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Abstract

A simple mathematical model framework is developed to describe the hormonal inter-
actions of the human menstrual cycle along the hypothalamus-pituitary-ovaries axis. The
framework is designed so that it can be readily extended to model processes that disrupt the
normal functioning cycle. The model in its most basic formulation exhibits multiple periodic
solutions, one of which shows the key characteristics of a menstrual cycle, whilst the others
indicate possible abnormalities sometimes observed in women of reproductive age. The basic
model is extended to encompass receptor down-regulation as a mechanism to describe the
desensitisation of the pituitary to continuous stimulation of hypothalamic hormone, a hor-
monal therapy that is commonly prescribed prior to the surgical procedure for the removal of
uterine myomas. Though the mechanisms for desensitisation are likely to be more complex,
the model results are in good qualitative agreement with physiological observations.

Keywords: mathematical modelling, delay differential equations, Hopf bifurcation, periodic so-
lutions, menstrual cycle

1 Introduction

The female menstrual cycle, regulated by the endocrine system, is maintained through a sequence
of complex interactions of hormones. The predominant hormones involved in these events taking
place along the hypothalamus-pituitary-ovaries axis of the endocrine system are gonadotropin
releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH) and
ovarian hormones such as estrogen(E2), progesterone (P4) and inhibin. GnRH is believed to be
responsible for the synthesis and release of FSH and LH in the anterior pituitary. The released
FSH stimulates the recruitment and growth of follicles in the ovary while LH promotes the
ovulation and the subsequent conversion of follicles into corpus lutea. Follicles and corpus lutea
secrete ovarian hormones which, in turn, feedback on both GnRH neurons and the pituitary,
directly and indirectly, fine-tuning the response of GnRH, LH and FSH, maintaining the cyclic
nature of the reproductive system [23, 26]. The regulating process is highly interactive and
complex. Our aim here is to formulate a simple, minimal model that encapsulates the key
underlying dynamics of the menstrual cycle, whilst describing explicitly the role of the principal
hormones governing the process, the feedback of estrogen and progesterone on FSH and LH
and, in particular, the regulatory effect of GnRH on the responsiveness of the pituitary. We
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first discuss in more detail the relevant background of the menstrual cycle and follow this with
a brief overview of modelling literature.

GnRH is a hypothalamic hormone released by neurons in a pulsatile manner with varying
frequencies and amplitudes. The GnRH neuron activities are regulated by the afferent neuronal
systems which, as many studies have demonstrated, are sensitive to the feedback from the
ovarian hormones such as estrogen and progesterone [16, 19, 31]. While estrogen is observed to
promote the frequency of GnRH release from the neurons, progesterone is reported to have a
negative effect in reducing GnRH frequency. The varying frequencies, accompanied by a pre-
ovulatory surge, subsequently result in the differential release of FSH and LH in the pituitary;
at lower frequency, FSH secretion is favoured while at higher frequency, LH secretion increases
disproportionately.

The exact mechanism that leads to the differential release of FSH and LH in the pituitary
is still very much under debate. GnRH initiates response at the anterior pituitary cells by
binding to a family of membrane receptors called G-protein coupled receptors which stimulate
the downstream responses by coupling to G-protein on the cell membrane. Multiple activation
of G-protein subtypes by a single receptor and the subsequent cross-talk between their corre-
sponding signalling pathways leading to multiple physiological functions have been observed in
experiments [21, 27]. Feedback of ovarian hormones also play a part in controlling the pituitary
response to GnRH; in particular, both estrogen and inhibin have been reported to exert negative
feedback on FSH release and secretion with estrogen playing the greater role in the control of
FSH concentration levels [1, 26, 38]. The combined effects of these signalling mechanisms and
feedback control of estrogen and progesterone are likely to be instrumental in orchestrating the
differential control of FSH and LH in the pituitary[13].

The menstrual cycle is commonly divided into two phases: the follicular phase and the luteal
phase separated by a period of ovulation with the follicular phase characterised by the growth and
development of follicles while the luteal phase by the formation of corpus lutea until luteolysis
(or pregnancy). FSH and LH work in concert to control the development of ovarian follicles
and corpus lutea. Stimulated by FSH, the newly recruited follicles grow to maturation while
secreting estrogen. As ovulation approaches, one of these follicles becomes dominant and grows
more rapidly than the others, until, stimulated by the surge of LH, it ruptures and releases the
egg contained within it. The ruptured follicle is then transformed into the corpus luteum which
secretes estrogen and progesterone that regulate hypothalamus neuron activities and suppress
the pituitary secretion.

Understanding the cascade of events has helped to design therapies for conditions that are
hormone-related. For example, contraceptive pills (of progesterone) are formulated to disrupt
the reproductive cycle, using the negative feedback of progesterone on GnRH to suppress the
hormone levels [8]. It is also a common practice in the treatment of uterine myoma to administer
exogenous GnRH analog before surgery to reduce myoma size and minimise surgical risk [15].

Mathematical models have been developed to address different issues that arise in the study
of the reproductive system. Khadra and Li [18, 22] based on physiological data from experiments,
developed models focusing on the pulsatile secretion of GnRH from hypothalamic neurons. A
different approach was taken by Clement and Francoise [6] who formulated a phenomenological
model to regulate the frequency and amplitude of GnRH by coupling two systems of FitzHugh-
Nagumo models. A model proposed by Bertram and Li [3] was used to investigate the effect
of activin and follistatin on the differential responses of LH and FSH in the pituitary. Models
focused on periodic solutions of the entire menstrual cycle have also been developed. Clark et

al. [4], for example, put forward a nonlinear system of 13 delay differential equations to describe
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the concentration of hormones and other components that are involved in the maintenance of the
menstrual cycle without explicitly considering the role of GnRH. This model is further extended
by Reinecke and Deuflhard [29] to include a stochastic process for the generation of GnRH. The
models described in [4, 29] are very complex, involving a number of variables accounting for the
main hormones, which are mostly measurable, and a large number of proposed follicular states,
which are not so readily discernible from data or observation; nevertheless, with parameter
fitting, good quantitative agreement with data are predicted by these models. However, we
viewed these models as being rather too complex to be a desirable starting point to investigate
additional processes, such as GnRH desensitisation discussed in this paper.

