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The uncertainty analysis of irradiance and temperature measurements in relation to the energy yield 

prediction of the photovoltaic (PV) modules are presented. A Monte Carlo simulation approach is 

demonstrated separately to propagate the monthly and annual measurement uncertainties of 

irradiance and temperature to annual energy yield prediction uncertainty for two commercially 

available PV modules. The annual irradiation uncertainty as measured with a thermopile 

pyranometer is calculated as ±1.56%.  Uncertainty of the annual average of ambient temperature 

measurement is calculated as ±0.08OC. Finally, the uncertainty in the energy yield estimation of the 

PV devices is determined as 2.8% and 15.5% for crystalline silicon (c-Si) and copper indium 

gallium (di)selenide (CIGS) modules, respectively.   

KEYWORDS: Irradiance uncertainty, temperature uncertainty, energy yield prediction uncertainty 

1. Introduction 

In this article the uncertainty analysis of a photovoltaic (PV) module energy yield prediction 

procedure is studied. Uncertainties in the yield prediction come both from measurements and 

modelling involved in the prediction procedure. Estimation of the energy yield of PV module 

requires two sets of measured input data [1-5]: 

• The PV module characterisation data, i.e., Pmax at wide range of irradiance and temperature 

(Fig. 1). 

• The site specific environmental data, i.e., irradiance, temperature, spectral irradiance, etc. 

Then additional modelling steps involved in the energy yield prediction method. The modelling 

comprises: 
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• the translation of global horizontal irradiance into irradiance at plane of array of PV module 

[6],  

• the estimation of module temperature [6],  

• spectral and angular corrections [7,8] and  

• estimation of maximum power of the PV module over the time period [6, 9].  

Each of the above measured and modelling components contributes to the uncertainty in the final 

energy yield estimation. This paper concentrates on the contributions from irradiance and 

temperature measurements.  

The uncertainty contributions can be classified into statistical and systematic components for a 

given parameter. Systematic uncertainty is a fixed error of an equipment but the statistical error is 

varied with the measurements. Guide to the expression of uncertainty in measurement (GUM) [10-

11] explains the procedure to estimate the statistical and systematic uncertainty. But the GUM 

uncertainty framework does not explicitly determine a probability distribution function for the 

output quantity [13]. 

As an alternative solution, a framework for the measurement uncertainty analysis based on Monte 

Carlo simulation is established and illustrated in this article, where a specified number of values of 

the same measurement is generated  randomly [14]. The advantage with Monte Carlo method is, it 

can improve the uncertainty associated with the estimate of output quantity even for non-linear 

models [13]. The Monte Carlo simulation is then applied to analyse the uncertainty of irradiance 

and temperature measurement. 

The magnitude of uncertainty over the range of irradiance and temperature measurement is then 

revealed. This gives an indication of the level of accuracy at different signal strength of irradiance 

and temperature measurements – which ultimately indicates the level of accuracy in the energy 

yield estimation in different location. Finally, this uncertainty model is applied to the international 

standard of energy rating model (IEC 61853) [15 - 17].  

Evaluating the uncertainties of the input measured values, the IEC 61853 energy yield prediction 

method is validated against real measurements of annual energy generation of two different PV 

modules at Loughborough, UK.  



2. Energy Yield Prediction Method 

The IEC 61853 standard energy rating method is used as a yield prediction method [7]. IEC 61853 

is divided into three different parts.  Part 1 [15] indicates the requirement for evaluating PV module 

performance in terms of power rating over a wide range of irradiance and module temperature. This 

gives a full set of characterization data at different irradiance and module temperature in a matrix 

form. Part 2 [16] explains the measurement and analytical approach on the effects of angle of 

incidence (AOI), spectral response and the module operating temperature. Part 3 [17] consists of the 

calculation of energy rating procedures based on measured and modelled values of parts 1 and 2.  

The meteorological data used is taken from the CREST outdoor measurement system. A matrix of 

maximum power (Pmax) of the module over a wide range of irradiance and temperature is measured 

indoors in a controlled environment at the Austrian Institute of Technology, Vienna (Fig. 1). 

Power matrices of two module technologies, c-Si and CIGS, are used in this study. The Pmax at 

target irradiances and temperatures are estimated by a linear regression method at each timestamp 

of the annual dataset. The integration of the estimated Pmax at all timestamps gives the annual 

energy yield estimation of the module. For the validation of this analysis, identical modules are also 

measured at the CREST outdoor system to log their annual energy output. 

3. Monte Carlo Approach 

A Monte Carlo technique is used in this study for uncertainty propagation analysis. This is done by 

performing random sampling from the probability distribution of each input parameter and 

evaluating the model output several times using a different set of randomly selected values from the 

probability density functions.  

A flow chart of a Monte Carlo simulation procedure is shown in Fig. 2, where the measured value 

of each uncertainty parameters (i.e. irradiance and temperature) is taken as the input into the model. 

