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Abstract 

Process options to minimise the environmental impact and improve the 

efficiency of biodiesel production have been investigated.  The process options 

considered include the use of heterogeneous catalysts and used cooking oil 

(UCO).  An esterification pre-treatment reaction was investigated using an ion-

exchange resin (Purolite D5082) and an immobilised enzyme (Novozyme 435).  

Another immobilised enzyme (Amano Lipase PS-IM) was investigated for 

transesterification.  The fresh and used catalysts have been characterised.  The 

catalytic activity of Purolite D5082, Novozyme 435 and Amano Lipase PS-IM 

have been investigated using a jacketed batch reactor with a reflux condenser.   

 

Purolite D5082 has been developed for the esterification pre-treatment 

process and is not commercially available.  Novozyme 435 has been shown to 

be an effective esterification catalyst for materials with high concentrations of 

free fatty acid but it has not been investigated for the esterification pre-

treatment reaction.  It was found that a high conversion was possible with both 

catalysts.  The optimum reaction conditions identified for Purolite D5081 were a 

temperature of 60 C, a methanol to free fatty acid (FFA) mole ratio of 62:1, a 

catalyst loading of 5 wt% resulting in a FFAs conversion of 88% after 8 h of 

reaction time.  The optimum conditions identified for Novozyme 435 were a 

temperature of 50 C, a methanol to FFA mole ratio of 6.2:1 and a catalyst 

loading of 1 wt% resulting in a conversion of 90% after 8 h of reaction time.  

These catalysts were compared to previously investigated Purolite D5081 and it 

was found that the highest conversion of 97% was achieved using Purolite 

D5081, however there were benefits to using Novozyme 435 because the 

reaction could be carried out using a much lower mole ratio, at a lower 

temperature and in much shorter reaction time. 

 

During the Novozyme 435 catalysed esterification pre-treatment 

reactions it was found that the amount of free fatty acid methyl esters (FAME) 

formed during the reaction was greater than the amount of FFAs consumed.  In 

order to investigate further an ultra-performance liquid chromatography mass 
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spectrometry (UPLC-MS) method was developed to monitor the monogclyeride 

(MG), diglyceride (DG) and triglyceride (TG) concentrations.  This analytical 

method was used to show that Novozyme 435 would catalyse the esterification 

of FFAs as well as the transesterification of MGs and DGs typically found in 

UCO.   

 

With the UPLC-MS method it was possible to separate the 1, 2 and 1, 3 

DG positional isomers and from this it could be seen that the 1, 3 isomer 

reacted more readily than the 1, 2 isomer.  The results from the UPLC-MS 

method were combined with a kinetic model to investigate the reaction 

mechanism.  The kinetic model indicated that the reaction progressed with the 

sequential hydrolysis esterification reactions in parallel with transesterification.  

 

Commercially available Amano Lipase PS-IM was investigated for the 

transesterification reaction.  Enzymes are not affected by FFAs and as a result 

the optimisation was carried out with UCO as the raw material.  An optimisation 

study for the transesterification of UCO with Amano Lipase PS-IM has not 

previously been reported.  The conditions identified for the Amano Lipase PS-

IM catalysed transesterification step are addition of 5 vol% water, a temperature 

of 30 C, a methanol to UCO mole ratio of 3:1 and a catalyst loading of 0.789 

wt% resulting in a TG conversion of 43%.   

 

 An overall enzyme catalysed process was proposed consisting of 

Amano Lipase PS-IM catalysed transesterification (stage 1) followed by 

Novozyme 435 catalysed esterification (stage 2).  The previously identified 

optimum conditions identified for each catalyst were used for above stages.  It 

was found that when the oil layer from stage 1 was dried the final TG 

conversion was 55%. 
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Chapter 1: Introduction 

 

1.1 Motivation 

Most of the energy used by the developed world is derived from fossil 

fuels, however there is increasing concern regarding the use of these fuels.  It 

is generally accepted that burning fossil fuels is contributing to climate change 

and that these reserves are finite (Enweremadu & Mbarawa 2009; Balat & Balat 

2010).  In 2003 the European Union (EU) adopted a directive on biofuels for 

transport (Directive 2003/30/EC) which set an objective to replace 2% of energy 

for transport with biofuels by 2005, increasing to 5.75% in 2010 and 10% in 

2020 (Melero et al. 2009a).  This has subsequently been replaced with 

Directive 2009/28/EC, which requires 10 % of the energy used for transport to 

come from renewable sources by 2020. 

 

Biodiesel is a fuel which can be used as part of the energy mix because 

it is derived from lipid materials such as animal fats and vegetable oils 

(Enweremadu & Mbarawa 2009).  Animal fats and vegetable oils have a similar 

energy content to conventional diesel, but cannot be used directly as a fuel 

because of the viscosity (Knothe 2010).  Methods to reduce the viscosity 

include heating, blending, micro emulsions, pyrolysis and transesterification, 

and these have all been described as methods to produce biodiesel  (Meher et 

al. 2006a; Atadashi et al. 2013).  However, the ASTM International definition 

will be used for this work and is “mono-alkyl esters of long chain fatty acids 

derived from vegetable oils or animal fats” (ASTM International, 2012), because 

it defines biodiesel in terms of the product composition.  In addition it is slightly 

broader than the European standard which applies to a fatty acid methyl ester 

(FAME) liquid petroleum product (British Standards Online, 2013).  Biodiesel 

can be used neat although is generally blended with conventional diesel (Balat 

& Balat 2010).  

 

The conventional process to manufacture biodiesel is transesterification 

with methanol, using an alkaline catalysts such as sodium or potassium 
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hydroxide and edible vegetable oils such as rapeseed, soybean and sunflower 

oil (Di Serio et al. 2008; Balat & Balat 2010).  Vegetable oils are composed 

primarily of triglyceride molecules.  The transesterification reaction proceeds in 

a stepwise manner with triglycerides (TGs) being converted to diglycerides 

(DGs) and the diglycerides subsequently converted to monoglycerides (MGs) 

with the final products being glycerol and fatty acid alkyl esters (biodiesel) as 

shown in Figure 1.1 (Barakos et al. 2008; Hameed et al. 2009).  There are 

ethical issues with regards to diverting or displacing food crops for fuel.  In 

addition, changing the land use to cultivate fuel crops can be detrimental to the 

environment, because this can lead to an increased use of pesticides, a loss 

indigenous plants and potentially carbon release from the soil (Hara 2009).  

According to Directive 2009/28/EC these factors will need to be taken into 

account when calculating the contribution of a particular transport fuel to the 

target of 10%.  Many of these issues can be minimised by using waste 

materials such as used cooking oil (UCO).   

 

 

Figure 1.1. Schematic representation of the overall transesterification reaction.   

 

A disadvantage of UCO is that it contains a significant amount of free 

fatty acids (FFAs), formed during the cooking process, and these react with the 

alkaline catalysts used during the conventional process leading to the formation 

of soap (Enweremadu & Mbarawa 2009).  One of the solutions proposed for 

this problem is the use of alternative catalysts such as acid and enzyme 

catalysts because they are not affected by FFAs and these catalysts can 

simultaneously convert FFAs to biodiesel (Atadashi et al. 2013).    The reaction 

rate is generally much slower than base catalysed transesterification and an 

alternative approach is a two-step process.  The most common being acid 

catalysed esterification followed by base catalysed transesterification (Shahid & 
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Jamal 2011).  The esterification reaction occurs when FFAs react with a short 

chain alcohol such as methanol to form the associated alkyl ester and the 

reaction scheme is shown in Figure 1.2.  This is a reversible reaction with the 

reverse reaction being hydrolysis.  When alcohol is added to a reaction mixture 

containing TGs and FFAs is possible for the esterification and 

transesterification reactions to occur simultaneously.  The rate and selectivity of 

the reactions is determined by the catalyst and composition of the reaction 

mixture.  The possibility of simultaneous reactions will be investigated. 

   

 

Figure 1.2. Schematic representation of the esterification reaction. 

 

The production pathway will be taken into account when assessing the 

contribution of a fuel to the transport target of 10% (Directive 2009/28/EC).  

Homogeneous catalysts have been widely investigated for biodiesel production 

and are generally more efficient that the equivalent heterogeneous catalysts 

(Balat & Balat 2010; Atadashi et al. 2013).  However, separating homogeneous 

catalysts from biodiesel requires additional equipment and generates a large 

amount of waste water (Xie & Li 2006; Caetano et al. 2009; Zabeti et al. 2009).  

This work will focus on assessing heterogeneous catalysts to improve the 

efficiency of biodiesel production.  Ion-exchange resins for esterification pre-

treatment and enzyme catalysts have both been shown to produce high yields 

at relatively benign operating conditions (Ozbay et al. 2008; Enweremadu & 

Mbarawa 2009).  This work will focus on assessing an ion-exchange resin 

(Purolite D5082) and an immobilised enzyme (Novozyme 435) for the 

esterification pre-treatment reaction and an immobilised enzyme (Amano 

Lipase PS-IM) for the transesterification reaction as part of an environmentally 

benign process for biodiesel production.    
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1.2 Research Aims and Objectives 

The aims and objectives of the work were to: 

 

 Investigate the catalytic properties of the catalysts used in the 

work by means of various characterisation techniques.  The 

catalysts investigated were fresh and used Purolite D5082, fresh 

and used Novozyme 435 and fresh Amano Lipase PS-IM.  The 

techniques included field emission gun-scanning electron 

microscopy, pore size distribution, surface area measurements, 

elemental analysis, Fourier transform infra-red (FTIR) 

spectroscopy and sodium capacity determination.     

 Characterise the UCO by determining the acid value, density, 

FFAs, FAME, water, monoglycerides (MG), diglycerides (DG) and 

triglycerides (TG) concentrations and the FFAs composition.   

 Investigate the optimum batch reaction conditions for the 

esterification pre-treatment reaction and compare the catalytic 

activity of Purolite D5082, Novozyme 435 and previously 

investigated Purolite D5081. 

 Develop an analytical technique to monitor the MG, DG and TG 

concentrations using liquid chromatography (LC). 

 Develop a kinetic model to investigate the catalytic action of 

Novozyme 435 using the FFAs, FAME, MG, DG and TG 

concentrations and use this information to investigate the reaction 

mechanism. 

 Investigate a two stage enzyme catalysed biodiesel production 

process focusing on the optimisation of the batch reaction 

conditions of the first stage catalysed by Amano Lipase PS-IM.  

The second stage will be catalysed using Novozyme 435.    
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1.3 Structure of Thesis 

Brief descriptions of each chapter are summarised below: 

 

Chapter 1: Introduction:- In this chapter the aims and objectives of the 

research work are discussed and the thesis structure is introduced. 

 

Chapter 2: Literature Review:- A review of the literature pertaining to 

biodiesel production is presented in order to provide information on the 

background and context of biodiesel research.  An overview of biodiesel 

production is provided in the first main section.  The main types of catalyst 

investigated for biodiesel production are basic, acidic and enzymatic and these 

are discussed in subsequent sections.  This is followed by a review of LC 

techniques assessed for investigating biodiesel production.   

 

Chapter 3: Materials and Methods:- The materials and methods used 

for the experimental work are explained in this chapter.  The main sections are 

materials, catalyst characterisation, batch experimental set-up and analytical 

techniques including the tested LC methods. 

 

Chapter 4: Catalyst Characterisation:- Results of the characterisation 

of the fresh and used catalysts used in the experimental work are presented in 

this chapter.  The physical properties of the catalysts were characterised using 

FEG-SEM, surface area, pore volume and diameter measurements, true 

density and porosity.  The chemical properties were characterised using 

elemental analysis, FTIR measurements and sodium capacity determination.  In 

addition the immobilised enzymes were characterised using a bicinchoninic 

acid (BCA) assay.    

 

Chapter 5: Used Cooking Oil (UCO) Characterisation Batch 

Experiment Reproducibility:-  Preparatory work essential for the batch 

experiments is covered in this chapter.  In particular, the UCO was 

characterised using various chemical and physical methods and the results are 
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discussed.  In addition, the reproducibility of the batch experiments was 

assessed. 

 

Chapter 6:- Esterification Pre-treatment of Used Cooking Oil:- In this 

chapter, the catalytic activity of three esterification pre-treatment catalysts are 

compared.  Optimisation studies were carried out on two types of catalysts; an 

ion-exchange resin (Purolite D5082) and an immobilised enzyme (Novozyme 

435).  The catalytic activity of these two catalysts was compared to the 

previously investigated ion-exchange resin, Purolite D5081. 

 

Chapter 7: Liquid Chromatography Development Work and Kinetic 

Modelling:- A detailed investigation of the kinetic activity of Novozyme 435 for 

the esterification pre-treatment is explained in this chapter.  A comparison of LC 

methods for monitoring biodiesel production was carried out.  The most suitable 

method was identified as ultra performance liquid chromatography mass 

spectrometry (UPLC-MS) and this method used to monitor the MG, DG and TG 

trends of selected batch experiments.  The parameters of various kinetic 

models were calculated and this was used to assess the reaction mechanism 

for Novozyme 435. 

 

Chapter 8: Enzymatic Biodiesel Production:- In this chapter the 

production of biodiesel using enzyme catalysts is discussed.  A two-stage 

process was proposed.  The first stage was a transesterification reaction 

catalysed by Amano Lipase PS-IM and a detailed study of the optimum batch 

reaction conditions is discussed.  The second stage was catalysed by 

Novozyme 435 using the optimum conditions identified in Chapter 6.   

 

Chapter 9: Conclusions and Suggestions for Future Work:- 

Conclusions relating to the overall work and suggestions for future work are 

presented in this chapter.   
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Chapter 2: Literature Review 

 

2.1 Introduction  

The aim of this chapter is to review the current literature relevant to the 

environmentally benign production of biodiesel by heterogeneous catalysis.  In 

order to do so it is necessary to understand the definition and composition of 

biodiesel.  Various feedstocks can be used for biodiesel production and the 

choice has implications in terms of the environmental impact and type of 

process that can be used for biodiesel production.  These issued are discussed 

in Section 2.2. 

 

The catalysts investigated for biodiesel production can be classified as 

homogeneous and heterogeneous (Helwani B et al. 2009; Enweremadu & 

Mbarawa 2009).  This work is focused on heterogeneous catalysts because 

they are readily separated and reused.  The catalysts investigated for biodiesel 

production can also be classified as base, acid and enzyme catalysts (Semwal 

et al. 2011; Atadashi et al. 2013).  The environmental impact of biodiesel 

production can be minimised by designing processes which operate at low 

temperatures and with a minimum amount of catalyst and reagent.  On this 

basis enzymes are often favoured because they operate best at relatively 

benign conditions (Hara 2009).  High conversions at relatively benign conditions 

can also be achieved using cation-exchange resins for esterification (Ozbay et 

al. 2008; Abidin et al. 2012).  As a result the emphasis is on cation exchange 

resins and enzyme catalysts.  Base catalysed biodiesel production is discussed 

in Section 2.3, followed by acid catalyst biodiesel production in Section 2.4 and 

enzyme catalysed biodiesel production in Section 2.5. 

 

Methods to monitor the concentration of free fatty acids (FFAs) and free 

fatty acid methyl esters (FAME) were previously developed (Abidin 2012).  

However it was found that a more detailed analysis was required for some of 

the work with liquid chromatography identified as the most suitable analytical 
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technique.  Potential methods for the analysis of biodiesel products with a focus 

on liquid chromatography are discussed in Section 2.6.          

   

2.2 Overview of Biodiesel Production 

2.2.1 What is Biodiesel? 

Vegetable oils and animal fats are being investigated as an alternative to 

conventional diesel because they have a similar calorific value and are 

renewable.  However vegetable oils and animal fats cannot be used directly in 

modern diesel engines because they are comprised of high viscosity 

triglycerides.  The high viscosity means there is poor atomisation of the fuel 

leading to poor combustion and this causes deposits, a deterioration in 

performance and eventually engine damage (Xie & Li 2006; Demirbas 2009; 

Knothe 2010).     

 

The viscosity can be changed using physical methods such as heating or 

blending.  Diesel engines can be modified so that vegetable oil is heated prior 

to combustion however the chemical structure remains unchanged and as a 

result long term use can lead to engine damage (Demirbas 2009; Balat & Balat 

2010).  Blending various vegetable oils with diesel has been shown to improve 

engine performance and reduce emissions (Agarwal & Rajamanoharan 2009; 

Hazar & Aydin 2010) during short term tests.  However a fuel blend of 25% 

sunflower oil with 75% diesel was found to be unsuitable for long term use in a 

direct-injection engine (Balat & Balat 2010). 

 

  The viscosity can also be reduced by chemically changing the structure 

of the triglycerides using a process such as transesterification or pyrolysis.  

Pyrolysis involves the thermal or catalytic cracking of the triglyceride molecules 

to form a fuel with a similar composition to conventional diesel (Maher & 

Bressler 2007; Knothe 2010).  The product composition depends on 

parameters such as temperature, catalyst type and vegetable oil type (Tian et 

al. 2008; Knothe 2010).  Alternatively, vegetable oil can be blended with crude 

oil at the refinery and existing processes such as cracking and 

hydrodeoxygentation used to convert vegetable oil to renewable diesel; 
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however the refinery processes and final product composition may be affected  

(Huber et al. 2007; Maher & Bressler 2007; Šimáček et al. 2011; Bielansky et 

al. 2011).  Using existing processes is expected to reduce costs however the 

reaction kinetics and effect of vegetable oil on the refinery processes need to 

be better understood and modifications may be required which will increase the 

costs (Melero et al. 2010). 