The aim of the current study is to develop a relatively simple mathematical model, incorpo-
rating the key biological processes, that exhibits stable periodic solutions that are characteristic
of the menstrual cycle and, in particular, can be used as a basic framework to investigate pro-
cesses that perturb the cycle. The basic model will be extended to investigate the pituitary
desensitisation to GnRH stimulation, which to our knowledge has not been included in the
modelling of the menstrual cycle, enabling us to simulate GnRH agonist treatment. This model
will be incorporated into a on-going study on the growth and treatment of myomas in the uterus,
for which the simulation of GnRH treatments and the periodic secretion of estrogen under nor-
mal physiological condition are required. The sections in this paper are arranged as follow.
In Section 2, we outline the assumptions and present the basic model of the menstrual cycle
consisting of three delay differential equations to describe the hormonal interactions of the men-
strual cycle. Numerical simulations and a discussion of the first stage modelling are presented
in Section 2.1 with a brief bifurcation analysis carried out in Section 2.2. The model is extended
in Section 3 by encompassing a mechanism for GnRH treatment with numerical simulations of
the treatment illustrated in Section 3.1. A summary and discussion is given in Section 4.

2 Formulation of the basic model

The primary aim of this study is to construct a mathematical model which is notably simpler
than existing models, yet is able to describe the interactions of the key components and re-
produces many of the observed and measured features of the menstrual cycle. Moreover, the
assumptions are based on experimental observations while simple kinetics terms are used to
describe qualitatively the known causes and effects within the system. We focus on the actions
of five dominant hormones, namely GnRH, FSH, LH, estrogen (E2) and progesterone (P4),
and describe the ovarian stages in terms of three variables representing masses of the follicle,
follicular scar and corpus luteum. The main regulatory pathways between the hormones and
ovarian stages are illustrated in Figure 1 and this will form the basis of the modelling to follow.
There are several other components known to be involved in the regulation of the cycle, e.g.
the enzymes activin, inhibin 1 and 2 and follistatin [37], but we assume these play a secondary
role in the process and can be neglected in a first approximation. In brief, the modelling setup
assumes that follicular maturation and corpus luteum developments are governed by the hy-
pothalamus, via pulsatile GnRH release, which stimulates the pituitary for the production of
FSH and LH. FSH promotes the maturation of the follicle and LH governs the rupturing of the
follicle. In turn, the production of estrogen and progesterone by the follicle and corpus luteum
promotes and inhibits, respectively, the release rate of GnRH from the hyperthalamus. We will
not attempt to model the pulsatile behaviour of GnRH, and the GnRH variable in the model
can be viewed as a moving average concentration discussed below. Table 1 lists the variables to
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Figure 1: Simplified regulatory pathway diagram of the menstrual cycle used as a basis for the
mathematical model. The secretion of GnRH from the hypothalamus stimulates the pituitary
for the release of FSH and LH. FSH promotes the growth of follicle and its rupture, promoted by
LH, leads to the formation of scar and the subsequent conversion into corpus luteum. Estrogen
and progesterone, secreted by the follicle and corpus luteum, feedback on hypothalamus and
pituitary to regulate GnRH and FSH production. Negative feedbacks are indicated by broken
lines, otherwise the effect is positive.

F Dominant follicle mass
R Ruptured follicle or scar mass
C Corpus body/luteum mass

E Estrogen (E2) concentration
P Progesterone (P4) concentration
G Mean GnRH concentration in the portal blood
L Luteinising Hormone (LH) concentration
S Follicle Stimulating Hormone (FSH) concentration

Table 1: Table of the variables. In the model, the top three variables change over the (slow)
time-scale of interest and the five below are assumed to be quasi-steady.

be used in the model. The follicular and luteal development occurs over a timescale of weeks,
whilst the hormonal responses are expected to occur in timescales of minutes or hours; i.e. the
hormonal response will equilibrate rapidly to any changes to the follicle or corpus luteum. We
thus treat the hormone levels as quasi-steady functions of follicular and luteal states. The pro-
cesses of gene regulation and hormonal production form complex, feedback pathways working on
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multiple timescales, e.g. gene transcription (minutes) and enzymatic reactions (seconds). Over
longer timescales, in our case O(days), the effective dynamics are often well described using
Hill functions, which will be adopted here. The kinetics used to describe promotion (H+) and
inhibition (H−) are taken to be proportional to normalised Hill functions (i.e. 0 ≤ H+/− ≤ 1),
defined as follows

H+(x;xc,m) =
(x/xc)

m

1 + (x/xc)m
, H−(x;xc,m) =

1

1 + (x/xc)m
,

where both functions are strictly monotonic, withH+ = 0 andH− = 1 at x = 0 andH+ = 1 and
H− = 0 as x → ∞. The constant xc is the Hill function coefficient, such that H+/−(xc;xc,m) =
1/2, and m is the Hill function exponent that governs how rapidly the function jumps from 0 to
1 or vice versa in the vicinity of x = xc. Small integer exponents m (e.g. m = 1 or m = 2) can
be relatively straightforward to explain using ideas from enzyme kinetics, whilst larger values
would suggest that the underlying processes are much more complex, however, many complex
processes are well described using small values of m [20]. Based on these assumptions and the
pathway diagram shown in Figure 1, we assume the ovarian state variables to evolve according
to

dF

dt
= (βf + βfsH

+(S;Sc,mS))F − γfrH
+(L;Lc,mL)F

2, (2.1)

dR

dt
= γfrH

+(L;Lc,mL)F
2 − γrcR, (2.2)

dC

dt
= γrcR − δcC. (2.3)

