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Abstract 
 

An electrochromic (EC) material is able to change colour under the influence of an 

electric potential. The development of energy efficient “smart windows” for 

architectural applications is at present the subject of intense research for both 

economic and environmental reasons. Thus there is now a considerable research 

effort to develop smart windows with natural colour switching properties, i.e. shades of 

grey. In this regard, a promising metal oxide with a brown-black anodic colouring state 

is NiO or ‘hydrated nickel oxide’ (also called nickel ‘hydroxide’, Ni(OH)2). The present 

work outlines the preparation and optimisation of EC nickel oxide-based ceramic 

precursor films onto various conducting substrates towards smart window applications. 

 

The literature review chapter outlines the different methods used for generating 

ceramic materials, a review of electrochromism and history of nickel oxide-based EC 

materials are also provided. Thins films have been deposited by an electrochemical 

cathodic deposition and by aerosol assisted chemical vapour deposition (AACVD) 

technique.  

 

For hydrated NiO films prepared by electrochemical cathodic deposition, various 

deposition factors at small-scale area (30 x 7 mm) have been investigated in order to 

optimise the films’ properties towards EC applications. With deposition on fluorine-

doped tin oxide (SnO2:F, FTO) on glass, use of nickel nitrate (0.01 mol dm-3) solution 

at an applied current of -0.2 mA (-0.1 mA cm-2) for 800 s was optimal for preparing 

uniform deposits with a porous interconnecting flake-like structure, which is generally 

regarded as favourable for the intercalation/deintercalation of hydroxide ions during 

redox cycling. The as-deposited hydrated NiO films showed excellent transmittance 

modulation (Δ%T = 83.2 at 432 nm), with average colouration efficiency (CE) of 29.6 

cm2 C-1 and low response times. However, after 50 voltammetric cycles, the cycle life 

was found to fade by 17.2% from charge measurements, and 28.8 % from in-situ 

transmittance spectra measurements.  

 

In an attempt to prepare films with improved durability, AACVD has been used for the 

first time in the preparation of thin-film EC nickel(II) oxide (NiO). The as-deposited 



ix 
 

films were confirmed to be cubic NiO from analysis of powder X-ray diffraction data, 

with an optical band gap that decreased from 3.61 to 3.48 eV with an increase in film 

thickness (in the range 330–820 nm). The EC properties of the films were investigated 

as a function of film thickness, following 50, 100 and 500 conditioning oxidative 

voltammetric cycles in aqueous KOH (0.1 mol dm-3). Light modulation of the films 

increased with the number of conditioning cycles. EC response times were < 10 s and 

generally longer for the colouration than the bleaching process. The films showed 

excellent stability when tested for up to 10000 colour/bleach cycles.  

 

Using a calculation method based on the integration of experimental spectral power 

distributions derived from in-situ visible region spectra over the CIE 1931 colour-

matching functions, the colour stimuli of the NiO-based films, and the changes that 

take place on reversibly switching between the ‘bleached’ and coloured forms have 

been calculated. Films prepared by both deposition techniques gave positive a* and b* 

values to produce orange. However, in combination with low L* values, the films were 

perceived as brown-grey.  

 

Hydrated NiO prepared via electrochemical cathodic deposition suffers from two well-

known limitations; firstly, it shows catalytic properties towards the oxygen evolution 

reaction (OER), which is a process very close to the Ni(II)/Ni(III) redox process. 

Secondly, hydrated NiO shows poor cycling durability in alkaline solution. The co-

deposition of single or bimetallic additives is an effective way to overcome these 

problems. Electrochemical studies revealed that the combination of cobalt (10%) with 

lanthanum (5%) was found to be the optimal composition for preparing hydrated NiO 

films with improved film durability.  

 

Finally, the emphasis of this work was on scale-up of deposition. Therefore, optimised 

deposition conditions from small scale (3.0 x 0.7 cm) have been used to successfully 

deposit films on two different sized large-area (10 x 7.5 and 30 x 30 cm) conducting 

substrates. 

 

 

 

 



x 
 

List of symbols, abbreviations and acronyms 
 

%YL  percentage luminance 

A  ampere and the rate constant for nucleation 

at.%  atomic percentage 

c   speed of light 

E  potential 

EO  anodic peak potential 
ER  cathodic peal potential 
h  Planck constant 

hν   photon energy 

Ksp  solubility product constant 
N(t)   number density 

N0   the total number of sites where nuclei can form 

Q  charge density  

qf   Faradaic charge density 

Ra  surface roughness average 

T  temperature 

t  time 

Tb   transmittance of ‘bleached’ form 

tb  switching times for ‘bleaching’ 

Tc   transmittance of coloured form 
tc  switching times for colouration 

Ts  solar transmittance  

v   frequency  

V  voltage 

Wt%  weight percentage 

x  chromaticity coordinate 

y  chromaticity coordinate 

Δ%T   change in transmittance between the ‘bleached’ and coloured forms 

ΔA  change in absorbance 

η  colouration efficiency  

λ  wavelength (nanometres, nm) 



xi 
 

λd  dominant wavelength 

λmax wavelength of the maximum of the absorption band, (nanometres, nm) 

Ω / -1 ohms per square 

𝜏  response time 

 

AACVD aerosol assisted chemical vapour deposition 

Abs  absorbance 
AFM  atomic force microscopy 
Ag/Ag+ silver wire pseudo reference electrode 

BASi  Bio Analytical Systems Inc 

CE  colouration efficiency (centimetres square per coulomb, cm2 C-1)  
CE  counter electrode 

CIE  Commission Internationale de l’Eclairage 

CR  contrast ratio 

CVD  chemical vapour deposition 

CVs  cyclic voltammograms 

EC  electrochromic 

ECD   electrochromic device 

ED  electroless deposition  

EDS  energy dispersive X-ray spectroscopy elemental analysis 

EQCN  electrochemical quartz crystal nanobalance  

FEGSEM high resolution field emission gun scanning electron microscope 

FTO  Fluorine-doped tin oxide (SnO2:F) 

HER  hydrogen evolution reaction 

ICDD PDF International Centre for Diffraction Data Powder Diffraction File 

ITO  Tin-doped indium oxide (In2O3(Sn)) 

LbL  electrostatic layer-by-layer assembly  
NiO  hydrated nickel(II) oxide 

OER  oxygen evolution reaction 

PAH  poly(allylamine hydrochloride) 

PEDOT:PSS poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) 

RE  reference electrode 

SCE saturated calomel electrode. The potential is 242 mV vs. the standard 

hydrogen electrode. The electrolyte is potassium chloride (saturated) 



xii 
 

SEM  scanning electron microscope 

TA  thiazine compound 

TCO  transparent conducting oxide 

UV-vis ultraviolet-visible 

VDUs  visual-display units 

WE  working electrode 
XRD  x-ray diffraction 

 



1. Introduction 
 

1 
 

1. Introduction 
 

In his 1961 paper,1 Platt stated that “theoretical considerations suggest that the 

absorption and emission spectra of certain dyes may be shifted by hundreds of 

angstroms upon application of a strong electric field”. He suggested that this effect 

could “be called “electrochromism” in analogy to “thermochromism” and 

“photochromism” which describe changes of colour produced by heat and light”. 

Although this was the first use of the term “electrochromism”, the effect Platt 

described is quite different to the modern definition given by Monk, Mortimer and 

Rosseinsky,2 as a “a change, evocation, or bleaching, of colour as effected by an 

electron-transfer (redox) process or by sufficient electric potential”. In order for a 

material to have electrochromic (EC) properties, it requires the generation of different 

visible region electronic absorption bands on switching between redox states.3 

Colour change associated with EC materials is commonly between a transparent 

(‘bleached’) state and a coloured state, or between two coloured states. In cases 

where more than two redox states are electrochemically available the EC material 

may exhibit several colours and be termed polyelectrochromic.4 

 

The major driving force for innovation in EC materials falls within two broad, 

overlapping categories according to the mode of operation: electrochromic devices 

(ECDs) operating by transmission (smart windows) or by reflection (mirrors). 

Proposed applications of EC materials include optical information and storage, anti-

glare car rear-view mirrors, sunglasses and protective eyewear for the military. From 

these applications, probably the most significant success has been that of Gentex 

Corporation’s self-darkening rear-view mirrors now operating in several million cars.5 

More recently, they have been able to advance the technology towards windows for 

passenger aircraft (discussed in chapter 2, section 8.3). EC materials for smart 

windows and other applications are judged on specific key parameters, as potential 

materials for commercial applications. These include; materials with a high contrast 

ratio, colouration efficiency, (absorbance change/charge injected per unit area), cycle 

life, response time and write-erase efficiency (% of originally formed colouration that 

may be subsequently electro-bleached). 
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A simple two-electrode ECD is shown in figure 1.1. An ECD is essentially a 

rechargeable battery in which a suitable solid or liquid electrolyte (ion conductor) 

separates the EC material from a charge balancing counter electrode. The process 

of charging and discharging the electrochemical cell with an applied potential of a 

few volts results in the EC material changing colour and after the resulting pulse of 

current has decayed and the colour change has been effected, the new redox state 

persists, with little or no input of power, in the so-called ‘memory effect’. The EC 

electrode, in both the reflective and transmission modes consists of a glass or 

plastic slide coated with an electrically conducting film such as tin-doped indium 

oxide (ITO) on one side, onto which a primary EC material (a typical example being 

tungsten oxide (WO3)) is deposited. On the other side of the ion conductor, a film 

acting as a ion storage, or ideally a secondary EC material (a typical example being 

nickel oxide (NiO)) with complementary EC properties to those of the primary EC 

material is deposited onto a second electrically conducting film to complete the basic 

features of an operating ECD. For applications that are designed to operate in the 

reflective mode, the counter electrode can be of any material with a suitable 

reversible redox reaction. On the other hand, for variable light transmission devices 

(smart windows) the counter electrode substrate must also be transparent, i.e. mostly 

ITO, with the chemical species being either colourless in both its redox forms or EC 

in a complementary mode to the primary EC material. In any case, the most 

important component or the heart of the device is often the primary EC material and 

the aim of this work will be to prepare and optimise EC hydrated NiO as a potential 

primary EC material towards smart window applications.   
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Figure 1.1. Schematic diagram showing different layers of a solid-state ECD suitable for a 

transmissive light-modulation application. 

 

1.1. Smart windows  
 

A large portion of the world’s energy is used for heating, cooling and lighting of 

buildings. The US alone spends 25.3 billion dollars a year on air conditioning (U.S. 

energy information administration).6 A major reason for such high expenditure is that 

windows allow a lot of solar energy to enter the building as visible light and invisible 

infrared radiation. In order to combat this problem, air conditioning is used to make 

the indoor working environment more comfortable. In recent years, a new class of 

windows has received a lot of attention as a means to achieve energy efficiency in 

buildings. Dynamic tintable or so-called smart windows are able to change 

transmittance so light is only let in when someone is present in the room.  When the 

room is empty the coloured form of the device can preclude much solar radiation. 

Therefore, in relation to sustainability needs and minimising the negative 

environmental impact, smart window technology may lead to drastic reduction in 

energy consumption of highly glazed buildings by reducing cooling loads, heating 

loads and the demand for electric lighting,7 as well as improving indoor comfort due 

to less glare and thermal discomfort.8 

 

Glass 

ITO 
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The development of smart windows for architectural applications is at present the 

subject of intense research, as it’s become evident that the appeal of smart windows 

is both economic and environmental. Thus there is now a considerable research 

effort to develop smart windows with natural colour switching properties, i.e. shades 

of grey. In this regard, a promising metal oxide with a brown-black anodic colouring 

state is NiO or ‘hydrated nickel oxide’ (also called nickel ‘hydroxide’, Ni(OH)2). 

Ceramic precursor films based on NiO combine a reasonable cost with excellent EC 

properties. However, the choice of preparative routes and deposition parameters are 

key to obtaining films with desired morphologies and engineering properties. 

 

1.2. Thin film formation 
 

The main focus of this thesis is on the precipitation of NiO-based ceramic materials 

onto transparent conducting substrates for EC smart window applications. Two 

different deposition techniques will have been used to immobilise the films. Firstly, 

hydrated NiO thin films were deposited by electrochemical cathodic deposition, in 

which nickel nitrate solution is used to grow the films galvanostatically. Precipitation 

takes place because of the increase of interfacial pH, due to the electrochemical 

reduction of NO3
– anions to generate OH– (equation 1.1 and 1.2). Due to this 

chemical reaction at the electrode/electrolyte interface the formation of sufficient (or 

excess) OH– ions occur. As more OH– is electrogenerated, and the pH increases, the 

amount of hydrated NiO species present at the electrode will exceed its solubility 

limits and precipitation will occur. 

 

NO3
– + 7 H2O + 8e– → NH4

+ + 10 OH–  Eο = –0.12 V (SHE)           (1.1) 

2 OH– + Ni2+ → Ni(OH)2                (1.2) 

 

Secondly, porous NiO films have been prepared using an aerosol assisted chemical 

vapour deposition (AACVD) method. The AACVD method involves the atomisation of 

precursor solution into fine aerosol droplets. Subsequently, the droplets are directed 

towards a heated zone, where the solvent is rapidly evaporated, and the chemical 

precursors undergo decomposition and /or chemical reactions near or on a heated 

conducting substrate to form the desired film.9  
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1.3. Aims  
 

The first aim of this work was the immobilisation of EC NiO-based thin films onto 

transparent conducting substrates electrochemically and by AACVD methods. For 

the films prepared by an electrochemical cathodic deposition, the effect of deposition 

conditions such as deposition current, time of deposition, concentration of nickel 

nitrate and the use of different transparent conducting substrates was investigated in 

order to optimise the deposition of EC hydrated NiO. For the AACVD films, the effect 

of deposition time and continuous voltammetric cycling in aqueous KOH                

(0.1 mol dm-3) were investigated with the aim of enhancing the films’ EC properties. 

The second aim was to characterise the films’ EC performance parameters such as 

colouration efficiency, cycle life and response times. Furthermore, the in-situ visible 

region spectra were also used to generate chromaticity data from an earlier 

established Microsoft® Excel® spreadsheet10 for the accurate calculation of CIE 

(Commission Internationale de l’Eclairage)11 1931 xy chromaticity coordinates and 

luminance data.  

 

The third aim was to enhance the already promising EC properties of the hydrated 

NiO films by incorporating other metals into the active material. The effects of 

additives on the chromaticity data were also investigated.  

 

Finally, the emphasis of this work was on scale-up of deposition. Therefore, 

optimised deposition conditions from small scale (5 x 0.7 cm) were used to deposit 

films on two different large scale (10 x 7.5 and 30 x 30 cm) conducting substrates 

towards smart window applications. 

 

1.4. References 
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2. Literature review 
 

In this chapter a review of relevant literature is undertaken. Firstly, a review of the 

different ceramic processing and fabrication methods will be outlined. A brief history 

of electrochromism, electrode reaction and the generation of colour will then be 

given, followed by a more detailed account of the properties/parameters of 

electrochromic (EC) materials and their commercial application. Finally, literature on 

NiO-based films as an EC material will be surveyed.  

 

2.1. Ceramics  
 

Ceramics have been the subject of many studies covering a wide range of materials. 

In recent times, particular attempts have been made to divide ceramics into two 

categories: traditional ceramics and advanced ceramics. Within the last 50 years 

interest has been focused on advanced ceramics, which are often high purity oxides 

with tailored morphology and stoichiometry, that are employed in areas of 

engineering, electronics and medicine. This is evident by the increasing number of 

journals, publications and conferences aimed at this particular type of material. The 

increasing use of ceramics in these areas has resulted in many studies to improve 

the properties and reliability of such materials. Within these studies it has been 

identified that improvements can be achieved by paying particular attention to the 

fabrication process. A comprehensive review of the different ceramic processing and 

fabrication methods has been written by Rahaman.1 

 

2.2. Importance of ceramics 
 

Traditional ceramics have been developed and used since the time of the earliest 

civilisation. The earliest ceramics were pottery, and clay based refractories; including 

kiln linings. 
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Over the years, ceramics have been used for architectural applications such as 

ceramic bricks, cements and concrete. More recently, much of the focus has shifted 

towards a new class of ceramics termed advanced ceramics.2,3 Examples include 

coatings for corrosion protection,4 electronic devices such as semiconductors and 

resistors. Other applications include gas and humidity sensors5-8 bioceramics used 

for artificial hip joints, jaw bone reconstruction and dental implants. These are only a 

few of the many applications for ceramics and due to the increasing usage of such 

materials there are still enormous demands for improving their engineering 

properties. The desired properties required for a particular application can be 

achieved through controlling the microstructures of the ceramic body at the 

processing stage. 

 

2.3. Ceramic fabrication processes 
 

Figure 2.1 summaries the many different methods for generating ceramic materials. 

Each method will fabricate its desired ceramic product by controlling the degree of 

purity and homogeneity of the material. All fabrication methods use suitable starting 

materials for the production of the desired shape and microstructures such as films 

and fibres.  

 

The following review of the different fabrication processes to date has been 

separated into three categories according to the use of the starting material: 

gaseous, liquid or solid phases. These methods will be compared with alternative 

processes such as electroless deposition, hydrothermal methods and 

electrochemical deposition techniques. The emphasis will be on the advantages and 

disadvantages of each process, as well as showing how well suited each method is 

for producing thin ceramic precursor films for EC applications.
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Ceramic fabrication processes 

Fabrication from powders 

• Assembly of fine divided solids 
(powders) by applying heat. 

• Two processes: melt casting and 
sintering of powders. 

• Produces high purity materials with 
great uniformity. 

• Defects within samples may be 
formed in processing stage, which 
affects the engineering properties. 

Electrochemical techniques 
 
• Reactions which consume H+ ions 

H+ + e– → Hads or Habs 
• Electrolysis of water 

2H2O + 2e– → H2 + 2OH– 

• Nitrate reduction reaction 
NO3

– + 7H2O + 8e– → NH4
+ + 10 OH– 

• Synthesis takes place at the electrode-
electrolyte interface by applying a current. 

• Quick method with good control of film 
microstructure and materials immobilised 
directly onto substrate. 

Electroless deposition 

• Films produced without the use of 
counter electrodes or an external 
power source, however oxidising 
agent is required. 

• Time consuming process. 

Vapour deposition 

• Chemical vapour deposition (CVD). 
• Substrate exposed to volatile 

precursor(s), which react and/or 
decompose to form desired products. 

• Can coat large areas (mass production). 
• Very low deposition rates. 

Sol-gel process 

• Two processes: using a sol produces 
particulate gel, using a solution 
produces polymeric gel. 

• Can produce high purity materials. 
• Fairly expensive starting materials and 

time consuming process. 
 

 

Electrostatic layer-by-layer technique 

• Assembly through electrostatic 
interactions. 

• Growth of different charged species 
(cationic and anionic) leads to formation 
of multilayer structure. 

• Easy and inexpensive process, which 
allows the incorporation of various 
materials within the film. 

• Time consuming process for multilayer 
formation. 

Figure 2.1. Summary of the different fabrication processes for ceramic materials. 
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2.3.1. Gas-phase reactions 
 

The most well-known and most widely used gas-phase reaction method is chemical 

vapour deposition (CVD). It is an established process by which reactive molecules in 

the gas phase are transported to a surface at which they chemically react to form 

solid films.9,10 Materials deposited using this process include metals, ceramics, and 

semiconductors used for many applications such as coatings, films for electronic 

devices and optical fibres. The advantages of this technique include the ability to 

deposit adherent films onto large and complicated shapes/areas for mass production, 

with thickness from as little as 0.1 µm up to several centimetres can be achieved by 

prolonging the deposition process. The desired morphology of the deposit can be 

achieved by careful control of process variables. These variables include the flow 

rate of the reactant gases, the nature of the flow rate of any carrier gases, the 

pressure in the reaction vessel, and the temperature of the substrate.  

Disadvantages include very low deposition rates, development of microstructures 

with large columnar grains, which limits the formation of thin films and coatings, and 

the use of high temperatures.  

 

The EC properties of NiO thin films prepared by CVD have been investigated by 

Maruyama and Arai.11 In this study, transparent NiO films were deposited onto 

fluorine doped tin oxide (FTO) conductive substrate using nickel acetylacetonate as 

the precursor and air as the carrier gas. Films produced showed good adhesion to 

the substrate with large changes in optical transmittance. Colouration efficiency (CE) 

was also calculated to show the amount of electrochrome which may be coloured by 

one absorbance unit per unit charge and a value of 44 cm2/C was achieved.  

 

2.3.2. Liquid precursor methods 
 

Liquid precursor methods convert solutions of metal compounds into a solid body. An 

example of this is the sol-gel process, where a solution of metal compounds or a 

suspension of very fine particles in a liquid is converted into a highly viscous mass 

such as simple or complex oxides.12,13 There are two different sol-gel processes 

(figure 2.2), depending on if a sol or a solution is used. Using a sol produces a 
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network of gelled material consisting of colloidal particles. A solution produces a 

network of polymer chains of metal-organic compounds (such as metal alkoxides) by 

hydrolysis and condensation reactions. There are many advantages of using sol-gel 

processes, such as use of low temperatures, and production of materials with high 

purity and good chemical homogeneity. However, the disadvantages include fairly 

expensive starting materials, time consuming process and problems with drying the 

material. 

 

 

 
Figure 2.2. Basic flowcharts for sol-gel processing using (a) a suspension of fine particles and (b) a 

solution. Diagram redrawn from.1  

Sol

(suspension of fine particles)

Solution

(of metal alkoxides)

Hydrolysis Hydrolysis                                   
and condensation

Sol

(solution of polymers)

Gelation Gelation

“Particulate” gel
“Particulate” gel

Drying Drying 

Dried gel Dried gel

Sintering Sintering 

Dense product Dense product

a b
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Sharma et al.14 used sol-gel methods to investigate the EC properties of hydrated 

NiO. The outcome of this work was that the preparation of dip-coated films produced 

by the sol-gel method was strongly dependent on the reaction parameters, e.g. 

solvent, polymer and heat treatment. Film thickness, as well as the EC effect 

decreased with increasing temperature and heating time. This method for producing 

hydrated NiO was a time consuming process, as it took more than four hours to 

produce the gel, which then required a further step to immobilise the ceramic 

material onto conducting SnO2 coated glass for analysis. 

 

2.3.3. Fabrication from powders 
 

This process involves the assembly of finely divided solids (powders) by applying 

heat. There are two fabrication methods using powders: melt casting and sintering of 

compacted powders. 

 

Melt casting is the simplest of the two methods and involves melting a mixture of 

powders, which is followed by several methods, including casting, rolling, pressing, 

blowing, and spinning in order to achieve the desired shape. However, this method 

suffers from uncontrolled grain growth, which effects the properties of the ceramic 

(e.g. low strength). It is also very difficult to obtain a melt as ceramics often have high 

melting points or even decompose prior to melting. Therefore, for these reasons melt 

casting is limited to the fabrication of glasses. 

 

Sintering of compacted powders is a route which is more suited for the production of 

polycrystalline ceramics. This process involves the consolidation of a mass of fine 

particles (i.e. a powder) to form a porous, shaped article (also referred to as a green 

body or powder compact), which is then sintered (i.e. heated) to produce a dense 

product (figure 2.3).1  

 

This method can suffer from defects within the sample in the processing stage, which 

is further enhanced in the sintering stage. Consequently, affecting the microstructure 

(e.g. density, grain size and producing cracks), which affects the engineering 
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properties of the material. Using this method to produce EC films could possibly 

affect the uniformity and the thickness of the film. 

 

 
 
Figure 2.3. Basic flowcharts for the production of polycrystalline ceramics by sintering of consolidated 

powders. Diagram redrawn from.1  

 

2.3.4. Electroless deposition (ED) 
 

It is well known that electroless deposition (ED) of ceramic thin films evolved from 

electroless plating of thin metal films. A general review of ED as well as other 

techniques using low temperature aqueous solutions was written by Niesen and De 

Guire15. These authors outlined three characteristics which distinguish electroless 

plating:  

 

• A change in the oxidation state of the metal cation (dissolved in aqueous 

solution) to an insoluble state (which in electroless plating is the neutral 

metallic state); 

(e.g. with binder or additives)

Powder

Mixing

Consolidation

Debinding

Shaped powder form
(green body)

Sintering

Dense polycrystalline
product

(e.g. die pressing, slip casting, plastic 
forming or injection molding)

(Binder burnout) 
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• The participation of the deposition surface (the substrate and, later, the film) in 

the redox process, usually as a path for transfer of electrons from the site of 

an oxidation to the site of a reduction; 

• The need for catalysis to initiate and sustain the process. 

 

It was also noted that films are produced without the use of a counter electrode nor 

connections to an external electrical power source. However, in order for a 

electrochemical reaction to take place a suitable oxidising agent must be present.  

 

Kamath et al. used an ED method for hydrated NiO synthesis through the 

complexation-precipitation route16. These authors used a Ni(NO3)2 (0.1 mol dm-3)  

solution which was added to tri-sodium citrate and KOH (0.1 mol dm-3) was added 

drop wise to raise the pH to 11.6. This produced a precipitate over a period of one 

week. Cyclic voltammetry studies showed that the electroless hydrated NiO showed 

a higher coulombic efficiency (>90%), a more anodic reversible potential and a 

higher degree of reversibility as compared to conventionally prepared 

electrosynthesised hydrated NiO.  Disadvantage of using this method is the amount 

of time taken to produce the material. The experimental details that it took 18h before 

a voluminous floating precipitate was produced. This was further left for a week until 

the precipitate settled and used for analysis.  

 

2.3.5. Hydrothermal methods 
 

Hydrothermal methods are suited to the manufacture of ceramic powders and involve 

heating reactants such as metal salts, oxides and hydroxides in water at 

temperatures and pressures up to around 300 ºC and 100 MPa3. This can produce 

sub-micron ceramic particulates of controlled size and shape. 

 

Insoluble metal hydroxide ceramic precursor can be precipitated by controlled 

addition of hydroxyl species from aqueous metal salt solutions (equation 2.1). 

 

Mz+(aq) + zOH–(aq) ↔ M(OH)z(s)                (2.1) 
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On the other hand, at elevated temperatures hydrolysis leads to the deprotonation of 

bound water, which generates hydroxide ligands (equation 2.2). 

 

[M(H2O)x]z+ → [M(H2O)x-y(OH)y](z-y)+
 + yH+                        (2.2) 

 

For both methods, variation of temperature, pressure and solution concentration can 

control particle size and morphology of the ceramic precursor. Therefore, producing 

single and homogeneous mixed oxide powders from relatively cheap starting 

materials. A disadvantage of using this method for generating films for EC 

applications is that in order to electrochemically analyse the film it must be 

immobilised onto a suitable substrate. As the material produced is in powder form it 

will require a further step to achieve this. 

 

A hydrothermal method was used by Zhang et al. to synthesise hydrated NiO 

nanocrystalline thin films for the application as a catalyst precursor17. They produced 

hexagonal β-phase hydrated NiO sheets with a mean diameter of about 80 nm, and 

a thickness of 15 nm. For this study the hydrothermal temperature was an important 

influence on the growth and the morphology of the film. The optimum hydrothermal 

conditions for producing thin films were found to be 170 °C for two hours. In 

comparison to other methods, they found the hydrothermal method ideal for 

processing very fine nanocrystalline thin films with high purity, controlled 

stoichiometry, high quality, narrow particle size distribution, controlled morphology, 

and high crystallinity. However, the extra step needed to immobilise the film onto the 

substrate by heating in a autoclave between 100-300°C and 1.8-11 MPa pressure for 

several hours is a major disadvantage. 

 

2.3.6. Electrochemical routes 
 

Electrosynthetic techniques have been used for many decades for the synthesis of 

ceramic thin films and coatings, nanoparticulate materials, and metastable phases. A 

comprehensive review of the different electrosynthetic techniques has been written 

by Therese et al.18 
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Electrochemical synthesis takes place at the electrode-electrolyte interface by 

applying a electric current between two or more electrodes in an electrolyte solution. 

Experiments carried out using electrochemical routes are simple, quick and the 

instruments are inexpensive and readily available.  

 

The electrodeposition of metal hydroxide has been carried out for a number of years. 

For example in 1974 Pickett19 carried out work for the electro-precipitation of 

hydrated NiO on the surface of a nickel plate, a process now known as the Air Force. 

Later research by Pickett and Maloy20 further developed this process by co-

precipitating with cobalt. Their method involved applying a constant current density 

which was sufficient to decompose the supporting electrolyte to liberate hydroxide 

ions. The hydroxide ions reacted with Ni2+ to precipitate hydrated NiO within the 

pores of the nickel plate. Co-precipitation with cobalt increased the potential range 

thereby allowing charging to occur at less positive potentials and minimising oxygen 

evolution. 

 

There are various electrosynthetic techniques employed for the synthesis of ceramic 

materials. These include electromigration of reactant species and electrolysis of 

fused salts for producing polycrystalline powders and single crystals for the 

applications of battery electrodes. Electrogeneration of base by cathodic reduction 

and anodic oxidation are techniques used for producing coatings, films and powders 

for the synthesis of electrode materials for secondary cells, fabrication of hydroxide 

films and synthesis of compounds with a high oxidation state. Finally, there is pulse 

current synthesis used for the production of layer-by-layer films and coatings of 

composites and solid solutions. Some of these techniques are summarised below, in 

more detail. 

 

2.3.6.1. Electrogeneration of Base 
 

Electrogeneration of base is a technique widely used for ceramic material synthesis. 

This can be achieved by passing an electric current through a metal salt solution, 

which causes a pH increase at the electrode-electrolyte interface and depending on 

the metal deposition potential, may compete with the metal ion reduction reaction to 
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deposit the metal at the cathode or for more positive potential reactions deposit in the 

form of a hydroxide. Depending on the potential, choice of anion and the pH of the 

solution three different reactions may take place. 

 

1) Reactions which consume H+ ions 

 

H+ + e– → Hads or Habs                 (2.3) 
2H+ + 2e– → H2     Eο = 0.0 V (SHE)           (2.4) 
NO3

– + 2H+ + 2e– → NO2
– + H2O   Eο = 0.934 V (SHE)           (2.5) 

NO3
– + 10H+ + 8e– → NH4

+ + 3H2O               (2.6) 
 

2) Electrolysis of water 

 

2H2O + 2e– → H2 + 2OH–    Eο = –0.828 V (SHE)          (2.7) 
 
3) Anion (nitrate reduction reactions) 

 

NO3
– + H2O + 2e– → NO– + 2OH–  Eο = 0.01 V (SHE)           (2.8) 

   
Out of the three, electrolysis of water is the most widely used reaction for the 

electrogeneration of base. Mitchell et al.6 used electrolysis of aqueous non-

dischargeable metal salt solutions for the generation of aluminium hydroxide films at 

a hydrogen sorbing palladium electrode for the manufacture of humidity sensing 

materials. 

 

A nitrate reduction reaction to generate base was used by Monk et al.21-23 to deposit 

mixed metal oxides for EC applications. The oxides in these studies included CoO, 

FeO, MoO3, NiO and WO3. Mixed metal oxides included cobalt (doped with Cr, Fe, 

Mn, Ni, W or Zn oxides). Their studies showed that by co-depositing with other 

oxides they were able to tune the EC colour formed for a particular metal oxide, as 

well as improving the ionic conductivity by increasing the chemical diffusion 

coefficient. 
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2.3.6.2. Anodic oxidation 
 

For this method, a metal ion in a lower oxidation state is oxidised to a higher 

oxidation state anodically by choosing the pH of the electrolyte in such a way that the 

lower oxidation state is stable whereas the higher oxidation state readily under goes 

hydrolysis. This results in the formation of a metal oxide or hydroxide. This technique 

is suited to the synthesis of compounds with metal ions in unusual high oxidation 

states. Examples include stabilisation of Fe(IV), Co(IV), Ni(IV), or Cu(III). 

Applications of materials produced using this method include magnetic devices, 

electrode materials and ECDs. Monk et al.24 used anodic oxidation to deposit films of 

EC tungsten oxide containing additional metal oxides. They found that co-depositing 

tungsten oxide with other metal oxides showed different cyclic voltammetry, ac 

impedance behaviour and uv-vis spectra. 

 

2.3.6.3. Pulse current synthesis 
 

Simultaneous deposition of two metal ions (such as Ni2+ and Mn2+) can be achieved 

by the use of alternating currents. This is possible by the pulsed electrolysis of a 

mixed metal nitrate solution where the working electrode is alternately polarised 

anodically then cathodically for a length of time. This can result in the formation of a 

layer-by-layer composite of hydrated NiO and hydrated MnO or a single mixed single 

phase solid composition depending on the level of frequency applied. 

 

2.4. History of electrochromism 
 

A more comprehensive review of the history of electrochromism has been presented 

elsewhere.25-27 As mentioned previously, Platt first coined the term electrochromism 

in 1961. However, the process of redox-colouration chemistry dates back to as early 

as 1815 when Berzelius showed that pure WO3 (which is pale yellow) changed 

colour on reduction when warmed under a flow of dry hydrogen gas.28 A later paper 

by Wöhler29 extended this study to a chemical reduction reaction with sodium metal. 

In 1842 Sir John Frederick William Herschel was the first to introduce the use of 
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Prussian blue redox–colouration process for photochromic colour change involving 

electron transfer.30 Herschel’s method ‘cyanotype’ produced photographs and 

diagrams by generating Prussian blue KFeIII[FeII(CN)6](s) from moist paper pre-

impregnated with ferric ammonium citrate and potassium ferricyanide, forming yellow 

Prussian brown Fe3+[Fe(CN)6]3– or FeIII[FeIII(CN)6].  

 

Twentieth century developments lead to the first known suggestion of an ECD. A 

London patent of 192931 describes the electrogeneration of molecular iodine from 

iodide ions. They formed I2 then effected the chemical oxidation of a dye precursor to 

form a bright colour change. A year later, Kobosew and Nekrassow32 demonstrated 

the first colour change involving the electrochemical reduction of a solid, tungsten 

trioxide (equation 2.10). 

 

WO3 (s) + x(H+ + e–) → HxWO3 (s)      (2.10) 

 

A later paper by Brimm et al.33 extended the work of Kobosew and Nekrassow to 

effect reversible colour changes, for Nax WO3 immersed in aqueous acid. The first 

use of organic viologen for ECD dates back to the early 1970s when a Dutch division 

of Philips utilised an aqueous organic viologen, heptyl viologen as the bromide salt 

for commercial applications.34,35 At much the same time, numerous other authors 

worked on devices based on heptyl viologens. In 1969, like Philips, Imperial 

Chemical Industries first analysed the response of heptyl viologen in water but 

quickly changed to the larger viologen cyanophenyl paraquat, which showed a higher 

colouration efficiency (η).36 Barclay’s group at Independent Business Machines,37 

and Texas Instruments38 in Dallas were the other groups investigating devices based 

on heptyl viologen. However, none of these studies attracted further attention and 

due to this reason most workers now consider the work of Deb in 1969 as the first 

suggestion of an ECD. He formed EC colour by applying an electric field of 104 V 

cm–1 across a thin film of dry tungsten trioxide deposited on quartz under vacuum. 

The term ‘electrophotography’ was used to describe the effect where a film of WO3 

was exposed to open air rather than immersed in ion-containing electrolyte solutions, 

suggesting that the mobile counter cation might have come from simultaneous 

ionisation of interstitial and/ or adsorbed water.39  
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A superior EC effect was demonstrated in 1971 by Blanc and Staebler.40 They 

applied electrodes to the opposing faces of doped, crystalline SrTiO3 and observed 

an EC colour move into the crystal from the two electrodes. However, their work 

required the crystal to be heated to ca. 200 °C, which would not be viable for 

commercial device formation. A year later, Beegle developed a display of WO3 

having identical counter and working electrode, with an intervening opaque layer.41 

Despite the different number of studies into EC materials, most workers nowadays 

cite Deb’s later paper42 from 1973, as the true birth of EC technology. In recent 

published work, it is often said that this paper describes the first ‘true’ ECD, with a 

film of WO3 immersed in an ion-containing electrolyte. From here on a surge in 

published work based on WO3 indicated its promising EC properties towards device 

formation. In 1974, Green and Richman43 in London proposed a system based on 

WO3 in which the mobile ion was Ag+. A year later, Faughnan et al.44 of the RCA 

Laboratories in Princeton, New Jersey reported WO3 undergoing reversible EC 

colour change while immersed in aqueous sulphuric acid. Their work provided 

detailed analysis of the speed of colour change in terms of Butler-Volmer electrode 

dynamics, establishing a pioneering model of electro-bleaching45 and electro-

colouration.46  

 

In 1978, Mohapatra47 of the Bell Laboratories in New Jersey was the first to publish 

work based on the reversible electro-insertion of lithium ions (equation 2.11). 

 

WO3 (s) + x(Li+ (aq) + e–) → Lix WO3 (s).     (2.11) 

 

During this period, research into electrochromism of organic material also increased. 

In 1974, Parker and co-workers48 showed the preparation of methoxybiphenyl 

species, the electrogenerated radical cations of which are intensely coloured. In 1979 

and 1980, Kaufman and co-workers49,50 of IBM (in New York) published the first 

report of an EC polymer comprising an alkyl-chain backbone with pendant 

electroactive species. In 1979, Diaz and co-workers51 outlined the first account of an 

EC conducting polymer, which involved the synthesis of thin-film poly(pyrrole). 
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2.5. Electrode reaction investigated 
 

The present work describes the role of EC hydrated NiO as an ‘electroactive’ species 

which can undergo an electron release, i.e. ‘oxidation’, (equation 2.12), or electron 

uptake, i.e. ‘reduction’, (equation 2.13) in a redox reaction that takes place at an 

electrode. In most cases, an electrode will consist of a metal or especially in 

electrochromism, an adequately conductive semiconductor often deposited as a thin 

film on glass, with external connections, in contact with an electroactive material. 

 

Ni(OH)2 → NiOOH + H+ + e–               (2.12) 

NiOOH + H+ + e– → Ni(OH)2               (2.13) 

 

An electoactive material may be an atom or ion, a molecule or radical, sometimes 

multiply bonded in a solid film and for a successful electron transfer to take place it 

must be in contact with the electrode. It may be in solution – solvated and/or 

complexed – in which case it must approach sufficiently closely to the electrode 

substrate and undergo the adjustment that contribute to the (sometimes low) 

activation energy accompanying electron transfer. In other systems, the electroactive 

material may be a solid or dispersed within a sold matrix, in which case that 

proportion of the electrochrome physically in contact with the electrode substrate 

undergoes the redox reaction most rapidly, the remainder of the electroactive 

material less so.25 In the case of EC hydrated NiO, a solid film is deposited onto the 

surface of the electrode substrate and electron transfer takes place by increasing the 

anodic potential which reduces the energy barrier for oxidation of Ni(II) to Ni(III). 

Thus, weakening the OH bond and increasing the mobility of the proton. At anodic 

oxidation potentials charge transfer takes place and Ni(II) is oxidised to Ni(III), while 

a proton is released from the OH group. The diffusing proton reacts with OH– ions at 

the electrode/ electrolyte interface to form water. 

 

2.6. Generation of colour  
 

The particular part of a system that causes colour is termed a chromophore. Colour 

is observed when chromophores absorb photons from part of the spectrum and the 
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colour seen is complementary to that absorbed. For example, if a material absorbs 

red on illumination with white light then the colour reflected or observed is blue. EC 

materials switch from the bleached to the coloured state by simultaneous ion (usually 

H+ or Li+) and electron injection or ejection. As a result of this injection or ejection, 

colour centres are formed in the material. Light absorption enables electrons to be 

promoted between quantised (i.e. wave-mechanically allowed) energy levels, such 

as the ground and first excited states.25 The wavelength of light absorbed, λ, is 

related to the magnitude of the energy gap E between these levels according to the 

Planck relation (equation 2.14). 

