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The development of radical new aero engine technologies will be key to delivering the 

step-changes in aircraft environmental performance required to meet future emissions 

legislation. Intercooling has the potential for higher overall pressure ratios, enabling reduced 

fuel consumption, and/or lower compressor delivery air temperatures and therefore reduced 

NOx. This paper considers the aerodynamics associated with the complex ducting system 

that would be required to transfer flow from the core engine path to the heat exchanger 

system. The cycle benefits associated with intercooling could be offset by the pressure losses 

within this ducting system and/or any detrimental effect the system has on the surrounding 

components. A suitable branched S-shaped duct system has been numerically developed 

which diffuses and delivers the flow from the engine core to discrete intercooler modules. A 

novel swirling duct concept was used to locally open larger spacing between certain duct 

branches in order to provide engine core access whilst hiding the resultant pressure field 

from the upstream turbomachinery. The candidate duct system was experimentally 

evaluated on a bespoke low speed, fully annular isothermal test facility. Aerodynamic 

measurements demonstrated the ability of the design to meet the stringent aerodynamic and 

geometric constraints. 
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Nomenclature 

A passage area 

AR area ratio (e.g. A2/A1) 

Cp static pressure rise coefficient 

D diameter 

h annulus passage height 

HP high pressure 

HX heat exchanger 

k turbulent kinetic energy 

L length 

LP low pressure 

N rotor speed 

m  mass flow rate 

P, p local total or static pressure 

R, r radius 

T, t local total or static temperature 

To1 total temperature in rig inlet 

U velocity 

Ublade rotor mid-passage blade speed 

UN velocity component normal to plane 

Va mid-passage axial velocity 

x axial distance 

α radial flow angle with respect to axial direction (cant angle) 

β circumferential flow angle with respect to axial direction (swirl angle) 

∆, δ circumferential HX spacing (enlarged, standard gap) 

ρ density 

λ total pressure loss coefficient 

 



Superscripts: 

- area weighted spatially averaged mean value 

~ mass weighted spatially averaged mean value 

Subscripts: 

1, 2 arbitrary inlet, outlet stations 

X0 rig inlet traverse plane 

X1 rotor inlet traverse plane 

Z rotor exit traverse plane 

A OGV exit traverse plane 

B diffuser exit traverse plane 

C1-3 inner annulus traverse planes 

  



I. Introduction 

Various technologies are being explored in order to meet the required improvements in future aircraft emissions 

as defined, for example, by the goals set in the ACARE Vision 2020 report [1]. One such technology is intercooling. 

This potentially offers significant NOx and/or fuel burn benefits with Wilfert et al. [2] suggesting practical 

reductions of order 16% (NOx) and 4% (SFC). Furthermore, intercooling is potentially applicable across a broad 

product range from regional jets to large turbofans. It can also be applied to new and/or novel concepts such as 

geared turbofans, counter rotating fans and open rotor propfans. Although intercooling has been successfully used in 

land-based gas turbines the critical heat exchanger modules and ducting systems are currently too large to be 

incorporated within an aero gas turbine application. The potential benefits of intercooling are sensitive to the 

performance of these components and they must be given careful consideration in the design process. 

 

Figure 1 Intercooled Aero Engine Concept 

In an intercooled aero engine the main core flow must pass through a heat exchanger system located upstream of 

the HP compressor spool (Figure 1). It is undesirable to increase the axial gap between compressor spools since this 

will add to engine length and weight. Given its physical size this means that the heat exchanger must be located 

outboard of the core path. It is also likely that the heat exchanger would consist of a number of discrete modules in 

order to (i) maximize surface area and effectiveness, (ii) minimize the impact of the installation on the engine 

diameter and, (iii) facilitate maintenance access and assembly requirements. Prior to entering each heat exchanger 

module the flow must also be diffused to maintain an acceptable total pressure loss. Hence aerodynamic ducting 

systems are required to transfer the flow from the exit of the upstream compressor spool to the individual heat 

exchanger modules (i.e. the core air delivery ducts) and then return the flow issuing from these modules to the 



downstream compressor spool (i.e. the core air return ducts). These complex ducting systems must be compact, 

lightweight and have low aerodynamic loss. If the aerodynamic penalties associated with the transition ducts are too 

high then the benefits of intercooling are negated and the concept is not viable. Furthermore, to achieve the high 

levels of cooling efficiency required the system must also provide a uniform flow distribution through the heat 

exchanger modules. However, as suggested by Cumpsty [3], the difficulty of achieving flow uniformity to the 

various heat exchangers without excessive pressure loss or duct-work that results in a large, bulky engine should not 

be underestimated. 