The variables F,R and C represent masses of follicle, scar and luteal material, S and L in the Hill
functions are the concentration levels of FSH and LH. In (2.1)-(2.3), the production, conversion
and decay rate constants are represented by β, γ and δ, respectively, and the subscripts relate
these rate constants to the relevant hormones or ovarian states; for example, βfs is the FSH
(S) enhanced follicle (F ) growth rate while δc is the corpus luteum (C) decay rate. This
subscript notation is used throughout the paper unless stated otherwise; the definitions of all the
parameters are listed in Table 2 in the appendix. The development of the ovulatory follicle begins
with the recruitment of a number of primordial follicles, which over the next 300-400 days grow
through a number of phases, during which most of the recruited follicles will be lost (via atresia)
[14]. About 10-15 days before ovulation (i.e. at the start of the follicular phase) one of the few
remaining follicles will become dominant and begin to grow much more rapidly, subsequently
producing most of the secreted estrogen during the follicular phase. The variable F represents
the mass of the portion of the dominant follicle that will ultimately develop to the corpus luteum;
all activities by follicles, including the remainder of the dominant follicle and the non-dominant
follicles, although not explicitly modelled, are assumed to occur at rates proportional to F .
The first term on the right-hand side of Equation (2.1) describes the recruitment and growth of
this follicular mass, combining basal and FSH-stimulated enhanced growth. The second term
describes the rupturing of the follicle, i.e. conversion to scar, due to the action of LH reflecting
egg release. We have assumed that this conversion rate from follicle to scar is proportional to
F 2, as the predicted hormone profiles using this form was found to match well with data in the
vicinity of ovulation. A biological interpretation of this form is that the follicular cells increase
their sensitivity to LH as the follicle enlarges and matures, where the term used here suggests
that the per capita level of follicular sensitivity is proportional to F ; this reflects the observation
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that only larger follicles ovulate in response to LH [14]. Equations (2.2) and (2.3) describe the
transfer of follicular material, via action of LH, to form scar tissue (mass R) and then the scar
to corpus luteum (mass C); these processes are assumed to occur naturally without further
intervention of hormones.

The kinetics in equations (2.1) and (2.2) involve FSH (S) and LH (L), that are released
by the pituitary constitutively and in response to GnRH levels, denoted by G. The binding of
GnRH with the surface receptors at the pituitary initiates a cascade of events during which the
gonadotropin are synthesized first and stored in a reserve pool before being released into the
blood stream. As our modelling here concentrates on the serum levels of FSH and LH, denoted
by S and L respectively, it seems reasonable to model this using a time lag between GnRH
stimulation and hormone production in the blood stream; in addition, the release of FSH is also
inhibited by the current concentration of estrogen, denoted by E [13, 38]. Note that both the
differential stimulation of GnRH on the pituitary hormones and the feedback of estrogen involve
further downstream interactions that are not explicitly modelled here [13, 16], instead, the effect
will be represented using Hill functions. Taking FSH and LH at quasi-steady levels, we write

S = (Smin + (Smax − Smin)H
+(G(t− τFSH);GcS ,mGS))H

−(E;EcS ,mES), (2.4)

L = Lmin + (Lmax − Lmin)H
+(G(t− τLH);GcL,mGL), (2.5)

where τFSH and τLH are the lag time between pituitary excitation by GnRH and the release
of FSH and LH, respectively; Smin and Smax are the maximum and minimum FSH levels and
Lmin and Lmax are those of LH. These formulations ensure that S ∈ (Smin, Smax) and L ∈
(Lmin, Lmax), where the minimum values reflect background levels in the absence of GnRH; in
humans, measured data indicate that these hormones are always present [25, 36] and constitutive
production has been experimentally demonstrated in animals [2, 11]. We note that equations
(2.4) and (2.5) imply that continuous stimulation of GnRH will lead to a sustained maximum
production of LH and FSH, which is not the case in reality and we address this in the extended
model of Section 3. However, such uninterrupted stimulation of GnRH does not occur under
normal, unperturbed circumstances that the basic model is intended to describe.

The pulsatile nature of GnRH production is a critical part in the regulation of FSH and
LH manufacture and release. However, the frequency of the pulses occurs relatively rapidly in
comparison to the timescales of follicular development. Exploiting the disparity in timescales,
we model the overall effect of pulse frequency and amplitude as a quasi-steady “moving average”
concentration, defined for example as

G(t) =
1

2Ts

∫ Ts

−Ts

Gpulse(t− t̂ ) dt̂,

where Gpulse(t) is the measured GnRH concentration and Ts is a suitable time span to calculate
the moving average, e.g. 1 day. This assumption simplifies significantly the model and distin-
guishes our approach from other modelling studies. We note that in assuming this formulation
for G, the model will be limited in describing processes that are solely governed either by GnRH
pulse-rate or by the amplitude of released GnRH; however, the model as it stands can be used
to describe, for example, processes that produce a maximum response at sub-maximal GnRH
frequencies by assuming a unimodal response function of G(t). The output of GnRH is promoted
by estrogen E and inhibited by progesterone P and we write

G = Gmin + (Gmax −Gmin)H
+(E;EcG,mEG)H

−(P ;Pc,mP ), (2.6)
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whereGmin and Gmax are the maximum and minimum levels of GnRH and so G ∈ (Gmin, Gmax);
the minimum level once again reflects constitutive output. The physiology of GnRH in human
is usually inferred from examining the pulsatile LH secretion. The current understanding of
GnRH physiology comes from various studies of animal models by experimentally manipulating
the hypothalamus and pituitary interactions, which permit validation on GnRH secretion and
the subsequent LH release [7, 17]. In the absence of available data, we will normalized the
concentration G such that Gmax = 1 in the simulations that follow; the real concentration can
be derived once the maximum physiological level of GnRH is known. Estrogen is produced by
the follicle and corpus luteum and progesterone mainly by the corpus luteum. In the absence
of data to suggest otherwise, we apply the simplest assumptions to model these hormones.
We assume that all active cells of the follicle, and similarly of the corpus luteum, have equal
capacity to secrete their respective hormones, which means that the rate of production of each
of the hormones will be linearly proportional to the follicular mass. We further assume that the
production and loss of the hormones are in a quasi-steady equilibrium, so that their levels can
be expressed as linear functions of the active follicular masses, hence

E = βE + βEFF + βECC, (2.7)

P = βP + βPCC, (2.8)

where βE and βP are the background levels of estrogen and progesterone, respectively.
The model now consists of three coupled, nonlinear differential-delay equations (2.1)-(2.3) for

variables F,R and C. We are most interested in the long-time solutions, as these will represent
the model’s description of the menstrual cycle. However, to close this system we need to impose
a set of initial conditions for F,R and C at t = 0 and, due to the delay terms in (2.4) and
(2.5), functions that define these variables for t < 0. As will be demonstrated in the following
section there are parameter regimes that result with multiple large time attractors, which depend
crucially on the starting conditions.