Monte Carlo method is a mathematical simulation, is performed with a specified uncertainty scale 

factor against the measured values of the input parameters in order to generate random number of 

specified iteration. A system model also needed to be selected for random number generation. A 

normal distribution is used in this study for the probability distribution of each input parameters. 

Normal distribution defines the mean and a standard deviation to describe the random variation 



about the mean. Comparing the estimated mean and standard deviation of the probability 

distribution against a true value of the same parameter gives the uncertainty of the test parameter. 

All irradiance and temperature measured data are taken from the CREST outdoor monitoring 

system (COMS) at Loughborough University, Loughborough, UK, where irradiance sensors are 

installed in the horizontal and inclined plane of module installation and temperature sensors are 

installed at the back of each module. Ten second timestamps of the annual data from October 2009 

to November 2010 is used for this analysis.  

4. Measurement Uncertainty of Environmental Data 

4.1 Irradiance measurement uncertainty 

Irradiance is the primary input parameter that largely influences the power output of a PV module. 

There are different irradiance measurement sensors available (Kipp & Zonen CM22, CMP 11, etc.) 

offering different levels of measurement accuracy. The Kipp & Zonen CM 11 pyranometer [17], an 

older but commonly used sensor, is utilised in the analysis as a case study. Previous irradiance 

uncertainty measurement studies only used the given uncertainty values in the equipment 

manufacturers manual [19-27]. A robust model is established that can analyse the irradiance 

measurement uncertainty and is applicable to any location. The irradiance uncertainty components 

of the CM 11 sensor are categorised into two groups: 

• uncertainties that change annually (Table 1), 

• uncertainties that change at each timestamp of measurement (Table 2). 

Additionally, there are three other uncertainty sources described in the CM 11 manual. These are 

variable depending on the signal strength of irradiance i.e. non-linearity of irradiance (0-1000 

W/m2), temperature i.e. temperature dependence of sensitivity (-20 to 50 °C) and zenith angle, i.e., 

directional zenith angle error (0 - 80°). The level of uncertainty of non-linearity of irradiance 

sensitivity, temperature sensitivity and directional error is extracted at each timestamp. 

4.1.1 Non-linearity error 

The sensitivity variation with irradiance for the given CM 11 sensor is included with a linear model 

to estimate the non-linearity error against variable irradiance at every timestamp of the 

measurement (Fig. 3).  



4.1.2 Temperature dependence of sensitivity 

The temperature dependence of the sensitivity is specific to an individual sensor. For the CM 11 the 

uncertainty lies somewhere within the upper boundary and lower boundary about a reference 

baseline (see Fig. 4).  

A fourth order polynomial representation is applied to estimate the baseline reference (Fig. 4) at any 

target ambient temperature. Then a Monte Carlo method is utilised for the probability of the 

distribution of the error based on the standard deviation within the upper and lower boundaries of 

the sensitivity curve in Fig. 4. 

4.1.3 The directional error 

This is the summation of the azimuth and zenith error. Fig. 5 shows the maximum relative zenith 

error in any azimuth direction for the CM 11 sensor.  

A linear interpolation method is applied to estimate the baseline reference at any targeted zenith 

angle and a fourth order polynomial model is applied to estimate the positive and negative error at 

different zenith angles. Then a Monte Carlo method is utilised for the probability of distribution of 

the error based on the standard deviation within upper and lower boundaries of the zenith angle 

sensitivity curve of Fig. 5. 

Based on the above uncertainty components and their scale factors, the annual irradiance 

measurement overall uncertainty is determined using a Monte Carlo method. Measured global 

horizontal irradiance (Ghor) data are assumed as true values in this analysis. The same irradiance, 

i.e., Ghor is used as the input basis for the Monte Carlo simulation. 

The uncertainty of the Ghor measurement at each timestamp is then summed for the whole year in 

order to evaluate the uncertainty of annual irradiation. Five thousand draws have been chosen to 

build the final probability distribution of the annual irradiation; the result is shown in Fig. 6, which 

represents a Gaussian distribution. 

Using all the above listed uncertainty components, the uncertainty of annual irradiation from 

measurements with the CM 11 sensor is calculated as ±1.56%. Monthly uncertainty ranges from 

±2% to ±6.2% depending on the irradiation in different months of the year (Fig. 7). These values are 

within the agreement that have been reported elsewhere [28].   



4.2 Temperature measurement uncertainty 

Temperature is the second most influential parameter after irradiance that determines the power 

output of a PV module. So, accurate temperature measurement is also critical in order to estimate 

the energy yield of different PV technologies. As with irradiance, there are a variety of temperature 

sensors available with different levels of measurement accuracy. This study takes a Vaisala 

HMP45C P1000 sensor [29] as a case study, as it is in use for ambient temperature measurements in 

the CREST outdoor monitoring system. The results are applicable to sensors monitoring module 

temperatures also. 

The measurement uncertainty of HMP45C P1000 is taken from manufacturer datasheet (Fig. 8) and 

uses the Monte Carlo method for annual and monthly temperature measurement uncertainty.  