 

Figure 2 Intercooler Arrangement 

This paper considers the design requirements and performance of the core air delivery duct. The diffusing nature 

of these ducts and the requirement to divide and supply equal amounts of flow to the individual heat exchanger 

modules makes design of these ducts particularly challenging. A companion paper will outline the design of the core 

air return ducts in which the flow is re-accelerated, returned to the axial direction and delivered to the downstream 

compressor spool. This companion paper will also review the aerodynamic performance of the complete intercooler 

system (i.e. the core air delivery and return ducts). Furthermore, a separate study has also been conducted by 

A’Barrow et al. [4, 5] to investigate the low-pressure duct system required to bleed air from the bypass duct and 

provide cooling air (refer to Figure 1). To ensure the use of realistic constraints the ducting system is targeted at the 

intercooled engine concept defined within the NEWAC EU Framework 6 Program [2] (Figures 1-2). This engine 

design study is for a 70,000lbf thrust, high by-pass ratio turbofan engine optimized for a long-range twin-engine 

aircraft. The work reported herein was aimed at the development of a design concept, numerical design method and 



ultimately proof of concept. Consequently the design is based on the cruise operating condition and off-design 

operation is not considered here. Within the current paper the core air duct requirements are discussed with respect 

to the basic geometry, local mechanical constraints and aerodynamic performance criteria. An initial design concept 

is described and the design space explored using RANS CFD. Consequently a numerical duct design methodology is 

presented and candidate geometries developed. After further CFD analysis of these candidate designs an 

experimental evaluation of the design concept is also presented. This utilized a purpose-built, low-speed test facility 

incorporating bespoke 1½ stage axial compressor which provided representative inlet condition to the duct system. 

Aerodynamic data were collected on a number of planes within the duct system, via the use of miniature five-hole 

probes, and these are presented and used to quantify the aerodynamic performance of the core air delivery duct 

system. 

 

II. Core Air Delivery Duct Requirements 

With reference to Figure 3 the design criteria for the core air delivery duct system can be divided into three main 

areas: 

 

Figure 3 Basic Geometrical Parameters and Heat Exchanger Spacing 

1. Basic Geometrical Requirements: These are mainly set by the position of the inlet and exit planes which 

correspond, respectively, to the exit of the upstream compressor spool and the intercooler (i.e. heat exchanger) 

inlet manifolds. From these, four basic aerodynamic non-dimensional parameters can be defined. The area ratio 

(A2/A1) sets the bulk diffusion of the fluid and the non-dimensional radius change (∆R/L) determines the level 

of curvature induced pressure gradients (also reflected by the mean radius ratio (Rm2/Rm1)). Hence, in 



conjunction with the area ratio and non-dimensional radius change, the non-dimensional length (L/h1) defines 

the severity of the streamwise pressure gradients. Additionally, the number of discrete intercooler modules sets 

the number of branches in the duct system and hence the nominal circumferential spacing (δ) between the inlet 

manifolds. These basic requirements suggest a diffusing S-duct type system within which the annular passage, 

at exit from the upstream compressor spool, is divided into a number of discrete passages (one supplying each 

manifold). 

2. Local Mechanical Constraints: A gas turbine engine has several local mechanical requirements such as the 

need for a radial drive shaft (Figure 2) and core engine access for ancillary services. In a conventional engine 

these features cross the gas path via struts within the inter-compressor duct. However, in intercooler core air 

delivery ducts the wakes from such features would have an unacceptable impact on the efficiency of the 

downstream intercooler module. Hence, to maximize performance these features should located out of the main 

gas path and, if possible, between the branches of the S-duct. Unfortunately, uniformly distributed intercooler 

modules are unlikely to afford wide enough gaps for these features. Extra room must be created by 

incorporating non-uniform or asymmetric spacing of the intercooler modules, with larger gaps being generated 

at some circumferential positions. With reference to Figure 3 this gives rise to an increased offset (∆) between 

certain modules and, as this gap increases, so the circumferential spacing between the remaining modules (δ) 

must reduce. However, these local variations can be detrimental to system performance. For example, they may 

decrease the uniformity of the flow being supplied to the various modules. They can also generate undesirable 

interactions with the upstream compressor spool. Nevertheless such features must be accommodated within the 

design concept. 

3. Aerodynamic Performance Criteria: 

(i) Overall Performance: The total pressure loss must be minimized and static pressure recovery maximized 

while turning and diffusing the flow within the given geometrical and mechanical constraints.  

(ii) Upstream Component Interaction: The branching of the duct and the non-uniform spacing can produce 

upstream pressure perturbations leading to undesirable forcing of the upstream rotor. This is of particular 

significance when the rotor forcing is of relatively low frequency (e.g. 1 or 2 pressure perturbations per 

revolution). Hence the design concept must consider the upstream pressure field produced by the ducting 

system. 



(iii) Flow distribution: For simplicity and ease of manufacture it is desirable to have interchangeable (i.e. 

identical) heat exchanger modules. Thus, in order to ensure the same high cooling efficiency for each module 

the S-shaped duct system must divide the flow equally between them. The difficulty of achieving the required 

level of flow uniformity is highlighted by Cumpsty [3] as one of the major challenges to intercooling in aero 

engines. How well the system is ‘balanced’ can be assessed by the variation of stagnation pressure loss 

between the individual duct branches and the similarity of the exit plane flow profiles. 

 

III. System Concept 

To reiterate, the core air delivery ducts must divide the compressor efflux into discrete passages, diffuse and turn 

the flow radially outboard, generate a non-uniform spacing and deliver a uniform flow distribution. All this must be 

achieved with a minimum of stagnation pressure loss. However, the presence of flow splitters and variations in 

circumferential spacing between intercooler modules can both generate an undesirable pressure field that can (i) lead 

to a non-uniform flow distribution, and (ii) interact with the upstream compressor spool. In order to avoid these two 

issues a novel design concept is illustrated in Figure 4. In conventional engines an OGV row generally removes the 

entire swirl component from the compressor exit flow prior to the transition duct. However, in this concept some 

amount of swirl is allowed to pass down the core delivery duct. By removing this swirl at different axial locations 

within the various branches an enlarged spacing can be created. The additional offset (∆-δ) that can be achieved is a 

