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Abstract

This paper proposes a new iterative algorithm for OFDM joint data detection and phase

noise (PHN) cancellation based on minimum mean square prediction error. We particu-

larly highlight the relatively less studied problem of “overfitting” such that the iterative

approach may converge to a trivial solution. Specifically, we apply a hard decision proce-

dure at every iterative step to overcome the overfitting. Moreover, compared with existing

algorithms, a more accurate Pade approximation is used to represent the phase noise, and

finally a more robust and compact fast process based on Givens rotation is proposed to

reduce the complexity to a practical level. Numerical simulations are also given to verify

the proposed algorithm.

Keywords: Orthogonal frequency division multiplexing (OFDM), phase noise,

prediction error.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) becomes an ever popular scheme

for high speed wireless communications. Modulating the information data onto multiple

orthogonal bands in frequency with a simple pair of Fast Fourier Transform (FFT) and
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Inverse-FFT (IFFT), the OFDM system can effectively combat the multipath phenomena,

a major degradation factor that harms the wireless communications. Against this back-

ground, however, the success of OFDM scheme is likely to be impaired by the detrimental

factors including the imperfect channel estimation, symbol offset, phase noise (PHN) etc

[1, 2]. In this paper, we consider the PHN as it is relatively less well studied.

The PHN arises from the imperfections at the receiver’s oscillator, damaging the or-

thogonality among the subcarriers in OFDM symbols [3, 4]. A typical PHN consists of

two parts, namely the common PHN and the random PHN. While the common PHN is

an averaging effect over one OFDM system and thus the same for all subcarriers, the

random PHN varies from one subcarrier to another, resulting in intercarrier interference.

Although there exist various PHN suppression algorithms in the literature, most of them

mainly considered the common PHN which can be mitigated with the help of pilot sym-

bols (e.g.[5, 6, 7]). In a recent paper [8], a family of algorithms for joint data detection

and PHN cancellation has been proposed, where the common and random phase noises

were treated simultaneously under a uniform framework. These proposed algorithms were

based on a probabilistic approach called variational inference, with the Gaussian assump-

tion being applied to both the channel noise and PHN.

The joint data detection and PHN cancellation can be regarded as a parameter es-

timation problem in statistical learning with both the data and PHN being regarded as

unknown parameters. To be specific, based on suitable signal and phase models, the data

and PHN are estimated using a finite number of received samples as the target of learning.

This joint estimate usually comes with an iterative approach similar to the expectation-
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maximization (EM) algorithm. It is known that such iterative approaches do not guarantee

the convergence to the global minimum. Particularly, due to the noise in received samples,

“overfitting” may occur so that, rather than produce a good fit between the data estimates

and the true transmitted data, the derived estimates are too close to the received samples

and fit into the noise. A common technique to overcome the overfitting problem is the

parameter regularization which has a connection to Bayesian theory [9]. We note that,

although the overfitting problem was not explicitly identified, the algorithms in [8] are in

fact equivalent to Bayesian regularization utilizing the Gaussian distributions as the priors.

As will be shown in this paper, however, the parameter regularization alone may not be

effective enough to overcome the overfitting which, we believe, is a major problem in this

joint approach. Other techniques are thus desirable.

In this paper, based on an objective function that minimizes the prediction errors from

both the PHN model and the channel model, a set of normal equations are derived to

jointly detect the data and cancel the PHN. Unlike the variational inference approaches

in [8], however, the proposed algorithm does not require Gaussian assumption on the

channel and PHN, providing an alternative insight into the PHN cancellation problem.

Particularly, a hard-decision procedure is introduced at every iteration to overcome the

overfitting problem by filtering the noise out of the symbol estimate with the a priori

information from the constellation of the transmission symbols.

Another contribution from this paper is the use of the Pade approximation to represent

the PHN. Existing PHN cancellation algorithms usually use the first order Taylor series to

approximate the PHN (e.g. [4, 8]). Although this greatly simplifies the resultant proce-

3



dures, it is not as sufficiently accurate. The Pade approximation, on the contrary, offers

almost a perfect approximation of the PHN even for very high noise values. This provides

the proposed algorithm a potential of combating higher PHN than existent approaches. We

note that, due to its non-linear form, the Pade approximation or the higher order Taylor

approximation, is very difficult, if not impossible, to be used to derive variational infer-

ence approaches as those in [8]. Finally in this paper, a new fast process based on Givens

rotations is designed for the proposed algorithm. This Givens rotation based approach

not only has lower complexity but also is more robust than the conjugate gradient (CG)

algorithm used in [8].

