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ABSTRACT 

Monofilament cloths are used as the separation media in filtration; woven wire 

cloths or screens are also used as the media in filters or to enhance the integrity of 

the filter medium in, for example, filter cartridges. A better understanding of the 

flow pattern in the woven structure is essential in examining the initial stages of 

cake filtration as well as the effect of weaves on fouling phenomena within a filter 

cloth. 

Due to the complex geometry of a woven cloth, three-dimensional modelling is 

necessary to correctly visualize the structure of the flow and hence to predict 

pressure losses. The modelling in a three-dimensional domain was handled using a 

finite element method which is known to cope with flow domains in complex 

geometries very effectively. The governing equations of continuity and momentum 

were solved by a mixed U-V-W-P finite element method and in conjunction with a 

first order Taylor-Galerkin scheme for temporal discretization. A secondary 

solution scheme based on a continuous Penalty finite element method in conjunction 

with theta time stepping method was also used to solve the governing equations. 

Two robust and reliable computer tools based on these sound and robust numerical 

techniques have been developed to simulate Newtonian and non-Newtonian fluid 

flow through a woven wire mesh. Purpose-designed test cases were used to validate 

the capability of the developed algorithms and were found to give expected 

numerical predictions. 
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A selection of domains was used to investigate the effect of weave pattern, aperture 

to diameter ratio and Reynolds number on flow pattern and pressure drop. Based on 

these domains, simulations were successfully conducted to investigate fluid flow 

through four basic pore types in a plain weave, twill weave and satin weave. The 

flow fields in the interstices were illustrated using a commercial graphics software 

package. The results showed that the weave pattern has a profound effect on the 

fluid flow pattern and pressure drop across the wire mesh. Simulation results 

showed that plain weave gives the lowest pressure drop, while satin weave gives the 

highest pressure drop across the woven cloths. 

Fluid flow through a plain weave was further investigated in conjunction with the 

experimental studies of Rushton (1969) using water and Chhabra and Richardson 

(1985) using shear-thinning fluids. Simulations were tested against experimental 

data extracted from both studies. The close agreement of the results to those of the 

available experimental data in literature showed the accuracy and the reliability of 

the predictions. 

Personal communication with industrial experts and woven cloth manufacturers 

have confirmed industrial practice, whereby a plain weave is primarily used due to 

its lowest flow resistance. This showed that the developed model is capable of 

generating accurate results for flow of both Newtonian and non-Newtonian fluids 

through filter media. The model can be used by design engineers as a convenient 

and effective Computer Aided Design (CAD) tool for quantifying effects of pressure 

drop. The model can also be extended to describe particle capture on/in the wire 

mesh and woven filter cloths. 
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CHAPTER I 

INTRODUCTION 

1.1 Significance of the Topic of Study 

Woven screens have been widely used in the construction of conventional sieves, 

filters and separators in solid-liquid processes in the filtration of polymers, 

chemicals, phannaceutical, cosmetic, hydraulic oil and fuels, as well as the luxury 

food and beverage industries. In these applications, woven wire meshes are used 

either as the support for finer filter media, for example in filter cartridges, or as the 

filtering medium itself. 

Recently, advances in weaving technology have led to increasing applications of 

single-layered and laminated multi-layered composite wire screens of various metals 

such as stainless steel, titanium, alloy, non-ferrous metals as well as novel 

composites materials. These screens can be customized into various shapes and 

forms such as filter candles, circles and discs depending on applications and design. 

Metal screens, which are characterized by chemical and heat resistance against 

corrosion and abrasion, extremely high mechanical stability, high durability, wear 

resistant, efficient retention of solids, and consistent flow rates during the filtration 

cycle have drawn increasing interest as a replacement for conventional cloth filters 

since they are reusable, recyclable and are therefore environmentally friendly. 

Wire mesh is also widely used in the aerospace industry, particularly in the fields of 

lightning strike protection mesh for composites, acoustics meshes applied to the 

housing of the jet engines for noise reduction, meshes for electromagnetic 
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interference (EMI) shielding application of displays, anti-turbulence-screens in wind 

tunnels and fuel and hydraulic systems micronic filtration meshes. Remarkable 

advances in manufacturing skills in the recent decade have also seen ring shape wire 

meshes produced in small sizes for use as distillation columns packing. 

With aperture fineness ranging from 1 J.!m up to 10 mm for processes involving 

fluids of diverse properties and suspensions, the performance of these woven wire 

meshes should be reliably predicted to enable engineers to design and evaluate 

applications across industries. An understanding of fluid flow through these screens 

is therefore vital. 

Despite the significance and numerous applications in industry, studies on woven 

materials have been limited and in these studies attention has focused on 

permeability, porosity and resistance properties. Investigations of flow of non

Newtonian liquids through various single screens are relatively scarce and mostly 

concentrated on shear thinning fluids. No researchers have previously studied the 

velocity and pressure profile as fluid flows past the wire mesh interstices. A better 

understanding of the flow characteristics in the interstices of the woven structure 

could prove useful in examining the initial stages of cake filtration as well as the 

effect of weaves on fouling phenomena within a filter cloth. 

Considering the significance of knowledge in the flow behaviour of non-Newtonian 

fluids, it is necessary to research the complex flow field generated by the flow of 

non-Newtonian fluid through a complex geometry. Hence, the significance of 

2 
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studying the flow of a non-Newtonian fluid through a wire mesh cannot be over

stressed. 

Computational fluid dynamics (CFD) techniques have been known to provide a 

powerful and convenient route for the qualitative and quantitative analysis of non

Newtonian flow systems. Computer simulations offer the opportunity of studying 

important steady-state and transient flow free from instrumental and environmental 

effects. With increasingly powerful processors and more economical computing 

costs, accurate computations of very complex flow problems have been made 

possible in two-dimensional and even three-dimensional domains. A great number 

of computational researches have been undertaken and published in the field of 

CFD. Therefore, CFD seems to be a feasible alternative to study flow through 

weave structures that are characterized by small apertures in the mm and pm size 

ranges. 

There are several categories of numerical techniques used in the CFD studies, of 

which Finite Element Method (FEM), has been found to be a powerful technique for 

solving engineering flow problems with geometrical complex domains. For this 

reason, the present study of complex three-dimensional flow domain is based on the 

FEM. 
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1.2 Objective of the Study 

The primary objective of the present work is to develop a numerical model for 

predicting non-Newtonian fluid flow through a wire mesh. Due to the complex 

geometry of a wire mesh, three-dimensional modelling is necessary to visualize 

correctly the structure of the flow and hence to predict pressure losses. 

This study will set a major milestone towards studying the mechanics involved in 

the clogging by particles in the woven media interstices during the formation of a 

filtration cake. It is hoped that the outcome of this study will enhance the Computer 

Aided Design (CAD) of high performance woven fabrics and filters. 

The stages involve in achieving the described objectives are as follows: 

(i) Development of a user-friendly computer code to solve Newtonian and 

non-Newtonian fluid flow in three-dimensional domains. 

(ii) Checking the computer code using appropriate test cases on Newtonian 

and non-Newtonian fluids. 

(iii) Selection of appropriate boundary conditions for simulating the described 

flow problem. 

(iv) Conducting numerical simulations on flow of Newtonian fluid and shear 

thinning and shear thickening non-Newtonian fluids through a wire mesh. 

(v) Conducting pressure drop analysis on the results. 
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1.3 Structure of the Thesis 

This thesis consists of six sections with additional sections for references and 

appendices. The contents of each section are listed as follows: 

1. Introduction 

The subject of the present study and the significance of the present work are 

discussed. The work involved in achieving the overall objectives of this study are 

clearly outlined. 

2. Literature Review 

This section contains a review of the studies carried out by various researchers in 

fluid flow through a monofilament woven wire mesh. Various approaches used by 

researchers in describing flow through weave patterns are discussed and the relevant 

results are also presented. 

3. Governing Equations and Boundary Conditions 

The governing continuity and motion equations used in this study are explained. 

The constitutive equation used to describe non-Newtonian rheology is briefly 

discussed. The assumptions relating to the numerical study of the wire mesh are 

outlined and the boundary conditions prescribed in this study are explained. 

4. Derivation of the Working Equations 

Following the discussion of the governing equations in Chapter 3, the numerical 

technique used in this study is explained. The solution schemes of the equations are 

followed through in two numerical methods. The final working equations for each 

solution scheme are presented. The strategies for the algorithm design of each 

solution scheme are also outlined. 
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5. Results and Discussions 

Purpose-designed test cases used to verify the developed algorithms are presented 

and explained. The results for each test case are evaluated quantitatively and 

qualitatively. A comprehensive selection of simulation results are presented and 

discussed, aided by post-processing illustration of flow field variables of velocity 

vectors and pressure contours. The developed algorithm is successfully applied to 

fluid flow through wire mesh and the model has shown convincing capability in 

producing consistent and promising results. 

6. Conclusion and Recommendations 

Chapter 6 contains the conclusions for the present study. Suggestions for future 

work are also outlined. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Weave Patterns of Wire Meshes 

Wire mesh is obtained by weaving wires tightly parallel between a so-called warp 

wire and wires lying perpendicularly known as weft wire. The wire mesh 

construction is defined by the kind of weave pattern. The weave pattern is 

determined by the sequence of intersections between the warp and weft wires. The 

most common and popularly used weave patterns and their characteristics are 

discussed in the ensuing section. 

2.1.1 Characteristics of Various Weave Patterns 

A plain weave is the most basic, with each warp wire passing over and under the 

successive weft wires and vice versa resulting in a precise mesh opening and 

maximum cloth stability. Square or rectangular openings are available to suit 

different applications and process requirements. 

A twill weave produces a diagonal or twill line across the face of the fabric as the 

warp wire passes over and under two weft wires and vice versa. Commonly used 

twill weave is designated 2/1, 2/2 or 3/1 depending on how many weft wires and 

warp wires go over and under. This type of weave allows the use of large wire 

diameters to meet process requirements and is the predominant weave pattern used 

in filtration because of the surface area it offers. 
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A satin or tela weave, has the warp wires going over a number of weft wires and 

vice versa. Intersections between warp and weft are kept to a minimum where it is 

just sufficient to hold the wire firmly together. This weave permits the use of 

extremely strong wires with fine mesh openings resulting in a smooth and wear 

resistant surface. This type of weave is mainly used in vacuum filters, centrifuges, 

dewatering sieves and distillation columns. Plain, twill and satin weaves are the 

three basic weaves and are illustrated in Figure 2.1. 

(a) (b) (c) 

Figure 2.1 Basic configuration of three basic weaves: (a) plain weave 
(b) twill weave and (c) satin weave. 

Apart from the basic weaves, there are other weaving patterns that are popularly 

used in the industry. A plain Dutch weave has a similar weave pattern to plain 

weave, however the warp wires are spaced farther apart than the weft wires. While 

the warp wires remain straight, the weft wires are plain woven to lie as close as 

possible against each other in a linen weave forming a dense strong material with 

small, irregular and twisting passageways that appear triangular when diagonally 

viewing the weave. It is mainly used for precoat filters and vacuum filters. 
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A Dutch twilled weave is a Dutch weave woven in a twill pattern that enables twice 

as many weft wires to be woven in the same area as a plain Dutch weave to achieve 

a finer filter opening. There are no apertures in the true sense of the word as the 

filtrate follows a sinuous path through the depth of the wire cloth. It is typically 

produced for very fine filtration application, ranging from 10 microns and finer. 

For a reversed plain Dutch weave, the warp wires are smaller and spaced closer 

together than the weft wires. This weave pattern allows the use of high tensile wires 

and offers the most durable and stable fine filter mesh. The weave patterns of plain 

Dutch, Dutch twilled and reversed plain Dutch weaves are shown in Figure 2.2. 

As other weaves described overleaf, a reversed Dutch twilled weave is woven under 

the same preferences as a reversed plain Dutch weave, but given the twilled pattern, 

it gives special versions of extremely rigid cloths with filtration grade down to 45 

microns. 
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(a) (b) (c) 

Figure 2.2 Other popular weave pattern: (a) Plain Dutch Weave 
(b) Dutch Twilled Weave and (c) Reversed Plain Dutch Weave. 

Other types of weaving used, though not as popular as the earlier described weaving 

patterns, includes scapling weave (or the lock-crimp), double lock crimp, flat top, 

triple shoot and the intermediate crimp. The detailed description and illustration of 

these weave patterns can be obtained from established wire mesh manufacturers and 

will not be discussed in further details in this study. 

There are five basic variables describing a wire mesh screen in a monofilament wire 

mesh (Pederson, 1969). They are: 

(i) the end count (ec), i.e. the number of warp wires per unit length 

(ii) the warp wire diameter 

(iii) the pick count (pc), i.e. the number of weft wires per unit length 

(iv) the weft wire diameter 

(v) the weave pattern 
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These variables interact to form a pattern of either regularly or irregularly shaped 

holes or openings through which the fluid flows past the mesh screen, and 

detennines the aperture size as well as the strength of the wire mesh. For any mesh, 

a thicker wire will provide a tougher weave, but the aperture and the open area will 

be reduced, giving a slower flow rate to the material passing through. These 

variables are therefore essentially decided depending on the applications and 

features required for a suitable mesh screen. 

For illustration purposes, a magnified view of an industrial grade plain weave steel 

wire with aperture 1169 J1m and diameter 0.22 mm is shown in Figure 2.3. 

Figure 2.3 A magnified view of a plain weave type wire mesh. 
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2.1.2 Resulting Pore Types 

Backer ( 1951) was the first researcher to recognize the effect of weave on pore 

construction and minimum cross-sectional area. He classified the pores occurring in 

a single layer textile fabric on the basis of yam intermeshing. Four types of basic 

pore patterns, as shown in Figure 2.4, can be found in the plain weave, the twill 

weave, and the satin weave. 

(i) Pore Type 1 (ii) Pore Type 2 

(iii) Pore Type 3 (iv) Pore Type 4 

Figure 2.4 Four types of basic weave patterns of a wire mesh (Backer, 1951). 

The pore patterns shown in Figure 2.4 have a definable open area in the direction of 

the flow. For Dutch weave, Dutch twilled weave and reversed Dutch twilled weave, 

the pores are not as straightforward as they normally do not possess an open area in 

the direction of the flow but filtration is achieved through the small triangular 

interstices between the wires at an angle to the direction of the flow. In this study, 

only the four basic pore types illustrated in Figure 2.4 were considered. 
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2.2 Relevant Models Describing Flow Through A Wire Mesh 

Theoretically, the relationship between fluid flow and the pressure difference across 

a fibrous or woven medium can be given by Darcy's law, which is written as 

(Wakeman and Tarleton, 1999) 

k dp 
u=---

f.l dz 
(2.1) 

where dp is the dynamic pressure difference across the media, dz the thickness of 

porous media, k the permeability, u the superficial velocity and Jl the viscosity. 

However, it is widely accepted that there is still an unresolved practical problem to 

relate the permeability of a clean medium to its structural properties such as fibre 

diameter and weave construction parameters (Wakeman and Tarleton, 1999). In 

view of this, previous investigations have approached the problem by comparing the 

flow situation in the woven wire mesh to a number of analogies, a strategy common 

in solving fluid flow and process engineering problems. These analogies can be 

divided into three main categories as follows (Rushton and Griffiths, 1971): 

(i) an assembly of orifices 

(ii) a randomly packed bed 

(iii) creeping flow over a series of cylinders 

The theory and industrial significance for each of the analogies listed above will be 

briefly discussed in the section that follows. 

2.2.1 Orifice Analogy 

An orifice meter, which can be arranged by clamping a thin flat plate between 

flanges at a joint in a pipe as shown in Figure 2.5, is frequently used for measuring 

the flow of fluids. It has advantages for ordinary plant practice compared to a 
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venturi meter as it occupies considerably less space, is inexpensive, its ratio of throat 

diameter to pipe diameter can be altered, and the measurable flow range is larger. 

The equation for an orifice meter in a steady and incompressible flow can be 

represented by (Bird et al., 2002) 

Q _ C~ p(Pt- P2) 
- ~1-(~'1\Y P 

(2.2) 

where Q is the volumetric flow rate, C the dimensionless discharge coefficient, A the 

cross section area, p the pressure and p the fluid density. Coefficient C is always 

determined experimentally and it varies considerably with changes in the ratio of 

orifice diameter to pipe diameter and with Reynolds numbers at the orifice (McCabe 

et al. 2001). The Reynolds number Re0 is defined as 

(2.3) 

where D 0 is the orifice diameter and u0 the velocity through orifice. 

Orifice Plate 

""' 
Fluid Flow 

P2 

Figure 2.5 A schematic diagram of fluid flow through an orifice. 
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2.2.2 Random Packed Bed Analogy 

Another approach to the problem has been to consider the wire mesh as a bed of 

cylindrical packings. Packed beds are extensively used in the chemical industries as 

reactors, dryers, filters, heat exchangers and adsorbers or desorbers. A considerable 

literature on macroscopic behaviour of flow through a packed bed exists (Mauret 

and Renaud 1997a, b; Dolej and Siska, 2000; Chhabra et al., 2001) The flow of 

non-Newtonian fluids through packed bed work has been reported by Kemblowski 

et al. (1989), Chhabra (1993a, b, c) and Wu and Pruess (1996). A range of model 

packed beds including beds of uniform size and of multi-size spheres, non-spherical 

particles, mats, foams, screens, core samples and cartridges. Each porous medium is 

unique in its geometrical morphology, thereby contributing in certain measure to the 

complexity of the problem of assigning geometrical description and of making 

cross-comparisons between different studies. Additional difficulties arise from the 

significant variation in macroscopic description in terms of porosity, permeability 

and tortuosity of nominally similar media. Undoubtedly, the major research effort 

has been directed at developing simple and reliable methods of predicting the 

frictional pressure loss for the fluid flow through packed beds (Chhabra et al. 2001). 

There are many approaches in predicting the frictional pressure loss in a packed bed. 

One of them, perhaps most popularly used, is the capillary bundle approach. In this 

approach, the interstitial void space in the bed of particles is envisioned to form 

tortuous flow passages of complex cross-sections but a constant average area for 

flow, as shown in Figure 2.6. Within the general framework of viscous flow regime, 

there are three different models that differ from each other in minor details relating 

to the choice of the characteristics velocity and the length of the flow passage in the 
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main direction of flow. They are the Blake, the Blake-Kozeny and the Kozeny-

Carman models. In the Kozeny-Carman model, which is widely recognized as the 

best model, the bed is replaced by a bundle of tubes of complex cross-section 

characterized by its hydraulic radius. For a Newtonian fluid, the friction factor and 

the Reynolds number are defined as (Chhabra et al., 2001) 

dp(llp) e3 

f = L:{J;;IJ (l-e) 
(2.4) 

and 

pud 
(2.5) Re= P 

,u(l-e) 

where Lis the height of bed and dp the particle diameter. 
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(a) (b) 

Figure 2.6 Schematic diagrams showing (a) a column packed with spheres 
(b) a 'capillary bundle' model for the packed column in (a). 
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2.2.3 Flow Over Cylinder Analogy 

An alternative to the two approaches outlined in the previous sections, the flow over 

wire mesh can be compared to flow over an array of cylinders. Fluid flow past a 

periodic array of cylinders has received considerable attention due to the variety of 

engineering applications including flow on the shell side of tubular heat exchangers, 

autoclave process of manufacturing fiber-reinforced composites, enhanced oil 

recovery and composite and textile coating operations. A benchmark problem that 

has been studied extensively in the fluid mechanics community is the pressure

driven flow around a cylinder kept between parallel plates (Happel and Brenner, 

1973), which was first solved analytically for Newtonian fluids by Faxen (1946). 

Since then, numerous researchers have investigated the flow past a single cylinder 

and flow over a series of cylinders (Drummond and Tahir, 1984; Hartt and Baird, 

1996; Rahli et al., 1996; Mauret and Renoud, 1997; Liu et al., 1998; Mitsoulis, 

1998; Satheesh et al., 1999; Zisis and Mitsoulis, 2002), including flow of a non

Newtonian power law fluid over cylinders (Tripathi and Chhabra, 1992; Shibu et al., 

2001; Skartsis et al., 1992; Tripathi and Chhabra, 1996; Vijaysri et al., 1999; Rao 

and Chhabra, 2003). Studies on packed beds of cylinders have emphasized 

primarily the macroscopic response in the terms of pressure drop across the flow 

device and the general structure of the flow kinematics. The connections between 

the configurational changes of the macromolecules and macroscopic flow behaviour 

have not been a subject of primary investigation. A schematic diagram depicting the 

fluid flow past a submerged cylinder is shown in Figure 2.7. 
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The drag coefficient and Reynolds number were defined as (Wieghardt, 1953) 

and 

2b.p e2 

c =-·--
v puz (1-e) 

Re=p(u!e}d 

f.l 

Submerged Cylinder 

~ 
0 

Figure 2.7: A schematic diagram showing flow past a submerged cylinder 
bounded by two parallel plates. 

2.3 Non-Newtonian Fluid Flow Through A Wire Mesh 

(2.6) 

(2.7) 

It has been widely recognized that rheology has a predominant role in the modelling 

of non-Newtonian fluid processes. Therefore, it is essential to understand the 

classifications of non-Newtonian fluid properties, as these will be directly relevant 

in this study. There are many texts describing the subject of non-Newtonian fluids 

properties, such as Skelland (1967), Harris (1977) and Crochet et al. (1984). A brief 

description of the non-Newtonian fluids is given in the following section. 

18 



K.C.Ting CHAPTER 2: Literature Review 

2.3.1 Properties of Non-Newtonian Fluid 

Non-Newtonian liquids are liquids that do not have a linear relationship between 

shear stress T (=f.l dvldy ) and velocity gradient or strain rate y (=dvldy). There are 

three broad groups of non-Newtonian materials (Skelland, 1967): 

(i) Time-independent fluids : sometimes referred to as non-Newtonian viscous fluid 

or purely viscous fluids where the rate of shear at a given point is solely dependent 

upon the instantaneous shear stress at that point. These materials include Bingham 

plastics, pseudoplastic or shear thinning fluids and dilatant or shear thickening 

fluids. 

(ii) Time-dependent fluids : shear rate is a function of both the magnitude and the 

duration of shear, and also possibly the time lapse between consecutive applications 

of shear stress. These materials are classified into two groups: thixotropic fluids 

where the substances exhibit a reversible decrease in shear stress with time at a 

constant rate of shear and fixed temperature, and rheopectic fluids or the anti

thixotropic fluids where a reversible increase in shear stress with time at a constant 

rate of shear and fixed temperature can be observed. 

(iii) Viscoelastic fluids : these materials show partial elastic recovery upon the 

removal of a deforming shear stress, and possess properties of both fluids and elastic 

solids. In other words, viscoelastic fluids flow when subjected to stress but part of 

the deformation is gradually recovered upon removal of the stress. 

Examples for each category of non-Newtonian fluids are given in Table 2.1. 
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Table 2.1 Examples of materials for each category of non-Newtonian fluids. 

Fluid Category Classified Group 

Time independent Bingham plastic 

Pseudoplastic fluids 

Dilatant fluids 

Time-dependent Thixotropic fluids 

Rheopectic fluids 

Viscoplastic 

Example of Materials 

(Skelland, 1967) 

Ores, margarine, toothpaste, 

chocolate mixture, paper pulp. 

Adhesives, greases, mayonnaise, 

polymer solutions or melts, 

biological fluids. 

Quicksand, wet beach sand, water

corn starch mixture. 

Oil well drilling mud, printing inks, 

paints. 

Bentonite clay suspensions, gypsum 

suspensions, dilute suspensions of 

ammonium oleate. 

Bitumen, flour dough, Napalm, 

jellies. 

There are many models such as the Power Law Model, the Carreau Model and the 

Maxwell Model used in the representation of apparent viscosity 17 in non-Newtonian 

liquids. However, the Power Law model gives a representation of TJ for a large 

number of systems over a wide range of shear rates. Moreover, its relatively simple 

form facilitates the necessary computation work. Further discussions on the 

constitutive equations will be covered in Chapter 3. The flow curves typical of 

Newtonian fluid and time-independent fluids are sketched in Figure 2.8. 
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Shear thinning 

Shear stress, T Newtonian 

Shear thickening 

Strain rate, y 

Figure 2.8 Flow curves of Newtonian and time-independent fluids. 

The majority of polymers and non-Newtonian materials encountered in industry fall 

in the category of pseudoplastic fluids or shear thinning fluids, while dilatant fluids 

are less common. In this study, the hydrodynamic properties of a fire retardant fluid 

which is shear thickening and is used in aeronautical applications will be used as the 

primary working fluid. Chosen primarily for its non-hydrocarbon based properties 

for aircraft safety reasons, this fluid copes with extreme temperature conditions and 

rapid temperature change without compromising its performance. The power law 

index n of this fluid will be manipulated to reflect the rheological behaviour of 

Newtonian, shear thinning and shear thickening effect as the fluid flow past a wire 

mesh. 

2.3.2 Experimental Studies 

Over the years, many studies have been conducted to investigate fluid flow past 

ideal shapes such as cylinders and spheres for Newtonian fluids or non-Newtonian 
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fluids (Skelland, 1967; Astarita & Marrucci, 1974; Schowalter, 1978; Chhabra, 

1999; Chhabra & Richardson, 1999). For airflow through fabrics, studies to 

correlate air permeability to a range of materials, the effects of fabric tension on 

permeability, the variations of permeability with pressure induced tension, and the 

effects of material weight on airflow resistance have also been conducted for 

applications such as textile, filter media and parachute design (Rainard, 1946; 

Rainard, 1947; Cunningham et al., 1954; Goglia et al. 1955; Baker, 1956; Davies, 

1973; Skelton and Abbott, 1974; Payne, 1978). However, studies on woven wire 

screens have been limited and they typically considered permeability, porosity and 

resistance properties of the wire mesh. Fluid flow through screens have been 

studied by various researchers such as Wieghardt (1953), Armour and Connon 

(1968), Rushton (1969), Rushton and Griffiths (1971), Ehrhardt (1983), Squiers 

(1984), Chhabra and Richardson (1985), Kiljailski and Dziubinski (1996). The 

majority of researchers used various gases and Newtonian liquids as the 

experimental media in their work. 

Backer (1948) suggested that the pores between the woven wires form a series of 

orifices or nozzles through which the flow motion took place. A woven wire mesh 

is simply a flow barrier formed by a large number of orifices or nozzles. Robertson 

(1950) adopted the idea and plotted experimental values of log C against log Re for 

airflow through plain weave metallic meshes. He obtained a good correlation 

between these two variables and went on to apply the idea to analyze loosely woven 

multifilament cloths of differing weave pattern. The correlations he obtained in this 

case, however, were not as good as those he had earlier obtained for the plain weave 

monofilament meshes. This brought Backer (1951) to realize that the single most 
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important factor influencing the flow rate when fluid flows through an orifice was 

the minimum cross section area of the pore. Undeterred by other researcher's 

criticisms that the interstices of the pores are too complicated for a complete 

hydrodynamic analysis, Backer set out a classification of the basic pore types in a 

woven fabric on the basis of the mode of yarn intermesh (shown earlier in Figure 

2.4). This was his first step towards a detailed and significant analysis of the cross

sectional area. To deal with the pore areas in a more quantitative manner, he 

considered the geometry of the unit cell to comprise of one of two geometric forms, 

which are the circular cylinder and the torus. Although the analytical forms for the 

cross-sectional areas of the two separate forms are well developed, the expression 

for the horizontal cross-sectional area for both the cylinder and the torus are 

complicated. To overcome this, Backer adopted a mathematical integration using a 

modelling technique. Slices of each basic pore type were taken at successive depths 

and the cross-sectional areas revealed were determined by mechanical integration. 

The unit pore area was obtained by deducting the cross-sectional area of the yarn 

from the cross-sectional area of the unit cell. Using this technique, the minimum 

cross-sectional area of each basic pore type was successfully determined. Backer 

found the use of minimum pore area greatly reduced the scatter produced by 

calculations based on the projected open area. 

Prior to the work of Wieghardt (1953), researchers have consistently used the 

approach velocity Uoo in computing the drag or resistance coefficient for flow 

through wire mesh. This often resulted in various curves for various values of 

porosity e. Wieghardt (1953) correctly pointed out in his paper that the 

characteristic velocity for the flow should be the hydraulic velocity, given by uJ E, 
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which is the higher velocity when the fluid flows through the mesh. By adopting the 

flow around single cylinder analogy, he proposed a Reynolds number Re and a 

dimensionless drag coefficient Cv given earlier in equations (2.6) and (2.7). Using 

these equations, he recalculated data for airflow through metal wire mesh from 

previous researchers and found that the majority of the data fitted well in a common 

correlation, given as Cv = 6.5/Re113 for 60 :S Re :S 600, with the corresponding 

porosity ein the range 0.318 :S e:S 0.682. The correlation does not seem to interpret 

the data very well beyond the given range. He went on to suggest that the orifice 

analogy could be equally adopted in analyzing the flow through a wire mesh, but 

insisting that the flow around an infinite cylinder would be more fitting as the 

surface for the wire mesh is rounded. He however failed to recognize the influence 

of the weave pattern on the pressure drop thus fell short of reporting the pattern of 

wire mesh weave in his study. 

Armour and Cannon (1968) adopted a slightly different approach in their 

experimental study, in which the flow of nitrogen and helium gas through a woven 

metal mesh was compared to flow around a thin packed bed of spheres. They 

investigated the effect of different weave patterns including plain, twill, plain Dutch 

and Dutch twill weaves on pressure drop. Applauding the earlier investigation by 

Ingmanson (1961) who appeared to be the first researcher to recognize the three

dimensional property of wire screens by characterizing the screen geometry using 

the surface area to unit volume ratio and the void volume, they derived a series of 

equations to calculate the surface area to unit volume ratio and void fraction for 

various weave patterns mentioned earlier. They went on to incorporate these 

variables into the equations determining the friction factor f and the Reynolds 
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number. Using these equations with which to analyze their experimental data, they 

managed to find a correlation off= (8.61/Re) + 0.52 for the range I :::;; Re :::;; 100. 

They also claimed that the correlation works well when applied to previous 

researchers' data for flow of water through a semi-twill weave in the range I :::;; Re:::;; 

1000. Interestingly, their data showed a consistently lower pressure drop for a plain 

weave compared to a twill weave, and a consistently lower pressure drop for a Dutch 

twill weave compared to a plain Dutch weave. Their contribution was perhaps 

useful in developing a predictive tool for the design engineer to predict the pressure 

drop across wire meshes for different weave patterns using the specifications 

provided by the manufacturers. 

Pederson (I969) further clarified the orifice analogy by stating that each irregularly-

shaped opening in a simple monofilament weave can be considered as an orifice. He 

advocated the idea of utilizing the 'effective area' and the 'effective diameter' to 

describe the fluid flow through an orifice. The effective diameter is defined as 

D'=4~ 
w (2.8) 

where A is the effective area of an orifice and W the wetted orifice perimeter where 

the flow is most constricted. He then devised a method to reduce the five basic 

variables describing a woven fabric, discussed in the earlier section, to two 

significant variables A and W. He used a discharge coefficient given by 

(2.9) 

where the effective fraction open area is defined as 

(2.IO) 
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where ec is the end count and pc is the pick count. The discharge coefficient was 

given as 

c- r[ 4pv J 
- w(ec )(pc ).u 

(2.11) 

He went on to determine A and W analytically for both plain weave and twill weave 

pore. He then plotted log C versus log Re for airflow through a wide range of plain 

weave and twill weave monofilament fabrics and found the correlation to be 

excellent. 

Rushton and Griffiths (1971) conducted a series of experiments to investigate the 

effect of pore structure on pressure drop with water flow through monofilament 

cloths. They used plain weave, twill weave, and satin weave cloths made of Nylon 

and Polypropylene in their study, including a double warp twill weave and a double 

warp plain weave. They comprehensively presented various approaches to 

explaining the flow situation in a woven fabric including the orifice analogy, the 

randomly packed bed analogy and the flow over cylinders analogy. Realizing that 

some twill and satin weaves consist of two or three different basic pore patterns side 

by side in a single fabric, they adopted the idea of a 'unit cell', which defines the 

ratio of each pore type everywhere in the fabric. The ratio of this 'unit cell' is then 

used to determine the average effective fraction open area of the fabric. They 

plotted experimentally determined values of log C against log Re for water flow 

through woven cloths and observed that C = 0.17 Re 0·
41 can be used to predict the 

pressure drop in the range 1 < Re < 10. They also observed that the plain weave 

cloths generally show a better degree of correlation than the twill as the plain weave 

were nearly perfectly woven but the twill weaves were irregular. It can be observed 
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from their plots that the plain weave generally gives the lowest pressure drop while 

the twill weave gives the highest pressure drop, with the satin weave ranging 

between these two weaves. This is consistent with the observation in the results 

presented by Armour and Cannon (1968). Based on their analysis, they claimed that 

Pederson's analysis (1969), which is based on the orifice analogy, is more useful 

where it successfully predicted resistance in more complex cloths of widely differing 

yam configuration whereas the randomly packed bed analogy was only useful for 

plain weave prediction as large errors occurs when it is applied for twill weave 

cloths. 

Motivated by Wieghardt's (1953) work, Ehrhardt (1983) extended the study to a 

wider range of wire meshes and fluids. He used 61 different square mesh weaves 

and 95 different Dutch weaves in spindle oil, diesel oil, petroleum, water and air in 

larninar and turbulent flow regimes. He utilized two different types of apparatus to 

carry out the study for air flow and liquid flow, respectively. Using the same 

approach and equations proposed by Wieghardt, he found his experimental data fell 

in good agreement with Wieghardt's earlier analysis. He picked up where 

Wieghardt had failed in proposing a correlation that includes the transitional flow 

and turbulent flow regime. The correlation Cv = 0.72 + 49/Re for 0 ~Re~ 1000, 

with the porosity in the range 0.25 ~ e ~ 0.682 was found to give good predictions 

for pressure drop across wire meshes. Although he failed to report the wire mesh 

weave pattern in his study, it can be observed from his analysis that e has a 

significant effect on the Cv where higher e rendered lower Cv. He also found that 

upstream turbulence can reduce Cv by 20% if Re > 100 while bubbles that adhere to 

the cloth can increase Cv by up to 40%. 
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Investigations of non-Newtonian fluid flow through various single screens have 

been extremely limited and mostly concentrated on shear thinning fluids. A detailed 

literature search has not found any reported study conducted on shear thickening 

fluids. Chhabra and Richardson (1985) were the first researchers to study non-

Newtonian fluid flow past a single screen. They used aqueous solutions of glucose 

for a Newtonian fluid and carboxymethyl cellulose (CMC) solutions of various 

concentrations with n between 0.34 to 0.61 as shear thinning fluids in their 

experiments, as given in Table 2.1. Using the analogy of flow around a cylinder 

approach, they adopted the empirical equations proposed by Wieghardt (1953) to 

interpret their experimental results for wire meshes with porosities 0.34 :s; e :s; 0.36. 

They found the results for Newtonian fluid were in good agreement with the 

correlation for !If proposed by Ehrhardt (1983) for the range 10·5 :s; Re :s; 103
• For the 

non-Newtonian fluid, they used a modified Reynolds number for non-Newtonian 

fluid in which ReNN was expressed as 

ReNN = p(u! et" d" 
K 

(2.12) 

Using this modified ReNN while maintaining the equation for Co as that of the 

Newtonian fluid, they found the results for shear thinning fluids can be expressed by 

Co = 50/ReNN. which is very close to the correlation C0 = 0.72 + 49/Re (Ehrhardt, 

1983) where the first term can be justifiably ignored for creeping flow when Re< 1. 

The range of ReNNin their study for non-Newtonian fluid was 5*10"7 :s; Re :s; 10·3, as 

shown in Figure 2.1. Encouraged by their results, they extended the experiments to 

study shear thinning suspensions of kaolin in water. However, the rapid build up of 

filter cake reduced the flow rate significantly and the problem rendered the 

apparatus unsuitable for study of suspensions. 
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Table 2.2 Physical properties of the test fluids and characteristic dimensions of the 
plain weave wire mesh screens and monofilament cloth 

(Chhabra and Richardson, 1985). 

Test Liquid n 1'/o Aperture d Symbols in 
(Pas) (gm) (gm) Figure 2.9 

1.5% CMC in water 0.60 6.6 53 36 • 
1.5% CMC in water 0.59 7.6 53 36 ... 
2.0% CMC in water 0.61 9.5 150 100 to. 

2.5% CMC in water 0.34 45.0 150 100 0 

2.5% CMC in water 0.34 76.0 355 280 • 

1.Et{)9 r-------------------, 

.. +30% 

1.E+08 
Co= 50/Re 

1.E+07 

Drag coefficient, C0 

1.E+06 

1.Et{)5 

1.E+04 c_~~~~-~~~~~~~=~~~~~ 

1.&07 1.&06 1.&05 1.&04 1.&03 

Reynolds Number, ReNN 

Figure 2.9 Drag coefficient versus Reynolds number for non-Newtonian fluids 
(Chhabra and Richardson, 1985). 
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Kiljab.ski and Dziubinski (1996) furthered the study to include. sets of wire meshes 

using polyethylene terephthalate (PTEF) and potato syrup for a Newtonian fluid and 

low-density polyethylene (LDPE) for a shear thinning fluid. They used a range of 

meshes with 0.256 ~ e ~ 0.414 to test for a lower range of Re. They adopted 

Wieghardt's empirical equations and found the dependence of Cv on the Re for 

Newtonian fluid flow through a single screen can be described by Cv = 62/Re for the 

range 1 o·8 ~ Re ~ 1 o·5• For a pack of wire screens, which consists of either identical 

or different wire meshes being packed together, the correlation was found to be Cv = 

53/Re. They further found that the resistance to flow through one screen in a set of 

packing is about 17% lower than the resistance to flow through a single wire mesh. 

Also, if the number of wire meshes in the packing exceeds ten, a further increase in 

the number of wire meshes will result in a proportional increase in pressure drop. 

For non-Newtonian fluid, the correlation was found to be Cv = 41/ReNN for the range 

10"11 ~Re~ 10·6• 

A summary of the correlations proposed by various researchers in the corresponding 

Re and ehas been given in Table 2.3. None of the researchers showed an attempt to 

capture the velocity profile when the fluids flow past the wire mesh interstices. 
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Table 2.3 A comparison of approaches and correlations proposed by previous researches. 

Researchers Screen Weave Fluids Approach £range Re or ReNN range Proposed Correlation 

Material Pattern 

Wieghardt (1953) Metal screen Not specified Newtonian Flow over 0.318$ E$ 0.682 60 SRe$600 Co = 6.5/Re'" 

(air) cylinder 

Armour and Cannon Metal screen Plain, Twill, Newtonian Packed bed 0.165 $ E$ 0.430 ISRe$100 f= 0.52 + 8.61/Re 

(1968) Plain Dutch, (Nitrogen and (excluding Dutch weave) 
Twill Dutch helium) 

Rushton and Nylon and Plain, Twill, Newtonian Orifice 0.277 s es 0.487 I <Re< 10 Co-0.17Re"·" 

Griffiths (1971) Polypropylene Satin (Water) 

cloths 

Ehrhardt (1983) Metal screen Square mesh Newtonian Flow over 0.250 $ E$ 0.682 O:SRe$1000 C0 = 0.72+49/Re 

and Dutch (Spindle oil, cylinder 

weave diesel oil, 

petroleum, water, 

air) 

Chhabra and Metal screen Not specified Non-Newtonian Flow over 0.340 s es 0.360 5*10"7 SRe$10"3 Co- 50/ReNN 

Richardson (1985) (CM C) cylinder 

Kiljanski and Metal screen Not specified Non-Newtonian Flow over 0.256 s es 0.414 10"8 s Re s 10·' Co = 41/ReNN 

Dziubinski (1996) and packing (LOPE) cylinder (packing of screens) 

of screens 
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2.3.3 Numerical Studies 

Although CFD has been widely used in studying many aspects of the fluid flow 

processes, there has been very limited study of fluid flow through wire meshes using 

numerical methods. No significant attempt has been made to predict the flow field 

within the mesh interstices although such studies have been widely applied in other 

fields. Among the few researchers who studied fluid flow through screen 

numerically are Lu et al. (1996) and Tung et al. (2002), who used water in their 

respective studies. 

Lu et al. (1996) lamented that most previous studies on fluid flow through woven 

structures have focused on the pressure drop problem and not the macroscopic 

details of velocity profile and pressure contour in the interstices. They argued that a 

better understanding of the flow pattern in the woven structure could prove useful in 

examining the initial stages of cake filtration as well as the effect of weaves on 

fouling phenomena within a filter cloth. They studied the effect of fabric pore 

construction, aperture and Reynolds number on the flow pattern in the interstices 

and downstream of a cloth using the commercial CFD software FLUENTTM. They 

discovered that the flow pattern in the interstices and downstream were different for 

each basic pore type. As the position of the upper filament in each pore type differs, 

the flow of water which swirls around the upper surfaces of the upper filament into 

the narrow channel between the cloth filaments was characteristically unique for 

each case. They adopted the orifice approach used by Pederson (1969) and Rushton 

and Griffiths (1971) to analyze the fluid resistance results. Their simulations 

showed that as the aperture decreases, there is a corresponding decline in the filtrate 

flux under a constant operating pressure. Using the equations proposed by Pederson 
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(1969), they plotted log Cv versus log Re graph and obtained a correlation to 

describe their data, given as 

(2.13) 

for the range 6* 10·2 :o; Re :o; 20. Their predictions also showed that among the basic 

pore models with the same yam diameter and spacing, pore type 1 gives the highest 

resistance, followed by pore type 2, 3 and 4. By weighting the contribution of pore 

types in each weave pattern, they concluded that a fabric with plain weave is most 

resistant to the fluid flow, while satin weave shows the least resistance. However, 

they failed to examine their simulation results against the experimental results of 

previous researchers to give credibility to their conclusions, which contradict the 

experimental results of Armour and Cannon (1968) and Rushton and Griffiths 

(1971). 

Tung et al. (2002) furthered Lu et al.'s study to include fluid flow through 

rnultifilament cloths and spun staple yarn, which is manufactured from short fibers 

using spinning techniques. By assigning artificial permeability values in the range 

5.0* 10·10 :o; Re :o; 10"12 to the woven filaments, they investigated the distribution of 

water flow in interyam and interfibre pores of four basic pore types. Their results 

indicated that a decrease in permeability of fabric yarn rendered a decrease in the 

filtrate flux under constant operating pressure, whereas an increase in flow rate 

resulted in an increase of the pressure drop. Their simulations results showed a 

similar pattern of pressure drop to that of Lu et al. where pore type 1 were found to 

give the highest pressure drop and pore type 4 gives the lowest pressure drop. 
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2.4 Closure 

In this chapter, the experimental and numerical studies conducted by various 

researchers on fluid flow through a wire mesh has been reviewed. Investigators 

were found to have approached the problem by comparing the flow situation in the 

woven wire mesh to (i) an assembly of orifices, (ii) a randomly packed bed, and (iii) 

creeping flow over a series of cylinders. The relevant results and proposed 

correlations of the investigations were also discussed and summarized. ·In the next 

chapter, the governing equations and boundary conditions used in the mathematical 

modelling of this study will be discussed to set the foundation for deriving the final 

working equations. 
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CHAPTER3 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

3.1 Flow Model 

Numerical modelling of a flow system is based on the fundamental governing 

equations that reflect the physics of fluid dynamics. A numerical process starts with 

the formulation of a mathematical model based on the Jaw of conservation of mass, 

energy and momentum, as well as a rheology equation that describes the constitutive 

behaviour of the fluid. The general equations of non-Newtonian fluid mechanics are 

derived on the basis of physical Jaw and rheological experiments. Due to the 

predominant role of non-Newtonian flow equations in modelling, it is therefore 

important to understand the theoretical foundations of these equations. In this 

chapter, a three-dimensional mathematical model based on flow and constitutive 

equations is considered in a fixed (Eulerian) coordinate system. For a Jaminar, 

isothermal flow, the flow regime is described in Cartesian coordinate systems by the 

following set of equations. 

3.1.1. Equation of Continuity 

The continuity equation for an incompressible fluid is written as 

ilvx ilvy ilv, _ O -+-+--
ilx ily ilz 

(3.1) 

where Vx, Vy and v, are the components of the velocity fields. The lack of a pressure 

term in Equation (3.1) is a known source of numerical challenge. The interpolation 

functions that one can use in the numerical solution will be very much limited by the 

stability conditions, known as the mixed patch test or the Ladyzhenskaya-Babu§ka-
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Brezzi stability condition (Ladyzhenskaya, 1969; Babu§ka, 1971; Brezzi, 1974). For 

this reason, much interest has been focused on the development of so called 

stabilized procedures in which the violation of the test is artificially compensated. 

Zienkiewicz and Taylor (2000) outlined several such procedures that include the 

introduction of non-zero diagonal terms by adding a least-square form to the 

Galerkin formulation (Courant, 1943; Brezzi and Pitkliranta, 1984), the introduction 

of so-called finite element calculus to the formulation to gain addition of diagonal 

terms (Ofiate, 1998) and the consideration of slightly compressible form of 

continuity equation in order to introduce the pressure term (Zienkiewicz and Wu, 

1991). 

The approach suggested by Zienkiewicz and Wu has been adapted in this study. A 

slightly perturbed form of Equation (3.1) is considered in this study whereby the 

term (llpc2)(ilp!dt) is included to the left hand side of the equation in order to satisfy 

the Ladyzhenskaya-Babu§ka-Brezzi (LBB) stability condition. The continuity 

equation is now written as: 

(3.2) 

where c is the speed of sound in the fluid, p is the pressure, p is the fluid density and 

t is the time variable. The use of this slightly perturbed form of continuity equation, 

which corresponds to slightly compressible fluids, allows the utilization of equal 

order interpolation model for the velocity and pressure (Zienkiewicz and Wu, 1991) 

hence increases the flexibility of the developed solution scheme (Nassehi, 2002). 

This approach has been applied successfully to modelling crossflow membrane 

filtration (Nassehi, 1998), flow past porous boundaries (Richardson and Nassehi, 

36 



K.C.Ting CHAPTER 3: Governing Equations and Boundary Conditions 

2003), and flow through pleated cartridge filters (Nassehi et al., 2005). It should be 

noted that the additional term included in Equation (3.2) is relatively small hence 

will not adversely affect the simulation results. Furthermore, at the steady limit this 

term is not involved, consequently the solution will correspond to the 

incompressible case. 

3.1 2. Momentum Equations 

The equation of motion is based on Newton's second law of motion, or the Jaw of 

conservation of momentum and is written as 

Ov 
p-+ fN· Vv=V ·a+ pg 

iJt 
(3.3) 

where V is the operator nabla, cr is the Cauchy stress tensor and g is the body force. 

The Cauchy stress tensor is given as 

(3.4) 

where J;j is Kronecker delta and T;j is the extra stress tensor. In an expanded form, 

the normal stresses are given as 

(3.5a, b, c) 

where 

QV QV ~V 
T •• = z.,_x . T = zn-Y ' T - 2 V ' - ., ox ' YY ., iJy ' " - 17-iJ-z (3.6a, b, c) 

and shear stresses given as 

T =7 =1] _x +-' (
i:lv i:lv ) 

xy yx i:ly i:lx (3.7a) 

(3.7b) 
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(3.7c) 

where 1J is the fluid viscosity. 

The majority of highly viscous non-Newtonian fluid flows are characterized as low 

Reynolds number Stokes flow regimes or creeping flow where the fluid flow is very 

slow, normally with Re<l. In this flow regime, the inertia term v.V'vin the equation 

of motion are neglected (Bird et al., 2002; Nassehi, 2002). In addition, highly 

viscous flow systems are in general dominated by stress and pressure variations and 

in comparison the body forces acting upon them are small and can be justifiably 

ignored (Nassehi, 2002). Incorporating Equations (3.5), (3.6) and (3.7), the 

momentum conservation equation for creeping flow can be written as 

(3.8a) 

ovy op O"l"yx OTYY o-z-, 
p-=--+--+--+--ot ay ax ay az (3.8b) 

(3.8c) 

or in the expanded form provided that Equation (3.4) can be used, i.e. the fluid is 

generalized Newtonian, 

ilv. _ ilp Cl [ 2 ilv.] Cl [ (ilv. ilvYJJ Cl [ (ilv, ilv·)] p----+- TJ- +- TJ -+- +- TJ -+-
ilt ilx ilx ilx ily ily ilx ilz ilx ilz 

(3.9a) 

(3.9b) 

ilv, _ ilp Cl [ (ilv, ilv·)] Cl [ (ilvY ilv,JJ Cl [ 2 ilv,] (3 9 ) p~---+- TJ -+- +- TJ -+- +- 1]- . c 
ilt ilz ilx ilx ilz ily ilz ily ilz ilz 
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This can be summarized into a simpler form, 

(3.10) 

where i = x, y, z andj * i. 

3.2. Constitutive Equation 

The constitutive equation shows the relationship between the extra stress and the 

rate of deformation of the fluid. In non-Newtonian fluid mechanics, the choice of 

constitutive equation or rheological model depends critically on the type of flow 

considered and it is this basic consideration which makes non-Newtonian fluid 

mechanics different from classical fluid mechanics, where the Navier-Stokes 

equations can be immediately accepted as being valid for all flow situations 

(Astarita, 1976; Crochet et al., 1984). Many rheological formulae have been 

published with the intention of describing one or more features of non-Newtonian 

fluid behaviour and they can be found in non-Newtonian literature such as Metzner 

(1961), Skelland (1967) and Harris (1977). Some of these rheological equations 

have limited use and therefore the application of any formulae should be done with 

great care, especially when the fluid motion is anything but simple steady shearing 

motion. The derivation of universally applicable constitutive models for non-

Newtonian fluid is generally not attempted, if at all possible, as it is extremely 

difficult to establish quantitative relationships between the microscopic structure of 

non-Newtonian fluids and their macroscopic properties (Nassehi, 2002). 
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The expression most widely used in the less rigorous technological publications for 

non-Newtonian fluids is perhaps the Ostwalde-de Waele model, which is more 

widely known as the power law model and is written as 

(3.11) 

where 'f/o is the consistency index, n is the power law index and r is the shear rate. 

For n<1 it is used to describe pseudoplastic behaviour. For n> 1 it is used to describe 

dilatant behaviour while for n = 1 it reverts to the Newtonian expression. The shear

dependent viscosity of the non-Newtonian fluid in the present study, 'f/, is calculated 

and updated using the power law model. 

3.3. Assumptions 

The essential assumptions adapted in this study to solve the described problem are 

discussed in the section that follows. 

3.3.1 Assumptions Relating to Wire Mesh Geometry 

In order that a rigorous assessment of effects of the geometric configuration of any 

area of wire mesh can be made, it is necessary to make the following assumptions 

(Pederson, 1969): 

(i) the filling wires, or weft wires, are straight 

(ii) the weaving is perfect 

(iii) the yams are all cylindrical 

(iv) the warp wires are perfectly straight between filling wires 

(v) flow through any opening is not influenced by flow through any other 

opening 

(vi) the flow is perfectly isothermal and the woven metal wire does not expand 

during the flow 
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(vii) the integrity of the wire mesh is upheld throughout the period of 

simulation 

These assumptions are vital in the mesh generation of the three-dimensional problem 

domains. The solution domains have been designed based on these assumptions in 

order that a realistic comparison on the different pore types can be made. The 

analysis of the simulation results in chapter five was also based on these essential 

assumptions. 