function of the inlet swirl angle (β) and system length (L). Furthermore, the local effect of the radial drive shaft is 

eliminated by locating the shaft outside of the main gas path. Figure 4 also indicates the local static pressure 

perturbations at the estimated OGV exit and rotor exit planes for a six branch sector. This could, for example, be the 

equivalent to one of several quadrants which form the engine annulus. It can be seen there is no evidence in the 

upstream pressure field of the radial drive shaft or the increased intercooler spacing (∆-δ). In more conventional 

engines this shaft would normally create a once per revolution pressure perturbation. In an intercooled engine there 

could be a requirement for several enlarged gaps around the engine and this would have the potential to produce 

several perturbations per revolution. Instead, a relatively large number of equi-spaced pressure perturbations are 

generated (one perturbation per intercooler module). This is analogous to a more conventional OGV row. In the 

example shown the pressure perturbation is 10% of the dynamic head at OGV exit, and is virtually non-existent at 

rotor exit. 



 

                                      (i) Developed View              (ii) Normalized Static Pressure Variation 

Figure 4 Swirling S-Duct Concept Static Pressure Contours 

To explore the concept further RANS CFD predictions were made using a simplified planar model of a branched 

diffusing duct system (Figure 4). Although this simplified model contained no radial turning it had an area ratio of 

approximately 1.5 which is typical of the target value in the NEWAC engine. The predictions were undertaken using 

Fluent, the default linear pressure-strain Reynolds stress turbulence model and standard wall functions. These 

options were chosen in order to remain consistent with the methodology used in the more complex duct model 

presented in Section V. The predictions were run at isothermal conditions with a fixed, uniform inlet velocity 

condition based on the test facility design with an axial velocity of approximately 65ms-1 (M~0.2) and a swirl angle 

(β) of 25°. Fixed mass flow conditions were used at exit to each duct with periodic boundaries on the end walls. 

Although this fixes the mass flow distribution between ducts it was thought that this better reflects the engine where 

the high loss of the downstream heat exchanger modules will to some extent limit flow redistribution. The use of a 

zero gradient boundary condition allowed too much freedom. Examples of the predicted static pressure field for five 

different systems are presented in Figure 5. These include: 

(i) An aerodynamically profiled (elliptical) leading edge for minimum loss, 

(ii) A short circular leading edge increasing the length available for turning (hence increasing ∆), 

(iii) Leading edge as (i) but with thinner branches (smaller δ) and an increased axial off-set (x) between the 

leading edge and “OGV” (i.e. reduce wetted area and loss), 

(iv) As (iii) but larger spacing (∆) achieved through profiling, 

(v) As (iv) but further increase in spacing (∆). 



 

(i)λ = 0.113(mean),+0.005 (max),- 0.003 (min) 

 

(ii)λ = 0.179(mean), +0.002 (max),-0. 002 (min) 

 

(iii)λ = 0.093(mean), +0.007 (max),-0.003 (min) 

 

(iv)λ = 0.125(mean),+0.007 (max),-0.010 (min) 

 

(v)λ = 0.107(mean),+0.018(max),-0.022(min) 

 

λ =
P�inlet − P�duct exit

P�inlet − p�inlet
 

 

(p-p�)/(P�-p�) 

 

Figure 5 Swirling S-Duct Concept Static Pressure Contours 

 

Figure 6 OGV Exit Static Pressure Distributions – Various Concepts 



The average loss coefficient for the six branches is also quoted along with the maximum and minimum values 

associated with individual branches. The loss coefficient is defined as the difference in mass-weighted stagnation 

pressure from the domain inlet to the exit of each branch normalized by the inlet dynamic pressure (see Figure 5). 

The average value is a relative measure of the system performance and the magnitude in the variation of the 

maximum and minimum values reflects how well the system is balanced. This is also indicated, to some extent, by 

the uniformity of the static pressure within the downstream ducts. Importantly, the simplified model also indicates 

upstream pressure field hence the potential for interaction with, and forcing of, the upstream turbo-machinery. For 

the OGV exit plane this is also shown in Figure 6 illustrating how the upstream pressure perturbation associated 

with the enlarged gap (∆) is more evident for certain configurations. This also correlates with the flow in the six 

branches being less well-balanced. From these types of calculation a design space can be summarized (Figure 7) in 

terms of the trade-off between the various duct geometrical parameters and the aerodynamic performance (i.e. 

pressure loss, upstream pressure perturbation etc.). 

 

Figure 7 Design Space Performance 

For a given intercooler spacing (δ and ∆) a well-balanced system with minimal interaction with the upstream 

turbo-machinery can be achieved but at the expense of higher stagnation pressure loss. These concepts are similar to 

(i) and (ii) above, and are located towards the bottom right hand corner of Figure 7. The system does exhibit some 

sensitivity to the flow field in the splitter leading edge region. The need to accommodate a radial drive shaft can 

significantly impact on the geometry in this region. However, the remaining branch inlets can be moved rearward, as 

in (iii), to produce an axial offset (x). This increased length prior to the splitter leading edges means that some extra 



diffusion can take place prior to the transition into discrete branches. Since the loss associated with this process is 

fundamentally a function of the dynamic head (i.e. velocity squared) this has a potential to reduce loss. However, 

this is at the expense of an increase in the local upstream pressure field perturbation (near the enlarged gap) and a 

less well balanced system. This is equivalent to moving along line A-A in Figure 7. Similarly, increasing the 

enlarged spacing (∆), as in (iv) and (v), can potentially lead to higher losses and increased distortion of the pressure 

field and is equivalent to moving along lines B and C (Figure 7). 