2. The System Model

Without losing generality, we consider an OFDM system with N subcarriers modu-

lated by M-QAM. The transmitted complex baseband OFDM signal is written as:

s(t) =
1√
N

N−1∑
k=0

Ske
j2πkt/T , 0 ≤ t ≤ T (1)

where Sk is the data symbol at the kth subcarrier, T is the period of an OFDM symbol.

The OFDM preambles are ignored in (1) as we assume they are long enough to avoid

intersymbol interference and can be perfectly removed at the receiver.

We also assume the channel is slow fading so that the channel coefficients remain

unchanged within an OFDM symbol period. With the presence of the PHN, the received
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signal sequence is given by:

rm =
1√
N
ejθm

N−1∑
k=0

hkSke
j2πkm/N + ηm, m = 0, · · · , N − 1 (2)

where hk is the channel frequency response at subcarrier k which is assumed to be known

in this paper, ηm is the complex white noise with mean zero and variance σ2, and θm is

the mth sample of the PHN. The task is to recover the transmission symbols Sk without

knowing the PHN θm, given the received signal rm for m = 0, · · · , N − 1.

There are two types of PHN: the Wiener PHN and the Gaussian PHN [4, 10, 8]. For

the Wiener PHN, θm forms a random walk process as:

θm = θm−1 + εm, m = 0, · · · , N − 1 (3)

where εm is a random noise with zero mean and variance σ2
ε .

For the Gaussian PHN, on the other hand, θm is stationary which is assumed to follow

the autoregressive (AR) model of order size K:

θm =
K∑
i=1

aiθm−i + εm. m = 0, ..., N − 1 (4)

As will be shown in Section 4.2, the coefficients ai and the order size K can be estimated

by applying the least square (LS) and the Akaike’s Information Criterion (AIC) [11] on

the PHN samples θm. The AIC method is a well known method for determining the order

of the autoregressive model in statistics. Information theoretic metrics of a model’s gener-
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alization capability are of great importance in statistical learning. A fundamental concept

in the evaluation of model generalization capability is that of cross validation [12] which

is often used to derive the information theoretic metrics. Various model selection criteria

have been introduced based on cross validation including the AIC method. Alternatively,

if the correlation matrix of the PHN is known as was in [8], ai can be obtained via the Yule

Walker equation Pa = ρ, with a = [a1, ..., aK ]
T, ρ = [ρ1, ..., ρK ]

T and:

P =



1 ρ1 ρ2 · · · ρK−1

ρ1 1 ρ1 · · · ρK−2

· · · · · · · · · · · · · · ·

ρK−1 · · · · · · ρ1 1


, (5)

which is a circulant matrix, where ρi = E[θmθm−i]/E[θ2m] and E denotes expectation.

3. Joint Data Detection & PHN Cancellation

3.1. Minimum Mean Square Prediction Error

Assuming that (2) and (3) (or (4)) are the true representation of the underlying system,

a set of consistent model parameter estimates for θm and Sk can be obtained from:


rm = 1√

N
ejθ̂m

∑N−1
k=0 hkŜke

j2πkm/N + ξm, m = 0, ..., N − 1

θ̂m = θ̂m−1 + ωm, m = 0, ..., N − 1

(6)
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for the Wiener PHN, or:


rm = 1√

N
ejθ̂m

∑N−1
k=0 hkŜke

j2πkm/N + ξm, m = 0, ..., N − 1

θ̂m =
∑K

i=1 aiθ̂m−i + ωm, m = 0, ..., N − 1

(7)

for the Gaussian PHN, where θ̂m, Ŝk are the estimates of θm and Sk respectively, ξm

and ωm are referred to the prediction errors of the channel model and the phase model

respectively.

Letting s = [Ŝ0, · · · , ŜN−1]
T, r = [r0, · · · , rN−1]

T and the channel model prediction

error vector be ξ = [ξ0, · · · , ξN−1]
T, we obtain a vector representation of the first equation

of (6) as:

r = diag{ejθ̂1 , · · · , ejθ̂N−1} ×P× diag{h1, · · · , hN−1} × s+ ξ (8)

where P is an N by N IFFT matrix with its element at nthe row and kth column being

given by pm,k = 1√
N
ej(2π(m−1)(k−1))/N . It is known that PHP = I, where the superscript H

denotes Hermitian transpose, and I is an identity matrix with appropriate dimension.