3.3.2 Wall Slip 

The imposition of no-slip velocity conditions at solid walls is based on the 

assumption that the shear stress at these surfaces always maintained below a critical 

value to allow a complete wetting of the wall by the fluid (Nassehi, 2002). This 

implies the fluid is constantly sticking to the wall and is moving with a velocity 

exactly equal to the wall velocity. The wall-slip phenomenon is described by 

Navier's slip condition, which is a relationship between the tangential component of 

the momentum flux at the wall and the local slip velocity (Silliman and Scriven, 

1980). Using a two-dimensional domain as an illustration, this relationship is 

expressed as 

(3.12) 

where t and fi are unit vectors tangent and normal to the boundary, -ris the extra 

stress tensor, j3 is a slip coefficient, v is the fluid velocity vector and vb is the 

velocity of the solid wall. Equation (3.12) together with the following equation 

which represents no flow through a solid wall, are used to impose slip-wall 

boundary conditions. 

v·n=O (3.13) 
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Consider a solid wall section as shown in Figure 3.1, the following relationships 

between the components of unit outward normal and tangential vectors are true at all 

points 

(3.14) 

y 

Vxb (wall velocity) 

t 

L---------------------------~ X 

Figure 3.1 Slip at a solid wall. 

Equations (3.12) and (3.13) are recast in their components and solved together. 

After algebraic manipulations and making use of the relationship given Equation 

(3.14), slip wall velocity components are given as 

v - v = - 11 2 --- n n + - +- n - n fJft [ (
avx avy )A A (avx avy )(A 2 A 2)~ 

X Xb '/, Y ax ily X Y ily ax Y X 
(3.15a) 

v -v = - 11 2 --- n n + - +- n - n fJft [ (
avx avy )A A (avx avy )(A 2 A 2)~ 

y Yb '/, X ax ily X y ay ax y X 
(3.15b) 

The slip coefficient fJ is defined as (N assehi, 2002) 

(3.16) 
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where fJo is the initial slip coefficient and l is a characteristic flow domain 

dimension. The limit of /3 ~ 0 corresponds to no slip (vx = Vxb. Vy = Vyb ) and the 

limit of f3 ~ oo gives the perfect slip condition. The slip coefficient /3 depends on 

the invariants of the stress tensor and the surface roughness. Navier's slip condition 

can be discretized in a similar manner to the main flow equations and directly 

incorporated into the finite element working equations (Ghoreishy and Nassehi, 

1997). Generally, on no-slip walls, zero velocity components (vx = Vy = Vz = 0) can 

be imposed as boundary conditions. 

3.4 Boundary Conditions 

In order to solve the flow equations consisting of the continuity equations, 

momentum equations and rheological model, appropriate boundary conditions need 

to be prescribed. These conditions may include velocity, stress or surface force 

components and a datum for pressure. For Newtonian fluid mechanics, it is 

normally sufficient to specify the velocity or surface force components over the 

boundary of the domain of interest and the pressure at one point when no normal 

surface force has been specified anywhere on the boundary. For viscoelastic fluids, 

this specification is obviously insufficient as the flow is influenced by the fluid 

memory. This is especially important in cases where the boundary of the domain 

contains an inlet where the strain history of the fluid entering the domain need to be 

known, or equivalently, the knowledge of the stress field on entry to the domain 

(Crochet et al., 1984; Nassehi, 2002). In practice, the boundary condition 

requirements are often inadvertently satisfied by assuming fully developed flow 

conditions at inlet that essentially implies knowledge of the flow field upstream of 

the domain of interest. Nassehi (2002) further suggested that in engineering 
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simulations of non-Newtonian fluid systems, a set of conditions that can be shown to 

make the best possible physical sense under the given condition is usually used as 

complete and accurate mathematical evaluations of such boundary conditions are in 

general not possible. 

There are basically two types of conditions that need to be specified: the initial 

condition and the conditions at domain boundaries. The initial conditions describe 

the domain of interest at time t = to in the domain .Q while the conditions at domain 

boundaries describe the characteristics of the walls and specific domain boundaries. 

The initial velocity fields are specified as 

v,(x"t = 0)= V,0(x,) in .Q 

There are two types of boundary conditions (Huang, 1999): 

(a) Dirichlet essential boundary conditions 

(3.17) 

These boundary conditions are specified velocities at the boundaries. They can 

either be constant or vary with time. 

v, = f(x, y, z,t) at boundary Sv (3.18) 

Pressure is not specified as a boundary condition as it is an implicit variable in an 

incompressible flow that 'adjusts' itself to deliver the velocity field (Gresho et al., 

1980; Huang, 1999). However, in the case of contained flow in which velocities are 

specific on all boundaries, the pressure becomes indeterminate and it must be 

specified at least at one point as a datum. 
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(b) Neumann or natural boundary conditions 

In this type of boundary condition, the normal and tangential traction forces may be 

specified for boundary S1 as below 

OV 
f. = -p + 2f.l afi 

~" = (av. av,) 
Jr 11 a; +an 

(3.19a) 

(3.19b) 

where n and t are the unit normal and tangent vectors with respect to the boundary 

Sf S, and S1 are elements of the boundary S of the computational domain in a way 

that the following relationship holds, 

(3.20a) 

(3.20b) 

where t/J is the null set. 

Non-Newtonian fluid mechanics often requires the stress components to be treated 

as dependent variables along with the velocity and pressure, a further complication 

from the classical Newtonian fluid situation. In the present study, the described 

governing equations are solved in conjunction with the following boundary 

conditions. 

3.4.1 Inlet Boundary Condition 

At the inlet, Dirichlet type uniform velocity are given with Vx, Vy and v,. For the test 

cases that will be described in detail in Chapter 5, the shell is prescribed as non-slip 

non-permeable solid walls and the velocity components on these surfaces are equal 

to zero (vx = Vy = v, = 0). 
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3.4.2 Outlet Boundary conditions 

Special care is needed in prescribing boundary conditions at the exit as earlier 

researchers such as Nassehi (1998) and more recently Das et al. (2002) have 

suggested that imposition of artificial exit boundary conditions might lead to 

unrealistic numerical results in simulations. 

Exit conditions are usually unknowns and the subject of interest in computational 

modelling. Therefore, prescription of velocity at exit condition is not generally 

attempted. In the present study, only pressure boundary conditions are imposed at 

the exit, consistent with the explanation given in section 3.4 (a) and simulations 

showed that this give accurate results for the velocity components and the pressure. 

3.5 Closure 

In this chapter, the governing equations used in this study have been discussed. The 

challenge in the continuity equation due to the restrictions placed by the stability 

condition has been explained. This challenge has been overcome by adapting a 

slightly perturbed form of the continuity equation in this study. The assumptions 

and boundary conditions were also discussed. The equations are now ready to be 

discretized. The derivation of the working equations will be discussed in the next 

chapter. 
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CHAPTER4 

DERIVATION OF WORKING EQUATIONS 

4.1 Mathematical Modelling Strategies 

Many practical engineering problems described by a set of differential equations are 

either extremely difficult or impossible to be solved by conventional analytical 

methods. In the past, it was a common practice to simplify such problems to the 

point where an analytical solution could be obtained. With the recent advances in 

high-speed computer technology, the emphasis in engineering analysis has moved 

towards versatile computational modelling. At the core of every computational 

analysis is a numerical method that determines its accuracy, reliability, speed and 

computational cost. There are several numerical analysis techniques commonly 

employed by engineers to solve the non-linear governing partial differential 

equations (PDEs). Among these techniques are the Finite Difference Method, Finite 

Volume Method, Finite Element Method and the Boundary Element Method. These 

methods are briefly explained in this section. 

The main idea of Finite Difference Method (FDM) is the discretization of the PDEs 

to reduce them to a set of algebraic equations. This is achieved by giving a 

pointwise approximation to the governing equations and the model is formed by 

writing difference equations for an array of grid points. The relations between the 

variables on the adjacent grid points are obtained by the Taylor series expansion, 

and the truncation error is given by the remainder of this series. This model can be 

notably improved when more points are used. In general, finite difference 
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techniques can be used to treat fairly difficult problems, however for problems with 

irregular geometries or an unusual specification of boundary conditions, this 

technique becomes difficult to use and therefore unsuitable. 

The Finite Volume Method (FVM) was actually derived from the FDM, but it 

subdivides the continuum domain into a discrete number of volumes, or cells. Each 

control volume is identified by the geometrical coordinates of the centre of cell and 

by the interfaces that separate one cell from the other. This method discretizes the 

integral form of the governing equations over each control volume, enforcing the 

conservation of the main conservative quantities, but it requires the approximation 

of the flux of transported quantities at the interfaces. 

In the Finite Element Method (FEM), the solution domain can be analytically 

modelled or approximated by subdividing the continuum into discrete elements of 

any shape and size to give a piecewise approximation to the governing equations. 

And since these elements can be put together in a variety of ways, they can be used 

to represent highly complex and irregular shapes. Within each element some points 

are defined inside the element or on its sides. These points are the locations where 

the numerical values of the unknown variables should be determined. As far as the 

variables are concerned, they are approximated as a linear combination of chosen 

base functions. 

Boundary Element Method (BEM), also known as Boundary Integral Equation 

Method (BIEM), uses Green's theorem to reduce the dimensionality of the problem 

in which a volume problem is reduced to a surface problem, and a surface problem 
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is reduced to a line problem. The solution domain would have no interior mesh, but 

a mesh of connected points along the exterior boundary and a mesh of connected 

points along the interior boundary. The singular distributions always involve 

difficult integration over a point of singularity and special procedures need to be 

used for numerical implementation (Zienkiewicz and Taylor, 2000). This method is 

computationally less efficient and is not widely used in industry. It is sometimes 

combined with 'standard' finite element and has been occasionally described 

(Zienkiewicz and Taylor, 2000; Huebner et al., 2001). 

All these methods have strengths and weaknesses and a number of factors should be 

considered before deciding in favour of a particular method in modelling the 

problem at hand. These factors can be listed as follows: 

(i) Type of governing equations of the process 

(ii) Geometry of the process domain 

(iii) Nature of the boundary conditions 

(iv) Required accuracy of the calculations 

(v) Computational cost 

In solving non-linear field problems of geometrically complex domain under various 

types of boundary conditions, Finite Element Method was found to be the most 

appropriate technique for its flexibility and capability. 
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4.2 Finite Element Method 

The finite element method is an approximate method for solving differential 

equations utilizing a variational principle and piecewise polynomial approximation. 

The mathematical concept of FEM can be traced back to 17th century where early 

researchers such as G.W. Leibnitz (1646-1716), Euler (1707-1783) utilized 

variational methods with the approximation approach in solving their mathematical 

equations such as the derivation of Euler equation. The first engineering application 

of FEM began in 1952 with an effort by Boeing to analyze aircraft structures in 

which a procedure was developed and appeared later in literature (Turner et al., 

1956). One of the co-authors, R.W. Clough, seems to be the first researcher to coin 

and use the term .finite element in a paper published in 1960 (see Clough, 1960). A 

book by Argyris (1960) on energy theorems and matrix methods, alongside the first 

book on FEM published later by Zienkiewicz and Cheung (1967) stimulated further 

development in promoting the FEM. A good account of the FEM history can be 

found at Zienkiewicz and Taylor (2000), Babu§ka and Strouboulis (200 1 ), Heinrich 

and Pepper (1999) and Huebner et al. (2001). 

In recent years, finite element has found increasing application and wider acceptance 

in the application of general fluid mechanics, viscous fluid flow and heat transfer 

problems. The significant characteristic of geometrical flexibility made this 

technique a method of choice in problems posed in geometrically complex domains. 

For this reason, the analysis of industrial polymer and viscous processing flow 

regimes is often based ori the finite element technique. 
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·In finite element methods, there are a variety of ways in which the properties of the 

individual elements can be formulated. The most popularly used approaches are the 

direct approach, variational approach and the weighted residuals approach (Huebner 

et al., 2001). Among these, the most versatile approach is the weighted residual 

approach which begins with the governing equations of the problem and proceeds 

without relying on a variational statement. This approach is advantageous as it 

becomes possible to extend the finite element method to problems where no 

functional is available and it is widely used to derive element properties for non

structural applications such as fluid mechanics. Therefore, a weighted residual 

approach will be used in conjunction with the standard Galerkin finite-element 

scheme in this study to generate a robust and practical numerical solution to the 

described problem domain. 

In a continuum problem of any dimension, the field variable possesses infinitely 

many values because it is a function of each generic point in the body or solution 

region. Consequently, the problem is one with an infinite number of unknowns. The 

finite element discretization procedure reduces the problem to one of a finite number 

of unknowns by dividing the solution region into elements and by expressing the 

unknown field variable in terms of assumed approximating functions within each 

element. The solution of a continuum problem by the finite element method follows 

an orderly procedure. The steps are summarized as follows; 

1. Discretize the continuum. The first step is to divide the continuum or solution 

region into elements. A variety of shapes such as tetrahedron and rectangular prism 

for three-dimensional domain may be used in the solution region. In this study, the 
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element discretization is achieved via a commercial finite element mesh generation 

software COSMOS™ GEOSTAR. 

2. Select interpolation functions. After the domain is discretized into elements, the 

next step is to assign nodes to each element and then choose the interpolation 

function to represent the variation of the field variable over the element. The field 

variable may be a scalar, a vector, or a higher-order tensor. There are many types of 

functions such as trigonometric and polynomial functions that could be used in finite 

element analysis. However, polynomial functions are most widely used because 

they are relatively easy to manipulate mathematically and hence easy to integrate 

and differentiate. In this study, an eight-noded linear element of the Lagrange 

rectangular prisms family is used. 

3. Find the element properties. Once the finite element and their interpolation 

functions have been selected, the matrix equations expressing the properties of the 

individual elements are determined. As discussed earlier, different approaches can 

be used to formulate the properties of the individual elements. The weighted 

residual approach is employed in this study for its versatile capability in coping with 

fluid mechanics applications. 

4. Assemble the element properties to obtain the system equations. In order to find 

the properties of the overall systems modelled by the network of elements, all the 

element properties has to be 'assembled'. To achieve this, matrix equations 

expressing the behaviour of each element are combined to form the matrix equations 

that express the behaviour of the entire system. The matrix equations for the system 

have the same form as the equations for an individual element except that they 

contain many more terms because they include all nodes. The basis for the assembly 

procedure stems from the fact that at a node, where elements are interconnected, the 
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value of the field variable is the same for each element sharing that node. This 

becomes a unique feature of the finite element method where system equations are 

generated by the assembly of the individual element equations. 

5. Impose the boundary condition. For the system equations to be solved, the 

appropriate boundary conditions relating to the problem must be specified. At this 

stage, known nodal values of the dependent variables are imposed to modify the 

systems equations accordingly. The required number of specified nodal variables is 

dictated by the physics of the problem and the complexity of the solution domain. 

6. Solve the system equations. The assembly process resulted in a set of 

simultaneous equations that is to be solved to obtain the solutions for the defined 

problem. If the problem describes steady or equilibrium behaviour, then a set of 

linear or non-linear algebraic equations has to be solved. If the problem is unsteady, 

the nodal unknowns are a function of time, and a set of linear or non-linear ordinary 

differential equations should be solved. 

7. Make additional computations. The solution of the system equations could be 

used to calculate other important parameters. For instance, element strains and 

stresses can be calculated from the displacements. 

4.3 Choice of Interpolation Functions 

A subject of utmost importance in finite element analysis is the selection of 

particular finite elements and the definitions of the appropriate interpolation 

functions within each element. The approximation functions, or interpolation 

functions, are defined in terms of the values of the field variables at specified points 

called nodes or nodal points. As such, the nature of the solution and the degree of 
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approximation depend not only on the size and number of the elements used but also 

on the interpolation functions selected. 

A general requirement in most finite element discretization is to maintain the 

compatibility of field variables across the boundaries of the neighbouring elements. 

Finite elements that generate uniquely defined function approximations along their 

sides or boundaries satisfy this condition. Elements that maintain inter-element 

compatibility of functions are called 'conforming elements'. The order of continuity 

of a conforming element that only ensures the compatibility of functions across its 

boundaries is said to be cfl. For problems requiring cfl continuity, usually the 

simplest type of element is used to avoid excessive computational labour and 

therefore cost (Huebner et al., 200 1). 

Commonly used cfl three-dimensional elements include tetrahedron and rectangular 

prisms elements. Although tetrahedron element can effectively fill a complex three

dimensional region, it has proven a tedious affair to carry out manual mesh 

generation and data preparation. A more practical eight-noded linear rectangular 

prism element is chosen in this study as the master element, as shown in Figure 4.1. 

This element being the simplest member in the serendipity family of elements has 

been selected primarily for computing economy purposes although the higher order 

of the element family such as quadratic element (20 nodes) or cubic element (32 

nodes) can be used in mesh refinement exercise. This is however beyond the scope 

of the present study. The shape functions are formulated as the products of 

Lagrange polynomials in the x-, y- and z- directions and the equations relating the 

Cartesian coordinates and the natural coordinates are 
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8 8 8 

x = 2:x,L1 ; y = LY1L1 ; z = 2:z,L, (4.1) 
i=l t=l i=l 

where 

L, =.!.(1+;;,)(1+1]1]1)(1+((,), i= 1,2, ... ,8. (4.2) 
8 

In Equation ( 4.2), ( 9. 1]1, (;) represents the coordinates of the node i in the ( ;,, 1], (.) 

natural coordinate system. More details on the natural coordinate systems of this 

element are elaborated in Appendix Al. Field variables such as velocity components 

and pressure are approximated using equal order interpolation functions. This 

corresponds to a total of 32 degrees of freedom consisting of 24 nodal velocity 

components and 8 nodal pressures. 

Figure 4.1 The linear prism element. 
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4.4 Inf-Sup Condition (lnfmum-Supremum Condition) 

For the analysis of fluid flows, mixed finite element procedures are generally used 

because the governing differential equations involve multiple field variables such as 

velocities and pressure. The displacement-based finite element method are 

relatively straightforward with the overall effectiveness of a discretization scheme 

can be demonstrated by a few test cases. A mixed method, however, may work 

remarkably well in the solution of some problems, and totally fail in other problems 

(Bathe, 2001). Although mixed finite element is based on a proper variational 

formulation, it does not ensure that the finite element method is reliable and that the 

method can be recommended for general use (Bathe, 1996). The necessity of a 

patch test has been briefly discussed in section 3.1.1 and will be further elaborated in 

this section. 

It is crucial that finite element discretization, in whichever way the discretization has 

been formulated, be analyzed for its mathematical convergence characteristics. The 

specific conditions to be fulfilled are the consistency, ellipticity, and infinum

supremum conditions, which is also known as inf-sup conditions (Bathe, 2001). The 

fact that these conditions are satisfied ensured that the finite element discretizations 

are stable and moreover optimal. While the consistency and ellipticity conditions 

are fulfilled relatively easily, the applicable inf-sup condition is frequently difficult 

to satisfy. 

The basic requirement that leads up to the definition of inf-sup has been given by 

Bathe (1996). The detailed mathematics will not be discussed in detail in this 

section as it is beyond the scope of the present study. The concept is however 
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summarized in this section for the benefit of reference. The 'distance' between the 

exact solution u and the finite element space Vh is defined as 

d(u,Vh) = inf JJu -vhll = llu -uhll (4.3) 
vhevh 

where uh is an element in vh but is in general not the finite element solution. 

The purpose is to find conditions on Vh such that 

(4.4) 

with a constant c independent of h and bulk modulus TC 

The inf-sup condition, which when satisfied ensures that Eq. (2) holds, is given as 

(4.5) 

with ~ a constant independent of h and TC 

Another useful form of the inf-sup condition is given as follows. For all u there is a 

u,.eVh(a vector that interpolates u) such that 

f div(u- u1 )qhdVol = 0 
Jvol 

with the constant c independent of u, UJ and h. 

(4.6) 

For incompressible and slightly compressible case, the inf-sup condition is 

frequently referred to as the Ladyzhenskaya-Babu§ka-Brezzi (LBB) condition 

because of the seminal papers by Ladyzhenskaya (1969), Babu§ka (1971) and Brezzi 
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(1974). Whether the inf-sup condition is satisfied depends on the following (Bathe, 

1996): 

(1) specific finite element used 

(2) mesh topology 

(3) boundary conditions 

If the inf-sup values for these discretizations do not show a decrease towards zero, 

the test is passed, provided that there are also no spurious pressure modes (Bathe, 

1996; 2001). If a discretization using a specific finite element always satisfies a 

given mathematical equation, for any mesh topology and boundary conditions, the 

element is said to satisfy the inf-sup condition. If, on the other hand, it is known that 

one mesh topology and/or one set of (physically realistic) boundary conditions for 

which the discretization does not satisfy the equation, then that element is simply 

said to not satisfy the inf-sup condition. 

The results of analytical studies of the inf-sup characteristics of various 

displacement/pressure elements were summarized by Bathe (1996). However, an 

analytical proof of whether the inf-sup condition is satisfied by a specific element 

can be difficult, and for this reason a numerical test is valuable. 

A widely used numerical inf-sup test has been proposed by Chapelle and Bathe 

(1993). Such a test can be applied to newly proposed elements and also to 

discretizations with elements of distorted geometries (analytical studies assumed 

homogeneous meshes of square elements). Discretizations based on distorted 

element meshes, which are virtually always used in engineering practice, and also 
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some element discretizations, could not yet be proven analytically to satisfy the 

condition (Bathe, 2001). Thus, this numerical test could prove to be very useful. 

While a numerical test cannot be as encompassing as an analytical proof, Bathe et 

al. (2000) suggested that when the numerical test is passed, in fact, the inf-sup 

condition is satisfied. Bathe (2001) also suggested that if the applicable inf-sup 

condition is satisfied (with the consistency and ellipticity requirement are fulfilled as 

well), the finite element scheme is reliable and effective and never 'fails'. However, 

he also stressed that the inf-sup condition is a severe requirement and a method not 

fulfilling the condition might still be acceptable. 

Bathe et al. (2000) conducted an inf-sup test for distorted meshes in plate bending 

and they found that nine-node displacement-based quadrilateral element passes the 

inf-sup test for plate bending when uniform meshes with non-distorted elements are 

considered but fails when mesh distortions are introduced. This is consistent with 

the results reported earlier by Iosilevich et al. (1996, 1997). 

For slightly compressible conditions, Bathe (1996) has analyzed theoretically and by 

use of numerical experiments ulp formation for 9/1, 9/3 (Crouzeix and Raviart) and 

9/4 (Taylor-Hood) element. His studies showed that 9/1 element does not lock (i.e. 

finite element formulation which gives essentially the same accuracy in results for a 

given mesh irrespective of what Poisson's ratio is used, even when vis close to 0.5), 

but the rate of convergence of pressure (hence stress) as the mesh is refined is only 

of o(h) because a constant pressure is assumed in each nine-node element. The poor 
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quality of the pressure prediction can have a negative effect on the prediction of the 

displacement displacement. 

9/3 (Crouzeix and Raviart) was found to be most attractive because it does not lock 

and the stress convergence is of o(h2
). Hence, the predictive capability is optimal 

since if a biquadratic displacement expansion is used, no higher-order convergence 

in stress can be expected. 

For that reason, Bathe (1996) reasoned that many may be tempted to always use the 

9/3 element. However, in practice, the 9/3 element is computationally slightly more 

expensive than the nine-node displacement-based element, and when vis less than 

0.48, the additional terms in the pressure expansion of the displacement-based 

element allow a slightly better prediction of stresses. 

For 9/4 element (Taylor-Hood), the same studies showed that this element locks 

when vis close to 0.50; hence it cannot be recommended for almost incompressible 

analysis. While the four-node 2-D and eight-node 3-D elements are extensively 

used in practice, the nine-node 2-D and 27-node 3-D elements are frequently more 

powerful. 

As the detailed mathematics and numerical test for inf-sup condition is beyond the 

scope of the present study, further examples of analytical evaluation of inf-sup 

conditions can be referred in Bathe (1996) and numerical test at Babu§ka & 

Narasirnhan (1997) and Babu§ka et al. (2002). 
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It should be noted that most study on inf-sup condition of distorted mesh were 

focused on 2-D elements and limited work has been conducted to study the effect of 

mesh distortion in 3-D elements. As attempts on 3-D modelling involving complex 

geometry have increased markedly in recent years, it may be necessary to investigate 

the effect of the inf-sup condition in distorted 3-D elements. In any case, it will be a 

major contribution towards the development of finite element applications, to which 

the scale of its study will involve further research and is not within the scope of the 

present study. 

4.5 Solution Schemes of Stokes Equation 

Application of the weighted residual method to the solution of the equations of 

continuity and motion can be based on a variety of schemes and techniques. The 

section that follows described general outlines and the formulation of the working 

equations of Mixed Finite Element U-V-W-P scheme (Zienkiewicz and Taylor, 

2000) and continuous Penalty technique (Nassehi, 2002). In these formulations, the 

Stokes flow equation describing low Reynolds number flow regime is considered, 

therefore eliminating the convection term and the body force term in the motion 

equation. This has been discussed earlier in section 3.1.2. 

4.5.1 U-V-W-P Scheme Based on Perturbed Continuity Method 

As already explained (section 3.1.1.), the necessity to satisfy the LBB stability 

condition restricts the types of finite elements in the modelling of incompressible 

flow problems by the U-V -W -P scheme. To eliminate this restriction, the continuity 

equation representing the incompressible flow is replaced by an equation 
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corresponding to slightly compressible fluid. Recapping the governing equations of 

continuity and motion given earlier in Equations (3.2), (3.8a), (3.8b) and (3.8c) as 

(3.2) 

avx ap arxx arxy ar,., p-=--+--+--+--at ax ax i)y az (3.8a) 

avy ap aryx aryy ary, 
p-=--+--+--+--at i)y ax i)y az (3.8b) 

av, ap ar,. arzy ar" p-=--+--+--+--at az ax i)y az (3.8c) 

The inclusion of (lltx?)((}p! Jt) term in the continuity equation meant the transient 

terms should also be included in the Stokes equations. This inherently implied the 

use of a time stepping scheme is necessary in the solution of the equations. In this 

study, first-order Taylor-Galerk.in time technique is used in conjunction with the U-

V-W-P scheme. The Taylor-Galerkin method was first proposed for convective 

transport problems (Donea, 1984) and then applied to compressible flows (Uihner et 

al., 1984a; Uihner et al., 1984b; Bey et al., 1985). The basic concept of Taylor-

Galerkin is to use Taylor series expansion in time to establish recurrence relations 

for time marching and to use the method of weighted residuals with Galerkin's 

criteria to develop the finite element matrix equations describing the spatial 

distribution of the flow variables (Huebner et al., 2001). A detailed description of 

this method can be found in Zienkiewicz and Taylor (2000), Huebner et al. (2001), 

Nassehi (2002) and Huang et al. (1999). 

The solution domain is discretized into a mesh of finite element using the following 

expression, 
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(4.7) 

where E is the total number of elements. Taylor series expansion of the field 

variables with respect to the time increment at time step n+~t with 0:::; a::; 1 gives 

(Nassehi, 2002), 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

In practice, Taylor series expansion of the field variable is truncated and usually 

only the first few terms are kept. Although the accuracy of the time-stepping 

scheme in Taylor-Galerkin is dependent on the highest order of the time derivative 

remaining in the expansion after truncation, repeated differentiation and substitution 

of the temporal derivatives using the governing differential equations of complex 

field problem may prove to be overwhelming. The results obtained in this study 

showed accuracy is not compromised and therefore justified the omission of second 

order derivatives of the field variables. First order term derivatives can be found 

from Equations (3.2), (3.8a), (3.8b), (3.8c); 

?P/ 2 (ovx w, ov,) 
atln+abt = -pc OX + 0y + OZ n+abt 

(4.9a) 

(4.9b) 
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(4.9c) 

(4.9d) 

Second order term derivatives can be found by differentiating the first order terms. 

From Equation (4.8a); 

a2p a (apJ 
ar2 

n+aAr = at at n+<>AI 

_ a [ 2 a (avx avy av·JJ ---pc---+-+~ at ax ax ay az , . ., (4.10) 

Applying the rules of integration yields 

=[pczi.(- avx)-pczi.(- avY)-pc'i.(- av,)] 
~. ax at ay at az at 

n+<.<U< n+a& 

=[pczi_(ap- arxx- arxy- arx,)] +[pc'i_(ap- aryx- aryy- ar"')] 
ax ax ax ay az ax ay ax ay az 

n+~ n+~ 

+[pc' i.(ap- ar tx - ar zy - ar" )] (4.11) 
ax az ax ay az 

n+<»t 

Terms that contain T.u, Txy, ~z, ;x, tyy, ;z, ;y, Tzz are ignored since the order of 

derivatives are higher than those of other terms. Thus, we have 

a'p [ a' a' a' J - = pc'__!!_+ pc'__!!_+ pc'__!!_ 
at' ax' ay' az' n+mt n+ant 

(4.12) 

From Equation ( 4.8b ), 

(4.13) 
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The second terms onwards at the right hand side of equation were ignored since the 

order of derivatives is higher than that of first term. Applying the rules of 

differentiation to Equations (4.13), and similarly to the second order term in 

Equations (4.8c) and (4.8d) yields 

(4.14a) 

(4.14b) 

a2v, 1 a (ap) 2 a (avx avy av,) 
at2 

-·· = - p az at ·-·· = c az ax + ay + az 
n+UUI n u.w n+~ 

(4.14c) 

Substituting the first order and second order terms from Equations (4.9a), (4.9b), 

(4.9c), (4.9d), and Equations (4.12), (4.14a), (4.14b), (4.14c) into Equations (4.8a), 

(4.8b), (4.8c), (4.8d) yields 

2(avx avy av,J -pc-+-+-ax ay az 

1 2(a2 P a2 P a2 P) +-af.tpc -+-+-
2 ax2 ay2 az2 

n+al>l 

vI -vI x n+l x n lEE/ 
p ~~n+al>l 

n+al>l 

"[2 a2 vx o2vx a (avyJ a (ilv,) o2vx] +- --+--+- -- +- -- +--
p ox2 ay> Oy ox oz ox oz 2 

n+al>l 

(4.15a) 

(4.15b) 
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vI -vI Y n+l Y n 1 ap 
---

1_, [ 2 a (avx avy av,)] +-w..>t c - -+-+-
2 ayax ay az 

n+ant 

(4.15c) 

v,l.+l -v,l. _ _!_ ap 
lit p az n+ant 

(4.15d) 

In the Mixed Finite Element U-V-W-P technique, both velocity and pressure in the 

governing equations are regarded as primary variables and are discretized as 

unknowns. Approximation of the unknown variables Vx, vy, v, and p over an element 

gives 

n n 

v x = u "" u = L N 1u 1 , v Y = v "" v = L N 1 v 1 , 
j=l j=l 

n n 

v, = w"" w = 'L.N1w1 , p"" p = 'L.N1p1 (4.16a, b, c, d) 
j=l j=l 

where Nj is the shape function associated with nodes j = 1, ..... ,n with n the number 

of nodes per element. Applying the standard Galerkin method to Equations (4.15a), 

(4.15b), (4.15c), (4.15d) and substituting Equations (4.16a, b, c, d) yields 
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f>t 

" " " a"f..NPJ a"f..N1v1 a"f..N1w1 

=-pc? JN, i=l + j=l + j=l dQ, ax ay az 
"· 

"'"" 

dQ, 

n+<W 

(4.17a) 

f>t 

(4.17b) 
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n+a&t 

(4.17c) 

[ a[a"!;Np~l a[a"!;Npl] a[a"!;Nivl] a[a"!;Niwl] a [a"!;N~w~]~ 
+~ l N, az ~-~ f<rr ,_~ +ay ~-~ +ay ' ~ + z az2 I 'az 

·-
1 z f a +-t:mtc N.-
2 !l, ' az 

(4.17d) 

where N; is the weight function. 
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At this stage, the formulated equations contain second-order derivatives. Before the 

system equations can be assembled from the element equations, it is required that 

the choice of approximating functions guarantees the inter-element continuity 

necessary for the assembly process. In this case, cfl elements cannot generate an 

acceptable solution for the equation due to the fact that the first derivatives of the 

shape functions will be discontinuous across element boundaries and the integral of 

their second derivatives will tend to infinity (Nassehi, 2002; Huebner et al., 2001). 

To overcome this difficulty, the second derivatives in Equations (4.17a), (4.17b), 

(4.17c) and (4.17d) are integrated by parts to obtain a 'weak' form of the equations. 

In this way, expressions containing lower-order derivatives are obtained hence 

permitting the use of approximating functions with lower-order inter-element 

continuity. When integration by parts is possible, it also offers a convenient way to 

introduce the natural boundary conditions that must be satisfied on some portion of 

the boundary. Although the boundary terms containing the natural boundary 

conditions appear in the equations for each element, in the assembly of the element 

equations only the boundary elements give non-vanishing contributions (Huebner et 

al., 2001). 
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After integration by parts using Gauss' theorem (Huebner et al., 2001), the 

Equations (4.17a), (4.17b), (4.17c) and (4.17d) becomes 

dQ, 

n+aAt 

dQ, 

n+aAt 

n+aAt 

(4.18a) 
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ll.t 

n+IW 

n+IW 

(4.18b) 

71 



K.C.Ting CHAPTER 4: Derivation of The Working Equations 

!:lt 

n n n n n 

+!ZJN 
<i'f:.,Npj <i'f...~vl ol:.~v} a I.~ vi a I.~~ 

j::l 
+ 

j:l 
+ 

j=l j=l j=l 

p ' iJy r. 

n n n 

_.!.aMc2 I oN, 
c/'f.N1u1 iJ'f.N1v1 o'f.N1w1 

j=l + j=l + 1=1 dO., 
2 " ay iJx ay oz 

' 
n+U<II 

n n n 

+.!.all.tc2 IN, 
o'f.N1u1 o'f.N1v1 iJ'f.N1w1 

j=l + 1=1 + I== I fi,df', 
2 r OX oy oz 

' 
n+U<II 

(4.18c) 
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tlt 

~[ai,Np1} [ai,Np1
} [ai,N1v1} [ai,N1w1} {oiN1w1}t-+!1JN. ]=I "' + )=I ... + ]=I .... + p:l ... ]'=I A 

p ' 0z ' 0z X 0z ()y + 0z ' < r. 

·-

•+a.>t 

•+""' 

(4.18d) 
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The result of integration by parts is that the order of differentiation is reduced by one 

in the resulting equations. The continuity restrictions on the approximating function 

have been reduced or 'weakened'. The resulting integral equation is referred to as 

the 'weak form' of the boundary value problem. In these equations, functions given 

at time level n+aflt can be interpolated as (Nassehi, 2002) 

(4.19) 

The final working equations of this scheme for the Stokes flow model can be written 

as: 

Mll M" Mt3 Mt• •+I •+I 
ij ij ij ij ui 

M21 ;j M22 
ij 

M23 .. 
'1 

M2• .. 
'1 vi 

= M3t.. 
•1 

M32 
ij 

M33 ij M3• .. 

" wi 
M•t ij M•2 ij M43 ;i M .. ij pi 

Kll .. Kt2 .. K13 .. Kt• .. " " B1i 
n+l et} 

n 

'1 '1 •1 '1 ui 
K2t.. K22 K23 .. K24ij vi B2 

i c2} 
" ij '1 + + (4.20) 

K3t K32 .. K33 .. K3• .. B3
i c3J ij '1 •1 '1 wi 

K•t .. 
'1 

K•2 .. 
'1 

K43 
ij K .. ij pi s•i c•} 

where 

11 fff{ aflt[( 1 2)()N. oN1 oN. oN1 oN; oN1 ]} M ij = N1N +- 21]+-lltc --' --+1]-' --+1]--- dxdydz 
"· 1 p 2 OX OX oy ()y ()z ()z 

(4.21-1) 

12 fff{ ( 1J oN. oN 1 1 2 oN oNi J} M ij = a1lt --' --+-.1.tc --' -- dxdydz 
"· p ()y OX 2 OX ()y 

(4.21-2) 

13 fff{ ( 17 oN, oN 1 1 2 oN. oN i J} M ij = a1lt ----+-.1.tc -' -- dxdydz 
"· p oz ox 2 ox oz 

(4.21-3) 

M 14
Q =m{- a1lt oN, N1}dxdydz 

"· p ox 
(4.21-4) 

21 fff{ (1J oN, oN1 1 2 oN. oNi J} M ij = a1lt ----+-.1.tc -' -- dxdydz 
"· p ox ay 2 ay ox 

(4.21-5) 
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22 fff{ [TJ oN, fJN1 (21] I 2J oN, oN1 oN, oN1 ]r M ij = N,N. +a6.t ---+ -+-D.te --+TJ-- dydz "· } p OX OX p 2 oy ay ()z ()z 

(4.21-6) 

(4.21-7) 

(4.21-8) 

(4.21-9) 

M32ij = JJJ{a.6.r(!l... oN, oNJ +!._Me2 oN, oNJJ}dxdydz 
"· p ()y oz 2 oz ay 

(4.21-10) 

33 fff{ [1JoN.oN1 17oN.oN1 (217 I 2JoN.oN1 ]r M ij= N,N +a6.t--'-+--'-+ -+-Dote -'- dydz 
"· j p ox OX p ay ay p 2 oz oz 

(4.21-11) 

34 fff{ a6.r oN, } M ij = "· -pTzN1 dxdydz (4.21-12) 

M41 
ij = IJ.f {pa6.te 2 N, a:; }dxdydz (4.21-13) 

M42
ij = Hf{pa6.te 2 N, oN1 }dxdydz 

" ay 
(4.21-14) 

M 43 
u = w {pa6.te2 N, 

0~1 }dxdydz (4.21-15) 

44 fff{ 1 2 (fJN oN1 oN, oN1 oN oN1)r M ij = N,N1 + pa6.t-Me -' -+--+-'- dydz 
"· 2 ox ox oy ay oz oz 

(4.21-16) 

Kll -IIf{NN (1-a)M[(2 1 A z)ON, oNj oN, oN} oN, oNJ]}dxdd ij- .. + 1]+-tJ.te --+TJ--+TJ-- y Z 
"'

1 P 2 oxax ayay azaz 
(4.21-17) 

12 fff{( ) ( 1J oN. oN 1 1 2 oN, oN 1 )} K ,1 = !-aM --'-+-Me-- dxdydz 
"· pay ax 2 ax oy 

(4.21-18) 

Knij = m{(l-a)D.r(!l... oN, oN, +!._Me2 oN, ()NJ)}dxdydz 
"· p oz ox 2 ox oz 

(4.21-19) 
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(4.21-20) 

(4.21-21) 

22 fff{ ( ) [" iJN, iJNi (21] 1 2) iJN, iJNJ iJN. iJNi ]r K ,1 = N,N. + 1-a !1t ---+ -+-!1tc --+1]-'- dydz 
n, 1 p iJx iJx p 2 iJy iJy iJz iJz 

(4.21-22) 

23 fff{( ) (" iJN, iJN1 1 2 iJN. iJN1 )} K u = 1-a~t ---+-!1tc -'- dxdydz 
n, p iJz iJy 2 iJy iJz 

(4.21-23) 

K"'u = fJ.f {- (1-;)!1t 0~1 N1 }dxdydz (4.21-24) 

31 fff{( ) ( TJ iJN. iJN 1 1 2 iJN, iJN 1 )} K u = 1-a !1t --' -+-!1tc -- dxdydz 
n, p iJx iJz 2 iJz iJx 

(4.21-25) 

32 fff{( ) (" iJN, iJN1 1 2 iJN. iJNi )} K u = 1-a~t ---+-!1tc -'- dxdydz 
n, p iJy iJz 2 iJz iJy 

(4.21-26) 

33 fff{ ( ) [" iJN, iJNi 1J iJN, iJNJ (21] 1 2)iJN, iJNi]r K u = N,N. + 1-a !1t ---+---+ -+-~tc -- dydz 
n, 1 p iJx iJx p iJy iJy p 2 iJz iJz 

(4.21-27) 

K3'u = w {- (1-;)llt iJ~, Ni }dxdydz (4.21-28) 

K 41
11 = fff{p(1-a)Lltc 2N1 iJN1 }dxdydz 

n, iJx 
(4.21-29) 

(4.21-30) 

(4.21-31) 

" fff{ ( ) 1 2(iJN.iJN1 iJN.iJN1 iJN,iJN1)r K ,1 = N,N.+p1-a!1t-Lltc -'-+-'-+-- dydz 
n, 1 2 iJx iJx iJy iJy iJz iJz 

(4.21-32) 

76 



K.C.Ting CHAPTER 4: Derivation of The Working Equations 

1 f{ a/lt [( 1 2) au oii oii 
B1=r. N,p 211+2_&e oxnx+1J()yny+1Ja;n, 

+n-n +-Llte -n +n-n +-Llte -n -pn di' av 1 2av aw 1 2aw _ ]} 
'I OX y 2 oy ' 'I OX ' 2 0Z X X ' 

(4.21-33) 

2 f{ a/lt [ 1 2 oii au av ( 1 2) av B 1 = N,- -Me -n +1]-nx +1]-nx + 21]+-D.te -n 
r, p2 OXY Oy OX 2 Oyy 

+1]~n +1]-n +-D.te2 -n -p-n di' a- aw 1 aw ]} 
oz' ily'2 az' Y' 

(4.21-34) 

3 f{ a/lr[1 2 au au 1 2 av av _ B 1 = N.- -D.te -n +1]-n +-Me -n +1]-n -pn 
f, ' p 2 OX ' 0Z X 2 Oy z OZ y z 

+17~nx +17-ny + 277+-/ltc 2 -n, df', a- aw ( 1 ) aw ]} 
ax ay 2 az 

(4.21-35) 

(4.21-36) 

1 f{ (1- a)M [( 1 2 ) oii oii oii C 1 = N1 21] +-D.te -nx + 1]-:;-ny + 1]-n, 
r, P 2 ox uy oz 

+n-n +-D.te -n +n-n +-D.te -n -pn di' av 1 2 av aw 1 2 aw _ ]} 
'I ox y 2 oy ' 'I OX ' 2 ()z X X ' 

(4.21-37) 

2 f{ (1-a)M[1 2 oii oii av ( 1 2 )oii C 1 = N, -Me -n +17-nx +1]-nx + 21]+-D.te -n 
r, p 2 ox y ()y OX 2 oy y 

av aw 1 2 ow _ ]} + 1]-n, + 17 :>.. n, + -D.te -nY- pnY di', (4.21-38) 
az vy 2 ()z 

3 f{ (1-a)~:>.t [1 2 oii aii 1 2 av av _ C 1 = N. -Me -n + 1]-n +-D.te -n + 17-n - pn 
r,' p 2 OX' 0Zx2 oy' OZY' 

+17-nx+17~n,+ 277+-Mc 2 -n, df', aw a- ( 1 ) aw ]} 
ax iJy 2 az 

(4.21-39) 

(4.21-40) 

The described scheme can also be used to solve steady-state conditions through an 

iterative algorithm. The U-V-W-P formulation is favoured by some researchers as 

the most straightforward finite element procedure for solution of the non-linear 
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N avier-Stokes and Stokes equations. Among the advantages list by Huebner et al. 

(200 1) are as follows: 

(1) only c! is required of the element interpolation functions, pressure 

(2) pressure, velocity, velocity gradient and stress boundary condition can be 

directly incorporated into the matrix equations 

(3) free surface problems are tractable 

To provide a safeguard for the simulations in this study, a second scheme is 

employed in this study. The scheme and its formulation will be the subject of 

discussion in the section that follows. 

4.5.2 Continuous Penalty Method 

Another scheme commonly used to solve the equations of continuity and motion is 

the continuous Penalty Method (Hughes et al., 1979; Bercovier and Engelman, 

1979; Reddy, 1982; Reddy, 1982). In this approach, the penalty function 

formulation eliminates the pressure as an unknown variable through the use of a 

'penalty' parameter and solves modified momentum equations for the velocity 

components. The pressure is represented by (Huebner et al., 2001; Nassehi, 2002) 

- '(avx avy av, J p--/1. -+-+-ax ay az (4.22) 

where A is the penalty parameter. In a viscous flow, if the parameter A is specified 

to have a large numerical value in the solution, the flow incompressibility condition 

will be approximately satisfied as Equation (4.22) represents a perturbed form of the 

continuity equation. The principal advantage of the penalty formulation is that the 

additional flow variable p is eliminated and so is the need for solving the continuity 

equation. Depending whether the described substitution of pressure is carried out 
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before or after the discretization of the governing equations, two different types of 

the penalty method are developed. In the continuous penalty method, the pressure 

term is substituted prior to the discretization of the governing equations. In the 

discrete penalty method, separate discretization for the equation of motion and the 

penalty equation are first obtained and then the pressure in the equation of motion is 

substituted using these discretized forms (Nassehi, 2002). The continuous penalty 

method is adapted in this study. In general, this scheme yields an equation that is 

overwhelmed by its penalty terms. To overcome this difficulty, the penalty sub-

matrix in the elemental coefficient matrix is forced to become singular. This is 

achieved by adapting a 'reduced integration' to calculate the penalty terms in the 

elemental coefficient matrix (Zienkiewicz and Taylor, 2000). 

Incorporating Equation (4.22) into Equations (3.8a), (3.8b), (3.8c) gives 

ov,-' a (avx ov, av,) a .. ,. a .. zy a .. , p--A- --+-+- +--+--+--at az ax ay az ax ay az 

(4.23a) 

(4.23b) 

(4.23c) 

Approximation of the unknown variables Vx, vy. and v, over an element has been 

expressed earlier in Equations (4~16a, b, c) as 

n n n 

vx =u=u='L,N1u1 , v, =vzv='L,N1v1 , v, =w=w='L,N1w1 
j=l j=l j=l 

The residual obtained after the differential equation is weighted and integrated over 

each element can be expressed by 
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a 
at 

a 
at 

' 

dQ =0 
' 

=0 

dQ =0 
' 

(4.24a) 

(4.24b) 

(4.24c) 
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Integration by parts using Gauss theorem to the second order derivatives in 

Equations (4.24a), (4.24b), (4.24c) yield 

aN, 
+-

()y 

+fN, 
r. 

-

• ()LN1u1 
j=l 

+ 
()y 

• ()LN1u1 
1•1 

ax 

• ()LN1v1 
j=l 

ax 

• ()LN1v1 

+ 
j=l 

()y 

y 

• aL.pu 
()N. ,.=1 J J 

+-' 21]--!....:.::---ax ax 

aN, 
+-a: ' 

• • ()LN1w1 ()LN1u1 

+ 
j=l ' 2r] 

j::l 

a: X ax X 

' 
=0 

(4.25a) 
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aN 
+-' 

ih: 

n " " a"[pv. 
+-aN_, 'lrJ'-1'-'·=t'---

1 
_
1 +-aN_, 

ay ay az 
a'f.N1v1 a'f.N1w1 

j=l 
+ 

}=1 
d!J.e az ay 

" " " n " a'f.N1u1 a'f.N1v1 a'f.N1w1 a'f.N1u1 a'f.N1v1 

+JN, J=l + J=l + 
j=l j=l + j=l -

ih: ay az y ay ih: X 

r. 

" n n 

a'f.N1v1 a'f.N1v1 a'f.N1w1 

-2T} }=1 fi - }=1 
+ 

j=l ' dr =0 ay y az ay ' e 

(4.25b) 
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n n n n n n 

(J'f._N
1
w

1 
.JdN' 

(J'f._N
1
u

1 o'f._N1v1 a'f._N1w1 ()N. 
o'f._N1w1 o'f._N1u1 

f pV, 
j:l +- }=I 

+ 
j=l + 1•1 +-' j=l 

+ 
j=l 

"' 
at (Jz ffi: dy (Jz ffi: ffi: (Jz 

n n n 

oN 
o'f._N1v1 o'f._N1w1 dN 

o'f._N1w1 

+-' j=l 
+ j=l +-' 217 

J=l 

dy (Jz dy (Jz (Jz e 

n 

o'f._N1v1 
j=l 

z X + J=l + 
dy 

n n n 

o'f._N1v1 o'f._N1w1 o'f._N1w1 
j:l 

+ 
j=l " -21] j=l n, =0 

(Jz dy y (Jz • 

(4.25c) 

In order to preserve the continuity in non-Newtonian fluid flow problems, it is 

necessary to maintain a balance between the viscosity and the penalty parameter. 

The penalty parameter can be related to the viscosity as (Nakazawa et al., 1982) 

(4.26) 

where Ao is a large dimensionless parameter and 17 is the local viscosity. The typical 

recommended value for Ao is approximately 108 (Nassehi, 2002). The penalty 

method has been considered a cost effective scheme as the approach is easier to be 

programmed and less computing storage is required. With the pressure eliminated 

as a field unknown, there are also fewer equations to solve. 
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4.5.2.1 Calculation of Pressure 

After the velocity components have been obtained, the pressure can be calculated 

using Equation ( 4.22) through a variational recovery method. The discretized form 

of Equation (4.22) in conjunction with the Galerkin finite element discretization is 

given as 

n 

fN,L,NipitD, =-fN, 
' 

(4.27) 
n. i=l n. 

The coefficient matrix on the left hand side of the Equation (4.23) is the mass matrix 

(4.28) 

This matrix is diagonalized using a simple mass lumping technique (Pittman and 

Nakazawa, 1984) to reduce the computer resources required for the solution for 

pressure in this method. There are various schemes for lumping and Huebner et al. 

(2001) gave a practical comparison of these lumping methods. 

4.5.2.2 Solution of the Transient Equations 

As discussed earlier, the inclusion of transient terms forces the use of a time 

stepping scheme in the solution of the flow equations. The implicit 8 time-stepping 

technique was used in conjunction with the Penalty Method in this study. In this 

technique, the time derivatives in the differential equations are kept unchanged and 

the spatial discretization is carried out to form a weighted residual statement in the 

usual manner, as has been shown in the earlier section. As a result, after the spatial 

discretization, instead of a set of algebraic equations which are normally derived for 

steady-state problems, a system of equations with time derivatives are generated. 

There are two families of algorithm associated with this technique, namely implicit 
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and explicit algorithms. Although the implicit family of algorithms requires 

considerably more computational effort for transient solution than for the 

corresponding equilibrium problem, it is nevertheless more advantages than the 

explicit algorithm. In an explicit algorithm, although the nodal unknowns at each 

time are computed from uncoupled algebraic equations thus requiring substantially 

less computational effort, the time step tJ.t must be selected to be less than a critical 

value for the response to remain stable. If the time step for the explicit algorithm is 

selected arbitrarily, the computed response may become unstable, and the computed 

values will grow without bound as time increases (Huebner et al., 2001). The 

implicit algorithm has been used in the present study. 

Taking te to be the typical time between tn and tn+I so that te = tn + tn+I• the system is 

given as 

(4.29) 

where subscript B indicates that the weighted residual statement is derived at time 

level 0 ::; B ::; 1, as shown in Figure 4.2. 