 

IV. Design Methodology 

Having outlined the concept it is necessary to determine if it can be successfully applied to an intercooled aero 

engine and to evaluate the performance of such a system. Hence the concept has been applied to the NEWAC 

intercooled engine [2]. In terms of the previously described design space it was decided to opt for a well-balanced 

system in which any interaction with the upstream compressor spool is minimized (i.e. no upstream pressure 

perturbations). Although this potentially produces a relatively high loss system it enables a datum system 

performance to be established (which can be linked to the requirements of the engine cycle without having to 

consider the effects, on engine performance, of unwanted interactions with the upstream turbo-machinery). 

The NEWAC intercooled engine utilizes 24 discrete heat exchanger modules with the basic geometrical 

requirements of the ducting system being defined in Table 1 (see also Figure 3). Providing the necessary inlet swirl 

implies the need to integrate the OGV design with that of the S-duct system (i.e. the amount of turning undertaken 

by the OGV row is reduced to enable swirl to pass into the S-duct system). However, the level of integration can be 

further extended so that, for example, the OGV blade can be leant to provide a radial force component to help turn 

the flow radially outboard similar to that described by Britchford et al. [6]. Hence in the system being considered the 

OGV row is integrated into the first bend of the S-duct and provides, at inlet, 15° of cant and 25° of swirl. Where, 

the cant angle (α) is defined as the angle between the radial and axial flow components and similarly the swirl angle 

(β) is defined as angle between the circumferential and axial flow components. The total system length (L) is 

defined as being from OGV inlet to duct exit, whilst L* is the length from OGV exit to duct exit. The local 

mechanical constraints required for the NEWAC intercooled engine can be accommodated by providing enlarged 

spaces at four locations. The ducting system is therefore separated into four geometrically repeatable quadrants each 

containing six branches (Figure 8). The pitch of the heat exchangers (δ) and the enlarged gaps (∆) correspond to 



angles of 13.3° and 23.3° respectively. Furthermore the radial drive shaft is located at 30% of the system length (x/L 

= 0.3) and has a diameter equivalent to 80% of the duct inlet height (h1). Hence the transition from an annular 

passage to discrete branches must occur upstream of this location. As already mentioned it is essential to diffuse the 

flow prior to the heat exchangers in order to minimize loses. In the NEWAC engine the requirement is to reduce the 

compressor exit Mach number by a factor of approximately 1.5 at heat exchanger inlet with a total pressure loss 

target of approximately 17% of the OGV exit dynamic pressure. Maximizing diffusion early in the duct system may 

be beneficial in that it (i) takes advantage of the increased mixing and turbulence associated with the OGV wakes, 

and (ii) reduces the diffusion in the second bend of the S-duct where separation is most likely. However, due to the 

complex nature of the flow it was decided that initially a nominally linear area increase would be employed.  

 

L/h1 7.5  A2/A1 1.4 

∆Rm/L 0.7  Rm2/Rm1 1.7 

L*/h1 6.8  α1 +15º 

∆Rm/L* 0.72  α2 +10º 

Table 1 S-Duct Constraints (see Figure 3) 

 

 

Figure 8 S-Duct Design (repeatable quadrant) 

Whilst the ducting system requirements can be outlined, limited information is available to assist in the detailed 

design of such systems. For example, simple design charts for annular and conical diffusers are of limited use due to 

the curved and segmented nature of the ducting system. Hence published data can only provide some broad initial 



guidelines with numerical computational methods then being used to enable the detailed design and development of 

the ducting system. Finally, as in the current work, proof on concept must be demonstrated by suitable experimental 

validation. 

 

V. Numerical Concept Evaluation 

The numerical design method is outlined in detail by Walker et al. [4, 7] and was coded into MATLAB such that 

geometrical parameters could be easily changed, and the computational model rapidly regenerated, thus facilitating 

an iterative design process. In summary, a mean line was initially fitted to the baseline constraints using a complex 

Bezier curve. Suitable analytical functions were then used to control the variation in area ratio, aerodynamic 

blockage etc. enabling the duct model to be defined and extracted as a CAD wireframe. This was imported into 

UniGraphics to create a solid model, and then into Gambit to generate a computational model/mesh. Each duct 

branch was meshed with a predominately quadrilateral structured mesh which, following a grid dependency study, 

contained approximately one million nodes. Furthermore, non-uniform grid spacing was used to ensure wall y+ 

values were applicable to a wall function approach (~30-60). RANS CFD predictions were undertaken using Fluent 

in conjunction with the default linear pressure-strain Reynolds stress turbulence model and standard wall functions. 

Eddy-viscosity turbulence models were considered but Britchford et al. [8] demonstrated that, for a compressor 

transition S-duct, a Reynolds stress model was much more able to capture the combined effects of strong pressure 

gradients and streamline curvature. They compared predicted data with LDA measurements of mean velocities and 

turbulent shear stresses. Although predictions with a Reynolds stress model still showed some discrepancies in the 

outer regions of the boundary layer (where the duct curvature affects turbulence production) they were more 

accurate than a k-ε model. The use of low Reynolds number model (SST k-ω) or Fluent’s enhanced wall function to 

fully resolve the boundary layer was also considered as it is potentially more accurate. However, the increase in cell 

count necessary to achieve wall y+ of 1-2 was excessive and prohibitive in terms of using these predictions in 

iterative design process. Similarly, given the available computational resources a numerical assessment of the entire 

quadrant (Figure 8) was not practical. Thus, the quadrant was broken into individual ducts and predictions 

undertaken for branches 1 (mid quadrant), 3 and 4 (either side of the enlarged gap) as shown in Figure 9.  