2.1 Numerical results

The numerical solutions of the differential equations (2.1) - (2.3) are performed using Numer-
ical Algorithms Group (NAG) routine D02EJF, which uses a backward difference formula to
integrate a stiff system of first order differential equations over an interval with suitable initial
conditions. The delay terms are handled by storing a history table of previous solutions and
using interpolation formula. We note that all simulations presented in this paper are started
at some time point t = t0 < 0, so that by t = 0 the long time periodic solutions have fully
developed.

The simulations are generated using the parameter values listed in Table 2 in Appendix A;
the parameter values being chosen so that simulations produce results matching approximately
the 31 day period of the experimental data [25] and agree with most key characteristics of the
hormone profiles, namely, the amplitudes of E2, P4, LH and FSH, and the post-ovulatory peak
of E2 concentration. To our knowledge, there are no experimental data that can inform any of
the model parameters directly. Though it is uncertain to what extent the data values listed in
Table 2 reflect biological reality, particularly as many complex processes have been reduced in
the modelling assumptions to relatively simple kinetic terms, many of the parameters do have
direct biological meaning (e.g. the minimum and maximum levels of FSH and LH) and the
values in the table can thus form the basis for comparison when suitable experimental data are
forthcoming.
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Figure 2: Comparison with data from McLachlan et al. [25] for E2 and LH. The solid curves are
simulated solutions of system (2.1) - (2.8) with the parameter values taken from Table 2 (Set
1); the initial and past values used are F (t) = 100, R(t) = 25 and C(t) = 25 for t ≤ t0 < 0, and
the results shown here are the stable periodic solutions that have evolved in “large time”.

A comparison of the simulated E2 and LH profiles with data values extracted from [25]
are shown in Figure 2. We observe from this figure that the model predicts the data profiles
qualitatively well over the whole of the cycle, however, in quantitative terms, there are parts of
the profiles that are not so well matched. The main quantitative difference occurs with the timing
of the post-ovulatory peaks of E2 (and P4, not shown) and the variation in the fluctuations of
basal concentration level of LH (and FSH, not shown). The post-ovulatory peak is predicted
to occur 4-5 days earlier in the current model, this would suggest that there is some form of
lag between initial luteal development and E2 (and P4) production, which is not accounted for
in the current model. Although we have not found definitive support from the experimental
literature, it seems that there are as yet unclassified, distinct stages of development present
within each follicular state; the inclusion of which in the current model would produce results
closer to the data, at a cost of a more complicated model. This approach was adopted in [4], in
which a total of 9 follicular states was considered to generate hormone profiles that agree well
with data.

The time dependent profiles of the periodic solutions of all the variables are shown in Figure
3(a)-(d). In fact, there are (at least) two large time attracting limit cycle solutions for this set
of parameters, the one shown in Figure 3 (and in Figure 2) is what we term the “normal cycle”,
which has a period of about 31 days with the ovulation event shown here to occur at about
day 15. Figure 3(c) shows the concentration of GnRH rising sharply immediately before LH
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Figure 3: Numerical simulations of the system (2.1) - (2.8) using parameter values and ini-
tial/past conditions described in the caption of Figure 2. Note the values of F,R and C are in
arbitrary mass units.

surge. It is believed that GnRH pulse rate and amplitude increase near the end of the follicular
phase building up to a surge, a phenomenon modelled by Clément and Francoise [6] using a pair
of coupled systems of FitzHugh-Nagumo equations. Although the half-life of GnRH is short
(approximately 2-4 minutes), with the increase in pulse frequency and surge in the amplitude,
a rise in the portal blood concentration of GnRH can be expected prior to the LH surge as
represented in Figure 3(c). The expected rapid growth of follicles prior to ovulation is shown in
Figure 3(d) together with the profiles of the other ovarian state variables. The corpus luteum
mass is predicted here to be maximal about 3 days after ovulation and decays away exponentially
to negligible levels after about 10 days.

As stated earlier, there are at least two large-time stable periodic attractors, each dependent
on the conditions imposed at t = 0 and t < 0. The stability of these attractors were investigated
using a combination of Poincaré map (results not shown) and Floquet analysis (discussed in
Section 2.2). Figure 4 compares the results of E2 and LH for the two periodic solutions resulting
from the current model, the solid line being that of the normal cycle discussed above and the
dashed curve a second cycle, which we will refer to henceforth as the “abnormal” cycle. We
note that the follicular and hormone profiles of the abnormal cycle solutions are not intended,
or expected, to reflect biological or clinical reality, as mechanisms beyond those considered
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Figure 4: Comparison of the normal (solid line) and abnormal cycles (dashed line) for E2 and
LH. Both normal and abnormal cases are simulations of system (2.1) - (2.8) with the parameter
values taken from Table 2 (Set 1). The results shown here are the large time solutions, using
as initial and past values (i.e. t ≤ t0 < 0), F (t) = 100, R(t) = 25 and C(t) = 25 for the normal
and F (t) = 100, R(t) = 100 and C(t) = 100 for the abnormal cycle.