The temporal derivative term in Equation (4.29) is approximated by a forward 

difference as 

{x}= {x},+l -{x}. 
tJ.t 

(4.30) 

The remaining terms in Equation ( 4.29) are approximated using a linear 

interpolation as 

{X}o = (1-B){X}. +B{X}.+l 

{F}8 =(1-B){F}, +B{F}.+, 

(4.31a) 

(4.32b) 
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Substitution from Equations (4.30), (4.31a) and (4.32b) into Equation (4.29) and 

carrying out algebraic manipulations gives 

(4.32) 

If 8 = 0, the algorithm is the forward difference method (Euler method); if 8 = 0.5, 

the algorithm is Crank-Nicolson method or the central difference method; if 8 = 2/3, 

the algorithm is the Galerkin method; if 8 = 1.0, the algorithm is backward 

difference method, or the explicit method. The choice of the best value of 8 depends 

on the rate of convergence, accuracy and the stability desired. 

t 

n+ I 

n+ e 

lr 
n 

Figure 4.2: Time stepping scheme. 

The final working equations for the Penalty Method can be written as 

[

QIIij 

Q 21 
ij 

Q31. ,, 

Q12 
ij 

Q 22 
ij 

Q32 
ij 

(4.33) 
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where 

I!\= N,N. +- (21J+A)-'-1 +1]-1 -
1 +1]-1 -

1 dxdydz fff{ BM [ aN aN. aN aN. aN iJN ]} 
"· 

1 p ax ax ay ()y az az 
(4.34-1) 

,12 _ fff{BAt( aN, aN1 , aN, aN1)}dxd d 
L ij- - 1]--+A-- Y Z 

n, p ()yax axay (4.34-2) 

I!'"= fff{Bllt(17 aN, aNi +J. aN, aNJ)}dxdydz 
n, p az ax ax az 

(4.34-3) 

,21 _ fff{BAt ( aN, aN1 , aN, aN1)}dxd d 
L ij- - 1]--+A-- Y Z 

"· p axay ayax 
(4.34-4) 

L22
" = N,N1+- 17-'-1 +(21J+A)-'-1 +1]-1 -

1 dydz fff{ Bllt [ aN aN aN aN. aN aN ]r 
n, p ax ax dy dy az az 

(4.34-5) 

,2, _ fff{BAt ( aN, aN1 , aN, aN1)}dxa d 
L ij- - 1]--+A-- Y Z 

n, p az ay dy az 
(4.34-6) 

,,1 _ fff{B!:>t ( aN, aN1 , aN, aN1 )}dxd d 
L ij- - 1]--+A-- Y Z 

n P ax az az ax 
• 

(4.34-7) 

,,2 -JJJ{BAr( aN,aN1 ,aN,aN1)}dxaa L ij- - 1]--+A-- Y Z 
"· p ()y az az ()y 

(4.34-8) 

fff{ BAt [ iJN aN aN aN aN aN ]r /J',1 = N,N.+-1]-1 -
1 +1]-'-1 +(21J+J.)-1 -

1 dydz 
n 1 p ax ax dy ay az az 

• 

(4.34-9) 

Qu -Jff{NN (1-B)llt[(2 ')aN,aNJ aN,aNJ iJN,aNJ]rdd ij- · .+ I]+A --+1]--+1]-- Y Z 
"· '

1 p axax ay()y azaz 
(4.34-10) 

Q12" = m{(1- B)!:>t (17 aN, aNi +A aN, aNi )}dxdydz 
n, p dy ax ax dy 

(4.34-11) 

Q''" = m{(1- B)!:>t(l] aN, aN1 +A aN, aN1 )}dxdydz 
"· p az ax ax iJx 

(4.34-12) 

Q 22 .. -Jff{NN (1-B)!:>t[ aN,aNJ (2 ')iJN,aNJ aN,aNJ]rdd '1- · · + 1]--+ I]+A --+1]-- )' Z 
"· ' 

1 p ax ax ()y ay az iJz 
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(4.34-13) 

Q2\ = m{ (1- 8 )~t (17 iJN, oN 1 +A oN, oN 1 )}dxdydz 
"· p oz oy oy oz 

(4.34-14) 

Q31 -JJI{(1-8)81( oN, oN1 , oN, oN1 )}dxd d ij- 17--+JL-- y z 
"· p ox oz oz ox 

(4.34-15) 

Q32u =m{(1-8)~t(17oN, oNJ +A oN, oN1)}dxdydz 
"· p i)y oz oz i)y 

(4.34-16) 

Q 33 -Jif{NN (1-8)81( oN, oN1 oN, oN1 (2 ')oN, oN1)rd d 
ij- i 1 + 17--+17--+ 17+/1. -- Y Z 

"· p OX OX i)y oy oz oz 

(4.34-17) 

(4.34-18) 

2 I{ et.r[ oii oii oii ( )oii oii D 1 = N,- A-a nY +17-n, +17-n, + 217+.1l -ny +17-n, 
r, p x i)y ox i)y oz 

(4.34-19) 

3 I { 8ru [ oii oii oii oii ow D 1 = N,- A.-a dn, + 17-:;-dn, +A A.. dn, + 17-:;-dnY + 17-n, 
r, P X uz vy uz OX 

(4.34-20) 

, I { (1- 8 )ru [( ) oii oii oii oii oii E 1 = N1 217+A -;;-n, +11-::;-ny +11-::;-n, +17-::;-ny +.il-n, 
r, p oX oy uz <JX oy 

(4.34-21) 

2 I{ (1-8)ru[ oii oii oii ( )oii oii E 1 = N, A-::;-ny + 17 A.. n, + 17-n, + 217 +A -nY + 17-n, 
r, p <JX vy OX Oy Oz 

(4.34-22) 
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3 I{ (1-o)M[ oii oii ov ov aw E 1 = N, A-dn, + 1J-;;;-dnx + A-dn, + 1]-dn, + 1]-nx 
r p ox uz oy oz OX 
• 

(4.34-23) 

4.6 Convergence of the Solution 

Since numerical modelling is iterative, it is important to know when to terminate the 

iterative loop. One convergence criterion is to monitor absolute and relative changes 

of the objective and constraint functions and the design parameters (Vanderplaats, 

1999). Convergence may then be indicated when changes in the performance 

measures and/or design parameters between successive iterations are within a 

predefined tolerance. In this study, convergence is checked using a calculated ratio 

of the Euclidean norm (Lapidus and Pinder, 1982) between successive iterations to 

the norm of the solution via the following equation: 

(4.35) 

where X is the field unknown, r is the number of iteration cycle, N is the total 

number of degrees of freedom and E is predefined convergence tolerance. 

It is necessary to note that all numerical computations involve round-off errors. This 

error increases as the number of calculations in the solution procedure is increased. 

Therefore, successive mesh refinement that increase the number of finite element 

calculations do not necessarily lead to more accurate solutions. However, one may 

assume a theoretical situation where the rounding error is eliminated (Nassehi, 

2002). 
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4.7 Mesh Refinement 

The standard procedure for improving the accuracy of a finite element 

approximation is to refine the computational grid. This is achieved by using a 

smaller element size to pack a larger number of meshes in the same domain area or 

volume. This also provides a practical method for testing the convergence in the 

solution of non-linear problems through the comparison of the results in successive 

mesh refinements. There are several adaptive refinement methods and they include 

the h- method, the p- method, the r- method and the combined hip method. In the h

method (Demkowicz et al., 1985; Uihner et al., 1985; Uihner, 1987; Ramakrishnan 

et al., 1990; Ramakrishnan et al., 1992), the elements of the initial mesh are refined 

into smaller elements or de-refined into larger elements. The number and the size of 

elements vary with each level of refinement. In the p- method (Zienkiewicz et al., 

1983; Peano, 1976; Peano et al., 1979; Szab6, 1979; Szab6, 1986), the order of the 

polynomial used for the element interpolation function is increased or decreased 

while keeping the number and geometry of the element constant. The r- method 

(Oden et al., 1986) keeps the number of elements and their connenctivity constant 

but moves the nodal position. There are also methods of mesh refinement that use 

combinations of the three methods mentioned. For example, the hip method 

(Demkowicz et al., 1989; Oden et al., 1989; Rachowicz et al., 1989; Tworzydlo et 

al., 1992) that refined or de-refined some elements while increasing or decreasing 

the order of interpolation polynomials in other elements. A detailed account of 

comparison of these mesh refinement methods can be found at Huebner et al. 

(2001). 
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In this study, h- method of mesh refinement has been employed to improve the 

accuracy of the finite element solution. It should be noted that it is no trivial matter 

to increase the mesh density for a three-dimensional domain where it is normal for 

the number of elements to increase an order of magnitude at each level of mesh 

refinement. 

4.8 Output 

The availability of commercial post-processing graphic tools to view the pressure 

contours and velocity vectors has enabled the analysis to be conducted with great 

convenience. Raw simulation data generated from the developed algorithm were 

analyzed and checked both numerically and graphically to verify the results. In this 

study, the pressure contours and the velocity vectors of domain cross-sections were 

plotted using SURFER® 8 graphic package. 

4.9 Developed Algorithm 

Two computer codes based on the U-V-W-P scheme and the continuous Penalty 

scheme have been developed to solve the continuity and the Stokes equations in the 

three-dimensional domain. In the U-V-W-P technique, both velocity and pressure in 

the governing equations are regarded as primitive variables and are discretized as 

unknowns. In the continuous Penalty scheme, the primary variables are the velocity 

fields while the pressure is calculated through a variational recovery method. In 

both cases, the obtained results are then used to update the rheology properties of the 

fluid. The solution algorithm for the U-V-W-P and the continuous Penalty scheme 

are summarized in Figure 4.3 and Figure 4.4. 
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Figure 4.3 The developed algorithm for U-V-W-P scheme. 
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Figure 4.4 The developed algorithm for continuous Penalty scheme. 
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4.10 Closure 

In this chapter, the concept of the finite element method employed in this study was 

explained. The choice of interpolation and the restrictions of inf-sup conditions 

were briefly discussed as they directly affect the reliability of the model and the 

computing economy. The U-V-W-P scheme in conjunction with the Taylor 

Galerkin method and the continuous Penalty scheme for solving continuity and 

Stokes motion equation were detailed. The considerations for the derivation of the 

solution scheme in each case were presented. At the end of this chapter, the 

schematic diagram of the developed algorithm for each scheme was illustrated. In 

the next chapter, the domain selection for the three-dimensional wire mesh 

geometry, the numerical properties and the results from the simulations will be 

presented and discussed. 
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CHAPTERS 

RESULTS AND DISCUSSIONS 

Computer codes based on FORTRAN-90 have been developed to execute the 

schemes described. The programs were compiled using Digital Visual Fortran 

version 6.0. The domain development and the finite element discretization of the 

mesh were handled using COSMOSTM GEOSTAR, a powerful pre-processing and 

post-processing software package developed by Structural Research and Analysis 

Corporation (SRAC), Los Angeles, USA. The COSMOSTM GEOST AR output files 

that contain the finite element mesh data were processed using an in-house 

developed utility program FEUT20 to rearrange the data to a program-readable 

format. The physical properties and the boundary conditions for each domain were 

then included to become the INPUT files. The computations based on these INPUT 

files were then executed using a desktop with an Intel Pentium IV 2.6 GHz 

processor. The post-processing presentation of field variables such as flow velocity 

vectors and pressure contour were achieved by a commercial graphic software 

package SURFER® 8 developed by Golden Software, Colorado, USA. 

5.1 Domain Discretization and Boundary Conditions 

5.1.1 Domain Studied and Boundary Conditions 

A selection of domains based on the four basic pore types described earlier has been 

developed. A total of nine simulation domains have been designed and used to 

achieve the objective of this study. Descriptions for each of these domains will be 

given in this section. 
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(a) DOMAIN 1: Pore type 1with aperture to diameter ratio 1.5. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

5:5:5:2. The mesh contains 4608 elements and 6560 nodes. The crimp diagrams for 

domain 1 are depicted in Figure 5.1. 

FLOW DIRECTION 
z 

Frontal viy 11 

(a) Schematic diagram 

(b) Frontal view 

Figure 5.1 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 1 with aperture to diameter ratio 1.5. 
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(b) DOMAIN 2: Pore type 2 with aperture to diameter ratio 1.5. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

5:5:5:2. The mesh contains 4608 elements and 6514 nodes. The crimp diagrams for 

domain 2 are depicted in Figure 5.2. 

FLOW DIRECTION 
z 

Frontal viy 11 

(a) Schematic diagram 

(b) Frontal view (c) Top view 

Figure 5.2 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 2 with aperture to diameter ratio 1.5. 
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(c) DOMAIN 3: Pore type 3 with aperture to diameter ratio 1.5. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

5:5:5:2. The mesh contains 4608 elements and 6527 nodes. The crimp diagrams for 

domain 3 are depicted in Figure 5.3. 

FLOW DIRECTION 
z 

Frontal viy 
11 

(a) Schematic diagram 

(b) Frontal view (c) Top view 

Figure 5.3 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 3 with aperture to diameter ratio 1.5. 
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(d) DOMAIN 4: Pore type 4 with aperture to diameter ratio 1.5. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

5:5:5:2. The mesh contains 4608 elements and 5357 nodes. The crimp diagrams for 

domain 4 are depicted in Figure 5.4. 

·ew / 11 
Frontal vi/ 

FLOW DIRECTION 

(a) Schematic diagram 

(b) Frontal view 

z 

(c) Top view 

Figure 5.4 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 4 with aperture to diameter ratio 1.5. 
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(e) DOMAIN 5: Pore type 1 with aperture to diameter ratio 2.0. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

6:5:6:2. The mesh contains 5560 elements and 7778 nodes. The crimp diagrams for 

domain 5 are depicted in Figure 5.5. 

FLOW DIRECTION 
z 

Frontal viy 11 

(a) Schematic diagram 

(b) Frontal view (c) Top view 

Figure 5.5 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 1 with aperture to diameter ratio 2.0. 
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(f) DOMAIN 6: Pore type 2 with aperture to diameter ratio 2.0. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

6:5:6:2. The mesh contains 5560 elements and 7722 nodes. The crimp diagrams for 

domain 6 are depicted in Figure 5.6. 

ew / lt Frontal vi/ 

FLOW DIRECTION 

(a) Schematic diagram 

I 
(b) Frontal view 

z 

(c) Top view 

Figure 5.6 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 2 with aperture to diameter ratio 2.0. 
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(g) DOMAIN 7: Pore type 3 with aperture to diameter ratio 2.0. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

6:5:6:2. The mesh contains 5560 elements and 7735 nodes. The crimp diagrams for 

domain 7 are depicted in Figure 5.7. 
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(a) Schematic diagram 

(b) Frontal view (c) Top view 

Figure 5.7 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 3 with aperture to diameter ratio 2.0. 
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(h) DOMAIN 8: Pore type 4 with aperture to diameter ratio 2.0. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

6:5:6:2. The mesh contains 5560 elements and 7637 nodes. The crimp diagrams for 

domain 8 are depicted in Figure 5.8. 
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(b) Frontal view (c) Top view 

Figure 5.8 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 4 with aperture to diameter ratio 2.0. 
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(i) DOMAIN 9: Pore type 4 with aperture to diameter ratio 2.0. 

The ratio of the domain's length (x), width (y), height (z) and wire diameter (d) is 

4:5:4:2. The mesh contains 3768 elements and 5357 nodes. The crimp diagrams for 

domain 9 are depicted in Figure 5.9. 
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1
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(c) Top view 

Figure 5.9 (a) Schematic diagram (b) frontal view and (c) top view of 
pore type 4 with aperture to diameter ratio 1.0. 
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Domains 1 to 9 were subsequently discretized into finite element working mesh 

using COSMOSTM GEOSTAR. An eight-noded linear element of the Lagrange 

rectangular prisms family was used as the interpolation function for all the 

developed domains (discussed earlier in section 4.3). An example of the finite 

element mesh is shown in Figure 5.10 depicting the discretized domain 1. 

Figure 5.10 Discretized finite element mesh of domain 1. 
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A summary of the domain setup properties is given in Table 5.1. Based on the 

selection of the described domains, three parameters are investigated: weave pattern, 

aperture to diameter ratio or wire spacing, and Reynolds number. 

Table 5.1 Summary of the domain setup properties. 

Domain Pore Type d aperture no. of no. of DOF x:y:z:d 

(mm) (mm) element nodes ratio 

1 Pore Type 1 0.2 0.3 4608 6560 3363 5:5:5:2 

2 Pore Type 2 0.2 0.3 4608 6514 3288 5:5:5:2 

3 Pore Type 3 0.2 0.3 4608 6527 3282 5:5:5:2 

4 PoreType4 0.2 0.3 4608 6437 3210 5:5:5:2 

5 Pore Type 1 0.2 0.4 5560 7778 3841 6:5:6:2 

6 Pore Type 2 0.2 0.4 5560 7722 3760 6:5:6:2 

7 Pore Type 3 0.2 0.4 5560 7735 3754 6:5:6:2 

8 PoreType4 0.2 0.4 5560 7637 3682 6:5:6:2 

9 PoreType4 0.2 0.2 3768 5357 2770 4:5:4:2 

For all the developed domains, the boundary conditions are given as follows. The 

flow inlet is at the top horizontal surface while the flow exit is at the lower 

horizontal surface. A range of inlet velocity is used for each case corresponding to a 

wide range of Reynolds number. An open boundary is taken for the four sidewalls 

where no boundary condition was specified. Only the pressure boundary conditions 

are specified at the exit flow for each case. The monofilament cut-sized wires were 

assumed to be non-permeable and non-slip where velocity was taken to be Vx = Vy = 

Vz=O. 
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5.1.2 Physical Properties 

A non-Newtonian fluid with the property given in Table 5.2 was used in the 

simulations. Similar properties were used for the simulations of the Newtonian fluid 

with n taken to be 1.0. 

Table 5.2 Physical properties of the shear thickening fluid used. 

Physical Property 

Density, p 

Consistency index, llo 

Power Law index, n 

value 

970kg m· 

80.0 kg m'1s'1 

0.7- 1.3 

A time step of !!.t = O.Ols was used throughout the simulations and the Bused for the 

flow modelling is 0.95. 

5.2 Presentation of Results 

Simulations were successfully conducted for domains described in earlier sections 

and the results were presented in the following format. For all cases, the results for 

the cross sections at x-z plane at y = lwl2 and y-z plane at x = lj2 are represented 

graphically using SURFER® 8 commercial software package. The velocity vector 

ii = v) + vb) is used to visualize the fluid flow in the cross-sections. The arrow 

indicates the combined velocity components in the a- and b-axis of a Cartesian 

coordinate system where a, b = x, y, z and a 'f. b. The colour of the arrow indicates 

the magnitude which is given by /r/=~a 2 +b2
, as shown in Figure 5.11. The 

colour gradient used in each figure may be different as it is automatically determined 
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by the graphics package. Figure 5.12 showed an example of colow· gradient used in 

SURFER® 8. 

+y 

-y 

Figure 5.11 Cartesian vector representing x-, y- and z-components 
of velocity field. 
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Figure 5.12 The colour legend bar used to represent magnitude of 
velocity vectors in Surfer 8 graphics software package. 
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5.3 Validation of Model 

Validation is related to the reliability of the mathematical model, while verification 

addresses the reliability of the approximate solution in comparison with the exact 

solution of the mathematical problem. Any validation has to assume that the finite 

element approximation is sufficiently accurate such that there is no interference of 

the errors in the FE solution, and that the agreement or disagreement with the 

observed data is due only to the mathematical model. The goal of the computation 

has to be well specified so that the high quality of the finite element solution can be 

achieved with respect to this goal. The accuracy of the finite element solution also 

has to be sufficient with respect to the goal of the analysis (Babu§ka and Strouboulis, 

2001). 

In this study, three-dimensional test cases were devised to check the computer codes 

developed before they were applied to the simulations of fluid flow through wire 

meshes. Three test cases were designed in increasing mesh complexity to 

progressively test the capability of the algorithm. The developed mathematical 

model will be tested both qualitatively and quantitatively. 

For all the test cases, the velocity v, corresponds to the approach velocity of the fluid 

towards the aperture and was set as 0.1 m s·1 at the inlet. The boundaries (the cloth 

filaments) were considered to be impermeable, non-slip surfaces where 

v, = v Y = v, = 0. The computational mesh and degrees of freedom (DO F) used for 

each test case are given in Table 5.3. 
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Table 5.3 Computational mesh used for each test cases. 

Test Case No. of Elements No. of Nodes DOF 

1 1920 2511 3544 

2 4096 4913 4572 

3 4096 4913 4164 

A non-Newtonian fluid with the properties given in Table 5.2 was used in the 

simulations. The power law index n was taken to be 0.9 for all the three test cases. 

Similar properties were used for the simulations of the Newtonian fluid, but with n 

taken to be 1.0. Typically three iteration cycles are required to obtain the desired 

solution that meets the predefined convergence criteria discussed in section 4.6. 

Depending on the mesh density in the solution domain, the CPU time for each 

iteration range from 30 min for a coarse mesh to 120 min for a refined mesh. As the 

U-V-W-P scheme has successfully predicted the fluid flow in all the described 

domains, the results for continuous Penalty method will not be included as the 

scheme will only be consulted as secondary comparison for the U-V-W-P results. 

5.3.1 Test Case 1: Rectangular Domain 

Test Case 1 was used to validate the capability of the program in solving the 

continuity and motion equations. The main test for the accuracy of the simulation 

results is ensuring a mass balance over the domain under investigation. A 

rectangular domain, shown in Figure 5.13, was adapted with four impermeable, no

slip, vertical walls and the inlet was at the upper horizontal surface and the outlet at 

the bottom horizontal surface. The ratio of the domain length (x), width (y) and 

height (z) was 3:3:5. 
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FLOW DIRECTION 

Vz 

Figure 5.13 A schematic diagram of Test Case 1. 

Figure 5.14 illustrates a typical velocity vectors of Test Case 1 in the x-z plane at y = 

lwf2 for Newtonian and non-Newtonian fluids. The maximum z-direction velocity v, 

of non-Newtonian fluid were found to be 4.5% higher that of the Newtonian liquid. 

This can be explained by the shear thinning effect of the non-Newtonian fluid. The 

overall mass balance for Newtonian and non-Newtonian simulations is 99.7% and 

99.4%, respectively. The excellent accuracy showed that continuity was preserved 

in the simulations. 
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Figure 5.14 The velocity vectors of Test Case I in the x-z plane at y = l1,/2 for 
non-Newton.ian fluid . 

5.3.2 Test Case 2: RectanguJar Domain with Two Cut-Sized Cylinders 

Test case 2 is slightly more complex with two half-cylinders protruding into a 

rectangular domain, emulat ing the flow aro und two paralle l fibres that form two 

sides of an aperture. The ratio of aperture size to wire diameter used in this test case 

was 1.5 (values fi·om about 1. I up to about 7 are commonly used ratios in industlia1 

wire meshes). The in let was again the upper horizontal surface and the outlet was at 

the bottom horizontal surface. The half cylinder surfaces were considered to be 

impermeable and non-slip. The ratio of the domain length (x), width (y), height (z) 

112 



K.C.Ting CHAPTER 5: Results and Discussions 

and wire diameter (d) was 5:5:2:2 and the schematic computational mesh is shown 

in Figure 5.1 5. 

FLOW DIRECTION 

Vz 

Figure 5.15 A schematic diagram of Test Case 2. 

Figure 5.16 shows a typical velocity vectors of Test Case 2 for a non-Newtonian 

fluid in the x-z plane at y = Lwl2 and in the y-z plane at x = Ll2. T he resu lts were 

obtained after three iteration cycles where negligible changes to the field variables 

were observed indicating the converged solution has been reached. Higher 

velocities were observed at the area immediately above the cylinders and at the 

section between the cyli nders compared to the velocity at the in let and outlet. This 

is attributed to the compression of the fluid that leads to the acceleration of the fluid 

velocity. 
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(b) 

F igure 5.16 The velocity vectors of Test Case 2 in the (a) x-z plane at y = l,j2 
(b) y-z plane at x = lj2 for non-Newtonian fluid. 

The overall mass balance for Newtonian and non-Newtonian simulations in Test 

Case 2 showed an outlet flow of 95.0% and 94.8% compared to the inlet flow. The 

discrepancy is due to the relatively coarse mesh used and can be improved by further 

mesh refinement. The effect of mesh refmement on the accuracy of the model will 

be discussed in a later section. 
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5.3.3 Test Case 3: Rectangular Domain with Four Cut-Sized Cylinders 

Test Case 3 has all the basic features of a typical wire mesh domai n except that the 

four supposedl y intertwined weft and warp wires were fl attened to a h01i zontal plane 

to test the response of the model to highly complex geometry and mesh di sto rtion. 

The four cylinders were jointed together via a 45° slice at each corner. The ratio of 

the domain length (x), width (y), height (z) and wire di ameter (d) was 5:5:2:2. The 

results from this test case provided powerful insights into understanding the 

complex flow fie ld in different pore types of a wire mesh. Inle t and outlet settings 

were simi lar to Test Case 1 and Test Case 2. The half cylinder surfaces were again 

considered to be impetmeable and non-slip. The schematic domain is shown in 

Figure 5. 17. 
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FLOW DIRECTION 

Vz 

45° INTERSECTION AT CORNERS 

Figure 5.17 A schematic diagram of Test Case 3. 

Figure 5.18 depicted a typical simulation result of Test Case 3 for a non-Newtonian 

fluid in the x-z plane at y = l,j2 and in the y-z plane at x = lj2 The highly complex 

geometry of the four adjoined cylinders formed a narrow channel for the fluid to 

flow through. The mass balance for Newtonian and non-Newtonian simulations is 

96.1 % and 95.8%, respectively. The overall consistency in the results presented for 

Test Case 1, 2 and 3 showed that the model is capable of so lving three-dimensional 

flow problem in a domain with complex geometry. 
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(b) 

Figure 5.18 The velocity vectors of Test Case 3 in the (a) x-z plane at y = l,j2 
(b) y-z plane at x = lj 2 for non-Newtonian fluid. 
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5.3.4 Mesh Refinement 

To examine the effect of mesh refinement on the accuracy of the solution, h-method 

refinement has been adopted in this study, as discussed earlier in section 4.7. The 

elements of the initial mesh were de-refined into larger elements for Test Case 2 and 

Test Case 3. In Test Case 2, a separate simulation run with a very coarse mesh of 

512 elements under the same initial and boundary conditions gave a mass balance of 

86.2% for Newtonian liquid. In Test Case 3, simulation runs using a very coarse 

mesh of 512 elements gave a mass balance of 86.3% for Newtonian fluid. These 

results gave clear evidence that the model accuracy can be improved by mesh 

refinement. The quantitative comparison on the simulation results due to mesh 

refinement was summarized in Table 5.4. 

Table 5.4 Comparison of mass balance at different level of mesh refinement. 

no. of elements no. of nodes DOF % Mass balance 

Test Case2 512 729 1227 86.2 

4096 4913 4572 95.0 

Test Case 3 512 729 1011 86.3 

4096 4913 4164 96.1 

It should be reiterated that from practical experience gained in this study, the effort 

of increasing mesh density is not a trivial matter for a three-dimensional domain. It 

is not unusual for the number of elements to escalate in an order of magnitude at 

each level of mesh refinement. Hence, a strategy of de-refinement has been used 

instead of refinement to achieve the purpose of examining the mesh refinement 

effect on the accuracy of the model. 
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5.4 Results from Domain 1: Pore Type 1 with Aperture/Diameter Ratio of 1.5 

Typical velocity vectors for the flow of Newtonian fluid, shear thickening fluid and 

shear thinning fluid through domain 1 in the x-z plane at y = lwl2 and y-z plane at x = 

lj2 are illustrated in Figures 5.19- 5.24. For each case, the flow is observed to swirl 

inwards towards the aperture on both x-z and y-z planes corresponding to the 

location of the wire mesh on both planes. Higher velocities are also observed at the 

area immediately above the wire mesh and in the section between the wires, 

compared to the velocity at the inlet and outlet. The cross sections of domain 1 is 

symmetrical at y = lwf2 and x = lj2. This is reflected in the velocity distributions and 

the pressure contour shown in Figures 5.19- 5.24. 

It is observed that as the power law index increases from 1.0 to 1.3, there is a 

corresponding rise in the simulated pressure drop value. This can be attributed to 

the shear thickening effect. The opposite is true when the power law index 

decreases from 1.0 to 0.7 where the pressure drop decreases due to the shear 

thinning effect. 

To describe the flow around the wire mesh, the approach used by Wieghardt (1953) 

was adopted. The drag coefficient defined by equation (2.6) was used. The 

Reynolds number defined by equation (2.7) however has to be modified in 

consideration of the non-Newtonian fluid used in the current study. Chhabra and 

Richardson (1985) used a modified Reynolds number for a non-Newtonian fluid as 

defined in equation (2.12), a form similar to that used by Metzner (1956) and 

Skelland (1967) with porosity taken into consideration. In their paper, however, 

they erroneously took d to be the wire diameter rather than the hydraulic diameter, 
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dh, which can be taken as the aperture side dimension in the case of a square mesh. 

A more appropriate correlation for ReNN consistent to that used by earlier researchers 

is therefore given as: 

(5.1) 

where ReNN reduces to the Reynolds number for a Newtonian liquid when n = 1. 

For the simulations in this work, the relationship between the flow rate and the 

pressure drop for each fluid is calculated from the model and subsequently presented 

using equations (2.6) and (5.1). The drag coefficient versus Reynolds number plot 

for domain 1 corresponding to various power law indices are presented in Figure 

5.25. 
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5.5 Results from Domain 2: Pore Type 2 with Aperture/Diameter Ratio of 1.5 

Typical veloci ty vectors for the fl ow of Newtonian fluid , shear thickening fluid and 

shear thinni ng fluid through domain 2 in the x-z plane at y = l,,J2 and y-z plane at x = 

!J2 are illustrated in Figures 5.26 - 5.31. Pore type 2 has the most unsymmetrical 

geometry among the four bas ic pore types. T his is evident in the plots of velocity 

and pressure illustrated in Figures 5.26 - 5.3 1 where an absence of symmetrical 

pattern in both planes is observed. The flow is again observed to swirl inwards 

towards the aperture on both x-z and y-z planes corresponding to the location of the 

wire mesh on both planes. However, the velocity above the right wire mesh in the x

z plane plots is higher than that above the left wire mesh. The corTesponding cross 

sections plots in the y-z plane at x = IJ2 showed the complex interaction of flow as 

fluid flow past pore type 2. 

As in the case of domain 1, it is observed that the as the power law index increases 

from 1.0 to 1.3, there is a con·esponding rise in the s imulated pressure drop value. 

This can be attributed to the shear thickening effect. The opposite is also true when 

the power law index decreases from 1.0 to 0.7 where the pressure drop decreases 

due to the shear thinning effect. The drag coefficient versus Reynolds number plot 

corresponding to various power law indices are presented in Figure 5.32. 
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5.6 Results from Domain 3: Pore Type 3 with Aperture/Diameter Ratio of 1.5 

Typical velocity vectors for the flow of Newtonian fluid, shear thickening fluid and 

shear thinning fluids through domain 3 in the x-z plane at y = lw/2 and y-z plane at x 

= lj2 are illustrated in Figures 5.33 - 5.38. Pore type 3 has a symmetrical geometry 

in the y-z pl ane but not in the x-z pl.ane. This is reflected in the y-z plane plot given 

in Figures 5.34, 5.36, 5.38 and x-z plane plots given in Figures 5.33, 5 .35, 5.37. The 

pattem of the fluid flow in the x-z plane corresponding to the position of the wire 

mesh is similar to that observed in domain 2 while flow pattem in the y-z plane is 

similar to that shown for domain 1. 

As in the case of domai n 1 and domain 2, it is observed that as the power law index 

increases from 1.0 to 1.3, there is a corresponding rise in the simulated pressure drop 

value while the pressure drop decreases when the power law index decreases from 

1.0 to 0.7. The drag coefficient versus Reynolds number plot corresponding to 

various power law ind ices are presented in Figure 5.39. 
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5.7 Results from Domain 4: Pore Type 4 with Aperture/Diameter Ratio of 1.5 

Typical velocity vectors for the flow of Newtonian fluid, shear thickening fluid and 

shear thinning fluids through domain 4 in the x-z plane at y = /11/2 and y-z plane at x 

= lj2 are illustrated in Figures 5.40 - 5.45. Pore type 4 has the highest degree of 

symmetry where the x-z plane and y-z plane has full geometrical symmetry at every 

depth. The pattern of the fluid flow corresponding to the position of the wire mesh 

is consistent with the observations in domai n 1, domain 2 and domain 3 where 

higher veloci ties were observed at the area immediately above the wire mesh and in 

the section between the wires. The velocity distribution and the pressure contours 

showed in Figures 5.40 - 5.45 are in perfect symmetry consistent with the 

symmetrical geometry. 

A corresponding rise in the simulated pressure drop value is observed when the 

power law index increases from 1.0 to 1.3, as observed in domain 1, 2 and 3. The 

pressure drop decreases when the power law index decreases from 1.0 to 0.7. The 

drag coefficient versus Reynolds number plot cotTesponding to various power law 

indices are presented in Figure 5.46. 
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5.8 Results from Domain 5: Pore Type 1 with Aperture/Diameter Ratio of 2.0 

The typical velocity vectors for the flow of shear thickening fluid through domain 5 

in the x-z plane at y = L1./2 and y-z plane at x = Lj2 are illustrated in Figures 5.47 and 

5.48, respectively. The pattern of the fluid flow corresponding to the position of the 

wire mesh is observed to be simi lar to that of domain 1 where the flow is observed 

to swirl inwards towards the aperture on both x-z and y-z planes corresponding to the 

location of the wire mesh on both planes. Higher velocities are also observed at the 

area immediately above the wire mesh and in the section between the wires, 

compared to Lhe velocity at lhe inlet and outlet. 

Similar Lo the results reported earlier in domain 1, a corresponding ri se in the 

simulated pressure drop value is observed in domain 5 when the power law index 

increases from 1.0 to 1.3. The pressure drop decreases in simnar fashion when the 

power law index decreases from 1.0 to 0 .7. The drag coeffi cient versus Reynolds 

number plot correspondi ng to vatious power law indices are presented in Figure 

5.49. 
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Compared to results presented for domain 1, the pressure drop over the interstices in 

domain 5 were observed to be lower general ly. This is due to the higher cross-

sectional area across domain 5 for the fluid to flow through compared to the area 

availab le in domain 1. This is consistent with the phenomena observed 

experimentally by Rushton (1969). The difference in the pressure drop for domain 1 

and domain 5 is observed to be in the region of 2.9% to 21%, with the difference 

becoming more pronounced as power law index n increases. The C0 versus ReNN 

plot for domain 1 and domain 5 for Newtonian fluid is given in Figure 5.50. It 

should be remembered that the Co versus ReNN graph is plotted wi th the porosity £ 

taken into consideration. As such, the graph has to be interpreted in rel ation to the 

factor£. 
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Figure 5.50 Drag Coefficient vs Reynolds Number for 
Newtonian flu id flow through domain 1 and domain 5. 
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5.9 Results from Domain 6: Pore Type 2 with Aperture/Diameter Ratio of 2.0 

The typical velocity vectors for the flow of shear thickening flu id through domai n 6 

in the x-z plane at y = 11112 and y-z plane at x = lj2 are illustrated in Figures 5.51 and 

5.52, respecti vely. The pattern of the fluid flow corresponding to the position of the 

wire mesh is observed to be similar to tha t of domain 2 where the pattern of the flow 

reflected the absence of symmetrical pattern in both planes. The velocity above the 

right wire mesh in the x-z plane plots is higher than that above the left wire mesh, 

similar to that observed in domain 2. 

Similar to the results reported earlier in domain 2, the simulated pressure drop value 

in domain 5 is observed to ri se when the power law index increases from 1.0 to 1.3. 

T he pressure drop decreases corresponding to a decrease of the power Jaw index. 

T he drag coefficient versus Reynolds number plot corresponding to various power 

law indices are presented in Figure 5.53. 

Again, lower pressure drop over the interstices in domain 6 was observed compared 

to domain 2. The difference in the pressure d rop for domain 2 and domai n 6 is less 

dramatk compared to the differences observed for domain 1 and domain 5. A 

quantitati ve exami nation showed the maximum pressure drop difference is 4% and 

decreases as power law index n decreases. T he C0 versus ReNN plot for domain 2 

and domain 6 for Newtonian fluid is given in Figure 5.54. 
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5.10 Results from Domain 7: Pore Type 3 with Aperture/Diameter Ratio of 2.0 

The typica l velocity vectors for the fl ow of shear thickening fluid through domain 7 

in the x-z plane at y = 1,,/2 and y-z plane at x = Lj2 are illustrated in F igures 5.55 and 

5.56, respectively. The pattern of the fluid flow in domain 7 is simi lar to that of 

domain 3 where a symmetrical flow can be observed in the y-z plane but not in the x

z plane. The pattern of the fluid flow in the x-z plane corresponding to the position 

of the wire mesh is similar to that observed in domain 6 while flow pattern in the y-z 

plane is similar to that shown for domain 5. 

Simi lar to domains 5 and 6, as the power law index increases from 1.0 to 1.3, there 

is a corresponding rise in the simulated pressure drop value. The pressure drop 

decreases when the power law index decreases from 1.0 to 0.7 . The drag coefficient 

versus Reynolds number plot corresponding to various power law indices are 

presented in Figure 5.57. 

In a similar pattern observed for domain 1 and 5, and domain 2 and 6, lower 

pressure drop over the interstices in domain 7 was observed compared to domain 3 . 

The max imum pressure drop difference for domain 3 and domain 7 is 4.9% and 

decreases as power law index n decreases. The C0 versus ReNN plot for domain 3 

and domain 7 for Newtonian fluid is given in Figure 5.58. 
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5.11 Results from Domain 8: Pore Type 4 with Aperture/Diameter Ratio of 2.0 

The typical velocity vectors for the flow of shear thickening fluid through domain 8 

in the x-z plane at y = lu/2 and y-z plane at x = lj2 are illustrated in Figures 5.59 and 

5.60, respectively. The pattern of the fluid flow illustrated by velocity distribution 

and pressure contours reflected the symmetrical geometry at both x-z plane and y-z 

planes. This is consistent with the observation in results presented for domain 4. 

Similar to domain 4, the flow is observed to swirl inwards towards the aperture on 

both x-z and y-z planes corresponding to the location of the wire mesh on both 

planes. Higher velocities are also observed at the area immediately above the wire 

mesh and in the section between the wires, compared to the velocity at the inlet and 

outlet. 

A corresponding ri se in the simulated pressure drop value is observed when the 

power law index increases from 1.0 to 1.3, as observed in domain 5, 6, and 7. The 

pressure drop decreases as the power law index decreases. The drag coefficient 

versus Reynolds number plot corresponding to various power law indices are 

presented in Figure 5.61. 

Compared to domain 4, domain 8 was observed to give lower pressure drop across 

the interstices. The maximum pressure drop difference for domain 4 and domain 8 

is 5.6% and decreases as power law index n decreases. The lower pressure drop has 

been consistently observed in domains with simj lar weave pattern but with higher 

aperture lo diameter ratios as discussed earlier for domains 1 and 5, domains 2 and 6 

and domains 3 and 7. The C0 versus R eNN plot for domain 4 and domain 8 for 

Newtonian fluid is given in Figure 5.62. 
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5.12 Results from Domain 9: Pore Type 4 with Aperture/Diameter Ratio of 1.0 

The typical veloci ty vectors for the flow of shear thickening fl uid through domain 9 

in the x-z plane at y = 1 .. 12 and y-z plane at x = LJ2 are illustrated in Figures 5.63 and 

5.64. The pattern of the fluid flow illustrated by velocity distribution and pressure 

contours refl ected the symmetrical geometry at both x-z plane and y-z planes, 

consistent with the observation in results presented for domains 4 and 8. 

A corresponding 1ise in the simulated pressure drop va lue is a lso observed when the 

power law index increases from 1.0 to 1.3, as observed in domains 4 and 8. 

Similarly, the pressure drop decreases when the power law index decreases. The 

drag coefficient versus Reynolds number plot corTesponding to various power law 

indices are presented in Figure 5.65. 

Compared to domains 4 and 8, domain 9 was observed to give higher pressure drop 

across the interstices. The maximum difference in pressure drop is 11% higher to 

that of domain 4 and it decreases as power law index n decreases. Comparing 

domains 4, 8 and 9, domain 9 was observed to give the highest pressure drop, 

followed by domain 4 and 8. This observation is consistent with the cross-sectional 

area avai lable for flow in which higher aperture to diameter ratio rendered in higher 

area for flow, thus giving lower flow resistance resulting in lower pressure drop. 

The C0 versus R eNN plot for domains 4, 8 and 9 for Newtonian fl uid is given in 

Figure 5.66. 
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Figure 5.64 The (a) velocity vectors (b) pressure contour of non-Newtonian fluid 
(n = L 1) flow through domain 9 in the y-z plane at x = lf2 with 

inlet velocity v4 = -O.Olms·•. 
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Figure 5.66 Drag Coefficient vs Reynolds Number for 
Newtonian fluid flow through domains 4, 8 and 9. 
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5.13 Pressure Drop Analysis 

To further verify the reliability of the developed model, the results obtained for fluid 

flow through domain 1 were tested against experimental data extracted from 

experimental studies conducted by Rushton (1969) using water and Chhabra and 

Richardson (1985) using shear thinning fluids. The physical properties of the test 

fluids and the characteristic dimensions of the wire mesh and monofilament cloths 

used in Chhabra and Richardson's (1985) and Rushton's (1969) experiments and in 

this study are summarized in Table 5.5. 

Table 5.5 Physical properties of the test fluids and characteristic dimensions of the 
plain weave wire mesh screens and monofilament cloth. 

Test Liquid n TJo Aperture d Symbols in 
(Pas) (!:f:m) (J.UU) Figure 5.67 

Chhabra and Richardson ( 1985); wire mesh screens 
1.5% CMC in water 0.60 6.6 53 36 • 
1.5% CMC in water 0.59 7.6 53 36 • 
2.0% CMC in water 0.61 9.5 150 100 ... 
2.5% CMC in water 0.34 45.0 150 100 • 
Rushton (1969); monofilament Nylon cloth 
Water 1.0 0.001 24 30 + 

1.0 0.001 42.4 37 + 
1.0 0.001 60 30 + 
1.0 0.001 59 44 + 
1.0 0.001 71 61 + 
1.0 0.001 99 75 + 
1.0 0.001 144 105 + 
1.0 0.001 186 153 + 

This study 
1.5% CMC in water 0.60 6.6 300 200 0 
1.5% CMC in water 0.59 7.6 300 200 0 
2.0% CMC in water 0.61 9.5 300 200 !:,. 

2.5% CMC in water 0.34 45.0 300 200 0 
Water 1.0 0.001 300 200 X 
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It has been explained earlier that Chhabra and Richardson (1985) used an erroneous 

parameter in their equation for Reynolds number. Therefore, the experimental 

results presented in their paper were recalculated using equations (2.6) and (5.1) and 

presented in Figure 5.67. The results for water flow through monofilament nylon 

cloths reported by Rushton (1969) were also calculated using equations (2.6) and 

(5.1) and included on Figure 5.67. From Figure 5.67, the simulation results for 

water and the non-Newtonian liquid were observed to be in good agreement with the 

experimental results. Furthermore, the drag coefficient Cv and the Reynolds number 

ReNN are related by a best fit curve of 

c = 10 
D R 1.14 

eNN 

(5.2) 

The Cv versus ReNN plot for Newtonian, shear thickening and shear thinning fluid 

flow through domains 1 to 4 were plotted in Figures 5.68, 5.69 and 5.70, 

respectively. Similar plots for domains 5 to 8 were plotted in Figures 5.71 to 5.73. 
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Figure 5.67 Drag Coefficient vs Reynolds Number for Newtonian and non
Newtonian liquid flows through domain 1. 
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Figure 5.68 Drag Coefficient vs Reynolds Number for Newtonian fluid flow 
through domains 1, 2, 3 and 4. 
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fluid flow through domains 1, 2, 3 and 4. 
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Figure 5.70 Drag Coefficient vs Reynolds Number for shear thinning 
fluid flow through domains 1, 2, 3 and 4. 
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Figure 5.71 Drag Coefficient vs Reynolds Number for Newtonian fluid flow 
through domains 5, 6, 7 and 8. 
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Figure 5.72 Drag Coefficient vs Reynolds Number for shear thickening 
fluid flow through domains 5, 6, 7 and 8. 
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Figure 5.73 Drag Coefficient vs Reynolds Number for shear thinning 
fluid flow through domains 5, 6, 7 and 8. 
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From Figures 5.68 to 5.73, it can be observed that pore type 1 (represented by 

domains 1 and 5) consistently gives the lowest pressure drop, while pore type 4 

(represented by domains 4 and 8) gives the highest pressure drop across the wire 

mesh. The only exception is Figure 5.70 where pore type 3 was marginally higher in 

pressure drop compared to pore type 4. This observation however is in serious 

disagreement to the observation by Lu et al. (1996) and Tung et al. (2002) as they 

reported the lowest pressure drop for pore type 4 and highest pressure drop for pore 

type 1. To explain this discrepancy, the experimental data of previous researchers 

and industrial wire mesh manufacturers were consulted. A closer examination of the 

experimental results reported by Armour and Cannon (1968) and Rushton and 

Griffiths (1971) showed a consistently lower pressure drop for plain weave 

compared to twilled weave, with satin weave ranging between them. As plain 

weave has the most uniform pore type amongst other weave patterns, where it 

consists entirely of pore type 1, plain weave can be safely used as a benchmark to 

\check the accuracy of the numerical model. The consistency of our results with 

those of Armour and Cannon (1968) and Rushton and Griffiths (1971) showed the 

accuracy of our predictions. Personal communication with industrial experts and 

wire mesh manufacturers have confirmed the industrial practice whereby plain 

weave is primarily used due to its lowest flow resistance. These cross-examinations 

confirmed the validity of our results and gives confidence to our model. 
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Finally, it should be mentioned that the geometry of simulation domains allow the 

fluid to cross through openings in the artificial vertical boundaries as it flows 

through the interstices. This is a deliberate decision taken to preserve the actual 

physics of flow around the monofilament wire fiber and in the interstices between 

the wires. This however implied the examination of mass continuity has been taken 

to a greater complexity. Figure 5.74 illustrates they-velocity component taken in x-z 

plane at y = lw and y = 0. The symmetrical plots showed the expected outflow of 

fluid normal to the x-z plane at both artificial boundaries with the magnitude of the 

fluid flow being identical, albeit in opposite y- direction. Since the validation of the 

continuity has been addressed in the test cases, the representation of the fluid flow 

structure in the interstices has been considered more significant in a three

dimensional study such as the present investigation. 
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Figure 5.74 They- velocity component of Newtonian fluid flow through domain 4 
in the x-z plane at (a) y = lw and (b) y = 0 with inJet velocity Vz = -O.Olms·•. 
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5.14 Closure 

In this chapter, a selection of computational domains has been used to investigate 

the fluid flow through four basic pore types in a plain weave, twill weave and satin 

weave. The effect of weave pattern, aperture to diameter ratio and Reynolds number 

on flow pattern and pressure drop has been systematically studied. The results for 

each simulation domains were presented and discussed. The analysis has shown 

strong evidence that the developed model is capable of generating accurate results 

for flow of Newtonian and non-Newtonian fluids flow through monofilament filter 

media. 

189 



K.C.Ting CHAPTER 6: Conclusions and Recommendations 

CHAPTER6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

Three-dimensional weighted residual finite element schemes for solving Stokes flow 

have been successfully developed and applied to simulate flow through 

monofilament wire meshes. Two robust and reliable computer tools based on the 

sound and robust numerical technique mentioned have been developed to simulate 

Newtonian and non-Newtonian fluid flow through a woven wire mesh. The 

governing equations of continuity and momentum were solved by a mixed U-V-W-P 

finite element method in conjunction with a first order Taylor-Galerkin scheme for 

temporal discretization. A secondary solution scheme based on a continuous 

Penalty finite element method in conjunction with theta time stepping method was 

also used to solve the governing equations. The accuracy of the model is proven by 

three purpose-designed test cases of increasing complexity and compared against 

experimental data from the literature for simulation of flow through wire meshes. 

A selection of domains was used to investigate the effect of weave pattern, aperture 

to diameter ratio and Reynolds number on flow pattern and pressure drop. Based on 

these domains, simulations were successfully conducted to investigate fluid flow 

through four basic pore types in a plain weave, twill weave and satin weave. The 

flow fields in the interstices were illustrated using commercial graphics software 

package. The results successfully showed the weave pattern has a profound effect 

on the fluid flow pattern and pressure drop across the wire mesh. 
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The pressure drop across the wire mesh was analyzed and the results were found to 

be consistent with the existing experimental literature. Simulation results have 

shown that pore type 1 gives the lowest pressure drop, while pore type 4 gives the 

highest pressure drop across the woven cloths. This is consistent with the 

experimental results reported by Armour and Cannon (1968) and Rushton and 

Griffiths (1971), showing the accuracy of the predictions in this study. Personal 

communication with industrial experts and woven cloths manufacturer has 

confirmed the industrial practice whereby plain weave, which consists primarily of 

pore type 1, is primarily used due to its lowest flow resistance. 

To further verify the reliability of the developed model, the results obtained for fluid 

flow through domain 1 were tested against experimental studies by Rushton (1969) 

using water and Chhabra and Richardson (1985) using shear-thinning fluids. The 

drag coefficient versus Reynolds number plots based on the experimental results and 

the predictions in this study were found to be in close agreement. 

This showed that the developed model is capable of generating accurate results for 

flow of both Newtonian and non-Newtonian fluids through filter media. The model 

can be used by design engineers as a convenient and effective Computer Aided 

Design (CAD) tool for quantifying effects of pressure drop. The model can be 

extended to describe particle capture on/in the domains of wire mesh and woven 

filter cloths. As the model was developed with a high degree of flexibility, it is 

suitable for general applications in solving a wide range of flow systems in three

dimensional domains. These codes are currently being used by other PhD 
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researchers in the group for various investigations including bio-medical 

applications such as the development of artificial heart valve. 

6.2 Recommendations for Future Work 

This study has provided strong evidence that the developed algorithms can be used 

to predict fluid flow through a geometrically complex domain. The results provide a 

sound basis to proceed with future investigations. The continuation of this work can 

be extended to examine a number of effects not covered in this study. 

(1) To extend the individual unit adopted in this study to examine the effect of fluid 

flow through a series of combined individual units. The interaction of fluid flow 

across neighbouring units as it flows through the interstices can shed further light on 

the flow distributions and pressure drop in the interstices of a series of pore units. 

(2} To examine the effect of different pore types combined in a single solution 

domain. This is significant as in weaves such as the twill weave and satin weave, 

the woven cloth normally has two to three basic pore types in a unit area. The 

proportion of the basic pore types can be carefully chosen to emulate a typical twill 

or satin weave. 

(3} The study can be extended to more complicated weaves such as the plain Dutch 

weave, Dutch twilled weave and reversed plain Dutch weave. The absence of an 

aperture in the direction of fluid flow will undoubtedly pose a challenge in 

numerical simulations and pressure drop analysis. The flow distribution is expected 

to be complex and the pressure drop analysis is also expected to be not 
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straightforward. However, since this category of weaves has been widely used in 

industrial applications, it is only reasonable to see this area further explored. 