 

Figure 9 Predicted Stream-wise velocity contours 

In order to provide representative duct inlet conditions (containing OGV wakes and secondary flows) to the 

experimental facility a bespoke 1½ stage axial compressor was numerically designed by Rolls-Royce plc (see 

Section VI). OGV exit data were extracted from this design prediction and used to define the inlet boundary 

conditions (including OGV wakes) for the duct development CFD. This provided a map of the three velocity 

components from which appropriate turbulence (k and ε) data were approximated using established in-house 

techniques.  

For each duct the swirl is removed at a different axial location and consequently in a different pressure field. For 

duct 1, swirl removal occurs at the point of inflection in the S-duct (~50% length), where the radial pressure gradient 

will be approximately zero. Hence the flow will only be subjected to a diffusive pressure gradient along with an 

additional tangential pressure gradient to remove the swirl. However, for duct 4 the swirl removal occurs just after 

the 1st bend where a radial pressure gradient is encouraging outboard migration and, for duct 3 the swirl is removed 

in the 2nd bend where the radial pressure gradient will encourage inboard migration. Some examples of predicted 

streamwise velocity contours are presented in Figure 9. The OGV wakes are clearly visible in the inlet boundary 

condition but mix out quite rapidly and are no longer evident downstream of the transition point. However, 

acceleration of the flow around the leading edge of the transition point generates a high velocity region close to each 

sidewall with a low velocity region being generated in the outer portion of all three ducts. This deepens under the 

influence of the adverse pressure gradient within the 2nd bend and tends to dominate the flow field. Particle traces 

(Figure 10) show that this is caused by secondary flows generated as the boundary layer negotiates the leading edge 

of the splitter which divides the annular passage into discrete branches. Horse-shoe vortices are created and combine 



to form a passage vortex [9] which tends to dominate the passage flows, with some differences being apparent 

between the different ducts. However, in general the flow within each duct is attached with the predicted pressure 

loss coefficient varying by ~4% between ducts (Table 2) which suggests a well-balanced ducting system. 

  

(a) Turbine Blade Row [9] (b) S-Duct Branch [7] 

Figure 10 Particle Tracks and Stream-wise Velocity Contours (Duct 3) 

Loss Duct 1 Duct 3 Duct 4 

𝜆 =
𝑃�𝐴 − 𝑃�𝐵
𝑃�𝐴 − 𝑝�𝐴

 0.132 0.127 0.132 

Table 2 Predicted S-Duct Losses (A- OGV Exit, B – Duct Exit) 

 

VI. Experimental Test Facility 

Experimental assessment of the ducting system was undertaken using a purpose built, low speed isothermal test 

facility (Figure 11) which is approximately 70% scale of the NEWAC intercooled aero-engine. Operating at 

nominally atmospheric conditions the fully annular rig is mounted vertically with ambient air being delivered by a 

centrifugal fan via an under-floor plenum chamber. It is widely acknowledged that the inlet conditions presented to 

diffusing ducts can have a crucial influence on the performance of those ducts, and the importance of compressor 

generated conditions has been reported in several detailed studies (Stevens et al. [10], Klein [11], Zierer [12], 

Carrotte et al. [13], and Barker et al. [14, 15]). Hence the facility utilized a 1½ stage axial flow compressor upstream 



of the ducting system. This provides a good compromise in terms of capturing the blade wakes, secondary and rotor 

tip leakage flows etc. that will have an important influence on the downstream diffusing ducts whilst avoiding the 

costs associated with using a multi-stage compressor to provide the inlet conditions [16]. 

 

Figure 11 Test Section and Measurement Planes (Inset – Short Commissioning Diffuser) 

Design of the axial flow compressor was undertaken in conjunction with Rolls-Royce plc. using established 

techniques and a propriety 3D CFD code [17, 18], with blade loadings and other aerodynamic loading parameters 

being broadly representative of current engine design practice. The compressor consists of a row of 72 pre-swirl 

vanes, a rotor with 86 blades and an OGV row with 72 vanes. The number of OGVs was set as an integer multiple of 

the number of intercooler modules to ensure each duct branch was presented with identical inlet conditions. The 

vane design also includes tangential lean in order to integrate the OGV into the first bend of the S-duct. Hence the 

OGV row has an exit cant angle (α) of 15º reducing the radial turning requirements of the S-duct and shortening the 

system length. Further, to incorporate the swirling duct concept outlined earlier the vane row provides 25º of swirl 

(β) at the inlet to the core duct system. The actual operating speed was such as to typically maintain a Reynolds 

number, based on the OGV chord, of approximately 2x105 (i.e. above any transitional effects as described by 



Cumpsty [19]). This gave a total velocity at OGV exit velocity of around 75 ms-1 (or a Mach number close to 0.22) 

and a total rig mass flow of about 6.7 kgs-1. 

The test rig was designed to be modular such that experiments to determine the aerodynamic performance of the 

complete HP duct system could be performed. In the work presented here only the diffusing S-duct is considered. 