 

Transesterification is relatively simple and well understood, and as a 

result it is the preferred process for reducing the viscosity of vegetable oil 

(Enweremadu & Mbarawa 2009; Demirbas 2009; Balat & Balat 2010).  

Transesterification, also known as alcoholysis, occurs when triglycerides react 

with a short chain alcohol in the presence of a catalyst to form their respective 

fatty acid mono-alkyl esters and glycerol (Hameed et al. 2009; Caetano et al. 

2009; Zabeti et al. 2009).  This fuel has a different chemical structure to 

conventional diesel, however, the combustion properties and cetane number 

are similar (Knothe 2010). 

 

Biodiesel has been described as a fuel derived from vegetable oils and 

animal fats which can be produced using techniques such as blending, 

microemulsions, pyrolysis and transesterification (Meher B et al. 2006; Atadashi 

et al. 2013).  This definition then covers fuels with a variety of chemical 

structures and associated advantages and disadvantages as discussed above.  

Alternatively ASTM International defines biodiesel as “mono-alkyl esters of long 

chain fatty acids derived from vegetable oils or animals fats” (Su & Wei 2008; 

Enweremadu & Mbarawa 2009).  Fuel produced by techniques such as 

pyrolysis and cracking are then known as green diesel or renewable diesel 

(Knothe 2010).  The ASTM definition of biodiesel is more specific and 

meaningful and as a result it will be the definition of biodiesel used in this work.  

Biodiesel can be used as is or blended with conventional diesel (Ganesan et al. 

2009).   

 

The advantages of biodiesel compared to conventional diesel are given 

below (Helwani et al. 2009a; Russbueldt & Hoelderich 2009; Xie & Li 2006): 

 They can be derived from local renewable resources.  
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 Improved biodegradability and non-toxicity.  

 Reduction of most exhaust emissions including SOx, CO, unburnt 

hydrocarbons and particulate matter although there is an increase in NOx. 

 Safer handling and storage due to the lower volatility and higher flash point. 

 Improved lubricating properties. 

 

2.2.2 Environmental Considerations 

Biodiesel is perceived to be a renewable fuel source.  However in order 

for it to be truly renewable the energy consumed during production needs to be 

less than the energy provided when biodiesel is burned as fuel.  A typical 

example of the stages required to produce biodiesel are shown in Figure 2.1 

and include the cultivation of plants, harvesting and transport of the seeds, 

conversion of the seeds to oil and subsequently to biodiesel (Hara 2009; 

Knothe 2005).  

 

Figure 2.1.  Energy and carbon cycle for the production of piodiesel. 

 

When cultivating plants to provide fuel there are economic, 

environmental and social issues which need to be taken into account, that do 

not occur when conventional diesel is used.  Oils from plants such as rapeseed 
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and soybean can be used as food or fuel and as a result there is direct 

competition between food and fuel (Hara 2009; Helwani et al. 2009a).  In 

addition, growing crops for fuel can have detrimental effects on the environment 

such as contamination of surface water from the use of pesticides and 

herbicides, and cutting down indigenous plants to make space for agriculture 

(Knothe et al., 2005).   

 

A life cycle assessment provides a systematic approach to evaluating 

environmental impacts although there is a subjective element because 

judgements need to be made regarding the importance of a given impact 

(Knothe 2005; Hara 2009). A life cycle assessment focused on the reduction of 

carbon emissions found that there was a 78% improvement from biodiesel 

compared to conventional diesel (Helwani et al. 2009b).  An alternative 

approach is to use an energy balance to assess the units of energy yielded for 

each unit of energy required to produce a given fuel (Balat & Balat 2010).  It 

was found that biodiesel has the highest balance when compared to liquid fuels 

producing a positive energy balance of 2.5 – 3.2.  However some of the fossil 

fuel energy inputs were ignored in the assessment where a value of 3.2 was 

determined. 

 

In order to ensure that biodiesel is an environmentally benign fuel all 

aspects of the lifecycle need to be considered.  This includes minimising the 

consumption of energy and resources during the manufacture of biodiesel and 

selecting a suitable feedstock. 

 

2.2.3 Potential Biodiesel Feedstocks 

The conventional feedstock for producing biodiesel are edible vegetable 

oils such as rapeseed oil (Georgogianni et al. 2009a), soybean oil (Xie & Huang 

2006), sunflower oil (Türkan & Kalay 2006) and palm oil (Al-Zuhair et al. 2007; 

Hameed et al. 2009).  More than 95% of the global production of biodiesel uses 

edible vegetable oil as the feedstock (Balat & Balat 2010).  Biodiesel produced 

from edible vegetable oil is sometimes (Tariq et al. 2012) referred to as a first 

generation biofuel.   
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The cost of producing biodiesel is much higher than conventional diesel, 

particularly when refined or virgin oil is used due to the high cost of the raw 

material.  Haas (2005) estimated that the price of the amount of soybean oil 

required to make a litre of biodiesel was US$ 0.40-0.48 compared to US$ 0.21-

0.24 per litre of diesel.  Haas et al. (2006) developed an economic model to 

investigate the cost of biodiesel production with soybean oil as the raw material 

at a cost of 0.52 US$kg-1 that the vegetable oil represented 82% of the cost.  

The remaining cost components were chemicals (7%), depreciation (5%), direct 

labour (2%), utilities (2%) and general overhead (1%).  Costs not accounted for 

in this model include an internal rate of return, economic life, corporate tax rate 

salvage value and debt fraction (Haas et al. 2006).         

 

In addition there are ethical concerns with regards to using a potential 

food source as a fuel.  In order to overcome ethical concerns with using a 

potential food source as fuel the use of non-edible oils has also been 

investigated, i.e., Jatropha curcas (Su & Wei 2008; Corro et al. 2013), 

Pongamia pinnata (Meher et al. 2006a) and babassu oil (Da Rós et al. 2010).  

This type of fuel is sometimes refered to as a second generation biodiesel 

(Tariq et al. 2012).  Plants such as J. curcas can grow in poor quality soil and is 

often used for erosion control however growing this type of crop can still lead to 

environmental damage and competition with food growing resources (Hara 

2009; Corro et al. 2013). 

 

Animal fats have been investigated for the production of biodiesel and 

include lard (Caetano et al. 2009; Huang et al. 2010) and beef tallow (Da Rós et 

al. 2010)  Biodiesel from animal fats is not widely used because the cold flow 

properties are not as good as for biodiesel derived from vegetable oils such as 

soybean oil (Wyatt et al. 2005).   

 

More recently microalgae have been considered as a source of oil for 

biodiesel production (Balat & Balat 2010; Demirbas & Fatih Demirbas 2011; 

Tran et al. 2012).  Microalgea can be grown in a variety of aquatic 

environments and as result non-agricultural land can be used for cultivating 

microalgae.  Microalgea grow rapidly with the oil content up to 40 wt%.  
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Microalgae consume carbon dioxide and can be used as part of a process to 

scrub power plant flue gasses.  The microalgae species are subdivided into ten 

taxonomic groups which include green algae (Chlorophyceae), diatoms 

(Bacillariophyceae), yellow-green (Xanthophyceae), golden algae 

(Chrysophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae), 

blue-green algae (Cyanophyceae), dinoflagellates (Dinophyceae), 

Prasinophyceae and Eustigmatophyceae (Williams & Laurens 2010).  Species 

which have been investigated for biodiesel production include Chlorella 

protothecoides (Williams & Laurens 2010) and Chlorella vulgaris (Yin et al. 

2010).  The cultivation of microalgae is currently not economically feasible due 

the costs associated with harvesting the microalgae however there is the 

potential to improve the economics by cultivating algae to provide additional 

products (Williams & Laurens 2010).  Biodiesel from microalgae is sometimes 

referred to as third generation biodiesel (Tariq et al. 2012).      

 

The conventional raw materials for biodiesel production are vegetable 

oils and animal fats with a high concentration of triglycerides, with the emphasis 

on converting the triglycerides to biodiesel.  However FFAs can also be 

converted to biodiesel by means of an esterification reaction (Melero et al. 

2009a).  Many crude vegetable oils contain significant amounts of FFAs, which 

are separated from the triglycerides during refining.  Palm fatty acid distillate 

(Talukder et al. 2009) and soybean oil deodoriser distillate (Souza et al. 2009) 

have been investigated as potential raw materials for biodiesel production. 

 

Another potential raw material for the production of biodiesel is used 

cooking oil (UCO).  The production of biodiesel from UCO has been widely 

investigated (Ozbay et al. 2008; Balat & Balat 2010; Lam et al. 2010) and offers 

numerous environmental benefits because a waste material is being recycled.  

There are numerous concerns with the disposal of UCO and it is often poured 

down the drain or dumped illegally causing water and environmental pollution 

(Balat & Balat 2010; Enweremadu & Mbarawa 2009).  UCO generally contains 

FFAs and water due to the cooking process (Ozbay et al. 2008; Enweremadu & 

Mbarawa 2009).  UCO has been selected as the feedstock for this work 

because it is a waste material and relatively cheap. 
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2.2.4 Potential Processes 

There are a variety of methods available to produce biodiesel and the 

feedstock will influence the choice of process.  The conventional process is to 

convert the triglycerides in refined vegetable oil to fatty acid methyl esters 

(FAME) using an alkali catalysed transesterification reaction with methanol as 

the reagent (Ganesan et al. 2009).  The transesterification reaction proceeds in 

a stepwise manner with the triglycerides being converted to diglycerides and 

the diglycerides subsequently converted to monoglycerides with the final 

products being glycerol and fatty acid alkyl esters (biodiesel) as shown in 

Chapter 1, Figure 1.1 (Barakos et al. 2008; Hameed et al. 2009).      

 

Alkali catalysed transesterification is not suitable for feedstocks where 

the FFAs concentration is greater than 0.5 wt%, although this can vary 

depending on the process (Lam et al. 2010; Melero et al. 2009a).  FFAs react 

with the alkali catalysts leading to saponification side reactions.  These side 

reactions reduce the amount of biodiesel produced because the catalyst is 

consumed and the biodiesel is difficult to separate from the reaction mixture 

(Balat & Balat 2010).  Heterogeneous basic catalysts have been proposed as a 

solution however saponification is still possible with this type of catalyst 

(Russbueldt & Hoelderich 2009; Melero et al. 2010).  In addition, the FFAs will 

need to be removed during the process so that the final product will meet the 

biodiesel specifications (Knothe 2010).    

 

Acid catalysts can be used for the transesterification reaction because 

these catalysts are not affected by the presence of FFAs, in fact they 

simultaneously catalyse the esterification and transesterification reactions (Lam 

et al. 2010; Melero et al. 2009a).  However, acid catalysed transesterification is  

slow when compared to base catalysed transesterification (Balat & Balat 2010). 

 

Processes have been investigated for the removal of FFAs, from UCO, 

prior to transesterification and these include a method of steam pre-treatment 

followed by sedimentation, separation by column chromatography, various 

filtration and drying methods and neutralisation (Enweremadu & Mbarawa 
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2009; Russbueldt & Hoelderich 2009).  Alternatively the FFAs in UCO can be 

converted to biodiesel by means of an esterification reaction followed by 

transesterification (Kulkarni & Dalai 2006; Ozbay et al. 2008).   

 

The esterification reaction occurs when FFAs react with a short chain 

alcohol such as methanol to form the associated alkyl ester and the reaction 

scheme is shown in Chapter 1, Figure 1.2.  This is a reversible reaction with the 

reverse reaction being hydrolysis.  Esterification has been investigated as a 

pre-treatment step raw materials with a high FFAs content such as UCO 

(Russbueldt & Hoelderich 2009; Melero et al. 2009b).  Raw materials containing 

high concentrations of FFAs such as palm fatty acid distillate and soybean oil 

deodoriser distillate can be converted directly to biodiesel using an esterification 

reaction (Souza et al. 2009; Talukder et al. 2009).     

 

Another option is to use an enzyme catalyst to produce biodiesel.  

Lipases are the class of enzymes investigated for the production of biodiesel.  

This class of enzyme can catalyse transesterification, esterification and 

hydrolysis (Tongboriboon et al. 2010).  The order of preference for the reactions 

depends on the lipase type, feedstock and composition of the reaction medium.  

The saponification reaction does not occur when using lipase catalysts and as 

result separation of glycerol is relatively easy and the methyl esters do not need 

purification (Balat & Balat 2010).  To date lipase catalysed transesterification is 

relatively slow and lipases are relatively expensive.    

 

Lipase catalysed hydrolysis reactions can be used to convert 

triglycerides to FFAs (Hara 2009; Melero et al. 2009a).  The hydrolysis reaction 

proceeds in a stepwise manner similar to transesterification although the 

reagent is water and the final products are FFAs and glycerol as shown in 

Figure 2.2.  The FFAs then need to be converted to biodiesel by means of an 

esterification reaction.  This approach is generally considered for unrefined 

vegetable oil which contains triglycerides and high levels of FFAs (Talukder B 

et al. 2010). 

 



Chapter 2: Literature Review  16 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

 

Figure 2.2.  Schematic representation of the overall hydrolysis reaction, of 
triglycerides.   

 

 Non-catalysed processes for the manufacture of biodiesel have been 

investigated using supercritical methanol (Melero et al. 2009a; Zabeti et al. 

2009).  The reactions take place in a single phase because supercritical 

methanol is fully miscible in vegetable oil and as result the reaction occurs very 

fast with equilibrium being reached in about 2-4 min (Helwani et al. 2009a).  

The transesterification of triglycerides and the esterification of FFAs occur 

simultaneously.  The disadvantage of this process is that high temperatures 

(250-400C) and pressures (35–60 MPa) are required (Zabeti et al. 2009).  This 

means that the process will be expensive to run however there may be some 

financial and environmental benefits as no catalyst is required. 

 

Alcohol, particularly methanol, and vegetable oil are not very miscible 

leading to the formation of two liquid phases (Xie & Li 2006; Zabeti et al. 2009).  

One way of overcoming this problem is to use a co-solvent such as 

tetrahydrofuran, dimethyl sulfoxide, n-hexane and ethanol (Al-Zuhair et al. 

2006; Semwal et al. 2011).  An addition reason for using an co-solvent during 

enzyme catalysed reactions is that suitable solvents can be used to dilute the 

short chain alcohols which can deactivate enzymes (Su & Wei 2008).  Talukder 

et al. (2009) assessed various solvents for improved biodiesel yield from the 

esterification of palm fatty acid distillate (PFAD) using an ion-exchange resin 

and an enzyme catalyst.  It was found that isooctane increased the Novozyme 

435 catalysed yield from 90 to 95% but had a negligible effect on the ion-

exchange system.  Organic solvents have several drawbacks such as diluting 

the reagents, adding mass transfer resistances and requiring additional solvent 

recovery (Helwani et al. 2009b; Tongboriboon et al. 2010).  The addition of an 
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organic solvent is not in-line with an environmentally benign process and will 

not be considered further.   

 

Alternative processes, such as ultrasound energy and microwave 

irradiation have been considered.  Ultrasound energy was compared to a 

mechanical stirrer for the transesterification of soybean oil (Georgogianni et al. 

2009b).  The reaction rate increased significantly reducing the reaction time 

from 24h to 5h.  Microwave assisted heating has been shown to increase the 

reaction rate.  It has been shown that a conversion of 96% could be achieved 

using a heteropoly acid, with a reaction time of 10 min and a temperature of 60 

C (Zhang et al. 2010).  Although these techniques show potential they have 

not been widely investigated (Atadashi et al. 2013) 

 

A summary of the most common reaction schemes and the associated 

feedstocks is given in Table 2.1.  UCO has been selected as the feedstock for 

this work and as a result chemical and enzyme catalysed esterification pre-

treatment will be investigated.  This will be followed by an investigation of lipase 

catalysed transesterification. 

 

Table 2.1. A summary of potential reaction schemes and the associated 
feedstocks. 

Reaction Scheme Proposed Feedstock 

Base catalysed 

transesterification 

Rapeseed oil (Georgogianni et al. 2009a) 

Rapeseed oil (Komers et al. 1998) 

Acid catalysed 

transesterification 

UCO (Helwani et al. 2009b). 

Crude coconut oil (Jitputti et al. 2006) 

Enzyme catalysed 

transesterification 

Waste frying oil (Azócar et al. 2010) 

Sunflower oil (Soumanou 2003) 

Microalgal oil from Chlorella vulgaris ESP-31 (Tran 

et al. 2012) 

Esterification - 

Transesterification 

UCO  (Ozbay et al. 2008) 

Crude J. curcas (Corro et al. 2013) 

Esterification Soybean oil deodoriser distillate (Souza et al. 2009) 

Palm fatty acid distillate (Talukder et al. 2009) 
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Lard (Caetano et al. 2009) 

Hydrolysis - 

Esterification 

Acid oil, an oil refining by product (Watanabe et al. 

