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Abstract

We study the Coulomb-Fröhlich model on a triangular lattice, looking in particular at states with angular momentum.
We examine a simplified model of crab bipolarons with angular momentum by projecting onto the low energy subspace
of the Coulomb-Fröhlich model with large phonon frequency. Such a projection is consistent with large long-range
electron-phonon coupling and large repulsive Hubbard U . Significant differences are found between the band structure
of singlet and triplet states: The triplet state (which has a flat band) is found to be significantly heavier than the
singlet state (which has mass similar to the polaron). We test whether the heavier triplet states persist to lower
electron-phonon coupling using continuous time quantum Monte Carlo (QMC) simulation. The triplet state is both
heavier and larger, demonstrating that the heavier mass is due to quantum interference effects on the motion. We also
find that retardation effects reduce the differences between singlet and triplet states, since they reintroduce second
order terms in the hopping into the inverse effective mass. PUBLISHED AS: Journal of Physics and Chemistry

of Solids Volume 69, Issue 12, December 2008, Pages 3304-3306
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1. Introduction

The possible role of local pairs in the cuprates and
the origin of the pairing mechanism are subject to
intense debate in the superconductivity community.
Many experiments now demonstrate that there is
a strong electron-phonon (e-ph) interaction in the
cuprates. In particular, isotope effects show that
lattice vibrations do play a role in determining the
specific electronic structure of high-temperature su-
perconductors [1]. However, consensus has not yet
been reached about the effects of lattice vibrations.
Theorists proposing a view of intrinsic repulsion-
mediated superconductivity claim that the isotope
effects are simply due to change of the polaron
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mass, which are the underlying quasi-particles for
their theories, but that otherwise the e-ph interac-
tion does not lead to the pairing required for su-
perconductivity [2]. Here, we explore a scenario in
which the e-ph interaction is so strong that pairing
is into local bipolarons, which form a Bose-Einstein
Condensate with no electronic resistance [3].

The possibility of bipolaronic superconductors in
real materials has been critisised on the grounds
that, in the presence of strong Coulomb repulsion,
the e-ph interaction would have to be huge to form
bound pairs. Thus, individual polarons forming
the bipolaron would be extremely heavy [4]. For
strong e-ph coupling on rectangular lattices with
only nearest-neighbour hopping, it can be demon-
strated that bipolaron mass is proportional to po-
laron mass squared [5], indicating that bipolaronic
superconductivity on such lattices could only be
a low temperature phenomenon. However, a more
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Fig. 1. (Colour online) Schematic of the small bipolaron on
a triangular lattice with infinite Hubbard repulsion and long
range attraction. For strong e-ph coupling, the energy space
is such that bipolarons must be composed of dimers between
nearest neighbour sites. There are six possible dimer config-
urations on the triangular lattice, categorised according to
the relative positions of the first and second inserted par-
ticles. Configurations A and D etc. can be related through
and exchange and translation. The most general 2 particle
wavefunction is a linear combination of these six states, sym-
metrised according to translational (Bloch) and rotational
(angular momentum) invarience.

recent scenario involves the possibility that e-ph
interactions are longer range than the Coulomb
repulsion [6], leading to inter-site pairs which can
move freely on lattices formed from triangular pla-
quettes (crab bipolarons). Here, we consider the
difference between singlet and triplet bipolarons
on the triangular lattice. Given recent results con-
cerning the possibility of d-wave superconductivity
mediated via phonons [7], we consider this a first
step towards understanding unconventional pairing
on a quantitative footing using numerically exact
QMC computations.

We study the Coulomb-Fröhlich model for long-
range e-ph interactions in quasi-2D materials,
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ξm is the ion displacement, sites are numbered by n

/ m for electrons / ions respectively and c annihilate
electrons. The phonons are independent oscillators
with frequency ω and mass M . P̂m = −i~∂/∂ξm
is the ion momentum operator. Since electrons are
mobile in the plane, in-plane Coulomb repulsion
V (n − n′) is heavily screened. We consider only
infinite on site repulsion U . The Fröhlich interac-
tion is specified via the force function, fm(n) =

r i+ τN

H
r i

Fig. 2. Schematic of the hopping term as a set of rotations,
showing that the hopping operator is also related to the
angular momentum operator.