in the current model are likely to be involved. However, it is an interesting feature of the
current model that “menstrual irregularities” can be predicted without the need for additional
modelling assumptions. The figure shows that over the course of a single period of approximately
27 days, the abnormal cycle lacks the bimodal profile of E2 and the LH surge is barely visible
in comparison with the normal cycle. The resulting normal cycle solution can be shifted to the
abnormal cycle (or vice versa) by, for example, adding a certain amount of P4 or E2 continuously
for a period of time, reflecting a disruption of hormone activities by treatments or environmental
influences; we illustrate this behaviour in Figures 5 and 6. In Figure 5 we show the induction
of the abnormal cycle by adding 80 ng L−1 of E2 continuously for 20 days (starting from day
60), where by day 120 the abnormal cycle is clearly apparent. The process is reversed in Figure
6, where the normal cycle is shown to be restored around day 120, after 80 ng L−1 of P4 was
administered for 20 days from day 60. There appears to be little comprehensive data in the
literature regarding irregular cycles (e.g. time course hormone measurements) and it is not
clear whether or not the “abnormal cycle” predicted in the current model closely reflects reality.
Abnormal menstrual cycles, however, are often identified with irregular ovulation which may
be attributed to the absence of the LH surge, a characteristic present in the “abnormal cycle”
of the current model. We would also like to stress that the abnormal cycle simulated here is
induced by the application of exogenous hormones to the system and not a result of physiological
disfunction as, for example, in the case of women with PCOS (polycystic ovary syndrome). The
study by Marshall et al. [23] suggested that the impaired feedback of progesterone on GnRH
leads to rapid GnRH pulsation and the subsequent increased LH and decreased FSH secretion
resulting in anovulation (the absence of ovulation). The direct feedback of progesterone on the
pituitary is secondary to that of estrogen in a normal cycling woman, and as we intend to focus
the study on the treatment of GnRH, the role of progesterone is ignored here. While our model
may require further elements to accurately predict treatment for cases such as PCOS, our study
here suggests that such abnormality may not be easily corrected by the application of a short
course of hormone treatment.
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Figure 5: The disruption of a normal cycle by externally applying E2 to the system. The results
shown here are the normal cycle solutions that have evolved in ”large time” before exogenous
E2 is applied, which, for illustration purpose, is set as day 60 in the figure. The parameter
values are listed in Table 2 (Set 1) and using as initial and past values (i.e. t ≤ t0 < 0),
F (t) = 100, R(t) = 25 and C(t) = 25.
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Figure 6: Restoration from the abnormal cycle by externally applying P4 to the system. The
results shown here are the abnormal cycle solutions that have evolved in ”large time” before
exogenous P4 is applied, which, for illustration purpose, is again set as day 60 in the figure.
The parameter values are listed in Table 2 (Set 1) and using as initial and past values (i.e.
t ≤ t0 < 0), F (t) = 100, R(t) = 100 and C(t) = 100.

2.2 Bifurcation analysis

The existence of multiple large time solutions presented in Section 2.1, prompts us to investigate
further the variety of such solutions in parameter space. The discussion here is not intended to be
a comprehensive mathematical analysis nor is the choice of the parameters for the illustration
below intended to reflect anything of particular biological significance, but aimed at gaining
insight into the emergence of such solutions given the complexities arising from the time delay
terms. The linear stability analysis of the steady-states of differential-delay equations follow
that of ordinary differential equations, though in the former the eigenvalue problem arising
from linearisation involves finding the roots of transcendental equations, of which there are
an infinite number. To proceed, we make use of a freely available package DDE-BIFTOOL
developed by Engelborghs et al. [9, 10], which is a collection of Matlab routines written for
carrying out numerical bifurcation analysis, including the application of Floquet analysis, on
systems of delay differential equations; the details of the methods used can be found in [9, 10]
and the references therein. We also adapted our own time-integration program used in Section
2.1 to perform continuation by repeatedly running the time-dependent problem to convergence
for each change in parameter; in the case of periodic solutions this is defined to be when for ten
successive orbits the period Tn satisfies |Tn − Tn−1| < 10−4.

Figures 7 and 8 show a number of aspects of the large-time solutions generated by varying βfs
(FSH stimulated follicle growth rate constant) and βEF (follicular estrogen production constant),
with all the other parameters fixed as given in Table 2. Figure 7(b) reveals that the distribution
of steady-states as a function of βfs exhibits hysteresis, with the lower branch consisting of stable
steady-states, a middle branch of saddle-points and an upper branch of steady-states which are
stable except in the region 0.6183 . βfs . 3.3062 bordered by two Hopf bifurcation points. The
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two saddle-node bifurcations are located at approximately βfs ≈ 0.5950 and 1.2043. Figure 7(a)
shows the locations of the real parts of the principal eigenvalues as a function of βfs for all the
steady-states using DDE-BIFTOOL. Figure 7(c) shows the periods of limit cycle solutions as
βfs varies. The solid curve shows that of the family of stable limit cycles resulting from the
Hopf bifurcations on the upper branch curve in Figure 7(b); the “abnormal cycle” discussed in
Section 2.1 belongs to this family. The resulting curve is obtained using DDE-BIFTOOL which
performs continuation calculations along the branch of solutions confirming their stability with
valid Floquet multipliers. Note that a small section (approximately 0.68 . βfs . 0.71) of the
spike region is dotted in the figure for which DDE-BIFTOOL is not able to confirm the stability
of the periodic solutions; as these solutions are not likely to have any biological significance, we
will not examine these solutions further and leave this as an open problem. The surface plots
of Figure 8, generated by DDE-BIFTOOL, show a sequence of limit cycles in the F − C plane
as βfs varies between the two Hopf bifurcation points; the plots show no irregularities with the
orbits over the region including the area around the spike. In 7(d), the co-ordinates of the Hopf
bifurcation points on the upper branch in βfs − βEF space are illustrated with the periodic
solutions existing within the loop. The figure shows that O(1) values of both parameters are
required to generate abnormal cycle solutions, indicating that if there is a continued presence
of too much or too little estrogen then it is likely that the periodic structure of cycle will be
destroyed.

Another interesting aspect of the current study is the second family of stable periodic solu-
tions indicated by the dash-dotted curve in Figure 7(c), existing in the region 1.43 . βfs . 2.64.
The “normal cycle” discussed in Section 2.1 exists on this branch. The dash-dotted curve in the
figure is generated using our own adapted continuation program described at the beginning of
this section and the resulting limit cycle solutions are then imported into DDE-BIFTOOL to
evaluate for the Floquet multipliers along this branch; as expected, the largest multiplier is one
and the multiplier with the second largest magnitude approaches one as βfs approaches the end
points of the region. The emergence/annihilation of this second branch of solutions implies the
possible presence of fold bifurcations of limit cycles at the end points, suggesting the existence of
a corresponding branch of unstable limit cycles; we have not explored this branch of solutions in
detail as they are of no interest biologically. However, we note that this “normal” family of limit
cycle solutions arises due to the presence of the delay terms and does not exist for sufficiently
small values of τFSH and τLH ; this is in contrast with the first branch of limit cycle solutions, as
they tend smoothly to the limit cycle solutions of the model without time delays (i.e. τFSH = 0
and τLH = 0). A key point to observe is that the period (and the variable profiles) change little
along the normal cycle branch solutions, indicating a robustness in the solutions to changes in
βfs over this range; this pattern of robustness remains true also for other parameters.