2007) 

UCO (Talukder et al. 2010a) 

 

 

2.3 Base Catalysed Biodiesel Production 

2.3.1 The Conventional Homogeneous Process 

Homogeneous alkaline catalysed transesterification has been reported 

using hydroxides (Hara 2009; Zabeti et al. 2009), alkaline metal alkoxides (Xie 

& Li 2006), sodium and potassium carbonates.  Fast reaction rates are possible 

using methoxide catalysts however they are expensive and hydroscopic (Akoh 

et al. 2007; Ganesan et al. 2009).  Sodium hydroxide and potassium hydroxide 

are generally used for industrial processes (Atadashi et al. 2013).  Typical 

reaction conditions using a refined vegetable oil are an alcohol to oil mole ratio 

of 6:1, 60-65 C,  a pressure of 1.4-4.1 bar and a catalyst loading of 0.5-2 wt% 

(Helwani et al. 2009b).  For these conditions a conversion greater than 95% 

can be expected after 1 h of reaction time.   

 

Homogeneous catalysts are popular because they allow short reaction 

times and relatively benign conditions however there are problems with 

downstream processing.  The homogeneous catalysts are dissolved in the 

transesterification products and this means that complex and expensive 

processing units are required which use large amounts of energy, chemicals 

and water to separate and neutralise the alkali catalysts generating a large 

amount of effluent (Cordeiro et al. 2008; Hara 2009; Caetano et al. 2009).   

 

Another problem with using homogeneous alkaline catalysts is 

saponification side reactions.  Water can be present as a contaminant or 

formed from the reaction of the hydroxide with alcohol (Hameed et al. 2009) 

and leads to the hydrolysis of esters to soap.  Saponification can also occur 

when there are high levels of FFAs, which react with alkali catalyst to form soap 
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and water (Ozbay et al. 2008; Enweremadu & Mbarawa 2009).  Saponification 

consumes the catalyst and the soaps form stable emulsions which cause 

problems with the recovery and purification of biodiesel (Enweremadu & 

Mbarawa 2009; Atadashi et al. 2013).  Opinions vary about the upper limit of 

FFA that is acceptable for transesterification to avoid saponification.  Yagiz et 

al. (2007) recommended a maximum level of 1 wt% while Ozbay et al. (2008) 

suggested that the FFA content should be as low as 0.5 wt% of the vegetable 

oil.  Georgogianni et al. (2009a) found that the catalyst concentration was also 

a factor in saponification with soap formation occurring with a NaOH 

concentration of 2.5 wt% and feedstock oil with an FFA concentration of 0.9 

wt%.  The maximum recommended %FFAs has been found to vary from 0.5 to 

3 wt% (Atadashi et al. 2013).   

 

2.3.2 Heterogeneous Basic Catalysts 

Solid basic catalysts have been proposed for biodiesel production 

because they are readily separated from the reaction mixture and can be 

reused, they are less corrosive and will not be affected by FFAs (Hara 2009; 

Atadashi et al. 2013).  The heterogeneous basic catalysts investigated for 

biodiesel can be categorised as metal oxides, mixed metal oxides, supported 

alkali and alkaline earth metals, basic zeolites, hydrotalcites and anion 

exchange resins.  A summary of the heterogeneous basic catalysts discussed 

in this section is given in Table 2.2.   

 

Metal oxides have been investigated because they have a low solubility 

in the reaction mixture.  The main types investigated being calcium oxide and 

magnesium oxide although strontium oxide has also been considered (Sharma 

et al. 2011).  A yield of 92% has been reported using 5.0 wt% of CaO as a 

catalyst, a 12:1 mole ratio, after 1 h (Sharma et al. 2011).  Alternatively a 

conversions of 91 – 97% are possible with reaction times of 10 min, a methanol 

to oil mole ratio of approximately 40:1 and a temperature of 300 C (Hara 

2009).  However it has been found that there are problems with leaching into 

the reaction mixture and forming calcium diglyceroxide which catalysed the 

reaction (Kouzu et al. 2009)              
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Limmanee et al. (2013) investigated mixed metal oxides of a CaMgZn 

mixed oxide by varying the ratio of metals.  It was found that a FAME yield of 

97.5% was achieved with a Ca:Mg:Zn mole ratio of 3:1:1 using a methanol to oil 

ratio of 20:1, a catalyst loading of 6 wt% and a temperature of 60 C.  It was 

found that there was a correlation between the initial rate of FAME formation 

and the total basicity.  A conversion of 94% was possible at similar reaction 

conditions using a Li-doped MgO catalyst (Wen et al. 2010).  However, metal 

leaching was detected.   

 

The performance of basic catalysts can be improved by using a support 

to increase the basicity and surface area.  Examples include SrO, MgO or 

KCO3 on an alumina (Al2O3) support (Hara 2009; Helwani et al. 2009b).  Basic 

zeolites and alkali- or alkaline earth metal composites such as Mg/hydrotalcite 

and Li/hydrotalcite have also been considered.  Noiroj et al. (2009) compared 

KOH/Al2O3 with KOH/NaY zeolite and found a conversion of 91% was possible 

for both catalysts with a reaction time of 2-3 h, 60 C, a mole ratio of 15:1 using 

methanol and a catalyst loading of 3-6 wt%.  There was potassium leaching 

from both catalysts.  A calcined sodium silicate catalyst has been found to give 

a reasonably stable conversion of 100%, at 60 C, after 1 h and a methanol to 

oil mole ratio of 7.5:1 (Guo et al. 2010).     

 

Xie and Li (2006) compared various potassium compounds (KF, KCl, 

KBr, KI, K2CO3, KNO3 and KOH) loaded onto an alumina support and found 

that with potassium iodide provided the highest conversion.  In the second 

stage various supports were compared (ZnO2, ZnO, NaX, KL and Al2O3) and it 

was found that the highest conversion was achieved using alumina.  Xie & Li 

(2006) found that the best catalyst was 35 wt% KI loading on Al2O3 and 

calcined at 500 C for 3 h.  The reaction conditions, with a reflux of methanol, 

were a methanol to oil ratio of 15:1, a reaction time of 8h and a catalyst loading 

of 2.5% which resulted in a conversion of 96%.  It was found that conversion 

increased with increasing catalyst basicity. 
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Hameed et al. (2009) investigated KF/ZnO because the preparation of 

this catalyst is easy and the materials are relatively cheap.  It was found that 

catalyst loading was the most important parameter for this system with 

conversion increasing from 18 % to 87 % when the catalyst loading was 

increased from 1 % to 3 %.  The optimum conversion of vegetable oil was 89% 

with a methanol to oil mole ratio of 11.43:1, a reaction time of 9.72 h and 5.52 

wt% of catalyst using palm oil.  These results correspond with earlier work 

carried out by  Xie & Huang (2006) using soybean oil. 

 

Ramos et al. (2008) assessed the catalytic activity of various basic 

zeolite catalysts; mordenite, beta and X.  Zeolite X shown the highest 

transesterification activity and this was attributed to a higher concentration of 

super basic sites.  It was found that the catalytic activity of zeolite X was 

improved by loading with and excess of sodium (titled 3NaX).  Sodium 

bentonite binder was used to improve the mechanical strength of Zeolite X and 

it was found that this had a minimal effect on the catalytic activity, the resulting 

catalysts was titled 3NaXB.  It was shown that a conversion of 95% was 

possible using 3NaXB.  A reusability study showed that there was a 

homogeneous-like mechanism due to leaching of alkali methoxide species.  

Hydrotalcite is an anionic and basic clay also known as layered double 

hydroxide and an example of the chemical formula is; Mg6Al2(OH)16CO34H2O 

(Atadashi et al. 2013).  The transesterification of refined and acidic cottonseed 

oil was investigated using an Mg-Al-CO3 hydrotalcite catalyst (Barakos et al. 

2008).  It was found that a conversion of 98% was possible when glycerol 

removal stages were incorporated using temperature of 180-200 C.  It was 

found that simultaneous esterification and transesterification was possible when 

this catalyst was used for the conversion of acid cottonseed oil.  Georgogianni 

et al. (2009b) investigated Mg/MCM-41 zeolite, MgAl hydrotalcite and 

mesoporous K/ZrO2 and it was found that the highest conversion was achieved 

using the MgAl hydrotalcite with a conversion of 97% after 24 h.     

 

A commercial process using a heterogeneous basic catalyst has been 

implemented and is based on the Esterfip-H technology developed by the 
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Institute Français du Petrole (Melero et al. 2009a; Limmanee et al. 2013).  The 

catalyst used for this process is composed of a mixed oxide of zinc and 

aluminium.  A continuous two-step process is required with intermediate 

glycerol removal in order to shift the equilibrium towards biodiesel formation.  

The reaction is carried out at a higher temperature than homogeneous 

processes however the final conversion is nearly 100% and with a purity 

greater than 99%.  Although solid basic catalysts have been proposed for use 

with UCOs the raw material specifications require an FFAs concentration 

should be below 0.25% and a water concentration below 1000 ppm.    

 

Anion exchange resins have also been considered for biodiesel 

production.  A weak anion exchange resin (Amberlite IRC-93) was compared to 

a strong resin (Amberlite IRA-900) for the transesterification of yellow horn oil 

and it was found that conversion was substantially higher with Amberlite IRA-

900 (Li et al. 2012).  It was shown that while a conversion of 96% could be 

achieved using a microwave assisted technology, when conventional heating 

was used the conversion was 26%.  In contrast Shibasaki-Kitakawa et al. 

(2007) found that the activity of PA306s was comparable to homogeneous base 

catalysts using a conventional batch reactor.  Abidin (2012) investigated 

PA360s for the transesterification of pre-treated UCO and found that a 

conversion of 75% was possible at 55 C, using a catalyst loading of 9 wt% and 

a methanol to oil mole ratio of 18:1.           

 

There is a lot of potential to use basic catalysts for the production of 

biodiesel and high conversions have been reported at relatively benign 

operating conditions (Hara 2009; Sharma et al. 2011) although temperatures as 

high as 200 C have been investigated.  It has been found that conversion 

increases with increasing basicity (Xie & Li 2006; Georgogianni et al. 2009a; 

Limmanee et al. 2013)  However there are still problems with this type of 

catalyst which include leaching of the active species, sensitivity to water and 

FFAs (Sharma et al. 2011; Atadashi et al. 2013).  In addition the preparation of 

many of these catalysts is complex and calcining at high temperatures is 

required for some of these catalysts (Atadashi et al. 2013).   
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Table 2.2. A summary of the heterogeneous basic catalysts discussed 

Catalyst Type Reaction Conditions* Conversion Reference 

Ca:Mg:Zn with the 
mole ratio 3:1:1, 

calcined at 800 C for 
2 h 

Palm kernel oil, 60 C, 
methanol, 20:1 mole 
ratio, 6 wt% catalyst 

97% Limmanee et 
al. (2013) 

1.4 wt% Li/MgO, 

calcined at 550 C for 
10 h 

Soybean oil, 60 C, 9 
wt% catalyst loading, 
methanol, 12:1 mole 
ratio  

94% Wen et al. 
(2010) 

Sodium silicate,  

Calcined at 400 C for 
2 h 

Soybean oil, 60 C, 1 h, 
3 wt% catalyst, 
methanol, 7.5:1 mole 
ratio 

100% (Guo et al. 
2010) 

25 wt% KOH/A2O3,  

calcined at 500 C for 
3 h 

Palm oil, 60 C, 2 h, 3 
wt% catalyst, methanol, 
15:1 mole ratio 

91% Noiroj et al. 
(2009) 

10 wt% KOH/NaY,  

dried in air at 110 C 
for 24 h 

Palm oil, 60 C, 3 h, 6 
wt% catalyst, methanol, 
15:1 mole ratio 

91% Noiroj et al. 
(2009) 

35 wt% KI/ A2O3, 

calcined at 500 C for 
3h 

Soybean oil, 65 C, 8 
h, 2.5 wt% catalyst, 
methanol, 15:1 mole 
ratio  

96 % Xie & Li 
(2006) 

35 wt% KF/ZnO, 

calcined at 600 C for 
5 h 

Palm oil, 65 C, 10 h, 
5.5 wt% catalyst, 
methanol, 11:1 mole 
ratio 

89% Hameed et 
al. (2009) 

15 wt% KF/ZnO, 

calcined at 600 C for 
5 h 

Soybean oil, 65 C, 9h, 
3 wt% catalyst, 
methanol, 10:1 mole 
ratio   

87% Xie & Huang 
(2006) 

20 wt% K/ZrO2,  

calcined at 500 C for 
3 h 

Soybean oil, 24h 89% Georgogianni 
et al. (2009b) 

Mg/MCM-41 ,  

calcined at 600 C for 
2 h 

Soybean oil, 24h 85% Georgogianni 
et al. (2009b) 

NaXB 
Zeolite X with sodium 
bentonite 

Sunflower oil, 60 C, 7h, 
10 wt% catalyst, 
methanol, 6:1 mole ratio 

95% (Ramos et al. 
2008) 

Mg-Al-CO3 
hydrotalcite 

Transesterification and 
esterification, acidic 

cotton seed oil, 200 C, 
5 h, 1 wt% catalyst 
methanol, 6:1 mole ratio 
  

84% Barakos et 
al. (2008) 
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Catalyst Type Reaction Conditions* Conversion Reference 

Mg-Al hydrotalcite, 

calcined at 500 C for 
3 h 

Soybean oil, 24h 97% Georgogianni 
et al. (2009b) 

Amberlite IRA-900 Yellow horn oil, 60 C, 3 
h 

26% Li et al. 
(2012) 

PA306s Triolein, 5 h, ethanol, 
10:1 mole ratio  

90% Shibasaki-
Kitakawa et 
al. (2007) 

PA306s UCO, 55 C, 8 h, 9 wt%, 
methanol, 18:1 mole 
ratio   

75% Abidin (2012) 

* mole ratio refers to the alcohol to vegetable oil mole ratio 

 

2.4 Acid Catalysed Biodiesel Production 

Acid catalysts have been investigated for the esterification and 

transesterification of UCOs and crude vegetable oils which contain a significant 

amount of FFAs.  Acidic catalysts are not affected by the presence of FFAs in 

the raw material (Melero et al. 2009a; Enweremadu & Mbarawa 2009; Zabeti et 

al. 2009) and they can simultaneously catalyse esterification and 

transesterification.  Acids considered for biodiesel production include sulphuric 

acid, sulphonic acid and hydrochloric acid (Ganesan et al. 2009; Balat & Balat 

2010).  When compared to the conventional alkali catalysed transesterification, 

homogeneous acid catalysis are typically 4000 times slower (Balat & Balat 

2010; Atadashi et al. 2011).  High conversions are possible using acid 

catalysts, however reaction times of 3-48 h, at temperatures above 100 C with 

high alcohol to oil mole ratios have been reported.   

 

Homogeneous acids are highly corrosive and need to be separated from 

the reaction mixture and heterogeneous catalysts have been investigated as a 

potential solution (Helwani et al. 2009a; Lam et al. 2010).  The types of solid 

acids catalysts investigated for biodiesel production include acidic zeolites, 

heteropoly acids, cation exchange resins, and sulphated and mixed metal 

oxides.  Although it is possible to synthesize zeolites with varying chemical and 

physical properties the catalyst activity remains low (Lam et al. 2010).  The 

highest reported conversion is 26.6%, using Zeolite Y, at a temperature of 460 
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C after 22 min of reaction time.  Zeolites can be functionalised with organic 

species to alter their activity (Helwani et al. 2009a).  Shu et al. (2007) found that 

zeolite beta modified with Lanthanum could be used with soybean oil to achieve 

a conversion of 48.9 wt%, after 4h, at 60 C, with a mole ratio of 14.5:1 and a 

catalyst loading of 1.1 wt%. 

 

Heteropoly acids have also been considered for biodiesel production.  

Typical heteropoly acids are H3PW12O40, H4SiWO40, H3PMo12O40 and 

H4SiMoO40.  Heteropoly acids have been shown to have a high activity at 

relatively low temperatures (Melero et al. 2009a; Hara 2009).  The surface area 

can be increased by adding a salt such as caesium, ammonium and silver.  The 

transesterification of waste frying oil using   H3PW12O406H2O was investigated 

(Cao et al. 2008).  It was found that a conversion of 87% was possible at a 

temperature of 65 C, a methanol to oil mole ratio of 70:1 and a reaction time of 

14 h.   

 

Metal oxides investigated for transesterification include zirconium oxide 

(zircona), titanium oxide and tin oxide (Lam et al. 2010).  It has been found that 

the catalytic activity of these metal oxides can be enhanced by incorporating 

anions such as sulphate and tungstate into the structure (Melero et al. 2009a).  

For example the conversion of palm kernel oil was increased from 64.5% to 

90.3% when sulphated zirconia was used in place of zircona (Jitputti et al. 

2006).  These catalyst often lose activity due to sulphur leaching (Helwani et al. 

2009a; Melero et al. 2009a).   A silica-supported sulphated titania catalyst was 

found to result in a conversion greater than 90 % using an oleic acid-refined 

cotton seed mixture.  The reaction conditions were 50 wt% FFAs, 200 C, 3 

wt% of catalyst methanol to oil ratio of 9:1 and after four reusability cycles there 

was a small reduction in activity (Melero et al. 2009a).  A sulfonic acid modified 

mesostructured catalyst was investigated for the transesterification of refined 

and crude vegetable oil (Melero et al. 2009b).  It was found that a conversion 

close to 100% was possible at 180 C, a methanol to oil mole ratio of 10:1 and 

a catalyst loading of 6 wt%.  It was also found that increasing the mole ratio too 

much leads to a loss in catalytic activity.   
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A series of zinc and lanthanum mixed oxides were investigated for 

simultaneous esterification and transesterification of crude and waste vegetable 

oils (Yan et al. 2009).  A yield of 96 % was obtained using a temperature range 

of 170-220 C and a reaction time of 3 h.  Di Serio et al. (2007) investigated a 

vanadyl phosphate catalyst for the production of biodiesel from soybean oil.  