(4) The study can also be extended to study the effect of overlapping layers of 

screens. Sintered composite wire meshes have been widely used in the industry and 

the study to effectively quantify the flow and the pressure drop across the layers wiii 

be an interesting prospect. For example, studies can be conducted on combined 

layers of similar aperture and diameter ratio, and combined layers of differing 

aperture size and diameter ratio. In any case, the effect of distance between these 

layers on pressure drop and flow distributions should be investigated concurrently. 

(5) The model can be extended to incorporate particle capture in/on the wire mesh. 

This wiii be an interesting subject for processes involving either surface filtration or 

depth filtration. In particularly, the initial stages of filter cake formation in surface 

filtrations can be studied to improve the performance of the filter media. 

Furthermore, the efficiency of various types and specifications of wire meshes for 

filtering particulates, colloids and macromolecules can be examined and evaluated. 

This can be achieved by introducing an additional subroutine solving convective

diffusion type equations. 

(6) Metailic wire meshes have been widely used in heat transfer applications; for 

example, as a regenerator in Stirling cryocoolers, in waste heat recovery units of gas 

turbines and in the enhancement of cooling of electrical and electronic equipments. 

The heat transfer mechanism can be incorporated into the developed model and 

studied systematically. 
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(7) A software package with user-friendly graphic interfaces can be generated to 

facilitate industrial design engineers and process engineers. With easy punch-in of 

parameters such as aperture, wire diameter and flow rate, an estimated pressure drop 

over a wire mesh systems (and vice versa) can be given based on the correlations 

obtained from the study. With available IT tools containing front and back end 

interfaces and support, it will undoubtedly be a significant contribution to the 

industry with wire mesh applications. 
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!so-parametric Mapping 

Fitting a curved boundary with straight-sided basic elements would be a less 

than satisfactory representation. Ideally curve-sided elements should be 

formulated for the task as it permits the use of a smaller number of larger 

elements and still achieve a close boundary representation. This is essential for 

three-dimensional modelling as the great number of degrees of freedom may 

overwhelm even the largest capacity computer. The idea underlying the 

development of iso-parametric element focused on mapping simple geometric 

shapes in some local coordinate systems into distorted shapes in the global 

Cartesian coordinate systems and then evaluating the resulting element 

equations. This advantage of finite element method has been associated with the 

capability to handle geometrically complex domains. 

In iso-parametric mapping, a regular element called the 'master element' is 

selected and a local finite element approximation cased on the shape functions of 

this element is established. The master element is subsequently mapped into the 

global coordinate to generate the distorted elements. The shape functions used 

in the mapping functions are identical to the shape functions used to obtain finite 

element approximation. Finite element approximation of unknown functions in 

terms of locally defined shape functions can be written as 

8 

f = LN;(q,rJ,()f. (ALl) 
i=l 

with/; are nodal degrees of freedom. Consider an eight-noded linear rectangular 

prism element as shown in Figure Al defined in local Cartesian coordinate 

system with its origin located at the centre of the element 

Al-2 
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6~--

(-1,+1,+1) 

2"'--
(-1,+1,-1) 

5 (-1,-1,+1) 

~~J4 
(+1,-1,-1) 

3 
(+1,+1,-1) master element, Qm 

Element in global mesh, Q, 

Figure AI: The mapping between a master element and an element in a global mesh. 

The interpolation function for the linear prism element is given as (Huebner, 

2001) 

(A1.2) 

The shape functions at each respective point shown in Figure Al can be shown 

to be 
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1 1 N1 =-(1-q)(1-77)(1-;) N2 =-(1-qX1+1])(1-;) (Al.3 a, b) 
8 8 

1 1 
N3 =-(1+qX1+77X1-;) N4 =-(1+q)(1-1])(1-() (A1.3 c, d) 

8 8 

1 1 N5 =-(1-q)(1-1])(1+;} N6 =-(1-qX1+77X1+() (Al.3 e, f) 
8 8 

1 
N 8 =!(1+q)(1-1])(1+() N1 =-(1+q)(1+77X1+;) (A1.3 g, h) 

8 8 

Consider the set of coordinates q, 1], ( and a corresponding set of global 

coordinates x, y, z. Applying the rules of partial differentiation, the derivatives 

for q, 1], (as 

aN, oN, ax aN, ay aN, az 
-=--+--+--a; ax a; ay a; az a; 

aN, oN, ax aN, ay oN, az 
-=--+--+--
01] OX 01] Oy 01] oz 01] 

In matrix form, Eqs.(Al.4 a), (A1.4 b) and (A1.4 c) can be written as 

oN, ox Oy oz aN, - -a; a; a; a; ox 
oN, OX ~ oz aN, 

= - -
01] 01] 01] 01] ay 
oN, OX ~ oz aN, - -a; a; a; a; oz 

(A1.4 a) 

(A1.4 b) 

(A1.4 c) 

(A1.5) 

The square matrix of the above equation is known as the J acobian matrix where 

ox ay oz - -a; a; a; 
J= 

OX oy oz 
(A1.6) - -

01] oTJ 01] 
OX ay oz - -a; a; a; 

A1-4 
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From the approximation 

8 

x(;,1J,() = I,N,(;,1J,()x, (A1.7 a) 
i=l 

8 

y(;,1J,()= I,N,(;,1J,()y, (A1.7 b) 
i=l 

8 

z(;,1J,() = I,N,(;,1J,()z, (A1.7 c) 
i=l 

Global derivatives of functions can now be related to the locally defined finite 

element approximation as 

(A1.8) 

with i = I, 2, .. . r. To determine the global derivatives, the Jacobian matrix is 

inverted and is written as 

aN, 
ax 

aN, 
ay 
aN, 
az 

(A1.9) 

With this equation, expression for aj , aaj and aal] can be found directly with 
ax y z 

a], aN, aN2 aN, 
/, ax ax ax ax 

a], 
= 

aN, aN2 aN, fz (Al.IO) 
ay ay ay ay 
a], aN, aN2 aN, !, 
az az az az 
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From Eq. (A1.9), 

(Al.ll) 

To complete the evaluation of the integral, the element of volume dxdydz in 

terms of dq dqd( 

dxdydz = J!Jdqdqd( (A1.12) 

where J!J is the determinant of Jacobian matrix. The operations indicated in Eq. 

(Al.9) and Eq. (A1.12) depend on the existence of [JT1 for each element of the 

assembly, and the coordinate mapping described by Eq. (A1.7 a-c) is unique 

only if [J]-1 exists. 

With these transformations, the integral such as 

If("' a,p ar; a,p)axa a 
V 'f'• dX ' dy ' dz y z 
• 

(A1.13) 

with V, the volume of distorted element in the x-y-z coordinate system, is 

reduced to 

(A1.14) 

with f the transformed function f This integral is subsequently solved by 

numerical integration using the Gauss-Legendre quadrature. The details of 

quadrature technique, sampling points and weighting factors can be referred at 

Zienkiewicz and Taylor (2000). 
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Partial derivatives with respect to q 

oN, = _.!.(r-1lX1- ?) 
if; 8 

rW2 = _.!.(r + 1l Xr- ?) 
a; 8 

(Al.l5a, b) 

aN r aN. =.!.(1-TlXI-?) -
3 =-(l+T]Xr-?) (Al.l5c, d) 

a; 8 a; 8 

oNs = _.!.(1-1] Xr + ?) aN r -• =--(l+T]Xr+?) (Al.l5e, f) 
a; 8 a; 8 

aN r oN8 = .!.(r-17 Xr + ?) ai =s(~+ 17X1 +?) (Al.l5g, h) 
a; 8 

Partial derivatives with respect to 17 

oN, =-.!.(r-;Xr-?) 
01] 8 

oN2 = .!.(r-;Xr- ?) 
01] 8 

(Al.l6a, b} 

aN 1 oN. = _.!.(r +qXI- ?) -
3 =-(I+;Xr-?) (Al.l6c, d) 

01] 8 01] 8 

oNs =-.!.(r-;X1+?) 
01] 8 

aN. = .!.(r- ;Xr + ?) 
01] 8 

(Al.l6e, f) 

aN7 = .!.(r + ;Xr + ?) aN 1 
_8 =--(r+;Xr+?) (Al.l6g, h) 

01] 8 01] 8 

Partial derivatives with respect to ( 

aN, = _!.(r- ;Xr-17) 
01] 8 

aN 2 = _.!. (1- ;Xr + 1l) 
01] 8 

(Al.l7a, b) 

aN r aN. = _.!.(r + ;X1-T7) -
3 =--(r+;Xr+1l) (Al.l7c, d) 

01] 8 01] 8 

oNs =.!.(r-;Xr-17) aN r 
-· =-(1-;Xr+Tl) (Al.l7e, f) 

01] 8 01] 8 

aN 1 aN r 
-

7 =-(r+;Xr+Tl) -
8 =-(r+;X1-T]) (Al.l7g, h) 

01] 8 01] 8 
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ABSTRACT 

Monofilament filter cloths are used as the separation media in filtration; woven wire 
cloths or screens are also used as the media in filters or to enhance the integrity of the 
filter medium in, for example, filter cartridges. In this paper we present research results 
aimed at simulating non-Newtonian fluid flow through a woven cloth. Due to the 
complex geometry of a woven cloth, 3-D modelling is necessary to correctly visualise 
the structure of the flow and hence to predict pressure losses. The modelling in a 3-D 
domain was handled using a finite element method which is known to cope with flow 
domains in complex geometries very effectively. The governing equations of continuity 
and momentum were solved by a mixed U-V-W-P finite element method and in 
conjunction with a first order Taylor-Galerkin scheme for temporal discretization. The 
simulation results were found to be in good agreement with experimental data, showing 
the developed model is capable of generating accurate results for flow of both 
Newtonian and non-Newtonian fluids through filter media. 

Keywords: Woven media, wire cloths, wire mesh screens, finite element method, three
dimensional, Newtonianfluids, non-Newtonianfluids, pressure loss. 

INTRODUCTION 

Whilst woven fabrics are commonly used as filter media, metal and plastic wire screens 
have also been widely used in the construction of filters and other separators, either as 
the support for finer filter media or as the filtering medium itself. However, the 
presence of a mesh changes the characteristics of the fluid flow and can affect the 
filtering effectiveness of the medium. Many studies have been conducted to investigate 
fluid flow past ideal shapes such as cylinders and spheres for Newtonian fluids, but 
there are relatively few studies of flow through woven fabrics and wire screens. 

Fluid flow through cloths and screens has been studied experimentally by various 
researchers (Wieghardt, 1953; Armour and Connon, 1968; Rushton, 1969; Rushton and 
Griffiths, 1971; Ehrhardt, 1983; Squiers, 1984; Chhabra and Richardson, 1985; 
Kiljanski and Dziubinski, 1996). Most of these researchers used various gases and 
Newtonian liquids as the experimental fluids in their work. For instance, Rushton 
(1969) presented a comprehensive series of experimental data on flow of air and water 
through filter cloths, while Rushton and Griffiths (1971) presented various approaches 
to explaining the flow situation in woven fabrics- those approaches included an orifice 
analogy, a randomly packed bed analogy, and the analytical solution for creeping flow 
over cylinders. 

1 
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Investigation of flow of non-Newtonian liquids through single screens are very limited. 
Chhabra and Richardson (1985) studied experimentally flow through a screen using a 
Newtonian liquid and shear-thinning carboxymethyl cellulose (CMC) solutions of 
various concentration with n (the Power Law index) between 0.34 and 0.61. The 
correlation between the drag coefficient and the Reynolds number (ReNN) was 
investigated and reported. Kiljanski and Dziubinski (1996) furthered the study to 
include sets of filter screens using shear thinning molten polyethylene for a lower range 
of Re and provided correlation of drag coefficient with Re for multiple screens. None of 
these researchers studied the velocity profile when the fluids flow through the screen. 

Lu et al. (1996) lamented that most previous studies on fluid flow through woven 
structures have focused on the pressure drop problem and not the macroscopic details of 
the velocity profile and pressure contour in the weave apertures. They argued that a 
better understanding of the flow pattern in the woven structure could prove useful in 
examining the initial stages of cake filtration as well as the effect of weaves on fouling 
phenomena within a filter cloth. They studied the influence of fabric pore construction 
on the flow pattern in the interstices and downstream of a cloth using a commercial 
CFD software FLUENTlM, and discovered that the flow pattern in the interstices and 
downstream were different for each basic pore type. As the position of the upper 
filament in each pore type differs, the flow of water which swirls around the upper 
surfaces of the upper filament into the narrow channel between the cloth filaments was 
characteristically unique for each case. Tung et al. (2002) furthered the study to include 
fluid flow through multifilament cloths and spun staple yarn. By assigning different 
permeability values to the woven filament, they investigated the distribution of fluid 
flow in interyam and interfibre pores of four basic pore types. Their simulations results 
showed a similar pattern of pressure drop to that of Lu et al. where pore type 1 were 
found to give the highest pressure drop and pore type 4 gives the lowest pressure drop. 

Non-Newtonian flow processes characterize many polymer engineering operations, and 
very little is known about the boundary layer flows for non-Newtonian fluids. An 
examination of the available literature revealed that most of the boundary layer 
literature pertains to the simple power-law fluid model and to the simple shapes 
including flat plates, spheres and cylinders (Skelland, 1967; Astarita and Marrucci, 
1974; Schowalter, 1978; Chhabra, 1999; Chhabra and Richardson, 1999). Considering 
the significance of knowledge in the flow behaviour of non-Newtonian fluids, it is 
necessary to research the complex flow field generated by the flow of non-Newtonian 
fluid through a complex geometry. Hence, the significance of studying the flow of a 
non-Newtonian fluid through a wire mesh cannot be over-stressed. 

Computational fluid dynamics (CFD) techniques provide a powerful and convenient 
route for the qualitative and quantitative analysis of the non-Newtonian flow systems. 
With increasingly powerful processors and more economical computing cost, accurate 
computations of very complex flow problems have been made possible in 2-D and even 
3-D domains. Therefore, CFD seems to be a feasible alternative to study flow through 
weave structures that are characterized by small apertures in the mm and f.liTl size 
ranges. 
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MATHEMATICAL MODEL 

A 3-D mathematical model based on flow and constitutive equations has been 
developed. The majority of highly viscous non-Newtonian fluid flows are characterized 
as low Reynolds number Stokes flow regimes in which the inertia terms in the equation 
of motion are neglected. In addition, highly viscous flow systems are in general 
dominated by stress and pressure variations and the body forces acting on the fluid are 
relatively small and can be justifiably ignored. The governing Stokes flow equations in 
Cartesian coordinate systems are summarised below. 

Equation of Continuity 

Th . . . ~ . 'bl fl 'd . . avx av, av, 0 e contmmty equatiOn .or an mcompress1 e m IS wntten as-+-+-= . 
ax ay oz 

However, a slightly perturbed form of this equation is used here and the equation is 
written as: 

_1_op + avx + av, + av, =0 
pc,2 ot ax ay az 

(1) 

where c,, p, v, p represent the speed of sound in the fluid, pressure, velocity and the 
fluid density, respectively. 

This perturbed form of the continuity equation has been used in order to satisfy the 
Ladyzhenskaya-Babuska-Brezzi stability condition (Ladyzhenskaya, 1969; Babuska, 
1971; Brezzi, 1974). The use of this continuity equation, which corresponds to slightly 
compressible fluids, allows the utilization of an equal order interpolation model for the 
velocity and pressure, and hence increases the flexibility of the developed solution 
scheme (Nassehi, 2002), and has been applied successfully to modelling flows in 
pleated cartridge filters (Ruziwa et al., 2004; Hanspal et al., 2004; Nassehi et al., 2005). 

Momentum Equation 
The momentum equation can be written as 

av, -- op +l[2 av,]+ ~ l[ (av, + avj)] (2) 
P at - oi oi 17 oi LJ oi 17 oj oi 

where i = x, y, z andj * i, and 17 is fluid viscosity. 

Constitutive Equation 
The viscosity of the non-Newtonian fluid is updated in the solution algorithm using the power 
law model: 

( . )n-1 
1J = 1Jo r (3) 

where 1J is the apparent viscosity, 1Jo is the consistency index, n is the power law index 
and r is the shear rate. 

Numerical Scheme 
The numerical scheme used in this work is the Mixed Finite Element U-V-W-P 
technique (Zienkiewicz and Taylor, 2000) in which both velocity and pressure in the 
governing equations are regarded as primary variables and are discretized as unknowns. 
The first order Taylor-Galerkin method was used to discretize the equations. 
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MODEL VALIDATION 

3-D test cases were devised to check the computer codes developed. Three test cases 
were designed in increasing mesh complexity to progressively test the capability of the 
algorithm. 

Test Case 1 was used to validate the capability of the program in solving the continuity 
and motion equations. The main test for the accuracy of the simulation results is 
ensuring a mass balance over the domain under investigation. A rectangular domain, 
shown in Figure 1, was adapted with four impermeable, no-slip, vertical walls and the 
inlet was at the upper horizontal surface and the outlet at the bottom horizontal surface. 
The ratio ofthe domain length (x), width (y) and height (z) was 3:3:5. 

FLOW DIRECTION 

Vz 

Figure 1 A schematic diagram of Test Case 1. 

Test case 2 is slightly more complex with two half-cylinders . protruding into a 
rectangular domain, emulating the flow around two parallel fibres that form two sides of 
an aperture. The ratio of aperture size to wire diameter used in this test case was 1.5 
(values from about 1.1 up to about 7 are commonly used ratios in industrial wire 
meshes). The inlet was again the upper horizontal surface and the outlet was at the 
bottom horizontal surface. The half cylinder surfaces were considered to be 
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impermeable and non-slip. The ratio of the domain length (x), width (y), height (z) and 
wire diameter (d) was 5:5:2:2 and the schematic computational mesh is shown in Figure 
2. 

Test Case 3 has all the basic features of a typical wire mesh domain except that the four 
supposedly intertwined weft and warp wires were flattened to a horizontal plane to test 
the response of the model to highly complex geometry and mesh distortion. The four 
cylinders were jointed together via a 45° slice at each corner. The ratio of the domain 
length (x), width (y), height (z) and wire diameter (d) was 5:5:2:2. The results from this 
test case provided a powerful pretext into understanding the complex flow field in 
different pore types of a wire mesh. Inlet and outlet settings were similar to Test Case 1 
and Test Case 2. The half cylinder surfaces were again considered to be impermeable 
and non-slip. The schematic domain is shown in Figure 3. 

FLOW DIRECTION 

Vz 

Figure 2 A schematic diagram of Test Case 2. 

Boundary Conditions 
The velocity Vz corresponds to the approach velocity of the fluid towards the aperture 
and was set as 0.1 m s·1 at the inlet. The boundaries (the cloth filaments) were 
considered to be impermeable, non-slip surfaces where vx = v, = v, = 0. The 

computational mesh and degree of freedom (DOF) used for each test case are given in 
Table 1. 
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Table 1 Computational mesh used for each test cases. 

Test Case 
1 
2 
3 

No. of elements 
1920 
4096 
4096 

No. of nodes 
2511 
4913 
4913 

DOF 
3544 
4572 
4164 

FLOW DIRECTION 

Vz 45° INTERSECTION AT CORNERS 

Figure 3 A schematic diagram of Test Case 3. 

Physical Properties and Numerical Parameters 
A non-Newtonian fluid with the properties given in Table 2 was used in the simulations. 
Similar properties were used for the simulations of the Newtonian fluid, but with n 
taken to be 1.0. 

Table 2 Physical properties of the non-Newtonian fluid used. 

Physical Property 
Density, p 

Consistency index, 1]o 

Power Law index, n 

Value 
970 kgm·3 

80.0 kg m·1 s·1 

0.90 
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A time step of !1t = 0.01 s was used throughout the simulations and the time stepping 
parameter Bused for the flow modelling was 0.95. 

An Intel Pentium TV 2.6 GHz processor has been used to execute the computation to 
produce simulation results. The pre-processing work of the domain development and 
the mesh generation were handled using COSMOS GEOST AR. Post-processing 
presentation of field variables such as flow velocity vectors and pressure contours were 
plotted using the commercial graphic software package SURFER 8. 

VALIDATION RESULTS 

Figure 4 illustrates a typical velocity vectors of Test Case 1 in the x-z plane at y = l,J2 
for non-Newtonian fluid. The maximum z-direction velocity Vz of non-Newtonian fluid 
were found to be 4.5% higher that of the Newtonian liquid. This can be explained by 
the shear-thinning effect of the non-Newtonian fluid. The overall mass balance for 
Newtonian and non-Newtonian simulations is 99.7% and 99.4%, respectively. The 
excellent accuracy showed that continuity was preserved in the simulations. 
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·15-Q<Xl5 • ! ! • 

4 l J .j 
1 • ! ooa; ! • 
• l l • 

Q(l) 005 • ! ! • 
• ! ! • 

Q cm 4 l ! .j 

• l ! • 
Q(l)400 + I I 4 

Q()(l;1 0.00516 Q(Xl)2 0 .00526 QCC63 0.<:0636 Q<X:64 
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3.50E-002 

3.00E-002 
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2.00E-002 

1.50E-002 

Figure 4 The velocity vectors of test case 1 in the x-z plane at y = l,J2 for a non
Newtonian fluid. 
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Figure 5 shows a typical velocity vectors of Test Case 2 for a non-Newtonian fluid in 
the x-z plane at y = l,./2 and in the y-z plane at x = lj2 Higher velocities were observed 
at the area immediately above the cylinders and at the section between the cylinders 
compared to the velocity at the inJet and outlet. This is attJibuted to the compression of 
the fluid that leads to the acceleration of the fluid velocity. The overall mass balance 
for Newtonian and non-Newtonian simulations in Test Case 2 showed an outlet flow of 
95.0% and 94.8% compared to the inlet flow. The discrepancy is due to the relatively 
coarse mesh used and can be improved by fmther mesh refinement. This is evident 
when an earlier run with a very coarse mesh of 512 elements gave a mass balance of 
86.2% for Newtonian liquid. 
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(b) 

Figure 5 The velocity vectors of test case 2 in the (a) x-z plane at y = L, /2 
(b) y-z plane at x = lj2 for non-Newtonian fluid. 
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Figure 6 depicted the a typical simulation results of Test Case 3 for a non-Newtonian 

fluid in the x-z plane at y = /,/2 and in the y-z plane at x = lf2 The highly complex 

geometry of the four adjoined cylinders formed a nan ow channel for the fluid to flow 

through. The mass balance tor Newtonia.n and non-Newtonian simulations is 96.1 % 

and 95.8%, respectively. Simulations using a very coar e mesh o f 512 elements gave a 

mass balance of 86.3%. These results shows that the mass balance accuracy can be 

impro ved by mesh refinement. The overal l co nsistency in th results showed that the 

model is capable of solving 3-D flow problem in a domain with complex geometry. 

5 

5 

5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 

(a) 

5.05 5.1 5.15 5.2 5.25 5.3 5.35 5 .4 5.45 5.5 

(b) 

Figure 6 The velocity vectors of test case 3 in the (a) x-z plane at y = l.,/2 
(h) y-z plane at x = lf2 for non-Newtonian fluid. 
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WOVEN MEDIA 

The model can now be applied to the simulation of flow through a monofilament woven 
medium. The weaves considered in this work are the plain weave, the twill weave, and 
the satin weave. These give rise to the four types of basic pore shape (Backer, 1951) 
and are shown in Figure 7 , where only the half circle of each filament is illustrated. 

(i) Pore Type 1 (ii) Pore Type 2 

(iii) Pore Type 3 (iv) Pore Type 4 

Figure 7 Four types of basic weave patterns of a wire mesh. 

RESULTS AND DISCUSSIONS 

Fluid flow through a plain weave (pore type 1, Figure 7) was first investigated in 
conjunction with the experimental studies by Rushton (1969) using water and Chhabra 
and Richardson ( L985) using shear thinning fluids. Simulations were tested against 
experimental data extracted from both studies. The ratio of aperture size to wire 
diameter used is 1.5 and the ratio of the domain length (x), width (y) , height (z) and wire 
diameter (d) is 5:5:5:2. The flow inlet is at the top horizontal surface while the flow 
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exit is at the lower horizontal surface. A computational grid with 4608 elements and 
6560 nodes with 3363 DOF was used in the simulations. 

A typical velocity vectors for the flow through wire mesh is illustrated in Figure 8. The 
flow is observed to swirl inwards on both sidewalls towards the centre on both x-z and 
y-z planes. This is consistent with the location of the wire mesh on both planes. Higher 
velocities were also observed at the area immediately above the wire mesh and in the 
section between the wires, compared to the velocity at the inlet and outlet. 
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Figure 8 Ve locity vectors for flow of non-Newtonian fluid through pore type 1 at 
(a) x-z plane at y = lt>/2 (b) y-z plane at x = lfl. 
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The pressure profile illustrated in Figure 9 shows the expected high pressure on the 
surface of the wire meshes and decreasing rapidly as the fluid flows through the wire 
meshes. Cross section plots were presented for pressure contours in both the x-z plane 
at y = l11J2 and the y-z plane at x = lj2. 
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Figure 9 Pressure contour for flow of non-Newtonian fluid through pore type 1 at 
(a) x-z plane at y = l,,J2 (b) y-z plane at x = lj2. 
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The physical properties of the test fluids and the characteristic dimensions of the wire 
mesh and monofilament c loths used in Chhabra and Richardson's (1985) and Rushton 's 
(1969) experiments and in thi s study are summarized in Table 3. 

Table 3 Physical properties of the test fluids and characteristic dimensions of the plain 
weave wire mesh screens and monofilament c loth. 

Test Liquid 11 r;o Aperture d Symbols in 
(Pas) (~m) (~m~ Figure 10 

Chhabra and Richardson ( 1985 ); wire mesh screens 
1.5% CMC in water 0.60 6.6 53 36 • 
1.5% CMC in water 0 .59 7.6 53 36 • 
2.0% CMC in water 0 .61 9.5 150 100 ... 
2.5% CMC in water 0 .34 45.0 150 100 • 
Rushton ( 1969); monofilament Nylon cloth 
Water 1.0 0.001 24 30 + 

1.0 0.001 42.4 37 + 
1.0 0.001 60 30 + 
1.0 0.001 59 44 + 
1.0 0.001 7 1 61 + 
1.0 0.001 99 75 + 
1.0 0.001 144 105 + 
1.0 0.001 186 153 + 

This study 
1.5% CMC in water 0.60 6.6 300 200 0 
1.5% CMC in water 0.59 7.6 300 200 0 
2.0% CMC in water 0.61 9.5 300 200 6. 
2.5% CMC in water 0.34 45.0 300 200 0 
Water 1.0 0.001 300 200 X 

Chhabra and Richardson presented their experimental resul ts for shear-thinning fl uids 
using a loss coefficient C0 (which we refer to as a drag coefficient) defined as 

CD = 2/lp 1 (4) 
p (u! &)

2 (1 -&) 
where e is the porosity of the wire mesh and !lp the pressure drop across the wire mesh. 
They also used a modified Reynolds number for a non-Newtonian fluid to 

ReNN =p(u/&)
2-n dnjr;0 , a form similar to that used by Metzner (1956) and Skelland 

(1967) with porosi ty taken into consideration. In their paper, however, they erroneously 
took d to be the wire diameter rather than the hydraul ic diameter, d,, which can be taken 
as the aperture side dimension in the case of a square mesh. A more appropriate 
con·eJation for ReNN consistent to that used by earlier researchers is therefore given as: 
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(5) 

where ReNN reduces to the Reynolds number for a Newtonian liquid when n = 1. The 
experimental results presented in their paper were recalculated using equation (5) and 
presented in Figure 10. The results for water flow through monofilament nylon cloths 
reported by Rushton (1969) were also calculated us ing equations (4) and (5) and 
included on Figure 10. For the simulations in this work, the relationship between the 
flow rate and the pressure drop for each fluid is calculated from the model and 
subsequently presented using equations (4) and (5) and also plotted in Figure 11. From 
Figure 10, the simulation results for water and the non-Newtonian Liquid were observed 
to be in good agreement with the experimental results. Furthermore, the drag 
coefficient Cv and the Reynolds number ReNN are related by a best fit curve of 

c = 10 (6) 
D R 1.14 

eNN 

1.E+09 ,---------------- -----, 

1.E+08 

1.E+07 

1.E+06 
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' 
' ' ' • 0 

•• _. e Chhabra and Richardson ( 1985) 
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(Legend - see Table 3) 

' ' 
' ' ' ' ' ' ' ' ' ' 

1.&01 L.........~...._~ .......... ~~""--~ ....... ~~....__.~ ......... ~~.____..~ ..... 

1.&07 1.&06 1.&05 1.&04 1.&03 1.&02 1.&01 1.E+OO 1.E+01 

Reynolds Number, Re or ReNN 

Figure 10 Drag Coefficient vs Reynolds Number for Newtonian and non-Newtonian 
liquid flows through plain weave monofilament cloths and meshes. 
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The CDReNN 1
·
14 values for the simulation results in this study are tabulated in Table 4. 

The simulation results obtained in this study are in good agreement to the experimental 
studies conducted by earlier researchers and this gives confidence to the developed 
model for its capability in simulating Newtonian and non-Newtonian fluid flow through 
a complex domain. 

Table 4 CDReNN 1.1
4 for the fluids used in this study. 

Fluid 

Water 
1.5% CMC in water 
1.5% CMC in water 
2.0% CMC in water 
2.5% CMC in water 

n 

1.0 
0.34 
0.61 
0.59 
0.60 

1'/o 
(Pa.s) 
0.001 
45.0 
9.5 
7.6 
6.6 

0.87 * 10 
0.26 * 10 
0.80 * 10 
1.03 * 10 
1.11 * 10 

The simulations were extended to pore types 2, 3 and 4 (see Figure 7). The fluid 
properties given in Table 2 were used. The drag coefficient CD and the Reynolds 
number ReNN for each pore types were calculated using equations (5) and (6) and plotted 
in Figure 11. From Figure 11, it can be observed that pore type 1 gives the lowest 
pressure drop, while pore type 3 gives the highest pressure drop across the wire mesh 
with pore type 2, 4 in between them. This observation however is in serious 
disagreement to the observation by Lu et al. (1996) and Tung et al. (2002) as they 
reported the lowest pressure drop for pore type 4 and highest pressure drop for pore type 
1. To explain this discrepancy, the experimental data of previous researchers and the 
industrial wire mesh manufacturers were consulted. A closer examination of the 
experimental results reported by Armour and Cannon (1968) and Rushton and Griffiths 
(1971) showed a consistently lower pressure drop for plain weave compared to twilled 
weave, with satin weave ranging between them. As plain weave has the most uniform 
pore type amongst other weave patterns, where it consists entirely of pore type 1, plain 
weave can be safely used as a benchmark to check the accuracy of the numerical model. 
The consistency of our results to that of Armour and Cannon (1968) and Rushton and 
Griffiths (1971) showed the accuracy of our predictions. Personal communication with 
the industrial experts and wire mesh manufacturer has confirmed the industrial practice 
whereby plain weave is primarily used due to its lowest flow resistance. These cross
examinations confirmed the validity of our results and gives confidence to our model. 
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Figure 11 Drag Coefficient vs Reynolds Number for non-Newtonian fluid flow 
through four basic pore types in monofilament cloths and meshes. 

CONCLUSION 

A 3-D weighted residual finite element scheme for solving Stokes flow has been 
successfully developed and applied to simulate flow through monofilament wire meshes 
and fabrics. The accuracy of the model is proven by three test cases of increasing 
complexity and compared against experimental data for simulation of flow through wire 
meshes. The pressure drop across the wire mesh was analysed and the results were 
found to be in good agreement with the existing experimental literature. The results 
provide a sound basis to proceed with modelling of fluid flow through a wire mesh in 
order to quantify the effects of pressure drop, stress and particle capture in the domain 
of filters. 
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NOMENCLATURE 

p 
Re 
ReNN 
t 

Speed of sound in fluid (m s'1) 

Drag coefficient 
Fibre diameter (m) 
Hydraulic diameter (m) 
Flow behaviour index in Power Law model 
Pressure (Pa) 
Reynolds number 
Reynolds number for non-Newtonian fluid 
Time (s) 
Velocity in x-direction (m s'1) 

Velocity in y-direction (m s '1) 

Velocity in z-direction (m s'1) 

Greek Symbols 

y Strain rate (s-1
) 

fJ Porosity 
'f/ Apparent Viscosity (Pa s") 
'f/fJ Consistency Index used in Power Law equation 
B Time stepping parameter 
p Density (kg m'3) 
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A three-dimensional finite element computer model has been developed to simulate non-Newtonian fluid 
flow through a wire mesh. The governing equations of continuity and momentum were solved by a 
mixed finite element method and in conjunction with first order Taylor Galerkin scheme for temporal 
discretization. A slightly perturbed form of continuity equation is considered in this study in order to 
satisfy the Ladyzhenskaya-Babuska-Brezzi stability condition. The use of this continuity equation, which 
corresponds to slightly compressible fluids, allows the utilization of equal order interpolation model for 
the velocity and pressure. The flow of a highly viscous shear-thickening fluid used in aeronautical filters 
through a wire mesh has been studied. The influence of weave pattern on downstream flow distribution 
and pressure drop has been investigated and presented in this paper. A commonly used ratio of wire 
diameter to apetture was adapted and results have been obtained for shear-thickening fluid with power 
law index n = 1.3. The simulation results showed the developed model is capable of generating accurate 
results in solving three-dimensional non-Newtonian flow problems. 

1. Introduction 

Woven wire screens have been widely used in the construction of conventional sieves, filters 
and separators in the solid-liquid processes in the filtration of polymers, chemicals, 
pharmaceutical, cosmetic, hydraulic oil, fuels, as well as luxury food and beverage industry. 
Woven wire mesh is used either as the support for finer filter media, for example in filter 
cartridges, or as the filtering medium itself. 

Studies on woven wire screen have been limited and they typically considered permeability, 
porosity and resistance properties of the wire mesh. Fluid flow through screens have been 
studied by various researchers such as Wieghardt [1], Armour and Connon [2], Rushton [3], 
Rushton and Griffiths [4], Ehrhardt [5], Squiers [6], Chhabra and Richardson [7], Kiljanski and 
Dziubinski [8]. Most of these researchers used various gases and Newtonian liquids as the 
experimental fluids in their work. For instance, Rushton [3] presented a series of 
comprehensive experimental data on flow of air and water past filter cloths in a research report, 
while Rushton and Griffiths [4] presented various approach to explaining the flow situation in 
woven fabric - those approaches included an orifice analogy, a randomly packed bed analogy 
and the analytical solution for creeping flow over cylinders. 

Lu et al. [9] lamented that most previous studies on fluid flow through woven structures have 
focused on the pressure drop problem and not the macroscopic details of velocity profile and 
pressure contour in the interstices. They argued that a better understanding of the flow pattern 
in the woven structure could prove useful in examining the initial stages of cake filtration as 
well as the effect of weaves on fouling phenomena within a filter cloth. They studied the 
influence of fabric pore construction on the flow pattern in the interstices and downstream using 
a CFD software, and discovered that construction of the fabric pores has a significant influence 
on the flow pattern in the interstices and downstream. 

Investigations of flow of non-Newtonian liquids through single screens are very limited. 
Chhabra and Richardson [7] studied experimentally flow past a single screen for Newtonian 
liquid and shear-thinning liquids carboxymethyl cellulose (CMC) of various concentration with 
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n between 0.34 to 0.61. The correlation between the drag coefficient and the Reynolds number 
(ReNN) was investigated and reported. Kiljanski and Dziubinski [8] furthered the study to 
include sets of filtration screens using shear-thinning molten polyethylene for a lower range of 
Re and provided correlation of drag coefficient and Re for multiple screens. None of the 
researchers studied the velocity profile when the fluids flow past the wire mesh interstices. 

Ting et al. [10] successfully conducted simulations on flow of shear-thinning fluid through a 
plain weave wire mesh based on the fluid properties reported in Chhabra and Richardson's 
experiment [7]. Their simulation results showed a close agreement with the experimental works 
of Chhabra and Richardson for shear-thinning fluid and Rushton [3] for Newtonian fluid. 

Shear-thickening fluid forms an important class of Non-Newtonian fluids and today there are an 
increasing number of engineering fluids characterized by shear-thickening behaviour. One such 
example is the non-combustible and non-hydrocarbon based aeronautical hydraulic fluid. 
Considering the significance of the knowledge in the flow behaviour of shear-thickening fluids, 
it is only natural to take a further step into studying the complex flow field generated by the 
flow of a shear-thickening fluid through a complex geometry. 

Computational fluid dynamics (CFD) techniques provide a powerful and convenient route for 
the qualitative and quantitative analysis of the non-Newtonian flow systems. With increasingly 
powerful processors and more economical computing cost, accurate computations of very 
complex flow problems have been . made possible in two-dimensional and even three
dimensional domains. Therefore, CFD seems to be a feasible alternative to study flow past wire 
mesh as it is normally characterized by small interstices in the range of mm and pm. 

There are several numerical analysis techniques commonly employed by engineers to solve the 
non-linear governing partial differential equations (PDEs). Among these techniques are the 
Finite Difference Method, Finite Volume Method, Finite Element Method and the Boundary 
Element Method. In solving non-linear field problems of geometrically complex domain under 
various types of boundary conditions, Finite Element Method was found to be the most 
appropriate technique for its flexibility and capability. 

2. Mathematical model 

A three-dimensional mathematical model based on flow and constitutive equations has been 
considered. The majority of highly viscous non-Newtonian fluid flows are characterized as low 
Reynolds number Stokes flow regimes in which the inertia terms in the equation of motion are 
neglected. In addition, highly viscous flow systems are in general dominated by stress and 
pressure variations and in comparison the body forces acting upon them are small and can be 
justifiably ignored. The governing Stokes flow equations in Cartesian coordinate systems are 
presented as follows: 

2.1 Equation of continuity 

A slightly perturbed form of continuity equation is considered here and the equation is written 
as 

(1) 

where c, p, v, p represent speed of sound in the fluid, pressure, velocity and density, 
respectively. This slightly perturbed form of continuity equation has been used in order to 
satisfy the Ladyzhenskaya-Babuska-Brezzi stability condition [11-13]. The use of this 
continuity equation, which corresponds to slightly compressible fluids, allows the utilization of 
equal order interpolation model for the velocity and pressure hence increases the flexibility of 
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the developed solution scheme [14], and has been applied successfully to modelling flows in 
cartridge filters [15]. 

2.2 Momentum equation 

The majority of highly viscous non-Newtonian fluid flows are characterized as low Reynolds 
number Stokes flow regimes or creeping flow where the fluid flow is very slow, normally with 
Re<! [16]. In addition, the body forces acting upon them are small and can be justifiably 
ignored [14]. The momentum equation can therefore be written as 

ovx _ op o [2 avx] o [ (ovx ovY)] o [ (ov, ovx)] p----+- TJ- +- TJ -+- +- TJ ~+-ot ox ox ox ay ay ox oz ox oz (2a) 

ovy op o [ (ovx ovy)] o [ ovy] o [ (ovy ov )] p-=--+- TJ -+- +- 27]- +- TJ -+.::..:..;_ or ay ox ay ox ay ay oz oz oy (2b) 

ov, _ op o [ (ov, ovx)] o [ (ovy ov·)] o [2 ov,] p~---+- TJ ~+- +- TJ -+~ +- TJ~ or oz ox ox oz ay oz oy oz oz (2c) 

where q is fluid viscosity. 

2.3 Constitutive equation 

The constitutive equation shows the relationship between the extra stress and the rate of 
deformation of the fluid. In this study, the viscosity of the non-Newtonian fluid is updated in 
the solution algorithm using the power law model: 

( . )•-I 1J = 1/o Y (3) 

where 1J is the apparent viscosity, TJo is the consistency index, n is the power law index and r is 
the strain rate. 

2.4 Numerical scheme 

The numerical scheme used in this work is the Mixed Finite Element U-V-W-P technique [17] 
in which both velocity and pressure in the governing equations are regarded as primary 
variables and are discretized as unknowns. The first order Taylor-Galerkin method was used to 
discretize the equations. 

3. Model validation 

3.1 Computational mesh 

Three-dimensional test cases were devised to check the computer codes developed. Three test 
cases were designed in increasing mesh complexity to progressively test the capability of the 
algorithm. Test Case 1 was used to validate the capability of the program in solving the 
continuity and motion equations. The main test for the accuracy of the simulation results is 
ensuring a mass balance over the domain under investigation. A rectangular domain, shown in 
Figure 1, was adapted with four non-permeable no-slip vertical walls and the inlet from upper 
horizontal surface and outlet at bottom horizontal surface. The ratio of domain's length (x), 
width (y) and height (z) is 3:3:5. 
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FLOW DIRECTION 
v, 

z 

Figure I: A schematic diagram of Test Case I. 

Test case 2 is slightly more complex with two half-cylinders protruding in a rectangular domain, 
emulating the flow around wire meshes. The ratio of aperture size to wire diameter used in this 
test case is 1.5 (values from about 1.1 up to about 7 are commonly used ratios in industrial wire 
meshes). The inlet is again from upper horizontal surface and outlet at bottom horizontal 
surface. The half cylinder surfaces were considered to be non-permeable and non-slip. The 
ratio of domain's length (x), width (y), height (z) and wire diameter (d) is 5:5:2:2 and the 
schematic computational mesh is shown in Figure 2. 

FLOW DIRECTION 
v, 

Figure 2: A schematic diagram of Test Case 2. 
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Test Case 3 has all the basic features of a typical wire mesh domain except that the four 
supposedly intertwined weft and warp wires were flattened to a horizontal plane to test the 
response of the model to highly complex geometry and mesh distortion. The four cylinders 
were jointed together via a 45° slice at each corner. The ratio of domain's length (x), width (y), 
height (z) and wire diameter (d) is 5:5:2:2. The results from this test case provide a powerful 
pretext into understanding the complex flow field in different pore types of a wire mesh. Inlet 
and outlet settings are similar to Test Case I and Test Case 2. The half cylinder surfaces were 
again considered to be non-permeable and non-slip. The schematic domain is shown in Figure 
3. 

FLOW DIRECTION 
v, 

45° INTERSECTION AT 

CORNERS 

z 

Figure 3: A schematic diagram of Test Case 3. 

3.2 Boundary conditions 

The velocity v, corresponds to the approach velocity of the fluid towards the aperture and was 
set as O.lrns"1 at the inlet The boundaries (the wire meshes filaments) were considered to be 
impermeable, non-slip surfaces where vx = v, = v, = 0. The computational mesh and degree of 
freedom (DOF) used for each test case are given in Table J_ 

Test Case 
1 
2 
3 

Table 1: Computational mesh used for each test cases. 

No. of Element 
1920 
4096 
4096 

No. of Nodes 
2511 
4913 
4913 

DOF 
3544 
4572 
4164 

3.3 Physical properties and numerical parameter 

A shear-thickening non-Newtonian fluid with the property given in Table 2 was used in the 
simulations. Similar properties were used for the simulations of the Newtonian fluid, but with n 
taken to be LO. 
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Table 2: Physical properties of the shear-thickening fluid used. 

Physical Property 
Density, p 

Consistency index, K 
Power Law index, n 

value 
970 kg m·3 

80.0 kg m·1s-1 

1.3 

A time step of 1'1l = 0.01 s was used throughout the simulations and the e used for the tlow 
modelling is 0.95. An lntel Pentium IV 2.6 GHz processor has been used to execute the 
computation to produce simulation results. The pre-processing work of the domain 
development and the mesh generation were handled using COSMOS™ GEOSTAR. Post
processing presentation of field variables such as flow velocity vectors and pressure contour 
were plotted using commercial graphic software package SURFER® 8. 

4. Validation results 

Figure 4 illustrate the velocity vectors of Test Case 1 in the x-z plane at y = l.,/2 for non
Newtonian fluid. The outlet velocity of non-Newtonian tluid is observed to be about 0.3% 
lower than that of the Newtonian liquid, largely due to the shear-thickening effect of the non
Newtonian fluid. The overall mass balance for Newtoniao and non-Newtonia11 simulations is 
99.7% and 99.9%, respectively. TI1e excellent accuracy showed that continuity was preserved 
in the simulations. 

Q(l) 

~ ! ! ~ 
00C6:1 • ! ! • 

• ! l • 
Q(l) m; • ! ! ~ 

~ ! ! ~ 
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Figure 4: The velocity vectors of test case 1 in the x-z plane at y = 1.)2 for non-Newtonian flu id. 
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Figure 5 shows a typical velocity vector of Test Case 2 for Newtonian and non-Newtonian 
fluid. Higher velocities were observed at the area immediately above the cylinders and at the 
section between the cylinders compared to the velocity at the inlet and outlet. This is attributed 
to the compression of the fluid that leads to the acceleration of the fluid velocity. Again, the 
shear-thickening effect of the non-Newtonian t1uid retarded the t1uid flow by about 0.3%. The 
overall mass balance for Newtonian and non-Newtonian simulations in Test Case 2 showed an 
outlet flow of 95.0% and 95.2% compared to the inlet flow. The discrepancy is due to the 
relatively coarse mesh used and can be improved by further mesh refinement. This is evident 
when an earlier run with a very coarse mesh of 512 elements gave a mass balance of 86.2% for 
Newtonian liquid. 

Figure 6 depicted a typical simulation result of Test Case 3 for Newtonian and non-Newtonian 
fluid. The highly complex geometry of the four adjoined cylinders formed a narrow channel for 
the fluid to flow through. The maximum z-direction velocity v, of non-Newtonian fluid were 
found to be 4.7% lower compared to that of Newtonian fluid. This observation is consistent 
with the results obtained for Test Case 1 and Test Case 2. The mass balance for Newtonian and 
non-Newtonian simulations is 96.1% and 96.4%, respectively. Simulations using a very coarse 
mesh of 512 elements gave a mass balance of 86.3%. These results shows that the mass balance 
accuracy can be improved by mesh refinement. The overall consistency in the results showed 
that the model is capable of solving three-dimensional flow problem in a domain with complex 
geometry. 

5 

5 

5.05 5.1 5.15 5.2 5.25 5.3 5.35 5 .4 5.45 5 .5 

(a) 

~ 

r ~ 

5.05 5. 1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 

(b) 

Figure 5: The velocity vectors of test case 2 in the (a) x-z plane at y = l../2 
(b) y-z plane at x = L/2 for non-Newtonian fluid. 
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Figure 6: The velocity vectors of test case 3 in the (a) x-z plane at y = L..f2 
(b) y-z plane at x = Lf2 for uon-Newtonian tluid. 

5. ResuJts and discussions 

The model can now be applied to the simulation of flow through a monofilament woven wire 
mesh. TI1e weaves considered in this work are the plain weave, the twill weave, and the satin 
weave. These give rise to the four types of basic pore shape, as suggested by Backer [1 8) and 
shown in Figure 8 , where only the half circle of each mooofllameot wire is illustrated. 

Fluid flow past the four basic pore types illustrated in Figure 7 was investigated. A schematic 
representation of the simulation domain for pore type 1 is given in Figure 8. The ratio of 
aperture size to wire diameter used is 1.5 and the ratio of domain's length (x) , width (y), height 
(z) and wire diameter (d) is 5 :5 :5 :2. The flow inlet is at the top horizontal surface while the 
tlow exit is at the lower horizontal surface. An open boundary is taken for the four sidewalls 
where no boundary condition was specified. The monofilament cut-sized wires were assumed 
to b e non-permeable and non-slip. Computational grids with properties given in Table 3 were 
used in the simulations. 
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(ii) Pore Type 2 

(iv) Pore Type 4 

Figure 7: Four types of basic weave patterns of a wire mesh. 

FLOW 

Figure 8: Schematic diagram of s imulation domain for basic pore type 1. 
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Table 3: Properties of the finite element domajns used in the simulations of 
four basic pore types. 
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Figure 9: Flow of shear-thickerung -tluid in the interstices of pore type 1 showing 
(a) velocity field (b) pressure contour in x-z plane at y = 1,)2; a.nd 

(c) velocity field (d) pressure contour ill y-z plane at x = lj2. 
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Figure 10: Flow of shear-thickening fluid in the interstices of pore type 2 showing 
(a) velocity field (b) pressure contour in x-z plane at y = l ,./2; and 

(c) velocity field (d) pressure contour in y-z plane at x = fj12. 

Figure 9, 10, 11 and 12 showed the velocity vectors and the pressure contours of pore type 1, 2. 
3 and 4 in the x-z plane at y = 1..12 and in y-z plane at x = Lf2, respectively. The cross sections of 
pore type 1 is symmetrical at y = /..)2 and x = lf2. This is reflected in the velocity distributions 
and the pressure contour at these points shown in Figure 9. Pore type 2 has the most 
uosymmetrical geometry among the four basic pore types. 11lis is evident in the veloc ity and 
pressure plot illustrated i.o Figure 10 where an absence of symmetrica l pattern in both planes is 
observed. Pore type 3 has a symmetrical geometry at x = lj2 but not at y = L.Jl. This is 
reflected in Figure 11. The cross sections of pore type 4 are syrrunetricaJ io both at y = l..J2 and 
x = lf2 as in the case of pore type 1. The velocity distribution and the pressure contours showed 
in Figure 12 are in perfect symmetry consistent with the symmetrica l geometry. 
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Figure 11: Flow of shear-thickening fluid in the interstices of pore type 3 showing 
(a) velocity field (b) pressure contouJ· in x-z plane at y = l .)2; and 

(c) velocity field (d) pressure contour in y-z plane at x = lf2. 
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The velocity distributions in Figure 9, 10, 11 and 12 showed a higher velocity at the area 
immediately above the wire mesh and at the section between the wire mesh where highly 
complex geometry of the foUl' monofilament wires formed a narrow channel for the fluid to flow 
through. In each case, the flow is observed to swirl around the upper surfaces of the upper wire 
meshes into the narrow channel in each pore type on both x-z and y-z planes. This is consistent 
with the location of the wire mesh on both planes. The upper wires in each pore type also 
noticeably affected the flow pattern in the interstices and the velocity distribution downstream 
This observation is important in the selection of weave patterns for various filtration 
applications as the lower lying wire surface will be noticeably fouled first at the initial stages of 
the filter cake formation. 

The pressure contours in Figure 9, 10, 11 and 12 showed a higher pressure being asse1ted on the 
upper surface of the wires by the oncoming fluid . This is conceivable as the upper surfaces of 
the wire meshes are directly normal to the direction of the flow therefore offering more 
resistance to the fluid flow. 
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Figure 12: Flow of shear-thickening fluid in the interstices of pore type 4 showing 
(a) velocity field (b) pressure contour in x-z plane at y = 1..12; and 

(c) velocity field (d) pressure contour in y-z plane at x = lj2. 
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The pressure in all the pore types were observed to drop rapidly as the t1uid flows through the 
interstices of the wire meshes. This is similar in essence to the pressure drop across a filter 
media. Lnteresting, the pressure drop for each pore type is observed to be different. Pore type 1 
was observed to give the lowest pressure drop, follo wed by pore type 2 and 3. Pore type 4 was 
observed to give the highest pressure drop compared to other basic pore types. 