 

E = hv = hc / λ                 (2.14) 

 

Where v is the frequency, h is the Planck constant and c the speed of light in vacuo.  

The magnitude of E thus relates to the colour since, when λ is the wavelength at the 

maximum (usually designated as λmax) of the absorption band observed in the 

spectrum of a chromophore, its position in the spectrum clearly governs the observed 

colour.25  

 

All materials will undergo change of spectra on redox change. This is due to 

electroactive species comprising different number of electrons before and after 

electron-transfer reaction, so different redox states necessarily exhibit different 

spectroscopic transitions and hence will require different energies E for electron 

promotion between the ground and excited state.25  

 

Most EC applications such as displays require materials to be reversible and show a 

markedly different colour change from one state to the other. This means that the 

absorption band of one redox state should be in the visible region while the other in 

the ultraviolet (UV). However, there are cases where EC materials show a colour 

change for two redox states in the UV or near infrared region and in these cases 

suitable spectrometry methods are used to identify the spectral change. For NiO-

based EC materials the main effect takes place in the UV and VIS spectra, where the 

colour changes observed are transparent for the reduced form (hydrated NiO) to a 

neutral brown-grey colour for the oxidised form (NiOOH).   
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2.7. Electrochromic types and parameters defining their operation 
 

In order for an EC material or ECD to be identified as a potential candidate for the 

commercial market, their operations are judged using specific properties or 

parameters. These formulated factors allow comparisons between different devices 

and materials. 

 

2.7.1. Electrochromic type 
 

As described by Chang et al. P

52
P, the type of electrochrome used in an ECD governs 

the kinetic behaviour demonstrated. There are three types of electrochrome styled as 

I, II and III. A type I electrochrome is soluble, and remains in solution all times during 

the redox process. An example of a type I electrochrome is methyl viologen (1,1׳-

dimethyl-4,4׳-bipyridilium - I)  in water (equation 2.15). 

 

MVP

2+
P R(aq)R + eP

–
P → MVP

+• 
PR(aq)R     R     R      (2.15) 

colourless      blue  

 

 
  2XP

–  

I 
 

The most common car mirrors manufactured by Gentex operate by type I 

electrochromism.P

53
P In the Gentex mirror, an ITO/glass and a reflective metallic 

electrodes are separated by a solution containing two electrochromes. 

 

Type II electrochromes are soluble in their colourless state but following electron 

transfer form a coloured solid on the surface of the electrode. A good example of a 

type II electrochrome is heptyl viologen (1,1׳-di-heptyl-4,4׳-bipyridilium - II), which is 

pale yellow in aqueous solution (HVP

2+ 
Pdication dibromide) but forms a layer of deeply 
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coloured radical cation salt on reduction. A two-step process is involved during 

reduction, first an electron transfer reaction (equation 2.16) and subsequent 

precipitation (equation 2.17). 

 

HV2+ + e– → HV+•                 (2.16) 

HV+• + X– → HV+• X–                    (2.17) 

 

 
2X– 

II 
 

Type III electrochromes are permanently insoluble thin films and are most commonly 

employed for display purposes. All inorganic electrochromes (including hydrated 

NiO) are examples of type III electrochromes. Electrically conducting polymers 

derived from thiophenes,54 anilines55 or pyrroles56 represent type III ECDs with 

organic electrochromes.  

 

2.7.2. Contrast ratio 
 

The contrast ratio CR is a commonly employed measure denoting the intensity of 

colour formed electrochemically (equation 2.18). 

 

𝐶𝑅 =  �𝑅𝑜
𝑅𝑥
�                 (2.18) 

 

Where Rx is the intensity of light reflected diffusely through the coloured state of a 

display, and Ro is the intensity reflected similarly but from a non-shiny white card.57 

CR is best quoted at a specific wavelength and is commonly expressed as a ratio 

such as 7:1. For devices and display applications a high CR value is desirable, a low 

CR value of less than 3 would be impossible to be observed by eye. For a NiO-based 

device a CR of 10:1 is quoted by Mathew et al.58 for the cell WO3|electrolyte|NiO. 
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2.7.3. Response time 𝝉 
 

Response time is the time required for an ECD to change from its bleached to the 

coloured state (or vice versa). Quoted values of response time are often unreliable 

due to the lack of consistency in the reporting of response-time data and in the use of 

different criteria in determining the value. In some cases, response time may 

represent the time required for some fraction of the colour (arbitrary or defined) to 

form, or in other examples it may relate to the time required for an amount of charge 

(again arbitrary or defined) to be consumed in forming a colour at the working 

electrode.25 

 

EC materials for smart window applications require a slow colour change (response), 

as rapid changes in the indoor environment may result in workers feeling ill due to 

the lack of time needed for the eye to accommodate the conditions.59 For smart 

windows the time for going between clear and dark states depends on the size of the 

window, and anything between ten seconds and a few minutes can be regarded as 

typical. For a WO3 and NiO-based ECD a response time for the colouration and 

bleached states is quoted as 180s and 60s respectively by Kullman et al.60  

 

On the other hand, applications such as display devices are required to show a more 

rapid response. An example of fast responsive polymers based on poly(3,4-

alkylenedioxythiophene) ‘PEDOT’ (IV) have been investigated by Reynolds and co-

workers.61 These authors showed that polymer films with thickness ca. 300 nm could 

be fully switched between the reduced and oxidised forms in 0.8-2.2 s. Furthermore, 

an even faster responsive ECD based on the viologen bis(2-phosphonoethyl)-4,4′-

bipyridilium (V) was described as ‘ultrafast’, due to its rapid response time of 250 

ms.35  

 

2.7.4. Write–erase efficiency 
 

The write-erase efficiency is the fraction (usually expressed as a percentage) of the 

originally formed colouration which may be subsequently electrobleached. For 

successful ECDs the efficiency must approach 100%, which is a major test of design 
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and construction. The write-erase efficiency of type I EC materials will be low, since 

type I electrochromes are very soluble in water in their dicationic and radical-cation 

states and time for diffusion to and from the electrode must be accounted for. Type II 

and III electrochromes do not have this problem, since between the write and erase 

part of the colouration process the coloured form of the electrochrome is not lost from 

the electrode by diffusion.25 The write-erase efficiency of type I aqueous MV 

electrochromes can be improved by a process called ‘derivatisation’, where the 

material is directly attached to the electrode and as a result retarding the rate at 

which the solution-phase radical-cation product of electron transfer diffuses away 

from the electrode and into the bulk solution.62 A second method used to improve 

this effect is by employing polymeric electrolytes to immobilise the electrochrome to 

the electrode.63 A third approach is to use a colourless methoxyfluorenes in 

acetonitrile64 solution which precipitates onto the electrode on electron transfer. 

 

2.7.5. Cycle life 
 

Cycle life is an important property for a commercially successful ECD as it is an 

experimental measure of the durability. The cycle life of an ECD represents the 

number of write-erase cycles that can be performed before any significant 

degradation.  

 

Maximising of the cycle life is an important objective and a successful device will 

typically stipulate a minimum of 100,000 cycles. Good quality stability data will 

involve cycles greater than 𝜏, known as ‘deep’ cycles. On the other hand, cycle life 

measurements less than 𝜏, known as ‘shallow’ cycles are less valued for devices. 

Degradation of EC NiO films upon redox cycling was investigated by Zhao et al.65 It 

was shown by cyclic voltammetry that both anodic and cathodic peak areas 

decreased as the cycles increased, indicating that the amount of charge injected and 

extracted during EC reaction was reduced. They concluded that after 4000 cycles the 

relative capacity of co-deposited NiO with Cu remained over 40%. In another study, 

Vidotti and Cόrdoba de Torresi66 examined the stability of Ni, Co, and Cd(OH)2 

nanoparticles immobilised by electrophoretic deposition. Their study showed that 
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after the electrode was submitted to repetitive EC cycling (colouration and bleaching) 

for over 1 hour of cycling less than 1% absorbance was lost. 

 

2.7.6. Power consumption 
 

ECDs are known to consume power during write or erase cycles and not between 

them. This retention of colour is known as the ‘memory effect’. For example the 

intense colour of a sample of viologen radical cation remains undimmed for many 

months in the absence of a chemical oxidising agent, such as molecular oxygen.35 

However, to date a perfect battery with infinite shelf life has not yet been invented 

and any ECD (all of which follow battery operation) will eventually fade unless the 

colour is renewed by further charging.25 The power consumed is a function of the 

amount of colour formed and removed at an electrode during the redox process, and 

usually expressed as charge in relation to another parameter (e.g. contrast ratio). 

Lee and Joo67 fabricated an EC material based on Ni-W oxide by a reactive 

sputtering method. They observed that charge transfer resistance, which has been 

known to be very high for NiO becomes significantly low with the addition of 

tungsten, hence, leading to decreased power consumption and a possible increase 

in operating lifetime, both which are important in practical applications.  

 

2.7.7. Colouration efficiency η 
 

Colouration efficiency is the amount of electrochrome which may be coloured by one 

absorbance unit per unit charge and is almost always expressed as the magnitude of 

the absorbance being determined at the wavelength maximum λmax. The colouration 

efficiency η is defined according to equation 2.19. 

 

Abs = η Q                                  (2.19) 

 

Where Abs is the absorbance formed by passing a charge density of Q. A graph of 

Abs against Q accurately gives η as the gradient. It is well known that for an ECD to 

be efficient it must show a maximised η. 

 



2. Literature review 
 

28 
 

Colouration efficiencies based on hydrous NiO have been quoted by Carpenter et 

al.68 They were able to deposit adherent, uniform thin films by a cathodically 

electrodeposited method with η = 50 cm2/C. A later paper by Vidotti et al.69  improved 

the η to 80.3 cm2/C at 457nm. Their method immobilised sonochemically synthesised 

Ni(OH)2 nanoparticles for application in EC electrodes. More recently, Dalavi and co-

workers used a chemical bath deposition technique to immobilise nanoporous NiO 

thin films with η = 95 cm2/C.70 

 

2.8. Applications of electrochromic materials 
 

As previously mentioned, EC materials fall within two broad, overlapping categories 

according to the mode of operation: ECDs operating by transmission (smart 

windows) or by reflection (mirrors). In recent years, there has been a huge surge in 

the number of studies towards EC materials. This is also evident from the high 

number of patents which have been filed to describe the various commercially viable 

applications.  In this section, the most common applications of ECDs will be outlined. 

 

2.8.1. Smart windows  
 

The term ‘smart window’ was first described in 1985 by Svensson and Granqvist as 

windows that electrochemically change in transmittance.71 Their work considered 

coatings of crystalline WO3 which is still the most studied and well-known EC 

material. The WO3 EC phenomenon can be represented by the simple reaction in 

equation 2.20. 

 

WO3 + xM+ + xe– ↔ MxWO3                     (2.20) 

(transparent)         (deep blue) 

 

Where M+ can be H+, Li+, Na+, or K+, 0 < x > 1. WO3 exhibits an intense blue colour 

change, however doping the oxide with molybdenum (Mo) provides a more neutral 

colour suited towards window application. An example of transmittance regulation in 

an ECD based on WO3 is shown in figure. 2.4.72 This study highlighted that WO3 
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films deposited using this method possessed excellent modulation to the visible light 

and the maximum average transmittance modulation of 70.06% was successfully 

reached. 

 

 
 

Figure 2.4. Spectral transmittance of three-layer WO3 film prepared by dip coating-pyrolysis. Figure 

taken from.72  

 

The application and construction of EC windows based on WO3 has often been 

reviewed.73,74 The developments of smart windows for architectural applications are 

at present the subject of intense research, as it has become evident that the appeal 

of smart windows is both economic and environmental. Therefore, over the last two 

decades there has been much activity to develop WO3 based ECDs with wide 

modulation range, high durability (high number of performed colouring/bleaching 

cycles) and relatively fast switching times. Some examples are highlighted in Table 

2.1. 
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Table 2.1. Data for WO3-based ECD found in literature showing materials, sample size, modulation 

range, the performed number of colouring/bleaching cycles and the switching time for colouration and 

bleaching tc/b. Figure redrawn from.75  

 

ECD  
Modulation 
range T (−) cycles Switching 

time tc/b (s) Reference 

WO3-based construction 

G|ITO|WO3|PVB:LiClO4|CeTiOx|ITO|G  
Tsol 0.73–
0.045 16×103 60 Schlotter et al.76 

  Tvis 0.81–0.07     WO3|NiO-based construction 

G|ITO|WO3|PMMA-PC-Li+|NiO|ITO|G   104 – Lechner and 
Thomas77 

G|ITO|WO3|ZrP·xH2O|ZrO2|NiO|ITO|G  Tvis 0.74–0.38 – 60 Azens et al.78 

  Tsol 0.53–0.25   Karlsson and Roos79 

G|SnO2|WO3|PVDF-Li+|NiO:Li|SnO2|G  Tvis 0.75–0.02 – – Michalak et al.80 

G|ITO|WO3|Ta2O5|NiO|ITO|G  Tvis 0.73–0.18 105 – Nagai et al.81 

  Tsol 0.55–0.11    G|SnO2|WO3|PEO/PEGMA:Li+|NiO:Li|SnO2|G  Tvis 0.70–0.27 – 120 Penissi et al.82 

G/P|ITO|WO3|ZrP|ZrO2|NiO|ITO|G/P  Tvis 0.75–0.14 103 180/60 Kullman et al.83 

P|ITO|WO3|PMMA-PPG-Li+|NiO|ITO|P  T550 0.70–0.35 5×103 200 Granqvist et al.84 

G|FTO|WO3|P-3|NiO|FTO|G  Tvis 0.58–0.06 103 2 Zelazowska85 

 WO3|IrO2-based construction 
G/P|ITO|WO3|Ta2O5|IrO2|ITO  T550 0.70–0.18 3.5×104 – O’Brien et al.86 

 WO3|Polymer-based construction 
G|ITO|WO3|PAMPS|PANI|ITO|G  Tsol 0.74–0.35 – 11/11 Jelle and Hagen87 

G|ITO|WO3|PAMPS|PB|PANI|ITO|G  Tsol 0.73–0.23 4×103 34/23 Jelle and Hagen87 

G|ITO|WO3|PAMPS|PB|PANI|ITO|G (another 
version)  Tsol 0.64–0.08 – 300/100 Jelle and Hagen88 

G|SnO2|WO3|PVSA:PVP:H+|PB|SnO2|G  T550 0.72–0.06 2×104 30 Ho89 

G|ITO|WO3|PAMPS:L|PANI-CSA|AR|ZnSe|AR  
R1200 0.65–
0.22 900 9 Topart and 

Hourquebie90 

P|ITO|WO3:H2O|PVDF-HFP-Li+|PANI|ITO|P  T800 0.12–0.02 – – Marcel and 
Tarascon91 

 

Research into non-tungsten oxide EC material for smart windows is found to be rare. 

This is mainly due to rather poor EC properties found with other materials, in 

particular the durability of these devices is found to be incompatible with commercial 

applications. Most of the non-tungsten based research is focused on niobium oxide-

based ECDs and polymer-based devices. Examples include the work by Heusing et 

al.92 (in 2006) on pure and doped niobium oxide layers which change their colour by 

insertion of Li+ ions from transparent to brown, grey or blue. Their study highlighted 

the colouration efficiency of a large ECD (30 x 40 cm) to be 27cm2/C, which is very 

low when compared to a WO3-based ECD. Lock et al.93 investigated a polymer-

based ECD of poly-3,4-ethylenedioxythiophene (PEDOT) coated on ITO plastic 

substrate via a chemical vapour deposition (CVD) technique. Films produced using 

this technique showed a colour contrast of 45% at 566 nm, however the stability of 

the device was found to be 85% over 150 cycles. 
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2.8.2. Electrochromic car mirrors 
 

While the application of EC materials is ever growing, the outstanding success to 

date is that of the Gentex Corporation, who produce self-darkening rear-view interior 

car mirrors (figure. 2.5 (b))94 currently operating on several million cars, including 

Audi, Bentley, BMW, and Volkswagen. The mode of EC rear-view mirrors can be 

explained with reference to the schematic diagram in figure 2.5 (a) where an optically 

absorbing EC material over the reflective surface decreases the intensity of the 

incident beam. As a result, the reflected emergent beam is not as dazzling to the 

driver’s eyes thereby alleviating discomfort. 

 

    

(a)                                                     (b) 
 
Figure 2.5. (a) Schematic diagram of an ECD operating in reflective mode. The reflective surface is 

made of polished platinum or platinum-based alloy. (b) A Gentex self-darkening rear-view mirror.94  

 

Undoubtedly, the world’s most successful EC mirror is the Gentex Night-Vision 

System,53 which makes up over 90% of all self-darkening mirrors sales. The Gentex 

device involves two EC materials, a viologen species (bipyridilium, bipm2+) and 

phenothiazine which is a thiazine (TA) compound. The reflective surface is typically a 

metallic electrode with an ITO-coated glass as the front electrode. In operation, the 

colour formed is an intense blue-green and equation 2.21 and 2.22 illustrates the 

colour-forming reactions. 

 

bipm2+ (solution)  + e- → bipm+• (solution)             (2.21) 

Incident 
beam 

Reflective 
surface 

Emergent 
beam 
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TA (solution) → TA+• (solution) + e–              (2.22) 

 

2.8.3. Aircraft windows 
 

After the success of EC car mirrors, Gentex has expanded its product line by 

creating the world’s first interactive windows for use in commercial 

and business aircraft. In December 2005, Gentex signed an agreement with PPG 

Aerospace and Boeing to install EC windows in the new long-range Boeing 787 

aircraft, known as the ‘Dreamliner’. These dimmable windows allow cabins to be 

switched from a bright, clear state to an extreme dark state, or to a comfortable 

intermediate level in between, all at the touch of a button.95 The windows are also 

25% greater in area as compared to the usual and the control panel allows 

passenger to achieve the desired level of darkening (figure. 2.6 (a and b).). The 

technology of smart windows for aircrafts applications is relatively new therefore 

details into the EC system involved have yet to be revealed.   

 

   

(a)             (b)  
 

 
Figure 2.6. (a) EC windows installed in the new Boeing Dreamliner. (b)  A window-seat controller 

which allows the passenger to activate the system and change the amount of visible light entering the 

cabin.95  

 

2.8.4. Other applications  
 

Other applications include ECD visors and sunglasses operating in a transmittance 

mode. In 1981, Nikon was the first to market EC sunglasses, termed ‘variable-opacity 

lens filter.96 Due to the manual operation to achieve the colour change, EC 

sunglasses are not able to compete with the now available photochromic lenses that 



2. Literature review 
 

33 
 

darken automatically. As a result, research into EC sunglasses is limited when 

compared to other EC applications. 

 

ECDs operating as displays have been proposed for flat-panel displays for 

applications such as television and visual-display units (VDUs). The advantage of 

ECDs is that most possess the memory effect. This means that once images are 

formed, very little or no additional input power is required. This highly attractive 

feature is useful for shutters and displays that do not require updating too often. 

Examples include: electronic books/newspapers, transport terminal displays and 

advertising boards. However, due to the insufficient response time, low cycle lives 

and the technical problem of potential drop associated with the semiconductive 

electrode substrate, their application is restricted to televisions and VDU screens.  

 

Investigation into EC paper was proposed by Talmay in 1942, where ‘electrolytic 

writing paper’ consisting of paper pre-impregnated with particulate MoO3 and WO3 

was used to form an image following reduction at an inert-metal electrode acting as a 

pen.97,98 Other EC materials have also been considered for such an application. 

Examples include viologens99,100 Prussian blue99,100 and the metal oxide MoO3 and 

WO3.100 More recently, Tehrani et al. (in 2006) used a organic EC systems based on, 

poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) 

towards roll-to-roll production of polymer based EC display on flexible substrate. A 

year later, Andersson et al.101 extended this study to improve the fill factor from 29% 

to 42% and increased the effective area of display from 42% to 65% by adding an 

extra layer of PEDOT:PSS on the counter electrode. 

 

2.9. Electrochromic nickel oxide  
 

NiO is the most commonly used anodic oxide-based EC material. It is able to change 

from a transparent to a neutral coloured state upon extraction of protons or insertion 

of OH– ions. EC materials based on NiO have been less widely studied than WO3, 

however due to their reasonable cost and excellent EC properties, the research has 

accelerated significantly in recent years. In this section, a brief history of NiO as an 
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EC material will be outlined. Also, the redox process involved with NiO will be 

discussed in detail. 

 

2.9.1. History of electrochromic NiO-based materials 
 

NiO-based materials have been researched extensively as the active material in 

batteries102-105 for over 40 years but it was not until 1979 when its EC properties were 

investigated. McIntyre et al.106 found that EC films of NiO can be deposited by cycling 

the potential of a nickel electrode in an alkaline electrolyte (1.0 mol dm-3 KOH) and 

by electrodeposition. Their results showed that during colouration the film changes 

from transparent to a dark bronze colour with a reflective contrast ratio of 100:1 and 

coloration and bleaching times of 50 ms and 19 ms respectively. A later paper by 

Lampert et al. (in 1986) extended this study to look at the ‘chemical and optical 

properties of EC NiO films’.107 This paper was probably the first to identify the 

potential application of EC NiO towards large-scale optical shutters, information 

displays and automotive and aerospace glazing. These authors concluded that the 

solar transmittance (Ts) can be switched from Ts(bleached) = 0.73 to Ts(coloured) = 

0.35 for films with a thickness of about 500 Å. 

 

The same authors further examined the EC effect of hydrated NiO in 1987108 and 

they concluded that by using cyclic voltammetry the switching of the films is 

controlled by the diffusion of protons, and OH– plays a role in the reaction 

mechanism.  

 

Probably the first study to construct an ECD based on hydrated NiO was Yu and 

Lampert (in 1989).109 The structure of their device consisted of up to five distinct 

layers (figure. 2.7). The layers consisted of a transparent conductive substrate (tin 

oxide coated glass), an EC material (NiO, working electrode), a polymeric ion 

conductor (which can also serve as a lamination material), an EC material (counter 

electrode), and another transparent conductive substrate. The colouration or 

bleaching effect was carried out by applying a low potential (1-3 V) between the 

working and counter electrodes. 
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Figure 2.7. Schematic of a symmetric ECD utilising a polymer ion conductor as a laminator layer. 

Diagram redrawn from.109  

 

In the same year, Passerini et al.110 published a paper which outlined that NiO may 

be used in conjunction with WO3 in an ECD for window applications. Their 

communication reported preliminary data taken for a device using WO3 as the 

primary EC material and NiO as the secondary EC material with an intermediate 

solid electrolyte of poly(ethylene oxide) doped with lithium perchlorate, 

(PEO)8LiCLO4. Initial results showed good durability of 1000 voltage pulses and 

colouration and bleaching switching times of about 10 seconds. A little later, in 1994, 

Cantão et al. also examined a similar device system but with different electrolytes. 

They used TiOx and TaOx electrolytes to show the EC behaviour of all-solid state 

devices. In the reflective mode the devices showed chemically compatible, the films 

were adherent and produced reflectance changes as large as 90% .111  

 

The use of NiO as a secondary EC material has continued to attract attention due to 

the material exhibiting a neutral colour change upon extraction of protons or insertion 

of OH– ions. To date, the majority of the ECDs have focused on using NiO as a 

secondary electrochrome on the counter electrode with another primary EC material 

on the working electrode. In most cases, the partner EC material used is WO3.77-85 

However, in some cases poly(pyrrole),112 poly(thiophene),113 or 

poly(methylthiophene)113 have also been investigated. 
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3. Experimental  
 

This chapter outlines the experimental arrangements and procedures used for work 

presented in this thesis. Any experimental techniques introduced by previous authors 

will be cited accordingly within the relevant sections. 

 

3.1 Chemicals used 
 

Ammonium hydroxide  NH4OH  Fisher Scientific  

(S.G = 0.88, 35% NH3) 

Boric acid    BH3O3  Fluka (>99.5%) 

Cadmium nitrate tetrahydrate Cd(NO3)2.4H2O Acros Organics (99+%) 

Cerium nitrate hexahydrate Ce(NO3)3.6H2O BDH (98) 

Cobalt nitrate hexahydrate  Co(NO3)2.6H2O Aldrich (98%) 

Copper nitrate trihydrate   Cu(NO3)2.3H2O Fisher Scientific (>99.5%) 

Hydrochloric acid   HCl   Fisher Scientific  

(S.G = 1.16, 32%) 

Isopropyl alcohol   (CH3)2CHOH  Fisher Scientific (99.5%) 

Lanthanum nitrate hexahydrate La(NO3)3.6H2O Alfa Aesar (99.9%) 

Nickel nitrate hexahydrate  Ni(NO3)2.6H2O Acros Organics (99%) 

Nickel acetylacetonate   C10H14NiO4  Aldrich (95%) 

Nickel chloride   NiCl2   Aldrich (98%) 

Nickel sulphate hexahydrate NiSO4.6H2O  Fisher Scientific (>98%) 

Nitric acid    HNO3   Fisher Scientific (70%) 

N,N-dimethylaminoethanol  C4H11NO  Fluka (98%) 

Potassium hydroxide  KOH   Fisher Scientific (>85%) 

Poly(allylamine hydrochloride) (C3H8ClN)n  Aldrich  

(Average Mw ≈ 58,000) 

Sulphuric acid   H2SO4  Aldrich (95-98%) 
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3.2 Instrumentation 
 

All electrochemical techniques including cyclic voltammetry, chronoamperometry and 

chronopotentiometry (galvanostatic) were carried out using a Princeton Applied 

Research potentiostat/galvanostat 263A. Software used was PowerSuite version 

2.10.5 with PowerCV version 2.10.5. A second, Sycopel AEW2 electrochemical 

workstation was also used for some experimental measurements.  

 

For layer-by-layer (LbL) deposition technique, metal hydroxide nanoparticles were 

synthesised by employing a Misonix S-4000 ultrasonic processor/sonicator with a 

standard ½” diameter tapped horn and irradiating the solution with a high intensity 

ultrasound radiation. Figure 3.1 shows the sonicator which consists of a generator, 

convertor and a horn.  

 

 
 

Figure 3.1. Photograph showing a Misonix S-4000 ultrasonic processor/sonicator (image taken from 

the Misonix, Inc operation manual).  

 

In situ visible region spectra were recorded using a Hewlett Packard 8452A diode 

array spectrophotometer.  

 

A Thurlby PL310 waveform generator was used as a power supply to 

electrochemically clean the working electrodes. Substrate conductance and 

resistance was measured using a Jandel HM20 4-point universal probe. 
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Once the experiments were completed all data were tabulated and plotted by 

transferring to Microsoft® Excel® 2010 or Origin®
 version 6.1 software.  

 

3.3 Electrodes 
 

In order to prepare thin films for different experimental purposes, a wide range of 

electrodes types were used. For nitrate reduction and metallic nickel investigations, a 

glassy carbon (surface area = 0.0707 cm2), a gold (0.0201 cm2) and a platinum 

(0.0201 cm2) electrodes were used which were purchased from Bio Analytical 

Systems Inc (BASi) (figure. 3.2).   

 

 
 

Figure 3.2. Photograph showing the three BASi disk electrodes (left to right, glassy carbon, gold, and 

platinum). Electroactive surface area is 0.0707 cm2 for glassy carbon and 0.0201 cm2 for gold and 

platinum.  

 

Two different optically transparent conductive substrates were used for preparing 

nickel oxide-based precursor films for electrochromic (EC) studies. Fluorine-doped 

tin oxide (SnO2:F,  FTO) on glass (30 x 30 cm, NSG TECTM C15, Rs 14 Ω / ☐-1) 

were received as gift from Pilkington Group limited. For small scale experiments, the 

30 x 30 cm FTO/glass plates were cut to 50 x 7 mm size samples using an Inland 

Scoreone glass cutter and glass pliers (figure 3.3). Tin-doped indium oxide 

(In2O3(Sn), ITO) on glass, (50 x 7 mm, CB-50IN-CUV, Rs 5-15  Ω / ☐-1) purchased 

from Delta Technologies were also used as substrates for depositing and analysing 

the EC materials. For large-scale deposition trials, two different sized FTO/glass    
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(10 x 7.5 and 30 x 30 cm) substrates were used which were also obtained from 

Pilkington Group limited. 

 

  
(a)                                                                 (b) 

Figure 3.3. Photographs showing (a) Inland Scoreone cutter used to score the FTO/glass plate. (b) 

Glass pliers used to carefully break the glass into appropriate size.  

 

Figure 3.4 shows the two types of flag electrodes made from platinum (20 x 20 mm) 

or palladium (50 x 50 mm) foil which were used to prepare films for XRD analysis. 

The deposited films were dried in air, before carefully scraping the surface to 

generate powdered material for XRD experiments. 

 

    
(a) (b) 

 
Figure 3.4. Photographs showing (a) Platinum flag electrode. (b) Palladium foil electrode. 

 

A platinised titanium counter electrode (figure 3.5) was used for all electrochemical 

measurements. For small-scale experiments an alternative platinum mesh-flag style 

(Aldrich, 99.9%) counter electrode was also used, where the flag was approximately 

20 x 10 mm. Both counter electrodes were cleaned by dipping in concentrated 

sulphuric acid and flame treated to remove impurities.  
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Figure 3.5. Photograph showing a platinised titanium counter electrode.  

 

For all small and large-scale experiments, a saturated calomel (Hg/Hg2Cl2, SCE) 

reference electrode (figure 3.6 (a)) purchased from Sentek was used. For in situ 

spectroelectrochemistry measurements a silver (Ag/Ag+) wire pseudo reference 

electrode (figure 3.6 (b)) was used within a standard 1 cm pathlength UV-vis plastic 

cuvette.  

 

  
(a) (b) 

 
Figure 3.6. Photographs showing (a) Sentek saturated calomel reference electrode with a ceramic frit 

and 120 x120 mm dimensions. (b) 50 mm length silver wire pseudo reference electrode adapted from 

a BASi Ag/AgCl reference electrode. 

 

3.3.1. Electrode cleaning 
 

Prior to any experimental investigation, ITO/glass and FTO/glass substrates required 

several cleaning steps to remove any impurities on the surface. The conductive 

substrates were first rinsed with Milli-Q® deionised water (18.2 MΩ cm) then 

sonicated in each of the following solutions for 10 minutes: Propan-2-ol, acetone and 

ethanol. Once the thin films were deposited, they were removed from the conducting 

substrates by dipping in HCl (1.5 mol dm–3) solution and rinsing with deionised water. 

This would allow the substrate to be re-used as the deposited films were dissolved 

without removing or affecting the conductive layer.  
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Platinum and palladium flag electrodes were cleaned electrochemically by anodising 

then cathodising for 1 minute in 0.5 mol dm–3 sulphuric acid. A current of 100 mA 

was applied in both directions using a Thurlby PL310 waveform generator. This 

method was followed by flame treating the electrode to remove any deposited film 

and contaminants from the surface.  

 

3.4 Electrochemical arrangements 
 

For small scale experiments, a simple electrochemical cell arrangement was used 

with the compartment containing all three electrodes during measurements (figure 

3.7). Prior to measurements, the three electrode terminals were abraded to ensure 

good electrical contact. 

 

 
 

Figure 3.7. Image showing a one compartment electrochemical cell used for all small-scale 

experiments. The electrochemical cell had a diameter of 5 cm at the top and 2 cm at the base. 

 

For large-scale experiments two custom glass tanks (35 x 35 x 5 cm) were 

manufactured by Quorn & Loughborough Glass (figure 3.8). The one compartment 

glass tanks were used to deposit thins films on 30 x 30 cm FTO/glass conductive 

substrates. Large-scale electrochemical arrangements consisted of two FTO/glass 

substrates (one working electrode and one counter electrode) and a SCE (reference 

electrode). One glass tank was used to deposit the film and the other for cycling 
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experiments. The tanks were cleaned with concentrated nitric acid and then rinsed 

with Milli-Q® deionised water (18.2 MΩ cm) before all experimentation.  

 

 
 

Figure 3.8. Image showing a one compartment electrochemical tank used for all large-scale 

experiments. The tank dimensions were 35 x 35 x 5 cm. 

 

In order to optimise film uniformity, the working and counter electrodes were held 

parallel, 10 mm apart within the cell (figure 3.9). Prior to film preparation, adhesive 

copper tape was applied to the top 20 mm of each conducting substrate for a uniform 

electrical contact. 

 

 
(a) (b) 

 
Figure 3.9. Overhead view of cell arrangement showing reference electrode (RE), counter electrode 

(CE) and working electrode (WE). (a) Small scale cell (5 cm diameter). (b) Large scale custom tank 

(35 x 5 cm dimensions). 
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3.5 Film characterisation 
 

Various characterisation techniques were used to study the chemistry, morphology 

and structural properties of the deposited films. In this section, the experimental 

procedure for each technique is outlined. 

 

3.5.1. Scanning electron microscopy 
 

Scanning electron microscopy (SEM) was used to investigate the film chemistry, 

morphology and uniformity. The SEM used was a Leo 1530 Field Emission Gun 

Scanning Electron Microscope system with an energy dispersive X-ray spectroscopy 

(EDS) elemental analysis system. Nickel oxide-based films were deposited onto 

conducting glass using a range of deposition techniques. Before analysis the 

deposited films were washed with distilled water, dried in air and then mounted on 

SEM stubs using conducting silver paint.  Samples were coated with a thin layer of 

gold to improve the conductivity of the films.  A Polaron Emitech SC7604 sputter 

coater was used.  

 

3.5.2. Atomic force microscopy  
 

Atomic force microscopy (AFM) was used to study film morphology and average 

surface roughness. A Veeco Explorer system was used. Films were formed on 

different conducting substrates and submitted for analysis. The imaging was carried 

out in Tapping Mode (TM-AFM) using a high resonant frequency (HRF) at 

approximately 300 kHz - silicon probe. The scan frequency was 2 Hz.  

The average surface roughness of the conductive substrates and the deposited films 

were also determined by AFM analysis. The average roughness was calculated as 

the mean value of the surface height (�̅�) relative to the centre plane, which was 

determined by equating the volumes enclosed by the image of the surface above 

and below the plane (equation 3.1)1. Where (𝑁) is the number of points in the 

sample area.  
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𝑅𝑎𝑣𝑔 = � �𝑍𝑛− 𝑍��
𝑁

𝑁

𝑛=1
                   (3.1) 

 

3.5.3. X-ray diffraction 
 

Powder X-ray diffraction (XRD) data were collected to determine/identify the different 

phases of nickel oxide-based materials. A Bruker D8 Advance Powder 

Diffractometer fitted with a PSD detector operating with monochromated Cu Kα1 

radiation (1.5406Å). X-ray data were collected of films deposited onto conducting 

substrates and of powders scraped from the substrate.  

 

For electrochemical cathodic deposition, films were formed on a platinum or 

palladium flags by applying a current of -0.2 mA for 10 hours. The precipitate was 

then dried in air and the thin film was removed from the substrate to accumulate 

powder for XRD experiment. Powdered material was prepared by grinding in a pestle 

and mortar before placing in a plastic sample holder for analysis. Room temperature 

XRD patterns were collected in the 2θ range of 5° to 70°.  

 

Thin films on conducting glass were also prepared for XRD analysis using 

electrochemical and aerosol assisted chemical vapour deposition (AACVD) 

techniques. Prior to collecting the data, the samples were mounted on perspex flat 

sample holders and data were collected for a 2θ range of 5 - 80° using a 0.00147° 

2θ step. 

 

All data collected were compared against patterns from the International Centre for 

Diffraction Data (ICDD) Powder Diffraction File (PDF). 

 

3.6 Film formation 
 

Nickel oxide-based thin films were deposited onto various electrodes by three 

different deposition techniques. The experimental procedures for each of these 

methods are outlined in this section. 
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3.6.1. Electrochemical cathodic deposition 
 

Electrochemically hydrated NiO thin films were deposited by electrochemical 

cathodic deposition, in which aqueous nickel nitrate (0.01 mol dm–3) solution was 

used to grow the films galvanostatically, according to the method of Carpenter et al.2 

Films were deposited using a chronopotentiometry technique (figure 3.10), where a 

fixed current density was applied and the potential versus time (seconds) was 

monitored. Co-deposited films were prepared using a mixed nitrate solution with a 

total metal concentration of 0.01 mol dm–3.  For single additive films, the deposition 

solution consisted of nickel nitrate (0.009 mol dm–3) and the additive metal nitrate 

(0.001 mol dm–3). For bimetallic additives, deposition solution consisted of nickel 

nitrate (0.0085 mol dm–3), first additive metal nitrate (0.001 mol dm–3) and second 

additive (0.0005 mol dm–3). After depositing the film, it was washed with distilled 

water then immersed in KOH (0.1 mol dm–3) for EC performance analysis.  
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Figure 3.10. Potential-time transient for hydrated NiO film formation on ITO/glass. Deposition solution 

0.01 mol dm–3 Ni(NO3)2, current -0.2 mA (-0.1 mA cm-2), deposition time 50 seconds. 

 

3.6.2. Aerosol assisted chemical vapour deposition (AACVD) 
 

Nickel (II) acetylacetonate (0.05 mol dm-3) was used as the source material for 

preparing NiO thin films. Precursor solution was prepared by heating and stirring 
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nickel acetylacetonate and 1 cm3 of N,N-dimethylaminoethanol in toluene for 30 min 

then allowing the solution to cool to room temperature. The precursor solution was 

then placed above the piezoelectric modulator of an ultrasonic humidifier to atomise 

the solution into fine aerosol droplets. A schematic drawing of the AACVD with a two 

chamber configuration is illustrated in figure 3.11.  

 

Using air as a carrier gas, the aerosol droplets were first transferred at a flow rate of 

0.21 dm3 min-1 into the first chamber where any large particles were separated and 

held. A second carrier gas (air) at a flow rate of 2.34 dm3 min-1 was then used to 

direct the small particles towards the heated substrate, where they underwent 

evaporation, decomposition and chemical reaction to synthesise the desired films. 

The flow rate was controlled by a L1X linear flow meter. The substrate was heated to 

450°C (FTO/glass is found to be stable to >1000°C) by placing it on a temperature 

controlled hot plate. Films were deposited for 10, 15 and 20 min and are abbreviated 

as NiO(10 min), NiO(15 min) and NiO(20 min) respectively. 

 

            
Figure 3.11. Schematic diagram of the experimental AACVD apparatus. 

 

3.6.3. Electrostatic layer-by-layer (LbL) assembly 
 

Layer-by-layer (LbL) assembly was conducted through electrostatic interactions, 

where the growth of different charged species (cationic and anionic species) leads to 

the formation of a multilayer structure.3 Hydrated NiO nanoparticles were 

synthesised by mixing 10 cm3 of nickel nitrate (0.01 mol dm–3) aqueous solution with 
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200 μl of NH4OH (1 mol dm–3) in a sonication flask. A nanoparticle suspension was 

obtained by employing a direct immersion titanium horn immersed 1 cm into the 

mixture and irradiated with high intensity ultrasound radiation for 5 min. The resulting 

nanoparticle suspension was used as the anionic layer during LbL deposition.  

 

Multilayer structure of hydrated NiO was deposited, by dipping the ITO/glass into a 

solution of Poly(allylamine hydrochloride) (PAH) (0.5 mol dm–3) for 5 mins. The 

ITO/glass was then rinsed with deionised water and dried with N2 gas. It was then 

placed in a hydrated NiO nanoparticles solution for 5 mins, washed and dried again. 

Multiple bilayers were created by repeating these steps (figure 3.12). 