Next we use the Pade approximation:

ejθ̂m ≈ 2 + jθ̂m

2− jθ̂m
(9)

to replace the term ejθ̂m . We note that (9) only holds for sufficiently small θ̂m. As shown

in Table 1, the Pade approximation provides an approximation capability far superior to
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Table 1: A comparison between the Pade and first order Taylor approximations

∥θ∥ (rad) 0.02 0.04 0.06 0.08 0.1
∥ejθ − 2+jθ

2−jθ
∥ 6.7× 10−7 5.33× 10−6 1.80× 10−5 4.26× 10−5 8.32× 10−5

∥ejθ − (1 + jθ)∥ 0.0002 0.0008 0.0018 0.0032 0.0050
arg[ejθ − 2+jθ

2−jθ
] (rad) 1.5908 1.6106 1.6308 1.6508 1.6708

arg[ejθ − (1 + jθ)] (rad) 3.1349 3.1283 3.1216 3.1149 3.1883

the first order Taylor approximation of ejθ̂m ≈ 1 + jθ̂m. In practice, the approximation

errors due to Pade approximation can be ignored, so that we have:

ξm =
(2− jθ̂m)rm

2
− 1

2
√
N
(2 + jθ̂m)

N−1∑
k=0

hkŜke
j2πkm/N + jθ̂mξm/2. (10)

Further denoting θ = [θ̂0, · · · , θ̂N−1]
T and letting the phase model prediction error

vector be ω = [ω0, · · · , ωN−1]
T, we represent (10) and the second equation of (6) or (7) in

vector forms as: 
ξ = z−Qθ −Qξθ

ω = Φθ

(11)

respectively, where

z =


r0 − 1√

N

∑N−1
k=0 hkŜk

...

rN−1 − 1√
N

∑N−1
k=0 hkŜke

j2πkN−1/N

 , (12)

Qξ = diag{(−jξ1)/2, · · · , (−jξN−1)/2} which includes the terms of the channel model
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prediction error, Q = diag{q0, · · · , qN−1} which is the prediction errors free matrix with

qm =
j

2

[
N−1∑
k=0

hkŜke
j2πkm/N/

√
N + rm

]
, m = 0, · · · , N − 1 (13)

where:

Φ =



1 0 · · · 0 0

−1 1 0 0 0

0 −1 1 0 0

· · · · · · · · · · · · · · ·

0 0 0 −1 1


, (14)

for the Wiener PHN, and:

Φ =



1 0 ... 0 0

−a1 1 0 0 0

−a2 −a1 1 0 0

... ... ... ... ...

0 0 −aK ...− a1 1


, (15)

for the Gaussian PHN.

In order to jointly estimate the data symbol and the PHN, we construct a cost function

based on minimum mean square prediction error (MMSPE) as:

J = E[ξH

mξm + (σ2/σ2
ε)ω

H

mωm]

≈ 1

N
[ξHξ + (σ2/σ2

ε)ω
Hω],

(16)
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where the approximation comes from the “expectation” being replaced by the “average”

in practice. It is clear from (16) that the normalized errors from both the channel model

and the PHN model are included. It is aimed that minimizing (16) gives Ŝk → Sk and

θ̂m → θm.

3.2. An Iterative Approach

Analyzing (8) and (11) suggests that J is quadratic with respect to s for a fixed θ, and

vice versa. This means that the cost function J can be reduced by setting ∂
∂s
J = 0 and

∂

∂θ
J = 0 alternatively.

First, setting ∂

∂θ
J = 0 and making use of (11) yields:

(QH +QH

ξ )(z−Qθ −Qξθ)−
σ2

σ2
ε

ΦHΦθ = 0. (17)

Taking the expected value in terms of channel noise ξm on (17) gives:

(QHQ+
σ2

σ2
ε

ΦHΦ)θ = QHz− jσ2

2
1, (18)

where 1 is a vector with all elements as 1, and it is assumed that at optimality E(QH
ξQ) =

0, E(QH
ξQξ) = σ2I/4 and E(QH

ξ z) = E(QH
ξQξ)θ + E(QH

ξ ξ) = σ2θ/4− jσ21/2.