CW1abra and Ricbardson [71 presented their experimental results for shear-thinning fluid using a 
loss coefficient Co (which we refer to as a drag coefficient) defined as 

c - 2/:lp __ 1_ 
0

- p(u! sY (1-£) 
(4) 

where £ is the porosity of the wire mesh and D.p the pressure drop across the wire mesh. They 

also used a modified Reynolds number for non-Newtonian fluid ReNN ( = [p(u I £ y-" d" j;7]0 ), a 
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fonn simi lar to that used by Metzner [19) and Skelland [20) with porosity taken into 
consideration. Ting et al.[IO) pointed out that Chhabra and Richardson had erroneously taken d 
to be wire di ameter rather than the hydraulic diameter, d., which should be taken as the apenure 
in this case. A more appropri ate correlation for Re"" consistent to that used by earlier 
researchers has been gi ven as [10) 

(5) 

where ReNN reduces to the Reynolds number for a Newtonian liquid as n becomes unity . Based 
on Eqs. (4) and (5), Ting et al.[IO) recalculated the experimental results presented in Chhabra 
and Richardson's paper, as presented in Fig/lre 13. They also analysed the experimental data 
reponed by Rushton [3) on water fl ow through monofilament Nylon cloth using Eqs. (4) and (5) 
and included in Figure 13. For simulations in this work, the relati onship between the fl ow rate 
and the pressure drop for each fluid is ca lculated from the model and presented us ing Eqs. (4) 
and (5) and plotted in Figure 13. The drag coefficient CD and the Reynolds number ReNN seems 
to be very close to the best fit curve reponed by Ting et al.[ IO] as 

c = 10 
D R 1.14 eNN 

(6) 

Figure 13: Drag-coefficient -Reynolds number relationship for shear-thickening liquids. 
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6. Conclusion 

A three-dimensional weighted residual finite element scheme for solving Stokes flow has been 
successfully developed and applied to simulate flow of a highly viscous shear-thickening fluid 
through four basic pore types in a wire mesh. The accuracy of the model has been validated by 
three test cases of increasing geometrical complexity. The influence of weave pattern on 
downstream flow distribution and pressure drop has been successfully studied and compared 
using cross sections of velocity distributions and pressure contours for each basic pore type. 
Pressure drops across each pore type were analysed and pore type 1 was observed to give the 
lowest pressure drop while pore type 4 gives the highest pressure drop. The simulation results 
in this study showed that the developed model is capable of simulating non-Newtonian fluid 
flow through a complex three-dimensional domain. 

Nomenclature 

c, Speed of sound in fluid (ms'1) 

C 0 Drag coefficient 
d Diameter (m) 
dh Hydraulic diameter (m) 
n Flow behaviour index in Power Law model 
p Pressure (Pa) 
Re Reynolds number 
ReNN Reynolds number for non-Newtonian fluid 
t Time (s) 
Vx Velocity in x-direction (mls) 
vy Velocity in y-direction (m/s) 
Vz Velocity in z-direction {m/s) 

Greek Symbols 

y Strain rate (s'1) 

E Porosity 
71 Apparent viscosity (Pa.s") 
77o Consistency index used in Power Law equation 
B Time stepping parameter 
p Density (kg.m-3

) 
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FINITE ELEMENT MODELLING OF FLOW THROUGH PLAIN, TWILL AND 
SATIN WEAVE MONOFILAMENT CLOTHS 

R.J. Wakeman, K.C. Ting and V. Nassehi 
Advanced Separation Technologies Group, 

Department of Chemical Engineering, Loughborough University, 
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ABSTRACT 

Monofilament filter cloths are used as the separation media in filtration; woven 
wire cloths or screens are also used as the media in filters or to enhance the 
integrity of the filter medium in, for example, filter cartridges. In this paper we 
present research results aimed at simulating non-Newtonian fluid flow through a 
woven cloth. Due to the complex geometry of a woven cloth, 3-D modelling is 
necessary to visualise correctly the structure of the flow and hence to predict 
pressure losses. Modelling in a 3-D domain was done using a finite element 
method which is known to cope with flow domains in complex geometries very 
effectively. The simulation results were found to be in good agreement with 
experimental data, showing the developed model to be capable of generating 
accurate results for flow of both Newtonian and non-Newtonian fluids through 
filter media. 

Keywords: Woven filter media, woven screens, CFD simulation, finite element 
method, modelling, Newtonian fluids, non-Newtonian fluids, pressure loss. 

1 



FILTECH, Wiesbaden, Germany 
Oct /l-13, 2005 

Woven fabrics and wire cloths are used as filter media, and metal and plastic 
screens are also widely used in the construction of filters and separators, as 
either the support for finer filter media or as the filtering medium. Fluid flow 
through cloths and screens has been studied experimentally (Wieghardt, 1953; 
Armour and Cannon, 1968; Rushton, 1969; Rushton and Griffiths, 1971; 
Ehrhardt, 1983; Squiers, 1984; Chhabra and Richardson, 1985; Kiljanski and 
Dziubinski, 1996). Most of these used gases and Newtonian liquids as the 
experimental fluids. 

Investigation of flow of non-Newtonian liquids through single screens are few. 
Chhabra and Richardson (1985) studied flow through a screen using a 
Newtonian liquid and shear-thinning carboxymethyl cellulose (CMC) solutions of 
various concentration with n (the Power Law index) between 0.34 and 0.61. 
Kiljanski and Dziubinski (1996) furthered the study to include filter screens using 
shear thinning molten polyethylene for a lower range of Re and provided a 
correlation of drag coefficient with Re for multiple screens. None of these 
researchers studied the velocity profile when the fluids flow through the screen. 

Lu et al. (1996) lamented that most previous studies on fluid flow through woven 
structures have focused on the pressure drop problem and not the macroscopic 
details of the velocity profile and pressure contour in the weave apertures. 
They argued that a better understanding of the flow pattern in the woven 
structure could prove useful in examining the initial stages of cake filtration as 
well as the effect of weaves on fouling phenomena within a filter cloth, and 
studied the influence of fabric pore construction on the flow pattern in the 
interstices and downstream of a cloth using the CFD software FLUENT, and 
discovered that the flow pattern in the interstices and downstream were different 
for each basic pore type. As the position of the upper filament in each pore type 
differs, the flow of water which swirls around the upper surfaces of the upper 
filament into the narrow channel between the cloth filaments was 
characteristically unique for each case. Tung et al. (2002) furthered the study to 
include fluid flow through multifilament cloths and spun staple yarns. Their 
simulations results showed a similar pattern of pressure drop to that of Lu et al. 
where pore type 1 (see Figure 1) was found to give the highest pressure drop 
and pore type 4 gives the lowest pressure drop. 

MATHEMATICAL MODEL 
A 3-D mathematical model based on flow and constitutive equations has been 
developed. The majority of highly viscous non-Newtonian fluid flows are 
characterized as low Reynolds number Stokes flow regimes in which the inertia 
terms in the equation of motion are neglected. In addition, highly viscous flow 
systems are in general dominated by stress and pressure variations and the 
body forces acting on the fluid are relatively small and can be justifiably ignored. 
The governing Stokes flow equations in Cartesian coordinate systems are 
summarised as: 
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Equation of Continuity The continuity equation for an incompressible fluid is 

written as ovx + ov' + ov, = 0. To satisfy the Ladyzhenskaya-Babuska-Brezzi OX ay oz 
stability condition, the slightly perturbed form of this equation is used here is: 

_l_op + avx + av, + ov, =0 (1) 
pc,2 ot ox ay oz 

where c5 , p, v, p represent the speed of sound in the fluid, pressure, velocity 
and the fluid density, respectively. 

The use of this continuity equation, which corresponds to slightly compressible 
fluids, allows the utilization of an equal order interpolation model for the velocity 
and pressure, and has been applied successfully to modelling flows in pleated 
cartridge filters (Ruziwa et al., 2004; Hanspal et al., 2004; Nassehi et al., 2005). 

Momentum Equation The momentum equation can be written as 

av. op a [ av. J "' a [ (av, avj )] 
P a: = - oi + oi 217 ai + £.... oi 17 oi + oi (2) 

where i = x, y, z and j * i, and fJ is fluid viscosity. 

Constitutive Equation The viscosity of the non-Newtonian fluid is updated in 
the solution algorithm using the power law model: 

17 = 77o ('r rl (3} 

where 17 is the apparent viscosity, TJo is the consistency index, n is the power 
law index and r is the shear rate. 

Numerical Scheme The numerical scheme used in this work is the Mixed 
Finite Element U-V-W-P technique in which both velocity and pressure in the 
governing equations are regarded as primary variables and are discretized as 
unknowns. The first order Taylor-Galerkin method was used to discretize the 
equations. 

Boundary Conditions The velocity vz corresponds to the approach velocity of 
the fluid towards the aperture and was set as 0.1 m s·1 at the inlet. The 
boundaries (the cloth filaments) were considered to be impermeable, non-slip 
surfaces where vx = v, = v, = 0. A time step of M= 0.01 s was used throughout 

the simulations and the time stepping parameter Bused for the flow modelling 
was 0.95. 

Physical Properties and Numerical Parameters A non-Newtonian fluid with 
the following properties was used in the simulations: density, p, 970 kg m"3

; 

consistency index, 7Jo, 80 kg m·1 s·1
; Power Law index, n, 0.90. Similar 

properties were used for the simulations of the Newtonian fluid, but with n taken 
to be 1.0. 

3 



FILTECH, Wiesbaden, Germany 
Octll-13,2005 

An lntel Pentium IV 2.6 GHz processor was used to execute the computation to 
produce simulation results. The pre-processing work of the domain 
development and the mesh generation were handled using COSMOS 
GEOSTAR. Post-processing presentation of field variables such as flow 
velocity vectors and pressure contours were plotted using the graphic software 
package SURFER 8. 

WOVEN MEDIA 
The model can now be applied to the 
simulation of flow through a 
monofilament woven medium. The 
weaves considered in this work are the 
plain weave, the twill weave, and the 
satin weave. These give rise to the · 
four types of basic pore shape that are 
shown in Figure 1, where only the half 
circle of each filament is illustrated. 

\}!) 
~H . \ . 

• 
j 

(b) J 
J 
I 

' I 
• ' I ...... , ' 

~ ..... f ' 

"',. .. t 4 

.. " , • ' l 

.- I f t .J l 

.. ~ t t 

@l 
I ' I 
I ' 
j 
I 
I 
I 
j • 

j ' -' ...... ... 
I ~ ... - ... 

' ' .. - .. 
I t ..... ., 

~ ~ ... ... ... 
~ .. ... ' 

jjjj 
. ' 
I 

j 
J 
J 
j 

j 
j ' 0 

i ~ ..... 

' ' - ..... 
' t \ ...... 
' t \ ...... 

J. \ f ' ~ ... 
, t ~ ' 

Fig. 2 Velocity vectors for flow of non
Newtonian fluid through pore type 1 at (a) x-z 

plane at y= 1.)2 (b) y-zplane at X= 1/2. 

(ii) Pore Type 2 

(iii) Pore Type 3 (iv) Pore Type 4 

Fig. 1 Four types of basic weave patterns of 
a wire mesh. 

RESULTS AND DISCUSSION 
Fluid flow through a plain weave 
(pore type 1 , Figure 1) was first 
investigated in conjunction with the 
experimental studies by Rushton 
(1969) using water and Chhabra and 
Richardson (1985} using shear 
thinning fluids. The ratio of aperture 
size to wire diameter used is 1.5 and 
the ratio of the domain length (x), 
width (y), height (z) and wire 
diameter (d) is 5:5:5:2. The flow inlet 
is at the top horizontal surface while 
the flow exit is at the lower horizontal 
surface. 

A typical velocity vectors for the flow 
through wire mesh is illustrated in 
Figure 2. The flow is observed to 
swirl inwards on both sidewalls 
towards the centre on both x-z and y
z planes. This is consistent with the 
location of the wire mesh on both 

planes. Higher velocities were also observed at the area immediately above the 
wire mesh and in the section between the wires, compared to the velocity at the 
inlet and outlet. 

4 



The pressure profile 
illustrated in Figure 3 shows 
the expected high pressure 
on the surface of the wire 
meshes and decreasing 
rapidly as the fluid flows 
through the wire meshes. 
Cross section plots were 
presented for pressure 
contours in both the x-z plane 
at y = lv/2 and the y-z plane 
at X= 112. 

The physical properties of the 
test fluids and the 
characteristic dimensions of 
the wire mesh and 
monofilament cloths used in 
the Chhabra and Richardson 
(1985) and Rushton (1969) 
experiments and in this study 
are summarized in Table 1. 

Chhabra and Richardson 
presented their experimental 
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O.OOE+OOO 

Fig. 3 Pressure contour for flow of non-Newtonian fluid 
through pore type 1 at (a) x-z plane at y = /.)2 (b) y-z 

plane at x = //2. 

results for shear-thinning fluids using a loss coefficient Go (which we refer to as 
a drag coefficient) defined as 

CD= Z!:J..p 1 
p(u! e)2 (1-e) 

{4) 

where e is the porosity of the wire mesh and t:J..p the pressure drop across the 
wire mesh. They also used a modified Reynolds number for a non-Newtonian 

fluid to ReNN = p(u/et" d" ho, a form similar to that used by Metzner {1956) 

and Skelland (1967) with porosity taken into consideration. In their paper, 
however, they erroneously took d to be the wire diameter rather than the 
hydraulic diameter, dh, which can be taken as the aperture side dimension in 
the case of a square mesh. A more appropriate correlation for ReNN consistent 
to that used by earlier researchers is therefore given as: 

ReNN 
p(utet"dh" 

1lo 
(5) 

where ReNN reduces to the Reynolds number for a Newtonian liquid when n = 1. 
The experimental results presented in their paper were recalculated using 
equation (5) and presented in Figure 4. The results for water flow through 
monofilament nylon cloths reported by Rushton (1969) were also calculated 
using equations (4) and (5) and included on Figure 4. For the simulations in this 
work, the relationship between the flow rate and the pressure drop for each fluid 
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is calculated from the model and subsequently presented using equations (4) 
and (5) and also plotted in Figure 5. 

Table 1 Physical properties of the test fluids and characteristic dimensions of 
the plain weave wire mesh screens and monofilament cloth. 

Test Liquid n 17o Aperture d Symbols in 
(Pa s) (J.Lm) (J.Lm) Figure 4 

Chhabra and Richardson (1985); wire mesh screens 
1.5% CMC in water 0.60 6.6 53 36 • 
1.5% CMC in water 0.59 7.6 53 36 + 
2.0% CMC in water 0.61 9.5 150 100 A. 
2.5% CMC in water 0.34 45.0 150 1 00 • 
Rushton (1969); monofilament Nylon cloth 
Water 1.0 0.001 24 30 + 

1.0 0.001 42.4 37 + 
1.0 0.001 60 30 + 
1.0 0.001 59 44 + 
1.0 0.001 71 61 + 
1.0 0.001 99 75 + 
1.0 0.001 144 105 + 
1.0 0.001 186 153 + 

This study 
1.5% CMC in water 0.60 6.6 300 200 0 
1.5% CMC in water 0.59 7.6 300 200 <> 
2.0% CMC in water 0.61 9.5 300 200 [:,. 

2.5% CMC in water 0.34 45.0 300 200 0 
Water 1.0 0.001 300 200 X 

From Figure 4, the simulation results for water and the non-Newtonian liquid 
were observed to be in good agreement with the experimental results. 
Furthermore, the drag coefficient Ca and the Reynolds number ReNN are related 
by a best fit curve of 

c = 10 
D R 1.14 

eNN 

(6) 

The simulations were extended to pore types 2, 3 and 4; the drag coefficient Ca 
and the Reynolds number ReNN for each pore type were calculated using 
equations (5) and (6) and plotted in Figure 5. From Figure 5, it is seen that pore 
type 1 gives the lowest pressure drop, while pore type 3 gives the highest 
pressure drop across the wire mesh with pore type 2, 4 in between them. This 
observation disagrees with the calculations by Lu et al. (1996) and Tung et al. 
(2002), who reported the lowest pressure drop for pore type 4 and highest 
pressure drop for pore type 1. 

To explain this discrepancy, the experimental data of previous researchers and 
industrial wire mesh manufacturers were consulted. A closer examination of the 
experimental results reported by Armour and Cannon (1968) and Rushton and 
Griffiths (1971) showed a consistently lower pressure drop for plain weave 
compared to twilled weave, with satin weave ranging between them. As plain 
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weave has the most uniform pore type amongst other weave patterns, where it 
consists entirely of pore type 1, plain weave can be safely used as a benchmark 

1.E-t09 ,------------------, 

·. 
1.E-ll8 4 . 
1.Ei07 

1.Ei06 

1.E.(l5 

1.Ei04 

1.Ei03 

1.Ei02 

1.Ei01 

1.E..OO 

•• & • Chhabra and 
Richardson ( 1985) 
+ Rushton (1969) 
DOL'-.OX This study(Legend 
-see Table 3) 

·- ·. 

1.E-Ot '----~-~-~~-~~-~-----' 

t.E-07 1.E-06 1.E-05 t.E-04 1.E-03 t.E-02 t.E·Ot 1.E.OO 1.Ei01 

Reynolds Number, Re or ReNN 

to check the accuracy of the 
numerical modeL 

The consistency of our 
results to that of Armour 
and Cannon (1968) and 
Rushton and Griffiths 
(1971) confirmed the 
accuracy of our predictions. 
Industrial woven cloth and 
wire mesh manufacturers 
have confirmed industrial 
experience whereby the 
plain weave is primarily 
used due to its lowest flow 
resistance again 
confirming the validity of our 
results and giving 
confidence in our modeL 

CONCLUSION 
A 3-D weighted residual 
finite element scheme for 
solving Stokes flow has 
been successfully 
developed and applied to 
simulate flow through 
monofilament wire meshes 
and fabrics. The accuracy 
of the model is proven by 
three test cases of 
increasing complexity and 
compared against 
experimental data for 

Fig. 4 Drag Coefficient vs Reynolds Number for Newtonian 
and non-Newtonian liquid flows through plain weave 

monofilament cloths and meshes. simulation of flow through 
wire meshes. The pressure drop across the wire mesh was analysed and the 
results were found to be in good agreement with the existing experimental 
literature. The results provide a sound basis to proceed with modelling of fluid 
flow through a wire mesh in order to quantify the effects of pressure drop, stress 
and particle capture in the domain of filters. 
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K.C.Ting Appendix 3: Program Manual 

Introduction 

This operating manual gives the details of the programs entitled 3DFEANOF-U 

version (3-Dimensional Finite Element Analysis of Non-Newtonian fluid Flow

UVWP version) and 3DFEANOF-P version (3-Dimensional Finite Element 

Analysis of Non-Newtonian fluid Flow-Penalty version). These codes were 

written in FORTRAN 90 programming language. An input file in ACSII format 

must be provided to run the program. The output file is RES.TXT - a text file 

containing the simulated results. 

A3 



K.C.Ting Appendix 3: Program Manual 

INPUT FILE FORMAT 
3DFEANOF-U version (3-Dimensional Finite Element Analysis of Non
Newtonianfluid Flow-UVWP version) 

The format ofthe input file is given with variables at each line explained. 

Heading 

Line I Format (A) 

Master Data 

Line 2 Format (215) 

Variable I 

Variable 2 

Line 3 Format (415) 

Variable 3 

Variable4 

Variable 5 

Variable 6 

Line 4 Format (215) 

Variable 7 

Variable 8 

TITLE 

NCN 

NGAUS 

NNP 

NEL 

NBC 

NMAT 

NTEP 

I CORD 

Line 5 Format (3FIO.O) 

Variable 9 GRAV1 

Variable 10 GRA V2 

Variable 11 GRAV3 

Line 6 Format (3Fl0.5) 

Variable12 TOLV 

Variable 13 TOLP 

Variable 14 TOLC 

Line 7 Format (9DI0.5) 

Variablei5 RVISC 

Variable 16 POWER 

: Designated title of the input file 

: Node per element 

: Number of integration points 

: Number of nodes 

: Number of elements 

: Number of boundary conditions 

: Number of materials 

: Results to be printed for 

every iterations if NTEP =1 

: For Cartesian coordinate system, icord=O 

For cylindrical coordinate system, icord=I 

: Body force in x- direction 

: Body force in y- direction 

: Body force in z- direction 

: Convergence tolerance factor for pressure 

: Convergence tolerance factor for velocity 

: Convergence tolerance factor for variable 

to be added 

: Consistency coefficient 

: Power Law index 
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Variable 17 TREF : Reference temperature 

Variable 18 TBCO : Coefficient b in the power law model 

Variable 19 TACO : Coefficient a in the power law model 

Variable 20 DISPC : Coefficient for convective equation 

Variable 21 PREP : Reference pressure 

Variable 22 ROD EN :Density 

Variable 23 GAMAD :Shear rate 

Nodal Data 

Line 8- Line m Format (17, 3E20.12) 

Variable 24 M 

Variable 25 X(M) 

Variable 26 Y(M) 

Variable 27 Z(M) 

Element Connectivity Data 

: Node number M 

: X-coordinate of node M 

: Y -coordinate of node M 

: Z-coordinate of node M 

Line m- Linen Format (2117), with allocations for higher order elements 

Variable 28 N 

Variable 29 NODE(N, 1) 

Variable 30 NODE(N, 2) 

Variable 31 NODE(N, 3) 

Variable 32 NODE(N, 4) 

Variable 33 NODE(N, 5) 

Variable 34 NODE(N, 6) 

Variable 35 NODE(N, 7) 

Variable 36 NODE(N, 8) 

Boundary Condition Data 

Linen- Line k Format (215, F10.4) 

Variable 37 IDC 

Variable 38 me 

Variable 39 VBC 

: Element number N 

: Node number 1 of Element number N 

: Node number 2 of Element number N 

: Node number 3 of Element number N 

: Node number 4 of Element number N 

: Node number 5 of Element number N 

: Node number 6 of Element number N 

: Node number 7 of Element number N 

: Node number 8 of Element number N 

: Node number at which the boundary 

condition is applicable 

: '1' for x-direction velocity 

: '2' for y-direction velocity 

: '3' for z-direction velocity 

: '4' for pressure 

: Boundary condition value 
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INPUT FILE FORMAT 

3DFEANOF-P version (3-Dimensional Finite Element Analysis of Non
Newtonianjluid Flow-Penalty version) 

The format of the input file is given with variables at each line explained. 

Heading 

Line 1 Format (A) 

Master Data 

Line 2 Format (215) 

Variable 1 

Variable 2 

Line 3 Format (415) 

Variable 3 

Variable 4 

Variable 5 

Variable 6 

Line 4 Format (215) 

Variable 7 

Variable 8 

TITLE 

NCN 

NGAUS 

NNP 

NEL 

NBC 

NMAT 

NTEP 

I CORD 

Line 5 Format (3F10.0) 

Variable 9 GRAV1 

Variable 10 GRAV2 

Variable 11 GRAV3 

Line 6 Format (3F10.5) 

Variable12 TOLV 

Variable 13 TOLP 

Variable 14 TOLC 

Line 7 Format (10010.5) 

Variable15 RVISC 

Variable 16 POWER 

: Designated title of the input file 

: Node per element 

: Number of integration points 

: Number of nodes 

: Number of elements 

: Number of boundary conditions 

: Number of materials 

: Results to be printed for 

every iterations if NTEP =1 

: For Cartesian coordinate system, icord=O 

For cylindrical coordinate system, icord=1 

: Body force in x- direction 

: Body force in y- direction 

: Body force in z- direction 

: Convergence tolerance factor for pressure 

: Convergence tolerance factor for velocity 

: Convergence tolerance factor for variable 

to be added 

: Consistency coefficient 

: Power Law index 

A3 



K.C.Ting Appendix 3: Program Manual 

Variable 17 TREF : Reference temperature 

Variable 18 TBCO : Coefficient b in the power law model 

Variable 19 TACO : Coefficient a in the power law model 

Variable 20 DISPC : Coefficient for convective equation 

Variable 21 PREF : Reference pressure 

Variable 22 ROD EN :Density 

Variable 23 GAMAD :Shear rate 

Variable 23a PENAL : Penalty parameter 

Nodal Data 

Line 8- Line m Format (17, 3E20.12) 

Variable 24 M 

Variable 25 X(M) 

Variable 26 Y(M) 

Variable 27 Z(M) 

Element Connectivity Data 

: Node number M 

: X-coordinate of node M 

: Y -coordinate of node M 

: Z-coordinate of node M 

Line m- Linen Format (2117), with allocations for higher order elements 

Variable 28 N 

Variable 29 NODE(N, 1) 

Variable 30 NODE(N, 2) 

Variable 31 NODE(N, 3) 

Variable 32 NODE(N, 4) 

Variable 33 NODE(N, 5) 

Variable 34 NODE(N, 6) 

Variable 35 NODE(N, 7) 

Variable 36 NODE(N, 8) 

Boundary Condition Data 

Linen- Line k Format (215, Fl0.4) 

Variable 37 me 

Variable 38 JBC 

Variable 39 VBC 

: Element number N 

: Node number 1 of Element number N 

: Node number 2 of Element number N 

: Node number 3 of Element number N 

: Node number 4 of Element number N 

: Node number 5 of Element number N 

: Node number 6 of Element number N 

: Node number 7 of Element number N 

: Node number 8 of Element number N 

: Node number at which the boundary 

condition is applicable 

: '1' for x-direction velocity 

: '2' for y-direction velocity 

: '3' for z-direction velocity 

: '4' for pressure 

: Boundary condition value 
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3DFEANOF 
- Uversion 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow - UVWP version 

Fortran Program Source Code 

1. Main Program Code 

2. Subroutines 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 
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c ~=··=·===============··=========~============~······================== 
c 
c This is a program for the solution of non-newtonian, isothermal, 
c incompressible flow problems using the weighted residual galerkin 
c finite element method 
c 
c The solution scheme is based on the U-V-W-P method 
c 
c Velocity components and pressure are the prime unknowns in the flow 
c field. 
c 
c This program uses eight-noded linear prism element. 
c 
c Algebraic equations are solved by a frontal method, 
c 
c A complete list of options is given on the program listing. 
c 
c The program consists of a main module and subroutines 
c 
c The program is written in FORTRAN programming language 
c 
c This program is developed by Xee Chien Ting (last revised Nov 2004} 
c 
c ===···=================···=========================···==============·· 
c 
c work files 
c """'======: 
c unit contents 
c ····=================····==========·============·····================== 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

51 

60 

11 

" 
15 

11 

20 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

i 
i 
i 
i 
i 

input data file 

output file for documentation 

output file containing velocity field data for 
plotting 

used as a work file in the solver routine 

stores shape functions and their derivatives at 
'full' integration points 

output file containing pressure data for 
contour plotting 

output file containing elemental stiffness matrix 
for element number 14 as seen on the mesh 

c =====···==================···==============··,.==·=====····============· 
c 
c List of variables 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

aa 27, 27) 
K 27, 27) 
b { 3, 20) 
be (maxdf ) 
cord (maxnp,ndim) 
del ( 3, 20) 
vel (maxdf ) 
dscl, dsc2 
gravl 
grav2 
icord 

tolp 
tolv 
nbc 
ncn 
ndf 
ndim 
nel 
ngaus 
nnp 
node (maxel,max.st) 
nter 
num 
p ( 20 
press CrnaxnP 
rl {maxdf 
rfrct 

element coefficient matrices on LHS 
element coefficient matrices on RHS 
global derivatives of shape functions 
nodal constraints {boundary conditions) 
nodal coordinates 
local derivatives of shape functions 
nodal velocities Cdisplacements) 
depths of slip layers 
first component of the applied body force 
second component of the applied body force 
indicates whether the coordinate system is cartesian (planar} or 
cylindrical (axisymmetric) 
convergence tolerance factor for pressures 
convergence tolerance f~ctor for velocities 
total number of boundary-node constraints 
number of nodes per element 
degree of freedom per node 
dimensions of the solution domain 
total number of elements 
number of integration points 
total number of nodal points 
element connectivity 

maximum number of iterations for non-newtonian case 
number of integration points per element 
shape functions 
nodal pressures 
global load vector (r.h.s.) 
friction coefficient (slip) 

1 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

;tiff (max;~ 
rvisc 
power 
stemp 
rtem 
spress 
rpress 
tco 
pco 
g~d 
nwr 

;i~b;l~stiffn;;~~~trix (a in ax:r.h.s.) 
mu nought;consistency coefficient in power-law model 
power law index 
temperature 
reference temperature 
pressure 
reference pressure 
coefficient relating viscosity to temperature 
coefficient relating viscosity to pressure 
shear rate 
no. of sample nodes for recording transient solutions 

List of Subroutines 

bacsub 

clean 

contol 
deriv 

fl~ 
front 

gaussp 

get bed 
get elm 
getmat 
get nod 

minimax 

output 
putbcv 

secinv 
setprm 

shape 

stress 

visca 

parameter (maxel 
parameter (maxnp 
parameter (maxbc 
parameter (maxdf 
parameter (maxst 
parameter (maxfr 
parameter Cndim 

backsubstitution method for finding the final 
solution vector 
cleans the arrays and prepares them for 
solution 
makes a check for the convergence 
calculates the jacobian matrix, its determinant 
and global derivatives of the shape functions 
calculates the velocities and pressures 
frontal method for solving the final set 
of equations 
specifies the gauss points and weights for 
quadrature integration 
specifies the primary boundary conditions 
specifies the nodal connectivity array 
reads the input material data 
reads the nodal co-ordinates for cartesian 
and axisymmetric systems 
captures the minimum and maximum value for 
each specified variables 
prints the final solution 
imposes the primary boundary conditions for 
velocity 
calculates the second invariants 
Sets the location data for nodal degrees of 
freedom 
calculates the shape functions and their 
derivatives 
calculates stress components at integration 
points 
calculates the viscosity 

• 30000 
"' 37000 
.. 20000 
• rnaxnp*4 
• 80 

2000 
3 

implicit real*8 (a-h,o-z) 

Storage allocation 
::========::::z••• 

dimension title ( 80} 
dimension node Cmaxel,maxst) ,pmat {maxel, 9) ,cord {maxnp, ndim) 
dimension ncod (maxdf '· be (maxdf J 
dimension ibc (maxbc J ,jbc (maxbc J ,vbc (maxbc 
dimension vel {maxdf J , press (maxnp J 
dimension rl (maxdf J 
dimension clump {maxnp J , stres (maxnp, " dimension vet (maxdf J ,cet (~p J ,pet (maxnp 
dimension nopp (maxdf J 
dimension aa (maxst,maxst) .rr (maxst J 
dimension xg ( 3} ,cg ( 3} 
dimension p ( 20} ,del ( '· 20} ,b ( '· 20} 
dimension ldest (maxst J ,kdest(rnaxst I ,nk (maxst I 
dimension eq tmaxfr,maxfr) ,lhed Cmaxfr I ,khed Cmaxfr I 
dimension kpiv (maxfr J ,lpiv (maxfr J ,jmod (maxfr ) 
dimension qq (maxfr ) , pvkol Crnaxfr ) ,sinv Cmaxel, 27) 
dimension mdf Cmaxdf ) ,ndn Cmaxdf ) 
dimension ldsc "' J 
dimension temp (~p J 
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c 
c 
c 
c 

c 
c 
c 

5010 

5020 

5030 

5040 

5050 

5060 

5070 

5080 

5090 

cnaracter *20 tilnam 

Opening of input and output data files 
===~======:aaa::::::::::::::za•••=====~: 

print*, 'enter the name of your data file' 
read(*,2000) filnam 

open(unit=51,File=filnam,access='sequential',form='formatted', 
1 status=•unknown•,iostatmios) 

open(unit=60,file='res.txt',accessa'sequential',fo~'formatted', 
1 status=•unknown",iostat:ios) 

open(unit=17,file='stress.txt',access•'sequential',form='form6tted', 
1 status="unknown",iostat=ios) 

open(unit:14,form='unformatted',status='scratch',iostatzios) 
open(unit=15,form='unformatted',status='scratch',iostat=ios) 

if(ios:::=Olthen 
print*,"files opened" 

else 
print*,"files not opened" 

stop 
end if 

rewind 51 
rewind 60 
rewind 20 

Initialize arrays 
====··=========== 

do 5010 itl 
do 5010 ivl 

1,maxel 
1,80 

node (it1,ivl) s 0 
continue 
do 5020 itl '"' 1,maxel 
do 5020 ivl • 1, 8 

continue 
pmat litl,ivl) • o.o 

do 5030 itl s 1,maxnp 
do 5030 ivl • 1,3 

cord 
continue 

(itl, ivl) • 0.0 

do 5040 itl 1,maxnp 
do 5040 ivl 1,6 

stres(itl,ivll 0.0 
continue 
do 5050 itl l,maxdf 

vel (itl ) . o.o 
continue 
do 5060 itl l,maxdf 

ncod litl) • 0 
rl (itl) ,. o. 0 
be I itll = 0.0 
vet (itl) • o.o 

"'' (itl} • 0 
ndn (itl) = 0 

continue 
nopp (itl) 0 

do 5070 itl • l,maxnp 
clump Utll s 0.0 
cet (itl) = 0.0 
pet (itll 0.0 
press (itl) o.o 

continue 
do 5080 itl l,maxbc 

!be (itl) • 0 
jbc (itl) • 0 
vbc (itl) "" 0.0 

continue 
do 5090 itl • 1,20 

del (1, itl) "' o.o 
del (2. itl) .. 0.0 
del (3, it11 0.0 

continue 
do 5100 itl l,maxst 

3 

5100 

5110 

continue 
do 5110 it1 

do 5110 ill = 

continue 

kdest {iti 0 
nk (itl 0 

l,maxfr 
lhed 
khed 
kpiv 
lpiv 
jmod 
qq 
pvkol 

1,maxfr 

•• 

( itl 0 
(itl 0 
(itl 0 
(itl 0 
(itl 0 
(itl o.o 
(itl "' o.o 
(itl,ill)= 0.0 

c-----------------------------------------------------------------------
c 
c 

c 
c 

c 
c 

Title of the program 
======m•••c========= 

if(.not. eof(51)) read (51,2010) title 
write(60,4010) title 

Element description data 
z~=============s•s====== 

if (.not. eof(51)) read (51,2020) ncn ,ngaus 
print*, •ncn, ngaus read" 
write(60,4020) ncn ,ngaus 

Mesh, boundary condition and material parameters 
==============================····=============~ 

if (.not. eof(51)) read (51,2030) nnp ,nel ,nbc ,nmat 
print*, •nnp, nel ,nbc ,nmat read" 
if (.not. eof(51)) read (51,2040) ntep ,!cord 
if(icord.eq.O) write(60,4030) 
iflicord.eq.1) write(60,4040) 

write(60,4050) 

if(ntep.eq.O) ntep=l 

C =======a•••z===========•••••=============~~=======z======== 
c icord=O coordinate system is cartesian ( planar ) 
c icord=l coordinate system is cylindrical (axisymmetric) 
c 
c if ntep • 1 then computed result after every iteration will 
c be printed ;if you do not need the result of intermediate 
c computations choose your own ntep;the result of first and 
c converged solutions will always be printed. 
e ••z~===========·····~===========~========•z=============··· 

iflnnp .eq.O .or.nnp .gt.maxnp) then 
write(60,4060) 

elseif(nel .eq.O .or.nel .gt.maxel) then 
write(60,4060) 

elseif(nbc .eq.O .or.nbc .gt.maxbcl then 
write(60,4060) 

else!£ Cnmat .eq.O .or.nmat .gt.maxel) then 
write(60,4060) 

print*, 'the program is aborted" 
stop 

endif 

write(60,4070) nnp ,nel ,nbc ,nmat 

if (.not. eof(51)) read (51,2050) grav1, grav2, grav3 
print*, •oravl grav2 grav3 read" 
write(60,4080) gravl, grav2, grav3 

if (.not. eof{51)} read(51,2060) tolv ,tolp. tolc 
print*, •tolv, tolp, tolc read" 

maxer=rnaxel 

c ========================================····=============~·~==============· 
e Read input data from main data file and prepare arrays for solution process 
e ========s•••=c=====~======··====================z:•============•s•a======== 

• 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

5130 

5140 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ca!L getmat\ne!,nmat,pmat,~l,60,maxel,rtem,rpef) 
call getnod(nnp,cord,51,60,maxnp,ndim,icord) 
call getelm(nel,ncn,node,51,60,maxer} 
call getbcd(nbc,ibc,jbc,vbc,51,60,maxbc) 

B:::::::::=::;;;~:::za:::::===:::::a~==========•::DB::::::z::za==========~ 

Start of the time loop 

Set control parameters (default values are overwritten by input data 
if specified) 

ncn 
ngaus 
nter 
ndim 

number of nodes per element 
number of integration points 
maximum number of iterations for non-newtonian case 
number of space dimensions in the solution domain 

nter • 5 

do 5130 ivel= l,maxdf 
vel (ivel) 0.0 
continue 
do 5140 item= l,maxnp 
temp(item) rtem 
continue 

Transient data 

stime 

deltat 

alpha 

nter 

starting time 

time increment 

indicates the choice of method being employed in alpha 
time stepping technique (backward difference, 
forward difference, central difference, galerkin} 

maximum number of time steps being employed for finding solution 
==========·==~:==============··==============··===~=========~·=============· 

print*, • 
print*,"Enter the number of time steps desired' 
read•, nter 
write(60,4100) nter 

print*,'Enter the delta t desired" 
read*, deltat 
write(60,U10) deltat 

print*,'Type Code for taylor galerkin technique being used' 
print*,'Code l:Porward Diference Method' 
print*,'Code 2:Galerkin's Method' 
print*,'Code ):Central Diference Method" 
print*,'Code 4:Backward Diference Method• 
print*,'Code S:Temporal Upwinding• 

read*, Code 

if(code .eq. ll then 
alpha=O.O 
else if(code .eq. 2) then 
alpha=0.5 
else if(code .eq. 3) then 
aloha .. 2.0/J.O 
else if(code .eq. 4} then 
alpha=l.O 
else if(code .eq. 5) then 
print*, 'Type in the value of alpha between 0.5 & 1" 
read *, alpha 
else 
print*, 'Error in Typing code• 
end if 

print*, "alpha=",alpha 

do 5150 iter • 1 ,nter 
print*,'iter=',iter 
time • iter*deltat 

5 

c 
c 

1 
2 

1 
2 

write(60,4090) iter 

Calculate Nodal velocities & Pressures 

icho=l 

call clean 
(ncn ,nel ,ndf 
be ,ncod ,icho 

call setprm 
(nnp ,nel ,ncn 
maxdf,ntov ,mdf 

call putbcv 

ndf = 4 
ntov a ndf * nnp 
ntrix ndf * ncn 

rewind 11 
rewind 14 
rewind 15 

,node ,r1 , m.axel, maxst, maxdf, 
) 

,node ,ndf ,maxel,maxst,ndn ,ntrix, 
,nopp ) 

1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod ,bc,:maxbc,maxdf,maxel,:maxst, 
2 node) 

c idv4 is the file specifier for unit=20 
c 

idv4•20 

do 5160 iel=l,nel 

call flow (node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,be ,vel 
!,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 
2jmod, qq, pvkol,iter ,ne1 ,ncn , ngaus,gravl ,grav2, grav3, p, 
3del, b, ntrix, maxe1, maxnp, maxst, maxfr, maxdf, ndim , 
4aa ,xg ,da ,ntov ,num, icord, rr, iel, dell,deltat, alpha,idv4, 
5sinv, icho, nnp, trefl 

5160 end do 

c 
c 
c 
c 

c 
c 
c 

====··===·==============~·===··==============·===···=···==============···=···===· 
calculates the second invariant of rate of deformation 

tensor at integration points. 

call secinv 
1 (nel ,nnp ,ncn ,ngaus,node ,sinv ,cord ,p ,b, 
2 del ,da ,vel ,maxnp,maxel,maxst,ndim ,icord, 
3 maxdf,num) 

•=••==============~••==••===============••=•••=========•====:••• 
Convergence check 

·==·===========·===··===·==========·====••:••================·== 
call contol(vel ,iter ,ntov ,nnp,maxnp,:maxd£,errov, errop 

l,vet ,cet, pet, press) 

c ====··==·===========·===··==··==============··==···===·========= 
c 
c 

c 
c 
c 

c 
c 
c 

calculation of the nodal stress 
====··==···===·=========~·==···==================··===·========= 
call 

1 
stress 
(ne1,nnp,ncn ,node ,p , b , da ,vel ,maxnp, 
maxdf, stres, press, rvisc ,clump ,ngaus 2 

Print the output 

iiter•(iter/ntep)*ntep 

if (iter.eq.l.or.iiter.eq.iter) then 

call output 
1 (nnp ,vel ,press, :maxdf,maxnp,icord, stres) 

end if 

maxel, maxst , 

===·=========~··==··===============·==~·===============·===··==== 
End of time loop 

==···========···==···==··========········===·=========·······===· 

' 



5150 

c 
c 
c 
c 

2000 
2010 
2020 
2030 
2040 
2050 
2060 

c 

4010 

4020 

4030 
4040 
4050 
4060 

4070 

4080 

4090 
4100 
4110 

c 

c 

continue 

close (51) 
close(unit:60J 
close(unit=ll) 
close(unit:14) 
close(unit=lS) 
close(20) 

format(a) 
format(SOa) 
forma.t(2i5) 
format 1 4i 5) 
forma.t(2i5) 
forma.t(3flO.OJ 
format(3fl0.5) 

Read statements 

Write statements 

format(' ',5(1),' ',20x,60{'*'),/' ',20x,'*',58x,'*',/ 
1' ',20x, '*',' A three dimensional finite element model of a 
29x, '*',/' ',20x, '*',' non-newtonian isothermal flow using •, 
320x,'*',/' ',20x,'*'•' the UVP method. ',39x,'*',/' ',20x,'*', 
558x,'*',/' ',20x,60('*'l///,' ',20x,80{'-'),/' ',20x,80a,/'' 
620x, 80 ('-'),/Ill 

format (' ', 20x, 3 (' I' J, ' element description 
12Sx, 'no.of nodes per element 

data' ,10 ('. ') ,/ 
=',i10,/ 
•',i10,/ 225x, 'no.of integration points 

3//) 

format(' *** coordinate system is Cartesian (planar) ***') 
format('*** coordinate system is cylindrical(axisymmetric) ***') 
format(' ') 
format (' ', 10 ('I' I, 'input data unacceptable' ,10 (')')/Ill 

format (' ', 20x, 3 (' (' ), ' mesh description 
125x, •no.of nodal points 
22Sx, 'no.of elements 
325x, •no.of nodal constraints on boundary 
42Sx, •no.of different materials 

data ',10('.'1,/ 
• •, i10, I 
=',i10,/ 
==',i10,/ 
•',il0,/1) 

format(' ',20x,3('('),' 
12Sx, 'grav1 

uniform body force vector ',10('.'),/ 
=',f15.4,/ 

225x, 'grav2 
32Sx, 'grav3 
format(///' 
format(/!/' 
format {1//' 

end program 

iteration no.',iS,//1 
Total number of time steps 
Del tat 

=' ,f15.4, I 
:z',£15.4,1/) 

=',is, 111 
••• £15.4, //) 

C =======:=~c:••z=••=========~=~••=========~==•c:•z:::z===~=3•:::z:: 

subroutine bacsub 
1 (ntotl,ifix ,vfix ,rhs ,soln ,soln1, mfrnt,rwork,iwork,idv2, 
2 icho ) 

implicit double precision{a-h,o-z) 
dimension ifix (ntotl),vfix (ntotl),rhs Cntotl),soln (ntotl) 
dimension rwork(mfrnt) ,iwork{mfrnt) ,soln1{ntotl) 

do 6010 ipos=l,ntotl 
soln(ipos) =0.0 
iflifix(ipos).ne.Ol soln(ipos)=vfix(ipos) 

6010 continue 

do 6020 kpos:1,ntotl 
backspace idv2 

7 

-.>"'at -••""' .J• .. on., , ... .., ..... \""I o .I.WVU\.\A/ t 1\.a.l., .I..I.LHl./ 

if{ifix(ipos).ne.O) go to 6020 

- 0.0 
rwork(jfrnt) "' 0.0 

do 6030 k=1,ifrnt 
jpos=iabs(iwork(k)J 
ww =ww - rwork(k)*soln(jpos) 

6030 continue 

6020 

soln {ipos)•rhs(ipos}+ww 

continue 

if (icho .eq. 2) goto 6050 

do 6040 ipos 
j 

soln1 (j l 

= ((3*ntotl)/4)+1 , ntotl 
• ipos -((3*ntotl)/4) 
• soln(ipos) 

6040 continue 

6050 continue 

c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

6010 

6020 

3010 
6030 

c 
c 

return 
end 

subroutine clean 
1 (ncn ,nel ,ndf ,node ,r1 ,maxel, maxst, maxdf, 
2 be ,ncod , icho I 

implicit double precision(a-h,o-z) 

arguments 
"''""'=···=· 
all arguments are defined elsewhere. 

dimension rl 
dimension be 

function 

(maxdf) , node {maxel, maxst) 
(maxdf) ,ncod(maxdf J 

cleans the used arrays and makes them ready for 

do 6010 i .. l,maxdf 
r1(i) = 0.0 
bc(i} .. 0.0 

ncod(i) = 0 
continue 

ntrix = ndf •ncn 
do 6020 iel : 1,nel 
do 6020 inp • l,ntrix 
node(iel,inp) • iabs(node(iel,inp)) 

continue 
if(icho.ne.1}then 
do 6030 iel = l,nel 
write (11, 30101 iel, {node{iel, j ), j=l, ncn) 
format(10i5) 
continue 

endif 

return 
end 

solution 

•=:•:::::========··============·===·==::=============·===:========· 
subroutine contol 

1{vel ,iter ,ntov ,nnp ,maxnp,maxdf,errov,errop,vet ,cet, 
2 pet, press) 

implicit double precision(a-h,o-z) 

dimension vel (maxdf),press(maxnp) 
dimension vet (maxdf},cet (maxnp), pet (Maxnp) 

errv 0.0 
torv • 0.0 

8 



c 
c 
c 
c 

6010 

c 
c 
c 

6030 

c 

tore 
errp 
torp 

o.o 
0.0 
0.0 

ealc~late difference between velocities in eonsec~tive iterations 

do 6010 icheck • l,ntov 
if{iter.eq.l) vet{icheck) = 0.0 

errv = errv + 
1 {vel {ieheck) -vet {icheck)) * (vel {ieheck) -vet (icheek)) 

torv = torv + vel(ieheek)*vel(icheck) 

vet(ieheck) • vel(icheck) 

continue 
errov= errvltorv 

calculate difference between pressures in consecutive iterations 
=~••=~===============•a:z============•••••======~=====~==~======= 

do 6030 !check • l,nnp 
if(iter.eq.l) pet(icheck) = 0.0 

errp = errp + 
(press(icheck)-pet(icheck))*(press(icheck)-pet(ieheck)) 

torp • torp + press(icheck)*press{icheck) 

pet(icheck) • press(icheck) 

ret~rn 

end 

continue 
errop• errpltorp 

subroutine deriv 
1 {iel ,ig ,jg ,kg, p 
2 cord ,maxel,roaxnp) 

,del ,b ,ncn ,da ,cg ,node, 

implicit double precision(a-h,o-z) 
dimension p(20),b(3,40),del(3,20),cg(3),cj(3,3),cji(3,3) 
dimension node(maxel,27),cord(maxnp,3) 

do 6010 j=l, 3 
do 6010 1=1,3 
oash=O. o 
do 6020 kzl,ncn 
nn=iabs(node(iel,k)) 

6020 gash•oash + del{j,k)*cord(nn,l) 

cj (j,l)=gash 

6010 continue 

3010 

detj 
1 

cj (1, 1) *ej (2, 2) •ej (3, 3)+cj (2, 1) *cj {3, 2) •cj (1,3) 
+ cj (1, 2) •cj (2, 3) *cj (3, 1) -cj (1, 3) *cj {2, 2) *cj (3 ,1) 
- cj (1,2) *cj (2, 1) *cj (3,3) -cj (2, 3) *cj (3, 2) •cj (1,1) 2 

if{detj.le.O.Ol then 
write{60,3010) ie1,detj 
format{1x • Error: Zero or Negative Jacobian. 
stop 
end if 

cji(1,1) 
cji(1,2J 
cji(1,3) 
cji (2, 1) 
eji(2,2) 
cjii2,3J 
eji(3,1J 
eji{3,2) 
cji {3, 3) 

(ej(2,2l*cj{3,3)-ej(3,21*cj{2,3)) 
({cj(1,2)*cj(3,3)-cj{3,2)*cj(1,3))) 
(cj(1,2)*ej{2,3)-cj(2,2)*ej{1,3J) 

((ej{2,1)*cj(3,3)-cj{3,1J*cj{2,3))) 
(cj{1,1)*cj(3,3)-cj(3,1l*cj(1,3)) 

((cj{1,1)*ej(2,3)-cj(2,1)*cj(1,3Jll 
(cj{2,1)*cj(3,2)-cj(3,1)*cj(2,2)) 

((cj(1,1)*cj(3,2)-cj(3,1)*ej(1,2JJJ 
(cj{1,1)*cj(2,2)-cj(2,1l*cj(l,2)) 

do 6030 jz:1,3 
do 6030 1=1,ncn 
b{j,l)=O.O 
do 6030 k=l, 3 

• 

i6,g20.S) 

I detj 
I detj 
I detj 
I detj 
I detj 
I detj 
I detj 
I detj 
I detj 

c 

6010 

da~ detj•eg{ig}*cg(jg)*colkg} 

return 
end 

==========~t••===============a•~t==============•••••============• 

subroutine f1ow(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,be ,vel 
1,press, r1, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 
2jmod, qq, pvkol, iter ,nel ,nen , ngaus,grav1, 
3grav2, orav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,de1tat,alpha, 
5idv4,sinv, icho, nnp, trefl 

implicit double precision{a-h,o-z) 

dimension node (maxel,maxst) ,pma.t 
dimension ncod (maxdf I ,be 
dimension vel (maxnp , 3),r1 
dimension aa (maxst, maxst), rr 
dimension xg ( 3) , cg 
dimension x ( 3 l , v 
dimension bicn { 2),hh 
dimension p { 20),del 
dimension eq (maxfr,maxfr},nopp 
dimension ldsc { 22) 
dimension lhed (maxfr J,khed 
dimension lpiv {maxfr ),kpiv 
dimension pvkol(maxfr ),mdf 
dimension ppp (20 , 20),pp 
dimension ak {100,100) 
dimension akf (100 ) 

{maxel, 
{maxdf 
(maxdf 
{maxst 
( 
( 
( 
( 3, 
(maxdf 

(maxfr 
(maxfr 
(maxdf 
(20 

dimension NQ (20 20),NP (3 , 
dimension C (maxst l, temp {maxnp 
dimension DELl (3 ) 
dimension press(maxnp ),clump{maxnp 
dimension gdsf ( 3, 20) 
dimension dmass(100, 100) 

ve1sound = 1150.0 
beta 0.0 
permx 1.0B-5 
pe~ 1.0E-5 
permz l.OE-5 

do 6010 idfs 
rr {idfl 
akf(idf) 
c lidf) 
do 6010 jdf• 

l,ntrix 
• o.o 
= 0.0 
= 0.0 

1,ntrix 

aa (idf,jdfJ~O.O 
dmass(idf,jdf)eO.O 
ak {idf,jdfi=O.O 
continue 

call oaussp(ngaus,xg,cg) 

lg::zO 

do 6020 io=l,ngaus 

do 6020 jg=l,ngaus 

do 6020 kg=l,ngaus 

• 
h 

f • 

xg{ig) 

xg(jg) 

xg(kg) 

