Nevertheless, calculating of the first 
derivative of the lubricant flow rate with respect to height ratio, ξ results in a critical point 
as follow: 

( ) ( )( ) ( ) ( )( ) ( )



 Λ−+−+Λ−+−+=

−
εεεεεε

ε
ξ 6161261612

12
1 31

21
231

21 AAAAqext  (32) 

in which Λ<2 and, 
( ) ( )εεε −+−Λ−= 14326 23

1A                                     (32-1) 
( ) ( )εεε −+−Λ−= 12166 23

2A                                    (32-2) 
For the range of Λ>2, there is not any specific result as critical height ratio considering 
the range of variations of height ratio, in general. It is also noted that for the modified 
bearing number in the range of ]0,2], to have a real value for critical height ratio, it needs 
that the following condition in the equation (32) holds, 

( ) 016 2 >− Aε                                                     (33) 
Examining the second derivative of the flow rate with respect to height ratio 

shows that for the resulted extremum points, the second derivative is negative denoting 
that the obtained points are the locus of maximum volume flow rate since the flow rate 
has positive values for the these points. In fact, equation (32) is the location of points that 
should be avoided as they provide maximum lubricant flow rate. 

Variations of (ξext)q with base length ratio for some different modified bearing 
numbers (Λ<2) are shown in Figure 7. As can be seen through this figure, the critical 
height ratio increases as the base length ratio and modified bearing number both reduce. 
In addition, Figure 8 shows the variations of maximum volume flow rate of lubricant with 
base length ratio for some different modified bearing numbers (Λ<2). Variations of 
maximum flow rate with both base length ratio and modified bearing number is in line 
with the variations of the critical height ratio with those parameters. 
 
3.5 The special case of Δp=0 

When there is no pressure difference between two ends of the bearing, the load 
capacity of the bearing is entirely supported by the hydrodynamic pressure distribution 
inside the bearing and the hydrostatic pressure support no longer exists. This would result 
in Λ=0, reducing equations to a simpler form, which are usually considered in textbooks 
(e.g. see [3]) when the Rayleigh step bearing is introduced. Due to its central importance, 
the optimum parameters for Rayleigh step will be examined here based on different 
objective functions. As is already known through the literature (e.g. see the same 
reference above), the minimum load capacity is (ΛW)min≈0.2063 which happens when 
ξ≈1.866 and ε≈0.2818. 

The profile of optimum Rayleigh step bearing and corresponding pressure 
distribution that is calculated from equation (6) are shown in Figure 9. In this figure, the 
bearing height is nondimensionalised based on the minimum clearance, h1 and the x-
coordinate is nondimensionalised based on the total bearing length, L. The pressure is 
also in dimensionless form calculated as below 
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( )
UL

hPp
p

µ

2
10−

=∗                                                   (34) 

Considering the dimensionless friction force in equation (18), one may seen that 
for Λ=0 the height ratios given by equation (26) for any base length ratio would be the 
location of inflexion points. In addition, the minimum of friction force happens when 
ξ→∞ and ε→0, whilst for ξ→1 and/or ε→1 the maximum friction force (ΛF=1) happens. 

If the friction force is considered based on equation (28), which comprises the 
entropy concept, the behaviour of the friction force at the limits remains almost similar to 
the behaviour of previous form of friction force. In this case it is also possible to 
introduce a local maximum point which happens when ξ≈2.225 and ε≈0.1223. 
Consequently, at this point, the dimensionless friction force would be Λ′F=0.844. 

The friction coefficient has a global minimum point as it could be predicted from 
the behaviour of the load capacity and friction force functions. The minimum 
dimensionless modified friction coefficient is (ηM)min=4, which happens when ξ=2 and 
ε=1/5. At this point, the dimensionless load capacity and friction force are ΛW=1/5 and 
ΛF=4/5 respectively. Considering friction coefficient based on the entropy generation 
minimising concept, it can be shown that the same point will provide the minimum 
friction coefficient. 

Since the lubricant flow rate has no extremum point(s) based on base length ratio, 
according to equation (32) it is possible to introduce the critical height ratio 
corresponding to any given base length ratio. It also might be of interest to examine the 
ratio of dimensionless load capacity to lubricant flow rate (ΛW/Λq) in order to find any 
possible optimum situation(s) for this case. Examining the resulted equation following 
the same procedure employed in this study so far, shows that such a point exists at 
ξ≈1.78078 and ε≈0.3596 in which the ratio of dimensionless load capacity to 
dimensionless lubricant flow rate is the maximum value. At this point, the corresponding 
values of dimensionless load capacity, lubricant flow rate and ΛW/Λq are 0.2019, 0.5936 
and 0.3402 respectively. 
 
4. Conclusions 

In the present part of study, the Rayleigh step bearing was examined analytically 
and rather extensively by considering the variations of hydrostatic pressure at the bearing 
ends in order to find the circumstances in which the optimum Rayleigh step can be 
introduced concerning load capacity and friction force, friction coefficient and lubricant 
flow rate. The corresponding relations for load capacity, friction force and lubricant flow 
rate of an infinite width Rayleigh step bearing are introduced by providing an analytical 
solution to 1D/2D form of the Reynolds lubrication equation. Then, by introducing 
dimensionless geometrical parameters, a series of dimensionless analytical relations for 
the bearing performance parameters are introduced. The resulted relations made it 
possible to search for the potential optimum parameters for Rayleigh step considering the 
variations in pressure difference between two ends of the bearing. 

