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Abstract. The Internet of Things (IoT) vision foresees a future In-
ternet encompassing the realm of smart physical objects, which offer
hosted functionality as services. The role of service discovery is crucial
when providing application-level, end-to-end integration. In this paper,
we propose trendy: a RESTful web services based Service Discovery
protocol to tackle the challenges posed by constrained domains while
offering the required interoperability. It provides a service selection tech-
nique to offer the appropriate service to the user application depending
on the available context information of user and services. Furthermore,
it employs a demand-based adaptive timer and caching mechanism to
reduce the communication overhead and to decrease the service invoca-
tion delay. trendy’s grouping technique creates location-based teams of
nodes to offer service composition. Our simulation results show that the
employed techniques reduce the control packet overhead, service invoca-
tion delay and energy consumption. In addition, the grouping technique
provides the foundation for group-based service mash-ups and localises
control traffic to improve scalability.

Keywords: Adaptive, Context-aware, Service Discovery, 6LoWPAN,
Internet of Things, CoAP, RESTful, Web of Things

1 Introduction

The Internet of Things (IoT) concept has revolutionised the vision of the future
Internet with the advent of standards such as 6LoWPAN making it feasible to
extend the Internet into previously unreachable environments, e.g. Wireless Sen-
sor Networks (WSN). The abstraction of resources as services, has opened WSNs
to a new plethora of potential applications. Moreover, the web service paradigm
can be used to provide interoperability by offering a standard interface to interact
with these services. However, these networks pose many challenges in terms of
limited resources. Consequently, the adaptability of existing IP-based solutions
is not feasible. As traditional service discovery and selection solutions demand
heavy communication and use bulky formats, which are unsuitable for these
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resource-constrained devices incorporating sleep cycles to save energy. Even a
registry-based approach exhibits burdensome traffic in maintaining the availabil-
ity status of the devices. The feasible solution for service discovery and selection
is instrumental in enabling wide application coverage of these networks in the
future [1].

The contribution of this paper is a compact and optimise registry based ser-
vice discovery solution with context awareness for the IoT, which is more focused
on constrained domains such as 6LoWPAN. It uses CoAP-based [14] RESTful
web services to provide a standard interoperable interface which can be easily
inter-worked with HTTP. The modular design of protocol features allows its
implementation on the constrained devices. High capability devices can benefit
by implementing profiles to share the load of other devices. Thus, it allows the
productive usage of resources in the network. trendy intelligently uses the con-
text information to provide optimal service selection, which make sure that more
superior hosts will be suggested to an enquirer. This paper extends our previous
work [3] by introducing new adaptive timer and caching techniques. Adaptive
timer minimises the protocol’s control overhead and energy consumption. Its
grouping mechanism is based on location tags to localise status maintenance traf-
fic and to compose and offer new group based services. The APPUB (Adaptive
Piggybacked Publish) technique balances the trade-off between service invoca-
tion delay and packet overhead by adaptively making cache available for highly
requested resources. We have performed simulations to demonstrate the benefit
of using trendy techniques in terms of energy consumption, packet overhead,
scalability (packets towards the sink and cache hits) and service invocation time.

This paper covers the related work in Section 2, before describing protocol
and its architecture, entity interactions and techniques in Section 3. In the end,
Section 4 discusses the performed experiments and generated results.

2 Related Work

The service discovery protocols are generally classified into three broad categories
on an architectural basis: centralised, distributed and hierarchical [2]. Centralised
architectures have a directory, where Service Agents (SA) register their services.
Subsequently, User Agents (UA) discover the services by sending unicast queries
to the directory. On the other hand, distributed architectures demand that nodes
collaborate using broadcast or multicast to discover a service. An example of a
distributed service discovery mechanism is ADDER [12]. Hierarchical architec-
tures employ some nodes with high capabilities, to represent a cluster of nodes
in their vicinity.