They found that a maximum conversion of 80% was possible at 180 ºC after 

about 30 min after this time the catalyst started to deteriorate.  A similar 

conversion was possible with a temperature of 150 ºC after 90 min with less 

catalyst degradation.  Catalyst activity was recovered by calcination in air.  In 

addition it was established that leaching of the active species did not occur.   

 

Cation-exchange resins have been investigated for transesterification.  

Commercially available sulphonic acid resins investigated for transesterification 

include Amberlyst 15, Amberlyst 35, Nafion SAC13 and Nafion NR50.  It has 

been found that some sulphonic acid resins are more active for esterification 

than transesterification (Lam et al. 2010).  It has been shown that a high 

conversion of FFAs in UCO is possible using Purolite D5081 (Abidin et al. 

2012) however when tested for transesterification there was no biodiesel 

formation (Abidin 2012).  Similarly Russbueldt & Hoelderich (2009) found that 

after 24 h of reaction time less that 1% of the triglycerides were converted by 

transesterification. Cation-exchange resins for esterification are discussed in 

Section 2.4.2.2.      

 

A disadvantage of acid catalysts is that they are less active when 

compared to their alkaline and basic counterparts.  The reaction times are 

much slower typically about 48-96h and a high mole ratio of methanol to oil is 

required of about 30-150:1 (Xie & Li 2006).  A conversion greater than 90% is 

possible at a temperature of 60 ºC, a methanol to oil mole ratio of 6:1, 3 wt% of 

sulphuric acid and 96h (Helwani et al. 2009a).  Another disadvantage of acid 

catalysts is that water concentration is more critical than for basic catalysts, with 

water concentrations as low as 0.1 wt% being shown to affect ester yields 

(Helwani et al. 2009a). 
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It has been proposed that a two stage process would be suitable for 

UCOs.  The FFAs would first be removed from UCOs by means of an acid 

catalysed esterification reaction followed by an alkali catalysed 

transesterification reaction  (Canakci & Gerpen 2001).  It was found that when 

this process was used to treat yellow grease with 12% FFAs and brown grease 

with 33% FFAs the acid levels could be reduced to less than 1%.  Sulphuric 

acid was used as the catalyst.  The transesterification was then carried out 

using an alkaline catalyst to produce fuel grade biodiesel.  As discussed there 

are problems associated with homogeneous catalysts and it has been proposed 

that the two-stage process could be carried out using heterogeneous catalysts 

(Enweremadu & Mbarawa 2009; Atadashi et al. 2013).  On this basis the 

esterification pre-treatment of biodiesel using an acid catalyst will be 

investigated.   

 

2.4.1 Esterification Reaction Mechanism 

Esterification can be catalysed by Lewis and Brǿnsted-type acids.  

Inorganic heterogeneous acid catalysts, such as mixed and sulphated oxides, 

generally act as Lewis type-acids with an acid metal sharing an electron pair 

with the FFAs carboxyl group (Melero et al. 2009a; Corro et al. 2013).  This 

leads to the formation of an oxonium ion which is attacked by the alcohol.  This 

leads to a proton loss by the alcohol and the corresponding ester and water are 

formed as a result.  The mechanism for esterification with a Lewis-type acid is 

shown in Figure 2.3. 

 

 

Figure 2.3.  The mechanism for Lewis acid-type esterification (Melero et al. 
2009a). 
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Sulphuric acid and sulfonated resins have been widely investigated for 

esterification and these catalysts act as Brǿnsted-type acids (Melero et al. 

2009a; Tesser et al. 2010).  In this case the oxonium ion is formed when a 

proton donated by the acid reacts with the carboxyl group of the FFAs.  The 

mechanism for esterification using a Brǿnsted-type acid is shown in Figure 2.4. 

 

 

Figure 2.4.  The mechanism for Brǿnsted acid-type esterification (Melero et al. 
2009a). 

 

2.4.2 Heterogeneous Catalysts Assessed for the Esterification 

Reaction to Produce Biodiesel 

Homogeneous catalysts such as sulphuric acid, hydrochloric and p-

toluenesulphonic acid (Ozbay et al. 2008; Feng et al. 2010) have been 

investigated for esterification pre-treatment.  However these catalysts are 

corrosive and separating them from the final product is expensive and 

generates a lot of waste.  In addition sulphuric and sulphonic acid catalysts 

often results in a high sulphur content in the final product (Melero et al. 2009a).  

In order to overcome these difficulties numerous heterogeneous acid catalysts 

have been investigated for esterification pre-treatment.  Acid catalysts have 

been shown to catalyst transesterification and esterification however this 

section focuses on heterogeneous acid catalysts assessed for the esterification 

reaction to produce biodiesel. 
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2.4.2.1 Inorganic Heterogeneous Acid Catalysts 

Mixed metal oxides such as modified zirconia and zinc hydroxide nitrate 

have been investigated for esterification.  Y.-M. Park et al. (2010) found that a 

conversion of 98% could be achieved using tungsten oxide zircona (WO3/ZrO2) 

for the esterification of 4 wt% oleic acid in soybean oil.  This conversion was 

achieved after 2 h at 200 C, and with mole ratio of 1:9.  The effect of WO3 

loading was investigated and it was found that from 10 wt% to 20 wt% the FFAs 

conversion increased from 78% to 93% however when the loading was 

increased to 30 wt% the conversion decreased to 89%.  Temperature 

programmed desorbtion of nitrogen showed that the 20 wt% WO3/ZrO2 catalyst 

had the strongest acid sites indicating that the activity of acid catalysts 

increased with increasing acidity.   Sulphated zircona (SO4
2-/ZrO2) was shown 

to achieve a conversion of approximately 93% (after 2 h, at 75 C, a mole ratio 

of 1:9 and 0.29 g of catalyst per gram ml of oil), however there were concerns 

about sulphur leaching and as a result a detailed study was not carried out. 

 

Cordeiro et al. (2008) investigated the esterification of lauric acid using a 

zinc hydroxide nitrate catalyst.  With this catalyst a conversion of 97% achieved 

after 2 h at 140 C, using a methanol to acid mole ratio of 4:1 and a catalyst 

wt% (to lauric acid) of 2 wt%.  Commercially available acid catalysts CBV-780 

and niobic acid were compared to the synthesised catalysts SAPO-34 and 

niobia with CBV-780 for the esterification of soybean oil deodoriser distillate  

(Souza et al. 2009).  CBV-780, a zeolite type catalyst, was found to be the most 

active with conversion of 49% using 9 wt% of catalyst, at 100 C after 2.5 h. 

 

Recently a photocatalytic process under ultraviolet radiation (UV) using a 

Zn/SiO2 catalyst has been assessed (Corro et al. 2013).  It was found that a 

FFAs conversion of 96% could be achieved with a reaction time of 4 h, and 

catalyst loading of 15 wt%, with a methanol to oil mole ratio of 12:1 and a 

temperature of 20 C.  This step was followed by a conventional alkali catalysed 

process and it was shown that the resulting biodiesel product met the required 

standards for use as a fuel. 
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The effect of calcination temperature on the catalytic activity of titania 

zirconia, sulphated zirconia and tungstated zirconia was investigated (López et 

al. 2008).  It was found that the optimum temperature for titania zirconia and 

sulphated zirconia was 500 C with 800 C for tungstated zirconia.  Sulphated 

zirconia being the most sensitive to changes in the calcination temperature with 

the loss of activity at higher temperatures attributed to sulphur loss. 

 

2.4.2.2 Organic Heterogeneous Acid Catalysts 

Various organic acid catalysts have been investigated and while there 

are examples of organosulfonic acid immobilised on inorganic supports the 

focus has been on sulphonated ion exchange resins (Melero et al. 2009a). A 

summary of the acid catalysts investigated for the esterification reaction is given 

in Table 2.3. 

 

Organosulfonic acid-functionalised mesoporous silicas were investigated 

for the esterification of palmitic acid in soybean oil (Mbaraka 2003).  It was 

found that increasing the acidity of the organosulfonic acid group increased the 

activity of the mesoporous catalyst.  These catalysts showed a similar catalytic 

performance to sulphuric acid and a higher catalytic performance than 

Amberlyst-15.  Many sulphated catalysts have been shown to leach sulphur 

however it appears a reusability study was not carried out.  In addition 

Amberlyst-15 may have suffered some thermal degradation at the temperatures 

investigated. 

 

Sulfonated ion-exchange resins have been widely investigated for the 

esterification reaction (Melero B et al. 2009; Russbueldt & Hoelderich 2009)  

with high conversions possible at relatively benign conditions.  These resins 

generally consist of sulfonated polystyrene cross-linked with divinylbenzene 

(DVB) (Ozbay et al. 2008; Zagorodni 2007).  The extent of DVB cross-linking 

determines textural properties such as surface area, pore size distribution and 

swelling.  Sulfonic acid acts as the cation-exchanger and forms strongly acidic, 

brǿnsted acid, catalytic sites.   
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Ozbay et al. (2008) investigated the esterification of waste cooking oil 

with an initial FFA content of 0.4 wt% FFA using Amberlyst-15, Amberlyst-35, 

Amberlyst-16 and Dowex HCR-W2.  The catalyst with the highest activity was 

Amberlyst-15 which had the largest surface area, porosity, pore diameter and 

degree of cross-linking which corresponds to the highest number of accessible 

active sites.  The gelular resin (Dowex HCR-W2) had the lowest activity.  The 

highest conversion was 46% after 3 h using Amberlyst-15 at 60 C with 2 wt% 

catalyst and 20 vol% methanol.  Park et al. (2010) showed that a conversion of 

98% could be achieved using Amberlyst-15 after 2 h, at 75 C, a mole ratio of 

1:9 and 0.29 g of catalyst per gram ml of oil, using a simulated waste cooking 

oil comprised of 4 wt% oleic acid in soybean oil.  Amberlyst-15 has also been 

investigated for the esterification of palm fatty acid distillate and it was found 

that a conversion of 97% was possible using 12 wt% methanol, at 60 C, a 

catalyst loading of 30 wt% (Talukder et al. 2009). 

 

Russbueldt & Hoelderich (2009) investigated non-commercially 

available, strongly acidic, ion exchange resins EBD-100, EBD-200 and EBD-

300.  A variety of potential feedstocks were investigated with a FFAs content of 

10-16 wt%.  In contrast to Ozbay et al. (2008) it was found that the gelular resin 

(EBD-100) had a higher activity compared to the macroporous resins (EBD-200 

and EBD-300).  The activity of the geluar resin was attributed to a poor uptake 

of methanol by the macroporous materials which meant that the reaction could 

only take place on the surface of the macroporous material while sites inside 

the gelular material were accessible for transesterification.  It was found that a 

conversion of approximately 100% was possible after 6 h, at 120 ºC using an 

FFA to methanol ratio of 1:19.7 and a catalyst loading of 1 wt% with EBD-100.  

The reusability of EBD-100 was investigated and the loss of activity was 

attributed to ion-exchange with alkaline cations present in waste oils due to salt.      

 

Feng et al. (2010) compared NKC-9, 001 x 7 and D61 for the 

esterification of waste frying oil and lauric acid.  NKC-9 had the highest catalytic 

activity and this was attributed to the fact that this resin had the highest pore 

diameter and a low moisture content allowing it to absorb water formed during 
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the reaction.  Conversion increased when the catalyst loading was increased 

from 6 wt% to 20 wt% however when the loading was further increased to 24 

wt% the change in conversion was negligible.  The highest FFA conversion was 

approximately 90% after 3 h, 66 C, using 18 wt% of NKC-9 catalyst and 

methanol to oil mole ratio of 3:1. 

 

Caetano et al. (2009) compared commercially available sulfonated 

polystyrene cross-linked with DVB (D50w8 and D50w2) with PVA with varying 

degrees of sulfosuccinic acid crosslinking (PVA, PVA_SSA20 and 

PVA_SSA40) for the esterification of palmitic acid.  The degree of crosslinking 

was compared to conversion and it was found that with D50w8 and D50w2 

conversion decreased with an increase in cross-linking because the cross-

linking agent (DVB) is hydrophobic.  In addition the surface area decreased, 

reducing the number of accessible active sites.  In the case of PVA. 

PVA_SSA20 and PVA_SSA40 conversion increased with increasing cross-

linking due to an increase in the amount of sulfonic acid due to the cross-linking 

agent.  PVA_SS40 was found to have the highest catalytic activity with a 

conversion of 90%, after 2 h, using a temperature of 60 C and a methanol to 

oil ratio of 1:63.   

 

A sulfonated microcrystalline cellulose catalyst has recently been 

reported for the esterification of palm fatty acid distillate and it was found that 

this catalyst could be reused (Chabukswar et al. 2013).  It was found that his 

catalyst had a better catalytic activity than Ambelyst-15 although it was worse 

than sulphuric acid. 
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Table 2.3. A summary of acid catalysts investigated for the esterification reaction 
to product biodiesel 

Catalyst Type Reaction Conditions* Conversion Reference 

Organosulfonic 
acid-functionalised 
mesoporous silicas 

Palmitic acid in Soybean 

Oil, 85 C,  20:1 mole ratio, 
10 wt% catalyst 

92% Mbaraka 
(2003) 

Amberlyst-15 
(macroporous 
resin) 

UCO, 3 h, 60 C, 2wt% 
catalyst and 20 wt%  

46% Ozbay et al. 
(2008) 

Amberlyst-15 
(macroporous 
resin) 

4 wt% oleic acid in 

soybean oil, 2 h, 75 C and 
9:1 mole ratio  

98% Park et al. 
(2010) 

Amberlyst-15 
(macroporous 
resin) 

Palm fatty acid distillate, 60 

C, 6 h 12 wt% 30 wt% 
catalyst loading 

97% Talukder et 
al. (2009) 

EBD-100 (gelular 
resin) 

UCO with a salt removal 

pre-treatment, 120 C, 6 h, 
19:1 mole ratio, 1 wt% 
catalyst loading 

100% Russbueldt 
& Hoelderich 
(2009) 

NK-9 (cation 
exchange resin) 

Simulated UCO, 66 C, 3 
h, 3:1 mole ratio, 18 wt% 
catalyst loading 

90% Feng et al. 
(2010) 

PVA_SS40 
(polyvinyl alcohol 
with sulfosuccinic 
acid crosslinking) 

Palmitic acid, 60 C, 2 h, 
63:1 mole ratio 

90% Caetano et 
al. (2009) 

Sulfonated 
microcrystalline 
cellulose 

Palm fatty acid distillate, 60 

C, 3 h, 3:1 mole ratio, 
7wt% catalyst loading 

90% Chabukswar 
et al. (2013) 

*mole ratio refers to the methanol to vegetable oil (or FFAs) mole ratio 

 

2.4.3 Effect of Mole Ratio and Alcohol Type on the 

Esterification Reaction 

Esterification can be carried out using short chain alcohols.  The main 

alcohols considered are methanol (Ozbay et al. 2008) and ethanol (Marchetti et 

al. 2007; López et al. 2008) although propanol and butanol have also been 

considered (Zabeti et al. 2009).  The type of alcohol used influences type of 

esters formed with methanol leading to the formation of fatty acid methyl esters 

(FAME) and ethanol leading to the formation of fatty acid ethyl esters (FAEE).  

It has been found that the diesel properties of FAME and FAEE are similar 

(Issariyakul et al. 2007).  However FAEE has a slightly higher cetane number 
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and the cloud an pour points are lower which means this fuel is more suitable 

for cold climates (Tongboriboon et al. 2010).  

 

The advantages of using ethanol are that it can be derived from 

renewable sources, it is less toxic and it is less harmful to the environment 

(Marchetti et al. 2007; Zabeti et al. 2009; Caetano et al. 2009).  In addition 

ethanol is more soluble in vegetable oil than methanol (Tongboriboon et al. 

2010).  However ethanol is less active for the esterification reaction.  Methanol 

and ethanol were compared for the esterification of lauric acid and it was found 

that at a temperature of 100 C the ester concentration increased from 20.6 

wt% to 39.4 wt% when ethanol was replaced with methanol (Cordeiro et al. 

2008).  When the temperature was increased to 140 C there was a smaller 

increase from 77.2 wt% to 87.1 wt% when ethanol was replaced with methanol.  

The esterification of palmitic acid was investigated and a conversion of 75% 

was possible using methanol compared to a conversion of 1% using ethanol at 

60 C (Caetano et al. 2009).  When the reaction temperature was increased to 

80 C the conversion with ethanol reached 19%. 

 

Esterification is an equilibrium reaction with one mole of alcohol required 

to convert one mole of FFAs to one mole of FAME and thus increasing the mole 

ratio should increase the amount of FAME formed (Yan et al. 2009).  There is a 

large variation in the mole ratios reported for esterification.  Feng et al. (2010) 

found that the highest conversion could be achieved with a mole ratio of 6:1 

with no further increase at higher mole ratios and Chabukswar et al. (2013) 

reported that a mole ratio of 4:1 was sufficient.  In contrast, Caetano et al. 

(2009) showed that conversion increased for mole ratios up to 63:1. 

 

The aim of this work is to investigate the environmentally benign 

production of biodiesel.  Ethanol can be derived from renewable sources 

however it is more expensive and less active when compared to methanol.  

While methanol is derived from less environmentally benign sources higher 

conversions can be achieved by using less alcohol at lower temperature and as 
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a results there are potential environmental benefits when using methanol.  