However, in a companion paper the complete system will be assessed. This will include (i) a heat exchanger model 

designed to replicate the core air flow path and loss, and (ii) the core air return duct system. Aerodynamic 

performance was mainly assessed using suitably calibrated miniature five-hole probes (φ = 1.76 mm) as described 

by Wray and Carrotte [16] and employed in a non-nulled mode to determine the local flow vector and total and static 

pressures. As indicated in Figure 11, area traverses could be conducted at rig inlet (X0), rotor inlet (I1), rotor exit 

(Z), OGV exit (B), 50% S-duct (B5) and S-duct exit (B). Measurements were made in duct branches 1, 3 and 4.  

 

Data Reduction and Experimental Errors 

The compressor non-dimensional speed (NπD/√(γRTo1)) and flow coefficient (Va/Ublade) could be maintained to 

within ±0.08% and ±0.18% respectively of their prescribed values. Probes were traversed in the radial direction 

using a stepper motor powered linear guide with positional accuracy of better than ±0.1 mm. Circumferential probe 

movement (over a given repeatable sector) was achieved by rotating the inner and outer casings about the rig center 

line using a high-power stepper or DC servomotor and it is estimated that a probe can be positioned to within ±0.05º 

of the desired location. Overall aerodynamic performance was quantified in terms of total pressure loss and static 

pressure recovery coefficients derived from the five-hole probe area traverse data (corrected to ICAO standard day 

conditions). The mass flow balance between various area traverse planes was within ±1% of the total mass flow 

entering the test facility measured via a five-hole probe traverse at plane I1. Spatially averaged values of total and 

static pressure at each plane were derived using the mass-weighted technique described by Klein [20] with the mass-

weighted total pressure loss (λ) and static pressure rise (Cp) coefficients then defined as: 

𝜆𝐴−𝐵 = 𝑃�𝐴−𝑃�𝐵
𝑃�𝐴−𝑝�𝐴

   and   𝐶𝑝 = 𝑝�𝐵−𝑝�𝐴
𝑃�𝐴−𝑝�𝐴

                                                                 (1) 

The mass-weighted total pressures were repeatable to within ±1mm H2O, which amounts to less than ±0.5% of 

the dynamic pressure at OGV exit. Thus, the repeatability of the derived total pressure loss and static pressure rise 

coefficients was better than ±0.005 of the values presented. 



VII. Experimental Results and Discussion 

Compressor/Ducting System Interaction 

Rotor Exit (Z): During the numerical design of the compressor a short annular diffuser, similar to the initial 

annular portion of the S-duct, was included in the solution domain in order to provide the correct pressure gradient 

at OGV exit. This was also replicated experimentally to commission the test rig and validate the compressor design. 

Importantly, this test also served as a datum enabling any effect of the ducting system on the compressor to be 

assessed. The basic aim of the design concept was to avoid any changes in the static pressure field at rotor exit 

generated by the presence of the ducting system. Achievement of this was confirmed by the experimental 

measurements at rotor exit (Z). Figure 12 plots rotor exit radial profiles generated from circumferentially averaging 

area traverse data measured over a two OGV (10°) sector. The plot confirms that, within experimental error, no 

difference was observed with the annular diffuser or S-ducts present. Note that in the latter case tests were 

performed over 10° sectors both in line with, and midway between, the splitters which divide the downstream 

annular geometry into discrete ducts. 

   

                                                    (a) Axial Velocity                        (b) Yaw Angle 

Figure 12 Rotor Exit (Z) Circumferentially Averaged Profiles 

OGV Exit (A): The OGV exit measurement plane (A) is located approximately one chord length downstream of 

the OGV row and two thirds of the distance between the OGV trailing edge and the point where the annular passage 

is divided into discrete branches. Consequently, the measurements here present a pessimistic view of the impact of 

the pressure field generated by each splitter on the upstream OGV row. The measured flow field is indicated in 



Figure 13 by contours of velocity (normal to the measurement plane) and static pressure. For the commissioning 

phase an area traverse relating to only two OGV (10°) sector is presented, with this flow field being repeated around 

the remaining 350° of the annulus. With the intercooler ducting system present measurements were undertaken over 

a 15° (3 OGV) sector which corresponds to the sector occupied by a single duct. Results are presented for duct 1 

(but similar results were obtained for ducts 3 and 4), with the measurements now showing evidence of the 

downstream ducting system. Deceleration of the flow occurs in line with the dividing splitters (i.e. at the sector 

extremities); whilst in the center of each sector the velocity field shows the flow starting to accelerate into the 

discrete duct branches. This also affects the mixing out of the OGV wakes around each sector. Evidence of these 

effects is also indicated by the static pressure field, which includes a radial pressure gradient associated with the 

outboard turning of the flow.  

 

    

                      (a) Commissioning (10º Sector)                             (b) Duct 1 (15º Sector) 

 

    

                        (a) Commissioning (10º Sector)                    (b) Duct 1 (15º Sector) 

  

Figure 13 OGV Exit (A) Velocity and Static Pressure Contours 

 



As expected there are now 24 perturbations in the static pressure field measured at OGV exit associated with the 

24 downstream splitters. However, despite the differing downstream geometry (including the enlarged gap between 

two of the branches), the upstream pressure perturbations associated with each branch of the system are identical 

(refer to Figure 14). Hence the results suggest the design intent has been met, i.e. 