It was shown that the optimum step geometry in terms of base length ratio and 
height ratio is dependent to the variations of pressure at the bearing boundaries. In some 
ranges of variations of the bearing number, it might not be possible to introduce a global 
optimum point. It was observed that the optimum geometry offering minimum friction 
force in most of the cases happens at the boundaries of the variable parameters. It was 
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also discussed that the optimisation of friction force can be considered from two points of 
view: 1) reducing the net resistant force exerted on the bearing surface(s) or 2) 
minimising the friction force in terms of minimising the entropy generation. 
Consequently, analysis of friction coefficient can also be divided into two rather different 
categories based on what friction force is of interest. It was discussed that in these two 
cases the possible optimums can differ. 

Finally, it was also pointed out that the location of optimum points based on 
friction coefficient can vary from those of load capacity, in general. Hence, the optimum 
height and base length ratio for minimising the friction coefficient were introduced for 
the case in which there is no pressure difference between bearing ending boundaries. The 
optimum parameters based on maximisation of the ratio of load capacity to lubricant flow 
rate was also introduced in order to achieve an optimum condition in which the load 
capacity is the maximum whilst the lubricant consumption is considered. 
 
Nomenclature 
A1,A2  intermediate variables 
a  coordinate of bearing leading edge 
B1,B2,B3 intermediate variables 
b  step coordinate 
c  coordinate of bearing trailing edge 
c1,c2  integration constants 
F  friction force 
h  surface profile 
h1  height of non-stepped part 
h2  height of step 
l1  length of non-stepped part 
l2  length of step 
p  pressure 
p*  dimensionless pressure 
P0  ambient pressure 
Pa  pressure at the leading edge 
Pb  pressure at the trailing edge 
q  volume flow rate of lubricant 
u  velocity profile 
U  velocity 
U1  bearing (lower surface) velocity 
W  bearing load capacity 
x  x-coordinates 
y  y-coordinates 
 

Greek symbols 
Δp  pressure difference 
ε  base length ratio 
η  friction coefficient 
ηM  modified friction coefficient 
η′M  modified friction coefficient considering entropy 
Λ  modified bearing number 
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ΛF  dimensionless friction force (net resistance force) 
Λ′F  dimensionless friction force considering entropy 
Λq  dimensionless lubricant flow rate 
ΛW  dimensionless load capacity 
μ  dynamic viscosity 
ξ  step height ratio 
τ  shear stress 
 

Subscripts 
I  related to region I of the bearing (non-stepped part) 
II  related to region II of the bearing (stepped part) 
ext  extremum (critical) point or value 
F  based on friction force 
min  minimum 
max  maximum 
opt  optimum 
q  based on lubricant flow rate 
W  based on load capacity 
η  based on friction coefficient 
 

Abbreviations 
1D  one-dimensional 
2D  two-dimensional 
 

Mathematical symbols 
→  intends to (aims at) 
≈  approximately equal 
∞  infinity 
|  |  absolute value 
] , ]  half-closed range from right hand side 
[ , ]  closed range 
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Figure Captions 
Figure 1. The Rayleigh step bearing 
Figure 2. Variations of the maximum load capacity based on base length ratio versus step 
height ratios for different modified bearing numbers. The global maximum load 
capacities (considering both height and base length ratios) are shown for -0.295<Λ<1.095 
as well as the correspondent value of optimum base length ratios 
Figure 3. Variations of absolute value of scaled friction force with step height ratio for 
different modified bearing numbers when ε=0.35 
Figure 4. Variations of the scaled friction force (calculated based on minimisation of 
entropy generation concept) between 0 and 1 with step height ratio for different modified 
bearing numbers when ε=0.35 
Figure 5. Variations of the modified friction coefficient with base length ratios for 
different modified bearing numbers in the range of -0.295<Λ≤0. The locations of the 
global minimum points (considering correspondent height ratios) are also demonstrated 
Figure 6. Variations of the modified friction coefficient with base length ratio for 
different modified bearing numbers in the range of 2<Λ≤8. The locations of the global 
minimum points (considering correspondent height ratios) are also demonstrated 
Figure 7. Variations of the critical height ratio with base length ratios for different 
modified bearing numbers when Λ<2 
Figure 8. Variations of the dimensionless maximum lubricant flow rate with base length 
ratio for different modified bearing numbers when Λ<2 
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Figure 1. The Rayleigh step bearing 
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Figure 2. Variations of the maximum load capacity based on base length ratio versus step 
height ratios for different modified bearing numbers. The global maximum load 

capacities (considering both height and base length ratios) are shown for -0.295<Λ<1.095 
as well as the correspondent value of optimum base length ratios 
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Figure 3. Variations of absolute value of scaled friction force with step height ratio for 
different modified bearing numbers when ε=0.35 
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Figure 4. Variations of the scaled friction force (calculated based on minimisation of 
entropy generation concept) between 0 and 1 with step height ratio for different modified 

bearing numbers when ε=0.35 
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Figure 5. Variations of the modified friction coefficient with base length ratios for 
different modified bearing numbers in the range of -0.295<Λ≤0. The locations of the 

global minimum points (considering correspondent height ratios) are also demonstrated 
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Figure 6. Variations of the modified friction coefficient with base length ratio for 
different modified bearing numbers in the range of 2<Λ≤8. The locations of the global 

minimum points (considering correspondent height ratios) are also demonstrated 
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Figure 7. Variations of the critical height ratio with base length ratios for different 
modified bearing numbers when Λ<2 
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Figure 8. Variations of the dimensionless maximum lubricant flow rate with base length 
ratio for different modified bearing numbers when Λ<2 

 