Similarly letting ∂
∂s
J = 0 and making use of (8) gives:

diag{hH

0 , · · · , hH

N−1} ×PH × diag{e−jθ̂0 , · · · , e−jθ̂N−1}ξ = 0, (19)

10



or equivalently:

diag{h2
0, · · · , h2

N−1}s = diag{hH

0 , · · · , hH

N−1} ×PH × diag{e−jθ̂0 , · · · , e−jθ̂N−1}r. (20)

The solutions of (18) and (20) are then substituted into each other to form an iterative

procedure.

3.3. The overfitting

Although in theory it always decreases the cost function J to some extent, the above

iterative approach may converge to a trivial solution due to the problem of the overfit-

ting. The overfitting is a common issue in many parameter estimation problems, and can

be serious in the case of the joint data detection and PHN cancellation. In general, the

overfitting may be analyzed mathematically in terms of the high variance of the parameter

estimates as a result of several possible factors, or a combination of them. There are three

major factors that inflate the variance of the parameter estimates: (i) the small number of

data samples, e.g. N ; (ii) the high condition number of the associated regression matrix,

e.g. C = (max{hH
k hk, ∀k})/(min{hH

k hk, ∀k}); (iii) the high variance of noise, e.g. σ2.

The joint data detection and PHN cancellation problem is prone to overfitting due to

the fact that this is not a well-posed one, especially when the signal-to-noise-ratio (SNR)

is low and/or the channel is harsh. To be specific, for an OFDM symbol with N subcar-

riers, there are N data symbols and N phase errors to be determined from 2N number

of normal equations including N from the receiving data model and another N from the

PHN model. Since the PHN varies from one OFDM symbol to another even for slow
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fading channels, the PHN must be mitigated at every symbol. This describes a very spe-

cial case of parameter estimation problem: unlike the standard parameter estimation in a

linear regression model whereby the variance of parameter estimates can be improved by

increasing the number of data samples, here the number of unknown parameters always

equals the number of the “observation” samples. So there exists a dilemma between (i)

and (ii) above, i.e., as N increases C increases too. A direct consequence is the so-called

overfitting, making the estimated data symbol sufficiently far away from the true symbols.

Our solution is to apply the hard decision, i.e. map the estimated symbol to the near-

est symbol in the M-QAM constellation, at the end of each iteration. The hard decision

can effectively filters the noise out of the symbol estimates and remove the the associated

uncertainties due to the overfitting which will be otherwise carried forward over the iter-

ations. It is true the effectiveness of the hard-decision procedure requires most estimated

symbols be within the “correct” regions in the constellation. Fortunately this condition can

normally be satisfied since the iterative approach should begin with the traditional OFDM

symbol detection ignoring the PHN so that the BER performance at the initialization is

already at a fair good level. We note that if the traditional OFDM detection cannot provide

a good enough BER performance, it will be very difficult, if not impossible, to remove the

PHN.

The use of the hard decision at every iteration here describes a major difference to the

approaches in [8] where it was declared the no use of the hard decision was one of its

advantages. In fact, we found that, although it was not explicitly stated, the hard decision

must be applied at least at the initialization stage in the approaches proposed in [8], as
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otherwise the iteration procedure may not work at all.

3.4. The Algorithm

In summary, the proposed minimum mean square prediction error (MMSPE) is shown

below, where we assume the total number of iterations is Ns, θ(l) and s(l) are the estimates

of θ and s at the iteration step l respectively, and accordingly the resultant Q and z are

denoted by Q(s(l−1)) and z(s(l−1)) respectively.

Initialization

θ(0) = 0

s(0) = diag{h−1
0 , · · · , h−1

N−1}PHr

Replace s(0) by its hard decision.

For l = 1, 2, · · · , Ns

θ(l) =

(
[Q(s(l−1))]HQ(s(l−1)) +

σ2

σ2
ε

ΦHΦ

)−1

· Re{[Q(s(l−1))]Hz(s(l−1))} (21)

s(l) = diag{h−1
0 , · · · , h−1

N−1}P
H · diag{e−jθ̂

(l−1)
0 , · · · , e−jθ̂

(l−1)
N−1 }r (22)

Replace s(l) by its hard decision.

End

4. Complexity Reduction

The main complexity of the proposed approach comes from the matrix inversion in

(21). Below, we show that a fast algorithm can be developed by considering the spe-
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cial structure of the matrixes in this case. For simplicity of expression, we let A =

[Q(s(l−1))]HQ(s(l−1)) + σ2

σ2
ε
ΦHΦ, and b = Re{[Q(s(l−1))]Hz(s(l−1))}. Then (21) can be

rewritten in a standard linear equation form as:

Aθ = b, (23)

where we ignored the iteration index l for simplicity.