(i) At rotor exit no perturbations resulting from the downstream geometry are observed, 

(ii) The peaks observed downstream of the OGV row associated with each splitter are identical (i.e. the larger 

circumferential offset between branches 3 and 4 is not evident). Hence 24 small perturbations are 

observed rather than four large ones, and 

(iii) Similarity of the flow field entering each branch of the ducting system suggests a well-balanced system. 

 

Figure 14 OGV Exit (A) Circumferentially Variation in Mid-height Static Pressure – Ducts 1 to 4 

Duct Flow Field Development 

Figure 15 plots the axial variation of the wall static pressure which reflects the diffusion and curvature 

undertaken by the flow within the ducting system. As the flow leaves the OGV in a traditional annular S-shape duct 

the inner wall static pressure is generally greater than the outer wall reflecting the outboard flow curvature within 

the first bend. However, this is not the case here. In the branched duct, to maintain a linear area increase, the 

blockage generated by the splitter results in local wall curvature which in turn modifies the local wall static pressure. 

Similarly, as the flow negotiates the transition from an annular to discrete passages it accelerates and the pressure on 

both walls decreases (note that the tappings are located circumferentially mid-passage). Once in the discrete passage 

the inner wall pressure remains higher than the outer wall until approximately mid duct length where the curvature 



falls to zero and then reverses in the second bend of the S-duct. There is a general trend for both inner and outer wall 

static pressure to increase which reflects the diffusing nature of the duct. Finally, as the flow negotiates the second 

bend and returns to the heat exchanger cant angle (α) of 10°, the inner wall pressure falls below that of the outer 

wall. Figure 15 also contains data from the CFD design showing good agreement with the measurements. In reality 

intercooler modules would be positioned downstream of the S-ducts with the potential to alter the flow field within 

the ducts. By allowing the S-duct efflux to exhaust to atmosphere, rather than pass through the heat exchanger 

modules, a better indication can be obtained of how well the core delivery duct system is balanced (i.e. the relatively 

high loss across the heat exchanger would act to balance the system). However, tests have been conducted which 

include simplified heat exchanger modules and the core air return duct system. In these tests, which will be reported 

in detail in a companion paper, the simplified heat exchanger modules were carefully designed to replicate the flow 

path of the core flow and the loss through the heat exchanger as anticipated in the NEWAC design. The associated 

wall static pressure data are included in Figure 15 and show that the variation is not significantly altered. 

 

Figure 15 Wall Static Pressure – Duct 1 

50% Duct Length (B5): Velocity contours normal to the measurement plane are presented in Figure 16 along 

with the associated secondary flow vectors for duct branches 1, 3 and 4. All branches have an inboard bias inherited 

from the hub biased rotor exit pressure profile. With reference to Figures 4 and 5 branches 1 and 3 have yet to 

undergo circumferential turning and, with identical upstream geometry, exhibit an almost identical flow field with a 

large degree of swirl. However, for duct branch 4 the velocity profile is more uniform and with the swirl removed 

two counter rotating vortices are revealed. Post-processing of the data to remove the bulk swirl shows that these 



vortical structures are also present in duct branches 1 and 3 – see Figure 16(e) and (f). These are classic secondary 

flow vortices [9] generated as the end-wall boundary layer turns around the leading edge of the splitter (Figure 10). 

Horse-shoe vortices are created and then combine to form a passage. Although these vortices are a source of low 

velocity regions and loss, they also generate turbulence stirring up the flow and transferring higher momentum fluid 

into the boundary layers. This potentially delays separation. It is worth noting that the magnitude of the secondary 

flows will be determined by factors such as the boundary layer thickness, splitter leading edge thickness, flow 

turning and the velocity in this region. In the current design the splitter leading edge thickness was primarily 

determined by the size of the radial drive shaft. The flow turning, boundary layer thickness and velocity were mainly 

determined by the overall system requirements. For reference purposes Figure 16 also presents contours from the 

CFD design of duct branch 1 showing a reasonable level of agreement with the experimental data. However, despite 

predicting the magnitude of the secondary flows the CFD does not faithfully predict the location. 

Duct Exit (B): Example velocity contours for duct 1 (Figure 17) show that, at duct exit, the flow remains 

relatively non-uniform retaining the upstream inboard bias in addition to a side wall bias generated by the 

circumferential turning. Similarly, velocity vectors indicate that the secondary flow vortices are still present. For 

each branch the exit flow exhibits broadly similar characteristics. In addition, the mass flow and total pressure loss 

derived from the measurements also show a good balance between the branches. For example the computed mass 

flow for each branch matched to within 1% and the total pressure loss coefficients to within 5% (of the inlet 

dynamic pressure). This suggests that the design methodology has been successful in producing a well-balanced 

ducting system. Furthermore the measured loss is close to the targets set for the intercooled cycle. Comparison with 

the numerical predictions indicates the measured loss coefficient is slightly higher than that predicted (Table 3). This 

was expected as experience has shown that for this type of prediction RANS CFD under predicts the total pressure 

loss associated with the mixing out of the OGV wakes. Britchford [8] demonstrated that a Reynolds Stress 

turbulence model is relatively good at capturing the flow in annular S-shaped ducts. However, the aerodynamics of 

the current branched duct system is much more complex incorporating strongly swirling flow and vortical structures 

in addition to streamline curvature and pressure gradients effects. Furthermore, the flow will be fundamentally 

unsteady thus it not surprising that there are differences between the measured and predicted flows using RANS 

CFD. Nevertheless the main flow field features appear to be captured by the numerical predictions and the 

methodology suitable for use in an iterative design process. 