 

 
 

Figure 3.12. Schematic showing a layer-by-layer assembly through electrostatic interaction. Figure 

taken from.4 
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4. Preparation and optimisation of electrochromic 
nickel oxide-based thin films 

 

4.1. Introduction 
 

The most widely used methods for preparing electrochromic (EC) NiO-based 

ceramic thin films include sputtering,1-3 electron-beam deposition4 and thermal 

vacuum evaporation,5 although these physical methods require expensive 

equipment. Other chemical methods such as sol-gel,6 chemical bath7 and 

hydrothermal deposition techniques8 have also been investigated. Many of the 

methods described often use an extra step (extremely capital and energy intensive) 

to immobilise the material onto the substrate. This step can be eliminated by using 

electrochemical routes or an aerosol-assisted chemical vapour deposition (AACVD) 

technique, as the product is deposited directly onto the electrode in the form of a thin 

film. Furthermore, other methods have limited film composition control which can 

affect the film microstructure, resulting in the formation of products with undesired 

grains/thickness and strength. Using electrochemical routes, this problem can be 

easily overcome, as using varying bath compositions, controlling the current and 

potential applied through the cell you are able to synthesise ceramic materials with 

precise microstructures and engineering properties. In the case of the AACVD 

technique, low cost, high deposition rates and the ability to operate under varied 

environments at low pressure, or even in open atmosphere, make AACVD an ideal 

process for mass production.  

 

This chapter will outline the preparation and optimisation of NiO-based film deposited 

by an electrochemical cathodic deposition and by an AACVD technique. Section 4.3 

will highlight the effect of using different nickel salt baths on the nitrate reduction 

reaction for the deposition of hydrated NiO (Ni(OH)2) thin films and to investigate at 

what potentials metallic nickel competes with hydrated NiO formation. The effect of 

deposition conditions such as deposition current, time of deposition, concentration of 

nickel nitrate and the use of different transparent conducting substrates will be 
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discussed in order to optimise the deposition of EC hydrated NiO. Section 4.6 will 

outline the preparation of NiO thin films by the AACVD technique, with the aim of 

enhancing the films’ EC properties. Throughout the chapter, the emphasis will be on 

optimising two specific factors which are highly important to the functioning of EC 

smart windows; firstly, EC film uniformity which is important for any display 

application, as devices must show uniform colour change; secondly, the durability or 

the cycle life which is represented by the number of write-erase cycles that can be 

performed before any significant degradation. Finally, throughout the chapter various 

surface characterisation techniques which have been performed on the films will 

investigate the film structure, morphology and composition. 

 

4.2. Hydrated NiO film preparation by electrochemical cathodic 
deposition 

 

Preparation of ceramic thin films based on hydrated NiO was initiated according to 

the method of Carpenter et al.9 Electrochemical cathodic deposition was achieved by 

applying a suitable electric current between two or more electrodes separated by a 

metal nitrate electrolyte. In general, precipitation takes place because of the increase 

of interfacial pH at the electrode/electrolyte interface, due to the electrochemical 

reduction of nitrate anions to generate hydroxide ions. As more hydroxide is 

electrogenerated, and the pH increases, the amount of metal hydroxide species 

present at the electrode will exceed its solubility limits and precipitation will occur 

(figure 4.1).  
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Figure 4.1. Schematic representation of the electrochemical cathodic precipitation of hydrated NiO. 

Diagram adapted from.10 

 

The electrode deposition mechanism and the exact nature of the cathodic reaction 

have been investigated in detail. Most researchers have proposed that the 

deposition was due to an electrochemically induced pH change which resulted in the 

production of ammonium ions, according to equation 4.1.11-14 On the other hand, 

others have postulated a nitrate reduction to nitrite (equation 4.2).15,16 Although these 

reactions have different overall cathode reactions, the primary product is the 

generation of hydroxide ions which react further with Ni2+ to precipitate hydrated NiO 

directly onto the substrate according to equation 4.3. 

 

NO3
– + 7H2O + 8e– → NH4

+ + 10OH–               (4.1) 

NO3
– + H2O + 2e– → NO2

– + 2OH–               (4.2) 

2OH– + Ni2+ → Ni(OH)2                 (4.3) 

 

4.3. Hydrated NiO deposition using Ni(NO3)2, NiCl2 and NiSO4 
 

As previously mentioned, electrogeneration of hydroxide ions at the electrode occurs 

through the process of nitrate ion reduction. However, depending on the pH of the 

bath, choice of cathode material and deposition potential, the generation of 

NO3
–

OH– Ni2+

Ni(OH)2

Growing film 
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hydroxide ions may compete with the metal ion reduction reaction (equation 4.4). 

The process of nickel electroplating to obtain coatings for anti-corrosion17 and 

decorative18 applications is a well-known process in industry. However, for EC 

application the deposition of nickel presents a possible problem as it restricts the 

amount of active EC hydrated NiO from being deposited onto the substrate. 

Therefore, in this section, different nickel salt solutions were used to prepare 

hydrated NiO films, with the use of cyclic voltammetry (CV) and chronoamperometry 

techniques to determine the potentials at which metallic nickel competes with the 

hydrated NiO formation.  

 

Ni2+ + 2e → Ni                   (4.4) 

 

Figure 4.2 shows the potential-time transient for the deposition of hydrated NiO thin 

films on tin-doped indium oxide on glass (ITO/glass) using 0.01 mol dm-3 nickel 

nitrate, chloride and sulphate solutions. From the plot it is seen that when a fixed 

current density (-0.1 mA cm-2) is driven, the working electrode potential moves to a 

value that can sustain that current. In this case, the deposition of hydrated NiO on 

ITO/glass takes place between -0.75 and -1.00 V vs. SCE. Having deposited the 

film, it was then transferred to an electrochemical cell containing aqueous KOH (0.1 

mol dm-3) electrolyte for electrochemical characterisation. Figure 4.3 (a) shows 

typical CVs of the hydrated NiO/oxy-hydroxide (NiOOH) redox process, one anodic 

peak (A1), responsible for the oxidation (colouration) and one cathodic peak (A2), for 

the reduction (‘bleaching’) process being observed. An increase in anodic current 

after +0.60 V (B) corresponds to the beginning of the oxygen evolution reaction 

(OER).  

 

On comparison, the potential-time behaviour between the three different solutions is 

very similar (figure 4.2). However, on subsequent electrochemical cycling in KOH 

(0.1 mol dm-3) electrolyte, the amount of electroactive material on the ITO/glass 

substrate varies as indicated by the different anodic and cathodic peak currents 

(figure 4.3 (a)). Film thickness was also measured by using the Faradaic charge 

density (qf) for the oxidation and reduction process obtained by integrating the 

current-potential data between 0.2 to 0.5 V. Values of 3.46, 1.42 and 1.51 mC cm-2, 

corresponding to approximately 15, 6 and 7 equivalent monolayers of hydrated NiO 
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were measured for films deposited using nickel nitrate, chloride and sulphate 

solutions, respectively.† The deposition of hydrated NiO films from chloride and 

sulphate baths show lower deposition efficiencies due to the absence of a nitrate 

reduction reaction. In the chloride and sulphate baths, the main source of hydroxide 

ions is the hydrogen evolution reaction (HER) (equation 4.5).19 Figure 4.3 (b), (c) and 

(d) represents CVs for the hydrated NiO films in KOH (0.1 mol dm-3) electrolyte 

recorded at different scan rates (5 - 150 mV s-1). The anodic (insert in figure 4.3 (b), 

(c) and (d)) and cathodic peak currents increase with scan rate with a square root 

dependency, signifying the dominance of a diffusion process (figure 4.4 (b)), a typical 

response for a thin film which has been reported elsewhere.16   

 

2H2O + 2e- → H2 + 2OH-                  (4.5) 

 

Figure 4.4 (a) shows the CVs for a platinum flag electrode recorded in nickel nitrate, 

chloride and sulphate solutions at 50 mV s-1. The CV recorded for nickel nitrate 

showed a cathodic peak (A) between 0.2 and -0.1 V which is a characteristic of the 

nitrate reduction process to generate base16 (equation 4.1 or 4.2). For CVs recorded 

in the chloride and sulphate baths, this peak was absent to confirm that hydrated 

NiO formation in this case was primarily due to hydroxide ions formed via the HER. 

The effects of scan rate (20 to 200 mV s-1) for a platinum flag electrode recorded in 

all three solutions are also reported (figure 4.4 (b), (c) and (d)). With nickel nitrate 

showing a diffusion controlled process for the cathodic nitrate reduction process, as 

indicated by a linear increase in the cathodic peak (between 0.2 and -0.1 V) currents 

with square root of scan rate (figure 4.4 (b) insert).16 CVs recorded at different scan 

rates in nickel chloride and sulphate solutions, again lacked the characteristics for 

the nitrate reduction process, even at fast scan rates. 

 

 

 

---------------------------------------- 
† From the hydrated NiO crystallographic data, an equivalent monolayer is about 1.4 

x 10-9
 mol cm-2. By assuming a surface roughness factor for ITO/glass20 of 1.6 and 

one-electron process between Ni(II)/Ni(III), this corresponds to a qf value of 

approximately 0.224 mC cm-2. 
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Figure 4.2. Potential-time transients for electrochemical cathodic deposition of hydrated NiO film on 

ITO/glass (electrode surface area = 30 x 7 mm) from 0.01 mol dm-3 solutions, with a current of -0.2 

mA for 50 s. Deposition using nickel nitrate (——), nickel chloride (——) and nickel sulphate (——). 
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Figure 4.3. CVs for the oxidation and reduction process for the as-deposited hydrated NiO films 

deposited on ITO/glass from 0.01 mol dm-3 solutions of nickel nitrate (——), nickel chloride (——) and 

nickel sulphate (——) solutions followed by cycling in aqueous KOH (0.1 mol dm-3) electrolyte at 10 

mV s-1 (a) . CVs for the as-deposited hydrated NiO film on ITO/glass cycled in aqueous KOH           

(0.1 mol dm-3) electrolyte at 5 (——), 10 (——), 20 (——), 50 (——), 100 (——) and 150 mV s-1 (——

) deposited from 0.01 mol dm-3 solutions of nickel nitrate (b), nickel chloride (c) and nickel sulphate 

(d). The potential range was -0.20 V → +0.65 V → -0.20 V vs. SCE. The arrows in (a) indicate the 

direction of potential scan. Inserts in (b), (c) and (d) illustrate the anodic peak current vs. square roots 

of scan rate for 5, 10, 20, 50, 100 and 150 mV s-1. 
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Figure 4.4. CVs for a platinum flag electrode (surface area = 20 x 20 mm) in 0.1 mol dm-3 nickel 

nitrate (——), nickel chloride (——) and nickel sulphate (——) at a scan rate of 50 mV s-1 (a), CVs at 

scan rates of 20 (——), 50   (——), 100 (——) and 200 mV s-1 (——) for a platinum flag electrode in 

nickel nitrate (0.1 mol dm-3) (b), nickel chloride (c) and nickel sulphate (d). The potential range was      

-0.20 V → +0.70 V → -0.20 V vs. SCE. The arrows in (a) indicate the direction of potential scan. Insert 

in (b) illustrates the cathodic peak current vs. square roots of scan rate for 20- 200 mV s-1. 
 

Figure 4.5 shows photographs of the hydrated NiO films in the ‘bleached’ and 

coloured state for films deposited using nickel nitrate, chloride and sulphate 

solutions. The as-deposited films (figure 4.5 (photographs a)) prepared from all three 

nickel salt solutions showed contrasting film transparency and appearance. The as-

deposited film prepared from nickel nitrate solution appeared fully transparent. On 

the other hand, the as-deposited films prepared by nickel chloride and sulphate 

solutions showed areas with patches of silver coloured deposits, typical of nickel 
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appearance. Upon potential switching by CV, the films were oxidised to the oxy-

hydroxide form with the fully coloured state being formed (figure 4.5 (photographs 

b)). Comparing the coloured photographs showed that the film deposited from nickel 

nitrate produced a uniform brown-grey colouration but films from nickel chloride and 

sulphate showed a mixture of brown-grey coloured areas responsible for the 

oxidation of hydrated NiO together with the patches of the deposited nickel. These 

observations confirm that in the case of preparing films by nickel chloride and 

sulphate baths, a mixture of hydrated NiO and nickel deposition takes place, to 

produce non-uniform films.  

 

 
Figure 4.5. Photographs of hydrated NiO films deposited from different nickel salt solutions of 0.01 

mol dm-3 concentrations. (a) As-deposited hydrated NiO films and (b) NiOOH film (film switched to the 

coloured state by cyclic voltammetry between ‒0.20 to +0.60 V vs. SCE at 10 mV s-1, and then 

removal at +0.60 V). Films were deposited on the lower 30 mm length of each 7 mm width ITO/glass 

at an applied current of -0.2 mA for 500 s.  

 

To examine the film surface morphology, micrographs were produced by a high 

resolution field emission gun scanning electron microscope (FEGSEM). The surface 

morphology of ITO/glass was typically of a smooth appearance (figure 4.6 (a)) and 

for hydrated NiO film on ITO/glass, a uniform open porous structure of 

interconnected flakes (figure 4.6 (b)), with a morphology in close agreement with that 

found by Carpenter et al.9 Energy dispersive X-ray spectroscopy (EDS) elemental 

NiSO4NiCl2Ni(NO3)2

50
 m

m

7 mm

a a ab b b
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analysis was also carried out to examine the film composition. In the case of films 

prepared from nickel nitrate solution, EDS elemental analysis confirmed the 

presence of nickel and oxygen as elements present in a hydrated NiO film. The 

presence of indium, tin, oxygen and silicon were due to the ITO/glass substrate. 

Prior to analysing, the films were coated with a thin layer of gold to improve their 

conductivity. 

 

 
 

Figure 4.6. High resolution field emission gun scanning electron microscope (FEGSEM) images 

showing the surface of a bare ITO/glass substrate (a) and a hydrated NiO film deposited on ITO/glass 

using nickel nitrate (0.01 mol dm-3) solution at an applied current of -0.2 mA for 500 s (b). An energy 

dispersive X-ray spectroscopy (EDS) analysis showing the chemical composition (Wt %) of the 

hydrated NiO film taken from (b).  

 

Figures 4.7 (a) and 4.8 (a) shows the FEGSEM micrographs for films deposited 

using nickel chloride and sulphate baths, respectively. From the micrographs, it can 

be seen that using these two baths produced coexisting states with different areas of 

film morphology. The interconnecting flakes were representative of the hydrated NiO 

a

400 nm

c

b

200 nm
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phase and the nickel deposition being observed as the distribution of scattered 

granules with an average particle size of 500 nm. Furthermore, EDS elemental 

analysis (figures 4.7 and 4.8 (b) and (c)) at the two different states also confirmed 

that the higher weight percentage (Wt %) of nickel at the location of the granules was 

due to the presence of metallic nickel electrodeposition. These observations confirm 

that the non-uniform appearance for films prepared from nickel chloride and sulphate 

baths is due to the parallel formation of hydrated NiO and metallic nickel (figure 4.5).   

 

The effect of applied potential on the formation of hydrated NiO and nickel 

electrodeposition was also investigated. Figure 4.9 and table 4.1 show the current-

time behaviour and the corresponding FEGSEM micrographs for films deposited at 

different applied potential onto ITO/glass substrates from nickel nitrate, chloride and 

sulphate baths. In the case of films prepared from nickel nitrate, at applied potentials 

of between -0.5 and -0.8 V vs. SCE, the formation of hydrated NiO is induced. This is 

due to the basic environment (increasing pH) being created by the HER and nitrate 

reduction process at the electrode/electrolyte interface. The mechanism for nickel 

electrodeposition starts to coexist with hydrated NiO from -0.9 V, as indicated by the 

increase in current (figure 4.9 (a)) between 50 and 500 s and the FEGSEM 

micrograph (table 4.1), with the occurrence of a few nickel nucleation sites. Similarly 

for films prepared using nickel chloride, at potentials more positive than -0.8 V, the 

deposition of hydrated NiO with interconnecting flakes was observed. However, from 

-0.9 V, nickel deposition begins to coexist at the onset of HER and Ni2+/Ni0 reactions 

running in parallel. The steady state increase in current (figure 4.9 (b)) after 50 s and 

the nucleation-growth of nickel nodules (1 μm) (table 4.1) at the surface of the film 

confirms the coexistence of both states. Finally, for films deposited using the nickel 

sulphate bath, the Ni2+/Ni0 reactions begins to compete from an applied potential of        

-0.8 V (figure 4.9 (c)), with nickel deposition being observed from the micrographs at 

this potential (table 4.1).  
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Figure 4.7. High resolution field emission gun scanning electron microscope (FEGSEM) image 

showing the surface of a hydrated NiO film deposited on ITO/glass using nickel chloride                 

(0.01 mol dm-3) solutions at an applied current of -0.2 mA for 500 s (a). An energy dispersive X-ray 

spectroscopy (EDS) analysis showing the chemical composition (Wt %) of the hydrated NiO film taken 

at two different points on the SEM micrograph (a), at a hydrate NiO film site (b) and at a nickel 

nucleation-growth site (c). 
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Figure 4.8. High resolution field emission gun scanning electron microscope (FEGSEM) image 

showing the surface of a hydrated NiO film deposited on ITO/glass using nickel sulphate              

(0.01 mol dm-3) solutions at an applied current of -0.2 mA for 500 s (a). An energy dispersive X-ray 

spectroscopy (EDS) analysis showing the chemical composition (Wt %) of the hydrated NiO film taken 

at two different points on the SEM micrograph (a), at a hydrate NiO film site (b) and at a nickel 

nucleation-growth site (c). 
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Figure 4.9. Current-time transients for the electrochemical cathodic deposition of hydrated NiO films 

from 0.01 mol dm-3 solution of nickel nitrate (a), nickel chloride (b) and nickel sulphate (c) at applied 

potentials of -0.5 (——), -0.6 (——), -0.7 (——), -0.8 (——) and -0.9 V (——) for 500 s. 
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Table 4.1. High resolution field emission gun scanning electron microscope (FEGSEM) images 

showing the surface of hydrated NiO films deposited on ITO/glass using 0.01 mol dm-3 solutions of 

nickel nitrate, chloride and sulphate at applied potentials of -0.5, -0.6, -0.7, -0.8 and -0.9 V for 500 s. 
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4.3.1. Metallic nickel deposition 
 

This section outlines the effect of different bath compositions for the 

electrodeposition of nickel. Before discussing any experimental results, it is important 

to understand the two independent processes that occur during nucleation-growth.21 

The first process involves several stages towards the formation and growth of a 

single nucleus of the metal, known as nucleation. These stages include:  

 

• Transport of solvated metal ions through the solution to the electrode 

surface. 

• Electron transfer 

• Partial or complete loss of the solvation sheath to form an adatom. 

• Surface diffusion of adatoms. 

• Clustering of the adatoms to form a nucleus of sufficient size for it to be 

stable. 

• Growth of the nucleus by incorporation of adatoms at favourable sites in 

the lattice structure of the metal. 

 

The second process includes further important stages in the progress of crystal 

growth, as outlined below: 

 

• Formation of nuclei. 

• Growth of each isolated centre. 

• Overlap of the expanding centres. 

• Formation of a continuous layer over the whole cathode surface. 

• Thickening of the complete layer. 

 

In the case of nickel deposition on inert substrates (e.g. gold or glassy carbon), 

nickel atoms are initially deposited onto which the individual crystals of nickel will 

grow. This process approach is based on a widely used first order rate expression 

for nucleation (equation 4.6).22 

 

N(t) = N0 {1 – exp(–At)}                  (4.6) 
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Where N(t) is the number density, N0 is the total number of sites where nuclei can 

form and A is the rate constant for nucleation. 

 

Figure 4.10 shows a set of CVs recorded using a Au working electrode in nickel 

nitrate, chloride and sulphate solutions for the deposition and stripping of nickel. For 

nickel nitrate electrolyte (figure 4.10 (a)), the potential range was 0.60 V → -0.70 V 

→ 0.60 V vs. SCE. A predominant cathodic current attributed to the HER was 

produced between -0.40 and -0.70 V with bubbling being observed at the electrode 

surface. After completing the cycle, there was no indication of nickel deposit on the 

surface of the Au electrode, also the CV (figure 4.10 (a)) produced did not show any 

characteristics for the deposition and stripping process. In the case of nickel chloride 

and sulphate electrolytes (figure 4.10 (b)), the potential range was 0.60 V → -1.10 V 

→ 0.60 V vs. SCE, two cathodic and one anodic peaks were produced. Peak A1 was 

again was due to the HER, however, previous studies have also suggested that the 

large negative current is due to the onset of simultaneous nickel deposition and 

HER.23 Peak A2 in the region of -0.70 V and peak B in the region of -0.40 V was due 

to the deposition and stripping of nickel, respectively.  
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Figure 4.10. CVs for a gold BASi electrode (surface area = 0.0201 cm2) in 0.1 mol dm-3 solutions of 

nickel nitrate (a), nickel chloride (——) and nickel sulphate (——) (b) electrolyte at a scan rate of 10 

mV s-1. The arrows in (a) indicate the direction of potential scan. 

 

For comparison, figure 4.11 shows typical examples for the deposition and stripping 

of zinc and copper metal. One cathodic peak for the deposition and one anodic peak 
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for the stripping process can been seen clearly from the voltammograms. Stopping 

the CV just after the deposition potentials produced a silver shiny and red-brown 

deposit for both zinc (-1.30 V) and copper (-0.30 V), respectively. In an attempt to 

achieve nickel nucleation-growth process, these experimental conditions were 

repeated using different concentrations of NiSO4 in K2SO4 (0.5 mol dm-3) electrolyte 

on a glassy carbon electrode. Similarly to the zinc and copper, a sharp cathodic peak 

was observed for the deposition process (figure 4.12). However, the anodic stripping 

peak which corresponds to the amount of material deposited on the electrode during 

the forward sweep was absent. Furthermore, stopping the CV just after the 

deposition potential (-1.15 V) did not show any signs of nickel nucleation.  
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Figure 4.11. CVs for metal deposition and stripping on a glassy carbon BASi electrode. Zinc 

deposition using ZnSO4 (10 mmol dm-3) in K2SO4 (0.5 mol dm-3) electrolyte (——) and copper 

deposition using CuSO4 (10 mmol dm-3) in K2SO4 (0.5 mol dm-3) electrolyte (——) at a scan rate of 

50 mV s-1. The potential range for zinc deposition was 0.00 V → -1.50 V → 0.00 V vs. SCE and for 

copper deposition was 0.60 V → -0.60 V → 0.60 V vs. SCE. The arrows indicate the direction of 

potential scan. 

 

When compared to the electrodeposition of zinc and copper, the process of nickel 

deposition is found to be more complex, with simultaneous hydrogen evolution 

playing a key role towards inhibiting the deposition process. Previous studies have 

discussed the influence of bath composition on improving the rate of deposition. In 

particular, the role of boric acid, which is shown to be an important component for 

facilitating deposition by acting as a catalyst to lower the overpotential of nickel 
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deposition.24 Another study has also suggested that the buffering action of boric acid 

by reducing the pH near the electrode-electrolyte interface prevents the precipitation 

of hydrated NiO and increases the efficiency of nickel deposition.25 A commercially 

available method used in the electroplating industry for nickel electrodeposition is the 

Watts-type plating bath.26 figure 4.13 (a) shows a CV for a glassy carbon electrode 

cycled in a Watts bath composition. Two distinct peaks were observed, one during 

the cathodic scan and one on reversal for the anodic scan for the deposition and 

stripping process respectively. Additionally, upon stopping the scan just after the 

deposition potential (-1.10 V) changed the appearance of the uncoated glassy 

carbon (figure 4.13 (b)) from a black to a bright silver colour (figure 4.13 (c)), to 

confirm the successful nickel deposition.  

 

Another simple technique to establish nucleation-growth by triangular scans of 

potential was described by Fletcher et al.27 In this study, the authors showed that this 

treatment can be applied in two cases, namely rate control by interfacial kinetics and 

rate control by hemispherical diffusion. It was concluded that for both cases a current 

maximum should occur on reverse scans of triangular scans of potentials, known as 

nucleation loops. This technique was used to examine the nickel nucleation-growth 

using nickel chloride in boric acid on a glassy carbon electrode. Figure 4.14 shows 

the presence of a nucleation loop, characterised in this case as an irreversible 

growth.27   

 

 



4. Preparation and optimisation of electrochromic nickel oxide-based thin films 

77 
 

-1.2 -0.9 -0.6 -0.3 0.0 0.3
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

 

 

Cu
rre

nt
 / 

m
A 

Potential / V vs SCE
 

Figure 4.12. CVs for nickel deposition from different concentrations of NiSO4 on a glassy carbon 

BASi electrode at a scan rate of 50 mV s-1. NiSO4 (20 mmol dm-3) in K2SO4 (0.5 mol dm-3) electrolyte 

(——), NiSO4 (30 mmol dm-3) in K2SO4 (0.5 mol dm-3) electrolyte (——) and NiSO4 (40 mmol dm-3) in 

K2SO4 (0.5 mol dm-3) electrolyte (——). The potential range was 0.30 V → -1.20 V → 0.30 V vs. SCE. 
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Figure 4.13. CVs for nickel deposition using a Watts electroplating bath ((NiSO4 (0.85 mol dm-3), 

NiCl2 (0.15 mol dm-3) and H3BO3 (0.55 mol dm-3)) on a BASi glassy carbon electrode at 50 mV s-1 (a). 

Photographs showing uncoated electrode (b) and electrode coated with a bright nickel deposit 

(deposit achieved by cyclic voltammetry between 0.60 to -1.10 V vs. SCE at 50 mV s-1, and then 

removal at -1.10 V) (c). The arrows in (a) indicate the direction of potential scan. 

b c 
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Figure 4.14. CVs for nickel deposition using NiCl2 (1.00 mol dm-3) in H3BO3 (0.70 mol dm-3) (b) at 100 

mV s-1 on a BASi glassy carbon electrode. The arrows indicate the direction of potential scan. 

 

4.4. Optimisation of hydrated NiO films prepared by electrochemical 
cathodic deposition 

 

Optimisation of deposition conditions and the subsequent cycling in basic (KOH) 

electrolyte of hydrated NiO films have been the subject of previous studies.13, 28-

30 Streinz et al.28 utilised an electrochemical quartz crystal nanobalance (EQCN) to 

measure the mass of hydrated NiO films prepared from nickel nitrate solutions. They 

looked at the effect of deposition time, applied current and nickel nitrate 

concentration on the electrochemical deposition rate. Their results showed that the 

deposited mass increased proportionally with both time and current. However, the 

rate of deposition was significantly reduced when depositing hydrated NiO films from 

high nickel nitrate concentration (above 0.1 mol dm-3) baths. It was concluded that at 

high concentrations the utilisation efficiency of the hydroxide ions was significantly 

less than 100 % (approximately 20%) and the formation of an alternative soluble 

cluster ion complex [Ni4(OH)4]4+ was favoured, which diffused away from the 

reaction interface before deposition could occur. Subbaiah and co-workers29 also 

considered the effects of applied current density on the particle size for battery 

applications. They found the grain size to increase with increasing current density. 

To date, there is no apparent work on the effect of different deposition conditions 

towards optimising the film uniformity and durability. Therefore, in this section, the 
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effect of a number of deposition factors, including deposition current, time, nickel 

nitrate concentration and use of different transparent conducting substrates will be 

discussed, with the aim of producing uniform and durable deposits.  

 

4.4.1. Effect of fixed current  
 

Figure 4.15 (a) and (b) shows the effect of applied currents on the CVs and the 

corresponding visible region absorbance spectra (oxidised brown-grey coloured) of 

the as-deposited hydrated NiO films. For films deposited between -0.1 and -0.4 mA 

(-0.05 and -0.2 mA cm-2), an increase in both the peak currents and the absorbance 

of the oxidised state was observed. Similar results were also reported by Streinz et 

al.28 who found that the deposition rate increased proportionally with applied current. 

This relationship can be expressed by considering equations 4.1 and 4.2. As the 

number of hydroxide ions generated is related to the number of electrons available 

therefore, using Faraday’s law the number of electrons available can be directly 

related to the applied deposition charge.  

 

Figure 4.16 shows the photographs of the oxidised (coloured) and the reduced 

(‘bleached’) states as well as the FEGSEM images of the hydrated NiO films 

deposited onto ITO/glass. Films deposited at low applied currents (-0.1 to -0.4 mA) 

showed a uniform brown-grey colouration upon switching in KOH (0.1 mol dm-3) 

electrolyte. From the FEGSEM images, it can be seen that the surface morphologies 

of the films showed a typical open porous structure of interconnected flakes which is 

similar to that reported by Carpenter et al.9 This porous nature of the film allows the 

facilitation of hydroxide ions insertion/extraction thus leading to enhanced reversible 

EC performance.   

 

Films prepared at an applied current of -0.8 mA showed an irreversible response 

(figure 4.15 (a)), with reduced peak currents and a lower absorbance value than 

those deposited at -0.2 and -0.4 mA (insert figure 4.15 (b)). Furthermore, the 

photographs in figure 4.16 showed the colouration state to be present both after the 

oxidation and reduction process. This irreversible behaviour can be explained by 

analysing the surface morphology of the as-deposited film (figure 4.16, FEGSEM 
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image (d)). At high deposition current, the surface of the film appears non-porous 

with a grainier morphological nature which would reduce the efficiency of the 

hydroxide insertion/extraction process. Hence resulting in an irreversible redox 

system with reduced EC performance.   
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Figure 4.15. CVs for the oxidation and reduction process for the as-deposited hydrated NiO films 

deposited on ITO/glass from 0.01 mol dm-3 solution of nickel nitrate at -0.1 mA (——), -0.2 mA (——), 

-0.4 mA (——) and -0.8 mA (——) for 300 s followed by cycling in aqueous KOH (0.1 mol dm-3) 

electrolyte at 10 mV s-1 (a). The potential range was -0.20 V → +0.65 V → -0.20 V vs. SCE. Visible 

region absorbance spectra of the as-deposited hydrated NiO in the ‘bleached’ state (——) (which was 

similar for all the films deposited at different currents) and coloured (brown-grey) state of films 

deposited at -0.1 mA (——), -0.2 mA (——), -0.4 mA (——) and -0.8 mA (——) (b). Coloured UV-vis 

spectra were recorded after oxidising (-0.20 V → +0.65 V vs. SCE) the films then removing them from 

the KOH electrolyte and measuring the absorbance against a blank ITO/glass. Inserts in (b) illustrate 

the absorbance at maxima (λmax = 490 nm) vs. applied currents. 
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Figure 4.16. Above: Photographs of hydrated NiO films deposited from nickel nitrate solutions        

(0.01 mol dm-3) at different applied currents for 300 s. (a) NiOOH film (film switched to the coloured 

state by cyclic voltammetry between ‒0.20 to +0.65 V vs. SCE at 10 mV s-1, and then removed at 

+0.65 V) and (b) reduced hydrated NiO film. Films were deposited on the lower 30 mm length of each 

7 mm width ITO/glass. Below: High resolution field emission gun scanning electron microscope 

(FEGSEM) images showing the surface of the hydrated NiO films deposited on ITO/glass from  nickel 

nitrate (0.01 mol dm-3) solution at applied currents of -0.1 mA (a), -0.2 mA (b), -0.4 mA (c) and             

-0.8 mA (d) for 300 s. 
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4.4.2. Effect of deposition time 
 

Figure 4.17 (a) and (b) shows the effect of deposition time on the CVs and the 

corresponding visible region absorbance spectra (oxidised brown-grey coloured) of 

the as-deposited hydrated NiO films. The anodic and cathodic peak currents and the 

absorbance increased linearly (insert figure 4.17 (b)) with an increase in deposition 

time, with more electroactive material being deposited. Furthermore, photographs of 

the oxidised (coloured) state show an increased tone of uniform colour change to the 

brown-grey form with increasing deposition time (figure 4.18 pictures (a)). The films 

deposited for 100 and 400 s showed a completely reversible response, with full 

transparency being achieved after film reduction (figure 4.18 pictures (b)). However, 

in the case of film deposited for 800 s, the film still showed signs of brown-grey 

colouration at the edge of the ITO/glass substrate.   

 

In an attempt to establish the film thickness, cross-sectional FEGSEM images were 

taken of the samples. However, as the films were very thin, the FEGSEM instrument 

was not able to produce suitable focused images down to the required magnification. 

Therefore, film thickness was calculated using Faraday’s law by integrating the 

current under the oxidation peak (figure 4.17 (a)). Calculated film thicknesses were 

approximately 17, 52 and 82.5 nm for hydrated NiO films deposited at -0.2 mA for 

100, 400 and 800 s, respectively. An illustrative calculation is shown for hydrated 

NiO film deposited on ITO/glass at -0.2 mA for 800 s. 

 

The moles of hydrated NiO was: 

 
𝑐ℎ𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠⁄

𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 =  70.52 × 10−3 1⁄

 96485
 = 7.3 × 10−7 𝑚𝑜𝑙            (4.7) 

 

The mass of hydrated NiO was: 

 

𝑚𝑎𝑠𝑠 = 𝑚𝑜𝑙𝑒𝑠 × 𝑀𝑟 = 7.3 ×  10−7  × 92.70808 =  6.8 × 10−5𝑔            (4.8) 

 

ITO/glass surface area = 2.1 cm2 
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6.8 × 10−5

2.1
= 3.3 × 10−5 𝑔 𝑐𝑚−2 = 0.033 ×  10−3 𝑚𝑔 𝑐𝑚−2 

 

Hydrated NiO density = 4 g/cm3 

 

𝑚𝑎𝑠𝑠
𝑣𝑜𝑙𝑢𝑚𝑒

=  0.033 ×10−3

4
= 8.25 ×  10−6 𝑐𝑚 = 8.25 ×  10−8 𝑚 = 82.5 𝑛𝑚          (4.9) 

 

Figure 4.18 also shows the surface morphologies of the deposited films. From the 

FEGSEM images, it can be seen that with increasing deposition time the films’ 

porosity also increased with the interconnecting flake-like structure growing 

vertically.  
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Figure 4.17. CVs for the oxidation and reduction process for the as-deposited hydrated NiO films 

deposited on ITO/glass from 0.01 mol dm-3 solution of nickel nitrate at -0.2 mA for 100 s (——),       

400 s (——) and 800 s (——) followed by cycling in aqueous KOH (0.1 mol dm-3) electrolyte at          

10 mV s-1 (a). The potential range was -0.20 V → +0.75 V → -0.20 V vs. SCE. Visible region 

absorbance spectra of the as-deposited hydrated NiO in the ‘bleached’ state (——) (which was similar 

for all the films deposited at different currents) and coloured (brown-grey) state of films deposited at    

-0.1 mA for 100 s (——), 400 s (——) and 800 s (——). Coloured UV-vis spectra were recorded after 

oxidising (-0.20 V → +0.75 V vs. SCE) the films then removing from the KOH electrolyte and 

measuring the absorbance against a blank ITO/glass. Inserts in (b) illustrate the absorbance at 
maxima (λmax = 490 nm) vs. different deposition times. 
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Figure 4.18. Above: Photographs of hydrated NiO films deposited from nickel nitrate solutions        

(0.01 mol dm-3) at different applied current of -0.2 mA at different times. (a) NiOOH film (film switched 

to the coloured state by cyclic voltammetry between ‒0.20 to +0.75 V vs. SCE at 10 mV s-1, and then 

removal at +0.75 V) and (b) reduced hydrated NiO film. Films were deposited on the lower 30 mm 

length of each 7 mm width ITO/glass. Below: High resolution field emission gun scanning electron 

microscope (FEGSEM) images showing the surface of the hydrated NiO films deposited on ITO/glass 

from nickel nitrate (0.01 mol dm-3) solution at applied current of -0.2 mA  for 100 s (a), 400 s (b) and 

800 s (c). 
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4.4.3. Effect of nickel nitrate concentration  
 

The effect of different nickel nitrate concentration on the deposition of hydrated NiO 

films can be seen in figure 4.19. From the CVs, it can be seen that peak currents for 

the oxidation and reduction redox processes increase as the nickel nitrate 

concentration increases (0.005 to 0.05 mol dm-3). However, the visible region 

absorbance value is maximum for the film deposited using 0.01 mol dm-3 

concentration solution (figure 4.19 (b)). At the higher concentration of 0.1 mol dm-3 

the deposition efficiency is reduced and the redox process becomes less reversible. 

Similar observations were also reported by Streinz et al.28 they found that the 

deposition efficiency decreased as the nickel nitrate concentration increased above 

0.1 mol dm-3. They concluded that at high concentrations the formation of a soluble 

cluster ion complex [Ni4(OH)4]4+ hindered the precipitation of hydrated NiO due to 

the complex diffusing away from the electrode back into the bulk solution, however, 

they did not present evidence of the existence of this complex.  

 

Films deposited from low concentration solutions (0.005 and 0.01 mol dm-3) showed 

better uniformity than those prepared from 0.05 and 0.1 mol dm-3 (photographs in 

figure 4.20). Furthermore, at higher concentrations the films became irreversible with 

brown-grey colouration still being observed.  

 

Investigation into the stability (drop in charge after the 2nd voltammetric cycle) of 

hydrated NiO films prepared from different concentrations of nickel nitrate solution 

was carried out by calculating the percentage drop in charge (C) as outlined below:  

 

% drop in charge = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐶 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 2
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐶 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 1

 x 100             (4.10) 

 

The calculated drop in charge after two successive colouration/bleaching cycles in 

KOH electrolyte was 0.48, 1.93, 5.3 and 33.9 % for hydrated NiO film deposited from 

0.005, 0.01, 0.05 and 0.1 mol dm-3, respectively.  The relationship between drop in 

charge and concentration of deposition bath can be considered further by examining 

the films’ surface morphologies (FEGSEM images figure 4.20). From the images it 

can be seen that at low concentrations, the morphology is consistent with those of 



4. Preparation and optimisation of electrochromic nickel oxide-based thin films 

86 
 

the interconnecting porous, flake like structure. However, at high concentration a 

contrasting morphology was observed. The scattered clusters of hydrated NiO 

particles appear less porous, which agrees with the lack of reversibility shown in 

photographs in figure 4.20. Also, the low stability after two colouration/bleaching 

cycles would suggest that at high concentration, the possible formation of soluble 

cluster ion complex takes place, which delaminates away from the surface of the 

ITO/glass during redox cycling in KOH electrolyte.  
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Figure 4.19. CVs for the oxidation and reduction processes for the as-deposited hydrated NiO films 

deposited on ITO/glass at -0.2 mA for 800 s from nickel nitrate concentrations of 0.005 (——), 0.01 

(——), 0.05 (——) and 0.1 mol dm-3 (——) followed by cycling in aqueous KOH (0.1 mol dm-3) 

electrolyte at 10 mV s-1 (a). The potential range was -0.20 V → +0.75 V → -0.20 V vs. SCE. Visible 

region absorbance spectra of the as-deposited hydrated NiO in the ‘bleached’ state (——) (which was 

similar for all the films deposited at different currents) and coloured (brown-grey) state of films 

deposited from 0.005 (——), 0.01 (——), 0.05 (——) and 0.1 mol dm-3 (——) (b). Coloured UV-vis 

spectra were recorded after oxidising (-0.20 V → +0.75 V vs. SCE) the films then removing from the 

KOH electrolyte and measuring the absorbance against a blank ITO/glass. Inserts in (b) illustrate the 

absorbance at maxima (λmax = 490 nm) vs. different nickel nitrate concentrations. 
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Figure 4.20. Above: Photographs of the hydrated NiO films deposited from different concentration of 

nickel nitrate solutions at an applied current of -0.2 mA for 800 s. (a) NiOOH film (film switched to the 

coloured state by cyclic voltammetry between ‒0.20 to +0.75 V vs. SCE at 10 mV s-1, and then 

removed at +0.75 V) and (b) reduced hydrated NiO film. Films were deposited on the lower 30 mm 

length of each 7 mm width ITO/glass. Below: High resolution field emission gun scanning electron 

microscope (FEGSEM) images showing the surface of the hydrated NiO films deposited on ITO/glass 

from nickel nitrate concentrations of 0.005 (a), 0.01 (b), 0.05 (c) and 0.1 (d) at an applied current of -

0.2 mA for 800 s. 
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4.4.4. Effect of different transparent conducting oxide (TCO) substrates 
 

The use of transparent conducting oxide (TCO) semiconductors is essential for most 

optoelectronic device applications such as flat panels and smart windows. The most 

widely used and available TCO’s are tin-doped indium oxide (In2O3(Sn), ITO) on 

glass or fluorine-doped tin oxide (SnO2:F, FTO) on glass. Historically, the more 

dominant of the two has been ITO/glass, due to its high demand and use in hand-

held smart devices and flat panel displays.31,32 On the other hand, the architectural 

use towards energy-efficient smart windows has often involved deposition on 

FTO/glass, due to its efficiency in preventing radiative heat loss33 and high optical 

and electrical properties. 