The industry-standard, IP-based Service Discovery Protocols (SDP) includ-
ing SLP, UPnP, JINI and Salutation are not directly applicable to 6LoWPAN be-
cause of the employed complex formats and high communication demand. uBon-
jour [8] is bonjour’s compact variant, based on mDNS and DNS-SD. Even though
mDNS/DNS-SD message sizes were recently optimised for 6LoWPANs [9], uBon-
jour still relies on the availability of IP multicast and entails more communication
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Fig. 1: Hybrid architecture of trendy

overhead. A SLP adaptation approach [4] employs SSLP inside the 6LoWPAN
and provides interoperability with SLP by using a Translation agent (TA). How-
ever, this solution involves complexity and delay of translation; each time mes-
sage is translated to or from SLP. An industry focused SOA (Service Oriented
Architecture) based middle-ware solution [7] uses WS-* and RESTful web ser-
vices. A recent approach [10] provides RESTful web services using HTTP based
service discovery with existing or injected strategies. The IETF Resource di-
rectory [15] uses CoAP as an underlying communication protocol for service
discovery. However, most of these existing directory-based solutions do not ad-
dress the service discovery requirements of IoT environments. This paper pro-
poses trendy service discovery solution that provides context-aware discovery,
efficient service management, service selection, caching and service composition.

3 TRENDY: Trend-based Service Discovery for the IoT

This section describes the various design aspects of the trendy service discov-
ery protocol, including architecture, interaction between entities in context of
protocol features, adaptive timer and caching techniques.

3.1 Architecture

trendy maintains a registry: the DA (Directory Agent), where SAs (Service
Agents) register services. UAs (User Agents) query the DA, to find the location
of a service. The grouping mechanism further categorises SAs into GLs (Group
Leaders) and GMs (Group Members). Fig. 1 presents trendy’s architecture.

Directory Agent (DA): The DA has a backbone role in trendy’s architec-
ture maintaining the registry and using a demand-based adaptive timer (Sec-
tion 3.3) to increase or decrease the interval between status maintenance
updates. The DA responds to service discovery requests and uses collected
context information to provide optimal service selection. In case of a con-
strained network, e.g. 6LoWPAN, it can be at the root of RPL (IPv6 Routing
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Fig. 2: Interoperable framework of trendy: The DA collects service and context
information to provide service discovery and selection, and uses grouping and
adaptive timer mechanisms to reduce status maintenance traffic.

Protocol for Low power and Lossy Networks) routing protocol. However, any
other routing protocol can be used for this purpose. In our work, the DA
role is embedded in an edge router that acts as a bridge between the WSN
and IP networks using adaptation layer. However, the only requirement is
that the DA is on a resource-rich node with IP reachability to the SAs.

Group Member (GM): This is the most basic entity of trendy, and repre-
sents a service host who registers its services with the DA. Furthermore, it
periodically sends status updates to the DA using trendy’s UPD (Update)
message by selecting a random interval of 50% to 100% of the DA’s time
window between messages.

Group Leader (GL): The GL plays a key role in the grouping mechanism.
trendy’s modular design allows a GL to choose a different feature-set de-
pending on its available resources and application needs. The responsibilities
of a GL depend on its implemented resources; it can just collect the status
updates, forwards the query to group, aggregate the results for a query or
can act like a local registry or proxy.

User Agent (UA): The UA is a client that dicovers services available in a
network by sending queries to the DA. It can be either part of the sensor
network or can send a request from elsewhere in the Internet.

3.2 Entity Interaction

trendy introduces an open and interoperable framework to deal with the di-
versity of networks that can be the IoT. The challenge posed by the IoT’s re-
quirements is managed by employing a layered architecture, intelligent DA and
enabling a RESTful web service paradigm to deal with various formats and
protocols as shown in Figure 2.
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This section covers the detail of trendy’s features from the perspective of
different entities.

Web Service Paradigm: trendy uses a RESTful web service paradigm. En-
tities use either CoAP (default) or HTTP (in case the targeted host under-
stands it or DA is acting as a proxy) to define their services and to communi-
cate with each other. The use of CoAP/HTTP simple proxy can seamlessly
translate requests from both protocols. This blends the real-world devices
into the existing web and enables the Web of Things (WoT) paradigm.