3 Modelling GnRH treatment and receptor down-regulation

The basic model of Section 2 is sufficient in describing hormone interactions under normal physi-
ological conditions while at the same time is capable of simulating hormone disruption of E2/P4
and the necessary treatments for restoring the reproductive system back to its normal func-
tion. However, the functional forms used for FSH and LH, given by (2.4) and (2.5), mean that
the model will predict sustained output of these hormones to continuous high-levels of GnRH.
Consequently, the model will be unable to predict the observed response to the application of
GnRH analogs in the treatment of uterine myomas [15] and additional assumptions are needed
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Figure 7: (a) The real part of eigenvalues with Re(λ) > −1 as a function of βfs, derived from
linear stability analysis of all steady-states, showing the intersection of the zero axis at 4 places
for two Hopf bifurcation points and two saddle nodes. (b) Steady-state solution hysteresis of
F showing with two Hopf bifurcation points (◦) and two saddle nodes (∗). (c) Periods for
the two stable limit cycle solution branches containing the abnormal cycle (solid line, circles
indicating Hopf bifurcation points) and the normal cycle (dash-dotted line). (d) Co-ordinates
of Hopf bifurcation points in βfs and βEF parameter space. The parameters values used in the
simulations are listed in Table 2 (Set 1) with βfs being the varying parameter for all 4 figures
and βEF for (d).

to improve the description of events taking place within the pituitary. While pulsatile release of
GnRH stimulates the differential production of FSH and LH in the pituitary, continuous stimu-
lation of GnRH results in the desensitisation of the pituitary gonadotrope to GnRH stimulation
leading to the eventual suppression of FSH and LH levels. Such response of the pituitary, termed
”genuine frequency decoding” [32], is suggested to involve some negative feedback mechanism
and various possibilities have been put forward, one, in particular, involves the down-regulation
of surface receptors which we will now explore.

GnRH binds with GnRH receptors, a type of G-protein coupled receptor, at the membrane
surface of the anterior pituitary cells to activate G-protein and trigger response through a sec-
ond messenger signalling pathway. The agonists, with higher affinity to GnRH receptors and
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Figure 8: Limit cycle paths in F −C space as a function of βfs along the lower branch limit cycle
solutions shown in Figure 7. The other parameters values used in the simulations are listed in
Table 2 (Set 1).

longer half-life, induce an immediate increase of FSH and LH, followed by E2 and P4 secre-
tion. Continuous stimulation of the agonist together with the feedback of the sex hormones
cause the down-regulation of FSH and LH production, preventing the maturation of follicles
and the subsequent ovulation, inhibiting the secretion of E2 and P4. The downstream signalling
of the receptors is complex and the exact mechanism involved leading to the desensitisation
of pituitary response is still very much under debate, however, agonist-induced internalisation
and down-regulation of GnRH receptors have been observed [12, 33]. Furthermore, continuous
stimulation of GnRH is reported to reduce MAPK (mitogen-activated protein kinases) activities
suppressing the production of FSH and LH and, at the same time, affecting the synthesis of
GnRH receptors, possibly paralysing pituitary’s response to GnRH stimulation [27, 28]. This
idea of receptor down-regulation was taken up in a recent model [35] concerning LH release in
response to pulsatile and continuous GnRH stimulation. As a result of constant GnRH exposure,
they showed the decay of LH release to zero within hours.

Although the time scale of interest is considerably longer in the current model, we will adopt
the similar idea of receptor down-regulation in studying the hormone response to continuous
treatment of GnRH agonist; however, for simplicity, we will not explicitly consider the down-
stream events. We assume that the responsiveness of the pituitary signalling pathway to GnRH
stimulation is subject to the GnRH bound receptor concentration, taken to be proportional to
QG, where Q is the membrane receptor density. We modify the model presented in Section 2 by
assuming that FSH and LH production is dependent on GnRH bound receptor density, rather
than just GnRH level, and write

S = (Smin + (Smax − Smin)H
+(G(t− τFSH)Q(t− τFSH);GcS ,mGS))

×H−(E;EcS ,mES),

L = Lmin + (Lmax − Lmin)H
+(G(t− τLH)Q(t− τLH);GcL,mGL).

Receptors, once bound to GnRH, are taken up by the cells to initiate the pathway of reactions
leading to the production and release of FSH and LH, thus they are no longer available in the
membrane for further binding; we assume this occurs at a rate mutually proportion to GnRH
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concentration and receptor density. Renewal of the receptors is taken to occur constitutively,
being synthesised at a constant rate, and we further assume that there is a natural turn over
of unbound receptors. Experimental observation suggests that re-sensitisation of the pituitary
to GnRH following agonist treatments occurs over days or even weeks, which suggests that the
renewal of membrane surface receptors occurs on a longer timescale to that of hormone activities
and we describe their evolution using a differential equation. The extended model thus consists
of four differential equations and we present the system in full, despite the equations for F,R
and C being unchanged,

dF

dt
= (βf + βfsH

+(S;Sc,mS))F − γfrF
2 H+(L;Lc,mL), (3.9)

dR

dt
= γfrH

+(L;Lc,mL)F
2 − γrcR, (3.10)

dC

dt
= γrcR − δcC, (3.11)

dQ

dt
= βQ(1−Q)− γGQQG. (3.12)

We note that Q has been rescaled such that in the absence of G, the steady state concentration
is given by Q = 1. As before, equations for GnRH release rate G and the sex steroids are

G = Gmin + (Gmax −Gmin)H
+(E;EcG,mEG)H

−(P ;Pc,mP ), (3.13)

E = βE + βEFF + βECC, (3.14)

P = βP + βPCC. (3.15)

For the treatment of myomas, GnRH agonists are often given as monthly dosages. The effects
of these agonists are identical to endogenous GnRH, but they have in general a longer half-life.
Endogenous GnRH is released directly into the hypophyseal portal blood that links directly to
the pituitary whereas exogenous GnRH is injected intramuscularly or subcutaneously and must
diffuse from these regions to the blood vessels, before being transported to the pituitary [5]. This
process will take time and to assume the immediate availability of agonist following injection
could introduce inaccuracies into the model results. A simple model to describe the introduction
of the agonist and release into the blood supply is discussed in Appendix B, whereby defining
Gb(t) to be the agonist concentration in the blood, we obtain

Gb(t) =
G0Vm

Vm + Vb
e−δGt

(

1 − e−k∗t
)