 

More recently, it has become apparent that due to the high demand for ITO 

transparent electrodes in the past six years the price of indium has increased from 

around US $100 to nearly $1000 per kilogram.34 Furthermore, due to its short supply 

it has been predicted that indium, a silvery metal produced as a by-product of zinc 

mining could become scarce within the next 10 years. Due to these reasons, there 

has been a surge in recent developments to produce alternative TCO’s with low 

resistivity. A detailed survey of these potential TCO’s can be found elsewhere.32  

 

In this section, a comparative study of ITO and FTO/glass is discussed, with the aim 

of examining the durability of the deposited hydrated NiO film during continuous 

redox cycling in KOH electrolyte. 

 

Figure 4.21 (a) and (b) shows the stability of hydrated NiO films deposited on both 

ITO and FTO/glass substrates over 50 colouration/bleaching cycles, respectively. 

From the CVs it can be seen that the film stability is much greater on FTO/glass than 

ITO/glass, as indicated by the reduction in both the oxidation and reduction peak 

currents on continuous cycling of the latter. Furthermore, figure 4.21 (c) and table 4.2 

shows the film degradation to be 95.3 and 26.8 % on ITO/glass and FTO/glass, 

respectively. This trend can be further considered by examining the AFM images of 

the as-deposited and films after 50 cycles. The imaging was carried out in Tapping 

Mode (TM-AFM) using a high resonant frequency (HRF) at approximately 300 kHz - 
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silicon probe. The scan frequency was 2 Hz. From the images it is clear that the 

morphology of the film after 50 cycles appears to change considerably on ITO/glass 

(figure 4.22 (a)). The film after 50 cycles shows a smoother surface when compared 

to the 1st cycle which indicates that the film has delaminated away from the surface 

or re-dissolved into the electrolyte. On FTO/glass the film morphology for both the 1st 

and the 50th cycle show similar morphology indicating that the film is still adherent 

(figure 4.22 (b)).   

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-1.0

-0.5

0.0

0.5

1.0

1.5 a

 

 

Cu
rre

nt
 / 

m
A

Potential / V vs SCE
0.0 0.1 0.2 0.3 0.4 0.5 0.6

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
b

 

 

Cu
rre

nt
 / 

m
A

Potential / V vs SCE

 
Figure 4.21. CVs showing the durability of the as-deposited hydrated NiO films prepared at an 

applied current of -0.6 mA for 50 s on ITO/glass (a) and FTO/glass (b) then cycled in aqueous KOH 

(0.1 mol dm-3). The potential range was ‒0.20 V → +0.55 V → ‒0.20 V vs. SCE for 50 cycles at the 

scan rate of 10 mV s-1. Every 10th CV is shown in figures (a) and (b). Charge vs. cycle number for 

hydrated NiO film prepared on ITO/glass (——) and FTO/glass (——) (c). The arrows in (a) and (b) 

indicate film degradation on increasing cycle number. 
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Table 4.2. Percentage drop in charge after 50 successive colouration/bleaching cycles in KOH 

electrolyte. Hydrated NiO films were deposited on ITO/glass or FTO/glass from nickel nitrate (0.01 

mol dm-3) solution by applying a current of -0.6 mA for 50 s. 

 
TCO substrate Drop in charge 

(%) film 1 

Drop in charge  

(%) film 2 

Drop in charge 

(%) film 3 

Average Drop 

in charge (%) 

ITO/glass 95.2 96.1 94.7 95.3 

FTO/glass 26.5 27.1 26.8 26.8 

 

The improved durability on FTO/glass can be explained with reference to AFM 

images of the bare TCO’s on glass (figure 4.23 (a)). From the images it can be seen 

that FTO/glass has a higher surface roughness average (Ra = 14.5 nm) than 

ITO/glass (Ra = 3.6 nm). As a result, the deposition of hydrated NiO particles takes 

place deep into the grooves and pores of the FTO conducting film and during cycling 

the amount of film delaminated from the surface is reduced. 
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Figure 4.22. Atomic force microscopy (AFM) images showing the surface morphology of the as-

deposited film and after cycling 50 times in aqueous KOH (0.1 mol dm-3). Hydrated NiO films prepared 

at applied current of -0.6 mA for 50 s on ITO/glass (a) and FTO/glass (b). The image space for all four 

samples was identical, however, the scale of the AFM image in (a) after 50 cycles is given in microns.  

After 50 cycles 
a 

After 50 cycles b 
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Figure 4.23. Atomic force microscopy (AFM) images showing the surface morphology and the Ra 

values of the bare ITO/glass (Ra = 3.6 nm) (a) and FTO/glass (Ra = 14.5 nm) (b). The image space of 

samples (a) and (b) were identical, however, the scale of the AFM image in (a) is given in microns.  

 

 

4.4.5. Substrate pre-treatment 
 

Another technique which has been employed elsewhere35,36 is to anodically polarise 

the conducting substrate in KOH (1.0 mol dm-3) solution prior to film deposition. This 

pre-treatment is said to be necessary for the formation of a uniform and adherent 

film. Figure 4.24 shows films of hydrated NiO deposited onto FTO/glass without and 

with pre-treatment. From the images it is observed that deposition without any pre-

treatment (figure 4.24 (a)) produces patchy and non-uniform film. On the other hand, 

deposition following pre-treatment significantly improves the uniformity of the film 

(figure 4.24 (b)). As a result of this observation all consequent films were grown after 

pre-treatment at small and large scale.  

a b 
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Figure 4.24. Photographs of films deposited at -0.6 mA cm–2 for 50s on FTO/glass without 

polarisation (a) and with polarisation (b) at 2 mA cm–2 for 30s in KOH (1.0 mol dm-3) solution. 
 

4.4.6. Crystalline phase of the as-deposited hydrated NiO films 
 

Figure 4.25 (a) shows the powder XRD patterns for hydrated NiO films deposited on 

ITO and FTO/glass. In both cases, the XRD patterns are characteristic for the 

ITO/glass (International Centre for Diffraction Data (ICDD) Powder Diffraction File 

(PDF) 89-4596) and FTO/glass (41-1445), with the hydrated NiO films being of an 

amorphous nature. These results are in agreement with those obtained by Garcia-

Miquel et al.37 who prepared their NiO thin films onto conducting glass by a sol-gel 

technique. They found the NiO films to be predominantly amorphous. In an attempt 

to improve the crystallinity, numerous samples of different thickness were prepared 

onto both ITO/glass and FTO/glass, however the XRD patterns were still of an 

amorphous nature.   

 

XRD patterns where then recorded on hydrated NiO powder which was obtained by 

scraping away the film deposited onto a palladium foil electrode (50 x 50 mm) from 

nickel nitrate (0.01 mol dm-3) solution at an applied current of -0.2 mA for 10 hours. 

This process was repeated until enough powder was accumulated. The XRD pattern 

recorded on this sample is shown in figure 4.25 (b), which can be assigned to a 

typical alpha-phase jamborite NiO (25-1363) and is consistent with the XRD analysis 
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by Wohlfahrt-Mehrens et al.38 who also prepared their film by an electrochemical 

cathodic deposition technique. 
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Figure 4.25. (a) Powder XRD patterns for hydrated NiO film deposited from nickel nitrate (0.01 mol 

dm-3) solution at an applied current of -0.2 mA for 800 s on ITO/glass (*shows the reflections due to 

ITO) (——) and FTO/glass (#shows reflections due to FTO) (——). (b) XRD patterns for hydrated NiO 

powder accumulated by scraping the film away from a palladium foil electrode (50 x 50 mm). Film 

deposited from nickel nitrate (0.01 mol dm-3) solution at an applied current of -0.2 mA for 10 hours. 

 

4.5. NiO film preparation by aerosol-assisted chemical vapour 
deposition (AACVD) 

 
Chemical vapour deposition (CVD) is a well-established technique which involves 

homogeneous and heterogeneous chemical reaction of gaseous species leading to 

the formation of powders or films. The process has been used to deposit a wide 

range of materials, including metals, films and coatings for semiconductors, 

optoelectronics, energy conversion devices and refractory ceramic materials used for 

hard coatings and corrosion protection. Advantages of the CVD technique include 

the ability to produce highly pure materials with structural control at atomic or 

nanometre scales and the ability to scale up the process for large area coatings on 

flat or complex shape engineering components. However, the main problems 

associated with this technique are the difficulty of depositing multicomponent 
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materials with well controlled stoichiometry and the lack of volatile precursor 

availability.    

 

As a variant of the conventional CVD process, the aerosol-assisted chemical vapour 

deposition (AACVD) method does not require volatile precursors, but simply soluble 

in a given solvent. When compared to the CVD method, the AACVD route presents 

various advantages:39-43  

 

• a wide choice and availability of precursors for high quality CVD products at 

low cost, which is a critical issue for mass production. 

• simplification of the delivery and vaporisation of precursor via the generation 

of a precursor aerosol. 

• high deposition rate, which may be obtained from a high mass-transport rate 

of the precursor, and the possible improvements of precursor selection. 

• a more flexible reaction environment, since the AACVD can be operated 

under low pressure, atmospheric pressure, or even in an open atmosphere. 

• simplification of the synthesis of multicomponent products with precise 

stoichiometric control. 

 

The AACVD method involves the atomisation of precursor solution into sub-

micrometre-sized aerosol droplets. The droplets are subsequently transported using 

an inert or reactive carrier gas into a heating zone, where the solvent is rapidly 

evaporated, and the chemical precursors undergo decomposition and/or chemical 

reaction near or on a heated substrate to form the desired films.44 A schematic of the 

deposition mechanism is shown in figure 4.26. 

 

For thin film formation, a suitable solvent with high solubility, low vapour pressure 

and low viscosity is used to prepare the starting precursor.45 A wide range of starting 

materials can be used, these include; pure liquid, single-source precursor, a mixture 

of several liquid chemicals or can be prepared by dissolving solid or liquid chemicals. 

Aerosol generators for the atomisation of the starting precursor solution can be 

ultrasonic, pneumatic aerosol jet or electrostatic aerosol atomisation. The most 

common of the three is ultrasonic aerosol generation which uses a piezoelectric 



4. Preparation and optimisation of electrochromic nickel oxide-based thin films 

96 
 

transducer to apply a high-frequency electric field. This causes the transducer to 

vibrate and instigates the formation of fine droplets.46 

 

 

Figure 4.26. Schematic diagram showing the AACVD deposition mechanism. Diagram adapted 

from.39  

 

4.5.1. Crystalline phases identified, film morphology and optical absorption of 
the as-deposited NiO films 

 

Figure 4.27 shows the powder XRD patterns for NiO films prepared using the 

AACVD technique on FTO/glass at different deposition times. The reflections at 

37.3°, 43.3° and 62.9° 2ϴ can be assigned to cubic NiO (International Centre for 

Diffraction Data (ICDD) Powder Diffraction File (PDF) 47-1049). The NiO phase is 

stable and its formation is independent of the film thickness. The intensity of the NiO 

reflections suggests preferred orientation of the films, as the (111) reflection is more 

intense than the (200). In a randomly oriented sample of NiO, the (200) reflection 

should be the most intense. 
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Figure 4.28 shows photographs of the AACVD as-deposited NiO films at the three 

deposition times, with SEM images shown in figure 4.29. Uniform NiO films cover the 

FTO/glass substrate surface and exhibit a nano-scale morphology of octahedral-like 

grains. The cross-sectional SEM images (inserts in figure 4.29) show that film 

thickness increases with deposition time.  

 

Figure 4.30 shows the optical absorption spectra for the as-deposited films recorded 

in the wavelength range 330–820 nm (3.75–1.51 eV). The data were analysed using 

a classical relation for near edge optical absorption in semiconductor materials.47 

Analysing the variation of (αhν)2 vs. photon energy (hν) in eV for NiO films suggests 

a direct interband transition. The band gaps were 3.61, 3.53 and 3.48 eV for the 

NiO(10 min), NiO(15 min) and NiO(20 min) films, respectively. These direct band 

energy values are in good agreement with literature values for NiO thin films grown 

from electrodeposited nickel sulphide followed by thermal oxidation.48 The slight 

decrease in band gap with increasing film thickness is attributed to an increase in 

grain size (figure 4.29). 
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Figure 4.27. Powder XRD patterns for: (a) FTO/glass, (b) NiO(10 min), (c) NiO(15 min), (d) NiO(20 

min) and (e) NiO(20 min) after 3500 oxidative conditioning voltammetric cycles in aqueous KOH (0.1 

mol dm-3). 
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Figure 4.28. Photographs of (a) as deposited NiO films and (b) NiOOH films (following 3500 cycles      

‒0.50 to +0.70 V vs. SCE at 50 mV s-1, and then removal at +0.70 V). Each film was deposited on the 

lower 30 mm length of each 7 mm width FTO/glass). Although the as-deposited (pictures a) films 

appear grey in the pictures, by eye they appear light green. 
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Figure 4.29. SEM images of NiO films deposited on FTO/glass for three deposition times: (a)     

NiO(10 min), (b) NiO(15 min) and (c) NiO(20 min). Inserts illustrate the cross sectional images. 
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Figure 4.30. Optical absorption spectra of (αhν)2 vs. photon energy (hν) for films deposited on 

FTO/glass: (a) NiO(10 min), (b) NiO(15 min) and (c) NiO(20 min). 

 

4.5.2. Transformation of the surface morphology of the AACVD prepared NiO 
films during electrochemical cycling in aqueous KOH (0.1 mol dm-3) 
electrolyte. 

 

Figure 4.31 shows an example of CVs in aqueous KOH (0.1 mol dm-3) electrolyte 

commencing with, in this case, an as-deposited NiO(15 min) film. From the plot it can 

be seen that during the first 50 cycles, a continuous increase in capacity under the 

oxidation and reduction process takes place. This process is known as the so called 

activation period and has been reported for NiO films prepared by sol-gel,37 and 

pulsed laser-deposition.49-51 Furthermore, because of this activation process, on 
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continuous oxidative voltammetric cycling, the octahedral-like grains of as-deposited 

NiO (figure 4.32 (a)) transform to an open porous structure of interconnected flakes 

(figure 4.32 (b)). Such a porous interconnecting structure will enhance the 

intercalation/deintercalation of hydroxide ions (equation (4.11), a simplified form of 

the redox process)) during electrochemical cycling, thus leading to enhanced EC 

performance. Similar porous morphologies have been previously reported in the 

literature for NiO-based films prepared by chemical bath deposition methods.7, 52 

 

NiO + OH- NiOOH + e-                 (4.11) 
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Figure 4.31. CVs starting from the as-deposited NiO(15 min) film in aqueous KOH (0.1 mol dm-3). The 

potential range was ‒0.50 V → +0.70 V → ‒0.50 V vs. SCE for 50 cycles at the scan rate of             

50 mV s-1. 

 

The electrochemically generated porous NiO is EC and oxidatively switches 

(Equation (4.11)), from a ‘bleached’ (transmissive light green) state to the coloured 

nickel oxyhydroxide (NiOOH) (deep brown - for photographs see figure 4.28) state. 

On continuous cycling, this process of morphology transformation is enhanced as 

the peak currents gradually increase with cycle number (figure 4.31). 

 

The two broad redox peaks in the CVs (figure 4.31) are associated with the 

colouration and bleaching process for NiO,53 one anodic peak (A1), responsible for 

the oxidation and one cathodic peak (A2), for the reduction process. For all sets of 

such CVs, an increase in anodic current after +0.60 V (B) is observed which 
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corresponds to the beginning of the oxygen evolution reaction (OER). These CV 

features are similar to those obtained for NiO thin films initially prepared by 

electrodeposition9 and chemical bath deposition54 techniques. The anodic and 

cathodic peak currents increase (figure 4.33) with an increase in deposition time, 

with more electroactive material being available. XRD data collected on this sample 

showed NiO still to be present (figure 4.27(e)), but the relative intensities were now 

different to the original deposited film, with the (200) reflection especially reduced in 

intensity. This agrees with the morphology changes shown in the SEM images 

(figure 4.32).   

 

 
Figure 4.32. SEM images of NiO(15 min) films deposited on FTO/glass: (a) as-deposited and (b) 

following 3500 electrochemical cycles in aqueous KOH (0.1 mol dm-3). 
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Figure 4.33. The 100th CV (at 50 mV s-1) in aqueous KOH (0.1 mol dm-3) of films prepared from as-

deposited NiO(10 min) (——), NiO(15 min) (——) and NiO(20 min) (——). 
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4.6. Conclusion  
 

This chapter described the formation of hydrated NiO (Ni(OH)2) films by an 

electrochemical cathodic deposition technique. The effect of different nickel salt 

solutions on depositing hydrated NiO films was examined. It was established that 

deposition using nickel nitrate solution produced films with a uniform porous 

interconnecting flake-like structure. Such morphology is generally regarded as 

favourable for the intercalation/deintercalation of hydroxide ions during redox cycling. 

In the case of deposition from nickel chloride and sulphate solutions, the coexistance 

of hydrated NiO and metalic nickel produced a non-uniform deposit. The effect of 

different bath composition for the electrodeposition of nickel was also examined. The 

deposition of nickel was found to be a complex process, with simultaneous hydrogen 

evolution playing a key role towards inhibiting the deposition process. The use of 

boric acid and a commercially available Watts bath composition was found to 

increase the efficiency of nickel deposition. 

 

Various deposition factors were investigated in order to optimise the preparation of 

electrochromic (EC) hydrated NiO films. With deposition on FTO/glass using nickel 

nitrate (0.01 mol dm-2) solution at an applied current of -0.2 mA for 800 s being 

optimal for preparing uniform and durable deposits. 

 

Finally, aerosol-assisted chemical vapor deposition (AACVD) was used for the 

preparation of nickel(II) oxide (NiO) thin films. The as-deposited films were confirmed 

to be cubic NiO from analysis of powder X-ray diffraction data, with an optical band 

gap that decreased from 3.61 to 3.48 eV with an increase in film thickness (in the 

range 500-1000 nm). The as-deposited films had an octahedral-like grain structure. 

On oxidative voltammetric cycling in aqueous KOH (0.1 mol dm-3) electrolyte the 

morphology gradually changed to an open porous NiO structure.   
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5. Electrochromic properties and colorimetric 
measurements 

 

5.1. Introduction 
 

Over the past decade, electrochromic (EC) materials and devices have progressed 

significantly, with widespread applications particularly in emerging technologies. The 

increasing numbers of publications and patents filed in this area of research have 

often used formulated quantifiable parameters in order to compare different materials 

and devices (chapter 2). Furthermore, these formulated performance parameters 

can also be used to identify potential candidates towards commercialisation.  

 

Quantitative measurements of colour on switching between the ‘bleached’ and 

coloured states is also considered to be an important factor, as choice of specific 

colours required will vary depending on the device application. In this regard, the 

development of a colorimetry (colour measurement) method, which allows a 

quantitative description of colour and relative transmissivity as sensed by the human 

eye has received much effort.1 Quantifying or comparing two colours can be quite 

difficult as colour is a subjective phenomenon.2,3 

 

In colorimetry, a numerical description of the colour stimulus is given by measuring 

the human eye’s sensitivity to light across the visible region. Colour is described by 

three attributes. The first attribute is described as the location in the spectral 

sequence, i.e., what wavelength is associated with the colour. This is known as the 

hue, dominant wavelength, or chromatic colour, and is the wavelength where 

maximum contrast occurs. The second attribute, known as saturation, chroma, tone, 

intensity, or purity relates to the level of white and/or black. The third attribute, 

luminance of the colour is very important as it provides information about the 

perceived transparency of a sample over the entire visible range and is referred to as 

value, lightness, or brightness.  
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To generate chromaticity coordinates from the output of a visible region 

spectrophotometer, a computer spreadsheet was used which contains numerical 

data describing the colour-matching chromatic responses of the three types of cone 

in the human eye in the CIE Standard Observer. In the spreadsheet, the CIE 

tristimulus values X, Y and Z are calculated by discrete numerical summation, over 

the wavelength range, of the product of the colour-matching functions and the 

normalised spectral power distribution. In order to represent colour in 2-D space, the 

tristimulus values are converted to chromaticity coordinates (x, y, z) by the following 

equations:  

 

𝑥 =  𝑋
𝑋+𝑌+𝑍

                   (5.1) 

𝑦 =  𝑌
𝑋+𝑌+𝑍

                   (5.2) 

𝑧 =  𝑍
𝑋+𝑌+𝑍

= 1 − 𝑥 − 𝑧                 (5.3) 

 

Finally, the luminance factor YL is calculated as the ratio of the luminance of the 

transmitter (Y) to that of a perfect transmitter (Y0) under the same conditions: 

 

𝑌𝐿 =  𝑌
𝑌0

                   (5.4) 

 

A flow chart that describes the processing of data in the exact sequence of 

operations is given in reference.4 

 

CIE introduced the CIE L*a*b* (CIELAB) system in 1976, which is a uniform colour 

space defined to be a geometrical construct containing all possible colour 

sensations. This CIE L*a*b* space is formulated in such a way that equal distances 

correspond to colours that are perceptually equidistant, and is a standard commonly 

used in the paint, plastic, and textile industries. The values of L*, a* and b* are 

defined as in equations: 

 

𝐿∗  = 116 ×  � 𝑌
𝑌𝑛
�
1/3

− 16                 (5.5) 

𝑎∗  = 500 ×  �� 𝑋
𝑋𝑛
�
1/3

− � 𝑌
𝑌𝑛
�
1/3
�                (5.6) 
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𝑏∗ = 200 ×  �� 𝑌
𝑌𝑛
�
1/3 

− � 𝑍
𝑍𝑛
�
1/3
�                (5.7) 

 

where Xn, Yn, and Zn are the tristimulus values of a perfect reflecting diffuser (as 

calculated from the background measurement). In the L*a*b* chromaticity diagram, + 

a* relates to the red direction, – a* is the green direction, + b* is the yellow direction, 

and – b* is the blue direction. The centre of the chromaticity diagram (0, 0) is 

achromatic; as the values of a* and b* increase, the saturation of the colour 

increases. 

 

In 2000, Reynolds and co-workers reported a simple portable colorimeter to 

introduce an in-situ colour measurement method for the precise control and 

measurements of the colour in electrochromic (EC) materials and devices.5 This 

technique has since been used to characterise several EC systems, including: 

conjugated polymer films and devices,6-27 thin films of WO3
28 and an inorganic-

organic electrochromic device (ECD) based on tungsten oxide and polyaniline.29 

However, studies concerning the chromaticity analysis of EC nickel oxide (NiO) films 

are limited and have focused on using a single deposition process. Avendaño et al.30 

(2004) investigated the optical properties of EC NiO films containing various metal 

additives, and more recently Dalavi et al.31 measured the EC performance of sol-gel 

deposited NiO thin films.  

 

This chapter will outline the EC properties of NiO and hydrated NiO films prepared 

on fluorine-doped tin oxide (SnO2:F, FTO) on glass by electrochemical cathodic 

deposition and aerosol-assisted chemical vapor deposition (AACVD) techniques. To 

date, there is no apparent work on the colorimetric measurements of NiO films 

prepared by these two deposition techniques. Therefore, sections 5.4 and 5.5 will 

contain the chromaticity data generated using an earlier established Microsoft® 

Excel® spreadsheet4 for the accurate calculation of CIE (Commission Internationale 

de l’Eclairage)1 1931 xy chromaticity coordinates and luminance data. Also, 

electrochemical measurements and chromaticity data produced for EC NiO and 

hydrated NiO thin films prepared by three different deposition techniques will be 

compared to highlight the differences in the redox process and any changes in the 

shade of colour on switching between the oxidised and reduced states.  
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5.2. Electrochromic properties of hydrated NiO thin films prepared by 
electrochemical cathodic deposition 

 

In chapter 4, hydrated NiO films of different thicknesses and uniformity were 

produced for different deposition times and current densities in order to aim for film 

optimisation. Three of these films were examined further to evaluate their EC 

properties. Table 5.1 gives in-situ spectral data and calculated EC performance 

parameters for square-wave potential switching between the ‘bleached’ and coloured 

forms for as-deposited hydrated NiO films deposited at different times. For all three 

deposition times, similar colouration efficiency values were produced. Since the film 

deposited at 800 s showed the highest change in absorbance between the 

‘bleached’ and coloured state, only the figures obtained for this film are shown. 

 
Table 5.1. In-situ spectral data and EC performance parameters on square wave switching (0.00 V → 

+0.47 V → ‒0.10 V vs. Ag wire pseudo reference electrode) between the ‘bleached’ and coloured 

states in aqueous KOH (0.1 mol dm-3).a Hydrated NiO films were deposited on FTO/glass from nickel 

nitrate (0.01 mol dm-3) solution by applying a current of -0.2 mA for 100, 400 and 800 s. 

 
Film deposition 

time (s) 

%Tb %Tc Δ%T ΔA CE/ cm2 C-1 

film 1 

CE/ cm2 C-1 

film 2 

CE/ cm2 C-1 

film 3 

Average 

CE/ cm2 C-1 

100 96.7 56.4 40.3 0.23 30.2 27.8 27.1 28.4 

400 97.0 15.7 81.3 0.82 34.3 31.8 32.2 32.9 

800 97.1 13.9 83.2 0.87 30.1 28.2 30.4 29.6 

 
aTb = transmittance of ‘bleached’ form, Tc = transmittance of coloured form, Δ%T = change in 

transmittance between the ‘bleached’ and coloured forms, ΔA = change in absorbance, CE = 

colouration efficiency, tc and tb = switching times for colouration and bleaching. All measurements 

were taken at 432 nm, which had been found to be the wavelength for maximum absorbance change. 

 

Figure 5.1 shows the transmittance spectra of the as-deposited hydrated NiO film 

(prepared via electrochemical cathodic deposition by applying a cathodic current of   

-0.2 mA for 800 seconds) in the ‘bleached’ and coloured states. On oxidation, the 

fully transparent hydrated NiO film was darkened to a brown-grey colour NiOOH 

phase, with the corresponding decrease in transmittance throughout the visible 
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region. The maximum change in optical transmittance (Δ%T) of 83.2% was achieved 

at λmax (432 nm). Such a large Δ%T value is seen as favourable for application 

towards architectural smart windows. 
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Figure 5.1. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states for the 

as-deposited hydrated NiO film in aqueous KOH (0.1 mol dm-3). Hydrated NiO film prepared on 

FTO/glass via electrochemical cathodic deposition from nickel nitrate (0.01 mol dm-3) solution by 

applying a cathodic current of -0.2 mA for 800 seconds. 

 

Spectral data were further used to calculate the electrical power consumption of the 

EC film, expressed as the colouration efficiency (CE = (ΔA)432 nm/Qi), where (ΔA) is 

the absorbance change between the ‘bleached’ and coloured states and Qi is the 

charge density (mC cm-2) for each switching process. An illustrative calculation is 

shown below for hydrated NiO film deposited on FTO/glass at -0.2 mA for 800 s 

(equation 5.8). Figure 5.2 shows the current-time, charge-time transients and visible 

region absorbance spectra on switching between the reduced (‘bleached’) and 

oxidised (coloured) states. Each charge density was calculated by integration of the 

current-time transient, recorded on switching colour states (figure 5.2 (b)). Between 

12 and 21 s the slight increase in current and charge was due to the beginning of the 

oxygen evolution reaction (OER). The highest values of ΔA and CE (average of 

three films) were recorded as 0.87 and 32.9 cm2 C-1 (table 5.1 and figure 5.3) at 432 

nm, respectively. This CE value is greater than those obtained for other EC materials 

such as TiO2 (7.6 cm2 C-1),32 Nb2O5 (10 cm2 C-1),33 but lower than WO3          

(118 cm2 C-1),34 which is the most widely studied EC material. 
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Calculation of CE of a hydrated NiO film: 

 

𝐶𝐸𝜆 = 432 𝑛𝑚 =  (Δ𝐴)432 𝑛𝑚
𝑄𝑖

=  0.87
0.031

= 28.2 𝑐𝑚2𝐶−1              (5.8) 
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Figure 5.2. Current vs. time (a), charge vs time transients (b) and visible region absorbance spectra 

((c) and (d), spectra recorded every 1 s from t = 0), for the reversible switching of hydrated NiO film in 

aqueous KOH (0.1 mol dm-3) between the transmissive ‘bleached’ state and the coloured (brown-

grey) state. EC switching was conducted by application of potential steps (0.00 V → +0.47 V → ‒0.10 

V) vs. the Ag wire pseudo reference electrode. In (c) and (d) the arrows indicate the direction of 

change in absorbance. 
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Figure 5.3. Change in absorbance and colouration efficiency of hydrated NiO film recorded in the 

wavelength range of 320-820 nm. 

 

Response time is defined as the time required for obtaining partial or total change in 

absorbance between states and is another factor which is of great importance for EC 

devices.35 Although, display devices often require response times of milliseconds or 

less, EC materials for smart window applications can tolerate slow colour change of 

seconds or even minutes. Here, response times are reported as the time taken for 

the absorbance to reach 95% of the total change for both colouration (tc) and 

‘bleaching’ (tb) processes with values calculated to be 12.0 s for tc and 9.5 s for tb 

process (figure 5.4).  

 

Cycle life is one of the key parameters for commercialisation as it is an experimental 

measure of the film durability. Figure 5.5 (a) shows cyclic voltammograms (CVs) 

recorded for the as-deposited hydrated NiO films after the 1st and 50th cycles in KOH 

(0.1 mol dm-3). After 50 colouring and bleaching cycles, 17.2 % of the charge had 

faded. The visible in-situ transmittance spectra of the film were also recorded 

following the 1st and 50th cycles. The transmittance of the ‘bleached’ state was 98.5% 

and 72.7% respectively, after the 1st and 50th cycles. The transmittance of the 

‘coloured’ state was 13.7% and 16.7% respectively, after the 1st and 50th cycles. The 

change in transmittance between the 1st (Δ%T = 84.8%) and 50th (Δ%T = 56.0%) 

cycle was 28.8%.  



5. Electrochromic properties and colorimetric measurements 

116 
 

-10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Ab
so

rb
an

ce
 / 

a.
u.

Time / s
 

Figure 5.4. Absorbance vs. time transient for the as-deposited hydrated NiO film. Absorbance taken 

every 1 s at 432 nm, for the reversible switching of films in aqueous KOH (0.1 mol dm-3) between the 

transmissive ‘bleached’ state and the coloured (brown-grey) state. EC switching was conducted by 

application of potential steps (0.00 V → +0.47 V → -0.10 V) vs. the Ag wire pseudo reference 

electrode.  
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Figure 5.5. CVs (a) and visible region in-situ transmission spectra (b) for hydrated NiO film for the 1st 

(——) and 50th (——) CV. The film was cycled for 50 times (‒0.20 → +0.75 → ‒0.20 V vs. SCE) at 10 

mV s-1. Visible region in-situ transmission spectra were recorded for the ‘bleached’ and coloured 

states in the wavelength range of 320–820 nm in aqueous KOH (0.1 mol dm-3). EC switching for 

visible region spectra was conducted by application of potential steps (0.00 V → +0.47 V → ‒0.10 V) 

vs. the Ag wire pseudo reference electrode.  
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5.3. Electrochromic properties of NiO-based thin films prepared by 
AACVD technique 

 

Table 5.2 gives in-situ spectral data and calculated EC performance parameters for 

square-wave potential switching between the ‘bleached’ and coloured forms after the 

as-deposited NiO films (prepared by AACVD for 10, 15 and 20 minutes) had been 

subject to 50, 100 and 500 continuous conditioning oxidative voltammetric cycles in 

aqueous KOH (0.1 mol dm-3) electrolyte. Figure 5.6 shows example visible region in-

situ transmittance spectra, in this case for the as-deposited NiO(15 min) film, and in 

the oxidised NiOOH coloured state, following increasing numbers of conditioning 

cycles. For such a film, it is noted from table 5.2, that after 500 cycles the change in 

optical transmittance between the ‘bleached’ and coloured forms increased from 

21.4% to 54.8% when measured at 550 nm. This increase in transmittance change 

between the ‘bleached’ and coloured state on continuous cycling is due to the 

gradual change in film morphology from octahedral-like grains to a high surface area 

of porous interconnecting flakes (chapter 4). Such porous morphology shows greater 

EC performance due to increased contact between active material and electrolyte for 

facilitating hydroxide ion penetration. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



5. Electrochromic properties and colorimetric measurements 

118 
 

Table 5.2. In-situ spectral data and EC performance parameters on square wave switching (0.00 V → 

+0.50 V → ‒0.20 V vs. Ag wire pseudo reference electrode) between the ‘bleached’ and coloured 

states after the as-deposited NiO films had been subject to 50, 100, and 500 continuous conditioning 

oxidative voltammetric cycles in aqueous KOH (0.1 mol dm-3)a 

 
original film 

source 

cycle 

no. 

%Tb %Tc Δ%T ΔA CE/ cm2 C-1 tc/tb (s) 

NiO(10 min) 50 86.8 66.6 22.0 0.11 39.6 3.2/2.7 

NiO(10 min) 100 85.6 55.4 30.2 0.19 40.3 3.4/2.9 

NiO(10 min) 500 84.6 30.9 53.7 0.44 34.6 5.6/3.8 

NiO(15 min) 50 75.3 53.9 21.4 0.18 55.3 2.8/2.7 

NiO(15 min) 100 74.8 46.4 28.4 0.21 45.0 4.1/3.6 

NiO(15 min) 500 74.4 19.6 54.8 0.58 39.8 5.7/5.6 

NiO(20 min) 50 65.9 33.7 32.2 0.30 41.8 5.0/4.2 

NiO(20 min) 100 65.5 24.0 41.5 0.44 41.8 5.0/4.2 

NiO(20 min) 500 66.3 12.5 53.8 0.72 32.5 7.4/6.5 

 
aTb = transmittance of ‘bleached’ form, Tc = transmittance of coloured form, Δ%T = change in 

transmittance between the ‘bleached’ and coloured forms, ΔA = change in absorbance, CE = 

colouration efficiency, tc and tb = switching times for colouration and bleaching. All measurements 

were taken at 550 nm, which had been found to be the wavelength for maximum absorbance change. 
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Figure 5.6. Visible region in-situ transmission spectra recorded in the wavelength range 320–820 nm 

in aqueous KOH (0.1 mol dm-3), showing spectra of the coloured state as it forms with conditioning 

oxidative voltammetric cycle number. As-deposited NiO(15 min) film at 0.00 V vs. Ag wire pseudo 

reference electrode (——). As-deposited NiO(15 min) film at +0.40 V vs. Ag wire pseudo reference 

electrode (——). NiO(15 min) film at +0.40 V vs. Ag wire pseudo reference electrode, following 50 

voltammetric cycles ‒0.50 V → +0.70 V → ‒0.50 V vs. SCE (——). NiO(15 min) film at +0.40 V vs. Ag 

wire pseudo reference electrode, following 100 voltammetric cycles  ‒0.50 V → +0.70 V → ‒0.50 V 

vs. SCE (——). NiO(15) film at +0.60 V vs. Ag wire pseudo reference electrode, following 500 

voltammetric cycles ‒0.50 V → +0.70 V → ‒0.50 V vs. SCE (——). All spectra were corrected for the 

transmittance of the uncoated FTO/glass substrate in aqueous KOH (0.1 mol dm-3). 

 

Figure 5.7 shows the transmittance spectra of all the as-deposited NiO films in the 

‘bleached’ and coloured states. Transmittances for both the ‘bleached’ (Tb) and 

coloured (Tc) states decrease as the deposition time increases (table 5.2 and figure 

5.7). On increase of deposition time the extent of colour change in the oxidised form 

increases but the films also appear less transparent in the reduced state (for 

photographs see figure 5.8). The films deposited for 10, 15, and 20 min, followed by 

500 voltammetric cycles, each present the largest contrast (table 5.2), the 

transmittance change (∼54% at 550 nm) between the ‘bleached’ and coloured 

states, being more than that of the films that were conditioned by only 50 and 100 

cycles. 
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Figure 5.7. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states following 

100 voltammetric cycles in aqueous KOH (0.1 mol dm-3): (a) NiO(10 min), (b) NiO(15 min) and (c) 

NiO(20 min). 
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Figure 5.8. Photographs of (a) as deposited NiO films and (b) NiOOH films (following 3500 cycles      

‒0.50 to +0.70 V vs. SCE at 50 mV s-1, and then removal at +0.70 V). Each film was deposited on the 

lower 30 mm length of each 7 mm width FTO/glass). Although the as-deposited (photographs (a)) 

films appear grey in the above, by eye they appear light green. 
 

Figure 5.9 shows examples of current-time transients and visible region absorbance 

spectra on reversibly switching between the ‘bleached’ and coloured states of one of 

the films. On oxidation of the transmissive green ‘bleached’ state, the visible region 

absorbance increases (figure 5.9 (b)) as the deep brown coloured state forms. On 

reduction, the deep brown coloured state reverts to the transmissive green 

‘bleached’ state, with a decrease in the visible region absorbance (figure 5.9 (c)). 

The absorbance change, ΔA, increases with increasing deposition time and the 

number of ‘bleached’/coloured cycles (table 5.2), the highest value (0.88) at 450 nm 

was obtained for NiO(20 min) recorded at 500 cycles (figure 5.10 (a)). The CE value 

(table 5.2 and figure 5.10 (b)) are comparable to those for films obtained by 

electrodeposition(~50 cm2 C-1),36 CVD (44 cm2 C-1),37 spray pyrolysis (30 cm2 C-1),38 

vacuum evaporation (32 cm2 C-1),39 and electrochemical cathodic deposition (30 cm2 

C-1 in section 5.2). 
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a b
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Figure 5.9. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), spectra 

recorded every 0.5 s), for the reversible switching of a NiO(10 min) film in aqueous KOH                 

(0.1 mol dm-3) between the transmissive green ‘bleached’ state and the coloured (deep brown) state. 

EC switching was conducted by application of potential steps (0.00 V → +0.50 V → ‒0.20 V) vs. the 

Ag wire pseudo reference electrode.  In (b) and (c) the arrows indicate the direction of change in 

absorbance. The NiO(10 min) film had first been conditioned by 500 cycles (‒0.50 → +0.70 →           

‒0.50 V) vs. SCE, at 50 mV s-1. 
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Figure 5.10. Change in absorbance of NiO(20 min) film recorded at cycle 500 (a) and colouration 

efficiency of NiO(15 min) film recorded at cycle 100 (b) in the wavelength range of 350–820 nm. 