Context-awareness: In trendy, the DA stores all service and contextual in-
formation, including service descriptions, location, battery consumed, and
registration time for all registered nodes. Furthermore, it maintains a hit
counter for each service, which is incremented whenever a service is discov-
ered and selected. The grouping, optimal GL and service selection is based
on the available context information. trendy allows the use of any context
attributes in an attribute-value pair format separated by “=”. These context
attributes can be defined in the service description by adding “,” to separate
them e.g. “l=INB01,b=10” describes a host’s location and battery attribute.

Grouping: Context-based grouping serves several purposes, including simple
localisation of status maintenance, execution of group-based queries to offer
an optional local service repository. It costs in terms of some packet overhead.
However, networks can get the benefit in the form of localised communica-
tion, which conserves energy. In addition, this enables a DA to compose and
offer group-based services, e.g. to actuate a command in a certain area.
The DA periodically analyses its registry for grouping and for every un-
grouped GM, it sends a YGM (Your Group Member) message (with GM’s
IP) to a GL in the same location. In case of multiple GLs, it selects one
based upon available context information. The GL then responds with an
acknowledgement and completes grouping process by sending a YGL (Your
Group Leader) message to GMs. This shifts the status maintenance burden
to the GL, which reports the DA about each unresponsive GM. A GL can
inform the DA about a missing GM using NRP (Not reported) message and
its depleting battery using a GLD (Group Leader Done) message.

Hybrid architecture: Basically, trendy has a centralised architecture that
converges to a distributed one when the DA uses context information to
group GMs as shown in Fig. 1.

Service Descriptions: There are diverse requirements for service descriptions
posed by the IoT. trendy defines a default compact format for service
description consisting of only semi-colon separated URLs of resources offered
by a device. This simplistic format of resource description is a compact and
efficient choice for constrained environments. However, trendy considers the
requirement of extra semantic information, and recommends the IETF Core
Link Format3 while allowing any other format depending on the application.

Service Management: The DA maintains all service records with soft states,
which need to be updated regularly by SAs. trendy introduces an adap-

3 https://datatracker.ietf.org/doc/draft-ietf-core-link-format/
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Table 1: A UA specifies trendy/server URL with GET method and some URL
queries for a service discovery request to get the appropriate service.

URL queries for appropriate discovery Matching criteria

?location=INB01 Location based
?location=INB01&type=temperature Location and type based

?location=INB01&type=temperature&info=sensor Location, type and
relevant information based

tive timer that considerably reduces the number of update messages. Timer
adapts to the demand of a service to increase or decrease the status update
interval.

Service Discovery: The DA determines the matching service from the reg-
istry using the attributes of the UA request described by the URL queries
(examples shown in Table 1). Subsequently it responds back to the UA by
appending the service information (resource’s URL and IP address of the
host) of one or more matching services in the payload.

Service Selection: A UA can specify best in a service discovery request’s
payload, to seek the DA’s assistance in selecting the best matching host if
multiple prospective hosts are found. In this case, the DA determines the
most appropriate service (if multiple services have been discovered) using
available user and network context information, e.g. battery, hops count,
UA location, etc.

Service Invocation: Service discovery is completed when an application gets
the response with a service identifier and address of its host. trendy, how-
ever, enables service invocation using a RESTful web service interface and
takes a step ahead by defining an adaptive publishing protocol (Section 3.4).

3.3 TRENDY Timer

The DA maintains soft state for each service description, so host devices send
status updates within a time period given by the DA. trendy uses an adaptive
timer to vary this time window length by maintaining a trendy counter for
individual nodes. The algorithm senses the demand of services to adaptively
increase the status maintenance interval for individual nodes. This significantly
decreases the number of packets required for status maintenance by the nodes.