, (3.16)

where Vb and Vm are the constant blood and intramuscular pool volumes, respectively, δG is the
agonist degradation rate constant and k∗ is related to the intramuscular–blood pool transfer
rate coefficient. The concentration Gb will be similarly normalised, as in Section 3 for Equation
(2.6), such that the normalised initial concentration G0 is dimensionless and represents the ratio
of the initial exogenous GnRH concentration to the maximal endogenous GnRH concentration
level. Incorporating this into Equation (3.13) of G gives

G = Gmin + (Gmax −Gmin)H
+(E;EcG,mEG)H

−(P ;Pc,mP )

+H(t− tG)Gb(t− tG), (3.17)

where H(t− tG) is the Heaviside function, with tG being the time the treatment begins.
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3.1 Numerical results

We simulate the treatment of GnRH agonist using the parameter values given by Table 2 (Set 2)
taking Vb and Vm to be equal in Equation (3.16). Note that the extension of the model to include
receptor concentration Q requires some minor adjustments in the parameter values to reproduce
the normal cycle solutions presented in the earlier sections; see Table 2. Although the shrinkage
in myoma sizes is documented during GnRH treatments, comprehensive data on changes in
hormone levels are still lacking. In the absence of available data, the values of the additional
parameters are chosen mainly for demonstration purpose showing the effect of 3 monthly dosage
treatments of GnRH on the receptor down-regulation, the subsequent suppression of hormone
concentration levels and their recovery, taking into account of the longer half-life of GnRH
agonists (O(hours)) [7]. Results are again generated using the NAG routine D02EJF and are
illustrated in Figures 9. The treatment is applied after the solution has converged to the normal
cycle (days 0-30), the result of GnRH concentration in the portal blood is shown in Figure 9
along with the concentration of receptors and other hormones. Note that the endogenous GnRH
continues to be generated by the hypothalamus throughout the treatment; its concentration,
however, is negligibly small compared to the exogenous GnRH administered and hence a logged
concentration of GnRH is displayed instead.

Three consecutive dosages are administered starting from day 30 (approximately at the
beginning of a cycle) with each dosage lasting 31 days. Immediately after the treatment, FSH
and LH production is stimulated followed by the secretion of E2 and P4. At the same time, the
treatment promotes the degradation of receptors leading to the desensitisation of the pituitary;
FSH and LH release is suppressed after the surge at around day 31/32 as a result of receptor
down-regulation and, subsequently, E2 secretion is inhibited. Note that although the immediate
increase of FSH after the first treatment stimulates the growth of follicles and the subsequent
secretion of E2, the concurrent surge of LH quickly converts follicles into scar before they are
fully mature. Thus the mass of follicles and that of corpus lutea (not shown) both remain
small and, as a result, the production of E2 and P4 are both reduced after the first treatment.
This is consistent with clinical observations that the shrinkage of myomas occurs after the first
dosage treatment. Note that most studies demonstrated that the maximum reduction in size
is achieved within the first three months of therapy with minimal additional benefit derived
from longer treatment [5, 15]. The treatment is discontinued after day 122 (with the last dosage
being applied at day 92), following which the system begins to recover and by day 210 hormone
concentrations are almost back to pre-treated levels. Following the treatment, the simulation
predicts that the normal cycle resumes within 6-7 months of the initial dose; this timescale is
in line with the observed return of myomas back to their original, pre-treatment size [5, 15];
we note that to achieve this, the value of βQ used reflects a slow overall recovery of receptor
concentration to the pre-treatment level (1-2 months). Whether or not this is associated with a
return to the normal menstrual cycle following agonist treatments is not certain.

To our knowledge, there appears to be no detailed time-course data on hormone recovery
from GnRH-agonist treatment that can be used to compare and validate the model; for example,
such data would be very useful to compare with the predicted hormone profiles shown in Figure
9. However, the simulated timescale of recovery described above appears to be consistent with
clinical observation, and if new data suggest otherwise, then the timescale can be tuned by
adjusting the parameters βQ and γGC as appropriate. Though the mechanisms for pituitary
recovery is still under debate and the timescales are uncertain, the model results suggest that
receptor down-regulation is a sufficient mechanism to reproduce observation.
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Figure 9: Numerical simulations of the extended model with 3 consecutive monthly dosages of
GnRH treatment (note GnRH axis is logged). The parameter values are taken from Table 2
(Set 2), the initial and past values used are F (t) = 100, R(t) = 25 and C(t) = 25 for t ≤ t0 < 0.
The results shown here are the normal cycle solutions that have evolved in “large time” before
the treatment of exogenous E2 begins, which, for illustration purpose, is set as day 30 in the
figure and repeated on day 61 and 92.
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4 Conclusion

A mathematical model is proposed to describe the interactions of hormones that are involved
in regulating the human menstrual cycle. Chief amongst the aims is to develop a comparatively
simple modelling framework, based on biologically relevant mechanisms (using parameters that
have a clear biological interpretation), that reproduces, at least qualitatively, the hormone pro-
files that characterise the cycle. As we intend to extend the model in our future studies, a
relatively simple starting model that can be used to investigate perturbations to the cycle is
beneficial. The basic model describes the evolution of five dominant hormones and three ovar-
ian stages, which is extended in Section 3 to include GnRH receptors for the simulation of GnRH
agonist treatment. The simplicity of the model is largely due to the quasi-steady assumptions
for the dominant hormones, since their activity works on timescales of hours, whilst the ovarian
stages occur over days and weeks. The first stage consists of the three nonlinear delay differen-
tial equations, which exhibit multiple large time solutions. The example discussed in detail in
Section 2.1 exhibits two asymptotically stable periodic solutions with one (normal cycle) demon-
strating the key features of the menstrual cycle and another (abnormal cycle) suggesting the
possible abnormality experienced by some women of reproductive age. The resulting numeri-
cal simulations of hormone profiles are comparable to the experimental data. Although better
agreement can possibly be achieved if more state variables of the ovarian stage are assumed,
this will inevitably increase the complexity of an already complicated system. The relative sim-
plicity of the current model enables a more detailed analysis of the solution structures in large
time while at the same time is capable of reproducing the myriad of the solutions exhibited, or
at least presented, by the more complex model of, for example, [4] consisting of 13 differential
equations. The simulations presented in Section 2.1, in which the hormone treatment causes a
shift from one cycle to the other, demonstrate the potential of the current model to be used as
a basis for investigation into the development and treatment of menstrual irregularities.