 

Absorbance vs. time plots (figure 5.11) were used to calculate the response times for 

all the NiO thin films. Table 5.2 also shows the response times, taken for the 

absorbance to reach a total change for both colouration (tc) and ‘bleaching’ (tb) 

processes. Response times for both colouration and ‘bleaching’ increased with both 

increasing number of cycles and film thickness. Generally, response times for the 

colouration process were longer than those for the ‘bleaching’ process. 

 

Figure 5.12 shows the visible in-situ transmittance spectra of the as-deposited 

NiO(10 min) film following the 1000th and 10000th cycles. At 550 nm, the 

transmittance of the ‘bleached’ state was 93.5 and 88.7% respectively, after the 

1000th and 10000th cycles. The transmittance of the ‘coloured’ state was 49.3 and 

47.6%, respectively, after the 1000th and 10000th cycles. The change in 

transmittance between the 1000th (Δ%T = 44.2%) and 10000th (Δ%T = 41.1%) 

cycle was minimal, indicating good adherence of the film and consistent colour-

switching properties. This shows that the NiO film deposited by AACVD is stable and 

suitable for EC window applications. 
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Figure 5.11. Absorbance vs. time transients recorded for NiO(10 min) (——), NiO(15 min) (——) and 

NiO(20 min) (——).Absorbance taken every 0.5 s at 550 nm for the reversible switching of films in 

aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the coloured (deep 

brown) state. EC switching was conducted by application of potential steps (0.00 V → +0.50 V →       

‒0.20 V) vs. the Ag wire pseudo reference electrode. The NiO films had first been conditioned for 500 

cycles (‒0.50 → +0.70 → ‒0.50 V) vs. SCE, at 50 mV s-1.  
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Figure 5.12. Visible region in-situ transmission spectra for a NiO(10 min) film following the 1000th    

(——) and 10000th (——) CV in the ‘bleached’ and coloured states recorded in the wavelength range 

of 320–820 nm in aqueous KOH (0.1 mol dm-3). The film had been cycled for 1000 and 10000 cycles 

(‒0.50 → +0.70 → ‒0.50 V) vs. SCE, at 50 mV s-1. 
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5.4. Colour measurements of hydrated NiO thin films prepared by 
electrochemical cathodic deposition 

 

Table 5.3 shows CIE 1931 %YL xy and CIELAB L*a*b* chromaticity coordinates for 

the hydrated NiO film as calculated from visible region absorbance spectra in figure 

5.2 ((c) and (d)). At the initial applied potential (0.00 V), the reduced (‘bleached’) film 

appears by eye as fully transparent, at which point the coordinates coincided with 

those of the chosen illumination source (the ‘white point’, where x = 0.332, y = 0.347, 

and % YL = 100). On stepping the potential to +0.47 V, films switched to a brown-

grey colour, with an increase in both the x and y coordinates. On switching back to 

the reduced state at an applied potential of -0.10 V, the colour changes back to the 

fully transparent form to highlight the complete reversibility of the redox system. 

 

The xy data from table 5.3 are presented as a hue and saturation track in a 

chromaticity diagram (figure 5.13 (a)). Although the xy chromaticity diagram is not a 

uniform colour space, abrupt changes in the colour are found to correspond with 

significant changes in the xy coordinates. The changes in xy coordinates occur as 

the fully transparent hydrated NiO (figure 5.14 (a)) was oxidised to the coloured 

brown-grey NiOOH redox state (figure 5.14 (b)). Figure 5.13 (a) also shows the 

existence of hysteresis in the xy coordinates track on reversibly switching between 

the oxidised and reduced state. The presence of hysteresis may be due to the lack 

of stabilised chromaticity coordinates as a result of incomplete equilibrium at these 

switching time points. In figure 5.13 (b), the xy data for films prepared from as-

deposited hydrated NiO are overlaid onto the CIE 1931 colour space template, 

showing the track of the xy coordinates between the ‘bleached’ and coloured states. 

In this representation, the line surrounding the horse-shoe shaped area is called the 

spectral locus, giving the visible light wavelength. The most saturated colours lie 

along the spectral locus. The line connecting the longest and shortest wavelength 

contains the non-spectral purples and is known as the purple line. Surrounded by the 

spectral locus and the purple line is the region known as the colour locus, which 

contains every colour that can exist. The hue may be determined by drawing a 

straight line from the white point, through the point of interest to the spectral locus, 
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thus obtaining the dominant wavelength (λd). The construction in figure 5.13 (b) 

gives an estimated value of 593 nm for coloured (brown-grey) state.  

 
Table 5.3. Chromaticity coordinates (CIE 1931 %YLxy and CIELAB L*a*b*) for a hydrated NiO/NiOOH 

film on FTO/glassa 

 

time (s) x y %YL L* a* b* 

0 0.332 0.347 99.9 100 -0.2 -0.3 

1 0.332 0.347 96.6 99 -0.1 -0.2 

2 0.339 0.349 81.4 92 2.1 1.6 

3 0.347 0.350 65.8 85 4.7 3.6 

4 0.355 0.353 53.8 78 6.8 5.7 

5 0.364 0.356 44.8 73 8.0 8.0 

6 0.372 0.359 37.9 68 9.8 9.5 

7 0.379 0.361 32.9 64 10.8 10.8 

8 0.384 0.362 29.4 61 11.0 12.0 

9 0.388 0.363 26.6 59 11.8 12.0 

10 0.390 0.363 24.4 56 12.1 12.1 

11 0.391 0.363 22.8 55 12.3 11.9 

12 0.392 0.363 21.7 54 12.0 12.0 

13 0.394 0.362 20.7 53 12.7 11.7 

14 0.394 0.362 20.0 52 13.0 12.0 

15 0.395 0.362 19.5 51 13.0 12.0 

16 0.396 0.362 19.1 51 13.0 11.7 

17 0.397 0.362 18.7 50 13.1 11.7 

18 0.398 0.362 18.5 50 13.2 11.8 

19 0.398 0.362 18.3 50 13.3 11.8 

20 0.399 0.362 18.1 50 13.4 11.9 

21 0.398 0.364 19.9 52 13.3 12.5 

22 0.392 0.364 24.1 56 12.3 12.4 

23 0.384 0.362 28.9 61 11.3 11.6 
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24 0.376 0.361 35.2 66 10.0 10.5 

25 0.368 0.359 42.7 71 8.5 9.2 

26 0.360 0.357 50.9 77 6.9 7.7 

27 0.353 0.355 60.4 82 5.3 6.0 

28 0.345 0.352 72.0 88 3.3 4.0 

29 0.338 0.350 83.9 93 2.0 2.0 

30 0.334 0.348 92.9 97 0.3 0.6 

31 0.333 0.347 97.1 99 -0.1 -0.1 

32 0.332 0.347 98.6 99 -0.1 -0.2 

33 0.332 0.347 99.2 100 0.0 0.0 

34 0.332 0.347 99.4 100 -0.2 -0.2 

35 0.332 0.347 99.5 100 -0.2 -0.2 

36 0.332 0.347 99.6 100 -0.1 -0.2 

37 0.332 0.347 99.7 100 -0.2 -0.2 

38 0.332 0.347 99.8 100 -0.1 -0.2 

39 0.332 0.347 99.9 100 -0.2 -0.2 

40 0.332 0.347 99.9 100 -0.2 -0.2 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (0.00 V → +0.47 V for 20 s and +0.47 V → ‒0.20 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Figure 5.13. (a) CIE 1931 xy chromaticity plot for a hydrated NiO/NiOOH film on FTO/glass. The films 

were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (0.00 V → +0.47 V for 20 s and +0.47 V → ‒0.10 V for 20 s) vs. the Ag 

wire pseudo reference electrode. The arrows indicate the direction of the changes with the potential. 

(b) CIE 1931 xy coordinates for the hydrated NiO/NiOOH film on FTO/glass. This figure shows the 

locus coordinates, with labeled hue wavelengths, and the evaluation of the dominant wavelength (λd = 

584 nm)) of the brown-grey state. Data were calculated from UV-visible absorbance spectra shown in 

figure 5.2. 
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Figure 5.14. Photographs of (a) as deposited hydrated NiO films and (b) NiOOH film (film switched to 

the coloured state by cyclic voltammetry between ‒0.20 to +0.75 V vs. SCE at 10 mV s-1, and then 

removed at +0.75 V). Film was deposited on the lower 30 mm length of each 7 mm width FTO/glass). 

Photographs correspond to the visible region in-situ transmission spectra for the ‘bleached’ and 

coloured state in figure 5.1 
 

In CIE theory, colours cannot be specifically associated with a given pair of xy 

coordinates, because the third dimension of colour, lightness, is not included in the 

diagram. The relative lightness or darkness of a colour is very important in how it is 

perceived, and is presented as the relative or percentage luminance, YL, of the 

sample, to that of the background, Yo. Relative luminance values can range from 

100% for white/transparent samples (no light absorbed) to zero for samples that 

absorb all the light. Figure 5.15 shows the changes in the %YL on potential switching 

between the ‘bleached’ and coloured state. On redox switching of the deposited film 

by potential step, the relative luminance values decrease then increase dramatically 

for the oxidation and reduction process, respectively. The graphical form of the 

relative luminance is also in good correlation with electric charge (figure 5.2 (b)) as 

determined through integration of the current vs time transient in figure 5.2 (a).  
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Figure 5.15. CIE 1931 relative luminance data vs. time for the hydrated NiO/NiOOH films on 

FTO/glass. Films were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured 

states by application of potential steps (0.00 V → +0.47 V for 20 s and +0.47 V → ‒0.20 V for 10 s) 

vs. the Ag wire pseudo reference electrode. 

 

The CIELAB L*a*b* coordinates (table 5.3) are a uniform colour space defined by 

CIE in 1976 and offer a standard commonly used in the paint, plastic and textile 

industries (figure 5.16). L* is the lightness variable of the sample, while a* and b* 

correspond to the two antagonistic chromatic processes (red‒green and yellow‒

blue). In a L*a*b* chromatic diagram, +a* is the red direction, ‒a* is the green 

direction, +b* is the yellow direction, and ‒b* is the blue direction. The centre (0, 0) of 

the chromaticity diagram is achromatic. As the a* and b* values increase, the 

saturation of the colour increases. At the initial 0.00 V applied potential, the 

‘bleached’ state (L* = 99.97, a* = -0.2, b* = -0.3) is close to the achromatic ‘white 

point’ (L* = 100, a* = 0, b* = 0). As the potential is stepped to +0.47 V, L* decreases 

and the saturation of the brown-grey colour increases, both a* and b* values 

becoming more positive. Although it might be expected that a combination of positive 

a* and b* values would produce orange, in combination with low L* values, the films 

are perceived as deep brown.  
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Figure 5.16. The CIE 1976 L*a*b* colorspace representing hue and saturation. 

 

5.5. Colour measurements of NiO-based thin films prepared by 
AACVD 

 

Table 5.4 gives CIE 1931 %YLxy and CIELAB L*a*b* chromaticity coordinates for the 

various films in the ‘bleached and coloured states as calculated from visible region 

absorbance spectra (such as figure 5.9 (b) and (c)). 

 

Figure 5.17 (a) shows the dynamic changes of the CIE 1931 xy coordinates as a hue 

and saturation track, on potential stepping between the ‘bleached’ and coloured 

states, as a function of the deposition time of the original NiO films. At the initial 

applied potential (0.00 V), the ‘bleached’ films appear by eye as transmissive light 

green. With an increase in film thickness, the x, y and %YL coordinates (table 5.4) 

depart from those of the illumination source (the ‘white point’, where x = 0.332, y = 

0.347, and %YL = 100), as the light green colour becomes slightly more intense. On 

stepping the applied potential to +0.50 V, films steadily turn to deep brown, with an 

increase in the x and y coordinates, and decrease in the luminance (%YL) (table 5.4 

and figure 5.17 (a)). In figure 5.17 (b), the xy data for films prepared from as-

deposited NiO(10 min) are overlaid onto the CIE 1931 colour space template, 
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showing the track of the xy coordinates between the ‘bleached’ and coloured states. 

The construction gives an estimated value of 584 nm for the coloured (deep brown) 

state of the film prepared from as-deposited NiO(10 min). There is a small increase 

in λd values with increase in deposition time, with values being 585 and 587 nm for 

films prepared from NiO(15 min) and NiO(20 min), respectively. 

 
Table 5.4. Chromaticity coordinates (CIE 1931 %YLxy and CIELAB L*a*b*) for each of the 

NiO/NiOOH films on FTO/glassa 

 

original film source x  y %YL L* a* b* 

NiO(10 min) 'bleached' 0.347 0.362 86.7 95 0 8 

NiO(10 min) coloured 0.392 0.377 32.3 64 10 17 

NiO(15 min) 'bleached' 0.361 0.376 77.1 90 1 16 

NiO(15 min) coloured 0.420 0.391 21.3 53 12 23 

NiO(20 min) 'bleached' 0.374 0.386 69.5 87 2 21 

NiO(20 min) coloured 0.447 0.397 13.9 44 15 25 

 

aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (0.00 V → +0.50 V for 10 s and +0.50 V → ‒0.20 V for 10 s) vs. the Ag 

wire pseudo reference electrode. 
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Figure 5.17. (a) CIE 1931 xy chromaticity plots for each of the NiO/NiOOH films on FTO/glass.  Films 

were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (0.00 V → +0.50 V for 10 s and +0.50 V → ‒0.20 V for 10 s) vs. the Ag 

wire pseudo reference electrode. The arrows indicate the direction of the changes with the potential. 

(b) CIE 1931 xy coordinates for the NiO/NiOOH film on FTO/glass prepared from the as-deposited 

NiO(10 min). This figure shows the locus coordinates, with labeled hue wavelengths, and the 

evaluation of the dominant wavelength (λd = 584 nm)) of the deep brown state. 
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Figure 5.18 shows the graphical form of the changes in the %YL on potential 

switching between the ‘bleached’ and coloured state for all the NiO-based films. 

When the films are oxidised, the luminance dramatically decreases, as the deep 

brown colour forms and steadily becomes more saturated. 
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Figure 5.18. CIE 1931 relative luminance data vs. time for each of the NiO/NiOOH films on 

FTO/glass. The films were prepared from the original as-deposited NiO films as indicated: NiO(10 

min) (——), NiO(15 min) (——) and NiO(20 min) (——). Films were switched in aqueous KOH (0.1 

mol dm-3) between the ‘bleached’ and coloured states by application of potential steps (0.00 V → 

+0.50 V for 10 s and +0.50 V → ‒0.20 V for 10 s) vs. the Ag wire pseudo reference electrode. 

 
Table 5.4 also shows the CIELAB L*a*b* coordinates for all the films at the ‘bleached 

and coloured state. At the initial 0.00 V applied potential, the ‘bleached’ state (L* = 

95, a* = 0, b* = 8) prepared from as-deposited NiO(10 min) is close to the 

achromatic ‘white point’ (L* = 100, a* = 0, b* = 0). For thicker films, there is a small 

decrease in the initial L* value, and an increase in a* and b* (table 5.4). As the 

potential is stepped to +0.50 V, L* decreases and the saturation of the brown colour 

increases, both a* and b* values becoming more positive (table 5.4). With increase 

in film thickness, the brown colouration becomes more saturated as quantified by a 

decrease in L* when in its coloured state and an increase in a* and b* (table 5.4). 

Similarly to the electrochemically deposited hydrated NiO film, the combination of 

positive a*, b* and low L* values produced a deep brown coloured films. 
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5.6. Comparison of the colour measurements of electrochromic nickel 
(II) oxide/hydroxide thin films prepared by electrochemical 
cathodic deposition, aerosol-assisted chemical vapour 
deposition and layer-by-layer deposition techniques 

 

This section outlines the chromaticity data produced for EC NiO-based thin films 

again prepared by cathodic electrodeposition, aerosol-assisted chemical vapor 

deposition (AACVD). However, thinner films than those prepared in section 5.2 and 

5.3 were deposited in order to compare the chromaticity results with hydrated NiO 

thin films prepared by a layer-by-layer (LbL) deposition technique. 

 

5.6.1. Thin film preparation 
 

For accurate chromaticity comparison, film thicknesses for each deposition method 

were controlled so that the amount of active material deposited produced a similar 

change of absorbance between the bleached and the coloured state by application of 

potential steps in aqueous KOH (0.1 mol dm-3).  

 

Electrochemically hydrated NiO films were formed on to FTO/glass from aqueous 

nickel nitrate (0.01 mol dm–3) solution by applying a cathodic current of -0.2 mA (-0.1 

mA cm-2) for 50 s.40 For NiO thin films prepared by the AACVD technique, nickel 

acetylacetonate and 1 cm3 of N,N-dimethylaminoethanol in toluene was used as a 

the precursor. Films were deposited for 4 min on a FTO/glass substrate, which was 

heated to 450°C by placing it on a temperature controlled hot plate. Hydrated NiO 

LbL assembly was conducted through electrostatic interactions, where multiple 

layers of cationic poly(allylamine hydrochloride) (PAH) and anionic hydrated NiO 

nanoparticles were prepared onto tin-doped indium oxide (In2O3(Sn), ITO) on glass 

transparent conducting substrate.41 Two electrostatic bilayers were performed by 

dipping the ITO/glass in a solution of PAH for 5 min. The substrate was then rinsed 

with deionised water and dried in N2 gas. It was then placed in a hydrated NiO 

nanoparticles solution for 5 mins, washed and dried again. Multiple bilayers were 

created by repeating these steps (see chapter 3 for more details). 



5. Electrochromic properties and colorimetric measurements 

136 
 

5.6.2. Potential step and in-situ absorbance measurements 
 

Figures 5.19, 5.20 and 5.21 show the current-time transients on switching between 

the ‘bleached’ and coloured states for films deposited using all three deposition 

techniques. For the first 10 s (on the plot indicated as -10 to 0 s), the potential was 

held at -0.10 V to ensure complete equilibrium. The potential was then stepped to a 

positive value of +0.35 V from 1 to 20 s for the oxidation and negative value of           

-0.10 V from 21 to 40 s for the reduction process. The longer time scale current-time 

transients (figures 5.19(a), 5.20 (a) and 5.21 (a)) for all three films showed similar 

symmetrical amperometric responses for the Ni2+ to Ni3+ redox system. However, 

closer observations indicated that for the hydrated NiO films prepared by 

electrochemical cathodic deposition and LbL technique, the current responses were 

not symmetrical and the traces appeared to be biphasic, an effect which is said to 

involve two mechanisms with different time courses.42 

 

Figures 5.19 (b) and 5.21(b) shows the expanded views for the oxidation of the 

hydrated NiO films prepared by the electrochemical cathodic deposition and LbL 

techniques, respectively. For the electrochemically deposited film (figure 5.19 (b)), 

after an initial increase in current at 0 s, a second peak was observed between 0 and 

3 s, with a similar response during the reverse reduction process between 20 and 22 

s (figure 5.19 (c)). In the case of the LbL deposited film (figure 5.21(b)), after a sharp 

increase in current, a broad peak between 0 and 6 s was seen. However, for the 

reduction process, a symmetrical current transient was produced.  
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Figure 5.19. Current vs. time transients for hydrated NiO deposited by electrochemical cathodic 

deposition technique (a), expanded view of anodic process (b) and expanded view of cathodic 

process (c). EC switching was conducted by application of potential steps (-0.10 V → +0.35 V →        

-0.10 V) vs. the Ag wire pseudo reference electrode.   

 

This biphasic behaviour observed for hydrated NiO films prepared by 

electrochemical cathodic and LbL deposition techniques can be explained by 

examining the redox mechanism (figure 5.22 and equation. 5.9). On oxidation, the 

first mechanism involved the deintercalation of protons which combined with 

hydroxide ions at the interface to form water. Simultaneously, the second step was 

the insertion of hydroxide ions, a process responsible for the oxidation of hydrated 

NiO to the NiOOH phase. Similarly, the reduction process also involved a two-step 

process; firstly, water is dissociated at the interface to generate H+, which is re-

intercalated into the film structure. Concurrently, the second step involves the 

expulsion of hydroxide ions back into the solution.43  
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Figure 5.20. Current vs. time transient for NiO deposited by AACVD Technique (a), expanded view of 

anodic process (b) and expanded view of cathodic process (c). EC switching was conducted by 

application of potential steps (-0.10 V → +0.35 V → -0.10 V) vs. the Ag wire pseudo reference 

electrode.   

 

In the case of the NiO film deposited by AACVD technique, both the oxidation and 

reduction process showed a symmetrical current-time response (figures 5.20 (b) and 

(c)). This observation might suggest that the process for the oxidation of NiO into 

NiOOH may only involve the one step of hydroxide ion insertion into the film 

structure. Equation 5.10 can be used to describe this process. 

 

Ni(OH)2 + OH-  NiOOH + H2O + e-               (5.9) 
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Figure 5.21. Current vs. time transient for hydrated NiO film prepared by LbL deposition technique 

(a), expanded view of anodic process (b) and expanded view of cathodic process (c). EC switching 

was conducted by application of potential steps (-0.10 V → +0.35 V → -0.10 V) vs. the Ag wire 

pseudo reference electrode.  
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Figure 5.22. Schematic representation of redox mechanism for hydrated NiO film cycled in KOH (0.1 

mol dm-3). Diagram redrawn from.43  
 

Figures 5.23 and 5.24 show the in-situ visible region absorbance spectra for films 

deposited using all three deposition techniques for the oxidation and reduction 

process, respectively. During the oxidation process (figure 5.23), the EC NiO-based 

films switched  from a ‘bleached’ (transmissive) state to a coloured NiOOH (brown) 

state, with the subsequent increase in the visible region absorbance spectra. On 

reduction (figure 5.24), the coloured NiOOH switched back to the ‘bleached’ NiO 

state. By comparing the three sets of absorbance spectra, during the reduced 

(‘bleached’) state, it was observed that the absorbance spectrum did not exhibit any 

significant absorption band. However, on oxidation (coloured), a broad absorption 

band through the visible region was seen, which suggests the involvement of a 

delocalised electronic state with a semiconductor like behaviour.44 Furthermore, 

there were clear differences in the spectral positions of maxima (λmax), with values of 

490, 450, and 530 nm for films deposited using electrochemical cathodic deposition, 

AACVD and LbL deposition techniques, respectively. The difference in λmax 

suggested that for different film preparation methods, the optical properties for the 

oxidised state presented a slight difference in the tone of the colour change, 

although the difference was impossible to see by naked eye as the deposited films 

were relatively thin. 
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Figure 5.23. Visible region absorbance spectra recorded during the oxidation process for films 

prepared by electrochemical cathodic (a), AACVD (b) and LbL (c) deposition techniques. Spectra 

recorded every 1 s for the reversible switching in aqueous KOH (0.1 mol dm-3) between the 

transmissive ‘bleached’ state and the coloured (brown) state. EC switching was conducted by 

application of potential steps (-0.10 V → +0.35 V → -0.10 V) vs. the Ag wire pseudo reference 

electrode. The figure shows the oxidation process (-0.10 V → +0.35 V). 
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Figure 5.24. Visible region absorbance spectra recorded during the reduction process for films 

prepared by electrochemical cathodic (a), AACVD (b) and LbL (c) deposition techniques. Spectra 

recorded every 1 s for the reversible switching in aqueous KOH (0.1 mol dm-3) between the 

transmissive ‘bleached’ state and the coloured (brown) state. EC switching was conducted by 

application of potential steps (-0.10 V → +0.35 V → -0.10 V) vs. the Ag wire pseudo reference 

electrode. The figure shows the reduction process (+0.35 V →  -0.10 V). 

 

5.6.3. Colorimetric measurements  
 

Table 5.5 shows the CIE (Commission Internationale de l’Eclairage) 1931 

colorimetric luminance (%YL), x-y coordinates, and the resulting calculated CIELAB 

L*a*b* coordinates for all the films along with the deposition technique and switching 

state. The x-y chromaticity coordinates are also presented in the shape of colour 

tracks (figure 5.25), which can be used to highlight several apparent features. At the 
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initial applied potential (-0.10 V), for all three films, the ‘bleached’ states appeared by 

naked eye as fully transparent and the x, y and %YL coordinates (table 5.5) were 

close to those of the illumination source (the ‘white point’, where x = 0.332, y = 

0.347, and %YL = 100). On stepping the applied potential to +0.35 V, the films 

steadily turned to a light brown colour, with generally an increase in the x and y 

coordinates values for the electrochemically deposited and the AACVD deposited 

films (figures 5.25 (a) and (b)). In the case of the LbL film, the x coordinate 

decreased after an initial increase and the y coordinates generally decreased.  

 

Comparing the x-y coordinates for each deposition technique highlighted a few 

differences in the shape of the colour tracks. It can be seen in figure 5.25 (a) for the 

hydrated NiO film deposited by electrochemical cathodic deposition technique that 

the x-y coordinates for the reduction process did not coincide with those of the 

oxidation process, a trend which is said to show significant hysteresis. Similar results 

have also been reported in a previous study for the oxidation and reduction of 

PProDOT-(Hx)2 polymer films.20 Furthermore, a tailing or kink was also observed 

towards the latter stages of the oxidation process (between 15 and 20 s). In the case 

of the NiO film deposited by AACVD technique (figure 5.25 (b)), the chromaticity 

coordinates lacked the hysteresis described above, instead a linear oxidation and 

reduction response was produced. The LbL film showed a similar x-y colour track 

response when compared to the film deposited by electrochemical cathodic 

deposition, again there was significant hysteresis when switching between the 

oxidised and reduced states.  

 

The presence of hysteresis for the films prepared by electrochemical cathodic and 

LbL deposition techniques may be attributed to the slightly longer switching times for 

the oxidation and reduction process (figures 5.19 and 5.21). Consequently, at each 

of these switching time points the resulting film may not have achieved complete 

equilibrium and as a result colour formation was not fully stabilised. The redox 

reaction mechanism for the hydrated NiO film may also have played a part in the 

hysteresis effect (figure 5.22). As previously mentioned, during the oxidation process 

for the hydrated NiO film a two-step process of proton deintercalation and hydroxide 

ion insertion takes place with different time courses. Therefore, the delay in reaching 
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complete equilibrium is due to the different time courses for these two steps thereby 

affecting colour stabilisation. 

 

The relative lightness or darkness of a colour is very important in how it is perceived, 

and is presented as the relative or percentage luminance, %YL, of the sample. EC 

materials also benefit from such values, a low value of luminance corresponds to an 

opaque material and a high value represents a transparent one. Figure 5.26 (a) 

shows the variation of %YL for all three films on switching between the ‘bleached’ 

and coloured state. The as-deposited films prepared by electrochemical cathodic 

and LbL deposition techniques appeared fully transparent with values very close to 

100%. In the case of NiO film prepared by AACVD, the transparency is slightly lower 

due to the deposited film showing a transmissive light green appearance. On 

oxidation, the luminance decreases for all three films, as the brown colour was 

formed. The graphical representation of relative luminance in figure 5.26 (a) can also 

be used to compare with electrical charge data (figure 5.26 (b)), with a parallel 

response being observed.  

 
Table 5.5. Chromaticity coordinates (CIE 1931 %YLxy and CIELAB L*a*b*) for each of the 

NiO/NiOOH filmsa. 

 
original film source x  Y %YL L* a* b* 

Electro-Ni(OH)2 'bleached' 0.332 0.347 100.0 99.9 -0.3 -0.2 

Electro-NiOOH) coloured 0.337 0.347 79.6 92.9 2.1 0.9 

AACVD-Ni(OH)2 'bleached' 0.336 0.352 96.7 99.0 -0.7 2.6 

AACVD-NiOOH coloured 0.341 0.355 87.6 95.0 0.3 4.8 

LbL-Ni(OH)2 'bleached' 0.333 0.348 99.7 100.0 -0.1 0.3 

LbL-NiOOH coloured 0.335 0.344 81.2 92.0 3.0 -1.0 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (-0.10 V → +0.35 V for 20 s and +0.35 V → ‒0.10 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Figure 5.25. CIE 1931 xy chromaticity plots for films prepared by electrochemical cathodic deposition 

(a), AACVD (b) and LbL (c) deposition technique. Films were switched in aqueous KOH                 

(0.1 mol dm-3) between the ‘bleached’ and coloured states by application of potential steps                 

(-0.10 V → +0.35 V for 20 s and +0.35 V → ‒0.10 V for 20 s) vs. the Ag wire pseudo reference 

electrode. The arrows indicate the direction of the changes with the potential. 

 

Table 5.5, also shows the calculated L* a* b* coordinates for all three films during the 

coloured and ‘bleached’ phase. At the initial -0.10 V, the ‘bleached’ state for all three 

as-deposited films are close to the achromatic ‘white point’ (L* = 100, a* = 0, b* = 0). 

On potential stepping to +0.35 V, the L* values for films deposited by electrochemical 

cathodic deposition and AACVD techniques decreased with the a* and b* values 

becoming more positive. As a result, with the combination of red and yellow and low 

L* values, the films were perceived to be light brown. For the LbL hydrated NiO film, 

the L* values decreased and the a* values moved towards positive direction during 
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colour saturation. However, with negative b* values, the perceived colour produced a 

different shade of brown when comparing to the films deposited by electrochemical 

cathodic and AACVD deposition techniques.  
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Figure 5.26. CIE 1931 relative luminance data vs. time (a) and charge vs time transient (b) for films 

prepared by electrochemical cathodic (——), AACVD (——) and LbL (——) deposition technique. 

Films were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (-0.10 V → +0.35 V for 20 s and +0.35 V → ‒0.10 V for 20 s) vs. the Ag 

wire pseudo reference electrode.  

 

5.7. Conclusion  
 

Electrochromic (EC) properties of NiO-based thin films prepared by electrochemical 

cathodic deposition and aerosol-assisted chemical vapour deposition (AACVD) 

techniques were investigated. The as-deposited hydrated NiO film prepared by 

electrochemical cathodic deposition showed excellent transmittance modulation 

(Δ%T = 83.2 at 434 nm), with CE of 30.1 cm2 C-1 and low response times. However, 

after 50 voltammetric cycles, the cycle life was found to fade by 17.2% from charge 

measurements, and 28.8 % from in-situ transmittance spectra measurements. 

 

NiO films prepared at different deposition times by the AACVD technique also 

showed good EC properties with low response times and excellent durability of up to 

10000 voltammetric cycles. The film prepared at 10 min (NiO(10 min)) at 500 cycles 
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presented the optimal EC response with large contrast and the highest transmittance 

change of 53.7% at 550 nm.  

 

Using a calculation method based on the integration of experimental spectral power 

distributions derived from in-situ visible region spectra over the CIE 1931 colour-

matching functions, the colour stimuli of the NiO-based films, and the changes that 

take place on reversibly switching between the ‘bleached’ and coloured forms have 

been calculated. Films prepared by both deposition techniques gave positive a* and 

b* values to produce orange. However, in combination with low L* values, the films 

were perceived as brown. 

 

Finally, the effect of different deposition techniques on NiO-based thin films was 

investigated with switching times and the different reaction mechanism having an 

effect on the colour coordinate measurements. The underlying reasons for the 

different properties of the films prepared on FTO/ITO/glass substrates by the three 

methods relate to the chemical identity and spectroelectrochemical properties of the 

different materials. In the case of the AACVD films, their EC and colorimetric 

properties are due to the presence of NiO. Whereas, for the electrochemical cathodic 

and LbL deposition techniques the active material is hydrated NiO (Ni(OH)2).  
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6. Effect of metal ion additives on the 
electrochemical and electrochromic performance 
of hydrated NiO 

 

6.1. Introduction 
 

In the field of hydrated NiO (Ni(OH)2) research, it is necessary to overcome two well-

known limitations. Firstly, hydrated NiO shows catalytic properties towards the 

oxygen evolution reaction (OER), which is a process very close to the Ni(II)/Ni(III) 

redox process. For electrochromic (EC) applications, this reaction needs to be 

avoided as it could create gassing problems. The co-deposition of cobalt is a 

recognised technique to increase the conductivity of the active material,1 thereby, 

shifting the Ni(II)/Ni(III) redox process to less positive potentials. Secondly, hydrated 

NiO shows poor cycling durability in alkaline solution, which has been the topic of 

research for many studies.2,3 Oliva et al.3 highlighted that during cycling, slight 

changes occur in the electrochemical mechanism and in the structure of the involved 

species. Their study used the well-known Bode reaction scheme4,5 (figure 6.1) to 

explain the structural characterisation of the phases involved in hydrated NiO redox 

behaviour. 

 

Hydrated NiO can exist in diverse structures; β-Ni(OH)2 (figure 6.2 (a)) forms a 

brucite structure (based on Mg(OH)2) and is most commonly used for battery 

applications as it presents a closed and thermodynamically favourable structure.6 

The α-phase (figure (6.2 (b)) consists of nickel and hydroxide layers similar to the 

brucite structure but in an opened and disarranged form, with water molecules 

occupying the interstitial sites between the layers. Due to the presence of water 

molecules the α-phase presents a greater interlamellar distance (~8 Å) than the β-

phase (~4.6 Å) and as a result a higher electrochemical performance with a larger 

charge capacity than the β-phase. It is well known that during continuous cycling in 

alkaline solution the α-Ni(OH)2 transforms to β-Ni(OH)2. Consequently, 
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oxidation/reduction cycles take place between β-Ni(OH)2 and β-NiOOH. 

Furthermore, during overcharging β-Ni(OH)2 converts to γ-NiOOH causing a high 

mechanical stress due to the abrupt change in the interlamellar distance between the 

β-Ni(OH)2 (~4.6 Å) and γ-NiOOH (~7 Å). This leads to the EC material swelling7 and 

the so called γ-effect. 

 

A widely employed strategy to avoid the γ-effect is the use of additives so the α-

phase is stabilised and the oxidation/reduction cycling take place is between the 

favoured α-Ni(OH)2 and γ-NiOOH. Additives such as Co and Cd were incorporated 

into hydrated NiO films by Vidotti et al.8 to diminish the electrostatic repulsion 

between layers, avoiding the material swelling and as a result improving the long 

term stability of the electrode. Other additives, such as Al,9 and Mn,10 have also 

been used to achieve the same effect. 

 

The role of water molecules trapped preferentially at defect and grain boundaries is 

also said to play a crucial role in the EC reaction.11 Due to hydrated NiO degradation 

the amount of water in the solid film increases with cycle life and therefore promotes 

chemical degradation.   

 

This chapter will describe a systematic study to investigate the effects of 

incorporating different metal ions (Ce, Cd, Co, Cu and La) into the hydrated NiO 

active material. Films have been prepared with single and double (bimetallic) 

additives on fluorine-doped tin oxide (SnO2:F, FTO) on glass by electrochemical 

cathodic deposition. The role of metal ion additives on the OER, film durability and 

the EC properties of hydrated NiO films will be discussed. Also in this chapter the 

effect of metal ion additives on tuning the EC colour formed will be highlighted by 

generating chromaticity data. 
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Figure 6.1. Bode diagram which represents the transformation between phases for hydrated NiO. 

Figure taken from.8 

 

 
Figure 6.2. Structure of β-Ni(OH)2 (a) and α-Ni(OH)2 (b). In (a) the small blue circles represent 

oxygen and the large blue circles hydrogen atoms. Diagrams drawn by C. A. Kirk using ATOMS 

software (version 6.4) and crystallographic data from the following references: β-Ni(OH)2
12

 and          

α-Ni(OH)2.13 

a b

c

a2

a1

c

a2

a1
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6.2. The effect of metal ion additives on the oxygen evolution reaction 
(OER)  

 

Figure 6.3 compares the catalytic effects on the OER for the pure hydrated NiO with 

the films deposited with different metal ion additives. Composite films were prepared 

using the optimised deposition condition (chapter 4.4) of -0.2 mA for 50s in 0.01 mol 

dm-3 nickel nitrate and on FTO/glass substrate. Different metal ion additives of 

M(NO3)2 or M(NO3)3 (where M = Ce, Cd, Co, Cu and La) were used with a solution 

containing 90% of Ni(NO3)2 and 10% of the additive in moles. From the figure it can 

be seen that in most cases, the catalytic effect on the OER was enhanced as shown 

by shift in potential, with either the Ni(II)/(III) redox process moving to more positive 

potentials (Cu, La or Ce) or the OER moving to more negative potentials (Ce). For 

the film co-deposited with cadmium, similar behaviour to that of the pure hydrated 

NiO was observed. However, a slight reduction in both the oxidation and reduction 

peak currents was observed. Similarly to other studies,1,8 when compared with the 

pure hydrated NiO film, co-deposition with cobalt produced a favourable response 

with both the anodic and cathodic peak potentials shifting to less positive values of 

40 and 61 mV, respectively. 

 

These results on the FTO/glass substrate are consistent with Corrigan and 

Bendert’s14 results for the co-precipitated hydrated NiO films prepared on nickel foil 

substrate from 0.1 mol dm-3 mixed nitrate solution (0.090 mol dm-3 nickel and 0.010 

mol dm-3 of some other metal) and then cycled in 1.0 mol dm-3 KOH electrolyte. In 

1978, Pickett and Maloy15 also used electrochemical cathodic deposition to prepare 

co-precipitated hydrated NiO films onto a nickel microelectrode. They used a boiling 

ethanol solution containing Ni(NO3)2 in the presence and absence of cobalt and 

found that its addition appeared to render the charge-discharge reaction more 

reversible thereby allowing charging to occur at less positive potentials. More 

recently, Vidotti et al.1 immobilised cobalt co-deposited nanoparticles by an 

electrostatic layer-by-layer deposition method. They also reported the Ni(II)/Ni(III) 

redox process to shift to less positive potentials when the amount of cobalt is 

increased.  
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Figure 6.3. CVs for hydrated NiO film (——) compared with co-deposited film (——). Films deposited 

on FTO/glass (electrode surface area = 30 x 7 mm) then cycled in aqueous KOH (0.1 mol dm-3) 

electrolyte at 10 mV s-1. The potential range was -0.20 V → +0.70 V → -0.20 V vs. SCE. 



6. Effect of metal ion additives on the electrochemical and electrochromic 
performance of hydrated NiO 

157 
 

6.3. The effect of metal ion additives on the durability of the hydrated 
NiO films  

 

High durability or cycle life is one of the key factors for a commercially viable EC 

material. As previously mentioned, hydrated NiO films show poor cycling durability in 

alkaline solution. Figure 6.4 shows CVs recorded for the as-deposited hydrated NiO 

film after the 1st and 50th charge/discharge cycles in KOH (0.1 mol dm-3) electrolyte. 

After 50 cycles, 22.8 % of the charge had been lost. This unstable behaviour in 

alkaline solution is due to the transformation of the α-Ni(OH)2 into the β- Ni(OH)2 

and on overcharging leads to the deterioration of the electrode with the so called γ-

effect taking place. In an attempt to investigate this phase transformation further, the 

process of α-phase conversion into the β-phase was examined by preparing 

hydrated NiO films with different metal ion additives then performing ageing tests in 

KOH (5.0 mol dm-3) electrolyte at room temperature. Continuous redox cycling in 

KOH (0.1 mol dm-3) solution was also performed with the aim of understanding the 

electrochemical nature of the process.  
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Figure 6.4. CVs showing the durability of the as-deposited hydrated NiO film for the 1st (——) and 50th 

(——) cycle. Film prepared at an applied current of -0.2 mA for 50 s on FTO/glass then cycled in 

aqueous KOH (0.1 mol dm-3). The potential range was ‒0.20 V → +0.55 V → ‒0.20 V vs. SCE for 50 

cycles at the scan rate of 10 mV s-1. 
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Figure 6.5 (a) shows the CVs for the comparison of the as-deposited hydrated NiO 

film with the same film then being immersed in strong alkaline solution for 1, 2 and 3 

hours. The process of α to β-phase conversion can be seen from the electrochemical 

behaviour, the main difference being the β-phase showing a lower charge capacity 

with the shifting of the Ni(II)/Ni(III) redox process to more positive potentials. 