Methanol will be the reagent used for this work. 

 

2.4.4 The Effect of Temperature and Reaction Time on the 

Esterification Reaction 

As a general rule it is expected that conversion will increase with 

increasing temperature and reaction time.  In the case of equilibrium reactions 

the conversion will increase until the conversion value is reached and after this 

increasing the reaction time will not increase the conversion.  However 

increasing the temperature will shift the equilibrium position and can result in an 

increase in conversion (Feng et al. 2010). 

 

The esterification reaction has been investigated using temperatures in 

the range of 50 – 200 C (Ozbay et al. 2008; Park et al. 2010).  The boiling 

point of methanol is 64.7 C and of ethanol is 78 C at standard conditions.  A 

reflux condenser is generally used for reactions carried out below the boiling 

point of the alcohol in order to prevent alcohol loss (Ozbay et al. 2008).  As the 

temperature approaches the boiling point of the alcohol, bubbles are formed 

and this inhibits mass transfer and thus reducing conversion (Zabeti et al. 2009; 

Abidin et al. 2012).  A pressure vessel is used to carry out experiments at 

temperatures above the boiling point of alcohol (Park et al. 2010; Cordeiro et al. 

2008).  It was found that increasing the temperature, for the esterification of 

lauric acid, from 100 C to 140 C could increase the ester content from 39.4 

wt% to 87.1 wt%.     

 

Cation-exchange resin experiments are carried out at relatively low 

temperatures, typically 50 – 65 C (Ozbay et al. 2008; Feng et al. 2010) 

because ion-exchange resins have a low temperature stability (Singare et al. 

2011).  Desulphonation occurs when conventional sulphonated styrene-

divinylbenzene are used for extended period at temperatures of 150 ºC and 

above (Caetano et al. 2009; Zagorodni 2007).  In contrast inorganic acid 

catalysts are stable at much higher temperature and as a result the activity has 

been investigated for temperatures as a high as 200 C (Park et al. 2010). 
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2.5 Enzymatic Biodiesel Production 

Enzyme catalysts have also been considered for biodiesel production.  

Enzyme catalysts are often considered in order to reduce the environmental 

impact of chemical processes because high conversions are possible at 

relatively benign operating conditions (Shahid & Jamal 2011).  The class of 

enzyme catalysts used to investigate biodiesel production are lipases (Semwal 

et al. 2011; Akoh et al. 2007).  Another advantage of enzymes is that the 

saponification side reaction does not occur.      

 

2.5.1 Enzymatic Reaction Mechanism 

The biological function of lipases is to catalyse the breakdown of lipids as 

part of the metabolism of living cells which generally exist in a water rich 

environment.  This leads to the formation of carboxylic acids and short chain 

alcohols (Paiva et al. 2000).  One of the defining characteristics of lipases is 

that they operate at the interface between a hydrophilic and a hydrophobic 

phase, with a hydrophobic active sited covered by a helical structure (or lid) 

with a hydrophilic external surface (Ganesan et al. 2009).  When lipases are in 

contact with a hydrophilic/hydrophobic interface the helical lid rolls back to 

expose the electrophilic region or oxyanion hole (Paiva et al. 2000; Akoh et al. 

2007).  The reaction takes place inside the oxyanion hole, where the active site 

is a catalytic triad composed of non-sequential serine (Ser)-histadine (His)–

aspartic acid (Asp) or Ser-His-glutamic acid (Glu) residues (Orçaire et al. 2006).   

Lipases have been designed by nature to catalyse the cleavage of ester 

bonds by means of a hydrolysis reaction in water rich environments (Paiva et 

al. 2000).  However the reverse esterification reaction is possible depending on 

the reaction environment.  The active site targets carboxyl groups which are a 

characteristic functional group on lipids such monoglycerides (MG), diglycerides 

(DG), triglycerides (TG), FFAs and esters, including FAME.  The structural 

conformation of the enzyme and lipid will determine if the carboxyl group is able 

to reach the active site.  This feature was described by Emil Fischer’s “lock-

and-key” model and refined by Daniel Koshland Jr who introduced the 

“induced-fit” model (Bommarius & Riebel 2002).  Lipases can catalyse 

esterification, transesterification and hydrolysis involving MGs, DG, TGs, FAME 
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and FFAs depending on the type of lipase and the reaction medium 

(Tongboriboon et al. 2010).   

 

Lipase catalysed reactions follow a Ping Pong Bi Bi mechanism (Paiva et 

al. 2000; Al-Zuhair et al. 2006; Willis & Marangoni 2008).  For simplicity the 

esterification reaction has been discussed however the same mechanism 

applies to enzyme catalysed hydrolysis and transesterification.  The overall 

schematic for the Ping Pong Bi Bi mechanism is shown in Figure 2.5 with an 

FFA first reacting with the enzyme (E) to form a complex (EFFA) leading to the 

formation of water (H2O).  Methanol (MeOH) can then react with the surface to 

form the EFAME and the FAME is subsequently released.   

 

 

Figure 2.5. Schematic representation of the Ping Pong Bi Bi mechanism for 
enzyme catalysed esterification. 

 

A detailed Ping Pong Bi Bi mechanism for the lipase catalysed 

esterification of FFAs with methanol is shown in Figure 2.6 (adapted from Willis 

& Marangoni 2008).  The reaction is initiated by a nucleophilic attack on the 

carbonyl carbon by the Ser residue.  The His and Asp (Glu) residues increase 

the nucleophilic strength of the serine residue by sharing electrons across this 

imidazole ring of the histadine residue.  This leads to the formation of a 

tetrahedral intermediate, stabilised by two hydrogen bonds formed with the 

oxyanion-stabilising residues.  The FFA’s carbon-oxygen bond breaks to 

release a water molecule and this leads to a nucleophilic attack by methanol.  A 

hydroxyl group is added to the carbonyl carbon, forming a tetrahedral 

intermediate.  A rearrangement leads to the formation of a methyl ester which is 

released and the serine residue is regenerated.   
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Figure 2.6.  The detailed mechanism for enzyme catalysed esterification (adapted 
from Willis & Marangoni 2008). R1 represents a fatty acid group. 

 

2.5.2 Kinetics of Enzyme Reactions 

Biodiesel production can be modelled using Michaelis-Menten kinetics 

(Gog et al. 2012) and this has been used to compare the kinetics of free and 

immobilised enzymes (Dossat et al. 2002; Da Rós et al. 2010).  However the 

intrinsic kinetics of lipase catalysed reactions are generally regarded as a 

following a Ping Pong Bi Bi mechanism with competitive inhibition by alcohol 

and the resulting model is (Al-Zuhair et al. 2006; Halim & Harunkamaruddin 

2008): 

 

 
 

 Al

K

K

Al

S

K

V
v

Al

iAl

S 











11

max  

 

where v is the initial rate of reaction, Vmax is the maximum rate of reaction, Ks 

and KAl are the binding constants for the substrate (S) and the alcohol (Al) 

respectively, and KiAl is the inhibition constant for alcohol.   

 

2.1 
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The Ping Pong mechanism with competitive inhibition of alcohol was 

assessed for the esterification of n-butyric acid with methanol catalysed by a 

lipase from Mucor miehei in an n-hexane microaqueous system (Al-Zuhair et al. 

2006).  It was shown that FFAs did not inhibit conversion when the modelling 

was carried out using initial reaction rates.  The same model was applied to a 

microaqueous system of n-hexane/water to show that the initial reaction rate 

increased at higher water concentration although the conversion after 1 h was 

lower. 

 

The esterification of oleic acid with 1-butuanol was also found to follow 

the Ping Pong Bi Bi mechanism with competitive inhibition by 1-butanol (Kraai 

et al. 2008).  The model was amended to allow for a biphasic system by 

describing the reaction rate in terms of the interfacial area.  Foresti et al. (2008) 

found that the classic monophasic model did not adequately describe the effect 

of water on the experimental results on ethyl oleate synthesis.  A biphasic 

reactor model was developed which allowed for simultaneous esterification and 

mass transfer between phases.  It was found that the biphasic model fitted the 

experimental data well and as a result a simplified model was developed which 

could be used to provide a fast estimation of conversion. 

 

Mahmud et al. (2010) investigated the esterification of oleic acid with 

ethanol and Novozyme 435 as the catalyst.  A sigmoidal response curve 

indicated the presence of allosteric effects due to a change in enzyme 

conformation and a modified Ping Pong Bi Bi model was found to fit the 

experimental data.   

 

The transesterification of simulated oil from triolein with ethanol and 

catalysed by Lipozyme MM IM was investigated and the model was developed 

using the King-Altman geometric approach.  For this system it was found that 

there was competitive inhibition of alcohol only and there were no internal or 

external mass transfer limitations (Calabrò et al. 2010).  Novozyme 435 

catalysed transesterification of UCO has also been shown to follow this model 

(Halim & Harunkamaruddin 2008)  Previously (Dossat et al. 2002) had shown 
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that the transesterification of sunflower oil with butanol fitted the Ping Pong 

mechanism with competitive alcohol inhibition.   

 

However it was proposed that it would be more suitable to describe 

transesterification using a Ping Pong mechanism with competitive inhibition by 

both alcohol (Al) and substrate (S) (Al-Zuhair et al. 2006): 
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where Kis is the inhibition constant for the substrate and the other 

components are the same as equation 2.1. 

 

It was found that this was a more suitable model for the 

transesterification of palm oil using methanol, a lipase from M. miehei as the 

catalyst, in n-hexane as the solvent (Al-Zuhair et al. 2007).  This model 

assumed direct transesterification of the vegetable oil and provided a 

reasonable fit to experimental data.  The progress of the reaction was 

determined by monitoring the FAME concentration.  The model was extended 

to allow for internal and external mass transfer resistances as a result of using 

in immobilised lipase and applied to a simulated waste cooling oil (Al-Zuhair et 

al. 2009) and it was found that the model gave a good predication of the 

experimental data.   

 

Two models were proposed for the deactivation of Pseudomanas 

cepacia (Torres et al. 2008).  Model A described irreversible deactivation 

according to first order kinetics while Model B proposed two parallel processes 

with one leading to an inactive form and the other leading to another active and 

stable form.  Experimental data for the transesterification of sunflower oil with 

ethanol showed that Model B could be used to describe lipase deactivation. 

 

To date most of the modelling work, investigating the kinetics of biodiesel 

production has focused on either esterification or transesterification and the 

2.2 
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modelling has been carried out by monitoring either the substrate (TG or FFAs) 

or the final product (biodiesel) and alcohol.  Xu et al. (2005) found that a 

simplified model based on the Ping Pong Bi Bi mechanism with substrate 

competitive inhibition could be used to describe the transesterification of 

soybean oil with methyl acetate.  However this model did not account for MGs 

and DGs detected during the reaction and a model describing the 

transesterification as a series of three consecutive steps was found to fit the 

data. 

 

 

Figure 2.7.  The conceptual scheme of mechanism 3 proposed by Cheirsilp et al. 
(2008). 

 

In order to investigate if the transesterification reaction proceeded 

according to hydrolysis followed by esterification or by direct transesterification 

three mechanisms have been assessed (Cheirsilp et al. 2008).  This was used 

to investigate the transesterification of palm oil, using an immobilised lipase 

from Pseudomonas sp. and ethanol based on the variation of the TG, MG, DG, 

biodiesel and alcohol concentrations.  Mechanism 1 assumed hydrolysis 



Chapter 2: Literature Review  42 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

followed by esterification with the overall reaction following a Ping Pong Bi Bi 

mechanism.  Mechanism 2 assumed that the complexes bound the enzyme 

surface react fast and was a simplified version of mechanism 1.  Mechanism 3 

assumed that transesterification (direct alcoholysis) of the triglycerides occurred 

in parallel with the hydrolysis esterification reaction sequence.  The mechanism 

which best fitted the experimental data was Mechanism 3 and the conceptual 

scheme is shown in Figure 2.7.  With this approach it is possible to describe the 

change of all species involved in the transesterification reaction. 

 

2.5.3 Reaction Parameters affecting Enzymatic Biodiesel 

Production 

The biodiesel yield when using enzyme catalyst varies based on a 

number of factors which include the enzyme source, immobilisation technique, 

the type of feedstock, water addition, alcohol type and mole ratio, reaction time 

and reaction temperature. 

 

2.5.3.1 Effect of Enzyme Source 

Lipases investigated for biodiesel production include lipases derived from 

Pseudomanas fluorescens, a commercial version is Lipase AK, Candida 

rugosa, a commercial version is Lipase AY, Rhizomucor miehei, commercial 

immobilised version is Lipozyme RM IM, Candida antarctica, a commercial 

immobilised version is Novozyme 435, Thermomyces lanuginosa, a commercial 

immobilised version is Lipozyme TL IM and P. cepacia, a commercial version is 

Lipase PS.  Recently a novel lipase from Ralstonia sp. CS274 has been shown 

to produce biodiesel from soybean oil and palm oil (Yoo et al. 2011) and a 

lipase from Penicillium expansum has been considered for the transformation of 

waste cooking oil (Li et al. 2009).  Another recent development is the use of 

whole-cell biocatalysts for biodiesel production such as Rhizopus orzae, and 

Aspergillus orzae expressing Fusarium heterosporum lipase (Koda et al. 2010). 

 

Various lipases were compared for the transesterification of sunflower oil 

the highest conversion of 90 % was achieved using a lipase from P. fluorescens 



Chapter 2: Literature Review  43 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

(Soumanou 2003) when compared to R. miehei, T. lanuginosa and P. cepacia.  

In contrast when lipases were compared for the transesterification of oil from 

Madhuca indica with a high FFAs content it was found that P. cepacia gave the 

highest conversion followed by R. miehei and then P. fluorescens (Kumari et al. 

2007).  Novozyme 435 (immobilised C. antarctica lipase B), Lipozyme TL IM 

(immobilised T. lanuginose), and Lipozyme RM IM (immobilised R. miehei) 

were shown have a similar activity for the transesterification of UCO with 

Novozyme 435 having the greatest activity (Halim & Harunkamaruddin 2008).  

Lipozyme TL IM was investigated for the transesterification of crude palm oil 

and it was found that a conversion of 96% was possible after a 4 h reaction 

time, a loading of 6.67 wt% and 40 C.  This suggests that the oil type can 

affect the activity of various lipases. 

 

A lipase from P. cepacia (recently reclassified as Burkholderia cepacia) 

(Torres et al. 2008) has been widely investigated for transesterification  for 

simplicity the name P .cepacia will be used for this work.  A conversion of 98% 

with a reaction time of 8 h was reported for P. cepacia immobilised on celite (a 

type of diatomaceous earth) (Shah & Gupta 2007).  P. cepacia immobilised on 

a polyacrylonitrile nanofibrous membrane was investigated for the 

transesterification of soybean oil  and a conversion of 90% was possible after a 

24 h  (Li et al. 2011).  The catalyst was shown to retain 91% of its activity after 

10 reusability cycles.   

 

Novozyme 435 has been shown to catalyse the transesterification of 

waste frying oil (or UCO) using the response surface methodology which 

predicted a conversion of 100% after 12 h, at 44.5 C, a catalyst loading of 15 

wt% and mole ratio of 3.8:1 using stepwise addition of methanol (Azócar et al. 

2010).  This compares well to previous results where the conversion of canola 

oil was 97.9% after 12 h, at 38 C, an enzyme concentration of 42%, a mole 

ratio of 3.5:1 and addition of 7.2% water (Chang et al. 2005).  With similar 

reaction conditions reported for the transesterification of UCO  and cotton seed 

oil using methanol (Köse et al. 2002)  It has been shown that Novozyme 435 

can be repeatedly reused (Shimada et al. 2002; Talukder et al. 2009). 
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Novozyme 435 has also been investigated for esterification and it was 

found that a conversion of 90% was possible for the esterification of oleic acid 

(Trubiano et al. 2007).  Novozyme 435 was compared to Amberlyst-15 (an ion-

exchange resin) for the esterification of palm fatty acid distillate which contains 

97% FFA (Talukder et al. 2009) and shown to have a specific activity 50 times 

greater than Amberlyst-15.  It was found that both catalysts could be reused up 

to 15 times with a minimal loss of activity.  Novozyme 435 was washed with 

tert-butanol and freeze-dried.  In a similar study it was found that lipase 

catalysts (Lipozyme RM-IM, Lipozyme TL-IM and Novozyme 435) were more 

active for the esterification of soybean oil deodoriser distillate when compared 

to selected acid catalysts (Zeolite CBV-780, SAPO-34, niobia and niobic acid) 

(Souza et al. 2009).  Novozyme 435 was found to be the most active lipase 

catalyst with a conversion of 84% after 2 h.  Novozyme 435 has been 

investigated for a continuous flow process for the esterification of palm fatty 

acid distillate and it was found that approximately 3500 kg palm fatty acid / kg 

Novozyme 435 could be treated in the first reaction before the catalyst started 

losing activity (Brask et al. 2011)   

 

Biodiesel production from acid oil, a by-product of vegetable oil refining 

contains mainly free fatty acids has been investigated using hydrolysis followed 

by esterification.  Soluble C. rugosa was used to catalyse the hydrolysis 

reaction, followed by two esterification steps using an immobilised C. antarctica 

An overall conversion of 91% was achieved by repeating the process every 24 

h for 40 days (Watanabe et al. 2007).  A similar process was proposed for the 

conversion of crude palm oil to biodiesel (Talukder et al. 2010b)  Alternatively 

UCO was converted to biodiesel using C. rugosa catalysed hydrolysis followed 

by esterification with an ion-exchange resin, Amberlys-15 with a maximum 

conversion of 99%.   