4.1. Wiener PHN

For the Wiener PHN, the matrix A in (23) has a special form of:

A =



d1 u1 · · · 0

l1 d2
. . . ...

. . . . . . . . .

... . . . . . . uN−1

0 · · · lN−1 dN


∈ ReN×N . (24)

The fast algorithm is then constructed as two stages: N − 1 number of successive Givens

rotations followed by backward substitutions.

First, denoting Ã = [A b], we apply N − 1 number of successive Givens rotations in

turn on the ith and (i+ 1)th rows of Ã to zero the elements in the lower triangular part of
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A for i = 1, · · · , N − 1. To be specific, after the (i− 1)th Givens rotation, we have:

Ã(i) =

 di ui 0 bi

li di+1 ui+1 bi+1

 , i = 1, · · · , N − 2, (25)

which consists of row i to i + 1 and column i to i + 2 as well as column (N + 1) of A.

For the last two rows, we have:

Ã(N − 1) =

 dN−1 uN−1 bN−1

lN−1 dN bN

 (26)

A sequence of Givens rotations, G(βi), is applied to (25) and (26) so that:

Ã(i)← G(βi)Ã(i), i = 1, · · · , N − 1 (27)

where

G(βi) =

 c(βi) −s(βi)

s(βi) c(βi)

 (28)

with c(βi) = cos(βi) = di/
√
d2i + l2i and s(βi) = sin(βi) = −li/

√
d2i + l2i . After N − 1

number of Givens rotations, A in (23) becomes an upper triangular matrix so that Ã has
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the form of

Ã =



d1 u1 u′
1 · · · 0 b1

0 d2 u2 u′
2

... b2

. . . . . . . . . ...
...

... . . . dN−1 uN−1 bN−1

0 · · · 0 dN bN


∈ ReN×(N+1) (29)

in which we maintain the notations di, ui and bi for the simplicity of expression.

Finally, initializing θN = bN/dN and θN−1 = (bN−1 − uN−1θN)/dN−1, the backward

substitution procedure is used to solve (23) as:

θN−i = (bN−i − uN−iθN−i+1 − u′
N−iθN−i+2)/dN−i, (30)

for i = 2, · · · , N − 1. The proposed solver has a low computational cost at the level of

O(N), compared to a standard linear square equation solver of O(N3). Specifically the

required costs are that of 16N−1 flops and N−1 square root for Givens rotations, adding

(5N − 6) flops for the backward substitution.

In [8], the conjugate gradient (CG) method was used to simply the matrix inversion.

As an iterative approach, the CG method requires N number of iterations to converge with

the complexity being at O(N2). Although in practice i (i < N ) number of iterations may

be accurate enough for the CG method so that the complexity is reduced to O(iN) (e.g. i

is chosen as 8 in [8]), the solution is an approximate. On the contrary, the Givens rotation
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based approach not only gives exact solution with complexity being fixed at O(N), but

also is more numerical stable and has a nature link to parallel processing for the IC design.

4.2. Gaussian PHN

For the Gaussian PHN, the matrix A in (23) is a central banded matrix with the non-

zeros elements being only at the 2K + 1 number of diagonals centering at the main di-

agonal. Similarly, we can also apply the Givens rotation but with complexity being at

O(K2N) or O(N) for K ≪ N .

It has been shown ([8, 13]) that, as N → ∞, θm can be approximated by a first-order

autoregressive process, i.e. K = 1. Then we can have a Givens rotation based fast process

exactly the same as that for the Wiener PHN derived above. In many systems, however,

K = 1 may not be sufficient accurate, and a larger K is necessary. A more flexible way

is to apply the Akaike’s Information Criterion (AIC) to determine the order size K [11].

This is very useful since K may vary with different systems. Specifically, applying AIC

on the Gaussian PHN gives:

AIC(K) = log

(
|θM −ΘK · aK |2

M

)
+

2K

M
, (31)

where K is the assumed order of the autoregressive process, M is the total number of

PHN samples observed, ΘK is an M by K regression matrix whose ith row is given by

[θi−1, · · · , θi−K ], and:

aK = (ΘT

KΘK)
−1ΘT

KθM , (32)

which is the LS solution of the coefficient vector assuming the order size is K with θM =
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[θ1, · · · , θM ]T. We note that, since using the AIC to determine the order size K and the

coefficient vector aK can be done off-line due to the stationarity of the Gaussian PHN, it

imposes little complexity on the system.