Furthermore, on increasing the ageing process, the film became more irreversible. 

This observation was in agreement with the results of Cόrdoba de Torresi et al.16 

who also looked at the effect of metal ion additives in the stabilisation of α-Ni(OH)2 

but on the surface of gold evaporated quartz crystals. X-ray diffraction (XRD) 

patterns were also obtained to determine the different phases (figure 6.5 (b)), with 

the patterns also supporting the electrochemical switching behaviour. The XRD 

pattern of the as-deposited powder was confirmed to be of the α-phase with the β-

phase conversion taking place after 1h as apparent from the disappearance of the 

003 reflections at 11.5° and the appearance of the 001 reflection at 19.3°. 

Additionally, on increasing the ageing process the amorphous β-phase progressively 

became more crystalline with the intensity of the β-phase reflections becoming more 

pronounced. 
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Figure 6.5. CVs (a) and XRD patterns (b) showing the transformation of α- Ni(OH)2 into β- Ni(OH)2 

by aging. Data recorded using the as-deposited film (——), and film immersed in KOH (5.0 mol dm-3) 

solution for 1 h (——), 2 h (——) and 3 h (——) then cycled in KOH (0.1 mol dm-3) at 10 mV s-1. XRD 

analysis carried out on hydrated NiO powder accumulated by scraping the film away from a palladium 

foil electrode (50 x 50 mm). Film deposited from nickel nitrate (0.01 mol dm-3) solution at an applied 

current of -0.2 mA for 10 hours. 
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Table 6.1 and figure 6.6 show the effect of metal ion additives on the durability of the 

hydrated NiO films. Divalent additives, such as cadmium, cobalt and copper and 

trivalent additives, such as cerium and lanthanum were incorporated into the 

hydrated NiO active material. Results showed that the percentage drop in charge 

after 50 charge/discharge voltammetric cycles decreased from 22.8% for hydrated 

NiO to 6.1, 8.3 and 6.3% for films co-deposited with cobalt, copper and lanthanum, 

respectively. In the case of films prepared with cerium as additives, the percentage 

drop in charge was found to be greater than pure hydrated NiO film. In section 6.2, 

cobalt was identified as the best additive for improving the charge efficiency of 

hydrated NiO by separating the Ni(II)/Ni(III) redox and the OER. Therefore, in an 

attempt to further enhance the film’s durability, the effect of incorporating a second 

additive into the cobalt co-deposited hydrated NiO films was investigated. Figure 6.7 

shows the 1st and the 50th cycles for the cobalt (10%) co-deposited hydrated NiO 

films with 5% in moles of cadmium, copper and lanthanum. The durability was found 

to decrease with the addition of cadmium, however, an improvement in response 

was evident for films prepared with copper or lanthanum as a bimetallic additive with 

values for the drop in charge of 5.6 and 3.4%, respectively. The improved durability 

with incorporation of cobalt8,16,17 and lanthanum18 as additives has been reported 

previously. However, to date there are no apparent studies which have looked at the 

effects of bimetallic additives (cobalt (10%) and lanthanum (5%)) on the properties of 

hydrated NiO films prepared by electrochemical cathodic deposition. 

 

Hydrated NiO films prepared with different single (figure 6.8) and bimetallic (figure 

6.9) additives were further tested to examine the rate of transformation from the α to 

the β-phase by ageing in KOH (5.0 mol dm-3) solution. From the CVs it can be seen 

that with all the single additives, except for the addition of cobalt, the electrode 

showed strong catalysis of the OER. In the case of cobalt, the phase transformation 

process was slowed down with the voltammetric behaviour after 12 h of aging still 

being of a response similar to the α-phase. In the absence of overcharge, the redox 

reaction takes place between the α-Ni(OH)2/γ-NiOOH system (figure 6.5 (a), as-

deposited film), after aging or continuous redox cycling the transformation to the       

β-Ni(OH)2/β-NiOOH (figure 6.5 (a), aging for 1 h) system takes place. Furthermore, 

with several of the co-deposited films, the third λ-effect due to overcharging was also 

evident with an additional cathodic peak between 0.3 and 0.5 V being shown for the 
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β-Ni(OH)2 and λ-NiOOH phases. This observation was similar to those reported by 

Olivia et al.3 Films prepared with a bimetallic additive showed the slowest rate of α to 

β-phase transformation and therefore agreeing with the optimal durability results as 

shown in figure 6.7. 

 

The XRD patterns of the as-deposited and the aged films in KOH (5.0 mol dm-3) 

solution for 3 h are compared in figures 6.10 and 6.11. For most of the films 

prepared with single or double additives, the XRD patterns of the metal compound 

are not found which suggests that metals ions are doped into the hydrated NiO 

crystal lattices by replacing the nickel ions. In the case of co-deposition with cerium, 

the XRD patterns confirmed the presence of isolated cerium hydroxide (Ce(OH)3) 

and hydrated NiO, mixture in the active material. The as-deposited films for all the 

additives were confirmed to be the α-phase. However, after ageing for 3 hours, the 

existence of the β-phase hydrated NiO was confirmed for films prepared with 

cadmium as additive. With the addition of cobalt, the crystallinity of the as-deposited 

films was enhanced with the increase and narrowing of the 003 reflection. 

Furthermore, the α-phase was still shown to present after the aging process. Films 

prepared with cadmium, copper and lanthanum as bimetallic additives showed the 

presence of the α-phase for both the as-deposited and the aged film, again 

confirming the reduced rate of α to β-phase transformation, thereby the redox 

process taking place between the preferred α-Ni(OH)2 /λ-NiOOH redox system with 

an improved film durability.   

 

In order to examine the surface morphology and to quantify the composition of the 

co-deposited powders, high resolution field emission gun scanning electron 

microscope (FEGSEM) and energy dispersive X-ray spectroscopy (EDS) elemental 

analysis was carried out (table 6.1 and figures 6.12 and 6.13). The morphology of 

the co-deposited powders was found to be very similar to the pure hydrated NiO 

powder, indicating that the metal ions can be deposited homogeneously in a 

hydroxide form. Large differences in the calculated (solution composition) and EDS 

determined atomic percentage (at.%) values was observed for powders obtained 

with different additives. These observations can be explained by comparing the 

different solubility (Ksp) values of the hydroxides and the size of the co-deposited 

cations (picometre).19 For hydrated NiO films prepared with cobalt, a slightly lower 
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EDS determined value (6.8%) than the calculated value was observed. This is due to 

Co(OH)2 having a slightly bigger Ksp (5.92 x 10-15) value than Ni(OH)2 (5.47 x 10-16). 

Furthermore, the atomic radii value of cobalt (74.5 picometre) is also bigger than 

nickel (69 picometre), therefore, the deposition of Ni(OH)2 is favoured. Although, 

cobalt is a more suitable additive, a higher EDS determined at.% values was 

observed for the co-deposition of cerium (7.1%) and copper (11.6%). This fact is 

related to the presence of cerium hydroxide as confirmed by XRD (figure 6.10), while 

a high at.% for copper is due to the formation of a thermodynamically-preferred 

reaction of reductive metal, as was seen by an orange coloured deposit on the 

FTO/glass substrate, although XRD analysis did not confirm this. Finally, the 

reduced EDS determined at.% value for lanthanum (1.4%) can be explained with 

reference to the size of the trivalent cation. Lanthanum (103.2 picometre) is a much 

larger cation than the divalent Ni (69 picometre), therefore a lower ratio of 

precipitation is expected.  

 

The increased durability of hydrated NiO with the addition of cobalt is related to the 

shifting of the Ni(II)/Ni(III) redox process to less positive potentials. This effect not 

only increases the reversibility of the system but optimises the lattice imperfections in 

the active material so that the conductivity is substantially increased.16,20 However, 

the maintenance of film electroneutrality during continuous redox cycling may involve 

the intercalation/deintercalation of H+, OH- and hydrated cations which may lead to 

the expulsion of the cobalt ions from the lattice structure. As a result, the Ni(II)/Ni(III) 

redox process is displaced to more positive potentials which leads to the material 

swelling and the so called λ-effect taking place. To negate this process, the addition 

of a second additive is necessary which acts to further improve the conductivity 

thereby reducing the expansion or contraction of the nickel and hydroxide layers. By 

this way, the displacement of the redox peaks is avoided and the formation of the λ-

phase is reduced. As a result the durability of the electrode is increased. Vidotti et 

al.8 co-deposited cobalt and cadmium into the structure of hydrated NiO 

nanoparticles to achieve this effect. They stabilised the α-phase and improved the 

durability of the electrode during long electrochemical cycling. The same results 

were achieved in the present work but with the addition of cobalt and lanthanum.  
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Table 6.1. Durability, calculated and determined additive (%) of co-deposited hydrated NiO film 

prepared on FTO glass (electrode surface area = 30 x 7 mm). Drop in charge data for pure hydrated 

NiO from chapter 5.2. 
 

additive durability, drop 

in charge (%) 

additive  

calculated 

(mole %) 

additive determined by EDS 

(at.%), average of three 

measurements 

(pure hydrated NiO) 22.8 - - 

cerium 29.7 10 7.1 

cadmium 22.5 10 2.7 

cobalt 6.1 10 6.8 

copper 8.3 10 11.6 

lanthanum 6.3 10 1.4 

cobalt and cadmium 12.8 10 and 5 6.8 and 1.1 

cobalt and copper 5.6 10 and 5 4.4 and 2.1 

cobalt and lanthanum 3.4 10 and 5 5.0 and 0.8 
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Figure 6.6. CVs showing the 1st (——) and 50th (——) cycle of the as-deposited hydrated NiO films 

co-deposited with different additives (single). Films cycled in aqueous KOH (0.1 mol dm-3) at a scan 

rate of 10 mV s-1. 
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Figure 6.7. CVs showing the 1st (——) and 50th (——) cycle of the as-deposited hydrated NiO films 

co-deposited with different bimetallic additives. Films cycled in aqueous KOH (0.1 mol dm-3) at a scan 

rate of 10 mV s-1. 
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Figure 6.8. Aging effect on films prepared with different additives (single). CVs recorded using the as-

deposited film (——), and film immersed in KOH (5.0 mol dm-3) solution for 1 h (——), 2 h (——), 3 h 

(——) and 12 h (——). Films cycled in aqueous KOH (0.1 mol dm-3) at a scan rate of 10 mV s-1. 
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Figure 6.9. Aging effect on films prepared with different bimetallic additives. CVs recorded using the 

as-deposited film (——), and film immersed in KOH (5.0 mol dm-3) solution for 1 h (——), 2 h (——),  

3 h (——) and 12 h (——). Films cycled in aqueous KOH (0.1 mol dm-3) at a scan rate of 10 mV s-1. 
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Figure 6.10. XRD patterns of hydrated NiO powders obtained with different additives (single). 

Patterns recorded for the as-deposited powders (a), and powders immersed in KOH (5.0 mol dm-3) 

solution for 3 h (b). 
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Figure 6.11. XRD patterns of hydrated NiO powders obtained with different bimetallic additives. 

Patterns recorded for the as-deposited powders (a), and powders immersed in KOH (5.0 mol dm-3) 

solution for 3 h (b). 
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Figure 6.12. An energy dispersive X-ray spectroscopy (EDS) analysis showing the chemical 

composition of the hydrated NiO films with different additives (single). Insert shows high resolution 

field emission gun scanning electron microscope (FEGSEM) images of the surface of hydrated NiO 

powders with different additives (single).  
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Figure 6.13. An energy dispersive X-ray spectroscopy (EDS) analysis showing the chemical 

composition of the hydrated NiO films with different bimetallic additives. Insert shows high resolution 

field emission gun scanning electron microscope (FEGSEM) images of the surface of hydrated NiO 

powders with different bimetallic additives.  
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6.4. The effect of metal ion additives on the electrochromic properties 
of the hydrated NiO films 

 

Table 6.2 gives in-situ spectral data and calculated EC performance parameters for 

square-wave potential switching between the ‘bleached’ and coloured forms for the 

as-deposited hydrated NiO films co-deposited with different additives. Figures 6.14 

to 6.21 (a) show visible region in-situ transmittances spectra, for the as-deposited 

hydrated NiO films with different additives in the bleached and coloured state. For all 

the films, it is noted from table 6.2 that the optical transmittance for the ‘bleached’ 

states were generally very similar to those obtained for a pure hydrated NiO film. The 

transmittance for the coloured states increased slightly from 13.9% for pure hydrated 

NiO to between 18.1 and 18.4% for films with additives. Furthermore, the 

absorbance change (ΔA) (figures 6.14 to 6.21 (b)) also varied slightly, with decrease 

in values when compared with a pure hydrated NiO film. In the case of colouration 

efficiency (CE) (figures 6.14 to 6.21 (b)), the values decreased with the addition of 

cobalt, copper, lanthanum and cobalt/copper. However, when co-deposited with 

cerium, cadmium, cobalt/cadmium and cobalt/lanthanum CE increased with a 

maximum of 41.9 cm2 C-1 recorded for hydrated NiO film co-deposited with cadmium, 

when measured at 432 nm. 

 

Absorbance vs. time (figures 6.14 to 6.21 (c)) and charge vs. time (figures 6.14 to 

6.21 (d)) plots were also used to calculate the response times for all the co-

deposited hydrated NiO films. The values are also listed in table 6.2 and are the 

response times taken for the absorbance to reach 95% of the total change for both 

colouration (tc) and ‘bleaching’ (tb) processes. Generally, the response times for the 

colouration process were longer than those for the ‘bleaching’ process, with the 

exception of cerium where the ‘bleaching’ process time was found to be greater.  
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Table 6.2. In-situ spectral data and EC performance parameters on square wave switching between 

the ‘bleached’ and coloured states of the as-deposited NiO films with different additives in aqueous 

KOH (0.1 mol dm-3)a 
 

Additive %Tb %Tc Δ%T ΔA CE/ cm2 C-1 tc/tb (s) 

(Pure hydrated NiO)b 97.1 13.9 83.2 0.87 29.6 12.0/9.5 

Cerium 99.0 18.1 80.9 0.77 40.6 9.9/15.3 

Cadmium 99.2 18.4 80.8 0.73 41.9 11.4/9.2 

Cobalt 94.0 18.3 75.7 0.71 21.6 11.4/10.1 

Copper 97.9 18.3 79.6 0.73 26.9 13.6/9.9 

Lanthanum 99.8 18.3 81.5 0.79 24.7 13.5/12.5 

Cobalt and cadmium 91.6 18.3 73.3 0.70 38.8 8.1/7.3 

Cobalt and copper 97.2 18.3 78.9 0.73 27.4 11.8/8.3 

Cobalt and lanthanum 98.1 18.3 79.8 0.73 31.0 10.0/8.9 

 
aTb = transmittance of ‘bleached’ form, Tc = transmittance of coloured form, Δ%T = change in 

transmittance between the ‘bleached’ and coloured forms, ΔA = change in absorbance, CE = 

colouration efficiency, tc and tb = switching times for colouration and bleaching. All measurements 

were taken at 432 nm, which had been found to be the wavelength for maximum absorbance change. 
bData for pure hydrated NiO film obtained from chapter 5.2. 
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Figure 6.14. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cerium.  
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Figure 6.15. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cadmium.  
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Figure 6.16. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cobalt.  
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Figure 6.17. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with copper.  



6. Effect of metal ion additives on the electrochemical and electrochromic 
performance of hydrated NiO 

178 
 

300 400 500 600 700 800

20

40

60

80

100

120
La a

coloured

bleached

 

 

Tr
an

sm
itt

an
ce

 / 
%

Wavelength / nm
300 400 500 600 700 800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
La b

 Wavelength (nm)

 

 
Ab

so
rb

an
ce

 c
ha

ng
e 

/ a
.u

0

5

10

15

20

25

 
Co

lo
ur

at
io

n 
Ef

fic
ie

nc
y 

/ c
m

2  C
-1

 

-10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0 La c

 

 

Ab
so

rb
an

ce
 / 

a.
u.

Time / s
-10 0 10 20 30 40

0
10
20
30
40
50
60
70
80
90

La d

 

 

Ch
ar

ge
 / 

m
C

Time / s
 

Figure 6.18. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with lanthanum.  
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Figure 6.19. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cobalt and cadmium.  
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Figure 6.20. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cobalt and copper.  
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Figure 6.21. Visible region in-situ transmission spectra for the ‘bleached’ and coloured states (a), 

change in absorbance and colouration efficiency (b), absorbance vs. time transient (c) and charge vs 

time transients (d) of hydrated NiO film co-deposited with cobalt and lanthanum.  
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6.5. The effect of metal ion additives on the colour measurements of 
the hydrated NiO films 

 

Table 6.3 shows CIE 1931 %YL xy and CIELAB L*a*b* chromaticity coordinates for 

the hydrated NiO film co-deposited with different additives as calculated from visible 

region absorbance spectra in figures 6.22 to 6.29 ((b) and (c)), recorded in the same 

experimental conditions as in section 6.4 but in this case showing the complete 

spectral change. In table 6.3 one value for the ‘bleached’ and one value for the 

coloured states are given for each film. The complete calculation of the CIE 

chromaticity coordinates and luminance data during dynamic colour switching 

between the ‘bleached’ (transmissive) and coloured (brown-grey) redox states can 

be found in appendix A.   

 

The generated xy data are also presented as a hue and saturation track in 

chromaticity diagrams (figures 6.30 and 6.31). Comparing the xy chromaticity 

diagrams and the values in table 6.3 show several trends. The shape of the colour 

tracks for each film is consistent with those obtained in chapter 5, section 4 and 6.3 

with the existence of hysteresis and a tailing or kink towards the latter stages of the 

oxidation process (between 15 and 20 s). It can be seen from the xy chromaticity 

figures that for all the films as the potential is stepped to a positive value  both the x 

and y values increased as the fully transparent hydrated NiO was oxidised to the 

coloured brown-grey NiOOH redox state. In many of the co-deposited films (cerium, 

copper, lanthanum, cobalt/copper and cobalt/lanthanum) the xy trajectories follow a 

very similar track to those generated for pure hydrated NiO. However, with the 

addition of cobalt, cadmium and cobalt/cadmium a different xy trajectory was 

observed, with a decrease in y and an increase in x values for the colouration 

process.   

 

Figures 6.32 and 6.33 show the changes in the relative luminance (%YL) on potential 

switching between the ‘bleached’ and coloured state. Generally, for all the co-

deposited films the values of %YL coincide with pure hydrated NiO with the graphical 

form of the relative luminance being in good correlation with electric charge (figures 

6.14 to 6.21(d)). 
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In table 6.3, the CIELAB L*a*b* coordinates are also given which, when combined 

with the xy chromaticity and %YL data, provide valuable information in quantifying 

the perceived colour of the EC film. As outlined above, the preparation of hydrated 

NiO with additives is an effective way to enhance the electrochemical and EC 

properties of the film. Furthermore, with the addition of additives, the ability to ‘fine-

tune’ the colour states is another asset when considering the EC materials’ 

properties towards smart window applications. From table 6.3 it can be noted that at 

the initial 0.00 V applied potential, the ‘bleached’ state of all the films is close to the 

achromatic ‘white point’ (L* = 100, a* = 0, b* = 0). As the potential is stepped to 

positive values, the L* values decrease with the increasing saturation of the brown-

grey colour, with both a* and b* values becoming more positive. On potential 

switching, the colour perceived for films co-deposited with cobalt was reddish-brown 

as indicated by a high a* and b* values. Similar colours were also produced for films 

co-deposited with cobalt/lanthanum. In the case of films prepared with cadmium as 

an additive, the colour perceived was a more brown/black tone, as indicated by low 

a* and b* values.    
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Table 6.3. Chromaticity coordinates (CIE 1931 %YLxy and CIELAB L*a*b*) for the ‘bleached’ and the 

coloured states of the hydrated NiO films co-deposited with different additives on FTO/glass. 

 
Additive x  y %YL L* a* b* 

(hydrated NiO 'bleached') 0.332 0.347 99.9 100 -0.2 -0.3 

(hydrated NiO coloured) 0.390 0.363 24.4 56 12.1 12.1 

cerium 'bleached' 0.332 0.347 99.6 100 -0.1 -0.4 

cerium coloured 0.391 0.365 29.8 61 12.5 13.5 

cadmium 'bleached' 0.333 0.348 100.0 100 -0.1 0.1 

cadmium coloured 0.371 0.351 26.2 58 10.7 6.2 

cobalt 'bleached' 0.335 0.351 98.4 99 -0.5 1.7 

cobalt coloured 0.446 0.362 13.8 43 22.6 17.3 

copper 'bleached' 0.334 0.347 97.5 99 0.9 -0.0 

copper coloured 0.396 0.361 18.3 50 13.0 11.2 

lanthanum 'bleached' 0.331 0.346 100 100 -0.1 -1.2 

lanthanum coloured 0.394 0.360 16.2 47 12.6 10.6 

cobalt and cadmium 'bleached' 0.336 0.350 96.5 98 0.3 1.9 

cobalt and cadmium coloured 0.405 0.354 23.5 56 28.8 11.7 

cobalt and copper 'bleached' 0.334 0.349 100.0 199 -0.3 0.9 

cobalt and copper coloured 0.392 0.359 26.8 59 14.4 11.7 

cobalt and lanthanum 'bleached' 0.335 0.350 99.8 100 -0.2 1.3 

cobalt and lanthanum coloured 0.432 0.368 21.8 54 21.4 19.4 
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Figure 6.22. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cerium in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the 

coloured (brown-grey) state. EC switching was conducted by application of potential steps                 

(‒0.30 V → +0.45 V → ‒0.30 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.23. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cadmium in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the 

coloured (brown-grey) state. EC switching was conducted by application of potential steps                 

(‒0.20 V → +0.48 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.24. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cobalt in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the 

coloured (brown-grey) state. EC switching was conducted by application of potential steps                 

(‒0.20 V → +0.46 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.25. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

copper in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the 

coloured (brown-grey) state. EC switching was conducted by application of potential steps                 

(‒0.20 V → +0.49 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.26. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

lanthanum in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state and the 

coloured (brown-grey) state. EC switching was conducted by application of potential steps                 

(‒0.30 V → +0.55 V → ‒0.30 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.27. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cobalt and cadmium in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state 

and the coloured (brown-grey) state. EC switching was conducted by application of potential steps     

(‒0.20 V → +0.43 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode. In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.28. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cobalt and copper in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ state 

and the coloured (brown-grey) state. EC switching was conducted by application of potential steps    

(‒0.20 V → +0.48 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the arrows 

indicate the direction of change in absorbance.  
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Figure 6.29. Current vs. time transients (a) and visible region absorbance spectra ((b) and (c), 

spectra recorded every 1 s), for the reversible switching of a hydrated NiO film co-deposited with 

cobalt and lanthanum in aqueous KOH (0.1 mol dm-3) between the transmissive green ‘bleached’ 

state and the coloured (brown-grey) state. EC switching was conducted by application of potential 

steps (‒0.20 V → +0.43 V → ‒0.20 V) vs. the Ag wire pseudo reference electrode.  In (b) and (c) the 

arrows indicate the direction of change in absorbance.  
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Figure 6.30. CIE 1931 xy chromaticity plots for pure hydrated NiO film (——) and films co-deposited 

with different additives (single) (——) on FTO/glass. The films were switched in aqueous KOH (0.1 

mol dm-3) between the ‘bleached’ and coloured states by application of potential steps. 
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Figure 6.31. CIE 1931 xy chromaticity plots for pure hydrated NiO film (——) and films co-deposited 

with different bimetallic additives (——) on FTO/glass. The films were switched in aqueous KOH (0.1 

mol dm-3) between the ‘bleached’ and coloured states by application of potential steps. 
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Figure 6.32. CIE 1931 relative luminance data vs. time for pure hydrated NiO film (——) and films co-

deposited with different additives (single) (——) on FTO/glass.  
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Figure 6.33. CIE 1931 relative luminance data vs. time for pure hydrated NiO film (——) and films co-

deposited with different bimetallic additives (——) on FTO/glass. 



6. Effect of metal ion additives on the electrochemical and electrochromic 
performance of hydrated NiO 

197 
 

6.6. Conclusion 
 

This chapter has detailed the formation of hydrated NiO films prepared with various 

metal ion additives. The effect of single and bimetallic additives on the 

electrochemical, electrochromic (EC) and colour-tuning properties was considered. 

Electrochemical studies revealed that films prepared with cobalt (10%) as an additive 

increased the conductivity of the film thereby shifting the Ni(II)/Ni(III) redox process 

to less positive potentials and avoiding the OER. Additionally, the incorporation of a 

second additive further increased the durability by reducing the expansion or 

contraction of the nickel and hydroxide layers during redox cycling. In this way, the 

displacement of the redox peaks is avoided and the formation of the γ-phase is 

reduced. In particular the combination of cobalt (10%) with lanthanum (5%) was 

found to be the optimal composition for preparing hydrated NiO films with improved 

film durability. Finally, the effect of additives on fine-tuning the colour states was 

investigated using the CIE 1931 %YL xy and CIELAB L*a*b* chromaticity 

coordinates, with the addition of cobalt producing a reddish-brown tone and the 

addition of cadmium producing a brown-black coloured film upon oxidation. 

 

From the results, it is evident that with the addition of certain elements, the EC 

properties of hydrated NiO films can be enhanced or tailored towards specific 

commercial applications. Variation of the metal additives allows the colouration of the 

EC material to be fine-tuned.  
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7. Large-area electrochromic hydrated nickel oxide 
film deposition 

 

7.1. Introduction 
 

The first experimental investigation into the use of electrochromic (EC) films towards 

smart window applications appeared in 1984 by Svensson and Granqvist.1 Although 

the technology was first considered nearly 30 years ago, its implementation towards 

commercialisation has been relatively slow. One of the main reasons for this lack of 

progress might be due to its complex nature and the need to optimise the different 

components of a working device (figure 1.1 (chapter 1)) and failure in one aspect of 

the device will affect the integrity of the entire working prototype.2,3 Furthermore, for 

an EC device to be judged suitable for a smart windows application, it must meet or 

exceed many of the key performance parameters as outlined (table 7.1) by Mathew 

et al.4 With this in mind, over the past 15 years, numerous research investigations 

have been carried out in an attempt to identify the optimal primary and secondary EC 

materials towards smart window applications (chapter 2). 

 

More recently, with the widespread concerns of global warming, rise in energy 

demands and the realisation of large energy saving associated with the use of smart 

windows has resulted in an increased interest in this area of research.5 As a result, a 

number of companies have gained momentum by producing commercially available 

smart windows up to a maximum size of 120 x 220 cm2. An excellent review of these 

companies is given by Baetens et al.6  

 

As already mentioned, due to the complex nature of a large-area EC device it is 

important to understand the various operating factors associated at the different 

stages of development. From the initial small-scale lab investigations to the final 

large-area practical product, careful attention is given to every experimental problem 

and at every development stage in order to optimise the device design with precise 
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EC performance ability. An important step along this lab to market phenomena is 

scale-up of deposition.  

 

In this chapter, optimised deposition conditions from small-scale (chapter 4.4) were 

used to prepare hydrated NiO films onto two different sized large-area fluorine-doped 

tin oxide (SnO2:F,  FTO) on glass (10 x 7.5 and 30 x 30 cm) substrates via an 

electrochemical cathodic deposition. For films deposited onto 30 x 30 cm FTO/glass 

substrate, a special designed electrochemical tank (figure 3.8 (chapter 3)) was used 

to deposit the films. The deposited films were experimentally tested and compared 

with the minimum acceptable performance parameters outlined in table 7.1. 

 
Table 7.1. Performance criteria for EC window. Table redrawn from.4  

 
Performance parameter EC glazing requirement 

Clear state transmittance 60 to 80%, photopic 

Coloured state transmittance  5 to 20%, photopic 

Contrast ratio 4:1 to 10:1 

Switching speed (>0.1 m2) 1 to 5 min 

Cycling lifetime  >50,000 (full cycles) 

Static lifetime 10 to 40 years 

Darkened state memory  Minutes to hours 

Colour Neutral grey 

Operating temperature -20 to 85 °C 

 

7.2. Hydrated NiO film preparation on 10 x 7.5 cm active area 
FTO/glass substrate  

 

Figure 7.1 (a) shows the potential-time transient for the deposition of hydrated NiO 

thin film using the optimised (small-scale) deposition conditions of -0.2 mA for 800 s 

in 0.01 mol dm-3 nickel nitrate and on FTO/glass substrate. From the plot it can be 

seen that the optimised small-scale current of -0.2 mA was negligible in sustaining 

the required potentials (between -0.80 and -1.0 V) to deposit a thick film. This was 
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further evident from the corresponding CV which produced low oxidation and 

reduction peak currents (figure 7.1 (b)) and a lack of film colouration on switching to 

the NiOOH state. Therefore, a wide range of applied currents (-0.2 to -5 mA) were 

tested and -3 mA for 800 seconds was found to be sufficient for producing uniform 

coloured films with proportional properties to the optimised small-scale films. Figure 

7.2 shows photographs of the hydrated NiO films deposited at different times in the 

‘bleached’ and coloured states. Upon potential switching by CV, the films were 

oxidised to the oxy-hydroxide form with a uniform brown-grey colouration being 

formed.  
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Figure 7.1. Potential-time transients (a) and CVs (b) for hydrated NiO films prepared by 

electrochemical cathodic deposition on FTO/glass (electrode surface area = 10 x 7.5 cm) from 0.01 

mol dm-3 nickel nitrate solutions, with an applied current of -0.2 mA for 800 s (——) and -3 mA for  

800 s (——). The potential range was -0.20 V → +0.70 V → -0.20 V vs. SCE (-0.2 mA for 800 s) and                

-0.50 V → +1.00 V → -0.50 V vs. SCE (-3 mA for 800 s) at a scan rate of 10 mV s-1. The arrows in (b) 

indicate the direction of potential scan. 
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Figure 7.2. Photographs of hydrated NiO film prepared by electrochemical cathodic deposition, (a) as 

deposited ‘bleached’ hydrated NiO films (b) NiOOH coloured films prepared at -3 mA for 100 s, (c) 

NiOOH coloured films prepared at -3 mA for 400 s and (d) NiOOH coloured films prepared at -3 mA 

for 800 s Coloured films were obtained by cycling in KOH (0.1 mol dm-3) electrolyte (‒0.50 to +0.85 V 

vs. SCE at 10 mV s-1, and then removal at +0.85 V). Each film was deposited on the lower 8 cm 

length of each 10 cm width FTO/glass).  
 

For large-scale deposition, hydrated NiO films were also co-deposited with metals 

that were found to enhance the EC properties of the films (chapter 6). The effects of 
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cobalt and lanthanum as single and combined double additives on the electrodes’ 

properties such as reversibility, switching times, durability and film uniformity were 

studied. Table 7.2 outlines the experimental results for the different composite films 

obtained from the respective CVs (figure 7.3), current vs. time (figure 7.4 (a)) and 

charge vs. time (figure 7.4 (b)) transients. Figures for pure hydrated NiO are included 

as a reference. 

 

The reversibility of the electrode reaction can be measured by the difference          

(EO – ER) between the oxidation potential (EO) and the reduction potential (ER). 

From the table it can be concluded that the reversibility improves with all three 

composite films, with cobalt (10%) as an additive showing the best performance. 

Response time for the colouration (tc) and bleaching (tb) process were estimated 

from the current vs. time and charge vs. time transients and were taken as the time 

required to achieve a fully coloured film. It can be inferred from the results that for 

the pure hydrated NiO film the colouration and bleaching processes were about 24.6 

and 14.6 s, respectively. With the addition of cobalt (10%), both tc and tb were found 

to increase. However, the addition of single additive (lanthanum (10%)) and 

bimetallic additives (cobalt (10%) and lanthanum (5%)) yielded a faster response 

both for the oxidation and reduction processes. Finally, the cycle life or the durability 

of the deposited films were examined by calculating the percentage drop in charge 

(C) between the 1st and 50th charge and discharge cycles (figure 7.3). Similar results 

to those obtained in chapter 6 for the small-scale deposited films were observed. For 

all three composite films, the drop in charge was found to be less than pure hydrated 

NiO. A double additive film prepared with cobalt (10%) and lanthanum (5%) still 

retained 95% of its initial capacity after 50 cycles in KOH (0.1 mol dm-3) electrolyte.  

 

More subjective specifications such as film uniformity and the tone of colour change 

are also very important attributes for EC films prepared for smart window 

applications. As during the active coloured state, the window must show a uniform 

appearance but also with a neutral coloured transmission. Although, it has been 

observed that co-deposition of hydrated NiO films with other metals show an 

improved reversibility and EC performance, the films do lack the uniformity of the 

pure hydrated NiO (figure 7.5). 

 



7. Large-area electrochromic hydrated nickel oxide film deposition 

205 
 

Table 7.2. Electrochemical properties, switching times and durability data of hydrated NiO film 

prepared on FTO glass (electrode surface area = 10 x 7.5 cm) with different additives.a 

 
additive  EO / V ER / V EO / V – ER / V tc/tb (s) durability, drop 

in charge (%) 

(Pure hydrated NiO) 0.94 0.02 0.92 24.6 / 14.6 16.4 

Co 0.68 -0.09 0.77 33.4 / 16.9 13.1 

La 0.77 -0.01 0.78 23.4 / 14.0 5.0 

Co and La 0.79 -0.01 0.80 23.4 / 12.0 4.6 

 
aEO = anodic peak potential, ER = cathodic peak potential, tc and tb = switching times for colouration 

and bleaching. 
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Figure 7.3. CVs for hydrated NiO film for the 1st (——) and 50th (——) cycle. The film was cycled 50 

times (‒0.50 → +0.85 → ‒0.50 V vs. SCE) at 10 mV s-1. Hydrated NiO films prepared by 

electrochemical cathodic deposition on FTO/glass (electrode surface area = 10 x 7.5 cm) at an 

applied current of -0.2 mA for 800 s. 
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Figure 7.4. Current vs. time (a), charge vs time transients (b) for the reversible switching of hydrated 

NiO film in aqueous KOH (0.1 mol dm-3) between the transmissive ‘bleached’ state and the coloured 

(brown-grey) state. EC switching was conducted by application of potential steps (0.00 V → +0.47 V 

→ ‒0.10 V) vs. SCE reference electrode.  
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Figure 7.5. Photographs of hydrated NiO film prepared by electrochemical cathodic deposition with 

different additives, (a) pure NiOOH films prepared at -3 mA for 800 s, (b) Cobalt (10%) co-deposited 

NiOOH films prepared at -3 mA for 800 s, (c) Lanthanum (10%) co-deposited NiOOH coloured films 

prepared at -3 mA for 1600 s and (d) cobalt (10%) and lanthanum (5%) co-deposited NiOOH coloured 

films prepared at -3 mA for 800 s. Coloured films were obtained by cycling in KOH (0.1 mol dm-3) 

electrolyte (‒0.50 to +0.85 V vs. SCE at 10 mV s-1, and then removal at +0.85 V).  

a b

c d
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7.3. Hydrated NiO film preparation on 30 x 30 cm active area 
FTO/glass substrate  

 

The emphasis of this work was on scale-up of deposition. Therefore, optimised 

deposition conditions from small-scale (chapter 4.4 and 6) and relativity large-scale 

(chapter 7.2) were used to prepare hydrated NiO films on a 30 x 30 cm conducting 

FTO/glass substrate. The cell arrangement for large-scale deposition was two glass 

tanks custom made to hold two sheets of 30 x 30 cm FTO/glass, with one acting as a 

working and the other as a counter electrode (figure 3.8 (chapter 3)). It was crucial 

during experiment design that in the cell both electrodes were held parallel to one 

another. This maintained an even current distribution needed to deposit a uniform 

film across the whole substrate. Generally, due to the size of the substrate, a 

potential drop down the surface is inevitable and upon switching to the coloured 

state, the top part of the film was initially coloured, but over time the colouration of 

the film gradually moved down the substrate to show a complete colour change. In a 

device formation this problem would not persist as electrical connection will cover the 

perimeter of the EC device. However, potential drop going to the centre of the 

substrate would still be possible, as seen in a recent demonstration video of the 

Gentex smart window for an aircraft.7  

 

Figure 7.6 shows photographs of the hydrated NiO films deposited on FTO/glass at 

different times. From the photographs, it can be noted that the films’ uniformity and 

the neutral colouration over a large-area substrate is stable and its formation is 

independent of the film thickness. Similarly to the co-deposited hydrated NiO films on 

the 10 x 7.5 cm FTO/glass substrate, non-uniformity of films were also evident for 

deposition on 30 x 30 cm FTO/glass substrate, in particular the addition of cadmium 

(10%) showing the least uniform colour change (figure 7.7). 
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Figure 7.6. Photographs of hydrated NiO films prepared on FTO/glass (electrode surface area = 30 x 

30 cm) by electrochemical cathodic deposition at -5 mA for different deposition times, (a) as deposited 

‘bleached’ hydrated NiO films deposited for 1800 s (b) NiOOH coloured films prepared for 1800 s and 

(c) NiOOH coloured films prepared for 3600 s. Coloured films were obtained by cycling in KOH (0.1 

mol dm-3) electrolyte (‒0.50 to +0.85 V vs. SCE at 10 mV s-1, and then removal at +0.85 V). Each film 

was deposited on the lower 25 cm length of each 30 cm width FTO/glass).  
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Figure 7.7. Photographs of hydrated NiO film prepared on FTO/glass (electrode surface area = 30 x 

30 cm) by an electrochemical cathodic deposition with different additives, (a) cobalt (10%) co-

deposited NiOOH films prepared at -5 mA for 3600 s, (b) lanthanum (10%) co-deposited NiOOH 

coloured films prepared at -5 mA for 3600 s and (c) cadmium (10%) co-deposited NiOOH coloured 

films prepared at -3 mA for 3600 s. Coloured films were obtained by cycling in KOH (0.1 mol dm-3) 

electrolyte (‒0.50 to +0.85 V vs. SCE at 10 mV s-1, and then removal at +0.85 V).  

a b

c
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Table 7.3 lists the performance criteria for a pure hydrated NiO film deposited onto 

30 x 30 cm FTO/glass substrate. For smart window applications, the expected 

transmittance specifications for the coloured and the ‘bleached’ state are between 5 

and 10% and 70 and 80%, respectively. In the case of hydrated NiO films, it was 

observed that with increasing deposition time not only does the transmittance of the 

coloured film reach as low as 13.9%, the transmittance of the bleached state was still 

almost 100% (97.1% - chapter 4.4). The films’ response times were also calculated 

and are reported here as the time taken for the absorbance to reach 100% of the 

total change for both colouration (tc) and ‘bleaching’ (tb) processes with values of 95 

s for tc and 51 s for tb process. The durability of the film was examined following 

1000 charge and discharge cycles, with the hydrated NiO film co-deposited with 

cobalt (10%) and lanthanum (5%) showing the longest cycle life, with the electrode 

still retaining 10% of its initial capacity. Finally, the colour of the oxidised films was 

shown to be neutral brown-grey, which would be ideal in a device formation to 

complement the blue colouring WO3. 

 
Please see the accompanying CD which contains video clips of the large-area 

hydrated NiO film and its reversible switching in aqueous KOH (0.1 mol dm-3) 

between the transmissive ‘bleached’ state and the coloured (brown-grey) state. 
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Table 7.3. Minimum performance criteria for an EC window and for the hydrated NiO film prepared by 

electrochemical cathodic deposition technique on 30 x 30 cm FTO/glass substrate. 