10 

9), cord {maxnp, 
) , sinv (maxe1, 

ndim) 
27} 

J 
) , ldest {maxst 

3),kdest{maxst 
31 , nk (maxst 
3} 

20),b 3, 
J 

),jmod 
),qq 
),ndn 

{maxfr 
(maxfr 
(maxdf 

J 

" J 

) , SHAPElD ( 3 

rvisc 
rpef 
power 
rtem 
tbco 
taco 
roden 
·~d 

~ pmat(iel,l) 
• pmat!ie1,2J 
• pmat(iel,3) 

pmat(iel,4) 
pmat(iel,5J 
pmat{iel,6) 
pmat{iel,B) 
pmat(iel,9) 

20} 



c 
c 
c 

if(iter.eq.l) then 

call shape (g,h,f,p,del,ncn) 

call deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,cord, 
1 maxel,maxnp) 

else 

iig=ig 
jjg=jg 
kkg=kg 

write(l5) iel ,ig ,jg ,kg, p ,del ,b ,da 

if(.not. EOF(l5))read(l5) iel,iig,jjg,kkg,p ,del ,b, da 
endif 

calculation of viscosity based on the constitutive equation. 

spress 0 .o 
stemp = o.o 

do 5333 ip = l,ncn 
jp "'iabs(node(iel,ip)) 
stemp .. stemp + temp(jp) * p(ip) 

5333 continue 

c 

epsii ,. l.d-10 
gamad = sinv(iel,lg) 
if(gamad.lt.epsii) gamad • epsii 

call visca 
l(rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco,garoad) 

c prepration of the convective acceleration terms/balancing 
c dissipation is used 
c 

6050 

6060 

c 
c 
c 

c 

1,3 
0.0 

.. 0.0 

do 6050 idffs 
x(idff) 
v(idff) 
hh(idff) 
continue 

0.0 

do 6060 icn 1 ,ncn 

do 6060 
x(idff) 
v(idffl 
continue 

jcn = iabs~node(iel,icn)) 
idff= 1 • 3 

= xlidff) + p(icn)*cord(jcn,idff) 
= v(idff) + p(icn)*vel (jcn,idff) 

if(icord.eq.l) then 

modify da for axisymmetric computations. 

da = da x(l) 
endif 

column index 

do 6070 i=l,ncn 

:ill= 
:112= 
j13: 
j14= 

do 6070 :i=l,ncn 
j21: 
:122= 
j23= 
:124= 

i 
i + ncn 
i + 2*ncn 
i + J•ncn 

j 
j + ncn 
j + 2*ncn 
j + l*ncn 

c Dicretized form of 3D Stokes Equation 
c 
c 
c 

Stiffness Matrix of Left Hand Side -------------------------------------------------

11 

aa(jll,j21)•aa(jll,j21) + 
1 + 
2 
3 
3 + • 5 + • 
aa(jll,j22)=aa(jll,j22) + 

1 
2 + 
3 

aa(jll,j2JJ~aa(jll,j23) + 
1 
2 + 
3 

aa(jll,j24)maa(jll,j24) 
1 

aa(jl2,j21J•aa(j12,j21J + 
1 
2 + 
3 

aa(j12,j22)zaa(jl2,j22) + 
1 + 
2 
3 + • 5 
5 + • 
aa(j12,j23)•aa(j12,:123) + 

1 
2 + 
3 

aa(j12,j24l=aa(jl2,j24) 
1 

aa(j1J,j21)•aa(j13,j21) + 
1 
2 + 
3 

aa(j13,j22),.aa(j13,j22) + 
1 
2 + 
3 

aa(j13,j23)=aa(jlJ,j23) + 
1 + 
2 
3 + • 5 + • 7 

aa(j13,j24)=aa(j13,j241 
1 

aa(j14,j21l=aa(j14,j21} 
1 

aa{j14,:122)=aa(j14,j22) 
1 

p(i) *p(j) *da 
alpha*deltat*((2.0*visc/rodenl 
+(O.S*deltat*velsound*velsound)) 
'*b(l,i}*b(l,j)*da 
alpha*deltat*(visc/roden)*b(2,i) 
*b(2,j)*da 
alpha*deltat•(visc/roden)*b(J,i) 
*b(J,j)*da 

alpha*deltat*(visc/roden) 
*b(2,i)*b(l,j}•da 
alpha*deltat*(O.S*deltat•velsound 
*velsound)*b(l,i)*b(2,jJ*da 

alpha*deltat*(visc/roden}*b(J,i) 
*b(l,j)*da 
alpha*deltat*(O.S*deltat•velsound 
*velsound)*b(l,i)*b(J,j)*da 

(1.0/roden)*alpha*deltat*b{l,i) 
*p(j}*da 

alpha*deltat*(visc/roden)*b(l,il 
*b(2,j)*da 
alpha*deltat*(O.S*deltat•velsound 
*velsound)*b(2,i)*b(l,j)*da 

p(i) *p(j} *da 
alpha*deltat*(visc/roden)*b(l,i) 
*bll,jl*da 
alpha*deltat*((2.0*visc/roden) 
+(O.S*deltat*velsound*velsound}) 
*b(2,i)*b(2,j)*da 
alpha*deltat*(visc/roden}*b(3,i) 
*b(J,j)*da 

alpha*deltat*(visc/roden}*b(J,i) 
*b(2,j)*da 
alpha*deltat*(O.S*deltat*velsound 
•velsound)*b(2,i)*b{J,j)*da 

(l.O/roden)*alpha*deltat*b(2,i) 
*p{j)*da 

alpha*deltat*(visc/roden)*b(l,i) 
*b{J,j)*da 
alpha*deltat*{O.S*deltat*velsound 
•velsound)*b(3,i)*b{l,j)*da 

alpha*deltat*{visc/roden)*b{2,i) 
*b{J,j)*da 
alpha*deltat*{O.S*deltat•velsound 
*velsound)*b(J,i)*bl2,jl*da 

p(i) *p(j) •da 
alpha*deltat*{visc/roden)*b{l,i) 
*b(l,j)*da 
alpha*deltat*{visc/roden)•b(2,i) 
*b(2,j)*da 
alpha*deltat*{(2.0*visc/roden) 
+(O.S*deltat•velsound*velsound}) 
*b{J, i) *b(J, j) *da 

{1.0/roden)*alpha*deltat*b(J,i} 
*p{j)*da 

roden*alpha•deltat*velsound*velsound 
*p(i)*b{l, j) *da 

roden•alpha*deltat*velsound*velsound 
•p(i)*b(2,j)*da 
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aa(j14, j23) =aa(j14, j23) 
1 

aa(jl4,j24J=aa(jl4,j24) 
1 
2 
3 
4 
5 
6 

roden*alpha*deltat*velsound*velsound 
*p(i)*b(J,j)*da 

p(i)*p(j)*da 
(O.S*alpha*deltat)*roden*deltat 
•velsound*velsound*b(l,i)*b(l,j)*da 
(O.S*alpha*deltat}*roden*deltat 
•velsound*velsound*b(2,i)*b(2,j)*da 
(O.S*alpha*deltat)*roden*deltat 
•velsound*velsound*b(3,i)*b(3,j)*da 

c --- Matrix on Right Hand Side -------------------------------------------------c 
c For Transient State (Cartesian co-ordinate system} 

ak(jll,j2l)=ak(jll,j21} + 
1 
2 
3 
4 
5 
6 
7 

ak(jll,j22)=ak(jll,j22) 
1 
2 
3 

ak (jll, j23) =ak(jll, j23) 
1 
2 
3 

ak(j11,j24)=ak(j11,j24) + 
1 

ak(jl2,j21J=ak(j12,j21) 
1 
2 
3 

ak(j12,j22J=ak(jl2,j221 + 
1 
2 
3 
4 
5 
6 
7 

ak(j12,j23)=ak{j12,j23) 
1 
2 
3 

ak(j12, j24) =ak(jl2, j24J + 
1 

ak(jl3,j21l=ak{j13,j21) 
1 
2 
3 

ak(j13,j22)=ak(j13,j22) 
1 
2 
3 

p(i)*p(j)*da 
(1.0-alpha)*deltat*((2.0*visc/roden) 
+(O.S*deltat•velsound*velsound)) 
*b(1,i)*b(l,jJ*da 
(1.0-alpha)*de1tat•(visc/roden)*b(2,i) 
*b(2,j)*da 
(1.0-a1pha)*deltat*(visc/roden)*b(3,i) 
*b(l,j)*da 

(1.0-alpha)*de1tat*(visc/roden) 
*b(2,i)*b(l,j}*da 
(1.0-a1pha)*de1tat*(O.S*deltat*ve1sound 
*ve1sound)*b(l,i)*b(2,j)*da 

(1.0-a1pha)*de1tat*(visc/roden)*b(3,i) 
*b(l,jl*da 
(1.0-alpha)*de1tat*(O.S*de1tat*ve1sound 
*ve1sound)*b(l,i)*b(3,j)*da 

(1.0/roden)*(l.O-a1pha)*deltat*b(l,i) 
*p(j)*da 

(1.0-a1pha)*de1tat*(visc/roden)*b(1,i) 
*b(2,j)*da 
(l.O-alpha)*de1tat*(O.S*de1tat•velsound 
•ve1sound)*b(2,i)*b(1,j)*da 

p(i)*p(j)*da 
(1. O-a1pha) *del tat* (visc/roden) *b(l, i) 
*b(l,j)*da 
(l.O-a1pha)*de1tat*((2.0*visc/roden) 
+(O.S*deltat*ve1sound*ve1sound)) 
*b(2,i)*b{2,j)*da 
(1.0-a1pha)*de1tat*(visc/roden)*b(3,i} 
*b(l,j)*da 

(1.0-a1pha)*de1tat*(visc/roden)*b(3,i} 
*b(2,j)*da 
(1.0-alpha)*deltat*(O.S*deltat*velsound 
*velsound)*b(2,i)*b(3,j)*da 

(1.0/roden)*(1.0-alpha)*de1tat*b(2,i) 
*p(jJ*da 

(1.0-alpha)*deltat*(visc/roden)*b(l,il 
*b(3,j)*da 
(1.0-alpha)*deltat*(O.S*deltat*ve1sound 
*velsound)*b(l,i}*b(l,j)*da 

(1.0-a1pha}*de1tat*(visc/roden)*b(2,i) 
*b(l,j)*da 
(l.O-a1phaJ*deltat*(O.S*de1tat*velsound 
*velsound)*b(3,i)*b(2,j)*da 
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c 
c 
c 
c 

ak(j13,j2ll~ak(j13,j23) + 
1 
2 
3 
4 
5 
6 
7 

ak(j13,j24J=ak(j13,j24) + 
1 

p(i)*p(j)*da 
(1.0-a1phal*de1tat*(visc/roden)*b(1,il 
*b(l,j)*da 
(1.0-alpha)*deltat*Cvisc/roden}*b(2,i) 
*b(2,jJ*da 
(1.0-a1pha)*de1tat*((2.0*visc/roden) 
+(O.S*deltat*velsound*ve1sound)) 
*b(3,i)*b(l,j)*da 

(1.0/roden)*(1.0-alpha)*deltat*b(3,i) 
*p(j)*da 

ak(jl4,j21)=ak(j14,j21) + roden*(1.0-alpha)*de1tat*ve1sound 
1 *ve1sound*p(i)*b(1,j}*da 

ak(j14,j22)•ak(j14,j22J + 
1 

ak(j14,j23)•ak(j14,j23) + 
1 

ak(jl4,j24J=ak(j13,j24) 
1 • 
2 
3 • 
4 
5 • 
6 

roden*(1.0-alpha)*deltat*ve1sound 
•velsound*p(i)*b(2,j)*da 

roden*(1.0-alpha)*deltat*ve1sound 
•velsound*p(i)*b(l,j)*da 

p(i) *p(j) *da 
(O.S*deltat)*roden*(l.O-a1pha)*deltat 
•velsound*velsound*b(l,i)*b(1,j)*da 
(O.S*de1tat)*roden*(l.O-alpha)*deltat 
*ve1sound*velsound*b(2,i)*b(2,j)*da 
(O.S*deltat)*roden*(1.0-alphaJ*de1tat 
*velsound*velsound*b(3,i)*b(3,j)*da 

Body Force Effect (for Elemental Load Vector Calculation) 
:c:=::::::z=••••====================~za=z================= 

C(jll) =C(j11) + (1.0-alpha)*de1tat*p(j)*gravl*da 

C(j12l =C{j12) + .(l.O-alpha)*deltat*p(j)•grav2*da 

C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*gravl*da 

C(jl4) :C(j14) + 0 

6070 continue 
6020 continue 

c 
c 
c 
c 

Por Transient State (Cartesian Co-ordinate System) 
=============a=============~~===================== 
Term one on RHS is evaluated 

do 6080 i=l,ncn 

jll= i 
j12= i + ncn 
jll= i + 2*ncn 
j14• i + 3*ncn 

do 6080 j=l,ncn 
j21= 
j22"' j + ncn 
j23• :l + 2*nen 
j24= j + l*ncn 

nn=iabs (node (ie1, j J) 

akf(j11)=akf(jl1) 
1 

+ ak(jll,j2l)*vel(nn,l) + 
ak(jll, j22) •vel (nn,2J + 
ak(jll,j23)*vel(nn,3) + 
ak(jll,j24)*press(nn) 

2 
3 

akf(j12)=akf(j12) 
1 
2 

+ ak(j12,j21)*vel(nn,1) + 
ak{j12,j22)*vel(nn,2) + 
ak(j12,j23)*vel(nn,3) + 
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6080 

c 
c 
c 

c 

6085 

c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

akf(j13):akf{j13J 
1 

+ ak( 13,j21)•vel(nn,l• + 
ak( 13,j22J•vel(nn,2• + 
ak( 13,j23)*vel(nn,3) + 
ak( 13,j24)•press(nnl 

2 
3 

akf(j14):akf(jl4) 
1 

+ ak(j14,j21)•vel(nn,l) + 
ak(j14, j22)•vel (nn,2) + 
ak(jl4,j23)•vel(nn,3) + 
ak(jl4,j24)•press(nn) 

2 
3 

continue 

Evaluation of Elemental Load Vector 

do 6085 i:1,nc:n 

:ill= i 
jl2= i + nc:n 
:113= i + 2*nc:n 
jl4• i + 3•nc:n 

For Transient State (Cartesian Co-ordinate System) 

rr(jl1): rr(j11) + akf(j11) + C{jll) 
rr(jl2)= rr(j12) + akf(j12) + C(j12) 
rr(jl3l• rr(jl3J + akf(jl3) + C(j13) 
r:r(jl4)= rr(jl4) + akf(jl4) + C(j14) 

continue 

maxte=maxdf 
c:all front 

l{aa ,r:r ,iel ,node 
2,eq ,lhed ,khed ,kpiv 
3,ncod ,be: ,nopp ,mdf 
4,nell ,ntra, press,ic:ho 

,maxel,maxst,ldest,kdest,nk 
,lpiv ,jmod ,qq ,pvkol,vel 
,ndn ,maxdf,nel ,maxte,ntov 

,maxfr 
,r1 
,lc:ol 

return 
end 

subroutine front 

) 

1 (aa ,rr ,iel ,nop 
2 eq ,lhed ,khed ,kpiv 
3 ncod ,be ,nopp ,mdf 

,maxel,maxst, ldest, kdest, nk 
,lpiv ,jmod ,qq ,pvkol,vel 
,ndn ,maxdf,ne1 ,maxte,ntov 

,maxfr, 
,rl , 
, lc:ol , 

4 nell ,ntra, press,icho ) 

Frontal elimination routine using diagonal pivoting 

(max.st) 
implicit double prec:ision(a-h,o-z) 
dimension aa (maxst,maxst) ,rr 
dimension nop (rnaxel,maxst) 
dimension ldest(maxst) ,kdest(maxst) 

,lhed (maxfr) 
,1piv (maxfr) 
, qq (max.fr) 
,rl (maxdf) 
,nopp (maxdf) 
, press (rnaxdf) 

dimension eq (maxf:r,maxfr) 
dimension kpiv (maxfr) 
dimension jmod (maxfr) 
dimension vel (maxte) 
dimension be (maxdfl 
dimension ndn (maxdf) 

, nk (rnaxst) 
, khed (max.fr) 

, pvkol (maxfr) 
, nc:od (maxdf) 
'mdf (maxdf) 

nlp and ndl are the file spec:ifiers for units 60 and 14 respectively 
=:=:~s:z::::::=============::::::;;;::::~~z::::::::=======•===::=:==z::: 

nlp::60 
ndl=14 

Prefront 

nmax=maxfr 
nc:rit~<20 
nlarg=maxfr-10 
if(iel.eq.l) nell = 0 
if(iel.eq.l) ntra: 1 
iflntra.eq.O) goto 6040 
nmax maxfr 
ntra • 0 
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c 
c 
c 

6030 
6020 

6010 

c 
c 
c 
6040 

6050 
6060 

6070 
c 
c 
c 
c 

6090 
6100 

6110 

6080 

6130 

6140 

c 
c 
c 

lfron z 0 
nlarg "' nma.x-10 

Find last appeareanc:e of eac:h node 

nlast = 0 
do 6010 i = 1,ntov 
do 6020 n = l,nel 
jdn • ndn(n) 
do 6030 1: l,jdn 
if(nop(n,l).ne.i)go to 6030 
nlastl • n 
nlast • n 
11 • 1 
continue 
continue 
if(nlast.eq.O) go to 6010 
nop(nlast,ll) • -nop(nlast,ll) 
nlast ,. 0 
continue 
ntrix = jdn 

Assembly 

continue 
if(iel.gt.1) go to 6060 
lc:ol • 0 
do 6050 i a 1,nmax 
do 6050 j = 1,nmax 
eq(j,i) = 0. 
continue 
nell • nell+1 
n : nell 
jdn • ndn(nell) 
kc: .. 0 
do 6070 j • 1,jdn 
nn • nop(n,j) 
m = iabs(nn) 
k • nopp(rnl 
id£ ,. mdf(m) 
r1(m) .. :rr{j)+rl(m) 
do 6070 1 2 l,idf 
kc: • kc+1 
ii .. k+l-1 
if(nn.lt.O)ii • -ii 
nk(kc) • ii 
continue 

Set up heading vectors 

do 6080 lk • 1,kc 
node • nk(lk) 
if(lc:ol.eq.O)goto 6100 
do 6090 1 • 1,1col 
11 • 1 
if(iabs(node) .eq.iabs(lhed(l)))go to 6110 
continue 
lcol .. lc:ol+l 
ldest(lk) • lcol 
lhed(lcol) = node 
go to 6080 
ldest(lk) = 11 
lhed(ll) : node 
continue 
if(lcol.le.nmax)go to 6130 
nerror • 2 
write{nlp,3010)nerror 
stop 
continue 
do 6140 l = l,kc 
11 • ldest{l) 
do 6140 k "' 1,kc 
kk • ldest(k) 
eq(kk,lll = eq(kk,ll)+aa(k,l) 
continue 
if(lcol.lt.ncrit.and.nell.lt.nel) return 

Find out which matrix elements are fully assembeled 
==========:=•••••z:::========::======•:z~=========: 
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6160 
c 

1r • o 
do 6160 1 = 1,lco1 
kt = lhed(l) 
if(kt.ge.O)go to 6160 
le • 1c+l 
lpiv(1cl .. 1 
kro " labs (kt) 
if(ncod(kro) .ne.1)go to 6160 
ir = ir+1 
jmod (ir) • 1 
ncod(kro) = 2 
r1(kro) • bc(kro) 
continue 

c Modify equations with applied boundary conditions 
c ==;;;;;;;;;;;;;;;;;;;;;;az:===========;;;;;;;;;;;;;;:•==:===="""""" 

6180 
6170 
6190 

c 

6200 
c 

if(ir.eq.O)go to 6190 
do 6170 irr " l,ir 
k "' jmod(irr) 
kh z iabs(lhed(k)) 
do 6180 1 • l,lcol 
eq(k,1) = o. 
lh = iabs(lhed(l)) 
if(lh.eq.kh)eq(k,l) • 1. 
continue 
continue 
continue 
if(lc.gt.OJgo to 6200 
ncrit " ncrit+10 
write(nlp,3020Jncrit 
if(ncrit.le.nlarg) return 
nerror " 3 
write(nlp,3030)nerror 
stop 
continue 

c Search for absolute pivot 

pivot .. 0. 
do 6210 1 = 1,lc 
lpivc "' lpiv(l) 
kpivr = lpivc 
piva .. eq(kpivr,lpivc) 
if(abs(piva) .lt.abs(pivotl )go to 6220 
pivot " piva 
lpivco • lpivc 
kpi vro = kpi vr 

6220 continue 
6210 continue 

if(pivot.eq.O.O) return 
c 
c Normalise pivotal row 
c ==·=======;;=="=====·· 

lco = iabs(lhed(lpivco)) 
kro • lco 

c if(nit.eq.O.or.npra.eq.O)go to 6230 
c6230 continue 

if(abs(pivot).lt.O.ld-28) write(nlp,3050) 
do 6240 1 = l,lcol 
qq(ll = eq(kpivro,l)/pivot 

6240 continue 

c 
c 
c 

6260 

rhs = rl(kro)/pivot 
rl (kro) • rhs 
pvkol(kpivro) =pivot 

Eliminate then delete pivotal row and column 

if(kpivro.eq.l)go to 6300 
kpivr = kpivro-1 
do 6250 k = 1,kpivr 
krw = iabs(lhed(k)) 
fac = eq(k,lpivcoJ 
pvkol (kl = fac 
if(lpivco.eq.l.or.fac.eq.O.Jgo to 6270 
lpivc • lpivco-1 
do 6260 1 = l,lpivc 
eq(k,l) • eq(k,l)-fac*qq(l) 
continue 
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6280 
6290 
6250 
6300 

6320 
6330 

6340 
6350 
6310 
6360 
c 
c 
c 

6370 
c 
c 

lpivC lpiVco+l 
do 6280 1 • lpivc,lcol 
eq(k,l-1) • eq(k,l)-fac*qq(l) 
continue 
r1(krw) = rl(krw)-fac*rhs 
continue 
if(kpivro.eq.1col)go to 6360 
kpivr = kpivro+l 
do 6310 k • kpivr,lco1 
krw • iabs{lhed(k)) 
fac • eq(k,lpivco) 
pvkol(k) • fac 
if(lpivco.eq.1)go to 6330 
lpivc " lpivco-1 
do 6320 1 • 1,lpivc 
eq(k-1,1) • eq(k,l)-fac*qq{l) 
continue 
if(lpivco.eq.lcol}go to 6350 
lpivc = lpivco+l 
do 6340 1 • lpivc,1col 
eq(k-1,1·1) = eq(k,l)-facwqq(l) 
continue 
r1(krw) = rl(krw)-fac*rhs 
continue 
continue 

Write pivotal equation on disc 
==========•=;;=··==========;;;;;;;; 
write{nd1) kro,lcol,lpivco, {lhed(l),qq(l),l: 1,1co1) 
do 6370 1 • 1,lcol 
eq(l,lcol) 0. 
eq{lcol,l) = 0. 
continue 

Rearrange heading vectors 

1col = lcol-1 
if{1pivco.eq.lcol+1)go to 6390 
do 6380 1 • lpivco,lcol 
lhed(1J = lhed(l+1) 

6380 continue 
6390 continue 
c 
c Determine whether to assemble, eliminate, or backsubstitute 
C ===~as;;:a•===========;;:;;;;3aKEaa•===========~;;;saz===•==== 

c 
c 

if(lcol.gt.ncrit)go to 6150 
if(nell.lt.nel) return 
if(lcol.gt.l)go to 6150 
lco • iabs{lhed(1ll 
kpivro = 1 
pivot = eq(l, 1) 
kro • lco 
lpivco • 1 
qq(l) = 1. 

if{nit.eq.O.or.npra.eq.O)go to 6400 
write(nlp,3040)lco,kro,pivot 

if{abs(pivot).lt.1d-28)go to 6410 

c6400 continue 

r1{kro) = r1{kro)/pivot 
write(nd1) kro,lcol,lpivco,lhed(l),qq(l) 

c 
c start back-substitution 
c ;;;;;;••===·========;;=···· 

c 
c 
c 
6410 
c 
3010 

call bacsub 
1 (ntov , ncod , be ,rl 
2 icho) 

main exit with solution 
;;:;;:•:;;;;az========:;;:s: 
continue 

format(/' nerror=',i5// 

,vel ,press, maxfr,qq ,lhed ,nd1, 

1 • the difference nmax-ncrit is not sufficiently large' 
1/' to permit the assembly of the next element---' 
1/' either increase nmax or lower ncrit' 
1/J 
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JUJO tormatl/' nerror=',15// 
1 ' there are no more rows fully summed, this may be due to---' 
1/' (l)incorrect coding of nop or nk arrays' 
1/' (2}incorrect value of ncrit. increase ncrit to permit' 
1/' whole front to be assembled' 
11) 

c3040 format(l3h pivotal row=,i4,16h pivotal column~,i4,7h pivot•,e20.10 
c 1) 

3050 format(' warning-matrix singular or ill conditioned') 

c 
c 

c 
c 
c 
c 

c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

return 
end 

===========~==~s==•===z==================~•~==•======~========••== 
subroutine gaussp{ngaus,xg,cg) 

implicit double precision(a-h,o-z) 

x(g) specifies the coordinates of the Gauss points 
c(g) specifies the Gauss weights 

dimension xg{l),cg(l} 

if(ngaus.eq.lJ then 
xg(l)=O.O 
cg(1)•2.0 
elseiflngaus.eq.2) then 
xg(l) 0.57735026919d00 
xg(2) -xg{1) 
cg(l) 1.00 
cg(2) 1.00 
else 
xg(l) 
xg(2) 
xg(l) 
cg(l) 
cg(2) 
cg(l) 

endif 
return 
end 

0.77459666924d00 
0.0 
-xg(1) 
0.55555555556d00 
O.S8888888889d00 
cg(l) 

subroutine getbcd (nbc ,ibc ,jbc ,vbc 
1 ,idvl ,idv2 ,maxbc:) 

implicit double precision(a-h,o-z) 

arguments 
=:=•====== 
nbc 
ibc 
jbc 
vbc 
udvl 
idv2 
maxbc 

number of nodal constraint data 
array for constrained nodal points 
array for constrained degree of freedom 
array for boundary values 
input device id. 
output device id. 
see below 

dimension ibc: lmaxbcl ,jbc (maxbc:),vbc {maxbc:) 

if (.not. eof!Sl))read {idvl,lOlO) (ibc{ind) ,jbc(ind) ,vbc(ind) 
1 ,ind,l,nbc:) 
print*, "boundary conditions array read" 
write( idv2, 3010) 
write(idv2,3020J (ibclind) ,jbc(ind} ,vbc(ind) ,ind=1,nbc:) 

return 

1010 format(2i5, £10.4) 
3010 for111at(' ',11 {,' ',20('*'),' nodal const~::aint ',20('*'),// 

1' •, (8x, • id.', ?x, 'do£ •, lOx, •value' ,lOxJ I J 
3020 format(Sx,i5,5x,i5,fl7.4) 

end 

C ================================:;::::;:s;;aa;:sz=••==~===========c 
subroutine getelm (nel ,ncn ,node ,idv1 ,idv2 ,maxel) 

" 

c 
c 
c 
c 
c 
c 
c 
c 
c 

implicit double precision(a-h,o-z} 

arguments 
"'""'"'"""'"" 
ncn 
node 
idvl 
idv2 
-el 

number of nodes per element 
array for element connectivity data 
input device id. 
output device id. 
see below 

dimension node (maxel, ncn) 

do 6010 iel G 1 ,nel 
6010 if (.not. eof(51))read (idvl,1010) iel, (node(iel,icn),icn=l,ncn) 

print*, "nodal connectivity array read" 
write(idv2,3010) 

do 6020 jel = 1 ,nel 
6020 write(idv2,3020) jel , (node(jel,icn),icn,l,ncn) 

return 

1010 format{2li7l 
3010 format(' ',///,' ',20('*'),' element connectivity ',20('*'),// 

1' ',4x,'id.',7x,'nodal-point entries',/) 
3020 format(2li7) 

c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

6020 

end 

~=••~=•z===========;::=•==••~=•z===============~;:a;:••==••=s=====c 

subroutine getmat (nel ,nmat,pmat, idvl, idv2,maxel,rtem, rpef) 

implicit double precision(a-h,o-z) 

arguments 
"'""""""'asz 
nmat number of materials 
pmat array for material constants for each element 
idv1 input device id. 
idv2 output devide id. 
maxel see below 

density rod en 
rvisc 
pref 
power 
tref 
tbco 
taco 
dispc 
gomad 

mu nought1 consistency coefficient 
reference pressure 
power law index 
reference temperature 
coefficient b in the power law model 
coefficient a in the power law model 
dispersion coefficient 
shear rate 

dimension pmat (maxel, 

writetidv2,l010) 

do 6010 imat a 1 ,nmat 

9) 

if (.NOT. EOF(51)) read(idv1,1010) rvisc, power, tref, tbc:o, taco, 
1 dispc, pref, roden, gamad 
print*, •material properties read" 

ifrom "' 1 
ito = nel 

if(rtem .eq.O.) rtem 0.001 
if(rpef .eq.O.) rpef ~ 0.001 

do 6020 iel ifrom ,ito 
pmat(iel,l) rvisc 
pmat(iel,2) pref 
pmat(iel,3) power 
pmat(iel,4) tref 
pmat(iel,Sl tbco 
pmat(iel,6) taco 
pmat(iel,7l dispc 
pmat(iel,S) rod en 
pmat(iel,9) gomad 
rtem tref 
rpef pref 

continue 
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write(idv2,3030) 
write(idv2,3040) tref ,tbco, pref, taco 
write(idv2,3050) 
writeCidv2,3060) dispc , roden , gamad 

6010 continue 

return 

1010 fo~t(9d10.5l 

3010 fo~t(' ',//' ',35('*'),' material properties ',35('*'),// 
1 ' ', 2x, 'id. ', 5x, 'eid. (from-to) ' , 3x, 'consistency co-efficient' 
2,5x,•power law index',/) 

3020 fo~t(' ',i3,il2,i4,5x,g15.5,15x,g15.5) 
3030 fo~t(/x,• reference temperature coefficient b 

1 reference pressure coefficient a '/) 
3040 fo~t(f16.3,f22.4,6x,g10.3,9x,g10.3) 
3050 fo~t{/x, 

1' Dispersion Coefficient Density Shear rate' /l 
3060 fo~t(g13.3,15x,g7.1,6x,g16.5) 

end 

C ::::::;:::;:::a:zz::::::====~•••========:::m~===========z:::::::: 

subroutine getnod (nnp ,cord ,idv1 ,idv2 ,maxnp,ndim,icord) 
e 

implicit double precision(a-h,o-z) 
e 
c ax:guments 
c ========"' 
e 
e 
e 
e 
e 
e 

e 

nnp 
cox:d 
idv1 
idv2 
ndim 

total number of nodal points in the mesh 
a:r:ray for nodal coo:r:dinates 
input device id. 
output device id. 
see below 

dimension co:r:d(maxnp, ndim) 

if (.NO'l'. BOF(Sl)) :r:ead {idv1,1010) (jnp , (cord(jnp,idf),idf•1,3) 
1 ,jnp:1,nnp) 
if(icord.eq.O) w:r:ite(idv2,3010) 
if(ico:r:d.eq.l) write(idv2,3020) 
writeCidvi, 3030) (jnp , {co:r:d(jnp, idf), idf=l, 3} , jnp=1,nnp} 

return 

1010 fo~t(i7,e20.12,e20.12,e20.12) 
3010 fo~t(' ',///' ',20('*'),' nodal coo:r:dinates ',20('*'),// 

1' ', (7x, 'id.', 13x, •x-coord', 13x, 'y-coord', 20x)/} 
1' ', (7x, • id. •, 13x, 'x-coo:r:d' ,13x, 'y-coo:r:d', 13x, 'z-coord', 13x) /l 

3020 fo~t(' ',///' ',20('*'),' nodal coordinates ',20{'*'),// 
1' ', 2 (7x, 'id/', 7x, ':r:-coord', 7x, 'z-coord', 20x) I) 

3030 fo~t(' ',il0,10x,f10.6,10x,f10.6,10x,fl0.6) 

end 

subroutine minimax 
1{ e~x -X vel p:r:ess maxnp, nnp 

' np = nem nv= nvym nvzm ' 3 nvxl nvyl nvzl pmin cmin 
• ~X v=in vymax, vymin vzmax vzm.in, 

e 

implicit :r:eal•S (a-h,o-z) 
dimension vel (maxdf) 
dimension press ( maxnp 

~ vel(l) 
vxmin vel (1) 
~X vel(nnp .. l) 
vymin vel(nnp .. l) 
vzmax velC2*nnpHJ 
vzmin vel(2*nnp .. l) 

pm~ press {1) 
pm in press {1) 

ne 1 
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ne, 

ndim maxdf ) 

6020 

np 1 
nm 1 
nvxm 1 
nvym 1 
nvzm 1 
nvxl 1 
nvyl 1 
nvzl 1 

do 6020 i=2,nnp 

pm 
pi 
vxmx 
vxmn 
vymx 
vymn 
v•= 
nmn 

press Cil 
press (i) 
vel(i) 
vel(i) 
vel(nnp .. i) 
vel(nnp .. i) 
vel(2*nnp+i) 
vel(2*nnp+i) 

if ( pm.gt.pmax ) 
~·pm 

np •i 
endif 
if ( pi.lt .pmin ) 

pmin • pi 
nm • i 

end if 
if ( vxmx.gt.vxmax ) 

~·= nvxm • i 
endif 
if ( vymx.gt.vymax ) 

vymax• vymx 
nvym • i 

end if 
if ( vzmx.gt.vzmax ) 

vzmax,. vzmx 
nvzm • i 

end if 

if ( vxmn.lt.vxmin ) 
vxmin .. vxmn 
nvxl • i 

end if 
if ( vymn.lt.vyrnin ) 

vymin"' vyrnn 
nvyl • i 

end. if 
if ( vzrnn.lt.vzmin ) 

vzmin,. vzmn 
nvzl • i 

endif 
continue 

:r:eturn 
end 

then 

then 

then 

then 

then 

then 

then 

then 

c =·===================·····=============:•==============······===== 

e 

e 
e 
e 

subroutine output 
1 {nnp ,vel ,p:r:ess, maxdf,maxnp,icord, stres) 

implicit double precision(a-h,o-z) 

arguments a:r:e al:r:eady defined 
=========••z============m==== 
dimension vel(maxdf), press{rnaxnp) 
dimension stres(maxnp, 6) 

w:r:ite(60,3010) 

if{icord.eq.O) w:r:ite(60,3020) 
if(icord.eq.1) w:r:ite(60,3030J 

do 6010 inp • l,nnp 
jnp • inp + nnp 
knp • inp + (2*nnp) 

p:r:ess{inp)=press(inp) 
w:r:ite{60,3040)inp,vel(inp),vel(jnp),vel{knp),press(inp), 

lst:r:es{inp,l) 

" 



3010 
3020 
3030 
3040 

3045 
3050 

3055 
3060 

call minimax 
1( c~ _. vel press ~ .. =• 2 
l 

• 
np = n= n~ nvym 
n=l nvyl nvzl pmin cmin 
~ vxmin ~. vymin vzmax 

write (60, 3045) 
write(60,3050)nvxm,vel(nvxm),nvxl,vel(nvxl) 

nvzm 

vzmin, 

write(60,3055) 
write(60,3060)nvym,vel(nnp+nvym),nvyl,vel(nnp+nvyl) 

ne, 

ndim 

write(60,3065) 
write(60,3070)nvzm,vel(2*nnp+nvzm),nvzl,vel(2*nnp+nvzl) 

write(60,3075) 
write(60,3080)np,press(np),nm,press(nm) 

format(/' nodal velocities and pressures '/) 

maxdf ) 

format (' id. ux uy uz 
format (' id. ur uz uz 

press stress'/) 
press'/) 

format(i5,3e13.4,e22.8,g15.5l 

format{'node no. max ux node no. min ux') 
format(i5,e22.8,iS,e22.8,/) 

format('node no. max uy 
format (iS, e22 .8, iS, e22. 8, /l 

node no. min uy') 

3065 format('node no. max uz node no. min uz'l 
3070 format{iS,e22.8,iS,e22.8,/) 

3075 
3080 

c 
c 
c 
c 
c 
c 
c 
c 

6010 

c 
c 
c 
c 
c 
c 

format{ •node no. max p 
format(iS,e22.8,iS,e22.8,/) 

return 
end 

node no. min p') 

====••==~~========~==z•=========••:=R======•~z••==~===~=••R======= 
subroutine putbcv 

1 (nnp ,nbe ,ibc ,jbc ,vbc ,ncod ,be ,maxbc,maxdf,maxel,maxst, 
2 node) 

implicit double precision(a-h,o-z) 

arguments 
====·==== 
ncod 
be 
m&xbc 
maxdf 

array for constraint switch defined for every d.o.f. 
array for storing contraint value 
see below 
see below 

dimension ibc (maxbc) , jbc (maxbcl , vbc (maxbc) 
dimension need {maxdf) ,be (maxdfl ,node (maxel,maxst) 

do 6010 ind = 1 ,nbc 
if(jbc(ind)>4) goto 6010 
jnd ibc(ind)+(jbc(ind)-l)•nnp 
be {jnd) vbc(ind) 
ncod (jnd) • 1 
continue 

specifying the stress free condition on node number 84 
=======s••===========:a:a••=========a=s••========:E:za 
iel=16 
inp=24 
kc=iabs(node(iel,inp)) 

return 
end 

:z•~==~============•R=••~===========••==========•=••===•==2==••=~• 
subroutine secinv 

1 (nel ,nnp ,ncn 
2 del ,da ,vel 
3 maxdf, numl 

,ngaus,node ,sinv ,cord ,p ,b , 
,maxnp,maxel,maxst,ndim ,icord, 

implicit double precision(a-h,o-z) 

2l 

c function 
c 
c calculates the second invariant of rate of deformation 
c tensor at integration points. 

dimension vel 
dimension node 
dimension p 
dimension b 

do 5000 iel:: 1 
lg. 0 

do 5010 ig 1 
do 5010 jg 1 
do 5010 kg 1 

(maxnp, ndim) 
{maxel,maxst) 
( 20 ) 
{ 3, 20) 

nel 

, ngaus 
,ngaus 
,ngaus 

lg lg+1 

,cord 
,sinv 
,del 

(maxnp, 
(maxel, 
( 3, 

ndim) 
27) 
20) 

rewind 15 

read (15) iiel,iig,jjg,p,del,b,da 

ull 
u12 
ull 
u21 
u22 
u2l 
ull 
u32 
uJJ 

o.o 
0.0 
o.o 
0.0 
o.o 
0.0 
o.o 
0.0 
o.o 

do 5020 icn a 1 ,ncn 
jcn = iabs(node(iel,icn)) 

c ••• components of the rate of deformation tensor 

ull u11 + b(l,icn)•vel(:icn,l) 
ul2 z u12 + b(2,icn)•vel{jcn,l) 
u13 ul3 + b(3,icn)*vel(jcn,l) 
u21 u21 + b{1,icn)•vel(jcn,2) 
u22 z u22 + b(2,icn)•vel(jcn,2) 
u23 u23 + b(3,icnJ*vel(jcn,2) 
u31 u31 + b{l, icn)•vel (jcn,l) 
u32 u32 + b(2,icn)•vel(jcn,3) 
u33 u33 + b{3,icn)•vel(jcn,l) 

5020 continue 
c 
c second invariant of the rate of deformation tensor 

c 
c 
c 
c 
c 

sinv{iel,lgJ~O.l25*((ul1+ull)•{ull+ull)+ 
1 (u12+u2l)*(ul2+u21)+ 
2 (u13+u31)*(ul3+u31)+ 
3 (u2l+ul2)• (u2l+ul2) + 
4 (u22+u22)* (u22+u22) + 
5 {u23+u32) • (u23+u32J + 
6 (u31+ul3)*(u3l+ul3)+ 
7 {u32+u23)*(u32+u23)+ 
8 (u33+U33) • (u33+u33)) 

5010 continue 
5000 continue 

return 
end 

subroutine setprm 
1 (nnp ,nel ,ncn ,node ,ndf 

,nopp ) 
,maxel,maxst,ndn ,ntrix, 

2 maxdf,ntov ,mdf 

implicit double precision(a-h,o-z) 

arguments 

all arguments are defined elsewhere. 

dimension node (maxel,maxst), ndn {maxdf) 
dimension mdf (maxdf ) , nopp (maxdfl 
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I:UDC&lOD c 
c 
c 
c 

sets the location data for nodal degrees of freedom 

do 6010 iel 
ndn(iel) .. 

do 6010 icn = 
ken = 
jacn= 
lacn= 

1 ,nel 
ntrix 
1 ,ncn 
node I iel, icn) 
icn+ (ndf-3) •ncn 
ken+ (ndf-3) *nnp 

jbcn= icn+(ndf-2)*ncn 
lbcn: kcn+(ndf-2)*nnp 

jccn" icn+(ndf-l)*ncn 
lccn= kcn+lndf-l)*nnp 

node(iel,jacn) : lacn 
node(iel,jbcn) lbcn 
node(iel,jccnl lccn 

6010 continue 
do 6020 idf 

mdf (id f) 
nopp(idf) 

6020 continue 

c 

return 
end 

1, ntov 
1 
idf 

C z:z===========•=•==========••••=====~=z•=•========•3•==•=====•=z== 

c 

subroutine shape ( xi , eta , zeta, p ,del , ncn ) 
implicit double precision {a-h,o-z) 

DIMENSION p(20) ,del(3,20) 
if (ncn.eq.SI then 

del(l,ll=-0.125*(1-eta)*(l-zetal 
del(1,2l•-0.12S*(l+eta)*l1-zeta) 
del(l,Jl= 0.12S*(l+eta)*(1-zetal 
de1(1,4)• 0.125*(1-eta)*(1-zetal 
del(1,5l~-0.125*(1-etaJ*(1+zeta) 
del(1,6l=-0.125*(1+eta)*(1+zetal 
del(1,7)• 0.125*(1+eta)*(l+zeta) 
del(l,S)a 0.125*(1-eta)*(l+zeta) 

c ...................................................... . 
de1(2,1)•-0.125*(1-xi)*{1-zeta) 
de1(2,2)= 0.125*(1-xi)*(1-zeta) 
del(2,3l= 0.125*(1+xi)*(l-zeta) 
del(2,4)c-0.125*(1+xi)*(1-zeta) 
del(2,5l=-0.125*(l-xi)*(1+zeta) 
del(2,6)a 0.125*(1-xi)*(1+zeta) 
del(2,7l= 0.125*(l+xi)*(l+zeta) 
del(2,8J=-O.l25*(1+xi)*(1+zeta) 

c ........••••.••••.•......•••..•••....•••••.•....•••••••.••. 
del (3, 1) =-0 .125* ( 1-xi) * ( 1-eta) 
de1(3,2l~-0.125*(1-xi)*(1+etal 
del(3,3l=-0.125*(1+xi)*(1+eta) 
de1t3,4J~-0.125*(1+xi)*(1-etal 
del(3,5l~ 0.125*(1-xi)*(1-eta) 
delt3,6): 0.125*(1-xi)*(l+eta) 
del(3,7l= 0.125*(1+xi)*(l+eta) 
del(3,8l= 0.125*(1+xi)*(1-eta) 

c ........•...•.••......•..•.•..••....•.••.•••.••.••••..•.... 
p(1J=0.125*(1-xi)*(1-eta)*(l-zetal 
p(2)=0.125*(1-xi)*(l+eta)*(1-zeta) 
p(3)•0.125*(1+xi)*(1+etal*(1-zeta) 
p(4J=0.125*(1+xi)*(1-eta)*(1-zetal 
p(S)=0.125*(l-xi)*(1-eta)*(1+zeta) 
p(6J=0.125*(1-xi)*(1+etal*(1+zeta) 
p(7)=0.125*(1+xi)*(l+eta)*(l+zeta) 
p(8)=0.125*(1+xi)*(1-eta)*(1+zeta) 

c ••..•..•.......•.••••••.•••....•.•••.••••....••••••.•••.... 

c 

endif 
return 
ond 

subroutine stress 
1 (nel,nnp,ncn ,node ,p , b , da ,vel ,maxnp, maxe1, maxst , 

25 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

4990 

6020 

implicit double precision(a-h,o-z) 

function 

calculates stress components at integration points, 
Direct Approach (coupled scheme) 

dimension node (maxel,maxst) 
dimension stres(maxnp, 6) 
dimension vel (maxnp, 3) 
dimension c1ump(maxnp ) 

b ( 3, 20) 
press (maxnp ) , p ( 20 

rewind 15 

do 4990 inp •l,maxnp 
do 4990 icp ~1, 6 
stres(inp,icp)• 0.0 
continue 

do 5000 iel = 1 ,nel 

do 6010 jg=l,ngaus 

do 6010 kg=l,ngaus 

if(.not. EOF(15))read(15) iiel,Hg,jjg,kkg,p ,del ,b, da 

ull • 0.0 
u12 = 0.0 
ull • 0.0 
u21 • o.o 
u22 '" 0.0 
u23 • 0.0 
u31 0. 0 
u32 • 0.0 
u33 ,. 0.0 

presl • 0.0 

do 6020 icn = 1 ,ncn 
jcn • iabs(node(iel,icn)) 

ull ull + b(l,icn)*vel(jcn,l) 
u12 u12 + b(2,icnl*vel(jcn,1) 
u13 u13 + b(3,icn)*ve1(jcn,1) 
u21 u21 + b(l,icn)*vel(jcn,2) 
u22 = u22 + b(2,icn)*vel(jcn,2) 
u23 • u23 + b(3,icn)*vel(jcn,2) 
u31 • u31 + b(l,icn)*vel(jcn,J) 
u32 • u32 + b(2,icn)*vel(jcn,3) 
uJJ • u33 + b(J,icn)*vel(jcn,J) 

presl • presl + p(icn)*press(jcn) 

continue 

cartesian components of the stress tensor 
••=•=•~=======a==•=•===========•=•==•==== 

shear Stress (Tau) 

sd11 2.0 *rvisc 
sd22 • 2.0 *rvisc 
sdJJ 2.0 •rvisc 
sd12 rvisc (u12 + 
sd13 • rvisc . (u13 + 
sd23 rvisc . (u23 

Normal Stress (Pi) 

sll =-presl + sd11 
s22 •-presl + sd22 
s33 =-presl + sd33 
s12 = sd12 
s13 • sdll 

+ 

ull 
u22 
u33 
u21) 
u311 
u32) 
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c =======================================================~======== 
c *** calculate stress at nodal points 
C •zz==========zz==================================~============== 

do 6500 icn ~ 1 ,ncn 

1 

1 

1 

1 

1 

6500 continue 

6010 continue 

5000 continue 

return 

end 

jcn = iabs(node{iel,icn)) 

stres(jcn,l)= stres(jcn,l) 
+ p(icn) •sll *da 

stres(jcn,2J= stres(jcn,2) 
+ p(icn) *s22 *da 

stres(jcn,JJ= stres(jcn,J) 
+ p(icn) *s33 *da 

stres(jcn,4)= stres(jcn,4) 
+ p(icn) *sl2 *da 

stres(jcn,SJ= stres(jcn,S) 
+ p(icn) *slJ *da 

stres(jcn,6)2 stres(jcn,6) 
+ p(icn) *s23 *da 

C ;;;;:;::&EKZ::::::::;;;::z:::::::;::;:;::::::;;;;::;;;;::;;::c;;;; 

c 
c 
c 
c 

subroutine visca 
1 (rvisc,power, vi se, stemp, rtem, tbco, spress, rpef, taco 
2 ,gamad ) 

implicit double precision{a-h,o-z) 

visc ~ rvisc*{t.O•gamad**{{power-1.0)*0.5)) 
1 •exp( -tbco* {stemp-rteml I 

return 
end 

e n d 0 f r 
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K.C.Ting Appendix 4: Program Listing 

3DFEANOF 
- P version 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow- Continuous Penalty . 

version 

Fortran Program Source Code 

1. Main Program Code 

2. Subroutines 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 

A4 



c 
c This is a program for the solution of non-newtonian, isothermal, 
c incompressible flow problems using the weighted residual galerkin 
c finite element method 
c 
c The solution scheme is based on the Penalty Scheme 
c 
c Velocity components are the prime unknowns in the flow 
c field. 
c 
c This program uses eight-noded linear prism element. 
c 
c Algebraic equations are solved by a frontal method. 
c 
c A complete list of options is given on the program listing. 
c 
c The program consists of a main module and subroutines 
c 
c The program is written in FORTRAN programming language 
c 
c This program is developed by Kee Chien Ting (last revised Nov 2004) 
c 

c 
c work files 
c ::::::=:=== 

c unit contents 
C :::::::z~==:•==~======:::::caa::s:~~===:=:::::::::::::z~aE•:=====::m••~• 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

51 ' input data file 

' 60 ' output file for documentation 

' 11 ' output file containing velocity field data for 

' plotting 

' 14 ' used as a work file in the solver routine 

' 15 i stores shape functions and their derivatives at 

' 'full' integration points 

' 17 ' output file containing pressure data for 

' contour plotting 

' 20 ' output file containing elemental stiffness matrix 

' for element number 14 as seen on the mesh 

' 
List of variables 

aa 27, 27) 
K 27, 27) 
b ( 3, 20) 
be (maxdf ) 
cord (maxnp,ndiml 
del ( 3, 20) 
vel (maxdf ) 
dscl, dsc2 
gravl 
grav2 
icord 

tolp 
tolv 
nbc 
ncn 
ndf 
ndim 
nel 
ngaus 
nnp 
node (maxel,maxst) 
nter 
n= 
p ( 20 
press(maxnp 
rl (maxdf 
rfrct 
rr ( 27 

element coefficient matrices on LHS 
element coefficient matrices on RHS 
global derivatives of shape functions 
nodal constraints (boundary conditions) 
nodal coordinates 
local derivatives of shape functions 
nodal velocities (displacements) 
depths of slip layers 
first component of the applied body force 
second component of the applied body force 
indicates whether the coordinate system is Cartesian (planar) or 
cylindrical (axisymmetric) 
convergence tolerance factor for pressures 
convergence tolerance factor for velocities 
total number of boundary-node constraints 
number of nodes per element 
degree of freedom per node 
dimensions of the solution domain 
total number of elements 
number of inteoration points 
total number of nodal points 

element connectivity 
maximum number of iterations for non-newtonian case 
number of integration points per element 
shape functions 
nodal pressures 
global load vector (r.h.s.) 
friction coefficient (slip) 
element load vector 

1 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

----- ·--··--rvisc 
power 
stemp 
rtem 
spress 
rpress 
tCO 
pco ·-d nwr 

·-~~~- ~~---·.,.g ... ,..,.,__.,., ' ............ -.......... , 
mu nought:consistency coefficient in power-law model 
power law index 
temperature 
reference temperature 
pressure 
reference pressure 
coefficient relating viscosity to temperature 
coefficient relating viscosity to pressure 
shear rate 
no. of sample nodes for recording transient solutions 