As an illustration, we generate a Gaussian PHN according to the Matlab code recom-

mended for the IEEE 902.11g [13]. Similar to that in [8], the generated Gaussian PHN

has a standard derivation of 3◦, and passes through a single pole Butterworth filter with

3dB bandwidth being 100KHz. The AIC(K) defined in (31) is plotted in Fig. 1, where it

is clearly shown that AIC(K) is minimized at K = 11 so that the autoregressive process

with order 11 can well model this Gaussian PHN. Obviously in this case, the first order

autoregressive process is correct to model the PHN.

5. Simulation

In the simulation below, we compare the proposed MMSPE algorithm with the ICM

algorithm in [8]. The ICM algorithm was shown to have significantly better performance

than the classic approach where only the common PHN is considered [6], which again jus-

tifies the complexity in terms of the benefits from the joint approach of data detection and

PHN cancellation. Note that the ICM algorithm is chosen as a comparison simply because

all algorithms proposed in [8] have close performance. Moreover, since the comparison

results based on the Wiener PHN and Gaussian PHN are similar, only the results for the

Wiener PHN are reported here.

To be specific, the parameters of the simulation system similar are set as follows:

1. An OFDM symbol size of 64 subcarriers;
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2. A Rayleigh mutlipath fading channel with a delay of 64 taps and an exponentially

decreasing power delay profile having a decay constant of 40 tap;

3. The Wiener PHN generated by random walk as was described in (3) with σ2
ε = 0.5◦.

Without losing generality, we assume the “random walk” process is applied on the data

symbols of an OFDM symbol from one sub-carrier to another sub-carrier, and is reset for

every OFDM symbol. This assumption, which was also used in the simulation in [8], is

reasonable in practice as the oscillators can always be reset for every OFDM symbol.

In Fig. 2, we compares the BER performance for different approaches with 64-QAM

modulation, where there are 4 iterations for both the ICM and the proposed MMSPE

algorithms. It is shown that both the ICM and the MMSPE algorithms have significantly

better performance that that without any PHN cancellation. In fact, there is an error floor

in the BER performance for the no PHN cancellation approach, because when the SNR

is sufficient large, the PHN will dominate the BER performance. It is also shown that the

MMSPE algorithm can effectively further improve the performance compared to the ICM

approach. We highlight that the hard decision has also been taken at the initial stage for

the ICM algorithm as otherwise it will converge to a trivial solution. This clearly indicates

that the hard decision process can effectively combat the “overfitting” problem which is

a key point in the OFDM joint data detection and PHN cancellation. It also suggest a

direction for future research such that the PHN cancellation performance may be further

improved by better solving the “overfitting” problem.

Fig. 3 compares the PHN tracking performance between the ICM and MMSPE algo-
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rithms by showing their PHN mean square errors defined as:

MSE(θ) =
|θ̂ − θ|2

|θ|2
(33)

It is clearly shown that the proposed MMSPE approach estimates the PHN significantly

more accurately.

For simpler modulations such as 32/16/8-QAM, the system is less sensitive to the the

PHN and we expect less performance benefit from the proposed MMSPE algorithm. As

an illustration, Fig. 4 shows the BER performance for the 16-QAM modulation, where

the performance improvement of the proposed MMSPE algorithm to the ICM algorithm

is obviously less significant than that with the 64-QAM.

6. Conclusions

This paper proposed an algorithm to jointly detect the OFDM data symbol and cancel

the PHN based on minimum mean square prediction error. We particularly highlighted

the problem of the overfitting and showed that the hard decision procedure is effective in

combatting it. Compared with existing approaches, the proposed algorithm uses a more

accurate Pade approximation to represent the PHN, and apply the Givens rotation to sim-

ply the complexity. The resultant approach is not only more accurate but also has less

complexity than existing approaches. This result from this paper also suggests an inter-

esting research topic in the future that the PHN cancellation performance can be future

improved by better handling the overfitting problem.
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Figure 1: AIC of the generated Gaussian PHN, where K is the order size of the AR model for the Gaussian
PHN.

Figure 2: BER performance for 64-QAM modulation.

Figure 3: PHN tracking performance for 64-QAM modulation.
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Figure 4: BER performance for 16-QAM modulation.
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