 
Performance parameter EC glazing requirement Hydrated NiO film on 

FTO/glass 

Clear state transmittance 60 to 80%, photopic 97.1% 

Coloured state transmittance  5 to 20%, photopic 13.9% 

Switching speed  1 to 5 min (>0.1 m2) tc = 95 s and tb = 51 s 

(30 x 30 cm) 

Cycling lifetime  >50,000 (full cycles) 1000 (full cycles) 

Colour Neutral grey Neutral brown-grey with 

the ability to tune colour 

with additives 

 

 

7.4. Conclusion  
 

This chapter has demonstrated that optimised deposition conditions from small-scale 

can be used to successfully deposit uniform EC hydrated NiO films onto large-area 

FTO/glass substrates. The deposited films exhibit good EC properties that meet or 

exceed most of the minimum required performance criteria towards smart window 

applications.  
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8. Conclusion  
 

This thesis contains experimental investigations into the formation of nickel oxide-

based ceramic precursor films and the evaluation of their electrochromic (EC) 

properties towards smart window applications. The motivation for this work was to use 

optimise deposition condition from small-scale (5 x 0.7 cm) to produce uniform large-

area (30 x 30 cm) deposits. Two different deposition techniques were used to 

immobilise the films onto transparent conducting substrates.  

 

Firstly, a simple, quick and inexpensive electrochemical cathodic deposition technique 

was used to prepare hydrated NiO films. In chapter 4, various deposition factors were 

investigated in order to optimise the preparation of EC hydrated NiO films. It was 

shown that deposition using nickel chloride and sulphate solutions produced non-

uniform deposits due to the coexistence of hydrated NiO and metallic nickel. In 

contrast, deposition using nickel nitrate (0.01 mol dm-3) solution produced films with a 

uniform porous interconnecting flake-like structure. Furthermore, deposition on 

FTO/glass at an applied current of -0.2 mA (-0.1 mA cm-2) for 800 s was found to be 

the optimal film preparation conditions. 

 

Secondly, a variant of the conventional chemical vapour deposition (CVD) process, 

the aerosol-assisted chemical vapor deposition (AACVD) was used for the preparation 

of nickel(II) oxide (NiO) thin films. Unlike the electrochemically prepared films, the as-

deposited AACVD films exhibited a non-porous octahedral-like grain structure. 

However, on continuous oxidative voltammetric cycling in aqueous KOH                  

(0.1 mol dm-3) electrolyte, an increase in capacity under the oxidation and reduction 

process takes place. This so-called activation period gradually changed the 

morphology to an open porous interconnected flake-like structure, which showed 

greater EC performance due to increased contact between active material and 

electrolyte for facilitating hydroxide ion penetration. Furthermore, during this activation 

period the optical transmittance between the ‘bleached’ and coloured forms increased 

from 21.4% to 54.8% when measured at 550 nm for film deposited for 15 min.  
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Having optimised the deposition conditions, the EC properties of NiO-based thin films 

were investigated in chapter 5. The as-deposited hydrated NiO film prepared by 

electrochemical cathodic deposition showed excellent transmittance modulation (Δ%T 

= 83.2 at 434 nm), with average colouration efficiency (CE) of 29.6 cm2 C-1 and low 

response times. However, the cycle life of the film was found to fade drastically only 

after 50 cycles. NiO films prepared by the AACVD technique on the other hand 

showed excellent durability of up to 10000 voltammetric cycles. However, the films 

presented lower transmittance change (53.7% at 550 nm for film deposited at 10 min) 

between the ‘bleached’ and coloured state when compared with hydrated NiO films 

prepared by electrochemical cathodic deposition.  

 

Also in chapter 5, a calculation method based on the integration of experimental 

spectral power distributions derived from in-situ visible region spectra over the CIE 

1931 colour-matching functions was used to calculate the colour stimuli of the NiO-

based films, and the changes that take place on reversibly switching between the 

‘bleached’ and coloured forms. Films prepared by both deposition techniques gave 

positive a* and b* values to produce orange. However, in combination with low L* 

values, the films were perceived as brown. Moreover, NiO-based thin films prepared 

by three different deposition techniques were tested in order to compare their 

electrochemical, in-situ absorbance and chromaticity data. Results showed that for 

hydrated NiO films prepared by electrochemical cathodic deposition and by layer-by-

layer (LbL) technique, the current responses appeared to be biphasic, an effect which 

is said to involve two mechanisms with different time courses. The optical properties 

for the oxidised states also presented a slight difference in the tone of the colour 

change with the x-y coordinates producing a different shape for the colour tracks. The 

underlying reasons for the different properties of the films prepared on FTO/ITO/glass 

substrates by the three methods relate to the chemical identity and 

spectroelectrochemical properties of the different materials. In the case of the AACVD 

films, their EC and colorimetric properties are due to the presence of NiO. Whereas, 

for the electrochemical cathodic and LbL deposition techniques the active material is 

hydrated NiO (Ni(OH)2).  

 

The effect of single and bimetallic additives on the electrochemical, EC and colour-

tuning properties of hydrated NiO film was described in chapter 6. Electrochemical 
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studies revealed that films prepared with cobalt (10%) as an additive increased the 

conductivity of the film thereby shifting the Ni(II)/Ni(III) redox process to less positive 

potentials and avoiding the OER. Additionally, the incorporation of a second additive 

further increased the durability by reducing the expansion or contraction of the nickel 

and hydroxide layers during redox cycling. In this way, the displacement of the redox 

peaks is avoided and the formation of the γ-phase is reduced. In particular the 

combination of cobalt (10%) with lanthanum (5%) was found to be the optimal 

composition for preparing hydrated NiO films with improved film durability. Finally, the 

effect of additives on fine-tuning the colour states was investigated using the CIE 1931 

%YL xy and CIELAB L*a*b* chromaticity coordinates, with the addition of cobalt 

producing a reddish-brown tone and the addition of cadmium producing a brown-black 

coloured film upon oxidation. 

 

Finally, chapter 7 demonstrated that optimised deposition conditions from small-scale 

can be used to successfully deposit uniform EC hydrated NiO films onto large-area 

FTO/glass substrates. The EC response of the large-area films was found to meet or 

exceed most of the minimum required performance criteria towards smart window 

applications.  

 

The basis for some interesting further research may involve preparing a two layered 

NiO-based film. First layer, using the electrochemical cathodic deposition and the 

second layer, using the AACVD technique. This could result in utilising the advantages 

of both deposition methods, thereby, producing films with high transmittance 

modulation and increased durability. Also the addition of metal ions as additives for 

films prepared via AACVD technique may further enhance the films already promising 

EC properties. 
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A. Chromaticity coordinates (CIE 1931 %YL xy and 
CIELAB L*a*b*) 

 

This appendix contains the complete results for the calculation of the CIE chromaticity 

coordinates and luminance data during dynamic colour switching between the 

‘bleached’ (transmissive) and coloured (brown-grey) redox states of hydrated NiO 

films co-deposited with different additives. The films were prepared via an 

electrochemical cathodic deposition method on fluorine-doped tin oxide (SnO2:F, 

FTO) on glass.   

 
Table A.1. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cerium on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.332 0.347 100.0 100 -0.1 -0.4 

2 0.337 0.349 97.3 99 1.4 1.7 

3 0.345 0.351 80.9 92 3.6 3.8 

4 0.352 0.354 68.0 86 5.5 5.8 

5 0.359 0.356 58.7 81 6.9 7.6 

6 0.365 0.359 51.6 77 8.1 9.1 

7 0.371 0.361 45.8 73 9.2 10.4 

8 0.377 0.362 40.9 70 10.1 11.6 

9 0.382 0.364 36.9 67 11.0 12.4 

10 0.386 0.365 33.8 65 11.6 13.0 

11 0.389 0.365 31.4 63 12.1 13.4 

12 0.391 0.365 29.8 61 12.5 13.5 

13 0.393 0.365 28.1 60 12.9 13.5 

14 0.393 0.365 27.9 60 12.9 13.4 

15 0.393 0.365 27.7 60 12.9 13.4 

16 0.393 0.365 27.6 59 13.0 13.4 
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17 0.394 0.365 27.5 59 13.0 13.4 

18 0.394 0.365 27.5 59 13.0 13.4 

19 0.394 0.365 27.4 59 13.0 13.4 

20 0.394 0.365 28.0 60 13.0 13.6 

21 0.382 0.365 38.6 68 10.9 13.1 

22 0.370 0.361 49.4 76 8.7 10.6 

23 0.362 0.359 56.4 80 7.3 9.0 

24 0.358 0.357 61.5 83 6.4 7.9 

25 0.355 0.356 65.7 85 5.7 7.0 

26 0.350 0.354 72.8 88 4.7 5.7 

27 0.348 0.353 75.9 90 4.2 5.2 

28 0.347 0.353 78.7 91 3.8 4.7 

29 0.345 0.352 81.3 92 3.4 4.3 

30 0.344 0.352 83.8 93 3.1 3.9 

31 0.343 0.352 86.1 94 2.8 3.6 

32 0.342 0.351 88.2 95 2.6 3.2 

33 0.341 0.351 90.1 96 2.3 2.9 

34 0.340 0.351 92.0 97 2.1 2.7 

35 0.339 0.350 93.7 97 1.9 2.4 

36 0.339 0.350 95.2 98 1.7 2.2 

37 0.338 0.350 96.7 99 1.5 2.0 

38 0.338 0.349 98.0 99 1.4 1.8 

39 0.337 0.349 99.2 100 1.2 1.6 

40 0.337 0.349 100.0 100 1.1 1.5 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.30 V → +0.45 V for 20 s and +0.45 V → ‒0.30 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.2. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cadmium on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.339 0.349 80.4 92 2.0 1.8 

2 0.346 0.350 64.3 84 4.5 3.2 

3 0.354 0.351 50.8 77 6.8 4.6 

4 0.361 0.352 40.9 70 8.5 5.7 

5 0.366 0.352 34.5 65 9.6 6.4 

6 0.369 0.353 31.0 62 10.1 6.8 

7 0.371 0.353 29.3 61 10.4 6.9 

8 0.371 0.352 28.5 60 10.5 6.8 

9 0.371 0.352 27.8 60 10.6 6.7 

10 0.371 0.351 27.1 59 10.7 6.5 

11 0.371 0.351 26.2 58 10.7 6.2 

12 0.371 0.351 25.6 58 10.7 6.1 

13 0.371 0.350 25.2 57 10.7 6.0 

14 0.371 0.350 24.9 57 10.7 6.0 

15 0.371 0.350 24.6 57 10.8 6.1 

16 0.372 0.350 24.4 56 10.8 6.1 

17 0.372 0.350 24.2 56 10.9 6.1 

18 0.372 0.351 24.0 56 10.9 6.2 

19 0.373 0.351 23.9 56 11.0 6.2 

20 0.374 0.353 26.4 58 11.0 7.1 

21 0.370 0.354 31.8 63 10.1 7.3 

22 0.364 0.354 38.4 68 8.7 6.9 

23 0.358 0.354 46.9 74 7.2 6.2 

24 0.352 0.353 56.4 80 5.6 5.4 

25 0.348 0.353 65.7 85 4.1 4.6 

26 0.343 0.352 74.6 89 2.8 3.6 
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27 0.339 0.351 82.6 93 1.6 2.5 

28 0.336 0.349 88.9 96 0.8 1.5 

29 0.335 0.349 93.1 97 0.3 0.9 

30 0.334 0.348 95.6 98 0.1 0.5 

31 0.333 0.348 97.0 99 0.0 0.3 

32 0.333 0.348 97.7 99 -0.1 0.2 

33 0.333 0.348 98.2 99 -0.1 0.1 

34 0.333 0.348 98.5 99 -0.1 0.1 

35 0.333 0.348 98.7 100 -0.1 0.1 

36 0.333 0.348 98.9 100 -0.1 0.1 

37 0.333 0.348 99.0 100 -0.1 0.1 

38 0.333 0.348 99.1 100 -0.1 0.1 

39 0.333 0.348 99.2 100 -0.2 0.1 

40 0.333 0.348 99.2 100 -0.1 0.0 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.20 V → +0.48 V for 20 s and +0.48 V → ‒0.20 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.3. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cobalt on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.345 0.353 81.5 92 2.9 4.6 

2 0.357 0.355 64.7 84 7.0 7.1 

3 0.369 0.355 49.9 76 10.9 8.6 

4 0.381 0.355 39.1 69 13.9 10.1 

5 0.393 0.356 31.7 63 16.0 12.0 

6 0.403 0.357 26.6 59 18.0 12.9 

7 0.413 0.359 22.6 55 19.3 14.1 

8 0.424 0.360 19.2 51 21.0 15.0 

9 0.435 0.361 16.2 47 21.7 16.4 

10 0.446 0.362 13.8 44 22.6 17.3 

11 0.452 0.361 12.2 42 23.1 17.4 

12 0.455 0.360 11.2 40 23.0 17.0 

13 0.457 0.359 10.5 39 23.5 16.7 

14 0.458 0.358 10.0 38 23.0 16.0 

15 0.458 0.358 9.7 37 23.0 16.0 

16 0.458 0.357 9.7 37 23.4 16.1 

17 0.458 0.358 9.6 37 23.4 16.1 

18 0.458 0.358 9.6 37 23.3 16.1 

19 0.458 0.358 9.6 37 23.4 16.1 

20 0.459 0.359 10.4 39 23.7 17.1 

21 0.447 0.362 13.8 44 22.8 17.5 

22 0.429 0.360 17.6 49 21.3 15.7 

23 0.412 0.357 22.5 55 19.5 13.6 

24 0.399 0.356 27.9 60 17.6 11.9 

25 0.387 0.355 34.3 65 15.6 10.6 

26 0.377 0.355 42.5 71 13.1 9.5 
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27 0.365 0.355 54.1 79 10.0 8.2 

28 0.352 0.354 70.8 87 5.7 6.0 

29 0.344 0.353 82.1 93 3.0 4.0 

30 0.342 0.353 85.6 94 2.1 4.0 

31 0.341 0.353 87.8 95 1.6 3.7 

32 0.340 0.352 89.1 96 1.3 3.5 

33 0.340 0.352 90.0 96 1.0 3.0 

34 0.339 0.352 90.7 96 1.0 3.2 

35 0.339 0.352 91.3 97 0.8 3.1 

36 0.339 0.352 91.8 97 0.7 3.0 

37 0.339 0.352 92.2 97 0.7 2.9 

38 0.338 0.352 92.6 97 0.6 2.9 

39 0.338 0.352 92.9 97 0.5 2.8 

40 0.338 0.352 93.2 97 0.4 2.7 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.20 V → +0.46 V for 20 s and +0.46 V → ‒0.20 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 

 

 

 

 

 

 

 

 

 

 

 



A. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) 

223 
 

Table A.4. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with copper on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.339 0.349 86.5 95 2.1 2.0 

2 0.348 0.353 73.7 89 4.3 4.8 

3 0.356 0.356 61.7 83 6.2 7.0 

4 0.363 0.358 51.4 77 7.9 8.5 

5 0.370 0.359 42.5 71 9.3 9.8 

6 0.378 0.361 34.7 66 10.6 10.9 

7 0.387 0.363 27.7 60 11.8 11.8 

8 0.393 0.363 22.6 55 12.6 12.2 

9 0.395 0.362 19.7 52 12.9 11.8 

10 0.396 0.361 18.3 50 13.0 11.2 

11 0.395 0.360 17.2 49 12.9 10.7 

12 0.395 0.359 16.1 47 12.9 10.0 

13 0.394 0.357 15.2 46 12.7 9.4 

14 0.393 0.357 14.7 45 12.7 9.2 

15 0.393 0.356 14.5 45 12.7 9.0 

16 0.393 0.356 14.3 45 12.6 8.9 

17 0.393 0.356 14.2 45 12.6 8.9 

18 0.393 0.356 14.2 44 12.6 8.9 

19 0.393 0.356 14.1 44 12.6 8.8 

20 0.395 0.357 14.9 45 12.9 9.5 

21 0.396 0.362 18.7 50 13.0 11.4 

22 0.393 0.364 23.2 55 12.4 12.4 

23 0.387 0.365 28.8 61 11.3 12.6 

24 0.379 0.364 35.9 66 10.0 11.9 

25 0.370 0.362 44.3 72 8.5 10.6 

26 0.362 0.359 54.6 79 6.9 8.9 
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27 0.351 0.355 68.5 86 4.8 6.1 

28 0.340 0.350 85.6 94 2.2 2.2 

29 0.334 0.347 95.0 98 1.0 0.2 

30 0.334 0.347 96.7 99 0.9 0.0 

31 0.334 0.347 97.0 99 0.9 0.0 

32 0.334 0.347 97.3 99 0.9 0.0 

33 0.334 0.347 97.4 99 0.9 0.0 

34 0.334 0.347 97.4 99 0.9 0.0 

35 0.334 0.347 97.4 99 0.9 0.0 

36 0.334 0.347 97.4 99 0.9 0.0 

37 0.334 0.347 97.4 99 0.9 0.0 

38 0.334 0.347 97.4 99 0.9 0.0 

39 0.334 0.347 97.4 99 0.9 0.0 

40 0.334 0.347 97.4 99 0.9 0.0 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.20 V → +0.49 V for 20 s and +0.49 V → ‒0.20 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.5. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with lanthanum on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.334 0.346 71.3 88 1.2 -0.4 

2 0.337 0.346 58.3 81 2.4 0.4 

3 0.342 0.347 47.1 74 3.8 1.5 

4 0.349 0.349 38.2 68 5.5 3.0 

5 0.358 0.351 31.1 63 7.3 4.8 

6 0.368 0.354 25.6 58 9.0 6.7 

7 0.378 0.357 21.5 54 10.6 8.4 

8 0.387 0.359 18.4 50 11.8 9.8 

9 0.394 0.360 16.2 47 12.6 10.6 

10 0.397 0.360 14.8 46 13.0 10.7 

11 0.398 0.359 14.0 44 13.2 10.5 

12 0.398 0.359 13.4 44 13.2 10.1 

13 0.398 0.358 12.9 43 13.2 9.8 

14 0.397 0.357 12.4 42 13.2 9.5 

15 0.398 0.357 12.1 42 13.2 9.4 

16 0.398 0.356 12.0 41 13.3 9.3 

17 0.398 0.356 11.9 41 13.3 9.3 

18 0.398 0.356 11.8 41 13.3 9.3 

19 0.400 0.359 12.9 43 13.6 10.4 

20 0.399 0.361 15.7 47 13.4 11.5 

21 0.392 0.361 19.2 51 12.6 11.3 

22 0.384 0.361 24.0 56 11.4 10.8 

23 0.376 0.359 29.9 62 10.1 9.8 

24 0.367 0.358 36.8 67 8.6 8.7 

25 0.360 0.356 44.2 73 7.2 7.5 

26 0.354 0.355 52.3 78 5.8 6.2 
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27 0.348 0.353 61.2 83 4.4 4.7 

28 0.343 0.351 70.5 87 3.1 3.2 

29 0.339 0.349 79.5 92 2.0 1.8 

30 0.335 0.348 87.5 95 1.0 0.6 

31 0.333 0.347 93.2 97 0.4 -0.3 

32 0.332 0.346 96.3 99 0.1 -0.7 

33 0.331 0.346 97.7 99 -0.1 -0.9 

34 0.331 0.346 98.5 99 -0.1 -1.0 

35 0.331 0.346 99.0 100 -0.1 -1.0 

36 0.331 0.346 99.4 100 -0.1 -1.1 

37 0.331 0.346 99.6 100 -0.1 -1.1 

38 0.331 0.346 99.8 100 -0.1 -1.1 

39 0.331 0.346 99.9 100 -0.1 -1.1 

40 0.331 0.346 100.0 100 -0.1 -1.1 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.30 V → +0.55 V for 20 s and +0.55 V → ‒0.30 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.6. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cobalt and cadmium on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.336 0.350 97.1 99 0.1 1.7 

2 0.336 0.350 95.2 98 0.4 1.9 

3 0.344 0.351 80.2 92 3.4 3.6 

4 0.353 0.352 65.3 85 7.0 5.3 

5 0.363 0.352 54.0 78 10.1 6.8 

6 0.372 0.353 45.5 73 12.6 8.2 

7 0.380 0.353 39.0 69 14.5 9.4 

8 0.388 0.354 33.7 65 16.1 10.5 

9 0.396 0.355 29.5 61 17.3 11.4 

10 0.401 0.355 26.6 59 18.1 11.9 

11 0.404 0.355 24.8 57 18.5 12.0 

12 0.405 0.354 23.5 56 18.8 11.7 

13 0.405 0.352 21.9 54 18.9 11.2 

14 0.405 0.351 20.9 53 18.9 10.7 

15 0.405 0.351 20.5 52 18.9 10.6 

16 0.405 0.351 20.4 52 18.9 10.5 

17 0.405 0.351 20.3 52 18.9 10.5 

18 0.405 0.351 20.2 52 18.9 10.5 

19 0.405 0.351 20.2 52 18.9 10.5 

20 0.405 0.351 20.2 52 18.9 10.4 

21 0.405 0.351 20.2 52 18.9 10.4 

22 0.407 0.353 21.6 54 19.2 11.4 

23 0.399 0.355 27.9 60 17.6 11.9 

24 0.386 0.355 35.4 66 15.2 10.5 

25 0.375 0.354 43.4 72 12.9 9.0 

26 0.366 0.353 52.3 77 10.6 7.6 
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27 0.358 0.353 61.4 83 8.3 6.5 

28 0.353 0.353 68.9 86 6.6 5.8 

29 0.350 0.353 73.9 89 5.4 5.3 

30 0.348 0.353 77.2 90 4.6 4.9 

31 0.347 0.352 79.0 91 4.1 4.6 

32 0.346 0.352 80.5 92 3.8 4.4 

33 0.345 0.352 81.7 92 3.5 4.2 

34 0.344 0.352 82.8 93 3.3 4.0 

35 0.344 0.352 83.7 93 3.1 3.9 

36 0.343 0.352 84.6 94 2.9 3.7 

37 0.343 0.352 85.4 94 2.7 3.6 

38 0.342 0.352 86.1 94 2.5 3.5 

39 0.342 0.352 86.8 95 2.3 3.4 

40 0.341 0.351 87.4 95 2.2 3.3 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.30 V → +0.43 V for 20 s and +0.43 V → ‒0.30 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.7. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cobalt and copper on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.334 0.349 100.0 100 -0.3 1.0 

2 0.339 0.351 91.3 97 1.2 2.5 

3 0.347 0.353 75.5 90 4.0 4.7 

4 0.357 0.355 60.2 82 7.0 7.1 

5 0.369 0.358 47.6 75 9.7 9.5 

6 0.379 0.360 39.1 69 11.8 11.3 

7 0.386 0.361 33.8 65 13.1 12.2 

8 0.389 0.361 31.0 63 13.7 12.2 

9 0.390 0.360 29.4 61 14.0 12.1 

10 0.391 0.360 28.1 60 14.2 11.9 

11 0.392 0.359 26.8 59 14.4 11.7 

12 0.393 0.359 25.7 58 14.5 11.5 

13 0.393 0.358 24.8 57 14.5 11.3 

14 0.393 0.358 24.2 56 14.5 11.1 

15 0.393 0.357 23.8 56 14.5 10.9 

16 0.393 0.357 23.5 56 14.5 10.8 

17 0.392 0.357 23.2 55 14.4 10.7 

18 0.392 0.357 23.0 55 14.4 10.6 

19 0.392 0.357 22.8 55 14.4 10.5 

20 0.392 0.357 22.7 55 14.4 10.5 

21 0.393 0.357 22.7 55 14.4 10.5 

22 0.394 0.360 27.2 59 14.7 12.3 

23 0.387 0.360 32.5 64 13.4 11.9 

24 0.378 0.359 38.8 69 11.6 10.6 

25 0.368 0.357 47.0 74 9.7 8.9 

26 0.358 0.355 58.3 81 7.3 7.1 
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27 0.348 0.353 72.5 88 4.6 4.9 

28 0.341 0.351 86.2 94 2.3 3.2 

29 0.338 0.351 93.4 97 1.0 2.5 

30 0.336 0.350 97.0 99 0.4 1.9 

31 0.336 0.350 97.7 99 0.3 1.8 

32 0.336 0.350 98.2 99 0.2 1.7 

33 0.336 0.350 98.6 99 0.2 1.6 

34 0.335 0.350 98.9 100 0.1 1.5 

35 0.335 0.350 99.1 100 0.1 1.5 

36 0.335 0.350 99.3 100 0.0 1.4 

37 0.335 0.350 99.5 100 0.0 1.4 

38 0.335 0.350 99.6 100 0.0 1.4 

39 0.335 0.350 99.7 100 0.0 1.4 

40 0.335 0.350 99.8 100 0.0 1.3 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.30 V → +0.48 V for 20 s and +0.48 V → ‒0.30 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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Table A.8. Chromaticity coordinates (CIE 1931 %YL xy and CIELAB L*a*b*) for a hydrated NiO film co-

deposited with cobalt and lanthanum on FTO/glassa 

 

time (s) x y %YL L* a* b* 

1 0.333 0.347 99.5 100 0.0 0.0 

2 0.352 0.356 77.5 91 4.6 7.1 

3 0.363 0.359 65.1 85 7.7 9.9 

4 0.375 0.362 53.9 78 10.8 12.2 

5 0.387 0.363 44.2 72 13.8 14.3 

6 0.401 0.365 35.9 66 16.4 16.2 

7 0.415 0.367 29.1 61 18.8 18.0 

8 0.426 0.368 24.5 57 20.4 19.3 

9 0.430 0.368 22.9 55 21.0 19.5 

10 0.432 0.368 21.8 54 21.4 19.4 

11 0.434 0.366 20.4 52 21.6 19.0 

12 0.435 0.366 19.7 52 21.7 18.6 

13 0.435 0.366 19.5 51 21.7 18.6 

14 0.435 0.366 19.4 51 21.7 18.5 

15 0.435 0.365 19.4 51 21.7 18.5 

16 0.435 0.366 19.3 51 21.7 18.5 

17 0.435 0.366 19.3 51 21.7 18.6 

18 0.435 0.366 19.3 51 21.7 18.5 

19 0.435 0.366 19.3 51 21.7 18.5 

20 0.436 0.367 20.3 52 21.9 19.2 

21 0.424 0.369 25.8 58 20.0 19.2 

22 0.411 0.367 31.2 63 17.9 17.8 

23 0.396 0.366 39.0 69 15.2 16.2 

24 0.383 0.364 48.6 75 12.3 14.1 

25 0.369 0.362 60.8 82 8.9 11.5 

26 0.352 0.357 78.6 91 4.5 7.3 
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27 0.346 0.355 86.6 95 2.7 5.6 

28 0.343 0.354 90.8 96 1.8 4.5 

29 0.341 0.353 93.0 97 1.4 3.9 

30 0.340 0.353 94.4 98 1.1 3.5 

31 0.339 0.352 95.5 98 0.8 3.2 

32 0.338 0.352 96.4 99 0.6 3.0 

33 0.337 0.351 97.8 99 0.4 2.6 

34 0.337 0.351 98.3 99 0.3 2.4 

35 0.337 0.351 98.7 99 0.3 2.3 

36 0.337 0.351 99.1 100 0.2 2.2 

37 0.336 0.351 99.3 100 0.1 2.1 

38 0.336 0.351 99.6 100 0.1 2.0 

39 0.336 0.351 99.8 100 0.0 1.9 

40 0.336 0.350 100.0 100 0.0 1.9 

 
aFilms were switched in aqueous KOH (0.1 mol dm-3) between the ‘bleached’ and coloured states by 

application of potential steps (‒0.30 V → +0.43 V for 20 s and +0.43 V → ‒0.30 V for 20 s) vs. the Ag 

wire pseudo reference electrode. 
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B. Conferences, lectures and professional 
development 

 

Conferences  
 

Smart materials for smart buildings, Materials KTN, BRE Watford, November 2008. 

The Institute of Materials Finishing AGM, Birmingham, November 2008.  

MEG (Midlands Electrochemistry Group), Nottingham University, Nottingham, April 

2009. 

Research day, Department of Materials, Loughborough University, Loughborough, 

June 2009. 

Electrochem 2009, The University of Manchester, Manchester, September 2009. 

MEG (Midlands Electrochemistry Group), Leicester University, Leicester, April 2010. 

Future technologies, applications and opportunities for surface engineering, Derby, 

June 2010. 

Research day, Department of Materials, Loughborough University, Loughborough, 

June 2010 

Electrochem 2010, University of Wolverhampton, Wolverhampton, September 2010. 

MEG (Midlands Electrochemistry Group), University of Warwick, Warwick, May 2011. 

Research day, Department of Materials, Loughborough University, Loughborough, 

June 2011. 

 

Lectures 
 

Health and safety lecture, Dave Wilson, Loughborough University, October 2008. 

Introduction to surface analysis techniques–SEM, John Bates, Loughborough 

University, November 2008. 

Introduction to surface analysis techniques–XRD, Dave Hall, Loughborough 

University, November 2008. 
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Guest lecture, Professor Peter Bruce, University of St Andrews, “The materials 

chemistry and electrochemistry of energy storage”, November 2010.  

Safety talk–Flammable materials, Anish Patel, Loughborough University, 

Loughborough, March 2012. 

Safety talk–Fire, Professor Paul Thomas, Loughborough University, Loughborough, 

April 2012. 

Safety talk–Cryogenics, Claire Camp, Loughborough University, Loughborough, April 

2012. 

Safety talk–Electrical hazards, Dr Iain Kirkpatrick, Loughborough University, 

Loughborough, July 2012. 

Safety talk–High pressure/high temperature operations, Tom Smith, Loughborough 

University, Loughborough, September 2012. 

Safety talk–Waste disposal, Nolwenn Derrien, Loughborough University, 

Loughborough, January 2013. 

Guest lecture, Professor Robert Hillman, The University of Leicester, “Characterizing 

electroactive films on surfaces: from fundamentals to fingerprints”, January 2013. 

Guest lecture, Professor Mat Mahmut, Nigde University, Turkey, “Recent advances on 

solid oxide fuel cells and PEM electrolyser”, January 2013. 

Guest lecture, Dr Siva Bohm, TATA Steel R&D, “Functional coatings development on 

metals for energy applications”, February 2013. 

 

Professional development 
 

Postgraduate research induction, Loughborough University, October 2008. 

Teaching skills–Preparing to teach and promote learning part 1, Loughborough 

University, March 2009. 

Networking skills–Attending conferences, Loughborough University, March 2009. 

Teaching skills–Preparing to teach and promote learning part 2, Loughborough 

University, March 2009. 

Teaching skills–Supervising practical activities, Loughborough University, March 2009. 

SEM training, John Bates, Loughborough University, October 2009. 

Introduction to refWorks, Loughborough University, February 2010. 
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Research workshop for undergraduates part 1, Martin White, Loughborough 

University, November 2010. 

Research workshop for undergraduates part 2, Martin White, Loughborough 

University, February 2011. 

XRD training, Dr Caroline Kirk, Loughborough University, November 2011. 

SEM training, Dr Keith Yendall, Loughborough University, April 2012. 

First aid course, Loughborough University, March 2012. 
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C. Conference presentations 
 

MEG, Nottingham University, Nottingham, April 2009 

‘Electrochemical Deposition and Optimization of Nickel Hydroxide Films’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Presented in the poster session. 

 

Research Day, Department of Materials, Loughborough University, Loughborough, 

June 2009. 

‘Electrochemical and Electrostatic Deposition of Nickel Hydroxide and Cobalt 

Hydroxide Films’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Oral presentation. (1st prize) 
 

MEG, Leicester University, Leicester, April 2010. 

‘Electrochemical Deposition and Stabilisation of the α-phase of Nickel Hydroxide’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Oral Presentation. 

 

Research Day, Department of Materials, Loughborough University, Loughborough, 

June 2010. 

‘Electrochemical Deposition and Stabilisation of the α-phase of Nickel Hydroxide’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Presented in the poster session. 

 

Materials Research School Poster Competition, Department of Materials, 

Loughborough University, Loughborough, August 2010 

‘Enhanced Nickel Hydroxide Electrochromic Performance for Low Energy 

Consumption’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Presented in the poster session. (1st prize) 
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Electrochem 2010, University of Wolverhampton, Wolverhampton, September 2010. 

‘Enhanced Nickel Hydroxide Electrochromic Performance for Low Energy 

Consumption’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Oral Presentation. 

 

MEG, University of Warwick, Warwick, May 2011. 

‘Enhanced Electrochromic Performance of Nickel Oxide/Hydroxide’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Presented in the poster session. 

 

Research Day, Department of Materials, Loughborough University, Loughborough, 

June 2011. 

‘Enhanced Nickel Hydroxide Electrochromic Performance for Low Energy 

Consumption’ 

M. Z. Sialvi, R. J. Mortimer and G. D. Wilcox 

Oral presentation. 

 

Research Network Meeting, Department of Chemistry, Loughborough University, 

Loughborough, April 2012. 

‘Enhanced Electrochromic Performance of Nickel Oxide/Hydroxide for Energy  

Efficient Smart Windows’ 

M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, K. G. U. Wijayantha and C. A. Kirk 

Oral presentation. 
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D. Publications 
 

• Mortimer, R. M. and Sialvi, M. Z. Electrochem 2010: Electrochemistry and 

sustainability conference report, Trans. Inst. Met. Fin., 89, 2011, 10-12. 

In this report we make reference to the oral presentation as listed in appendix C 

(Electrochem 2010, University of Wolverhampton). 

 

• Sialvi, M. Z.,  Mortimer, R. J., Wilcox, G. D.,  Teridi, AM., Varley, T. S., Wijayantha, 

K. G. U. and Kirk, C. A. Electrochromic and colorimetric properties of nickel(II) 

oxide thin films prepared by aerosol-assisted chemical vapor deposition. ACS Appl. 

Mater. Interfaces, 5, 2013, 5675−82. 

http://pubs.acs.org/doi/abs/10.1021/am401025v?prevSearch=%255BContrib%253A%2BTeridi%252C%2BA%2BM%255D&searchHistoryKey=
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CONFERENCE REPORT

Electrochem 2010: electrochemistry and 
sustainability
An exciting scientiÞ c programme with 
over 60 lectures and 40 posters on the 
conference themes of Electrochemical 
Energy Storage and Conversion, 
Electrochemical Surface Technology, 
Bio/electroanalysis and Sensors, Nano/
advanced Materials, Environmental 
Treatment and Recycling, Lab to 
Market, and a symposium for Post-
graduate Students was presented at 
the 15th Annual International Electro-
chemistry Conference, Electrochem 
2010, held at the University of Wolver-
hampton ,Telford campus, on Tuesday 
14th and Wednesday 15th September 
2010. Electrochem 2010 was organised 
by the Society of Chemical Industry�s 
(SCI) Electrochemical Technology 
Group and the Electrochemistry and 
Electroanalytical Groups of the Royal 
Society of Chemistry (RSC). Although a 
signiÞ cant part of the conference was 
not directly involved in electrochemical 
processes for coatings, the lessons 
given on sustainability are relevant to 
this industry.
On the morning of 14 September, the 
conference was warmly opened by the 
Chair of the ScientiÞ c Organising 
Committee, Professor Chike Oduoza 
from the School of Engineering and 
the Built Environment of the University 
of Wolverhampton and Professor 
Caroline Gipps, Vice Chancellor. The 
opening plenary talk, �From volcanoes 
to urban air quality; extending the range 
of amperometric gas sensors�, by 
John Saffell, Alphasense, covered 
experimental assessment of ampero-
metric four-electrode electrochemical 
gas sensors used to detect CO, NO and 
NO2 gases from volcanoes, for US navy 
submarines, and for urban and rural 
roadside pollution levels. Such sensors 
are used to detect plumes around 
Heathrow airport, and are placed on 
lamposts to detect levels of pollution 
around Newcastle, Cambridge and 
Valencia. This plenary talk was followed 
by three parallel symposia, with selected 
talks being brieß y described below.

Electrochemical energy storage 
and conversion

The symposium keynote lecture, 
�Advances in fuel cell metrology 
diagnostics, imaging and sensors� 
was given by Dan Brett, University 

College London. This presentation 
introduced the role of metrology in the 
development of fuel cells and reviewed 
the diagnostics, imaging and sensor 
technologies being applied to map the 
inner workings of fuel cells. The lecture 
further outlined techniques developed 
by the author and colleagues and work 
needed to be done to advance fuel cell 
metrology. The symposium then 
comprised 11 talks covering aspects of 
redox ß ow cells, batteries, nanoscale 
simulation, tomography of electro-
chemical devices, water electrolysers, 
fuel cells, supercapacitors, and 
photoelectrochemistry. An example of 
the latter was the talk from Asif Ali 
Tahir (from Upul Wijayantha�s group, 
at Loughborough University), who 
discussed the use of sunlight to 
produce hydrogen by splitting water 
molecules into its constituents. The 
key emphasis was on the use of 
nanocrystalline ZnFe2O4 electrodes as 
a suitable material for the photoelectro-
chemical water splitting process. 
Results indicated that ZnFe2O4 can be 
considered as potential candidate 
material as it fulÞ ls most of the optical, 
energetic, chemical, economic and 
environmental requirements.

Bio/electroanalysis and 
sensors

The symposium keynote lecture, 
�Robust individual gold nanowire-based 
electrode for electrochemistry� was 
given by Alan O�Riorden, University 
College Cork. The lecture discussed 
the recent emergence of nanoelec-
trodes, to include their development 
using a robust, low-cost approach 
for fabrication of individual gold 
nanowires assembled on a silicon chip 
substrate electrically contacted by 
interconnection tracks and passivated 
by an insulating layer. To explore the 
applicability of these nanowire devices 
for future electrochemical based 
sensing applications, pristine nanowire 
devices were employed for the 
detection of H2O2. A 220±90  pM limit 
of detection was determined, with a 
linear calibration range extending over 
nine orders of magnitude of H2O2 
(10−10�10−2M). The symposium then 
comprised seven talks covering 
aspects of biocompatible microfabri-
cated electrodes, electroanalysis at a 

junction, liquid chromatographic 
electrode detectors, catalytic oxygen 
reduction, localised surface plasmon 
sensors, biosensors, and membrane 
studies. The microfabricated electrode 
systems talk was presented by 
Andrew Mount, University of Edin-
burgh. He explained that microfabrica-
tion technology ensures that each 
electrode in an array system has 
accurate and reproducible dimensions 
with micron scale resolution, which 
provides a signiÞ cant enhancement of 
device performance. Frank Marken, 
University of Bath, described the use of 
two adjacent platinum disc electrodes 
in a generator-collector electrode 
system. Gold electrodeposition is 
employed to decrease the gap size 
between the two electrodes down to 
submicron dimensions. The resulting 
junction is employed to generate high 
feedback currents due to fast diffusion 
within the gap, to measure ion 
diffusion when a microdroplet of water 
immiscible liquid is placed into the gap, 
and to create conditions where a wide 
range of analytes can be detected with 
novel pulse voltammetric methods. 
Kevin Honeychurch, University of the 
West England, described a novel liquid 
chromatographic dual electrode 
detection system for the determination 
of ß unitrazepam (rohypnol), lorazepam 
(ativan) and diazepam (valium) in serum 
samples.

Lab to market

This new symposium topic gave real 
insight to attendees who may be 
interested in developing commercial 
opportunities from their research.