 

It has been proposed that mixtures of lipases can be used do decrease 

costs  (Souza et al. 2009) and improve conversion (Tongboriboon et al. 2010).  

A series of immobilised lipases were screened and it was found that Lipase AY 

resulted in the highest hydrolysis conversion with very low conversions for 
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esterification and transesterification (Tongboriboon et al. 2010).  The highest 

conversions for transesterification were achieved using immobilised Lipase PS 

and immobilised Lipase AK while Novozyme 435 showed the highest activity for 

esterification.  Various combinations of these enzymes were investigated with a 

two-step process resulting in improvements.  The best improvement was with a 

one-step process using an equal mass two lipases, immobilised Lipase AY and 

immobilised Lipase AK.  A reusability study was carried out and it was found 

the activity of the lipases decreased by 50% after 15 cycles.  This was 

attributed to glycerol accumulating on the surface of the catalyst.  Similarly it 

was shown that conversion could be enhanced by using a mixture of Novozyme 

435 and Lipozyme TL IM for the transesterification of lard (Huang et al. 2010). 

 

2.5.3.2 Effect of Immobilisation and Support Type 

One of the disadvantages of enzyme catalysts is that they are expensive.  

In order to overcome this various immobilisation techniques have been 

investigated to improve stability, reusability and reduce the cost (Li et al. 2011).  

Techniques available for immobilisation include covalent bonding, adsorption, 

cross-linking methods, entrapment and encapsulation (Paiva et al. 2000; Al-

Zuhair et al. 2009).  A summary of the immobilised enzymes reported for 

biodiesel production is presented in Table 2.4. 

   

A popular technique is to formulate the lipase catalyst into protein coated 

microcrystals.  For example Lipase PS immobilised on K2SO4 crystals was 

compared to free Lipase PS with the immobilised lipase showing a much 

greater thermal stability with an optimum conversion of 99.8% at 60 C 

compared to an optimum conversion of 57% at 50 C (Zheng et al. 2012).  

Lipase PS immobilised on K2SO4 could be reused when washed with a solvent 

such as hexane and tert-butanol.  A cross-linked protein coated microcrystalline 

lipase incorporating T. lanuginosus lipase with glycerol as the core matrix was 

developed and assessed for the esterification of palm fatty acid distillate  (Raita 

et al. 2011).  P. cepacia was immobilised on accurel, and formulated into 

protein coated microcyrstals, and a cross-linked enzyme aggregate were 

compared to the free enzyme for the transesterification of oil from Madhuca 
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indica with a high FFA content.  It was found that the highest conversion of 99% 

in 2.5 h was achieved using the P. cepacia coated microcrystals (Kumari et al. 

2007). 

 

In some cases the immobilisation technique and support have been 

shown to improve the catalytic activity of enzyme.  Lipase PS immoblised in a 

sol-gel material increased conversion compared to the free enzyme and this 

was attributed to the lipophilic microenvironment created by the sol-gel material 

(Noureddini et al. 2005).  The increased yield for  P. cepacia immobilised on 

celite was attributed to a higher surface area which meant there were more 

accessible active sites (Shah & Gupta 2007).  In contrast the activity of P. 

cepacia immobilised on polyacrylonitrile nanofibrous membrane was shown to 

be 79.5% of the free enzyme (Li et al. 2011).  Similarly C. antarctica and P. 

cepacia encapsulated in aerogels had a lower activity than the free enzymes 

due to substrate diffusion limitations inside the aerogels (Orçaire et al. 2006).  

Conversion improved when using iso-octane as a solvent. 

 

Hydrotalcite and four types of zeolite were compared as immobilisation 

supports for Lipozyme TL and it was found that the hydrotalcite was the most 

suitable support with a higher protein loading that the zeolites (Yagiz et al. 

2007).  A conversion of 93% was achieved compared to 95% for the 

commercially immobilised Lipozyme TL IM.  36% activity was retained by the 

reusability cycle 7 at a temperature of 40 C.  The effect of a styrene-DVB 

copolymer was compared to styrene-DVB containing polyglutaraldehyde for the 

immobilisation of T. lanuginosus by physical adsorbtion and covalent 

attachment.  It was found that the that the activity was 85% for the polymer 

containing polyglutaraldehyde compared to an activity of 60% (Dizge et al. 

2009).  T. lanugnosus has also been found to be more effective immobilised by 

polyurethane foams incorporating polygluraraldehyde than those without (Dizge 

& Keskinler 2008)  A conversion of 97% was possible at 50 C for a reaction 

time of 24 h with the catalyst retaining activity for 10 reusability cycles.  Niobium 

oxide (Nb2O5) and polysiloxane-polyvinyl alcohol (SiO2-PVA) were compared as 

immobilised supports for Lipase PS and compared for the transesterification of 
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babassu oil and beef tallow (Da Rós et al. 2010).  The best performance was 

from the SiO2-PVA support with a conversion of 89% in 48 h and this was 

attributed to more suitable textural and chemical properties. 

 

Immobilised lipases are suitable for use in continuous flow reactors.  A 

series of fixed bed reactors using a lipase derived from Candida sp. 

immobilised on textile cloth to produce biodiesel from UCO has been  shown to 

produce biodiesel from UCO that meets the biodiesel specifications (Chen et al. 

2009).  Similarly a packed bed reactor with integrated glycerol removal using 

Novozyme 435 as the catalyst has been shown to produce biodiesel from UCO, 

that meets the required biodiesel specifications (Hama et al. 2011).  A 1:1 

mixture of immobilised C. rugosa and Rhizopus orzae resulted in a conversion 

above 90% for the transesterification of biodiesel when operated for 108 h in a 

continuous system (Lee et al. 2010).  An enzymatic reactor using lipase 

immobilised on a monolithic polymer support using glyceryl tributyrate showed 

that the activity was retained after treating 1000 reactor volume and it was 

shown that soybean oil could also be treated (Urban et al. 2012).  
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Table 2.4. A summary of the immobilised enzymes reported for biodiesel production 

Immobilisation 
support 

Enzyme 
Source 

Substrate Reaction Conditions* Conversion  Reusability Reference 

K2SO4 microcrystals P. cepacia Soybean Oil 60 C, 12 h, ethanol, 
4:1 mole ratio** 

99.8%  Relatively stable 
for 8 cycles 
(washed with 
hexane) 

Zheng et al. 
(2012) 
 

Glycine based 
microcrystals, 
prepared using 
cross-linked protein 

T. 
lanuginosus 

Palm fatty 
acid 
distillate 

Esterification, 50 C, 6 
h, 20 wt% catalyst, 
ethanol, 1:4 mole ratio, 
tert-butanol solvent 
 

81% Relatively stable 
for 8 cycles 

Raita et al. (2011) 

Microcrystals P. cepacia Madhuca 
indica oil 

40 C, 2.5 h, ethanol, 
4:1 ratio 

99% None reported 
 

Kumari et al. 
(2007) 

Cross-linked 
enzyme aggregate 

P. cepacia Madhuca 
indica oil 

40 C, 2.5 h, ethanol, 
4:1 ratio 

92% None reported 
 

Kumari et al. 
(2007) 

Accurel MP 100 P. cepacia Madhuca 
indica oil 

40 C, 6 h, ethanol, 4:1 
ratio 

96% None reported 
 

Kumari et al. 
(2007) 

Acrylic Resin C. antarctica 
lipase B 
(Novozyme 
435) 

Soybean Oil 40 C, 12 h, 
ethanol,4:1 mole ratio 

99.0%  None reported Zheng et al. 
(2012) 
 

Celite  (a type of 
diatomaceous 
earth) 

P. cepacia  Jatropha 
seed oil 
 

50 C, 8 h,  5 wt% 
water, ethanol,4:1 
mole ratio 

98% Stable for 4 
cycles 

Shah & Gupta 
(2007) 
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Immobilisation 
support 

Enzyme 
Source 

Substrate Reaction Conditions* Conversion  Reusability Reference 

Hydrophobic sol-gel P. cepacia 
 

Soybean oil 35 C, 1 h, 0.5 g water 
and 475 mg lipase for 
10g oil, methanol, 
1:7.5 mole ratio 

67% Steady decline 
over 12 cycles 

Noureddini et al. 
(2005) 
 

Hydrophobic sol-gel P. cepacia Soybean oil 35 C, 1 h, 0.3 g water 
and 475 mg lipase for 
10g oil, ethanol, 1:15.2 
mole ratio 

65% Relatively stable 
for 11 cycles  

Noureddini et al. 
(2005) 
 

Silica aerogel 
reinforce with silica 
quartz fibre 

P. cepacia Sunflower 
oil 

Methyl acetate 
reagent, 3:1 mole ratio, 
iso-octane solvent 

56% None reported Orçaire et al. 
(2006) 

Silica aerogel 
reinforce with silica 
quartz fibre 

C. antarctica Sunflower 
oil 

Methyl acetate 
reagent, 3:1 mole ratio, 
iso-octane solvent 

56% None reported Orçaire et al. 
(2006) 

Polyacrylonitrile  
nanofibrous 
membrane 

P. cepacia 
 

Soybean oil 
containing 
50-75% 
FFAs  
 

24 h, 30 C, 0.035g 
catalyst in 10g of oil, 
methanol, 6.6:1 mole 
ratio 

90 % 91% of activity 
retained after 10 
cycles 

Li et al. (2011) 

Accurel EP-100 A 1:1 mixture 
of C. rugosa 
and P. 
fluorescens 
 

Used palm 
oil 

12 h, 45 C, 2% water, 
10% catalyst loading, 
ethanol, 3.1 mole ratio 

67% Steady decline, 
50% of activity 
retained after 15 
cycles 

Tongboriboon et 
al. (2010) 



Chapter 2: Literature Review  50 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

Immobilisation 
support 

Enzyme 
Source 

Substrate Reaction Conditions* Conversion  Reusability Reference 

styrene-DVB-
polyglutaraldehyde 

T. 
lanuginosus  

Canola oil 24 h, 50 C, stepwise 
methanol, 6:1 total 
mole ratio 

97% Activity retained 
for 10 cycles 

Dizge et al. 
(2009) 

Hydrophilic 
polyurethane foam 
incorporating 
polyglutaraldehyde 
 

T. 
lanuginosus 

Canola oil 40 C, 0.5 wt% water, 
stepwise methanol, 6:1 
mole ratio 

90% Activity retained 
for 10 cycles 
(washed with tert-
butanol) 

Dizge & Keskinler 
(2008) 

Not specified A 1:1 mixture 
of C. rugosa 
and R. 
oryzae,  

Soybean oil 4 h, 45 C, 10% water, 
20% catalyst loading, 
stepwise methanol 

98% 90% activity 
retained in a 
continuous flow 
reactor for 108 h 

Lee et al. (2010) 

Acrylic Resin C. antarctica 
lipase B 
(Novozyme 
435) 

Canola oil 12 h, 38 C, 42.3% 
catalyst loading, 7.2% 
water, methanol, 3.5:1 
mole ratio  

98%  None reported Chang et al. 
(2005) 

Acrylic Resin C. antarctica 
lipase B 
(Novozyme 
435) 

UCO 48 h, 30 C, 4 wt% 
catalyst, stepwise 
methanol, 3:1 mole 
ratio 

90%  Activity retained 
in a continuous 
flow reactor for 
100 days 

Shimada et al. 
(2002) 

Acrylic Resin C. antarctica 
lipase B 
(Novozyme 
435) 

UCO 12 h, 40 C, 4 wt% 
catalyst to oil, 
methanol, 4:1 mole 
ratio tert-butanol 
solvent 

88% None reported (Halim & 
Harunkamaruddin 
2008) 
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Immobilisation 
support 

Enzyme 
Source 

Substrate Reaction Conditions* Conversion  Reusability Reference 

       
Acrylic Resin C. antarctica 

lipase B 
(Novozyme 
435) 

UCO 12 h, 44.5 C, 15 wt% 
catalyst, stepwise 
methanol 3.8:1 mole 
ratio 

100% None reported Azócar et al. 
(2010) 

Acrylic Resin C. antarctica 
lipase B 
(Novozyme 
435) 

Cotton seed 
oil 

7 h, 50 C, 30 wt% 
catalyst, methanol, 4:1 
mole ratio 

92% None reported Köse et al. (2002) 

MgAl Hydrotalcite T. lanuginosa UCO 105 h, 24 C,  
methanol, 4:1 mole 
ratio 

93% 36% of activity 
retained by cycle 

7 at 45 C 

Yagiz et al. 
(2007) 

       
Various zeolites 
(13-x, 5A, FM-8 and 
AW-300) 

T. lanuginosa UCO 105 h, 24 C,  
methanol, 4:1 mole 
ratio 

0% None reported 2007) 

Polysiloxane-
polyvinyl alcohol 
(SiO2-PVA) 

P. cepacia 
 

babassu oil 50 C, 48 h, ethanol, 
12:1 mole ratio, 20 
wt% catalyst 

100% 
 

None reported Da Rós et al. 
(2010) 

Niobium oxide 
(Nb2O5) 

P. cepacia 
 

babassu oil 50 C, 48 h, ethanol, 
12:1 mole ratio, 20 
wt% catalyst 

74% None reported Da Rós et al. 
(2010) 

*Unless otherwise specified the reaction investigated is transesterification 
**In all cases this refers to the mole ratio of alcohol to substrate 
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2.5.3.3 Effect of Oil Type 

It was found for the same conditions the conversion of UCO was 90.4 % 

compared to 95.9 % for vegetable oil (Shimada et al. 2002).  The difference 

was attributed to contaminants in the oil which would have been produced 

during cooking such as epoxides, aldehydes and polymers.  Conversely a 

higher conversion was achieved with UCO compared to rapeseed oil and this 

was attributed to the increase in concentration of MGs, DGs and FAME in the 

mixed vegetable oil (Azócar et al. 2010).  

 

2.5.3.4 Effect of Water Concentration 

It is often necessary to add water in order to activate lipases because the 

reactions are catalysed at the oil/water interface (Tongboriboon et al. 2010; 

Gog et al. 2012).  In addition water is believed to increase protein flexibility by 

forming multiple hydrogen bonds with the enzyme molecule in organic solvents 

thus improving the activity of enzymes (Yadav & Manjula Devi 2004).  When too 

much water is added the hydrolysis reaction can be catalysed (Tongboriboon et 

al. 2010).     

 

The effect of water addition on Lipozyme TL IM catalysed 

transesterification of crude palm oil was investigated (Khor et al. 2010).  It was 

found that as the water concentration increased from 0 to 6 wt% of substrate, 

the reaction rate and FAME yield increased however further increases in the 

water concentration resulted in a decrease in the reaction rate and FAME yield.  

A similar trend was observed by Noureddini et al. (2005) using Lipase PS 

entrapped in a sol-gel material and  P. cepacia immobilised on celite (Shah & 

Gupta 2007).  In contrast for a Lipase AY and Lipase AK catalysed reaction 

with used palm oil and ethanol, it was found that as the water increased from 

2% to 20% the amount of FAEE formed decreased.  However in this case 

Lipase AY is more suitable for the hydrolysis reaction.  

 

Water addition is not required for Novozyme 435 catalysed esterification 

and increasing the amount of water can be detrimental to conversion (Talukder 
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et al. 2009; Trubiano et al. 2007).  Water is formed during the esterification 

reaction.    

 

2.5.3.5 Effect of Oil to Alcohol Mole Ratio and Type of Alcohol 

Methanol (Li et al. 2011; Dizge et al. 2009) and ethanol (Tongboriboon et 

al. 2010; Souza et al. 2009) are the alcohols most frequently investigated for 

enzymatic biodiesel production although propanol, butanol and isopropanol 

have been considered (Köse et al. 2002).  As discussed in Section 2.4.3 

advantages of ethanol for biodiesel production are that it can be derived from 

renewable resources, the resulting FAEE biodiesel has slightly superior 

properties and it is more soluble in vegetable oil.       

 

Methanol has a higher activity than ethanol for lipase catalysed 

production of biodiesel (Ferrão-Gonzales et al. 2011; Noureddini et al. 2005).  

However many lipase catalysts are deactivated by high alcohol concentrations 

and it has been found that lipases are more readily deactivated by methanol 

than ethanol.  This deactivation has been described by the kinetic models as a 

competitive inhibition which means that the active sites are deactivated due to 

attachment by the alcohol.  On this basis deactivation can be linked to the 

affinity of the alcohol to the active site and it has been shown that lipases are 

more readily deactivated by short chain alcohols (Köse et al. 2002; Chen & Wu 

2003; Ferrão-Gonzales et al. 2011).  Deactivation of lipases has also been 

attributed to dehydration which leads to denaturation of the lipase (Trubiano et 

al. 2007; Souza et al. 2009). 

 

Alcohol is sparingly soluble in vegetable oil with ethanol being more 

soluble than methanol and it has been shown that lipase are deactivated by 

contact with insoluble alcohol (Shimada et al. 2002).  Co-solvents to dilute the 

alcohol have been proposed as a solution (Halim & Harunkamaruddin 2008; 

Kraai et al. 2008; Gog et al. 2012).  As discussed in Section 2.2.4 there are 

disadvantages when using a co-solvent and alternative solution is stepwise 

addition of alcohol (Shimada et al. 2002).  However it was found that for the 

stepwise addition of ethanol to a system containing a mixture of lipases, 
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conversion only increased from 89% to 91% (Tongboriboon et al. 2010).  Shah 

et al. (2004) also observed there was no additional benefit from the stepwise 

addition of ethanol. 