~============•=•••z::::::=========s~•z================================• 
List of Subroutines 

bacsub 

clean 

contol 
deriv 

flow 
front 

gaussp 

getbcd 
getelm 
getmat 
get nod 

lumpm 
minimax 

output 
putbcv 

secinv 
setprm 

shape 

stress 

visca 

parameter (maxel 
parameter (maxnp 
parameter (maxbc: 
parameter {maxdf 
parameter (maxst 
parameter (maxfr 
parameter (ndim 

backsubstitution method for finding the final 
solution vector 
cleans the arrays and prepares them for 
solution 
makes a check for the convergence 
calculates the jacobian matrix, its determinant 
and global derivatives of the shape functions 
calculates the velocities and pressures 
frontal method for solving the final set 
of equations 
specifies the gauss points and weights for 
quadrature integration 
specifies the primary boundary conditions 
specifies the nodal connectivity array 
reads the input material data 
reads the nodal co-ordinates for cartesian 
and axisymmetric systems 
evaluates the terms of the mass matrix 
captures the minimum and maximum value for 
each specified variables 
prints the final solution 
imposes the primary boundary conditions for 
velocity 
calculates the second invariants 
Sets the location data for nodal degrees of 
freedom 
calculates the shape functions and their 
derivatives 
calculates stress components at integration 
points 
calculates the viscosity 

• 30000 
• 37000 
"' 20000 

maxnp*3 
60 
2000 
3 

implicit real*8 (a-h,o-z) 

Storage allocation 
•••s=========•~••• 

dimension title I 80) 
dimension node (maxel,maxst) ,pmat (maxel, 10) ,cord (maxnp,ndim) 
dimension ncod (maxdf ), be (maxdf l 
dimension ibc l~xbc l ,jbc (maxbc l ,vbc lmaxbc 
dimension vel (maxdf l , press (maxnp l 
dimension rl (maxdf l 
dimension clump (maxnp l , stres (maxnp, 11) 
dimension vet (maxdf l ,cet l~p l ,pet Cmaxnp 
dimension nopp (maxdf l 
dimension aa (maxst,maxst) ,rr lmaxst l 
dimension xo I 3) .eo I 3) 
dimension p I 20) ,del I 3, 20) ,b I 3, 20) 
dimension ldest {maxst l , kdest (maxst l ,nk (maxst l 
dimension eq (maxfr, maxfr) ,lhed {maxfr l ,khed Cmaxfr l 
dimension kpiv (maxfr l ,lpiv (maxfr l ,jmod (maxfr l 
dimension qq (maxfr l ,pvkol (maxfr l ,sinv (maxel, 35) 
dimension mdf (maxdf l ,ndn (maxdf l 
dimension ldsc (22 l 
dimension temp (maxnp l 
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c 
c 
c 
c 

c 
c 
c 

5010 

5020 

5030 

5040 

5050 

5060 

5070 

5080 

5090 

character *20 filnam 

Opening of input and output data files 
============~==============·========== 

print*, 'enter the name of your data file' 
read(*,2000) filnam 

open(unit=Sl,File=filnam,access='sequential',form•'formatted', 
l status=•unknown',iostat=ios) 

open(unit=60,file•'res.txt',accesss'sequential',form='formatted', 
l status•'unknown',iostat•ios) 

open(unitzl7,file='stress.txt•,access='sequential',form•'formatted', 
1 status='unknown•,iostat=ios) 

open(unit=l4,form•'unformatted',status='scratch',iostat= os) 
open(unitzlS,form='unformatted',status='scratch',iostat• os) 
open(unit=l6,form•'unformatted',status='scratch',iostat~ os) 

if(ios•.,O)then 
print*,"files opened' 

else 
print*,'files not opened' 

stop 
end if 

rewind 51 
rewind 60 
rewind 20 

Initialize arrays 
===·==·==·======= 

do 5010 itl l,maxel 
do 5010 ivl l,maxst 

node 
continue 
do 5020 itl 1,maxel 
do 5020 ivl 1,10 

pmat 
continue 
do 5030 itl 1,maxnp 
do 5030 ivl 1,3 

cord 
continue 
do 5040 itl l,maxnp 
do 5040 ivl ,. 1,11 

(itl, ivl) 

(itl, ivl) 

(itl,ivl) 

stres(it1,ivl) 
continue 
do 5050 itl 1,maxdf 

vel (itl 
continue 
do 5060 itl l,maxdf 

ncod (itl) 
rl (itl) 
be (itl) 
vet (itl) 

""' (it1) 
ndn (it!) 
nopp (itl) 

continue 
do 5070 itl • 1,maxnp 

clump {itl) 
cet (itl) 
pet (itl) 
press (itl) 

continue 
do 5080 itl l,maxbc 

ibc (itl) 
jbc (itl) 
vbc (itl) 

continue 
do 5090 it1 1,20 

del (1, itl) 
del (2, itl) 
del (3. itl) 

continue 
do 5100 it1 • 1,maxst 

0 

"' o.o 

0.0 

o.o 

o.o 

0 
o. 0 
o. 0 
0.0 
0 

• 0 
0 

"' o.o 
0. 0 
o.o 

• o.o 

• 0 
0 

"' o.o 

"' 0.0 ,. o.o 
"' 0.0 

3 

\.LL.L 

kdest (itl 0 
nk litl 0 

5100 continue 
do 5110 itl l,maxfr 

lhed {it1 0 
khed {itl 0 
kpiv (itl 0 
lpiv (itl 0 
j""" Citl • 0 
qq (itl 0.0 
pvkol litl 0.0 

l,maxfr do 5110 ill 
eq (itl,ill)= 0.0 

5110 continue 
do 5120 itl 
do 5120 ivl 

l,maxel 
1, 35 

sinv (itl,iv1) 0.0 
rmatl (itl, ivl) o.o 
~t2 (itl,ivll 0.0 

5120 continue 

c-----------------------------------------------------------------------
c 
c 

c 
c 

Title of the program 
z•===========••=•=== 

if(.not. eof(51)) read (51,2010) title 
write(60,4010) title 

Element description data 
==========••:•========== 

if (.not. eof(51)) read (51,2020) ncn ,ngaus 
print*, •ncn, ngaus read" 
write(60,4020) ncn ,ngaus 

c Mesh, boundary condition and material parameters 
C ==========•=•m========z:sma•==============•~•==• 

c 

if (.not. eof(51)) read (51,2030) nnp ,nel ,nbc ,nmat 
print*, 'nnp, nel ,nbc ,nmat read' 
if (.not. eof(51)) read (51,2040) ntep ,icord 

if(icord.eq.O) write(60,4030) 
if(icord.eQ.l) write(60,4040) 

write(60,4050) 

if(ntep.eq.O) ntep•1 

C ========•:me:•===========aez•=============z•=•=s•========== 
c icordzO coordinate system is cartesian ( planar ) 
c icord=l coordinate system is cylindrical (axisymmetric) 
c 
c if ntep • 1 then computed result after every iteration will 
c be printed 1if you do not need the result of intermediate 
c computations choose your own ntep;the result of first and 
c converged solutions will always be printed. 
C ==========•==•===========•=••=============•=s•==•========== 

if(nnp .eq.O .or.nnp .gt.maxnp) then 
write(60,4060) 

elseif(nel .eq.O .or.nel .gt.maxel) then 
write(60,4060) 

elseif(nbc .eq.O .or.nbc .gt.maxbc) then 
write(60,4060) 

elseif(nmat .eq.O .or.nmat .gt.maxel) then 
write(60,4060) 

print*, 'the program is aborted" 
stop 

endif 

write(60,4070J nnp ,nel ,nbc ,nmat 

if (.not. eof(51)) read (51,2050) grav1, grav2, grav3 
print•, •gravl grav2 grav3 read' 
write(60,4080J gravl, grav2, grav3 
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c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

5130 

5140 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

print*, •tolv, tolp, tolc read" 

maxer=maxel 

================:::::::s:::::::::::=•===========•==~~========•=========~==• 

Read input data from main data file and prepare arraYS for solution process 
==============•=====================~==~=s•==•======•==•========••==~=====m 

call oetmat(nel,nmat,pmat,51,60,maxel,rtem,rpef) 
call getnod{nnp,cord,51,60,maxnp,ndim,icord) 
call getelm(nel,ncn,node,51,60,maxer) 
call getbcd(nbc,ibc,jbc,vbc,51,60,maxbc) 

Start of the time loop 

set control parameters (default values are overwritten by input data 
if specified) 

ncn 
noaus 
nter 
ndim 

number of nodes per element 
number of integration points 
maximum number of iterations for non-newtonian case 
number of space dimensions in the solution domain 

nter 5 

do 5130 ive1= l,maxdf 
vel (ivel) 0.0 
continue 
do 5140 ite~ l,maxnp 
temp(item) rtem 
continue 

Transient data 

stime starting time 

time increment del tat 

alpha indicates the choice of method being employed in alpha 
time stepping technique (backward difference, 
forward difference, central difference, galerkin) 

nter maximum number of time steps being employed for finding solution 

print*," 
print*, "Enter the number of time steps desired• 
read*, nter 
write{60,4100) nter 

print•,•Enter the delta t desired" 
read*, de1tat 

write(60,4110l deltat 

print*,"Type Code for taylor galerkin technique being used" 
print*,"Code l:Forward Diference Method" 
print*,"Code 2zGalerkin's Method" 
print•,•code 3:Central Diference Method" 
print•,•code 4:Backward Diference Method" 
print•,•code 5:Temporal upwinding• 

read*, Code 

if(code .eq. 1) then 
alpha:O.O 
else if(code ,eq. 2) then 
alpha=0.5 
else if(code .eq. 3) then 
alpha:2.0/3.0 
else if(code ,eq. 4) then 
alpha:l.O 
else if(code .eq. 5) then 
print","Type in the value of alpha between 0.5 & 1" 
read •, alpha 

5 

c 
c 
c 

c 
c 

print*, "Error in Typing code" 
end if 

print*, •alpha=",alpha 

do 5150 iter= 1 ,nter 
print*, 'iter• •, iter 
time 2 iter*deltat 

write(60,4090) iter 

Calculate Nodal velocities & Pressures 

icho:l 

call clean 

ndf 3 
ntov ndf • nnp 
ntrix • ndf • ncn 

rewind 11 
rewind 14 
rewind 15 
rewind 16 

1 (ncn ,nel ,ndf ,node ,r1 ,ma.xel,maxst, maxdf, 
2 be ,ncod ,icho l 

call setprrn 
1 (nnp ,nel ,ncn ,node ,ndf ,maxel,maxst,ndn ,ntrix, 
2 rnaxdf,ntov ·""' ,noPP l 

call putbcv 
1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod ,bc,maxbc,maxdf,maxel,rnaxst, 
2 node) 

idv4 is the file specifier for unit=20 
=====:maz=•========•~=••==•::z:::===== 

idv4=20 

do 5160 iel=l,nel 

call flow (node ,cord ,prnat ,nopp ,mdf ,ndn ,ncod ,be ,vel 
l,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 
2jmod, qq, pvkol,iter ,nel ,ncn, ngaus,gravl ,grav2, grav), p, 
3del, b, ntrix, maxel, ma.xnp, maxst, ma.xfr, maxdf, ndirn , 
4aa ,xg ,da ,ntov ,num, !cord, rr, iel, dell,deltat, alpha,idv4, 
5sinv, icho, nnp, tref,rmatl,rmat2) 

5160 end do 

c =~====::::===••==•~====:========••==•========:=::::a::aa:::::::::::a::m::asc:a::a 

c calculates the second invariant of rate of deformation 
c tensor at integration points. 
c 

c 
c 
c 

call secinv 
1 (nel ,nnp ,ncn ,ngaus,node ,sinv ,cord ,p ,b, 
2 del ,da ,vel ,maxnp,maxel,rnaxst,ndim ,icord, 
3 maxdf, num) 

Convergence check 
:::::::ma:::::::::::::::z:sa::s:::::::::::a::••~=•====:::::::a:a 

call contol(vel ,iter ,ntov ,nnp,maxnp,maxdf,errov, errop 
l,vet ,cet, pet, press) 

C ===========•=•••=•======="=~=:a:zaz========::::::::m••=======:=: 

c "*" calculation of the nodal stress:using variational recovery 
c 

c 
c 

call lurnpm 
1 (clurnp,nnp ,maxnp,nel ,ngaus,p ,del , b ,rnaxst, 
2 node ,maxel,ncn 

stress call 
1 
2 

(nel,nnp,ncn ,node ,p , b , da ,vel ,rnaxnp, maxel, maxst 
maxdf, stres, press, rvisc ,clump ,ngaus,rrnatl,rmat2 

==:=====•:==·==· 
Print the output 

' 



c 
c 
c 

iiter=(iter/ntep)*ntep 

if!iter.eq.l.or.iiter.eq.iter) then 

call output 
1 (nnp ,vel ,press, maxdf,maxnp,icord, stres) 
endif 

End of time loop 

5150 continue 

c 
c 
c 
c 
c 
2000 
2010 
2020 
2030 
2040 
2050 
2060 

' c 
c 
c 

close(51) 
close(unit~:60} 
close(unit=UJ 
close(unit=14J 
close(unit=15} 
close (20) 

format(a) 
format (BOa) 
format!2i5l 
format(4i5) 
format(2i5l 
format (3fl0. 0) 
format(l£10.5) 

Read statements 

"'""""""""""=~=============~~:===:========••=============•~:=======••z 
Write statements 

""""'"'""""""""'===•••==s========•••~:==========•••=======•••===~====== 

4010 format(' ',5(/),' ',20x,60('*'),/' ',20x,'*',58x,•••,t 

4020 

4030 
4040 
4050 
4060 

4070 

4080 

4090 
4100 
4110 

c 

c 

c 

1' ',20x, '*'•' A three dimensional finite element model of a 
29x, '*',/' ',20x, '*',' non-newtonian isothermal flow using •, 
320x,'*',/' ',20x,'*',' the UVP method. ',39x,'*',/' ',20x,'*', 
558x,'*',/' ',20x,60('*'1///,' ',20x,80('-'),/' ',20x,80a.,/'' 
620x,80( •-•), /Ill 

format(' ',20x,3('['),' element 
125x,'no.of nodes per element 
225x,•no.of integration points 
3/ /) 

description data',10(','),/ 
=',ilO,/ 
•',!10,/ 

format(' ***coordinate system is cartesian {planar) ***') 
format('*** coordinate system is cylindrical(axisymmetric) ***') 
format(' 'I 
format(' ',10('['J,'input data unacceptable',lO{']')///l 

format{' ',20x,3{'('),' mesh description data 
125x, 'no.of nodal points 

'I 10 {I .• )' I 
•',ilO,/ 
:',!10,/ 
•',ilO,/ 
"'',il0,/1) 

225x,•no.of elements 
325x, 'no.of nodal constraints on boundary 
425x, 'no.of different materials 

format(' ',20x,3(' ['), • 
l25x, 'gravl 
225x, •grav2 

uniform body force vector ',10(','),/ 
=',f15.4,/ 
.. •,f15.4,/ 
•',f15.4,//) 325x, 'gravl 

format ( ///' 
format ( ///' 
format(///' 

iteration no.',i5,//) 
Total number of time steps 
Del tat 

•',iS,//) 
=',£15.10,//) 

end program 

=======••=======================.,=======z===•===========================2• 
subroutine bacsub 

1 (ntotl,ifix ,vfix ,rhs ,soln ,mfrnt,rwork,iwork,idv2, 
2 icho J 

implicit double precision(a-h,o-z) 
dimension ifix (ntotl),vfix (ntotl),rhs Cntotl),soln (ntotll 

7 

6010 

do 6010 ipos=l,ntotl 
soln(ipos) =0.0 
if (ifix(ipos) .ne.OJ soln (ipos) =vfix(ipos) 
continue 

do 6020 kposzl,ntotl 

backspace idv2 
read(idv2) ipos,ifrnt,jfrnt, (iwork(k),rwork{k),k=l,ifrnt) 
backspace idv2 

if(ifix(ipos) .ne.O) go to 6020 

- s o.o 
rwork(jfrnt) • 0.0 

do 6030 k=l,ifrnt 
jpos=iabs(iwork{k)) 
ww :ww- rwork(k)*soln(jpos) 

6030 continue 

6020 

6050 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

6010 

6020 

3010 
6030 

c 

soln (iposJ=rhs(ipos)+ww 

continue 

if (icho .eq. 2) goto 6050 

continue 

return 
end 

subroutine clean 
1 (ncn ,nel ,ndf ,node ,rl ,maxel,maxst,maxdf, 
2 be ,ncod ,icho ) 

implicit double precision(a-h,o-z) 

arguments 
==a~•==="' 
arguments are already defined 

dimension rl 
dimension be 

hnaxdf) ,node{maxel,maxst) 
(maxdf) ,ncod(maxdf ) 

function 

cleans the used arrays and makes them ready for 

do 6010 i l,maxdf 
rl(i) • 0.0 
be(i) .. 0.0 

ncod(i) • 0 
continue 

ntrix = ndf •ncn 
do 6020 iel • l,nel 
do 6020 inp: l,ntrix 
node{iel,inp) • iabs(node(iel,inp)) 

continue 
if(icho.ne.l)then 
do 6030 iel • l,nel 
write (11, 3010) iel, (node (iel, j 1, j=l, ncn) 
format(10i51 
continue 

end if 

return 
end 

solution 

c •====~=============·~======= .. ===···================···===========· 
subroutine contol 

l(vel ,iter ,ntov ,nnp ,maxnp,maxdf,errov,errop,vet ,cet, 
2 pet, press) 

implicit double precision(a-h,o-z) 

dimension vel (maxdf),press(maxnp) 
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c 
c 
c 
c 

errv .. 0.0 
torv • o.o 
errp = o.o 
torp ,. 0.0 

calculate difference between velocities in consecutive iterations 
================s==========~•~•======•••,.=======z=========~====== 

do 6010 icheck • 1,ntov 
if(iter.eq.l) vet(icheckJ ,. 0.0 

errv • errv + 
1 (vel (icheck) -vet (icheck) J * (vel ( icheck)-vet (icheck)) 

torv • torv + vel(icheck)*vel{icheck) 

vet(icheck) • vel(icheck) 

6010 continue 

c 
c 

6030 

c 

6020 

6010 

3010 

errov= errvltorv 

calculate difference between press~~es in consecutive iterations 
==========================·=·~=======···========··=========···=== 

do 6030 icheck • l,nnp 
if(iter.eq.1) pet(icheck) • 0.0 

errp = errp + 
1 (press{icheck)-pet(icheck))*{press(icheck)-pet(icheck)) 

torp = torp + press(icheck)*press{icheck) 

pet{icheckl = press(icheck) 

return 
end 

continue 
errop= errpltorp 

==========================·~========·=========·= .. =··=====·····~=== 
subroutine deriv 

1 Ciel ,ig ,jg ,kg, p ,del ,b ,ncn ,da ,cg ,node, 
2 cord ,maxel,maxnp) 

implicit double precision(a-h,o-z} 
dimension p{20) , b(3 ,40) ,del (3, 20) ,cg(3J ,cj (3 ,3) ,cji (3, 3) 
dimension node(maxel,27),cord(maxnp,3) 

do 6010 j"l,3 
do 6010 1 .. 1,3 
gash=O.O 
do 6020 k=1,ncn 
nn=iabs(node(iel,k)) 

gash=gash + del(j,k)*cord(nn,l) 

cj(j,l)o:gash 

continue 

detj • cj (1,1) *cj (2, 2) •cj (3, 3) +cj (2, 1) •cj (3, 2) *cj (1, 3) 
1 + cj(1,2)*cj(2,3)"cj(3,1)-cj(1,3)"cj(2,2)"cj{3,1) 
2 - cj{1,2)"cj(2,l)*cj{3,3)-cj{2,3J*cj(3,2)*cj(1,1) 

if(detj.le.O.OJ then 
write(60, 3010) iel,detj 
format{1x • Error: Zero or Negative Jacobian. 
stop 

endif 

cji (1, 1) (cj (2, 2) "cj (3, 3) -cj (3, 2) *cj (2, 3)) 
cji(1,2) ((cj(1,2)*cj(3,3)-cj(3,2J*cj(1,3))) 
cji(l,3) (cj(1,2l"cj(2,3)-cj(2,2)*cj(1,3)J 
cji(2,1) • ({cj{2,1)*cj{3,3J-cj(3,l)*cj{2,3))) 
cji(2,2) • {cj{l,l)*cj(3,3)-cj{3,l)"cj(1,3)) 
cji{2,3) ({cj(1,1)*cj{2,3)-cj{2,l)*cj{1,3))) 
cji(3,1) (cj(2,1)*cj{3,2)-cj(3,l)"cj(2,2)) 
cji(3,2) = ((cj(1,1)*cj(3,2)-cj(3,l)*cj(1,2)J) 
cji(3,3) "' (cj(1,1)"cj(2,2)-cj(2,1J"cj(1,2)) 

endif 

i6,g20.5) 

I detj 
I detj 
I detj 
I detj 
I detj 
I detj 
I detj 
1 detj 
I detj 

~ .... """" ~- ....... 
do 6030 lo:l,ncn 
b(j,lJzO.O 
do 6030 k=1,3 

6030 b(j,l) • b(j,l) + cji(j,k) * del(k,l) 

c 

6010 

da= detj*cg(ig)*cg(jg)*cg(kg) 

return 
end 

~=:::::~:zz:E::::::::=:::;::~:EE::=::;;;:~:;;::::::::::::;;:;:a•aa• 

subroutine flow(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,be ,vel 
!,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,1piv, 
2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,gravl, 
3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, dell,deltat,alpha, 
5idv4,sinv, icho, nnp, tref,rmatl,rmat2) 

implicit double precision(a-h,o-z) 

dimension node (maxel,maxst),pmat 
dimension ncod (maxdf ) ,be 
dimension vel (roaxnp, 3),r1 
dimension aa (maxst,maxst),rr 
dimension xg ( 3), cg 
dimension x ( 3), v 
dimension bicn 1 2),hh 
dimension p ( 20) ,del 
dimension eq (maxfr,maxfr),nopp 
dimension ldsc ( 22) 
dimension lhed (maxfr ),khed 
dimension lpiv (roaxfr ) , kpiv 
dimension pvkol (maxfr l , md.f 
dimension ppp {20 , 20),pp 
dimension ak {100,100) 
dimension akf (100 ) 

(fiiAX~l, 
(maxdf 
(m.axdf 
(maxst 
( 
( 
( 

( '· (maxdf 

(maxfr 
(maxfr 
(maxdf 
(20 

dimension NQ (20 20),NP (3 , 
dimension C (maxst l, temp (maxnp 
dimension DELl (3 J 
dimension press(maxnp ),clump(maxnp 
dimension gdsf ( 3, 20) 

10J,cord (maxnp, 
),sinv (m.axel, 
l 
),ldest(maxst 

3),kdest(maxst 
3) ,nk (maxst 
3) 

20),b 
l 

),jmod 
),qq 
l.ndn 
l 

4) 
l 

'· 
(maxfr 
(maxfr 
{maxdf 

) , SHAPE1D ( 3 

ndim) 
35) 

20) 

dimension dmass(lOO, 100) 
dimension rmatl (maxel, 35) ,rmat2(maxel, 35) 

velsound • 1150.0 
beta 0.0 
permx 1.0E-5 
permy 1. OE-5 
permz • l.OE-5 
Penal 10.0E+10 
mgaus ngaus - 1 

do 6010 idf,. 
rr (idf) 
akf(idf) 
c {id£) 
do 6010 jdf= 

1,ntrix 
= 0.0 
"' o.o 
= o.o 

l,ntrix 

aa (idf,jdf)=O.O 
dmass(idf,jdf)=O.O 
ak {idf,jdfl=O.O 
continue 

rvisc 
rpef 
powor 
rtem 
tbco 
taco 
roden ·-d rbulk 

= pmat(iel,1) 
• pmat(iel,2) 
• pm.at(iel,3) 

pmat(iel,4) 
pmat(iel,S) 

• pmat(iel,6) 
= pmat(iel,8) 
• pma.t(iel,9) 
• pmat (iel,lOl 

c ------------------- parameters for penalty method --------------------
0 

c 
c 
c 

pm1 ~1.0 
pm2 .. o.o 

ired s 1 for full integration 
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c 

c 
c 
c 

c 
c 
c 

5333 

ired "' 1 

if(ired.eq.l) then 

'full' integration -----------------------------------------------

call gaussp(ngaus,xg,cg,ncn) 

lg:O 

do 6020 ig:l,ngaus 
g = xg (ig) 

do 6020 jg=l,ngaus 
h .. :xg(jg) 

do 6020 kg=l,ngaus 
f • xg(kg) 

lg .. lg+l 

if{iter.eq.l) then 

call shape (g,h,f,p ,del , ncn, node, cord 
l nnp, maxel, rnaxst, maxnp, ndim) 

call deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,cord, 
1 maxel,maxnp) 

else 

iig•<ig 
jjg=jg 
kkg .. kg 

write(lS) iel ,ig ,jg ,kg, p ,del ,b ,da 

if(.not. EOF(l5})read(l5l iel,iig,jjg,kkg,p ,del ,b, da 

endif 

calculation of viscosity based on the constitutive equation. 

spress • 0.0 
stemp 0.0 

do 5333 ip = l,ncn 
jp = iabs(node(iel,ip)) 
stemp = stemp + temp(jp) * p(ip) 
continue 
epsii "' l.d-10 
gamad = sinv(iel,lg) 
if(gamad.lt.epsii) gamad = epsii 

call visca 
l(rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco,gamadJ 

c -----calculate viscosity dependent penalty parameter--------------

bulk ~ rbulk * visc 

rmatl(iel,lg) = visc 

rmat2(iel,lg) a bulk 
c--------------------------------------------------------------------c preparation of the convective acceleration terms/balancing 
c dissipation is used 
c 

do 6050 idff= 1,3 
x(idff) 0.0 
v(idff) 0.0 
hh(idff) 0.0 

6050 continue 
do 6060 en 1 ,ncn 

en iabs(node(iel,icn)) 
do 6060 dff= 1 , 3 
x(idffl x(idff) + p(icn)*cord(jcn,idff) 
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6060 

c 
c 
c 

if(icord.eq.l) then 

modify da for axisymmetric computations. 

da .. da * x(l) 
endif 

c column index 

c 
c 
c 
c 
c 

do 6070 i.,l,ncn 

jll= i 
j12= i + ncn 
jl3• i + 2*ncn 
j14= i + 3*ncn 

do 6070 j=l,ncn 
j21= j 
j22= j + ncn 
j23= j + 2*ncn 
j24= j + 3*ncn 

Dicretized form of 3D Stokes Equation 

Stiffness Matrix of Left Hand Side {'full' integration)--------------------

For Transient state (Cartesian co-ordinate system) 

aa(jll,j21l=aa(jll,j21J + 
2 
1 • 
2 
3 
2 
3 • 

• 2 
5 • 
6 
2 

aa(jll,j22J=aa(jll,j22) + 
1 
2 
2 • 
3 
2 

aa(jll,j23l=aa(jll,j23) + 
1 
2 
2 • 
3 
2 

aa(jl2,j21J=aa(j12,j21) + 
1 

' 2 • 
3 
2 

aa(j12,j22)zaa(j12,j22) + 
2 
1 • 
2 
2 
3 • 
4 
5 
2 
5 • 

p(i)*p(j)*da 
'pm1 

alpha*deltat*((2.0*visc/roden) 
+ ( 11.0/roden) *bulk)) 
*b(l,i) *b(l, j) *da 

'pm2 
alpha*deltat*(visc/roden)*b(2,i) 
*bC2,j)*da 

'pm1 
alpha*deltat*lvisc/roden)*b(3,i) 
*b(3,jJ *da 

'pm1 

alpha*deltat*(visc/roden) 
*b(2,i)*b(l,j)*da 

*pml 
alpha*deltat*((l.O/roden)*bulk) 
*b(l,i)*b(2,j)*da 

•pm2 

alpha*deltat*(visc/roden)*b(3,i) 
*b(l,j)*da 

'pm1 
alpha*deltat*((l.O/rodenl*bulk) 
*b(l,iJ*b(3,j)*da 

•pm2 

alpha*deltat*(visc/roden)*b(l,iJ 
*b(2,j)*da 

•pm1 
alpha*deltat*((l.O/roden)*bulkJ 
*b(2,i)*b(l,j)*da 

•pm2 

p(i)*p(j)*da 
'pm1 

alpha*deltat*(visc/roden)*b{l,il 
*b(l,j)*da 

•pm1 
alpha*deltat*((2.0*visc/roden) 
+{1.0/roden)*bulkJ 
*b(2,il*b{2,j)*da 

'pm2 
alpha*deltat*(visc/roden}*b(3,i) 
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c 
c 
c 

2 

aa(jl2,j23J~aa(jl2,j23) • 
1 
2 
2 • 3 
2 

aa(jl3,j21)zaa{j13,j21) • 
1 
2 
2 • 3 
2 

aa (jlJ, j22) •&a (jlJ, j22) • 
1 
2 
2 • 
3 
2 

aa(jl3,j2J)aaa(j1J,j23) • 
2 
1 • 
2 
2 
3 • • 2 
5 • 
6 
7 
2 

*pml 

alpha*deltat*(visc/roden)*b(J,i) 
*b(2,j)*da 
•pml 

alpha*deltat*((l.O/roden)*bulk) 
*b(2,i)*b(J,j)*da 

*pm2 

alpha*deltat*(visc/roden)*b(l,i) 
*b(3,j)*da 

*pml 
alpha*deltat*((l.O/roden)*bulk) 
*b(J, il *b(l, j) *da 

•pm2 

alpha*deltat*(visc/roden)*b(2,i) 
*b(J,j)*da 

*pml 
alpha*deltat*({l.O/roden)*bulk) 
*b(J,i)*b(2,j)*da 

*pm2 

p(i) *p(j) *da 
*pml 

alpha*deltat*(visc/roden)*b{l,il 
*b(l,j)*da 

*pml 
alpha*deltat*(visc/roden)*b{2,i) 
*b(2,j)*da 

*pml 
alpha*deltat*((2.0*visc/roden) 
+ ( (1. 0/rodenl *bulk) I 
*b(3, iJ *b{J, j) *da. 

•pm2 

Matrix on Right Hand Side -------------------------------------------------

For Trensient State {Certesian co-ordinete system) 

ak{j11,j2ll=ek{jll,j21) + 
2 
1 
2 
3 
2 

• 5 
2 
6 
7 
2 

ak{jll,j22J~ak{jll,j22J 
1 
2 
2 
3 
2 

ak(jll,j23J•ak{jll,j23) 
1 
2 
2 
3 
2 

ak (j12, j2ll =ak(jl2, j21) 
1 
2 
2 
3 
2 

ak(jl2,j22)=ak(jl2,j22) + 
2 
1 
2 

p(i) *p(j) *da 
*pml 

(l.O-alphe)*deltat*((2.0*visc/roden) 
+ ( (1. 0/rodenJ *bulk)) 
*b(l, i) *b(l, j J *da 

•pm2 
(l.O-alpha)*deltat*(visc/roden}*b(2,i} 
*b(2,j)*da 

*pml 
(1.0-alpha)*deltat*(visc/roden)•b(J,i) 
*b(3,j)*da 
*pml 

(1.0-alpha)*deltat*(visc/roden) 
*b(2,i)*b(l,jl*da 

•pml 
11.0-alpha)*deltat*((l.O/roden)*bulk} 
*b(l, il *b(2, j )*da 

*pm2 

(1.0-alpha)*deltat*(visc/roden)*bll,i) 
*b(l,j)*da 

*pml 
(1.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(l,i) *b(3, :il*da 

•pm2 

{1.0-alpha)*deltat*(visc/roden)*b(l,i) 
*b(2,j)*da 

•pml 
11.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(2,i)*b(l,j)*da 

•pm2 

p(i)*p(j)*da 
•pml 

(l.O-alpha)*deltat*(visc/roden)•b(1,il 
*b(l,j)*da 
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c 
c 
c 

3 

• 5 
2 
6 
7 
2 

ak(j12,j23)=ak(j12,j23) 
1 
2 
2 
3 
2 

ak{j13,j2ll~ak(jl3,j21) 
1 
2 
2 
3 
2 

ak(j13,j22J~ak(j13,j22) 
1 
2 
2 
3 
2 

ak(j13,j23J~ak(jl3,j23) + 
2 
1 
2 
2 
3 

• 2 
5 
6 
7 
2 

~· (1.0-alpha}*deltat•((2.0*visc/roden) 
+{(1.0/roden)*bulk)) 
*b(2,i)*b(2,j)*da 

•pm2 
(1.0-alpha)*deltat*(visc/roden)*b(J,i) 
*b(3,j)•da 

•pml 

{1.0-alpha)*deltat*(visc/roden)*b{l,i) 
*b(2,j)*da 

•pm1 
(1.0-alpha)*deltat*{(l.O/roden)*bulk) 
*b(2, i) *b(3, j J*da 

•pm2 

(1.0-alpha)*deltat*(visc/roden)*b(l,i) 
*b(),j)*da 

*pml 
(1.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(),i)*b(l,j)*da 

•pm2 

(l.O-alpha)*deltat*(visc/roden)*b(2,i) 
*b(),j)*da ·(1.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(3,i)*b(2,j)*da 

'pm2 

p(i)*p(j)*da 
•pm1 

(l.O-alpha)*deltat*(visc/roden)*b(1,i) 
*b(l,j)*da 

•pm1 
(l.O-alpha)*deltat*(visc/roden)*b(2,il 
*b(2,j)*da 

*pml 
(l.O-alphal*deltat*((2.0*visc/roden) 
+{(1.0/roden)*bulk)) 
*b(3, il *b(3, j 1 *da 

*pm2 

Body Force Effect (for Elemental Load Vector Calculation) 

C(jl1) =C(jll) + (1.0-alpha)*deltat*p(j)•grav1*da 
2 *pml 

C(j12) =C(jl2) + (1.0-alpha)*deltat*p(j)*grav2*da 
2 *pml 

C(jl3) =C(jl)) + (1.0-alpha)*deltat*p(j)*gravJ•da 

2 ·-6070 continue 
6020 continue 

endif 

c ----'Reduced' Integration --------------------------------------------

lg • 0 

call gaussp(mgaus,xg,cg,ncn) 

do 6021 ig=l,mgaus • • xg(ig) 
do 6021 jg .. l,rngaus 

h xg(jg) 
do 6021 kg=l,mgaus 

f ::I xg(kg) 

1o lg + 1 

if(iter.eq.l) then 
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c 
c 
c 

5334 

nnp, maxel, maxst, rnaxnp, ndim) 

call deriv liel,ig,jg,kg,p,del,b,ncn,da,cg,node,cord, 
1 maxel,maxnp) 

else 

iig=ig 
jjg:jg 
kkg=kg 

write(16) iel ,ig ,jg ,kg, p ,del ,b ,da 

if(.not. EOF(16))readl16) iel,iig,jjg,kkg,p ,del ,b, da 

end if 

calculation of viscosity based on the constitutive equation. 

spress 0.0 
stemp o.o 

do 5334 ip • l,ncn 
jp = iabs(node(iel,ip)) 
stemp = stemp + temp(jp) • p(ip) 
continue 
epsii = l.d-10 
gamad = sinv{iel,lg) 
if(gamad.lt.epsii) gamad = epsii 

call visca 
l{rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco,garnad) 

c -----calculate viscosity dependent penalty parameter--------------

bulk m rbulk * visc 

rmatl(iel,lg) = visc 

rmat2{iel,lg) ,. bulk 

c--------------------------------------------------------------------c preparation of the convective acceleration terms/balancing 
c dissipation is used 
c 

6051 
do 6061 icn 

jcn 
idff= 

do 6051 idff~ 1,3 
x(idff) 0.0 
v(idff) 0.0 
hh(idff) 0.0 
continue 

1 ,ncn 
iabs(node(iel,icn)) 
1 ' 3 do 6061 

x(idffl 
v(idffl 
continue 

x(idff) + p(icn)*cord(jcn,idff) 
v(idff) + p{icn)*vel {jcn,idffl 

6061 

if(icord.eq.l) then 
c 
c modify da for axisymmetric computations. 
c 

c 

da = da • x{1) 
end if 

c column index 
c 

do 6071 i.,1,ncn 

:Ill= i 
jl2a i + ncn 
:113= i + 2*ncn 
:114= i + 3*ncn 

do 6071 j•l,ncn 
:121= 
j22= 
j23= 
j24= 

+ ncn 
+ 2*ncn 
+ 3*ncn 
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c 
c 
c 
c 

Stiffness Matrix of Left Hand Side {'reduced' integration)---------------------------

For Transient state {Cartesian co-ordinate system) 

aa(j11,j21)=aa{jll,j21) + 
2 
1 + 
2 
3 
2 
3 + • 2 
5 + 
6 
2 

aa(j11,j22)=aa(j11,j221 + 
1 
2 
2 + 
3 
2 

aa(j11,j23)=aa(jll,j23) + 
1 
2 
2 + 
3 
2 

aa(jl2,j21)=aa(j12,j21) + 
1 
2 
2 + 
3 
2 

aa(j12,j22)=aa(j12,j22) + 
2 
1 + 
2 
2 
3 + 

• 5 
2 
5 + 
6 
2 

aa(j12,j23)=aa(jl2,j23) + 
1 
2 
2 + 
3 
2 

aa(j13,j2ll=aa(jl3,j21) + 
1 
2 
2 + 
3 
2 

aa(j13,j22)=aa(jl3,j22) + 
1 
2 
2 + 
3 
2 

aa(j13,j23)=aa(j13,j23) + 
2 
1 + 
2 
2 
3 + 

p(i) *p(j) *da 
*(1.0-pml) 

alpha*deltat*((2.0*visc/roden) 
+ ( (1, 0/roden) *bulk)) 
•b(l, i) *b(l, j) *da 

* (l.O-pm2) 
alpha*deltat*lvisc/roden)*b{2,i) 
*b(2,j)*da 
*(1.0-pml) 

alpha*deltat*(visc/roden)*b{3,i) 
*b(3,j) *da 

* (1.0-pml) 

alpha*deltat*(visc/roden) 
*b(2, iJ *b(l, j) *da 

• (1.0-pml) 
alpha*deltat*((l.O/roden)*bulkJ 
*b(l,i)*b(2,j)*da 

* (l.O-pm2) 

alpha*deltat*{visc/roden)*b(3,i) 
*b{l, j 1 *da 
* {1. 0-pml) 

alpha*deltat*{(l.O/roden)*bulk) 
*b{l, i) *b(3, j l*da 
•(1.0-pm2) 

alpha•deltat•(visc/roden)•b(1,i) 
•b(2,j)•da 
•(1.0-pml) 

alpha*deltat*((l.O/rodenl*bulk) 
*b(2,i)*b{l,JJ•da 

.. (1.0-pm2) 

p(i)•p(j)•da 
•(t.O-pml) 

alpha*deltat*(visc/roden)*b{l,i) 
*b(l, :il"da 
*(1.0-pml) 

alpha•deltat*{{2.0•visc/roden) 
+(1.0/roden)*bulk) 
*b{2, i) •b(2, j) *da 

*{1.0-pm2) 
alpha•deltat*(visc/roden)"b(3,i) 
"b(3,j)•da 
•(1.0-pml) 

alpha"deltat*(visc/roden)*b(3,i) 
*b(2,j)•da 

• (1.0-pml) 
alpha*deltat*({l.O/roden)*bulk) 
*b(2, i) •b(3, j) *da 
"(l.O-pm2) 

alpha*deltat*(visc/roden)"b(l,i) 
*b(3,j)•da 
* (1.0-pml) 

alpha*deltat•((l.O/roden)*bulk) 
*b(3,il*b(l,j)*da 

*{1.0-pm2) 

alpha•deltat•(visc/roden)*b(2,i) 
•b(3,j)*da 
*(1.0-pml) 

alpha•deltat*((l.O/roden)•bulk) 
•b(3, il *b(2, j) *da 

• (1.0-pm2) 

p{i) *p(j) *da 
* (1.0-pml) 

alpha*deltat*(visc/roden)*b(l,i) 
*b(l,j)*da 

• (1.0-pml) 
alpha*deltat*(visc/rodenl*b(2,i) 

16 



•(1.0-pml) 2 
5 

' 7 

+ alpha*deltat*((2.0*visc/roden) 
+((1.0/roden)*bulk)) 
*b(3,iJ*b(3,j)*d& 

2 *(1.0-pm2) 

c --- Matri~ on Right Hand Side -------------------------------------------------
0 
c For Transient State (Cartesian co-ordinate system) 

ak(jll,j21)=ak(jll,j21) + 
2 
1 
2 
3 
2 

• 5 
2 

' 7 
2 

ak (jll, j22) ::ak(jll, :122) 
1 
2 
2 
3 
2 

ak(jll,j23J=ak(jll,j23) 
1 
2 
2 
3 
2 

ak(jl2,j21J~ak(j12,j21J 
1 
2 
2 
3 
2 

ak(jl2,j22)=ak{j12,j22J + 
2 
1 
2 
2 
3 

• 5 
2 

' 7 
2 

ak(j12,j23l=ak(jl2,j23) 
1 
2 
2 
3 
2 

ak {jl3, j21) =ak (j 13, j21) 
1 
2 
2 
3 
2 

ak(jl3,j22)=ak(j13,j22) 
1 
2 
2 
3 
2 

p(i)*p(j)*da 
• {1.0-pml) 

(l.O-alpha)*deltat*({2.0*visc/roden) 
+((1.0/roden)*bulk)) 
*b(l, i) *b(l, j) *da 

*(l.O-pm2) 
(l.O-alpha)*deltat*(visc/roden)*b(2,i) 
*b(2,j)*da 
*(1.0-pml) 

(1.0-alpha)*deltat*(visc/roden)*b(l,i) 
*b(l,j)*da 

*(1.0-pml.) 

(1.0-alpha)*deltat*(visc/roden) 
*b(2,i)*b(1,j)*da 
*(1.0-pml) 

(1.0-alpha}*deltat*((l.O/roden)*bulk) 
*b(1,i)*b(2,j)*da 

*(1.0-pm2) 

(1.0-alpha)*deltat*(visc/rodenJ*b(3,i) 
'*b(l,j)*da 

*(1.0-pml) 
(1.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(l, i) *b(3, j l *da 

*(l.O-pm2) 

(1.0-alpha)*deltat*(visc/roden)*b(l,i) 
*b(2,j)*da 

* (1.0-pml) 
(l.O-alpha)*deltat*((1.0/roden)*bulk) 
*b(2,i)*b(l,j}*da 

*(1.0-pm2) 

p(iJ *p(j) *da 
*(1.0-pml) 

(1.0-alphaJ*deltat*(visc/rodenJ*b(l,i) 
*b(l,j)*da 

*(1.0-pml) 
(l.O-alpha)*deltat*((2.0*visc/roden) 
+((1.0/roden)*bulk)) 
*b(2,i)*b(2,j)*da 

*Cl.O-pm2) 
(l.O-alpha)*deltat*(visc/rodenl*b(3,i) 
*b(3,jJ*da 
*(1.0-pml) 

(l.O-alpha)*deltat•(visc/roden)*b(3,i) 
*bC2,j)*da 

* (1.0-pml) 
(1.0-alpha)*deltat*((l.O/roden)*bulk) 
*b(2, i) *b(3, j )*da 

* (1.0-pm2) 

(1.0-alpha)*deltat*(visc/roden)*b(l,i) 
*b(3,j)*da 

* (1.0-pml.) 
(1.0-alpha)*deltat*{(l.O/roden)*bulk) 
*b(3, i) *b{l, j J *da 
* (1.0-pm2) 

tl.O-alpha)*deltat*(visc/roden)*b(2,i) 
*b(3,j)*da 
*{1.0-pml) 

(1.0-alpha)*deltat*({l.O/roden)*bulkl 
*b(3, il*b(2, j) *da 

*{l.O-pm2) 
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c 

2 
1 
2 
2 
3 

• 2 
5 

' 7 
2 

---.#--•#--· -·-·~--·~--· 

r;(LO~P~I-
ct.o-atpha)*dettat•cvisctroden)*b(t,il 
*b(l,j)*da 

* ( 1. 0-pml.) 
(1.0-alpha)*deltat*Cvisc/roden)*b(2,i) 
*b(2,j)*da 
*(1.0-pml) 

(1.0-alpha)*deltat*((2.0*visc/roden) 
+ ( (1.0/roden) *bulk)) 
*b(3,i)*b(3,j)*da 

*(1.0-pm2) 

c Body Force Effect {for Elemental Load Vector Calculation) 
C •=•~=•==z====~======•=••=•z================•=••=•========= 

c 
Ctjll) =C(jll) + (1.0-alpha)*deltat*p(jJ*g-ravl*da 

2 *(1.0-pml) 

C(jl2) zC(j12) + (1.0-alpha}*deltat*p(j)*grav2*da 
2 *(1.0-pml) 

C(jl3) =C(j13) + (l.O-alphaJ*deltat*p(j)*grav3*da 
2 * ( 1. 0-pml) 

6071 continue 
6021 continue 

c For Transient State (Cartesian Co-ordinate System) 
C ========•=••=•============~=•=a•=~.,=============== 
c Term one on RHS is evaluated 

do 6080 i=l,ncn 

jll:o i 
jl2= i + ncn 
jl3• i + 2*ncn 
jl4= i + 3*ncn 

do 6080 j=l,ncn 
j21= 
j22• 
j23= 
j24 .. 

nn=iabs(node(iel,j)) 

+ ncn 
+ 2*ncn 
+ 3*ncn 

akf(jlll=akf(jll) 
1 

+ ak(jll,j21)*vel(nn,1) + 
ak(jll,j22)*vel(nn,2J + 
ak(j11,j23J*vel(nn,3) 2 

akf(jl2)=akf(j12) 
1 
2 

akf(j13J=akf(jl3) 
1 
2 

+ ak(jl2,j21)*vel(nn,l) + 
ak(j12,j22)*vel(nn,2) + 
ak(jl2,j23)*vel(nn,3) 

+ ak(j13,j2l)*vel(nn,l) + 
ak(j1J,j22)*vel(nn,2J + 
ak (jl3, j23) *vel {nn,l) 

akf(j14)=akf(jl4} + 
1 

ak(j14,j21)*vel(nn,1) + 
ak(jl4,j22)*vel{nn,2) + 
ak(j14,j23)*vel(nn,3) 2 

6080 continue 

c 
c 
c 

c 
c 
c 

Evaluation of Elemental Load Vector 

do 6085 i=l,ncn 

jll: i 
j12= i + ncn 
jll= i + 2*ncn 
jl4= i + 3*ncn 

Por Transient State {Cartesian Co-ordinate System) 
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6085 

c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

6030 
6020 

6010 

c 
c 
c 
6040 

rr(j12)z rr(j12) + akf(jl2) + C(j12) 
rr(j13)a rr(j13) + akf(j13) + C(j13) 

continue 

maxte=maxdf 

call front 
llaa ,rr 
2,eq ,lhed 
3,ncod ,be 
4,nell ,ntra 

,iel ,node 
,khed ,kpiv 
,nopp ,mdf 
,ic:ho ) 

,maxel,maxst,ldest,kdest,nk 
,lpiv ,jmod ,qq ,pvkol,vel 
,ndn ,maxdf,nel ,maxte,ntov 

,maxfr 
,rl 
,!col 

return 
end 

subroutine front 
1 (aa ,rr ,iel 
2 eq , lhed , khed 
3 ncod ,be ,nopp 

,nop 
,kpiv 
,mdf 

,maxel,maxst,ldest,kdest,nk 
,lpiv ,jmod ,qq ,pvkol,vel 
,ndn ,roaxdf,nel ,maxte,ntov 

,maxfr, 
,rl , 
,!col , 

4 nell ,ntra ,icho ) 

Frontal elimination routine using diagonal pivoting 

(maxstl 
implicit double precision(a-h,o-z) 
dimension aa (maxst,maxst) ,rr 
dimension nop (maxel.~t) 
dimension ldest(maxst) , kdest (rnaxst) 

,lhed (maxfr) 
,lpiv (maxfr) 
,qq {maxfr) 
, rl (maxdf) 
,nopp (maxdf) 
, press (maxdf) 

dimension eq (maxfr,maxfr) 
dimension kpiv (maxfr) 
dimension jmod (maxfr) 
dimension vel (maxte) 
dimension be (maxdf) 
dimension ndn (maxdf) 

,nk (maxst) 
, khed {maxfr) 

, pvkol {maxfr) 
, ncod (maxdf) 
,mdf (maxdf) 

nlp and ndl are the file specifiers for units 60 and 14 respectively 
a:a=•==~===============~=m=======::::a:ms=•===~=====•=•=•=========2~ 

nlp=60 
ndl:14 

Prefront 

nmax=maxfr 
ncrit=20 
nlarg=maxfr-10 
iftiel.eq.l) nell ~ 0 
if{iel.eq.ll ntra = 1 
if(ntra.eq.O) goto 6040 
I'UI\aX "' maxfr 
ntra "' 0 
ncrit 20 
lfron = 0 
nlarg z nrnax-10 

Find last appeareance of each node 

nlast = 0 
do 6010 i = l,ntov 
do 6020 n = l,nel 
jdn "' ndn(n) 
do 6030 l .. 1, jdn 
if(nop(n,l) .ne.i)go to 6030 
nl.,stl "' n 
nl.,st = n 
11 • 1 
continue 
continue 
if(nlast.eq.O) go to 6010 
nop(nlast,l1) • -nop(nlast,ll) 
nlast = 0 
continue 
ntrix "' jdn 

Assembly 

continue 
if(iel.gt.ll go to 6060 
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6050 
6060 

6070 
c 
c 
c 
c 

6090 
6100 

6110 

6080 

6130 

6140 

c 
c 
c 
6150 

6160 
c 
c 
c 

6180 
6170 

do 6050 i = 1,nmax 
do 6050 j "' 1,nmax 
eq(j, i) "' 0. 
continue 
nell • nell+l 
n = nel1 
jdn = ndn(nell) 
kc ,. o 
do 6070 j z l,jdn 
nn • nop(n,j) 
m "' i&bs(nn) 
k "' nopp(m) 
id£ ., mdf(m) 
r1(m) = rr(j)+r1(m) 
do 6070 1 • 1,idf 
kc • kc+l 
ii ,. k+l-1 
if(nn.1t.O)ii • -ii 
nk(kc) ,. ii 
continue 

Set up heading vectors 
z:========•=•=•::::::: 
do 6080 lk = l,kc 
node = nk(lk) 
if(1col.eq.O)goto 6100 
do 6090 l • l,lco1 
11 = l 
if(iabs(node) .eq.iabs(lhed(l}))go to 6110 
continue 
lco1 "' lcol+l 
ldest (lkJ = !col 
lhed(lcol) • node 
go to 6080 
ldest Ilk) • 11 
lhed(ll) "' node 
continue 
if(lcol.le.nmax)go to 6130 
nerror • 2 
write(nlp,3010}nerror 
stop 
continue 
do 6140 l "' l,kc 
11 = ldest ( 1) 
do 6140 k"' 1,kc 
kk "' ldest (k) 
eq(kk,l1) = eq(kk,ll)+aa(k,l) 
continue 
if(lcol.lt.ncrit.and.nell.lt.nel) return 

Find out which matrix elements are fully assembeled 

le • 0 
ir 2 0 
do 6160 1 = l,lcol 
kt ,. lhed(l) 
if(kt.ge.O)go to 6160 
le • lc+l 
lpiv(lc) • 1 
kro .. iabs(kt) 
if(ncod(kro).ne.l)go to 6160 
ir = ir+1 
jmod(ir) "' 1 
ncod(kro) = 2 
r1(kro) ~ bc(kro) 
continue 

Modify equations with applied boundary conditions 
===:====~=•=•===============a:•css:,.===========~= 
if(ir.eq.O)go to 6190 
do 6170 irr • 1,ir 
k • jmod(irr) 
kh = iabs(lhed(k)) 
do 6180 1 s l,lcol 
eq(k,l) ,. o. 
lh = iabs(lhed(l)) 
if(lh.eq.kh)eq(k,l) "' 1. 
continue 
continue 
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if(lc.gt.O)go to 6200 
ncrit = ncrit~lO 
if(ncrit.le.nlarg) return 
nerror : 3 
write(nlp,3030Jnerror 
stop 

6200 continue 
c 
c Search for absolute pivot 
C c::::::::===============m 

pivot = o. 
do 6210 1 = l,lc 
lpivc = lpiv(l) 
kpivr '" lpivc 
piva s eq(kpivr,lpivc) 
if(abs(piva).lt.abs(pivot))go to 6220 
pivot = piva 
lpivco • lpivc 
kpivro = kpivr 

6220 continue 
6210 continue 

if(pivot.eq.O.O) return 
c 
c Normalise pivotal row 
C ============z:::::::: 

lco = iabs(lhed(lpivco)) 
kro = lco 

if {abs (pivot) .It. 0.1d-28) write (nlp, 3050) 
do 6240 l = 1,lcol 
qq{l) = eq(kpivro,l)/pivot 

6240 continue 

c 
c 
c 

6260 
6270 

6280 
6290 
6250 
6300 

6320 
6330 

6340 
6350 
6310 
6360 
c 
c 
c 

rhs = r1 (kro)/pivot 
r1 (kro) = rhs 
pvkol(kpivro) =pivot 

Eliminate then delete pivotal row and column 

if(kpivro.eq.1)go to 6300 
kpivr a kpivro-1 
do 6250 k • 1,kpivr 
krw • iabs(lhed(k)) 
fac = eq(k,lpivco) 
pvkol (k) • fac 
if(lpivco.eq.1.or.fac.eq.O.)go to 6270 
lpivc = lpivco-1 
do 6260 1 • 1,1pivc 
eq(k,l) • eq(k,l)-fac*qq(l) 
continue 
if(lpivco.eq.lcol)go to 6290 
lpivc = lpivco~1 
do 6280 1 • lpivc,lcol 
eq(k,l-1) • eq(k,l)-fac*qq(l) 
continue 
r1(krw) • rl(krw)-fac*rhs 
continue 
if(kpivro.eq.lcol)go to 6360 
kpivr • kpivro~l 
do 6310 k = kpivr,lcol 
krw = iabs(lhed(kll 
fac = eq(k,lpivco) 
pvkol (k) • fac 
if(lpivco.eq.l)go to 6330 
lpivc ~ lpivco-1 
do 6320 l = 1,lpivc 
eq(k-1,1) • eq(k,l)-fac*qq(l) 
continue 
if(lpivco.eq.lcol)go to 6350 
lpivc = lpivco~l 
do 6340 1 a lpivc,lcol 
eq(k-1,1-1) • eq(k,l)-fac*qq(l) 
continue 
r1(krw) a r1(krw)-fac*rhs 
continue 
continue 

wr te pivotal equation on disc ::::::=======::::;;::E:az::: 
wr te(ndl) kro,lcol, lpivco, (lhed(l) ,qq(l), l z 1,lcol) 
do 6370 1 .. 1, lcol 
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.... , ....... "' .. , 
eq(lcol,l) "' 0. 