κ
[

(m − n)2 + 1
]−3/2

, where κ is a constant [8].
The dimensionless e-ph coupling λ is defined as
λ =

∑

m
f2
m

(0)/2Mω2zt (z is the coordination
number). Long-range interactions make polarons
light, and less dependent on lattice type [8,9,10,11].

2. Unconventional pairing and the crab

bipolaron

To obtain insight into the crab bipolaron, we con-
sider pairs in the limit where on-site Coulomb re-
pulsion is infinite, inter-site attraction is large and
phonon frequency is large (anti-adiabatic limit ω >
ztλ). Thus the lowest energy states span a subspace
of near-neighbour pairs. The most general wavefunc-
tion in this basis is,

|ψ〉 =
1
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R
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e
ilm2π

R

R
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anA
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that is that Bloch’s theorem and the equivalent for
rotated angular momentum states have been applied
to a linear combination of all neighbour pairs. R is
the order of rotational symmetry, m is the angular

momentum. A
(N)†
ri

= c†
ri
c†
ri+τN

and τN are the near-
neighbour vectors.

There are a number of symmetries that can

be used to simplify this expression: A
(N+R/2)†
ri

=

−A(N)†
ri−τN

, A
(N+R)†
ri

= A
(N)†
ri

, making the substi-
tution ān = an + (−1)man+R/2 and noting that

e2πim(l+R/2)/R = (−1)me
ilm2π

R , the wavefunction
can be simplified to:
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i.e. the problem is reformulated as R/2 singlet and
R/2 triplet bands.

The effect of the hopping term on pairs can be
written as a rotation, showing that hopping also has

2



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

(a
) 

m
0/

m
**

λ

Singlet
Triplet

 1

 10

 100

 1000

 0  0.5  1  1.5  2

(b
) 

R
bp

λ

Singlet
Triplet

Fig. 3. Singlet and triplet states on a triangular lattice with
infinite Coulomb repulsion. β̄ = 3.5. Paths are constrained to
be within 200 lattice spacings of each other. Measurements
were taken every 10 MC steps, with error bars computed by
blocking groups of 1000 measurements. Results are computed
for ω̄ = 4. Panel (a) shows the inverse masses of singlet and
triplet bipolarons, and panel (b) their radii. The masses of
the triplet bipolarons are generally larger than their singlet
counterparts. The radii of triplet bipolarons are also larger,
as should be expected due to the node in the wavefunction.
However, this makes the heavier mass more surprising, since
larger (i.e. less well bound) bipolarons would be expected

to be lighter. The apparent convergence of the singlet and
triplet properties at large λ is due to retardation effects.

some of the properties of an angular momentum op-
erator (see figure 2).

H̃tbA
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If the basis didn’t just contain nearest neighbour
pairs, then H̃tb would introduce m dependent func-
tions into the result. However for only nearest neigh-
bour pairs, eq. 2 can be rewritten as,
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where, Ā
(n)†
ri

= A
(n)†
ri

+ (−1)mA
(n+R/2)†
ri

and ān =
an + (−1)man+R/2. Thus, there is no dependence

on angular momentum. s, d etc. states are degen-
erate singlets, p, f etc. are degenerate triplets.
Initially, the degeneracy of the angular momentum
states seems surprising. However, since only the
near-neighbour subspace is considered, there are
only 6N degrees of freedom. As an increasing num-
ber of possible pairing arrangements is considered
(for example if U were not infinite), the total num-
ber of degrees of freedom would increase, and the
degeneracy would be lifted.

As we have previously discussed, singlet and
triplet states can be mapped onto a dimer lattice,
with hopping −t̃ for singlets and t̃ for triplets (the
difference in hopping sign can be demonstrated by
considering only two particles on a singlet trianglu-
lar molecule, symmetrised according to eq. 2) [12].
Thus one can determine the secular equations:

E〈N |ψ〉 = 〈N |H̃|ψ〉 (5)

where |N〉 = Ā(N)†|0〉. The solution to those equa-
tions is given by the equation,
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with αk = exp
(

−iakx/2 + i
√

3aky/2)
)

, βk =

exp
(

−ikxa/2 − i
√

3kya/2
)

and γk = exp (ikxa).
There are 6 bands resulting from the diagonalisa-

tion of the Hamiltonian. Three singlet (correspond-
ing to even m) and three triplet (odd m states),