Graham Cooley, representing ITM 
Powers PLC, gave the keynote lecture 
where he described his experiences 
of commercialising electrochemistry, 
with focus on three case studies. 
Regenesys had been a huge and secret 
energy storage project based on 
regenerative bromide/polysulphide ß ow 
cell technology. The project culminated 
in a 12  MW 10  h energy storage plant 
completed in Little Barford in July 
2003. Following acquisition from RWE, 
the plant closed 1  year later! ITM 
Power is a company that engineers 
zero carbon hydrogen energy systems, 
based around water electrolysis, that 
provide security and independence 
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from fossil fuels. Metalysis is a 
University of Cambridge spin-out 
company where titanium, tantalum 
and other high value metals are 
extracted from metal oxides. The 
theme of spin-out companies was 
further illustrated by Nigel Brandon, 
Imperial College London, who 
described the formation of Ceres 
Power, a company that develops fuel 
cell technology for use in small scale 
combined heat and power products for 
the residential sector and in energy 
security applications. Edward Roberts, 
University of Manchester, described 
innovation in water treatment through 
the spin-out of Arvia Technology, a 
company formed from a concept 
initiated by Nigel Brown, which led to a 
collaborative EPSRC project. Andrew 
Abbott, University of Leicester, next 
gave a detailed description of the 
development of Scionix, a spin-out 
company based on metal Þ nishing 
using eutectic based ionic liquids that 
are formed by mixing substituted 
quaternary ammonium salts such as 
choline chloride with various metal 
salts or hydrogen bond donors. 
Advantages of ionic liquids include 
ease of preparation, insensitivity 
to liquid and air moisture, good 
conductivity, negligible vapour pressure 
and that they are inexpensive. The 
presentation outlined the possible 
applications of ionic liquids as the Þ rst 
economically viable alternative to 
aqueous metal Þ nishing processes, 
including metal deposition, electropol-
ishing, immersion coatings, and 
deposition of novel alloys and compos-
ites. Other talks in the 
Lab to Market symposium focused 
on patenting, exploiting university 
intellectual property and the role of 
the technology transfer ofÞ ce, and 
strategies for recruiting key personnel 
for a spin-out company. The sympo-
sium ended with a question and 
answer session, with a panel of three 
Venture Capitalists.

Following a poster presentation 
session and exhibition from electro-
chemical instrumentation suppliers, the 
Þ rst day ended with a Gala dinner in 
Ironbridge.

The second day began with a plenary 
talk from the Geoffrey Barker medallist, 
Patrick Unwin, University of Warwick. 
The Geoffrey Barker Medal is awarded 
by the Electrochemistry Group of the 
RSC to outstanding UK electrochemists 
who contribute to the Þ eld with 
important experimental or theoretical 

achievements. The research work 
should be recognised internationally, 
and seen as strengthening the standing 
of UK Electrochemistry. The award is 
named after the inventor of square 
wave, pulse and radiofrequency 
polarography. Following the presenta-
tion of the medal by Andrew Mount, 
Chair of the Electrochemistry Group, 
Patrick Unwin described �New 
directions in electrochemical imaging: 
probes, modes and combinations�. 
He noted that electrochemical 
imaging methods have thrived and 
expanded over the past two decades 
as a consequence of continued 
developments in instrumentation, 
theory and a diversity of applications. 
These developments have taken 
electrochemical imaging methods 
beyond electrochemistry into chemistry 
in general and its borders with 
materials science, engineering and 
the life sciences. He outlined the 
importance of multifunctional imaging 
with the use of new types of probes 
and modes for scanning micropipette 
contact methods (SMCM), to allow 
high resolution investigation of 
electrode and mineral surfaces and 
resolving surface topography. The 
importance of combining techniques 
from earlier work on scanning electro-
chemical microscopy�atomic force 
microscopy (SEM-AFM) and SEM with 
ß uorescence confocal laser scanning 
microscopy (CLSM) was presented. 
This plenary talk was followed by three 
parallel symposia, with selected talks 
being brieß y described below.

Electrochemical surface 
technology

The symposium keynote lecture, 
�Colloidal templates for the electrode-
position of structured surfaces�, 
was given by Philip Bartlett, University 
of Southampton. The preparation of 
structured thin Þ lms is accessible by 
template electrochemical deposition 
through close packed monolayers 
of uniform polystyrene colloidal 
particles assembled on electrode 
surfaces. Templates can be combined 
with patterning by conventional 
photolithography or by double templat-
ing approaches to make metal 
Þ lms structured on the submicron 
scale which demonstrate novel 
optical, magnetic and semiconducting 
properties. The symposium then 
comprised 10 talks covering aspects of 
electrodeposition from ionic liquids and 

conventional baths, surface alloying, 
and magnetic Þ eld effects on copper 
growth modes. Metal electrodeposition 
from ionic liquids was a strong theme 
of several talks. Karl Ryder, University 
of Leicester, and Swatilekha Ghosh, 
Newcastle University, described 
mechanistic aspects of the electrode-
position of copper composites and 
alloys from deep eutectic solvents 
based on chlorine chloride and 
hydrogen bond donors. With applica-
tions towards zinc-polymer batteries, 
Emma Smith, University of Leicester, 
described the electrolytic deposition 
and stripping of zinc, likewise, 
from ionic liquids based on eutectic 
mixtures.

Nano/advanced materials

Nano/advanced materials is a topic 
which is heavily researched and has a 
high number of publications each year 
due to its vast number of potential 
applications towards electronics, 
materials, pharmaceuticals, aerospace 
and chemical manufacturing. The 
symposium keynote lecture was given 
by James Rusling, University of 
Connecticut, who explained the 
importance of nanomaterials based on 
microß uidic arrays for multiplexed 
detection of cancer biomarker proteins. 
He outlined the advantages of nanoma-
terials towards the development of 
ultrasensitive immunosensors for 
cancer biomarker proteins for prostate 
and oral cancer detection. The sympo-
sium then comprised six talks covering 
aspects of electrochemistry within 
lyotropic liquid crystal nanostructures, 
titanium oxide nanotubes, function-
alised metal nanoparticles for oxygen 
reduction, electrodeposition of 
nanostructured platinum Þ lms, and the 
electrodeposition of nickel, cobalt and 
their alloys. Dmitry Bavykin, University 
of Southampton, described the 
synthesis of titanium oxide nanotubes 
by hydrothermal and anodising 
methods. Using these methods, 
random Þ bres and tubes of various 
diameters were produced with 
applications towards dye sensitised 
solar cells, catalysis, biomedical 
implants and lithium batteries. Electro-
deposited nanomaterials for surface 
coatings was another key theme, with 
Samina Akbar, University of Reading, 
describing the formation of high 
surface area three-dimensional 
nanostructured platinum Þ lms through 
self-assembled cubic templates, and 
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Mosaad Negem and Tri Widayatno, 
Newcastle University, respectively 
discussing the deposition of nickel, 
cobalt and their alloys from gluconate 
baths, and nickel electrodeposition 
using a newly developed micropat-
terned transfer process (without 
photolithography), named EnFACE.

Environment treatment and 
recycling

The concern for water quality through-
out the world has led to a signiÞ cant 
research effort towards new water 
treatment methods that are capable of 
decontaminating efß uents that contain 
pollutants and the removal of heavy 
metals from ground water. The 
symposium keynote lecture was given 
by Edward Roberts, University of 
Manchester, who described an 
innovative process for water treatment 
using adsorption and electrochemical 
regeneration. As noted above in �Lab 
to Market�, a university spin-out 
company, Arvia Technology, has been 
formed to exploit a process where a 
graphite based adsorbent is used to 
electrochemically oxidise and adsorb 
contaminants and 100% regenerate 
initial adsorptive capacity. The sympo-
sium then comprised Þ ve talks covering 
electrochemical oxidation at boron 
doped diamond anodes, microbial fuel 
cell catalysts, electrochemical recovery 
of nickel and platinum, and the 
application of bioelectrochemical 
systems in water treatment.

Postgraduate

The symposium keynote lecture was 
given by an experienced practitioner 
from the electroplating industry, 

Paul Lansdell, of Kohler Mira, and 
new President of the Institute of 
Metal Finishing, who was able to 
demonstrate to the postgraduate 
students the importance of surface 
analysis techniques. His lecture 
surveyed the instrumental techniques, 
SEM, TEM, AFM, XRF, RBS, XPS, 
EMA, AES, SIMS and PRA. He also 
emphasised that basic techniques such 
as the use of a magnifying glass and 
the light microscope still have their 
use! Next, Þ ve postgraduate students, 
at different stages of their research, 
had the opportunity to showcase their 
research to date. Zeeshan Sialvi, 
Loughborough University, described 
enhanced nickel hydroxide electrochro-
mic performance for low energy 
consumption. The nickel oxyhydroxide 
redox system is well known from its 
application in NiCd batteries. As thin 
Þ lms, it is known to demonstrate 
electrochromic properties for applica-
tion in �smart windows�, that have the 
potential to reduce energy consump-
tion of highly glazed buildings by 
reducing cooling loads, heating loads, 
the demand for electric lighting, as well 
as improving indoor comfort due to 
less glare and thermal discomfort. 
Ann Beresford, University of Leicester, 
next described the electrochromic 
enhancement of latent Þ ngerprints on 
metal. Spatially selective electrochemi-
cal polymerisation of aniline allows the 
visualisation of the negative image of 
Þ ngerprints on metallic surfaces. On 
transfer to a monomer free solution, 
electrochemical variation of the 
electrochromic polymer�s optical 
properties allows the optimisation of 
visual contrast. Stacey Handy, 
University of Wolverhampton, 

described an investigation into the use 
of white bronze (Cu/Sn, with a few 
percentage of Zn) as a replacement for 
the nickel layer in the decorative 
chromium electroplating process. 
Studies involved linear polarisation and 
salt spray corrosion testing, surface 
analysis using SEM and AFM, and the 
measurement of chromaticity coordi-
nates for colour stimuli quantiÞ cation. 
Edmund Dickinson, University of 
Oxford, presented a comprehensive 
dynamic theory of the free liquid 
junction potential, with consideration 
of the evidence of the simulated 
concentration proÞ les and electric Þ eld 
in the system. The Þ nal talk in the 
postgraduate symposium, and indeed 
the conference, was from Lauren 
Wallis, University of Southampton, 
who described research into new 
electrode materials for lightweight lead 
acid batteries. Possible lightweight 
replacements for lead include electri-
cally conductive, chemically inert 
materials, such as carbon, conductive 
ceramics and their composites.

Following this year�s successful 
conference at Telford, Electrochem 
2011 will be held at the University 
of Bath, 5�6 September 2011. 
Frank Marken, University of Bath, is 
Chair of the ScientiÞ c Organising 
Committee, and planned symposia 
comprise Nano-Electrocrystallisation, 
Corrosion, Nano-Carbon in Electro-
chemistry, Microbial Electrochemistry, 
CO2 Conversion, Nano-Electroanalysis, 
Photovoltaics, Electro-Organic Synthe-
sis, Sustainability, Fundamental 
Electrochemistry, and Electrochemical 
Processes in Exotic Media.

R. J. Mortimer and Z. M. Sialvi
Loughborough University
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ABSTRACT: Aerosol-assisted chemical vapor deposition
(AACVD) was used for the first time in the preparation of
thin-film electrochromic nickel(II) oxide (NiO). The as-
deposited films were cubic NiO, with an octahedral-like grain
structure, and an optical band gap that decreased from 3.61 to
3.48 eV on increase in film thickness (in the range 500−1000
nm). On oxidative voltammetric cycling in aqueous KOH (0.1
mol dm−3) electrolyte, the morphology gradually changed to
an open porous NiO structure. The electrochromic properties of the films were investigated as a function of film thickness,
following 50, 100, and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm−3). Light modulation of the
films increased with the number of conditioning cycles. The maximum coloration efficiency (CE) for the NiO (transmissive light
green, the “bleached” state) to NiOOH (deep brown, the colored state) electrochromic process was found to be 56.3 cm2 C−1 (at
450 nm) for films prepared by AACVD for 15 min followed by 100 “bleached”-to-colored conditioning oxidative voltammetric
cycles. Electrochromic response times were <10 s and generally longer for the coloration than the bleaching process. The films
showed good stability when tested for up to 10 000 color/bleach cycles. Using the CIE (Commission Internationale de
l’Eclairage) system of colorimetry the color stimuli of the electrochromic NiO films and the changes that take place on reversibly
oxidatively switching to the NiOOH form were calculated from in situ visible spectra recorded under electrochemical control.
Reversible changes in the hue and saturation occur on oxidation of the NiO (transmissive light green) form to the NiOOH (deep
brown) form, as shown by the track of the CIE 1931 xy chromaticity coordinates. As the NiO film is oxidized, a sharp decrease in
luminance was observed. CIELAB L*a*b* coordinates were also used to quantify the electrochromic color states. A combination
of a low L* and positive a* and b* values quantified the perceived deep brown colored state.

KEYWORDS: AACVD, nickel(II) oxide, electrochromic, electrochromism, CIE chromaticity coordinates, colorimetry

■ INTRODUCTION

Electrochromic materials have the property of a change,
evocation, or bleaching of color, as effected by an applied
electrical potential, sufficient to induce an electrochemical
redox process.1,2 Applications of electrochromic materials
include “smart” windows for architectural applications,3 and
antiglare car mirrors,4 based on the modulation of transmitted
and reflected visible radiation, respectively. The development of
smart windows is the subject of intensive research, as
implementation of such technology would lead to a significant
reduction in energy consumption in highly glazed buildings by
reducing cooling loads, heating loads, and the demand for
electric lighting,3 as well as improving indoor comfort because
of less glare and thermal discomfort.5

Anodically coloring thin-film nickel(II) oxide (NiO) is often
used as a secondary electrochromic material to complement
cathodically coloring tungsten(VI) trioxide (WO3) in prototype
smart windows.6,7 Color switching properties of NiO (trans-
missive light green to deep brown) also make it potentially

useful as a primary electrochromic material, where a “neutral”
colored state is desired. Electrochromic NiO thin films have
been prepared by sputtering,8−10 electron-beam deposition,11

thermal evaporation,12 electrodeposition,13 template-assisted
electrodeposition,14 sol−gel,15,16 chemical bath,17 hydrothermal
deposition,18 chemical precipitation,19 hot-filament metal-oxide
vapor deposition,20 and chemical vapor deposition (CVD)21

techniques. We here report the first study of aerosol-assisted
chemical vapor deposition (AACVD) of electrochromic NiO
thin films and their characterization using powder X-ray
diffraction (XRD), scanning electron microscopy (SEM), and
optical absorption. As a variant of conventional CVD, AACVD
involves the atomization of precursor solution into submi-
crometer-sized aerosol droplets. The droplets are then
transported into a heating zone, where the solvent is rapidly
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evaporated, and the chemical precursors undergo decom-
position and/or chemical reaction near or on a heated substrate
to form the desired films.22 When compared to CVD, the
AACVD method has several advantages.23−27 These include a
wide choice and availability of precursor for depositing high-
quality coatings, the generation of aerosol to simplify the
delivery and vaporization of precursor, and the ability to
synthesize multicomponent products with precise stoichiomet-
ric control. Furthermore, low cost, high deposition rates, and
the ability to operate under varied environments at low
pressure, or even in open atmosphere, make AACVD an ideal
process for scale up toward smart window applications.
The electrochromic properties of the NiO-based films

prepared by AACVD are reported following transfer to aqueous
KOH (0.1 mol dm−3) electrolyte, with colorimetric properties
being quantified using CIE (Commission Internationale de
l’Eclairage) principles.28 In colorimetry, the human eye’s
sensitivity to visible light is measured and a numerical
description of the color stimulus is given, thus providing a
more precise way to define color than qualitatively interpreting
spectral absorption bands.

■ EXPERIMENTAL SECTION
Formation of NiO Films by AACVD. Fluorine-doped tin oxide

(SnO2:F, FTO) on glass (Pilkington group limited, NSG TEC C15, Rs
14 Ω □−1, light transmittance of 84%) was used as the substrate for
preparation of NiO films. To obtain uniform adherent films the FTO/
glass substrates (each cut to 50 × 7 mm dimensions) were cleaned by
rinsing in deionized water, followed by sonication for 10 min each in
deionized water, propan-2-ol, acetone and ethanol. Prior to AACVD,
the top 20 mm of each FTO/glass substrate was masked with glass,
such that the NiO would deposit on the lower 30 × 7 mm area.
Figure 1 shows a schematic diagram of the two chamber

configuration AACVD apparatus. Each FTO/glass substrate was

heated to 450 °C on a temperature controlled hot plate. For
preparation of the NiO films, nickel(II) acetylacetonate (0.05 mol
dm−3) was used as the source material. Precursor solution was
prepared by heating and stirring nickel(II) acetylacetonate and 1 cm3

of N,N-dimethylaminoethanol (used to improve the solubility of the
nickel(II) complex and to enhance volatility) in toluene for 30 min
then allowing the solution to cool to room temperature. The precursor
solution was then placed above the piezoelectric modulator of an
ultrasonic humidifier to atomize the solution into fine aerosol droplets.
Using air as a carrier gas, the aerosol droplets were first transferred at a
flow rate of 0.21 dm3 min−1 into the first chamber where any large
particles were separated and held. A second carrier gas (air) at a flow
rate of 2.34 dm3 min−1 was then used to direct the small particles
toward the heated substrate, where they underwent evaporation,
decomposition and chemical reaction to synthesize the desired films.
The flow rate was controlled by a L1X linear flow meter. Films were

deposited for 10, 15, and 20 min and are here abbreviated as NiO(10
min), NiO(15 min), and NiO(20 min), respectively.

XRD and SEM Characterization. Powder XRD data were
collected on a Bruker Advance D8 powder X-ray diffractometer in
reflection geometry using Cu Kα1 radiation with a Ge monochromator
and linear position sensitive detector (PSD) over the two theta range
5−65° 2θ with a step size of 0.014° 2θ and a total collection time of 4
h. Films deposited onto FTO/glass substrates were mounted on
perspex sample holders. Shifts in the reflection positions were
observed as no internal standard could be added to the sample for
calibration of the reflection positions.

A Leo 1530 field-emission gun scanning electron microscopy
(SEM) system was used to examine the film morphologies. The
deposited films were washed with distilled water, dried in air and then
mounted on SEM stubs using conducting silver paint. Samples were
coated with a thin layer of gold to improve the conductivity of the
films. A Polaron Emitech SC7604 sputter coater was used.

Electrochemical, Spectroelectrochemical, and Color Meas-
urement. A Princeton Applied Research 263A potentiostat was used
for electrode potential control. NiO/FTO/glass substrates (with
adhesive copper tape at the top for uniform electrical contact),
platinized titanium and a saturated calomel (Hg/Hg2Cl2) electrode
(SCE) were used as working, counter, and reference electrodes,
respectively. A single compartment electrochemical cell was used for
all measurements.

In situ visible-region spectra were recorded in transmission mode
using a Hewlett-Packard 8452A diode array spectrophotometer. A
standard 1 cm path length polystyrene cuvette was used as the
spectroelectrochemical cell, with a machined polytetrafluoroethylene
lid that allowed each NiO/FTO/glass substrate to be placed parallel to
the optical faces. In this case, a silver wire acted as a pseudo reference
electrode, with a platinized titanium counter electrode. CIE 1931 xy
chromaticity coordinates and luminance data were calculated from the
spectral absorbance-wavelength data as described earlier.29 For
simulation of midmorning to midafternoon natural light, the relative
power distribution of a D55 constant temperature (5500 K blackbody
radiation) standard illuminant was used in the calculations.
Chromaticity coordinates were also transformed to L*a*b*
coordinates, a uniform color space (CIELAB) defined by the CIE in
1976.30

■ RESULTS AND DISCUSSION
Crystalline Phases Identified, Film Morphology, and

Optical Absorption of the As-Deposited NiO Films.
Figure 2 shows the powder XRD patterns for NiO films on
FTO/glass at different deposition times. The reflections at 37.3,
43.3, and 62.9° 2Θ can be assigned to cubic NiO (International
Centre for Diffraction Data (ICDD) Powder Diffraction File
(PDF) 47−1049). The NiO phase is stable and its formation is
independent of the film thickness. The intensity of the NiO

Figure 1. Schematic diagram of the experimental AACVD apparatus.

Figure 2. Powder XRD patterns for: (a) FTO/glass, (b) NiO(10
min), (c) NiO(15 min), (d) NiO(20 min), and (e) NiO(20 min) after
3500 oxidative conditioning voltammetric cycles in aqueous KOH (0.1
mol dm−3).
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reflections suggests preferred orientation of the films, as the
(111) reflection is more intense than the (200). In a randomly
oriented sample of NiO, the (200) reflection should be the
most intense.
Figure 3 includes photographs for the as-deposited NiO films

at the three deposition times, with SEM images shown in

Figure 4. Uniform NiO film covers the FTO/glass substrate
surface and exhibits a nanoscale morphology of octahedral-like
grains. EDS analysis (see Figures S1 and S2 in the Supporting
Information) shows no evidence of the presence of nitrogen
from the decomposition of the dimethylaminoethanol. The
cross-sectional images (insets in Figure 4) show that film
thickness increases with deposition time.

Figure S3 in the Supporting Information shows the optical
absorption spectra for the as-deposited films recorded in the
wavelength range 330−820 nm (3.75−1.51 eV). The data were
analyzed using a classical relation for near edge optical
absorption in semiconductor materials.31 Analyzing the
variation of (αhν)2 vs photon energy (hν) in eV for NiO
films suggests a direct interband transition. The band gaps were
3.61, 3.53, and 3.48 eV for the NiO(10 min), NiO(15 min),
and NiO(20 min) films, respectively. These direct band energy
values are in good agreement with literature values for NiO thin
films prepared by spray pyrolysis using aqueous nickel chloride
solutions, with the slight decrease in band gap with increasing
film thickness being attributed to increased grain size.32

Transformation of NiO Morphology on Voltammetric
Cycling in Aqueous KOH (0.1 mol dm−3) Electrolyte.
Figure 5 shows an example of cyclic voltammograms (CVs) in

aqueous KOH (0.1 mol dm−3) electrolyte commencing with, in
this case, an as-deposited NiO(15 min) film. From the plot it
can be seen that during the first 50 cycles, a continuous increase
in capacity under the oxidation and reduction process takes
place. This process is known as the so-called activation period
and has been reported for NiO films prepared by sol−gel,33 and
pulsed laser-deposition.34−36 Furthermore, because of this
activation process, on continuous oxidative voltammetric
cycling, the octahedral-like grains of as-deposited NiO (Figure
6a), gradually transform to an open porous structure of
interconnected flakes (see Figure 6b, following 3500 voltam-
metric cycles and Figure S4 (Supporting Information), for a
NiO(20 min) film following 500 voltammetric cycles). Such a
porous interconnecting structure will enhance the intercala-
tion/deintercalation of hydroxide ions (eq 1, a simplified form
of the redox process) during voltammetric cycling, thus leading
to enhanced electrochromic performance. Similar porous
morphologies have been previously reported for NiO-based
films prepared by chemical bath deposition methods.17,37

+ ⇌ +− −NiO OH NiOOH e (1)

The electrochemically generated porous NiO is electro-
chromic and oxidatively switches (eq 1) from a “bleached”
(transmissive light green) state to the colored nickel oxy-
hydroxide (NiOOH) (deep brown; for photographs see Figure
3) state. On continuous cycling, this process of morphology
transformation is enhanced as the peak currents gradually
increase with cycle number (Figure 5).
The two broad redox peaks in the CVs (Figure 5) are

associated with the coloration and bleaching process for NiO,38

one anodic peak (A1), responsible for the oxidation, and one

Figure 3. Photographs of (a) as-deposited NiO films and (b) NiOOH
films (following 3500 cycles −0.50 to +0.70 V vs SCE at 50 mV s−1,
and then removal at +0.70 V). Each film was deposited on the lower
30 mm length of each 7 mm width FTO/glass).

Figure 4. SEM images of NiO films deposited on FTO/glass for three
deposition times: (a) NiO(10 min), (b) NiO(15 min), and (c)
NiO(20 min). Insets illustrate the cross-sectional images.

Figure 5. CVs starting from the as-deposited NiO(15 min) film in
aqueous KOH (0.1 mol dm−3). The potential range was −0.50 V →
+0.70 V→ −0.50 V vs SCE for 50 cycles at the scan rate of 50 mV s−1.
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cathodic peak (A2), for the reduction process. For all sets of
such CVs, an increase in anodic current after +0.60 V (B) is
observed that corresponds to the beginning of the oxygen
evolution reaction (OER). These CV features are similar to
those obtained for NiO thin films initially prepared by
electrodeposition13 and chemical bath deposition39 techniques.
The anodic and cathodic peak currents increase (Figure 7) with

an increase in deposition time, with more electroactive material
being available. XRD data collected on this sample showed NiO
still to be present (Figure 2e), but the relative intensities were
now different to the original deposited film, with the (200)
reflection especially reduced in intensity. This agrees with the
morphology changes shown in the SEM images (Figure 6).
Electrochromic Properties. Table 1 gives in situ spectral

data and calculated electrochromic performance parameters for
square-wave potential switching between the “bleached” and
colored forms after the as-deposited NiO films (prepared by
AACVD for 10, 15, and 20 min) had been subject to 50, 100,

and 500 continuous conditioning oxidative voltammetric cycles
in aqueous KOH (0.1 mol dm−3) electrolyte. Figure 8 shows
example visible region in situ transmittance spectra, in this case
for the as-deposited NiO(15 min) film, and in the oxidized
NiOOH colored state, following increasing numbers of
conditioning cycles. For such a film, it is noted from Table 1,
that after 500 cycles the change in optical transmittance
between the “bleached” and colored forms increased from 21.4
to 54.8% when measured at 550 nm. This increase in
transmittance change between the “bleached” and colored
state on continuous cycling is once again due to the gradual
change in film morphology from octahedral-like grains to a high
surface area of porous interconnecting flakes. Such porous
morphology shows greater electrochromic performance be-
cause of increased contact between active material and
electrolyte for facilitating hydroxide ion penetration.
Figure 9 shows the transmittance spectra of all the as-

deposited NiO films in the “bleached” and colored states.
Transmittances for both the “bleached” (Tb) and colored (Tc)
states decrease as the deposition time increases (Table 1 and
Figure 9). On increase of deposition time the extent of color
change to the oxidized form increases but the films also appear
less transparent in the reduced state (for photographs see
Figure 3). The films deposited for 10, 15, and 20 min, followed
by 500 voltammetric cycles, each present the largest contrast
(Table 1), the transmittance change (∼54% at 550 nm)
between the “bleached” and colored states, being more than
that of the films that were conditioned by only 50 and 100
cycles.
Spectral data were further used to calculate the electrical

power consumption of each electrochromic film, expressed as
the coloration efficiency (CE = (ΔA)λ/nm/Q), where (ΔA) is
the absorbance change between the “bleached” and colored
states and Q is the charge density (C cm−2) for each switching
process. Each charge density was calculated by integration of
the current−time transients, recorded on switching color states.
Examples of current−time transients (see Figure S5 in the
Supporting Information) and visible region absorbance spectra
(Figure 10) are given for the reversible switching between the
“bleached” and colored states of one of the films. On oxidation
of the transmissive green “bleached” state, the visible region
absorbance increases (Figure 10a) as the deep brown colored
state forms. On reduction, the deep brown colored state reverts
to the transmissive green “bleached” state, with a decrease in
the visible region absorbance (Figure 10b). The absorbance
change, ΔA, increases with increasing deposition time and the
number of “bleached”/colored cycles (Table 1). The highest
values (0.72 at 550 nm (Figure 11 and Table 1) and 0.88 at 450
nm (Figure 11)) were obtained for NiO(20 min) recorded at
500 cycles. The CE values (Table 1 and Figure 12) are
comparable to those for films obtained by electrodeposition (50
cm2 C1−),13 template-assisted electrodeposition (41 cm2

C−1),14 CVD (44 cm2 C−1),21 spray pyrolysis (30 cm2

C−1),40 and vacuum evaporation (32 cm2 C−1).41

Absorbance vs time plots (not included) were used to
calculate the response times (Table 1) for all the NiO thin
films. Response time is defined as the time required for
obtaining partial or total change in absorbance.1 Here, response
times are reported as the time taken for the absorbance to reach
90% of the total absorbance change for both coloration (tc) and
“bleaching” (tb) process (Table 1). Response times for both
coloration and “bleaching” increased with both increasing
number of conditioning cycles and film thickness. Generally,

Figure 6. SEM images of NiO(15 min) films deposited on FTO/glass:
(a) as-deposited and (b) following 3500 voltammetric cycles in
aqueous KOH (0.1 mol dm−3).

Figure 7. 100th CV (at 50 mV s−1) in aqueous KOH (0.1 mol dm−3)
of films prepared from as-deposited NiO(10 min) (black), NiO(15
min) (gray), and NiO(20 min) (red).
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response times for the coloration process were longer than
those for the “bleaching” process.
Cycle life is one of the key parameters for commercialization

as it is an experimental measure of the film durability. Figure 13

shows the visible in situ transmittance spectra of the as-
deposited NiO(10 min) film following the 1000th and 10000th
cycles. At 550 nm, the transmittance of the “bleached” state was
93.5 and 88.7% respectively, after the 1000th and 10000th
cycles. The transmittance of the “colored” state was 49.3 and
47.6%, respectively, after the 1000th and 10000th cycles. The
change in transmittance between the 1000th (Δ%T = 44.2%)
and 10000th (Δ%T = 41.1%) cycle was minimal, indicating
good adherence of the film and consistent color-switching
properties. This shows that the NiO film deposited by AACVD
is stable and suitable for electrochromic window applications.
By way of comparison, in our laboratory, we have prepared
NiO films by electrodeposition and on electrochromic

Table 1. In Situ Spectral Data and Electrochromic Performance Parameters on Square Wave Switching (0.00 V → +0.50 V →
−0.20 V vs. silver wire) between the “Bleached” and Colored States after the As-Deposited NiO Films had been subject to 50,
100, and 500 Continuous Conditioning Oxidative Voltammetric Cycles in Aqueous KOH (0.1 mol dm-3)a

original film source cycle no. %Tb %Tc Δ%T ΔA CE (cm2 C−1) tc/tb (s)

NiO(10 min) 50 86.8 66.6 20.0 0.11 39.6 3.2/2.7
NiO(10 min) 100 85.6 55.4 30.2 0.19 40.3 3.4/2.9
NiO(10 min) 500 84.6 30.9 53.7 0.44 34.6 5.6/3.8
NiO(15 min) 50 75.3 53.9 21.4 0.15 43.2 3.2/2.8
NiO(15 min) 100 74.8 46.4 28.4 0.21 45.0 4.1/3.6
NiO(15 min) 500 74.4 19.6 54.8 0.58 39.8 5.7/5.6
NiO(20 min) 50 65.9 33.7 32.2 0.30 41.8 5.0/4.2
NiO(20 min) 100 65.5 24.0 41.5 0.44 41.8 5.0/4.2
NiO(20 min) 500 66.3 12.5 53.8 0.72 32.5 7.4/6.5

aTb = transmittance of “bleached” form, Tc = transmittance of colored form, Δ%T = change in transmittance between the “bleached” and colored
forms, ΔA = change in absorbance, CE = coloration efficiency, tc and tb = switching times for coloration and bleaching. All measurements were taken
at the wavelength for maximal absorbance change, 550 nm, which is also the wavelength where the human eye is most sensitive.

Figure 8. Visible region in situ transmission spectra recorded in the
wavelength range 320−820 nm in aqueous KOH (0.1 mol dm−3),
showing the formation of the colored state with conditioning oxidative
voltammetric cycle number. As-deposited NiO(15 min) film at 0.00 V
vs silver wire (black). As-deposited NiO(15 min) film at +0.40 V vs
silver wire (gray). NiO(15 min) film at +0.40 V vs silver wire,
following 50 voltammetric cycles −0.50 V → +0.70 V → −0.50 V vs
SCE (red). NiO(15 min) film at +0.40 V vs silver wire, following 100
voltammetric cycles −0.50 V → +0.70 V → −0.50 V (blue). NiO(15)
film at +0.60 V vs silver wire, following 500 voltammetric cycles −0.50
V → +0.70 V → −0.50 V (green). All spectra were corrected for the
transmittance of the uncoated FTO/glass substrate in aqueous KOH
(0.1 mol dm−3).

Figure 9. Visible region in situ transmission spectra for the “bleached”
and colored states following 100 voltammetric cycles in aqueous KOH
(0.1 mol dm−3): NiO(10 min) (black), NiO(15 min) (gray), and
NiO(20 min) (red). For each, the upper spectrum is that for the
“bleached” form.

Figure 10. (a, b) Visible-region absorbance spectra (spectra recorded
every 0.5 s), for the reversible switching of a NiO(10 min) film in
aqueous KOH (0.1 mol dm−3) between the transmissive green
“bleached” state and the colored (deep brown) state. Electrochromic
switching was conducted by application of potential steps (0.00 V →
+0.50 V → −0.20 V) vs silver wire. The arrows indicate the direction
of change in absorbance. The NiO(10 min) film had first been
conditioned by 500 cycles (−0.50 → +0.70 → −0.50 V vs SCE) at 50
mV s−1.
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switching we found the change in transmittance, Δ%T, to
decrease from 84.8 to 56.0%, after just 50 electrochromic
cycles.
Color Measurement of the NiO-Based Thin Films.

Table 2 gives CIE 1931%YLxy and CIELAB L*a*b*
chromaticity coordinates for the various films as calculated
from visible region absorbance spectra (such as Figure 10a, b).
Figure 14a shows the dynamic changes of the CIE 1931 xy

coordinates as a hue and saturation track, on potential stepping
between the “bleached” and colored states, as a function of the
deposition time of the original NiO films.
At the initial applied potential (0.00 V), the “bleached” films

appear by eye as transmissive light green. With an increase in
film thickness, the x, y, and %YL coordinates (Table 2) depart
from those of the illumination source (the “white point”, where

x = 0.332, y = 0.347, and %YL = 100), as the light green color
becomes slightly more intense. On stepping the applied
potential to +0.50 V, films steadily turn to deep brown, with
an increase in the x and y coordinates, and decrease in the
luminance (%YL) (Table 2 and Figure 14a). In Figure 14b, the
xy data for films prepared from as-deposited NiO(10 min) are
overlaid onto the CIE 1931 color space template, showing the
track of the xy coordinates between the “bleached” and colored
states. In this representation, the line surrounding the
horseshoe shaped area is called the spectral locus, giving the
visible-light wavelength. The most saturated colors lie along the
spectral locus. The line connecting the longest and shortest
wavelength contains the nonspectral purples and is known as
the purple line. Surrounded by the spectral locus and the purple

Figure 11. Change in absorbance of NiO(20 min) film recorded at
cycle 500 in the wavelength range of 350−820 nm.

Figure 12. Coloration efficiency of NiO(15 min) film recorded at
cycle 100 in the wavelength range of 330−820 nm.

Figure 13. Visible region in situ transmission spectra for a NiO(10
min) film following the 1000th (black) and 10000th (red) CV in the
“bleached” and colored states recorded in the wavelength range of
320−820 nm in aqueous KOH (0.1 mol dm−3). The film had been
cycled for 1000 and 10000 cycles (−0.50 → +0.70 → −0.50 V vs
SCE) at 50 mV s−1.

Table 2. Chromaticity Coordinates (CIE 1931%YLxy and
CIELAB L*a*b*) for each of the NiO/NiOOH Films on
FTO/Glassa

original film source x y %YL L* a* b*

NiO(10 min) “bleached” 0.347 0.362 86.7 95 0 8
NiO(10 min) colored 0.392 0.377 32.3 64 10 17
NiO(15 min) “bleached” 0.361 0.376 77.1 90 1 16
NiO(15 min) colored 0.420 0.391 21.3 53 12 23
NiO(20 min) “bleached” 0.374 0.386 69.5 87 2 21
NiO(20 min) colored 0.447 0.397 13.9 44 15 25

aFilms were switched in aqueous KOH (0.1 mol dm−3) between the
“bleached” and colored states by application of potential steps (0.00 V
→ +0.50 V for 10 s and +0.50 V → −0.20 V for 10 s) vs silver wire.

Figure 14. (a) CIE 1931 xy chromaticity plots for each of the NiO/
NiOOH films on FTO/glass. Films were switched in aqueous KOH
(0.1 mol dm−3) between the “bleached” and colored states by
application of potential steps (0.00 V → +0.50 V for 10 s and +0.50 V
→ −0.20 V for 10 s) vs silver wire. The arrows indicate the direction of
the changes with the potential. (b) CIE 1931 xy coordinates for the
NiO/NiOOH film on FTO/glass prepared from the as-deposited
NiO(10 min). This Figure shows the locus coordinates, with labeled
hue wavelengths, and the evaluation of the dominant wavelength (λd =
584 nm)) of the deep brown state.
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line is the region known as the color locus, which contains
every color that can exist. The location of any point in the xy
diagram gives the hue and saturation of the color. The hue may
be determined by drawing a straight line from the white point,
through the point of interest to the spectral locus, thus
obtaining the dominant wavelength (λd). The construction in
Figure 14b gives an estimated value of 584 nm for colored
(deep brown) state of the film prepared from as-deposited
NiO(10 min). There is a small increase in λd values with
increase in deposition time, with values being 585 and 587 nm
for films prepared from NiO(15 min) and NiO(20 min),
respectively.
In CIE theory, colors cannot be specifically associated with a

given pair of xy coordinates, because the third dimension of
color, lightness, is not included in the diagram. The relative
lightness or darkness of a color is very important in how it is
perceived, and is presented as the relative or percentage
luminance, YL, of the sample, to that of the background, Yo.
Relative luminance values can range from 100% for white/
transparent samples (no light absorbed) to zero for samples
that absorb all the light. Figure 15 shows the graphical form of

the changes in the %YL on potential switching between the
“bleached” and colored state for all the NiO-based films. When
the films are oxidized, the luminance dramatically decreases, as
the deep brown color forms and steadily becomes more
saturated.
The CIELAB L*a*b* coordinates (Table 2) are a uniform

color space defined by CIE in 1976 and offer a standard
commonly used in the paint, plastic and textile industries. L* is
the lightness variable of the sample, while a* and b*
correspond to the two antagonistic chromatic processes (red-
green and yellow-blue). In a L*a*b* chromatic diagram, +a* is
the red direction, −a* is the green direction, +b* is the yellow
direction, and −b* is the blue direction. The center (0, 0) of
the chromaticity diagram is achromatic. As the a* and b* values
increase, the saturation of the color increases. At the initial 0.00
V applied potential, the “bleached” state (L* = 95, a* = 0, b* =
8) prepared from as-deposited NiO(10 min) is close to the
achromatic “white point” (L* = 100, a* = 0, b* = 0). For
thicker films, there is a small decrease in the initial L* value,
and an increase in a* and b* (Table 2). As the potential is
stepped to +0.50 V, L* decreases and the saturation of the

brown color increases, both a* and b* values becoming more
positive (Table 2). With increase in film thickness, the brown
coloration becomes more saturated as quantified by a decrease
in L* when in its colored state and an increase in a* and b*
(Table 2). Although it might be expected that a combination of
positive a* and b* values would produce orange, in
combination with low L* values, the films are perceived as
deep brown.

■ CONCLUSIONS
Aerosol-assisted chemical vapor deposition (AACVD) has been
used for the first time to prepare thin films of NiO on FTO-
coated glass. Following transfer to aqueous KOH (0.1 mol
dm−3) and conditioning oxidative voltammetric cycling, the
films show good electrochromic properties with reversible
switching between transmissive light green and deep brown
states. Using a calculation method based on the integration of
experimental spectral power distributions derived from in situ
visible region spectra over the CIE 1931 color-matching
functions, the color stimuli of the NiO-based films, and the
changes that take place on reversibly switching between the
“bleached” and colored forms have been calculated.
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