 

Alcohols act as acyl acceptors in the transesterification reaction and 

alternative acyl acceptors have been proposed which do not deactivate lipases.  

For example methyl acetate leads to the formation of FAME and 

triacetylglycerol (Xu et al. 2005).  More recently dimethyl carbonate has been 

investigated for the transesterification of palm oil using Novozyme 435 and 

kinetic modelling showed that competitive inhibition does not occur (Sun et al. 

2013). 

 

In addition it has been found that immobilised enzymes are more stable 

and able to tolerate higher alcohol concentrations when compared to free 

enzymes (Soumanou 2003).  It has been found that P. cepacia has a high 

tolerance for alcohol when compared to other enzymes such as Novozyme 435 

(Soumanou 2003; Shah et al. 2004; Kaieda et al. 2001). 

 

In the case of chemical catalysed reactions the conversion can be 

increased by increasing the alcohol to oil mole ratio however this is more 

difficult in the case of enzyme catalysed biodiesel production.  The range of 

mole ratios proposed for transesterification is 3-4:1 (Halim & Harunkamaruddin 

2008; Tongboriboon et al. 2010; Lee et al. 2010).  The minimum mole ratio for 

complete conversion is 3:1 as shown in Chapter 1, Figure 1.1.  Similarly a 

typical mole ratio for esterification is 1:1 (Trubiano et al. 2007; Talukder et al. 

2009; Souza et al. 2009).  

 

2.5.3.6 Effect of Reaction Time 

High conversions of biodiesel have been reported however the reaction 

time is generally much greater than required for the alkaline catalyst process.  

Conversions of 90-99 % have been reported for enzyme catalysed 

transesterification however the reaction times are typically 12-24 h 

(Tongboriboon et al. 2010; Li et al. 2011; Zheng et al. 2012).  There are 
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execptions with a reaction time of 8 h reported for Chromobacterium viscosum 

lipase immobilised on Celite-545 with a conversion of 92 % (Shah et al. 2004) 

and 2.5 h for P. cepacia coated microcrystals with a conversion of 99 % 

(Kumari et al. 2007).     

 

The reaction times reported for enzyme catalysed esterification of free 

fatty acid materials are typically 1.5–2h (Talukder et al. 2009; Souza et al. 2009; 

Trubiano et al. 2007). 

 

2.5.3.7 Effect of Reaction Temperature 

Conversion generally increases with increasing temperature until an 

optimum value is reached.  As the temperature increases further the conversion 

drops rapidly due to deactivation of the catalyst (Souza et al. 2009; Köse et al. 

2002).  Typical temperatures investigated for enzymatic biodiesel production 

are 30–80 C with the optimum generally falling in the range of 40-50 C 

(Ganesan et al. 2009; Soumanou 2003; Sim et al. 2010).   

 

Immobilisation can increase the thermal stability of enzymes and it was 

found that the conversion of soybean oil using P.  cepacia immobilised on a 

polyacrylonitrile nanofibrous membrane remained approximately the same for 

temperatures of 30 – 50 C (Li et al. 2011).  Trubiano et al. (2007) investigated 

the effect of temperature in the range of 25-60 °C on Novozyme 435 and found 

that conversion increased from 69.6% to 80.4% with no evidence of catalyst 

deactivation.     

 

The effect of temperature on the immobilised enzyme, Lipozyme TL IM, 

with tert-butanol as the solvent for the transesterification of crude palm oil with 

methanol was investigated (Khor et al. 2010).  It was found that the optimum 

temperature was 40 C and the activation energy was 22.15 kJmol-1 compared 

to a deactivation energy of 45.18 kJmol-1.  This is similar to the value of 26.0  

kJmol-1 calculated for transesterification of palm oil with dimethyl carbonate as 

the regent and catalysed by Novozyme 435.  The value for activation energy is 

similar to the value calculated by Mahmud et al. (2010) of 22.4 kJmol-1 using a 
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temperature range of 25-45 C for Novozyme 435 catalysed esterification of 

oleic acid.   

 

2.6 Liquid Chromatography to Monitor Biodiesel 
Production 

Numerous methods have been investigated to monitor the formation of 

biodiesel depending on the process selected.  In most cases the relevant fatty 

acid alkyl ester formation is monitored (Khor et al. 2010) although the FFAs 

concentration can be monitored during esterification (Ozbay et al. 2008).  

Depending on the nature of the investigation other components which may 

need to be monitored are MGs, DGs TGs, glycerol, methanol and water. 

 

The FFA concentration is generally determined using a recognised 

titration method (Souza et al. 2009; Feng et al. 2010).  such as ASTM D 974-

08.  Methods which have been developed to quantify the other components 

include thin layer chromatography (TLC), gas chromatography (GC), high 

performance liquid chromatography (HPLC), gel permeation chromatography 

(GPC), 1H nuclear magnetic resonance (1H NMR) and near-infrared 

spectroscopy (NIR) (Arzamendi et al. 2006), with GC and HPLC being the 

methods used most often (Li et al. 2008).   

 

The American and European biodiesel standards are based on GC 

techniques with separate methods for analysing FAMEs (EN 14103:2003) and 

MG, DG, TGs and glycerol (EN 14105:2003). However substances with high 

molecular weights, high boiling points and low volatility are not easily vaporised 

and separated by GC and as a result the GC method for MG, DG, TG and 

glycerol includes a derivitisation method and internal standards (Holcapek et al. 

1999).  An alternative solution for investigating mixtures containing compounds 

with a low volatility is to use liquid chromatography.   
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2.6.1 Types of Liquid Chromatography 

In liquid chromatography the separation is achieved by injecting a 

dissolved sample into a stream of solvent which is pumped through a column 

packed with solid separating material.  Differences in polarity, size, shape, 

charge, specific affinity for a site, sterio and optical isomerism can be used to 

achieve the separation (McMaster 2007).       

 

Size exclusion chromatography was investigated by Arzamendi et al. 

(2006) with a refractive index (RI) detector to analyse transesterification 

samples.  Three columns, connected in series, were required to separate 

components in the following order TG>DG>MG>FAME>glycerol>methanol.  

FFAs have a similar molecular weight to FAMEs when compared to the other 

components, however FFAs were not investigated.  This method is not 

particularly useful if the methyl esters and FFAs are co-eluting, particularly 

when using a raw material such as UCO which contains FFAs.  In addition this 

method is expensive compared to other types of liquid chromatography. 

 

Polarity differences are more commonly used when carrying out 

separations involving vegetable oil.  For example Hishamuddin (2009) used 

reverse-phase chromatography to separate the triglycerides in palm oil. An 

isocratic elution with the mobile phase composed of actetone:acetonitirile 

63.5:36.5 (v/v) was used with a non-polar column.  This method achieved a 

good separation of triglycerides however MGs and DGs were not considered.     

 

The separation can be improved by using a gradient method to vary the 

polarity of the mobile phase, by varying the solvent composition.  Holcapek et 

al. (1999) developed a method based on a ternary gradient variation of 

solvents.  According to this method; reservoir A contained water, reservoir B 

contained acetonitrile and reservoir C contained 2-propanol:hexane (5:4 v/v).  

Two linear steps were used with the first being 30% A + 70% B in 0 min, 100% 

B in 10 min, 50% B + 50% C in 20 min followed by an isocratic elution with 50% 

B + 50% C for the last 5 min.  This method resulted in a good resolution of the 

various component classes and nearly complete resolution of the individual 
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components with the order of elution being FFAs<MGs<MEs<DGs<TGs.  

Ternary gradients increase the analysis time and most laboratory equipment is 

restricted to a binary pump.  In order to simplify the analysis Holcapek et al. 

(1999) proposed a rapid analysis method.  According to this method; reservoir 

A contained methanol and reservoir B contained a mixture of 2-propanol-

hexane (5:4 v/v).  A linear gradient from 100% A to 50% A + 70% in 15 min was 

used.  This method gave a reasonable separation of the FAMEs from the TGs 

although the DGs were obscured by baseline noise. 

 

Di Nicola et al. (2008) investigated a similar method to Holcapek et al. 

(1999) using non-aqueous reversed phase liquid chromatography, with a binary 

gradient and a UV detector at 210 nm.  The optimal method proposed is with a 

mobile phase A consisting of acetonitrile:methanol 4:1 (v/v) and mobile phase B 

consisting of n-hexane:isopropanol 8:5 (v/v).  The linear gradient started with 

100% A from time 0 min till 2.2 min then 34% A and 66% B after 25.5 min 

followed by and isocratic elution of 34% A and 66% B till 30 min.  There was 

good separation of most of the components although there was some co-elution 

of the monoglycerides and methyl esters.  The order of elution was 

MGs<MEs<DGs<TGs.  FFAs were not investigated.  

 

Türkan & Kalay (2006) investigated reversed-phase HPLC.  The binary 

method selected for further study started with 100% acetonitrile to 30% 

acetonitrile and 70% acetone over 3 min followed by a 25 min isocratic elution 

although there was some co-elution of components.  It was found that better 

separation was achieved using a linear gradient elution from 100% acetonitrile 

to 50% acetonitrile + 50% acetone over 3 min followed by 12 min isocratic 

elution and then a step gradient to 30% acetonitrile + 70% acetone and a 25 

min isocratic elution.      

 

A recent modification of liquid chromatography is ultra performance liquid 

chromatography (UPLC) which uses columns with small particles and a high 

pressure in order to speed up the analysis time (McMaster, 2007).  Li et al. 

(2008) investigated a UPLC method using acetonitrile-water (3:1 v/v) as the 

mobile phase and a phenyl C18 column.  With this method it was found that a 
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good separation of eleven fatty acids and methyl esters was possible however 

MGs, DGs, TGs and glycerol were not considered.  Lee & Di Gioia (2007) 

developed a UPLC method starting with 90% acetonitrile and 10% 2-propanol 

to 10% acetonitrile + 90% 2-propanol in 22 min.  With this method it was found 

that separation of the MG, DG and TG, as well as fatty acids and methyl esters 

was possible.   

 

Vegetable and waste vegetable oil consists of many different 

components and in many cases it was found that some of the components co-

elute.  For example it was shown that for the method used by Lee & Di Gioia 

(2007) there was co-elution of various components including  linoleic acid and 

monoolein, oleic and palmitic acid as well as methyl oleate and methyl 

palmitate.  Co-elution of similar components can be observed from the method 

proposed by Di Nicola et al. (2009).  Turkan and Kalay (2006) showed co-

elution of some di- and triglyceride species.   

 

2.6.2 Types of Liquid Chromatography Detectors 

Detectors reported for HPLC biodiesel analysis include ultraviolet/visible 

(UV/vis) (Holcapek et al. 1999; Lee & Di Gioia 2007; Di Nicola et al. 2008), 

refractive index (RI) (Arzamendi et al. 2006; Hishamuddin 2009), evaporative 

light scattering detectors (ELSD) (Lee & Di Gioia 2007; Li et al. 2008) and mass 

spectrometry (MS) (Holcapek et al. 1999; Türkan & Kalay 2006).   

 

Refractive index detectors have been found to show a good response to 

the components found in vegetable oil (Arzamendi et al. 2006; Hishamuddin 

2009) however they can only be used for isocratic elutions.  As a result UV/vis 

and ELSD detectors have been considered for the investigation of biodiesel 

production.  Holcapek et al. (1999)  found that UV/vis was more sensitive 

compared to ELSD however a recent study carried out by Lee & Di Gioia (2007) 

showed that the ELSD was more sensitive. Li et al. (2008)  was also able to get 

a good response using ELSD.  One of the problems with the UV/vis detector is 

that the response is low with saturated lipids and as a result these components 

are not readily detected (McMaster 2007). 
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Mass spectrometry is used to detect compounds based on the mass to 

charge ratio (m/z) and this method can be used to quantify and identify the 

components of a given mixture.  Various methods exist to ionise the samples.  

Holcapek et al. (1999) and Türkan & Kalay (2006) used an atmospheric-

pressure chemical ionisation spray (APCI) which fragments the molecules into 

a predictable set of ions.  An alternative type of mass spectrometer which has 

recently been used in conjunction with liquid chromatography is time-of-flight 

(TOF).  In this case a low energy electrospray is used to charge compounds 

without fragmenting them  (Gay et al. 2011).   

 

2.7 Conclusions 

Biodiesel has been defined as “mono-alkyl esters of long chain fatty 

acids derived from vegetable oils or animals fats” according to the ASTM 

International definition.  Feedstocks which have been investigated for biodiesel 

production include edible and non-edible vegetable oils, animal fats, oil refining 

by-products, algal oil and UCO.  UCO has been selected as the raw material for 

this work because it is expected to minimise the environmental impact. 

 

  Base, acid and enzyme catalysts have been considered for biodiesel 

production.  The focus of this work is on heterogeneous forms of these 

catalysts because they are readily separated from the reaction mixture and can 

be reused.  Basic catalysts have been shown to have the highest activity; 

however, there are problems which include leaching of the active species, 

sensitivity to water and FFA.  In addition the preparation of many of these 

catalysts is complex and calcining at high temperatures is sometimes required.   

 

Acid catalysts have been proposed as an alternative type of catalyst for 

processes involving UCO because these catalysts are not affected by FFAs 

and can simultaneously catalyse the esterification and transesterification 

reactions.  Acid catalysed transesterification is slow when compared to base 

catalysed transesterification.  In order to overcome this problem a two-step 

process has been proposed with esterification followed by transesterification.  

Ion-exchange resins have shown to be effective for the esterification pre-
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treatment of UCO for the preparation of biodiesel, at relatively benign reaction 

conditions.  Purolite D5082 is an ion-exchange resin recently developed for the 

esterification pre-treatment of biodiesel.  The optimisation of this catalyst for the 

esterification pre-treatment process has not been reported and will be 

investigated. 

 

Enzyme catalysts have been proposed for biodiesel production because 

they can catalyst esterification, transesterification and hydrolysis at relatively 

benign operating conditions and there are no saponification side reactions.  

Novozyme 435 has been widely reported for the esterification of lipid materials 

with a high FFAs content however it has not been considered for the 

esterification pre-treatment of UCO. 

 

Various forms of the lipase P. cepacia (recently reclassified as B. 

cepacia) have been investigated for the production of biodiesel.  To date the 

focus has been in assessing various techniques and supports for immobilising 

this lipase.  An optimisation study with UCO as the raw material and the 

commercially available, immobilised form of this lipase, Amano Lipase PS-IM, 

has not been reported in the literature and it proposed to carry out this study. 
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Chapter 3: Materials and 
Methods 

 

3.1 Introduction  

This chapter details the materials and experimental methods used to 

carry out the research work.  Section 3.2 of the chapter provides information on 

the materials used.  This is followed by a description of the catalyst 

characterisation techniques in Section 3.3.  The experimental set-up and 

procedures are discussed in Section 3.4.  In Section 3.5 the analytical 

techniques used for monitoring the progress of the various reactions and the 

characterisation of the UCO are discussed and this includes all the liquid 

chromatography methods that have been tested.   

 

3.2 Materials 

Purolite D5082 (ion-exchange resin), was donated by Purolite 

International UK Ltd and received in a dry form.  The ion-exchange resin was 

washed with methanol, dried in a vacuum oven at 373 K for 6 h and stored in a 

desiccator prior to use.  Novozyme 435 (immobilised enzyme, Candida 

antarctica lipase B) was donated by Novozymes UK Ltd and Amano Lipase PS-

IM (immobilised enzyme, lipase from Pseudomanas cepacia, recently 

reclassified as Burkholderia cepacia) was donated by Amano Enzyme Europe 

Ltd, UK.  The immobilised enzymes were stored in a refrigerator and used as 

supplied.     

 

The UCO, used as the raw material for producing biodiesel, was supplied 

by GreenFuel Oil Co Ltd., UK.  Methanol (>99.9%) was used as the reagent for 

bidiesel and cleaning Purolite D5082 was purchased from Fisher Scientific UK 

Ltd. 
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The 0.1 M standardised solution of potassium hydroxide in 2-propanol 

and α-Naphtholbenzein indicator, used for the FFA titration, were purchased 

from Sigma Aldrich, UK. 

 

The methyl oleate (>99.0%), methyl palmitate (>99.0%), methyl linoleate 

(>99.0%), methyl stearate (>99.5%) methyl heptadecanoate (>99.0%) were 

used as the standards for FAME analysis and n-hexane (>97.0%), and 

purchased from Sigma Aldrich, UK.  Methyl linolenate was also used as a 

standard for determining the FAME concentration and purchased from Fischer 

Scientific UK Ltd. 

 

DL-α-palmitin (>99%), 1,3 diolein (>99%), dipalmitin (>99%) and glycerol 

trilinoleate (>98%), glycerol tripalmitate (>99%) were used as standards to 

determine the MG, DG and TG concentrations and were purchased from Sigma 

Aldrich, UK. 

 

Hydranal® Coulomat Oil, Hydranal® Coulomat GC and Hyranal® Water 

standard 1.00 (0.1% water) were used for determining the water concentration 

and were purchased from Sigma Aldrich, UK.   

 

Toluene (>99%), 2-propanol (>99.8%), acetone (>99.8%) and acetonitrile 

(>99.9%) were used as solvents for various analysis and tert-butanol (>99%) 

was used for washing Novozyme 435.  These solvents were purchased from 

Fisher Scientific UK Ltd.     