E1(k) = Vmin ± t̃(−1 −
√

3 + ǫ(k)/t̃) (7)

E2(k) = Vmin ± t̃(−1 +

√

3 + ǫ(k)/t̃) (8)

E3(k) = Vmin ± 2t̃ (9)

where ǫ(k) = −2t̃(cos kxa+cos
(

kxa/2 −
√

3kya/2
)

+

cos
(

kxa/2 +
√

3kya/2
)

) is the polaron band struc-
ture in the antiadiabatic limit. An unusual result
is that the singlet bipolaron mass is proportional
to the polaron mass, m∗∗

s = 6m∗ while the triplet
bipolaron mass is infinite. In the rest of this article,
we compute singlet and triplet states computed us-
ing a continuous time QMC algorithm to determine
which of these attributes survive into the intermedi-
ate coupling and phonon frequency regime [13,12].

3



3. Quantum Monte-Carlo results

QMC simulations of the crab bipolaron state have
been carried out for singlet states [13,12]. We have
also simulated triplet bipolarons on the chain [14].
It is of interest to determine if the limiting analytic
results discussed in the previous section can be re-
alised in numerical simulations. We have previously
determined that there are significant differences be-
tween the masses of bipolarons on staggered and
rectangular ladders [12,5]. We have also found that
masses of polarons and bipolarons on lattices with
triangular components have similar magnitude [13].

We compute numerical results from the continu-
ous time QMC algorithm for a bipolaron on a trian-
gular lattice. The singlet and triplet properties are
computed by symmetrising the waveunctions. So the
triplet bipolaron picks up a sign change on exchange,
whereas the singlet always has positive sign. This
affects the estimators, which depend on the sign as,

Rbp =

〈

s

√

√

√

√

√

1

β

β
∫
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1
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〈

s∆r2
i

〉
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For configurations where the end points of the paths
are together, s = 0. ∆r is defined as in ref. [9].

Figure 3 shows the effective mass and size of sin-
glet and triplet states on a triangular lattice with
infinite local Coulomb repulsion. Results are com-
puted for ω/t = 4. Panel (a) shows the inverse
masses of singlet and triplet bipolarons, and panel
(b) their radii. It can be seen that the masses of the
triplet bipolarons are generally larger than their sin-
glet counterparts. The radii of triplet bipolarons are
also larger, as should be expected due to the node in
the wavefunction. However, this makes the heavier
mass more surprising, since larger bipolarons would
be expected to be lighter since they are less well
bound. The larger mass is thus due to quantum in-
terference effects in the motion. This can be best
understood by imagining the tight binding model
constructed for hopping of bipolarons. The bipo-
laron overlap integrals giving the effective hopping
are highly sensitive to the form of the binding wave-
function, and it is clear that the node in the triplet
wavefunction will make those integrals (i.e. the effec-
tive hopping) much smaller leading to smaller effec-
tive mass. For larger couplings, ztλ > ω, the antia-

diabatic approximation used in the previous section
does not hold. Thus the largest differences between
triplet and singlet states are found around λ = 1.

The apparent convergence of singlet and triplet
states at large coupling is initially surprising. How-
ever, analysis of the sign can shed light on this ef-
fect. For weak coupling, any bipolarons are weakly
bound, so singlet-triplet splitting must be very
small, since it can’t be larger than the singlet bind-
ing energy. Since ∆Est = −(ln〈s〉)/β, the average
sign must be approximately 1. At large coupling,
paths must be nearly straight at very strong cou-
pling due to retardation effects. Since there is
infinite Coulomb repulsion, at least two kink inser-
tions are required on each path for an exchange,
exchanges become increasingly rare, and the sign
must return to 1. So the total sign dips (and thus
the difference in mass is largest) when ztλ ∼ ω.

4. Conclusion

We have computed properties of bipolarons with
angular momentum on triangular lattices. The mass
of the singlet bipolaron is of the order of the polaron
mass for a wide range of couplings. However, we find
that triplet bipolarons have much larger mass for
coupling ztλ ∼ ω. A surprising result here is that
retardation effects at very large λ reduce the differ-
ence between singlet and triplet properties when the
local Coulomb repulsion is infinite. Understanding
of the full range of bipolaron behaviours, especially
on unconventional lattices is clearly important, and
will form the subject of future publications.
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