6370 continue 
c 
c Rearrange heading vectors 
C ====:•••=============••z• 

lcol = lcol-1 
if(lpivco.eq.lcol~1)go to 6390 
do 6380 l = lpivco,lcol 
lhed(l) s lhed(l+1) 

6380 continue 
6390 continue 
c 
c Determine whether to assemble,eliminate,or backsubstitute 

c 
c 
c 

c 
c 
6410 

3010 

3030 

3050 

c 

c 
c 
c 
c 

if(lcol.gt.ncrit)go to 6150 
if(nell.lt.nel) return 
if(lcol.gt.1)go to 6150 
lco • iabs(lhed(1)) 
kpivro "' 1 
pivot • eq(1,1) 
kro • lco 
lpivco = 1 
QQ(l) • 1. 

if(abs(pivot).lt.1d-28)go to 6410 

rl(kro) = rl(kro)/pivot 
write(nd1) kro,lco1,lpivco,lhed(1), qq(l) 

start back-substitution 

call bacsub 
1 (ntov , ncod 1 be ,r1 ,vel 1 maxfr,qq 
2 icho) 

main exit with solution 

continue 

format(/' nerror=',i5// 

1 lhed ,nd1, 

1 ' the difference nmax-ncrit is not sufficiently large' 
1/' to pe~t the assembly of the next element---' 
1/' either increase nmax or lower ncrit' 
1/l 

format(/' nerror=',iS// 
1 ' there are no more rows fully summed, this may be due to---· 
1/' (!)incorrect coding of nop or nk arrays' 
1/' (2)incorrect value of ncrit. increase ncrit to permit' 
1/' whole front to be assembled' 
1/l 

format(' warning-matrix singular or ill conditioned') 

return 
end 

===:=a•••===============•m=::::::::===============z::::=========== 
subroutine gaussp(ngaus,xg,cg,ncn) 

implicit double precision(a-h,o-z) 

x(g) specifies the coordinates of the Gauss points 
c(g) specifies the Gauss weights 

dimension xg(3),cg(3) 

if(ngaus.eq.l) then 
xg(1)=0.0 
Cg(1).,2.0 

elseif(ngaus.eq.2) then 
xg(1) 0.57735026919d00 
xg(2) -xg(l) 
cg(l) 1.00 
cg 121 1. 00 

else 
xg(1) 
xg(2) 

0.77459666924d00 
o.o 
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c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

cQ(l) 
cgC2) 
cg(3) 

endif 
return 
end 

o.5SS55555556d00 
o.aaaasasssa9doo 
cg(l) 

•============•=~=========:::a::a::======•z=•==•=====••=•========• 
subroutine getnod (nnp ,cord ,idvl ,idv2 ,maxnp,ndim,icord) 

implicit double precision(a-h,o-z) 

arguments 
=·=·====: 
nnp total number of nodal pointS 
cord array for nodal coordinates 
idvl input device id. 
idv2 output device id. 
ndim see below 

dimension cord(maxnp, ndim) 

in the mesh 

if (.NOT. EOF(Sl)) read (idvl, 1010) (jnp , (cord(jnp, idf), idf=l, 3) 
1 ,jnp=l,nnp) 
if(icord.eq.O) write(idv2,3010) 
iflicord.eq.l) write(idv2,3020) 
write(idv2,3030) (jnp , (cord(jnp,idf) ,id£=1,3) ,jnp=l,nnp) 

return 

1010 format(i7,e20.12,e20.12,e20.12) 
3010 format('',///' ',20('*'),' nodal coordinates ',20{'*'),// 

1' •, (7x, 'id.', 13x, 'x-coord', 13x, •y-coord', 13x, • z-coord', 13x) I) 
3020 format('',///' ',201'*'),' nodal coordinates ',20('*'),// 

1' •, 2 (7x, 'id/', 7x, 'r-coord •, 7x, • z-coord'. 20x)/) 
3030 format(' ',il0,10x,f10.6,10x,f10.6,10x,f10.6) 

end 

C =========•s••============•=•============•=•z=======•••••:cc==•==~• 

c 
c 
c 
c 
c 
c 
c 
c 

subroutine getelm (nel ,ncn ,node ,idvl ,idv2 ,maxel) 

implicit double precision(a-h,o-z) 

arguments 
========= 
ncn 
node 
idvl 
idv2 
maxel 

number of nodes per element 
array for element connectivity data 
input device id. 
output device id. 
see below 

dimension node (maxel, ncn) 

do 6010 iel = 1 ,nel 
6010 if (.not. eof (51)) read (idvl, 1010) iel , (node tiel, icn), icn:l, ncn) 

print•, •nodal connectivity array read" 
write(idv2,3010) 

do 6020 jel • 1 ,nel 
6020 write(idv:.Z, 3020) jel , (node(jel, icn), icn=l, ncn) 

return 

1010 format(2li7l 
3010 format('',///,' ',20{'*'),' element connectivity ',20('*'),// 

1' ',4x,'id.',7x,'nod a 1- p o :1. n t en t r i e s',/l 
3020 format(21i7) 

end 

c =========z=====================z==============•===:==========•==•==c 

c 
c 
c 
c 

subroutine getbc:d (nbc , ibc: , jbc , vbc 
1 ,idvl ,idv2 ,maxbc) 

implicit double precision(a-h,o-z) 

arguments 

nbc number of nodal constraint data 

23 

c 
c 
c 
c 
c 
c 

1010 
3010 

3020 

c 

c 

5000 

5040 

5030 

5020 
5010 

·= jbc 
vbc 
udvl 
idv2 
rnaxbc 

arr~y ~or cons~ra1nea noaa~ po1nts 
array for constrained degree of freedom 
array for boundary values 
input device id. 
output device id. 
see below 

dimension ibc {rnaxbc) , jbc (maxbc) ,vbc (maxbc) 

if (.not. eof(Slllread (idv1,1010) Cibc(ind) ,jbc(ind) ,vbc(ind) 
1 ,ind=l,nbc) 
print•, "boundary conditions array read" 
write(idv2,3010) 
writetidv2,3020) (ibc(ind) ,jbc{ind) ,vbc{ind) ,ind=l,nbe) 

return 

format{2i5,fl0.4) 
format('',// /,' ',20('*'),' nodal constraint 

1' ', (8x, 'id.' ,7x, 'dof', !Ox, 'value• ,!Ox)!) 
format(Sx,i5,Sx,iS,f17.4) 

',20('*'),// 

end 

subroutine lumpm 
1 Cclump,nnp ,maxnp,nel ,ngaus,p ,del ,b ,rnaxst, 
2 node ,maxel,ncn ) 

implicit double precision(a-h,o-z) 
dimension b ( 3, 20) ,del 3, 
dimension clump(maxnp l 
dimension node (maxel,maxst) 
dimension pp (ncn ,ncn l 

rewind 15 

do 5010 iel • 1 ,nel 

do 5020 
do 5020 

lq 
jq 

do 5000 inp .. 
clump (inp)• 
continue 

1 ,ngaus 
1 ,ngaus 

20) ,p 

1 ,nnp 
o.o 

20) 

if(.not. EOP'(lS)) read (15) jel ,iig ,jjg ,kkg ,p ,del ,b ,da 

return 
end 

do 5030 

do 5040 

continue 
!np 
clump(inp} 

continue 

continue 
continue 

subroutine minimax 
1 ( cmax pmax ve 1 
2np ,nm ,ncm 
3 nvxl , nvyl , nvzl 
4 vxmax , vxmin , vymax, 
5 stres l 
implicit real•S (a-h,o-z) 
dimension vel (maxdf) 
dimension press ( maxnp 

vxmax 
vxmin 
vymax 
vymin 
"'~ 

vel(l) 
vel Cl) 
vel(nnp+l) 
vel (nnpH) 
vel12*nnp+l) 

icn = 1 ,ncn 
ww .. o.o 

jcn "' 1 ,ncn 
ww: ww + p(icn)•p(jcn)*da 

press 
nv~ 

pmin 
vym!n 

iabs(node(iel,icn)) 
= clump(inp) + ww 

maxnp, nnp 
nvym nvzm , 
cmin 
v;~~max , v;~~min, 

, stres(maxnp, 11) 
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ne, 

ndim , maxdf, 



c 

c 
c 
c 
c 
c 
c 
c 
c 

6020 

pmax stx:es (1, 7) 
pmin stres (1,7) 

ne 1 
nom 1 
np 1 
nm 1 
nvxm 1 
nvym 1 
nvzm 1 
nvxl 1 
nvy1 1 
nvzl 1 

do 6020 i=2,nnp 

pm stres (i,?) 
pi stres (i,7) 
vxmx vel(i) 
~ vel (i) 
vymx vel (nnp+i) 
vymn vel(nnp+i) 

"'~ vel(2*nnp+il 
n= vel(2•nnp+i) 

if pm.gt.pmax } then 
pmax=pm 
np •i 

endif 
if ( pi.lt.pmin } then 

pmin • pi 
nm = i 

endif 
if ( vxmx.gt.vxmax } then 

vxmax: vxmx 
n- = i 

end if 
if ( vymx.gt. vymax } then 

vymax= vymx 
nvym = i 

endif 
if ( vzii\lC.gt.vzmax } then 

vzmax= v'mx 
nvzm = i 

endif 

if ( vxmn.lt.vxmin } then 
vxmin= vx:mn 
nvxl = i 

endif 
if ( vymn.lt.vymin } then 

vymin: vymn 
nvyl = i 

endif 
if ( vzmn .1 t. v:~:min } then 

vzmin= nmn 
nvzl = i 

endif 
continue 

return 
end 

c==•==•==~===========•~=•=============•==========~•=••==s=======•= 
subroutine putbcv 

1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod ,be ,rnaxbc,maxdf,maxel,maxst, 
2 node) 

implicit double precision(a-h,o-z) 

arguments 

nc:od 
be 
maxbc 
maxdf 

array for constraint switch defined for every d.o.f. 
array for storing contraint value 
see below 
see below 

dimension ibc (maxbc) , jbc (maxbcl ,vbc {maxlx:J 
dimension ncod (maxdfl ,be (maxdf) ,node (maxel,maxst) 
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ifcjb;(i~d)>3J·g~t~60lo 
jnd • ibc(ind)+(jbc(ind)-ll*nnp 
be (jnd) vbc(ind) 
ncod (jnd) 1 

6010 continue 

return 
end 

subroutine setprm 
1 (nnp , nel , ncn 
2 maxdf,ntov ,mdf 

,node ,ndf 
,nopp l 

implicit double precision(a-h,o-z) 

c arguments 
c .,,, •• , • .,, 
c arguments are already defined 
c 

,maxel,maxst,ndn 

dimension node (maxel,maxstl, ndn (maxdf) 
dimension mdf (maxdf ) , nopp (maxdfl 

c 
c function 
c 
c Sets the location data for nodal degrees of freedom 
c 

6010 

6020 

c 

do 6010 iel 1 ,ne1 
ndn(iel) z ntrix 

do 6010 icn 1 ,ncn 
ken node(iel,icn) 

jbcn: icn+(ndf-2)*ncn 
lbcn: kcn+(ndf-2)*nnp 

jccn: icn+(ndf-1)*ncn 
lccn= kcn+(ndf-l)*nnp 

node(iel,jbcn) • lbcn 
node(iel,jccn) " lccn 

continue 
do 6020 idf "' 

rndf (idf) 
nopp(idf) 

continue 

return 
end 

l,ntov 
1 
id£ 

,ntrix, 

C :::o;::~::::===~::•::&::::===::::a:m•:::::::===~=:~t=•c::::::====~= 

subroutine getmat (nel ,nmat,pmat, idv1, idv2,maxel,rtem, rpef) 
c 

implicit double precision(a-h,o-z) 
c 
c arguments 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

nmat 
pmat 
idvl 
idv2 
roden 
rvisc 
pref 
power 
tref 
tbco 
taco 
dispc ·-d 

number of materials 
array for material constants for each element 
input device id. 
output devide id. 
density 
mu noughtt consistency coefficient 
reference pressure 
power law index 
reference temperature 
coefficient b in the power law model 
coefficient a in the power law model 
dispersion coefficient 
shear rate 

dimension pmat (maxel, 10) 

write(idv2,3010J 

do 6010 imat • 1 ,nmat 
if (.NOT. EOP(51)) read(idvl,1010l rvisc, power, tref, tbco, taco, 

1 dispc, pref, roden, gamad,rbulk 
print*, 'material properties read' 
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6020 

ito "' nel 

if(rtem .eq.O.) rtem 0.001 
iflrpef .eq.O.J rpef "" 0.001 

!from ,ito 
rvise 
pref 
power 
tref 
tbco 

do 6020 ie1 
pmat(iel,l) 
pmat (iel, 2) 
pmat(iel,3) 
pmat(iel,4) 
pmat(iel,5l 
pmat(iel,6) 
pmat(iel,7) 
pmat(ie1,Sl 
pmat(iel,9) 
pmat(iel,10)s 
rtem 
rpef 

continue 

• taeo 
• dispe 

roden ·-· rbulk 
tref 
pref 

write(idv2,3020) imat ,!from ,ito ,rvisc ,power 
write(idv2,3030) 
write(idv2,3040) tref ,tbco, pref, taeo 
write(idv2,3050) 
write(idv2,3060) dispc , roden , gamad 
write (idv2, 3070) 
write(idv2,3080) rbulk 

6010 continue 

return 

1010 format(10d10.5) 

3010 format('',//' ',35('*'),' material properties ',3S('*'),I/ 
1 ' ',2x, 'id.' ,Sx, 'eid. (from-to)' ,3x, 'consistency eo-efficient' 
2,Sx, 'power law index',/) 

3020 format(' ',i3,il2,i4,Sx,glS.5,15x,glS.S) 
3030 format(/x,' reference temperature coefficient b 

1 reference pressure coefficient a '/) 
3040 format(fl6.3,f22.4,6x,gl0.3,9x,g10.3) 
3050 format(/x, 

!'Dispersion Coefficient DensitY Shear rate'/) 
3060 format(gl3.3,15x,g7.1,6x,g16.5) 
3070 format(/x, 

l'Bulk Modulus'/) 
3080 format(gl6.S) 

c 

c 
c 
c 

end 

subroutine output 
1 (nnp ,vel ,press, maxdf,rnaxnp,ieord, stres) 

implicit double preeision(a-h,o-z) 

arguments are already defined 

dimension vel(maxdf), press(maxnp) 
dimension stres(maxnp, lll 

write(60,3010) 

if(icord.eq.O) write(60,3020) 
if(icord.eq.1) write(60,3030) 

do 6010 inp ,. 1,nnp 
jnp = inp + nnp 
knp : inp + (2*nnp) 

press(inp)=press(inp) 
write(60,3040)inp,vel(inp),vel(jnp),vel(knp),stres(inp, 7), 

lstres(inp, 1) 
6010 continue 

call minimax 
1 ( cmax pmax vel press maxnp, nnp ne, 
2 np ,nm ncm nvxm nvym nvzm , 
3 nvxl , nvyl nvd pmin emin 
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3010 
3020 
3030 
3040 

3045 
30SO 

30SS 
3060 

3065 
3070 

307S 
3080 

c 

c 
c 
c 
c 
c 
c 

• vJUll<lx , vxm~n , vymax, vym1.n , vzmax , vzml.n, na1.m , maxat, 
S stres 1 

write(60,304Sl 
write(60,3050)nvxm,vel(nvxm),nvxl,vel(nvxl) 

write(60,30S5) 
write(60,3060)nvym,vel(nnp+nvym),nvyl,ve1(nnp+nvyl) 

write(60,306S) 
write(60,3070)nvzm,vel{2*nnp+nvzm),nvzl,vel{2*nnp+nvzl) 

write(60,307S) 
write(60,3080)np,stres(np,7),nm,stres(nm,7) 

format(/' nodal velocities and pressures '/) 
format ( • id. ux uy uz 
format(' id. ur uz uz 
format (iS, 3e13 .4,e22 .8, g1S. S) 

format('node no. max = node no. 
format (iS,e22. 8, iS, e22 .8,/l 

format('node no. max uy node no. 
format (iS,e22 .8, iS, e22 .8,/l 

format('node no. max "' node no. 
format liS, e22 .8, iS, e22. 8, ll 

press 

min 

min 

min 

stress'/) 
press' /l 

ux') 

uy') 

UZ') 

format('node no. max P node no. min p') 
format(iS,e22.8,iS,e22.8,/l 

return 
end 

subroutine seeinv 
1 (nel ,nnp ,ncn 
2 del ,da ,vel 
3 maxdf, num) 

,ngaus,node ,sinv ,cord ,p ,b , 
,maxnp,maxel,maxst,ndim ,icord, 

implicit double precisionla-h,o-z) 

function 

calculates the second invariant of rate of deformation 
tensor at integration points. 

dimension vel 
dimension node 
dimension p 
dimension b 

(maxnp, ndim) 
(maxel,maxst) 
{ 20 ) 
( 3, 20) 

mgaus " ngaus 1 

do 5000 iel• 1 
lg 0 

nel 

do SOlO ig • 1 ,ngaus 
do SOlO jg m l ,ngaus 
do S010 kg 1 ,ngaus 

lg lg+1 

,cord 
,sinv 
,del 

(maxnp, 
(maxel, 
( 3' 

ndim) 
35) 
20) 

rewind 15 

read (1S) iiel,iig,jjg,kkg,p,del,b,da 

ull • 0.0 
ul2 o.o 
ul3 ,. 0.0 
u21 0.0 
u22 : 0.0 
u23 "' 0.0 
u3l : 0.0 
u32 • 0.0 
u33 ,. o.o 

do S020 !en • 1 ,nen 
jen"' iabs(node{iel,icnJJ 

c ••• components of the rate of deformation tensor 
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c 
c 
c 

c 
c 

ull ull + b(l,icn)*vel(jcn,l) 
ul2 '" u12 + b(2,icn)*vel(jcn,l) 
ul3 ul3 + b(3,icnl*vel(jcn,l) 
u21 u21 • b(l,icn)*vel(jcn,2) 
u22 : u22 • b(2,icn)*vel(jcn,2) 
u23 u23 + b(3,icn)*vel(jcn,2J 
u31 u31 + b(l,icn)•vel(jcn,JJ 
u32 u32 • b(2,icn)•vel(jcn,3) 
u33 u33 • b(3,icn)*vel(jcn,3J 

5020 continue 

second invariant of the rate of deformation tensor 

sinv{iel,lg)=0.125*((ull+ull)*(ull+ull)+ 
1 (ul2+u21)*(u12+u21)+ 
2 (u13+u3l)*(u13+u31)+ 
3 (u2l+ul2)*(u2l+ul2)+ 
4 (u22+u22)*(u22+u22)+ 
5 (u23+u32)*(u23+u32)+ 
6 (u31+ul3)*(u3l+u13)+ 
7 (u32+u23)*(u32+u23)+ 
8 (u33+u33) * (u33+u33)) 

5010 continue 
5000 continue 

return 
end 

============~=~===========•=s=======:===•=======================• 
subroutine shape ( xi , eta , zeta, p ,del , ncn, node, cord 

1 nnp, maxel, maxst, max:np, ndim) 
implicit double precision (a-h,o-z) 

DIMENSION p(20) ,del(3,20} 
Dimension cord(maxnp, ndim) 
dimension node (maxel,maxst} 

if {ncn.eq.S) then 
del(l,ll=-0.125*(1-eta)*(l-zetal 
de1(1,2)•-0.l25*(1+eta)*(1-zeta} 
del(1,3J= 0.125*(1+eta}*(1-zetal 
de1(1,4)• 0.125*(1-eta)*(l-zetal 
de1(l,Sl=-0.125*(1-eta)*(1+zetal 
del(1,6l~-0.125*(l+eta)*(l+zetal 
de1(1,7l= O.l25*(1+eta)*(l+zetal 
del(1,8)• 0.125*{1-eta)*(l+zeta) 

c ••.•.••.•.....•••...••.••......•..•••.•.•...••.••••••.• 
del(2,1)•-0.125*(1-xi)*(1-zeta) 
del(2,2l= 0.125*(1-xi)*(l-zeta) 
de1{2,J)g 0.125*(1+xi)*(l-zeta) 
de1(2,4l=-0.125*(1+xi)*(1-zeta) 
de1{2,Sl=-0.125*(1-xi)*(l+zeta} 
de1(2,6)• 0.125*(1-xi)*(1+zetal 
del(2,7l~ O.l25*(l+xi)*(l+zeta) 
de1(2,8l=-0.125*(1+xi}*(1+zeta) 

c ......••..••••..•••......•.••.•.•.....•...•..•.•.....•...•. 
del(3,1)=-0.125*(1-xi)*(1-eta) 
de1{3,21=-0.125*(1-xi)*{1+eta) 
del(3,3)2-0,125*(l+xi)*(1+eta) 
del(3,4)=-0.125*{1+xi)*(1-eta) 
de1(3,5)= 0.125*(1-xi)*(1-eta) 
del(3,6)z O.l25*(1-xi)*(1+eta) 
del(3,7)= 0.125*(1+xi)*{1+eta) 
del(3,8l= 0.125*(l+xi)*(1-eta) 

c .......................................................... . 

p(1)=0.125*(1-xi)*{1-eta)*(1-zeta} 
p{2l=0.125*(1-xi)*(1+eta)*(1-zeta) 
p(J)=O.l25*(l+xi)*(1+eta)*(1-zeta) 
p(4J=O.l25*(l+xi)*(l-etal*(1-zeta) 
p(5J=O.l25*(1-xi)*(l-eta)*(1+zeta) 
p(6J=O.l25*(1-xi)*{1+eta)*(l+zeta) 
p(7J=0.125*(1+xi)*(l+eta)*{l+zeta) 
p(8)=0.125*(l+xi)*{1-eta)*(l+zetal 

c •.•••...•..•.....•...••••.•....•...........•.••..•.•.•...•. 

endif 
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endif 
return 
end 

C :c:z:z==========:===============•=================•=•============= 
subroutine stress 

1 {nel,nnp,ncn ,node ,p , b , da ,vel ,maxnp, maxel, maxst 
2 maxdf, stres, press, rvisc ,clump ,ngaus, rmat1,rmat2 

c 
c 
c 
c 
c 

4990 

implicit double precision(a-h,o-z} 

function 

calculates stress components at integration points, 
Direct Approach (coupled scheme) 

dimension node (maxel,maxst) 
dimension stres(maxnp, 11) 
dimension vel (maxnp, 3) 
dimension rmatl(~el, 35) 
dimension clump (maxnp l 

rngaus 
ired 

do 4990 inp =l,maxnp 
do 4990 icp =1, 11 
stres(inp,icp)• 0.0 
continue 

= ngaus - 1 
• 1 

do 5000 iel • 1 ,nel 

ng = 0 

do 6010 ig•1,mgaus 

do 6010 jg=l,mgaus 

do 6010 kg=1,mgaus 

ng • 1 + ng 

b ( J, 20) ,cord 
press (maxnp ) , p ( 
del ( 3, 20) 
rmat2(maxel, 35) 

(maxnp, 3) 
20 l 

rewind 16 

if(.not. EOF(16)}read(16l iiel,iig,jjg,kkg,p ,del ,b , da 

ifg • ng 

rvisc=rmatl(iel,ifg) 
rbulk=rmat2(iel,ifg) 

ull "' 0.0 
u12 .. 0.0 
u13 o.o 
u21 0.0 
u22 • 0.0 
u23 0. 0 
u31 0.0 
u32 0.0 
uJJ 0.0 

do 6020 icn = 1 ,ncn 

6020 continue 

jcn • iabs(node(iel,icn)) 
u11 u11 + b(1,icn)*vel(jcn,1) 
u12 u12 + b(2,icn)*vel(jcn,1) 
ul3 u13 + b(J,icn)*vel(jcn,1l 
u21 u21 + b(1,icn)*vel(jcn,2) 
u22 u22 + b(2,icn)*vel(jcn,2) 
u23 u23 + b(J,icn)*vel(jcn,2) 
u31 u31 + b(1,icn)*vel(jcn,J) 
u32 • u32 + b(2,icn)•vel(jcn,J) 
u33 u33 + b(J,icn)*ve1(jcn,J) 

c cartesian components of the stress tensor 
C =~=m=•===============~=•================2 
c 
c 

shear Stress (Tau) 
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sdll so 2. 0 *rvisc 
sd22 2. 0 •rvisc 
sd33 2. 0 *rvisc 
sd12 rvisc (u12 + 
sdll rvisc . (ulJ + 
sd23 rvisc . (u23 + 

c Normal Stress (Pi) 

sll •-pres + sdll 
s22 =-pres + sd22 
s33 ~-pres + sd33 
s12 sd12 
sl) = sdl3 
s23 "' sd23 

ull 
u22 
u33 
u21) 
u31) 
u32l 

C ==============~=•=s=============z=z============•==z====~=:=a:a:s 
c *** calculate stress at nodal points (Variational Recovery) 
C ===z==================zc::z=========z=z==========~z=z==========• 

6500 

1 

1 

1 

1 

1 

do 6500 icn "' 1 ,ncn 
jcn = iabs(node(iel,icn)) 

stres (jcn, 1)" stres(jcn,1) 
• p(icn) *sll *da /c1ump(jcn) 

stres(jcn,2)~< stres(jcn,2) 
+ p(icn) *s22 •da /clump(jcn) 

stres{jcn,3)R stres(jcn,3) 
+ p(icn) *s33 

stres{jcn,4)= stres(jcn,4) 
•da /clump(jcn) 

+ p(icn) *s12 
stres(jcn,S)= stres(jcn,S) 

•da /clurnp(jcn) 

+ p(icn) *s13 
stres(jcn,6)• stres(jcn,6) 

•da /clump(jcn) 

+ p(icn) *s23 
stres(jcn,7)z stres(jcn,7) 

•da /clump(jcn) 

+ p(icn) *pres 
continue 

•da /clump(jcn) 

6010 continue 

5000 continue 

write(17,2100) 
2100 format(//,' Nodal Stress',// 

1' node', 7x, 'sll', 12x, 's22', 12x, • s33' ,12x, 
2' s12' ,12x, 's13', 12x, 's23 'll 

write {17, 2110) (inp, (stres (inp, icp), icp=l, 7), inp=l, nnp) 
2110 format(' ',i5,7g1S.Sl 

return 

end 

C ••=============~=========•=•============z=•R•z==========:=•=•=•=•= 
subroutine visca 

1 (rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco 
2 ,gamad ) 

implicit double precision(a-h,o-z) 

visc rvisc*(4.0*gamad**((power-l.O)*O.Sll 

return 
end 

*exp(-tbco*(stemp-rtem)) 
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K.C.Ting Appendix 5: Sample Input File 

3DFEANOF 
- Uversion 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow- UVWP version 

Sample Input File 

For a domain discretized into 8-noded prism element 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 

A5 



K.C.Ting Appendix 5: Sample Input File 

3D Stokes, 
8 3 

6560 4608 
1 0 

0.0 
0.00001 
80.0000 

Sample Input File 

3363 1 

0. 0 0. 0 
0.00001 0.00001 
1.30000 298.00000 

1. OOOD04 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6550 
6551 
6552 
6553 
6554 
6555 
6556 
6557 
6558 
6559 
6560 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

4600 
4601 
4602 
4603 
4604 
4605 
4606 
4607 
4608 

1 
2 
3 
4 
5 
6 
7 

1 
1 
1 
1 
1 
1 
1 

2.000-1 2.930003 
0.51000002E-02 
0.51374999E-02 
0.51750001E-02 
0.52125002E-02 
0.52500004E-02 
0.52875001E-02 
0.53250003E-02 
0.53625004E-02 
0.54000001E-02 
0.51000002E-02 

0.52875001E-02 
0.52875001E-02 
0.52875001E-02 
0.53250003E-02 
0.53250003E-02 
0.53250003E-02 
0.53250003E-02 
0.53625004E-02 
0.53625004E-02 
0.53625004E-02 
0.53625004E-02 
2 1 136 
3 2 137 
4 3 138 
5 4 139 
6 5 140 
7 6 141 
8 7 142 
9 8 143 

11 10 145 
12 11 146 

6517 6516 6551 
6519 6518 1213 
6520 6519 6553 
6521 6520 6554 
6522 6521 6555 
6524 6523 1214 
6525 6524 6557 
6526 6525 6558 
6527 6526 6559 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00001 
O.OODOO 

0.19DOO 
2.00D-1 

0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 
0.54000001E-02 

0.50499998E-02 
0.50250003E-02 
0.49999999E-02 
0.50750002E-02 
0.50499998E-02 
0.50250003E-02 
0.49999999E-02 
0.50750002E-02 
0.50499998E-02 
0.50250003E-02 
0.49999999E-02 

137 11 
138 12 
139 13 
140 14 
141 15 
142 16 
143 17 
144 18 
146 20 
147 21 

10 
11 
12 
13 
14 
15 
16 
17 
19 
20 

6552 6522 6521 
6553 6524 6523 
6554 6525 6524 
6555 6526 6525 
6556 6527 6526 
6557 6529 6528 
6558 6530 6529 
6559 6531 6530 
6560 6532 6531 

2.00D-1 1. 01305 

0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54142857E-02 

0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
145 146 
146 147 
147 148 
148 149 
149 150 
150 151 
151 152 
152 153 
154 155 
155 156 

6555 6556 
1214 6557 
6557 6558 
6558 6559 
6559 6560 
1215 6265 
6265 6260 
6260 6255 
6255 6250 

AS 



K.C.Ting Appendix 5: Sample Input File 

8 1 0.00000 
9 1 0.00000 

1 2 0.00000 
2 2 0.00000 
3 2 0.00000 
4 2 0.00000 
5 2 0.00000 
6 2 0.00000 
7 2 0.00000 
8 2 0.00000 
9 2 0.00000 

1 3 -0.00010 
2 3 -0.00010 
3 3 -0.00010 
4 3 -0.00010 
5 3 -0.00010 
6 3 -0.00010 
7 3 -0.00010 
8 3 -0.00010 
9 3 -0.00010 

---------END OF FILE---------------------------------------------

The purpose of this file is to display the format of the input file and is not intended to 
be comprehensive. The numbers are random and due to practical reasons, a portion of 
the data has been truncated and has been indicated with ' ... .'. 
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K.C.Ting Appendix 5: Sample Input File 

3DFEANOF 
-P version 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow- Continuous Penalty version 

Sample Input File 

For a domain discretized into 8-noded prism element 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 
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3D Stokes, 
8 3 

7778 5560 
1 0 

0.0 
0.00001 
80.0DOO 

0.970D03 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

7770 
7771 
7772 
7773 
7774 
7775 
7776 
7777 
7778 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5550 
5551 
5552 
5553 
5554 
5555 
5556 
5557 
5558 
5559 
5560 

1 
2 
3 
4 
5 
6 
7 

1 
1 
1 
1 
1 
1 
1 

Appendix 5: Sample Input File 

Sample Input File, Penalty 

3841 1 

0. 0 0. 0 
0.00001 0.00001 
1.30DOO 298.00000 

2.00D-1 10.0D20 
0.51000002E-02 
0.51399996E-02 
0.51799999E-02 
0.52200002E-02 
0.52600000E-02 
0.53000003E-02 
0.53399997E-02 
0.53800000E-02 
0.54200003E-02 
0.54600001E-02 

0.53800000E-02 
0.54200003E-02 
0.54200003E-02 
0.54200003E-02 
0.54200003E-02 
0.54600001E-02 
0.54600001E-02 
0.54600001E-02 
0.54600001E-02 
2 1 166 
3 2 167 
4 3 168 
5 4 169 
6 5 170 
7 6 171 
8 7 172 
9 8 173 

10 9 174 
11 10 175 

7725 7724 7767 
7726 7725 7768 
7727 7726 7769 
7729 7728 1813 
7730 7729 7771 
7731 7730 7772 
7732 7731 7773 
7734 7733 1814 
7735 7734 7775 
7736 7735 7776 
7737 7736 7777 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

0.00001 
O.OODOO 2.00D-1 

0.55000000E-02 
0.55000000E-02 
0. 55000000E-02 
O.SSOOOOOOE-02 
0.55000000E-02 
0.55000000E-02 
0.55000000E-02 
0.55000000E-02 
0.55000000E-02 
0.55000000E-02 

0.49999999E-02 
0.50750002E-02 
0.50499998E-02 
0.50250003E-02 
0.49999999E-02 
0.50750002E-02 
0.50499998E-02 
0.50250003E-02 
0.49999999E-02 

167 13 
168 14 
169 15 
170 16 
171 17 
172 18 
173 19 
174 20 
175 21 
176 22 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

7768 7730 7729 
7769 7731 7730 
7770 7732 7731 
7771 7734 7733 
7772 7735 7734 
7773 7736 7735 
7774 7737 7736 
7775 7739 7738 
7776 7740 7739 
7777 7741 7740 
7778 7742 7741 

2.00D-1 1. 013D5 

0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 
0.54500001E-02 

0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
0.49500000E-02 
177 178 
178 179 
179 180 
180 181 
181 182 
182 183 
183 184 
184 185 
185 186 
186 187 

7771 7772 
7772 7773 
7773 7774 
1814 7775 
7775 7776 
7776 7777 
7777 7778 
1815 7406 
7406 7401 
7401 7396 
7396 7391 
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8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 
-0.00100 

Appendix 5: Sample Input File 

---------END OF FILE---------------------------------------------

The purpose of this file is to display the format of the input file and is not intended to 
be comprehensive. The numbers are random and due to practical reasons, a portion of 
the data has been truncated and has been indicated with ' .... '. 
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APPENDIX6 

Sample Output File 
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3DFEANOF 
- Uversion 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow- UVWP version 

Sample Output File 

For a domain discretized into 8-noded prism element 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 
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************************************************************ 
* 
* 
* 
* 
* 

A three dimensional finite element model of a 
non-newtonian isothermal flow using 
the UVP method. 

* 
• 
• 
* 
* 

************************************************************ 

3D Stokes, Sample output File 

([[element description data ......... . 
no.of nodes per element 
no.of integration points 

*** coordinate system is cartesian (planar) *** 

(([mesh description data ......... . 
no.of nodal points 
no.of elements 
no.of nodal constraints on boundary 
no.of different materials 

[{[ uniform body force vector 
gravl 
grav2 
grav3 

8 
3 

6560 
4608 
3363 

1 

0.0000 
0.0000 
0.0000 

*********************************** material properties ************************* 

id. eid.(from-to) consistency co-efficient power law index 

1 14608 80.000 1. 3000 

reference temperature coefficient b reference pressure coefficient a 

298.000 0.0000 0 .101E+06 0. 200 

Dispersion Coefficient Density Shear rate 

0.200 0.1E+04 0.20000 

******************** nodal coordinates ******************** 

id. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6550 
6551 
6552 
6553 
6554 
6555 
6556 
6557 
6558 
6559 
6560 

x-coord 

0.005100 
0.005137 
0.005175 
0.005213 
0.005250 
0.005288 
0.005325 
0.005363 
0.005400 
0.005100 

0.005288 
0.005288 
0.005288 
0.005325 
0.005325 
0.005325 
0.005325 
0.005363 
0.005363 
0. 005363 
0.005363 

y-coord 

0.005400 
0.005400 
0.005400 
0.005400 
0.005400 
0.005400 
0.005400 
0.005400 
0.005400 
0.005400 

0.005050 
0.005025 
0.005000 
0.005075 
0.005050 
0.005025 
0.005000 
0.005075 
0.005050 
0.005025 
0.005000 

******************** element connectivity ******************** 

id. n o d a 1 - p o i n t e n t r i e s 

z-coord 

0.005450 
0.005450 
0.005450 
0.005450 
0.005450 
0.005450 
0.005450 
0.005450 
0.005450 
0.005414 

0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
0.004950 
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1 2 1 136 137 11 10 145 146 
2 3 2 137 138 12 11 146 147 
3 4 3 138 139 13 12 147 148 
4 5 4 139 140 14 13 148 149 
5 6 5 140 141 15 14 149 150 
6 7 6 141 142 16 15 150 151 
7 8 7 142 143 17 16 151 152 
8 9 8 143 144 18 17 152 153 
9 11 10 145 146 20 19 154 155 

10 12 11 146 147 21 20 155 156 

4600 6517 6516 6551 6552 6522 6521 6555 6556 
4601 6519 6518 1213 6553 6524 6523 1214 6557 
4602 6520 6519 6553 6554 6525 6524 6557 6558 
4603 6521 6520 6554 6555 6526 6525 6558 6559 
4604 6522 6521 6555 6556 6527 6526 6559 6560 
4605 6524 6523 1214 6557 6529 6528 1215 6265 
4606 6525 6524 6557 6558 6530 6529 6265 6260 
4607 6526 6525 6558 6559 6531 6530 6260 6255 
4608 6527 6526 6559 6560 6532 6531 6255 6250 

******************** nodal constraint ******************** 

id. dof value 

1 1 0.0000 
2 1 0.0000 
3 1 0.0000 
4 1 0.0000 
5 1 0.0000 
6 1 0.0000 
7 1 0.0000 
8 1 0.0000 
9 1 0.0000 

1 2 0.0000 
2 2 0.0000 
3 2 0.0000 
4 2 0.0000 
5 2 0.0000 
6 2 0.0000 
7 2 0.0000 
8 2 0.0000 
9 2 0.0000 

1 3 -0.0001 
2 3 -0.0001 
3 3 -0.0001 
4 3 -0.0001 
5 3 -0.0001 
6 3 -0.0001 
7 3 -0.0001 
8 3 -0.0001 
9 3 -0.0001 

Total number of time steps 1 

Del tat 0.0100 

iteration no. 1 

nodal velocities and pressures 

id. ux uy uz press stress 

1 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0. 91810410E-08 0.11402E-02 
2 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.82969789E-08 0.12500E-02 
3 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.79936110E-08 0.11990E-02 
4 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.80123890E-08 0.12092E-02 
5 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.91422074E-08 0.12730E-02 
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6 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.79039059E-08 0.11983E-02 
7 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.78016262E-08 0.11804E-02 
8 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.80589485E-08 0.12337E-02 
9 O.OOOOE+OO O.OOOOE+OO -0.1000E-03 0.93093990E-08 0.16415E-02 

10 0.1345E-03 -0.9495E-04 -0.9798E-04 0.74222439E-08 0.20318E-03 

6550 -0.1766E-05 0.1277E-04 -0.1579E-04 O.OOOOOOOOE+OO 0.29442E-04 
6551 -0.4432E-05 0 .1402E-04 -0.1418E-04 O.OOOOOOOOE+OO 0.42302E-04 
6552 -0.7070E-05 0.1553E-04 -0.1465E-04 0. 82261104E-09 0.31416E-04 
6553 -0.2750E-05 0.1125E-04 -0.1386E-04 O.OOOOOOOOE+OO 0.25755E-04 
6554 -0.3105E-05 0.1242E-04 -0 .1362E-04 O.OOOOOOOOE+OO 0.31977E-04 
6555 -0.5068E-05 0.1347E-04 -0.1190E-04 O.OOOOOOOOE+OO 0.44618E-04 
6556 -0.7075E-05 0.1469E-04 -0.1204E-04 0.77467008E-09 0.31905E-04 
6557 -0.4796E-05 0.2040E-04 -0.2796E-04 O.OOOOOOOOE+OO 0.28444E-04 
6558 -0.4461E-05 0 .2292E-04 -0.2534E-04 O.OOOOOOOOE+OO 0.34725E-04 
6559 -0.5604E-05 0.2542E-04 -0.2213E-04 O.OOOOOOOOE+OO 0.46929E-04 
6560 -0.6836E-05 0.2816E-04 -0.2120E-04 0.76731478E-09 0.32387E-04 

node no. max ux node no. min ux 
1982 0.46918106E-03 2946 -0.46918505E-03 

node no. max uy node no. min uy 
2280 0.38389884E-03 1274 -0.38390032E-03 

node no. max uz node no. min uz 
2098 0.16771381E-03 740 -0 .11652409E-03 

node no. max p node no. min p 
1224 0.12210963E-07 127 O.OOOOOOOOE+OO 

---------END OF FILE---------------------------------------------

The purpose of this file is to display the fonnat of the output file and is not intended to 
be comprehensive. The numbers are random and due to practical reasons, a portion of 
the data has been truncated and has been indicated with ' .... '. 
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3DFEANOF 
-P version 

3-Dimensional Finite Element Analysis of 
Non-Newtonian fluid Flow- Continuous Penalty version 

Sample Output File 

For a domain discretized into 8-noded prism element 

Kee Chien Ting 

Advanced Separation Techniques Group 
Department of Chemical Engineering 

Loughborough University 

A6 



K.C.Ting Appendix 6: Sample Output File 

************************************************************ 
• 
* A three dimensional finite element model of a 
• 
• 
• 

non-newtonian isothermal flow using 
the Penalty method. 

* 
* 
* 
* 
* 

************************************************************ 

3D Stokes, Sample Output File, Penalty 

[[[element description data ......... . 
no.of nodes per element 
no.of integration points 

*** coordinate system is cartesian (planar) *** 

([(mesh description data ......... . 
no.of nodal points 
no.of elements 
no. of nodal constraints on boundary 
no.of different materials 

([[uniform body force vector 
gravl 
grav2 
grav3 

8 
3 

7778 
5560 
3841 

1 

0.0000 
0.0000 
0.0000 

*********************************** material properties ************************* 

id. eid. (from-to) consistency co-efficient power law index 

1 15560 80.000 1. 3000 

reference temperature coefficient b reference pressure coefficient a 

473.000 0.0000 0.101E+06 0.200 

Dispersion Coefficient Density Shear rate 

0.200 0.1E+04 0.20000 

Bulk Modulus 

0.10000E+22 

******************** nodal coordinates ******************** 

id. x-coord y-coord z-coord 

1 0.005100 0.005500 0.005450 
2 0.005140 0.005500 0.005450 
3 0.005180 0.005500 0.005450 
4 0.005220 0.005500 0.005450 
5 0.005260 0.005500 0.005450 
6 0.005300 0.005500 0.005450 
7 0.005340 0.005500 0.005450 
8 0.005380 0.005500 0.005450 
9 0.005420 0.005500 0.005450 

10 0.005460 0.005500 0.005450 

7770 0.005380 0.005000 0.004950 
7771 0.005420 0.005075 0.004950 
7772 0.005420 0.005050 0.004950 
7773 0.005420 0.005025 0.004950 
7774 0.005420 0.005000 0.004950 
7775 0.005460 0.005075 0.004950 
7776 0.005460 0.005050 0.004950 
7777 0.005460 0.005025 0.004950 
7778 0.005460 0.005000 0.004950 

******************** element connectivity ******************** 

A6 



K.C.Ting Appendix 6: Sample Output File 

id. n o d a 1 - p 0 i n t e n t r i e s 

1 2 1 166 167 13 12 177 178 
2 3 2 167 168 14 13 178 179 
3 4 3 168 169 15 14 179 180 
4 5 4 169 170 16 15 180 181 
5 6 5 170 171 17 16 181 182 
6 7 6 171 172 18 17 182 183 
7 8 7 172 173 19 18 183 184 
8 9 8 173 174 20 19 184 185 
9 10 9 174 175 21 20 185 186 

10 11 10 175 176 22 21 186 187 

5550 7725 7724 7767 7768 7730 7729 7771 7772 
5551 7726 7725 7768 7769 7731 7730 7772 7773 
5552 7727 7726 7769 7770 7732 7731 7773 7774 
5553 7729 7728 1813 7771 7734 7733 1814 7775 
5554 7730 7729 7771 7772 7735 7734 7775 7776 
5555 7731 7730 7772 7773 7736 7735 7776 7777 
5556 7732 7731 7773 7774 7737 7736 7777 7778 
5557 7734 7733 1814 7775 7739 7738 1815 7406 
5558 7735 7734 7775 7776 7740 7739 7406 7401 
5559 7736 7735 7776 7777 7741 7740 7401 7396 
5560 7737 7736 7777 7778 7742 7741 7396 7391 

******************** nodal constraint ******************** 

id. dof value 

1 1 0.0000 
2 1 0.0000 
3 1 0.0000 
4 1 0.0000 
5 1 0.0000 
6 1 0.0000 
7 1 0.0000 
8 1 0.0000 
9 1 0.0000 

10 1 0.0000 

1 2 0.0000 
2 2 0.0000 
3 2 0.0000 
4 2 0.0000 
5 2 0.0000 
6 2 0.0000 
7 2 0.0000 
8 2 0.0000 
9 2 0.0000 

10 2 0.0000 

1 3 -0.0001 
2 3 -0.0001 
3 3 -0.0001 
4 3 -0.0001 
5 3 -0.0001 
6 3 -0.0001 
7 3 -0.0001 
8 3 -0.0001 
9 3 -0.0001 

10 3 -0.0001 

Total number of time steps 1 

Del tat 0.0100000000 

iteration no. 1 

nodal velocities and pressures 
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id. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

7770 
7771 
7772 
7773 
7774 
7775 
7776 
7777 
7778 

ux 

0 .OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 

-0.6965E-05 
-0.3491E-06 
-0.3952E-05 
-0.6242E-05 
-0.8055E-05 
-0.3849E-05 
-0.6421E-05 
-0.7791E-05 
-0. 8791E-05 

uy 

O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 
O.OOOOE+OO 

0.8283E-05 
0.1569E-04 
0.1587E-04 
0.1625E-04 
0.1687E-04 
0.1384E-04 
0.1480E-04 
0.1612E-04 
0.1787E-04 

uz press stress 

-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 
-0.1000E-03 

-0.1157E-04 
-0.2300E-04 
-0.1759E-04 
-0.1443E-04 
-0.1466E-04 
-0.3988E-04 
-0, 3171E-04 
-0.2666E-04 
-0.2574E-04 

0.62958506E+21 
0.42822298E+21 
0.22049034E+21 
0 .13135973E+21 
0.40761163E+20 

-0.41242120E+20 
-0.88127414E+19 

0.72751255E+20 
0.85965128E+20 
0.98436355E+20 

0.26301782E+22 
0.17516783E+23 
0.78990915E+22 
0.46274645E+22 
0.42187011E+22 
0.13214362E+23 
0.85554423E+22 
0.61066764E+22 
0.30416666E+22 

node no. max ux node no. min ux 
264 0.33928248E-02 1585 -0.37591549E-02 

node no. max uy node no. min uy 
293 0.70772940E-02 1602 -0.17891826E-01 

node no. max uz node no. min uz 
3887 0.19925923E-03 5418 -0.20276278E-03 

node no. max p node no. minp 
4034 0.26049796E+24 2677 -0.96307804E+23 

-0.62959E+21 
-0.42822E+21 
-0.22049E+21 
-0 .13136E+21 
-0.40761E+20 

0.41242E+20 
0.88127E+19 

-0. 72751E+20 
-0.85965E+20 
-0.98436E+20 

-0.26302E+22 
-0.17517E+23 
-0. 78991E+22 
-0.46275E+22 
-0.42187E+22 
-0.13214E+23 
-0.85554E+22 
-0.61067E+22 
-0.30417E+22 

---------END OF FILE---------------------------------------------

The purpose of this file is to display the format of the output file and is not intended to 
be comprehensive. The numbers are random and due to practical reasons, a portion of 
the data has been truncated and has been indicated with ' .... '. 
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