The DA is configured with global attributes including, hit count threshold
value, timer step, retain threshold and the maximum trendy counter value,
which can be changed dynamically. It also maintains individual maximum counter
values for all registered SAs, which are changed in response to high demand of
services hosted by a node. Figure 3a describes the adaptive timer in a scenario.
Whenever the DA receives a status update message from a new node, it ac-
knowledges the registration with a time window for the next status maintenance
update. The subsequent update messages from the SA are responded with a
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(a) Adaptive timer: The DA keeps on in-
creasing the status update interval for a SA
until its hosted services become popular.
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(b) APPUB: The SA pushed the cache
to the DA after two service invocations,
which is used by the DA to serve a UA.

Fig. 3: Scenarios demonstrating adaptability of trendy

trendy counter value which is incremented every time a new update message
is received. The SA multiplies the acknowledged trendy counter with the basic
time window period to determine when the next update message is expected by
the DA. The DA keeps on increasing the trendy counter up to the maximum
value for the SA.

This maximum counter value for the SA is decremented by timer step, when
hit count (number of times discovered and selected) of its hosted services sur-
passes the hit count threshold value during the passage of a time window. Fig-
ure 3a shows how the maximum counter value of a SA decreased to 7 from 9
after two discoveries. If the hit count of a SA remained below the retain thresh-
old value, then the counter is increased by the timer step. In case of grouping,
all GMs follow the GL’s trendy counter value.

3.4 Adaptive Piggybacked Publishing (APPUB)

trendy devises a demand-based caching technique the APPUB (Adaptive Pig-
gybacked Publishing) as an alternative to balance the trade-off between service
invocation delay and network efficiency. It adapts to the demand of a resource
for caching rather than blindly maintaining cache of all resources in the network.

The DA maintains cached values with cached time and cache lifetime for
each service. The SA implements APPUB algorithm by sending cached values
and corresponding lifetime values to the DA, when the number of invocations
exceeds the hit count threshold. This enables a SA to get the help from the DA
to share the burden by acting as a proxy in busy times. The DA does not pass
the node’s IP address to a UA, if the fresh (not expired) cached value of the
resource is available. Figure 3b shows how the cache is pushed by a SA and then
used by the DA to serve a UA.
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4 Experiments and Results

Our simulations use the CONTIKI with RPL as a routing protocol and em-
ployed COOJA [13] to simulate all SAs (GMs and GLs). ContikiMAC [5] is used
as the Radio Duty Cycling (RDC) scheme and Carrier Sense Multiple Access
(CSMA) as MAC protocol. Two implementations of CoAP are used in experi-
ments. Erbium [8] is a Contiki based CoAP implementation, which is used inside
the 6LoWPAN for SAs; and JAVA based Californium4 is used to implement the
DA and UA. All simulations consist of 36 Tmote Sky nodes where one node acts
as a border router to connect the COOJA-based 6LoWPAN to the DA running
as Linux process via the Serial Line Internet Protocol (SLIP). All nodes are
placed randomly in a 190m× 180m wide field. Each node hosts three resources:
temperature, humidity and light. All SAs also share their location and current
state of battery with the DA. The nodes are given 5 different location tags with
7 nodes (for grouping: 1 GL and 6 GMs) for each location. The implemented GL
nodes in grouping scenarios are only capable of maintaining the status of their
GMs. Contiki’s ENERGEST [6] module is used to measure the energy consumed
at each node. All simulations are executed for 20 DA time windows each of 7
minutes long. Each experiment was repeated 10 times using a different random
seed for each iteration. All UA queries are stateless (each is sent as if from a
new UA) and randomly selected to send a GET request for a resource value in
one of the five locations after a random interval between 0 and 10 seconds. The
number of queries are varied (100 and 1000) for following Scenarios:

Case 1 - Basic TRENDY Service discovery (SD): This scenario only enables
the basic functionality of trendy. The UA gets an appropriately selected
resource’s URL and IP address of a SA hosting the matching service.

Case 2 - Basic TRENDY SD with adaptive timer : This scenario has a trendy
timer with global maximum counter fixed at 9 and hit count threshold at 2
on top of case 1’s functionality.