 

  

(a) Duct 1 (b) Duct 3 

  

(c) Duct 4 (d) Duct 1 – CFD 

  

(e) Duct 1(average swirl removed) (f) Duct 3(average swirl removed) 

 

Figure 16 50% Duct Length (B5) Normal Velocity Contours 



    

(a) Duct 1- Experimental                          (b) Duct 1 - CFD 

  

Figure 17 Duct Exit (B) Normal Velocity Contours 

 

VIII. System Development 

The combination of experimental measurements and numerical predictions enable the main sources of loss with 

the ducting system to be identified. These are: (1) fundamental loss from skin friction within the transfer duct; (2) 

mixing loss associated with OGV wakes; (3) loss due to diffusion; (4) impingement loss on the bluff leading edges; 

and (5) secondary flow losses. Plotting the production of turbulent kinetic energy can reveal areas where loss is 

generated. For example, Figure 18 shows plots for duct 3 for the side walls (a) and the internal flow planes (b) and 

(c). These plots reveal that losses (red) are generated within the OGV wakes (i.e. due to mixing), close to the walls 

(skin friction) and in the secondary flows. Each of these would appear to be of similar magnitude. However, Figure 

18(a) shows that loss generated by the leading edge is at least an order of magnitude higher (note the change in 

contour legend). This is further illustrated by the development of the loss along the duct system derived from the 

numerical predictions (Figure 19). Note the rapid increase of loss within the leading edge region which therefore 

represents an important source of system loss and is consistent with the concepts and design space described in 

Figure 7. 

Having developed an appropriate numerical design methodology along with the capability to experimentally 

validate different ducting systems a second geometry was designed and tested. The objective was to reduce system 

pressure loss and concentrated on the splitter leading edge region. For example, the same duct requirements can be 

met but with an increased amount of diffusion upstream of the transition point (the velocity and hence loss generated 



by the transition should therefore be reduced). In the original design the area changed linearly through the duct and 

resulted in a 5% passage area increase between OGV exit and the leading edge of the splitters. However, numerical 

predictions suggested this could be increased to 15%, whilst avoiding separation, resulting in a 7% loss reduction. 

Furthermore, if the splitter thickness could also be reduced then this would have a notable effect on loss. For 

example with the splitter thickness at 60% of its original value numerical predictions suggested a loss reduction of 

order 30%. This latter change would be consistent with a radial drive shaft of smaller diameter, or a rearward 

movement of the shaft within the engine. This reflects the potential importance of the local duct requirements on the 

system. Consequently a second duct design was experimentally evaluated which incorporated these changes and 

resulted in a measured loss reduction of 25% (see Table 3). Note that this was achieved without any detrimental 

effects on the upstream pressure field or balance of the system. Whilst varying the area distribution is clearly 

beneficial, the result also highlights the importance of the local system requirements and the benefits of a more 

integrated design approach (for example, where consideration can be given to the size and position of the radial 

drive shaft as part of the duct aerodynamic design process). 

 

Loss 𝜆 = 𝑃�𝐴−𝑃�𝐵
𝑃�𝐴−𝑝�𝐴

 λA-B 
(Duct 1) 

λA-B 
(Duct 3) 

λA-B 
(Duct 4) 

Datum     CFD 
                 Exp. 

0.132 
0.212 

0.127 
0.195 

0.132 
0.176 

Design 2   CFD 
                 Exp. 

0.093 
0.144 

* 
0.146 

* 
0.152 

Table 3 S-Duct Losses (*Not Computed) 
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(c) Internal Flow Planes 

Figure 18 Production of Turbulent Kinetic Energy (Loss) 



 

Figure 19 CFD Prediction of Loss Development 

 

IX. Conclusion 

An investigation has been undertaken into the ducting system required to deliver core air flow from the 

compression system to the heat exchanger modules of an intercooled aero gas turbine engine. The system 

requirements have been identified which included the basic system geometrical requirements, consideration of local 

mechanical constraints and consideration of the relevant performance criteria. From these requirements a ducting 

system concept was developed in which swirl from the upstream compressor spool was allowed to pass into the 

ducting system. This enabled enlarged circumferential gaps to be created whilst avoiding forcing of the upstream 

compressor spool. In this way the local geometrical requirements associated with an actual engine environment can 

be accommodated (e.g. core access for ancillary services, radial drive shafts etc.). Moreover, the compressor OGV 

were successfully integrated into the first bend of the S-Duct providing potential length and weight savings. 

Numerical investigations were initially used to explore the design space and investigate the relative trade-off 

between system loss, upstream pressure field effects (i.e. rotor forcing) and uniformity of the flow distribution to the 

heat exchanger modules. A ducting system was then designed and experimentally evaluated on a fully annular 

isothermal test facility. In terms of overall performance, the duct system was well balanced with virtually the same 

mass flow in each duct branch (to within ±1% of the total mass flow). The average total pressure loss was 20% of 

the OGV exit dynamic head and this varied by less than ±1% between duct branches. Additionally the exit flow field 

from each branch was broadly similar. Based on the datum system performance a more refined geometry was 



developed in which the duct losses were reduced to 15% of the OGV exit dynamic head. This performance 

information enables the potential benefits of the intercooled aero-engine concept to be evaluated.  
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