The extension to the basic model in Section 3 to incorporate GnRH receptors enabled an
investigation into the effect of pituitary desensitisation on the whole menstrual cycle; to our
knowledge, no such study has been undertaken before using mathematical modelling. Our
model assumes that the dominant process in GnRH agonist induced pituitary desensitisation
is GnRH receptor down-regulation; though, the relative importance of complex downstream
events involved in the GnRH receptor signalling is still under debate. Nevertheless, assuming
that receptor recovery is slow, the simulated results appear to be consistent with clinical ob-
servations, for example, the resumption of the normal cycle within 3-4 months of completion
of the treatment. The modelling suggests that the slow recovery of receptor numbers is a suf-
ficient mechanism for densensitisation, though, we stress, this does not preclude the possible
involvement of other mechanisms. However, the analysis highlights the potential of using simple
mathematical models to investigate hypotheses on the key processes governing the menstrual
cycle, enabling new insights to be drawn which may not be achievable with current experimental
techniques.

It is important to note that a number of factors believed to take part in regulating the
menstrual cycle have not been explicitly considered in the models presented in this paper. Nev-
ertheless, the modelling results reproduce many of the important features and characteristics of
the cycle. As discussed earlier, data on hormonal levels during the cycle are generally qualita-
tive and the details of the hormone profiles during the cycle can vary from report to report; the
model results presented here are very much consistent with this data. In order to develop these
models further, more detailed quantitative data of hormone levels, for example, is required so
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that direct comparisons can be made with the results produced by the model; this will enables
us to move forward in validating and refining the modelling assumptions. Nevertheless, we are
sufficiently encouraged by the current results to use these simple models as a basis to continue
our work in the modelling of the growth and development of myomas. There are, however,
numerous questions needed to be addressed in such a complex physiological system, and we be-
lieve that the mathematical modelling approach can make significant headway in the biological
understanding of this, and related, systems.
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Appendix A: Table of parameter values

P’meter Interpretation units Set 1 Set 2

βf Background follicle growth rate constant 1/day 0 0
βfs FSH enhanced follicle growth rate constant 1/day 2.1∗ 3.897
γfr Follicle rupture rate constant 1/day/FM‡ 0.06∗ 0.111
γrc Scar-Corpus Luteum conversion rate constant 1/day 0.285∗ 0.529
δc Corpus Luteum decay rate constant 1/day 0.345∗ 0.64

Sc FSH hill function coefficient in follicle growth rate µg/L 150 150
mS FSH hill function exponent in follicle growth rate - 2 2
Lc LH hill function coefficient in follicle rupture rate µg/L 325 325
mL LH hill function exponent in follicle rupture rate - 2 2

Smin Minimum FSH level µg/L 28.5 28.5
Smax Maximum FSH level µg/L 500 500
GcS GnRH hill function coefficient in FSH release - 0.453 0.453
mGS GnRH hill function exponent in FSH release - 2 2
EcS E2 hill function coefficient in FSH inhibition ng/L 432 432
mES E2 hill function exponent in FSH inhibition - 4 4

Lmin Minimum LH level µg/L 36.4 36.4
Lmax Maximum LH level µg/L 676 676
GcL GnRH hill function coefficient in LH release - 0.447 0.447
mGL GnRH hill function exponent in LH release - 10 10

Gmin Normalized minimum GnRH level - 0 0
Gmax Normalized maximum GnRH level - 1 1
EcG E2 hill function coefficient in GnRH production ng/L 185 185
mEG E2 hill function exponent in GnRH production - 2 2
Pc P4 hill function coefficient in GnRH inhibition nmol/L 10 10
mp P4 hill function exponent in GnRH inhibition - 2 2

τFSH Response delay for FSH output day 1.0∗ 0.3
τLH Response delay for LH output day 1.4∗ 0.5

βE Constitutive production of E2 ng/L 0.1 0.1
βEF Follicular E2 production per follicular mass ng/L/FM‡ 0.48 0.48
βEC Corpus Luteal E2 production per luteal mass ng/L/FM‡ 0.36 0.36
βP Constitutive production of P4 nmol/L 0 0
βPC Corpus Luteal P4 production per luteal mass nmol/L/FM‡ 0.12 0.12

βQ The intrinsic production rate of Q 1/day 0.01
γGQ GnRH-GnRH receptor reaction rate 1/day 0.08
G0 Normalized initial concentration of GnRH agonist - 1000
δG Decay rate of GnRH agonist 1/day 1
k∗ Decay and transport rate of GnRH agonist 1/day 0.1

Table 2: Table of model parameters. “Set 1” are used in the simulations of Section 2 and “Set
2” are used in the extended model in Section 3, the values that are differ between the two sets
are indicated with ∗ in the Set 1 column. ‡FM denotes a suitable unit for follicular and luteal
mass.
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Appendix B: Exogenous GnRH agonist modelling

Exogenous GnRH agonists are injected intramuscularly or subcataneously and gradually diffuse
into the surrounding blood vessels and transported to the portal blood to interact with GnRH
receptors in the pituitary. To estimate the agonist concentration in the portal blood, we assume
that the diffusion of GnRH from the intramuscular pool to the blood vessels is a much slower
process compared to blood circulation. For simplicity, we do not differentiate between the
agonist in the blood circulation and that in the portal blood and assume two pools of GnRH
agonist: the intramuscular and the portal blood pool. Denoting the blood and intramuscular
pool agonist concentrations by Gb and Gm, respectively, we assume they evolve according to

Vm
dGm

dt
= k(Gb −Gm)− δGVmGm,

Vb
dGb

dt
= −k(Gb −Gm)− δGVbGb,

where Vb and Vm are the blood and intramuscular pool volumes, respectively, δG is the agonist
degradation rate constant and k is the transport rate coefficient between the two pools. The
agonist, with initial concentration G0, is injected into the intramuscular pool at t = 0 and thus
Gb(0) = 0 and Gm(0) = G0; we note that the mass of injected agonist is given by G0Vm. Adding
the two equations we obtain Gm + Gb = G0e

−δGt and solving them, the agonist blood pool
concentration is

Gb(t) =
G0Vm

Vm + Vb
e−δGt

(

1 − e−k∗t
)

,

where k∗ = k(Vm + Vb)/VbVm and we have imposed Gb(0) = 0.
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