Case 3 - Basic TRENDY SD with adaptive timer and grouping : In this scenario,
grouping technique is employed with the functionality of case 2.

Case 4 - TRENDY APPUB and timer : This scenario employs trendy’s AP-
PUB technique with the threshold for service invocations fixed at 2 on top
of case 2. Therefore, SAs send the cached value of a resource to the DA after
two service invocations.

Case 5 - TRENDY APPUB with timer and grouping : In this scenario, grouping
is also enabled on top of the case 4.

The service invocation delay, number of control packets, number of packets
at the DA and energy consumption are measured in all experiments.

4.1 Measurements

Service Invocation delay: Service Invocation (SI) delay is defined as the time
interval between issuing an invocation request and the reception of a re-
sponse. The network traffic load, mean path length and message processing

4 http://people.inf.ethz.ch/mkovatsc/californium.php
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Fig. 4: Service Invocation delay for queries (small is better)

time are the factors which affect the SI delay. Figure 4a shows the advan-
tage of using trendy’s APPUB technique in cases 4 and 5, which have the
lowest average service invocation delay. SAs push the cache value to the DA
after two service invocations, which is used to serve the next UA queries
resulting in cache hits. Figure 4b depicts this trend for case 5 in one of the
five locations.

Control Overhead: A protocol’s control overhead is measured as the number
of control packets used by the protocol to complete its operational and man-
agement tasks. Figure 5a shows the control packet overhead as the sum of all
registrations, grouping and reporting messages. The trendy adaptive timer
used in cases 2 to 5 has reduced control overhead. Subsequently, in Figure 5b
we additionally display the number of service invocation messages directly
served by nodes in the control overhead equation. This figure illustrates the
benefit of using trendy’s APPUB and adaptive timer in cases 4 and 5.

Scalability factor: Packets received at the DA: With trendy, all services
are stored and maintained by the DA. This requires messages for registration
and status maintenance to be sent to the DA from all the SAs. Consequently,
the number of messages generated by nodes can overwhelm the network, as
most of the messages need to pass through multiple hops to reach the des-
tination. Thus, we consider the number of packets received by the DA from
6LoWPAN network as an important scalability factor of a service discovery
solution. Figures 6a and 6b show that case 3 and 5 using grouping mech-
anism reduced the flood of messages towards the DA by localising status
maintenance.

Energy consumption and Network lifetime: To estimate network lifetime,
we have considered top nodes in terms of energy consumption from each of
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the five locations. Figure 7a shows the individual energy consumption of all
35 nodes, whereas only top nodes are considered in Fig 7b. Both figures show
that cases 4 and 5 using trendy’s APPUB and adaptive timer will increase
the energy efficiency and network lifetime.

5 Conclusion and Future work

This paper presents trendy: an adaptive and context-aware Service Discovery
Protocol for the IoT. This protocol employs CoAP based RESTful web ser-
vices, which enable application-layer integration of constrained domains and the
Internet. trendy’s resource directory provides service discovery with a context-
aware service selection using user- and network-based context. The trade-off be-
tween status maintenance load and reliability is managed by trendy’s adaptive
timer based on demand. trendy’s APPUB technique has the following benefits:
it allows the service hosts to share their load with the resource directory and
also decreases the service invocation delay. Furthermore, trendy introduces a
context-based grouping technique where the resource directory divides the net-
work at the application layer, by creating location-based groups. This grouping
of nodes localizes the control overhead and provides the base for service compo-
sition, localized aggregation and processing of data. Our simulation results show
that trendy’s techniques decrease the control overhead, energy consumption
and service invocation delay. Additionally, the grouping technique considerably
decreases the number of packets towards the sink and thus improves scalability
in a multi-hop network. In future work, we intend to experiment with service
composition by employing more appropriate group leaders for the groups. In
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addition, the experiments with multiple heterogeneous networks and physical
hardware testbeds [11] are also in the pipeline.
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