Measured ambient temperature (Tamb) data are assumed as the true values in this analysis. The 

uncertainty scale factor of the chosen sensor has been estimated using linear interpolation based on 

the data shown in Fig. 8 and Monte Carlo simulation is used to draw random uncertainty values and 

estimate annual and monthly average ambient temperature measurement uncertainty. Again, five 

thousand samples have been chosen to generate random numbers within the given range of 

uncertainty of Tamb at each time stamp for the whole year and the annual sum is estimated for each 

sample set.  

The uncertainty of annual average ambient temperature measurement is calculated as ±0.08OC and 

the uncertainty of monthly average of ambient temperature is illustrated in Fig. 9, which is within 

agreements that have been reported elsewhere [30 - 31]. 

 
5. Energy Yield Estimation Uncertainty 

Based on the above measurement uncertainties of irradiance and temperature, the uncertainty of 

annual energy yield for c-Si and CIGS PV modules were determined through propagation and are 

listed in Table 3. The monthly energy yield estimation uncertainties of the c-Si module, as an 

example, are shown in Fig. 10.  

Higher uncertainties in December to February occur due to not only the higher input uncertainties 

from irradiance and temperature measurements but quite significantly due to the reason that the 



linear regression of Pmax does not match well at lower irradiance level. The linear regression method 

is suggested in the IEC 51853 to estimate the Pmax at target irradiances and temperatures. 

6. Conclusions 

This paper established a robust analytical procedure for propagating the measurement uncertainties 

of irradiance and temperature for energy yield prediction. A Monte Carlo simulation approach is 

applied which should be applicable to any location at different weather profile. For the evaluation of 

this procedure, the method has been validated at Loughborough, UK. The irradiance sensor used as 

a reference is CM 11 pyranometer which gives ±1.56% annual irradiation uncertainty in the UK 

climate. The temperature sensor studied is a HMP45C Pt1000 sensor which resulted ±0.08OC 

annual average temperature uncertainty.  

The estimated uncertainties of the annual energy yield prediction of c-Si and CIGS PV modules are 

2.8 and 15.5%, respectively. These values will vary depending on the annual irradiance and 

temperature profile of a specific location.  

This study estimated the Pmax at target irradiance and temperature points by linear regression 

method at each timestamp of the total time period and also did not include the spectral correction 

factor. Two possible reasons for the high uncertainties achieved in this study are because of the 

non-linear response of actual power generation of the PV modules over the range of irradiance and 

also the spectral sensitivity and seasonal material changes. The achievable uncertainties for both 

modules will most likely be improved by employing spectral irradiance correction to the AM 1.5 

standard spectrum, particularly for the thin film module. It should also be noted that the modelling 

uncertainties noted in the introduction also influence the energy yield uncertainty. 
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8. Table 

Table 1: Uncertainties that change annually. 

Uncertainty cause Uncertainty (W/m2) 

Calibration ±3.4 

Annual drift ±0.00288 

 

Table 2: Uncertainties that change at each timestamp of measurement. 

Uncertainty cause Uncertainty 

Zero-offset due to temperature change (5 K/h) ±2 W/m2   

Zero-offset due to thermal radiation    (200 W/m2) ±7 W/m2      

Tilt error (beam 1000 W/m2) ±0.25% 

Spectral sensitivity ±2% 

 

Table 3: Uncertainty of annual energy yield of c-Si and CIGS PV module. 

Module Pmax (Wp) Uncertainty (%) Distribution 

c-Si 10 2.78 Normal 

CIGS 5 15.45 Normal 

 
 

9. Figures 

Fig. 1: Pmax matrix of IEC 61853 Energy rating method as a function of irradiance and temperature.  
 

 
 
 

Temperature (oC)
Irradiance (W/m2) 15 25 50 75

1100 ● ● ● ●
1000 ● ● ● ●
800 ● ● ● ●
600 ● ● ● ●
400 ● ● ● ●
200 ● ● ● ●
100 ● ● ● ●



Fig. 2: Framework of Monte Carlo simulation approach.  

 

 

 

 

 

 

Fig. 3: Non-linearity error of Kipp & Zonen CM11 pyranometer. 
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Fig. 4: Relative variation of sensitivity with instrument temperature of a Kipp & Zonen CM11 

pyranometer. 

 

 

 

Fig. 5: Directional error. 

 

 
 

Fig. 6: Probability distribution of annual global horizontal irradiation measurement uncertainty by 

CM 11. 
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Fig. 7: Monthly irradiation (kW h/m2) and measurement uncertainty in the UK climate. 

 
 

 

Fig. 8: Measurement uncertainty of the HMP45C P1000 sensor. 
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Fig. 9: Monthly average ambient temperature and their uncertainties in UK climate. 
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Fig. 10: Monthly energy yield (kW h) and their uncertainties in the UK climate for c-Si module. 
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