 

The palm oil was originally supplied by the Malaysian Palm Oil Board 

and is palm oil sample series 4. 

 

3.3 Catalyst Characterisation 

3.3.1 Field Emission Gun-Scanning Electron Microscopy 

A field emission gun-scanning electron microscope (Carl Zeiss, Leo 1530 

VP) (FEG-SEM) was used to study the morphology of the ion exchange resins.  

The FEG-SEM analysis was carried out a room temperature and used 
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accelerating voltages of 1-30 kV.  Prior to analysis samples of each catalyst 

were crushed using a mortar and pestle.  Fresh catalyst beads and ground 

powder were then mounted on aluminium stubs using double sided adhesive 

carbon conductive dots.  Silver paint was placed at both sides of the samples to 

act as a conductor and the samples were coated with gold in an argon 

atmosphere prior to observation.  The results are given in Chapter 4.     

   

3.3.2 Elemental Analysis 

The elemental analysis was used to investigate the elemental 

composition of the catalysts and to determine if this changed when the catalyst 

was used.  In particular sulfonic acid is the active species on the ion-exchange 

resin catalyst so a reduction in the sulphur percentage would indicate a loss of 

sulfonic acid.    The ion-exchange resin catalyst (Purolite D5082) was analysed 

for carbon (C), hydrogen (H), nitrogen (N) and sulphur (S). 

 

The immobilised enzymes (Novozyme 435 and Amano Lipase PS-IM) 

are composed of C, H and N and as a result were analysed for C, H and N.  In 

the case of lipases the catalytic activity is based on the conformation of specific 

functional groups known as the catalytic triad.  The catalytic triad is composed 

of the serine, aspartic acid and histidine amino acid residues (Paiva et al. 

2000).  

 

The catalyst samples were crushed and dried before being sent for 

elemental analysis.  The elemental analysis was carried out using a 

Thermoquest EA1110 Elemental Analyser by OEA Laboratories Ltd (Cornwall).  

The samples were combusted in pure oxygen with a catalyst to ensure 

complete combustion to form elemental nitrogen, carbon dioxide, water vapour 

and sulphur dioxide.  These gases were separated using gas chromatography 

and quantified using a thermal conductivity detector.  The analysis was carried 

out in duplicate and the results are given in Chapter 4.   
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3.3.3 Fourier Transform-Infrared Measurements 

The Fourier Transform-Infrared Transform (FT-IR) spectroscopy analysis 

was carried out to investigate the functional groups present on the various 

catalysts.  A sample of each catalyst was ground into a powder using a mortar 

and pestle, and subsequently mixed with potassium bromide (KBr).  The 

powder was pressed under a constant 10 T pressure for 5 min to form a pellet. 

 

The analysis was carried out using an FTIR 8500S SHIMADZU analyser.   

Each pellet was placed in the sample holder and 64 scans carried out.  A 

spectral range (wavenumbers) from 4000 - 600 cm-1 was used and the 

transmittance recorded.  The results are discussed in Chapter 4.  

 

3.3.4 True Density Measurement 

The true density (t) was measured using a Micromeritics Multivolume 

Pycnometer 1305 with helium as the gas.  A known mass of catalyst (mc, g) 

was placed in the pycnometer cell with known volume (Vcell, cm-3) and helium 

was passed through the cell several time in order to purge the sample.  The 

volume of the sample was determined by measuring the pressure of helium 

permitted to flow into the cell (P1, psi) and the pressure when the helium was 

permitted to expand (P2, psi) to a known volume (Vexp, cm-3).  The volume of the 

sample (Vsample, cm-3) and the density could then be calculated: 
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For each sample five measurements were made and the average values 

have been reported.  The results are reported in Chapter 4. 
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3.3.5 Particle Size Distribution Measurement 

Particle size distribution (PSD) analysis was carried out using a Coulter 

LS 130 particle analyzer with particle size measurements over the range 0.1 - 

900 μm.  The Fraunhofer optical model was used for the measurement of the 

distribution pattern.  The samples were introduced into the dispersion module 

with isopropyl alcohol as the solvent.  The results are given in Chapter 4. 

 

3.3.6 Surface Area, Total Pore Volume and Average Pore 

Diameter Measurement 

Surface area, pore volume and average pore diameter were determined 

from adsorption isotherms using a Micromeritics ASAP 2020 surface analyser 

as follows:  The samples were degassed by means of a two-stage temperature 

ramping under a vacuum of <10 mmHg, followed by sample analysis at 77 K 

using nitrogen gas.  The Brunauer–Emmett–Teller (BET) method was used to 

calculate the surface area, average pore diameter and total pore volume. 

 

3.3.7 Sodium Capacity Determination 

The acid capacity was determined using a conventional titration method.  

A known amount of catalyst (~0.5 g) was placed in a conical flask and 

contacted with 50 mL of 0.1 M sodium hydroxide for 72 h using an orbital 

shaker.  After shaking, 5 mL aliquots of the filtered solution were titrated with 

0.1 M hydrochloric acid and methyl red as the indicator.  The samples were 

analysed in triplicate. 

 

3.3.8 Bicinchoninic Acid Protein Assay 

The catalytic activity of enzymes is linked to the amount of enzyme 

immobilised on the support.  A bicinchoninic acid (BCA) assay is used to 

determine the amount of protein immobilised on various surfaces, with enzymes 

a type of protein.  By analysing fresh and used catalyst the BCA assay can be 

used to determine if the amount of protein changes during use.  The BCA assay 

was carried out using a commercially available Pierce BCA protein 

determination kit.  The kit contains copper II which is reduced to copper I by the 
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protein.  The copper I then reacts with BCA to form a purple copper-BCA 

complex.    

 

100 µL of deionised water was added to a known mass of sample.  The 

BCA standards and reagents were prepared in accordance with the 

manufacturer’s instructions.  1.9 mL of the reagent solution was added to 0.1 

mL of sample or standard and incubated for 2 h on a 3-D rocking platform (60 

RPM) at room temperature.  The optical density was measured at a wavelength 

of 562 nm using a UV-VIS spectrophotometer UV mini (Shimadzu, Milton 

Keynes, UK).  The samples were calibrated against an albium standard solution 

in deionised water.    

 

3.4 Batch Experimental Set-up 

The esterification reactions were carried out using a five-neck, 500 mL 

jacketed batch reactor with a reflux condenser and baffles.  The stirrer motor 

was a Eurostar Digital IKA-Werke.  The temperature was monitored by means 

of a Digitron, 2751-K thermocouple and this information was used to set the 

temperature on the Techne, TE-10D Tempette water bath.  The sample tube 

was fitted with metal gauze to prevent withdrawal of catalyst when taking a 

sample and the samples withdrawn by means of a syringe.  A schematic 

representation of the batch experimental set-up is shown in Figure 3.1. 

 

Most reactions were carried out using a liquid volume of 300 mL.  The 

exception being the reusability studies when the volume had to be adjusted to 

allow for a smaller or larger amount of catalyst.  When parameters such as the 

mole ratio were investigated the ratio of the volumes was varied to meet the 

required mole ratio, keeping the total volume constant.  The reactants were 

added to the reactor and heated to the required temperature, after which the 

catalyst was added to initiate the reaction.  The point at which all the catalyst 

had been added was defined at the start point for the reaction or time, t=0.  The 

catalyst mass was determined based on the total mass of the reactants.  

Samples were taken at regular intervals.   
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Figure 3.1. Schematic representation of the batch experimental set-up. 

 

 

3.4.1 Esterification Pre-treatment Experiments 

The aim of the esterification pre-treatment experiments was to 

investigate the esterification of FFAs in UCO to FAME.  The esterification 

reaction schematic is shown in Chapter 1, Figure 1.2.  Typical reaction 

conditions for the esterification reaction are shown in Table 3.1.  All optimisation 

reactions were carried out using the same liquid volume (0.3 L).  When the 

mole ratio was varied the Excel function “goal seek” was used to find the new 

conditions by varying the amount of methanol and UCO to be added.  The 

catalyst was calculated based on the total mass of liquids added to the reactor.  

In the case of the reusability studies it was necessary to amend the total reactor 

volume depending on the amount of catalyst available for the experiment. 

 

For the esterification reaction the effect of stirring speed (external mass 

transfer resistance), particle size (internal mass transfer resistance), catalyst 

loading, temperature and mole ratio on conversion were investigated.  A blank 

run, without catalyst, was also carried out at the optimum conditions for Purolite 
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D5082 and it was found that the change in FFA and FAME concentrations was 

negligible after 8 h.  These conditions were selected because it was expected 

that the uncatalysted reaction was most likely to occur at these conditions.  As 

a result it was concluded that the esterification and transesterification reactions 

were only possible in the presence of a suitable catalyst. 

 

Table 3.1. Typical reaction conditions for the esterification pre-treatment 
experiments 

Parameter Purolite D5082 Novozyme 435 

Temperature (C) 60 50 

Stirring speed (rpm) 450 650 

Methanol to FFAs mole ratio (-) 62:1 6.2:1 

Methanol 

Molar Mass Basis (gmol-1) 

Mass (g)  

Volume (L) 

 

278.0 

83.07 

0.105 

 

278.0 

12.13 

0.0153 

UCO 

Mass (g)  

Volume (L)  

 

180.2 

0.195 

 

263.1 

0.284 

Total volume (L) 0.300 0.300 

Total mass (g) 263.3 275.3 

Catalyst loading (%) 5.00 1.00 

Catalyst mass (g) 17.55 2.753 

 

All samples were analysed for the FFAs.  In order to understand the 

extent of the side reactions samples from selected experiments were analysed 

for the FAME concentration.  Samples from a small number of experiments 

were also analysed for the MG, DG, and MG concentrations in order to 

investigate the reaction mechanism.  The conversion of FFAs at any time was 

calculated according to equation 3.3. 
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FFAs,0

FFAs FFAs,0

FFAs
c

cc
 X FFAs, of Conversion


                                                                    (3.3) 

 

where cFFAs,0 is the initial concentration of FFAs (wt%), at time, t=0 and 

cFFAs is the concentration of FFAs (wt%), at any time, t=t. 

 

After the experiments the catalyst was separated from the reaction 

mixture by filtration.  Selected samples were kept for the reusability studies 

detailed in sections 3.4.1.1 and 3.4.1.2.  The reaction mixture was left in a 

separating funnel overnight allowing the mixture to separate into two layers; a 

non-polar oil layer and a polar layer.  The density and composition of these 

layers was measured and the results are discussed in Chapter 5. 

 

The reproducibility of the esterification reactions are discussed in 

Chapter 5 and the results are discussed in Chapter 6.  The results of the batch 

experiments which included monitoring the MG, DG and TG concentrations and 

the associated kinetic modelling are presented in Chapter 7. 

   

3.4.1.1 Ion-exchange Resin catalyst (Purolite D5082) Reusability 

Study 

The aim of this study was to compare the effect of methanol washing 

using an ultrasonic bath and regeneration using sulphuric acid on the reusability 

of Purolite D5082. 

 

The batch experiments for this study were carried out using the optimum 

reactions conditions identified for Purolite D5082.  After cycle 1 the catalyst was 

separated from the reaction mixture by filtration.  This catalyst was washed 

using methanol and an ultrasonic bath (Fisherbrand, FB11003) set at 60% 

power.  The methanol was changed regularly until no further discolouration of 

the methanol could be observed.  The catalyst was then dried in the vacuum 

oven at 100 C for 6 h.  The resulting catalyst is referred to as Purolite D5082, 

Cycle 2 and a second reusability cycle carried out.   
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After cycle 2 the catalyst was again separated from the reaction mixture 

by filtration, washed using methanol and the ultrasonic bath and then dried in 

the vacuum oven.  After drying 1 M sulphuric acid was added to the catalyst 

and this was left in the orbital shaker overnight.  The catalyst was then washed 

using a continuous flow of deionised water through a column.  The progress 

was monitored by measuring the conductivity of the water.  Methanol was used 

to displace water from the catalyst and it was then dried in the vacuum oven at 

100 C for 6 h.  This sample of catalyst is referred to as Purolite D8082, Cycle 

3.  Reusability cycle 3 was carried out using this catalyst.   

 

In order to investigate the results further a sample of Purolite D5082, 

Cycle 2 and a sample of Purolite D5082 were regenerated with 1 M sulphuric 

acid overnight and washed with deionised water through a column as above.  

These catalyst samples were then soaked in methanol with regular changes 

until no further discolouration of the methanol could be observed.  The catalyst 

was then dried in the vacuum oven 100 C for 6 h.  These catalyst samples 

were labelled Purolite D5082, Cycle 1-2, Purolite D5082, Cycle 2-2 and Purolite 

D5082, Cycle 3, and the reusability batch experiments carried out.     

    

3.4.1.2 Immobilised Enzyme (Novozyme 435) Reusability Study 

It is known that methanol damages enzyme catalysts (Talukder et al. 

2009; Shimada et al. 2002).  Tert-butanol was selected to clean this catalyst 

because it has been shown to be effective. 

 

The catalyst was soaked in tert-butanol with regular solvent changes 

until no further colour change could be observed.  Tert-butanol has a melting 

point of 25.7 C and as a result it was necessary to immerse the conical flasks 

containing the solvent and catalyst in a water bath at 26 C.  The catalyst was 

then separated from the solvent by filtration and placed in a refrigerator for 1 h.  

Freeze-drying was used to remove the residual solvent. 
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3.4.2 Enzymatic Biodiesel Production 

The production of biodiesel using immobilised lipases has been 

investigated.  Lipases are able to catalyse the esterification, transesterification 

and hydrolysis reactions.  The order of preference depends on the lipase type 

and reagents.  The enzymatic biodiesel production has been carried out in two 

stages with the first stage focused on the transesterification reaction using 

Amano Lipase PS-IM as the catalyst.  The second stage was carried out using 

Novozyme 435 as the catalyst and was focused on the esterification reaction.     

 

3.4.2.1 Enzymatic Biodiesel Production Stage 1 

Initially the esterification reaction was intended as a pre-treatment 

process to remove FFAs prior to transesterification however an advantage of 

enzyme catalysts is that they are not affected by the presence of FFAs.  As a 

result stage 1 is regarded as a transesterification process and the overall 

transesterification reaction scheme is shown in Chapter 1, Figure 1.1.   

 

Stage 1 was carried out with UCO as the raw material and Amano 

Lipase PS-IM as the catalyst.  It was found that it was necessary to add water 

to the transesterification reaction mixture.  Water can cause problems with GC-

MS analysis and the samples were centrifuged to separate most of the water 

from the oil.  The non-polar oil layer was analysed for FAME and FFA.  The 

work carried out to investigate the composition of the final product layers has 

shown that the amount of FAME and FFA in the polar layers is negligible.  This 

is discussed in Chapter 5.  The amount of material added was calculated using 

the same approach for esterification as discussed in Section 3.4.1.  Typical 

reaction conditions for enzymatic biodiesel production are given in Table 3.2.   

 

At the end of the experiments, the catalyst was separated from the 

reaction mixture by filtration.  The reaction mixture was left in a separating 

funnel overnight allowing the mixture to separate into two layers; a non-polar oil 

layer and a polar layer.  The density and composition of these layers was 

measured and the results are presented in Chapter 5.  In addition the oil layer 
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at the optimum conditions was used to investigate enzymatic biodiesel 

production stage 2, as discussed in Section 3.4.2.2.  

 

Table 3.2.  Typical reaction conditions used for enzymatic biodiesel production 
stage 1 

Parameter Amano Lipase PS-IM 

Temperature (C) 40 

Stirring speed (rpm) 500 

Methanol to oil mole ratio (-) 3:1 

Methanol 

Mass (g)  

Volume (L) 

 

25.9 

0.032 

UCO 

Molar Mass Basis (gmol-1) 

Mass (g)  

Volume (L)  

 

867.4 

233.2 

0.253 

Water 

Volume percentage (%) 

Mass (g)  

Volume (L) 

 

5 

15 

0.015 

Total volume (L) 0.300 

Total mass (g) 274.0 

Catalyst loading (%) 0.786 

Catalyst mass (g) 2.154 

 

 

For the transesterification reaction the effect of water addition, mole ratio, 

external mass transfer resistance, catalyst loading and temperature on 

conversion were investigated.  The reproducibility of the transesterification 

reactions are discussed in Chapter 5 and the results are discussed in Chapter 

8. 
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3.4.2.2 Enzymatic Biodiesel Production Stage 2 

The reaction product from the transesterification reaction contained a 

significant amount of FFAs.  In addition given the FAME conversion it was 

expected that a significant amount of unreacted TGs, DGs and MGs were 

present in the reaction product.  Novozyme 435 has been shown to catalyse 

esterification, transesterification and hydrolysis.  As a result Novozyme 435 has 

been investigated to determine if it could be used after the transesterification 

reaction to convert the FFAs, DGs and MGs to FAME thus increasing the 

conversion. 

 

A sample of oil was used directly for the Stage 2 investigation.  A second 

sample of oil was dried using rotary evaporation at 60 C.  The aim of the rotary 

evaporation was to remove any residual water and methanol however it was 

possible that FAME would also be removed and a sample was taken before 

and after drying to monitor the FAME concentration.  The batch experiments 

were carried out at the optimum conditions identified for Novozyme 435 as an 

esterification pre-treatment catalyst (Chapter 6) and the results are discussed in 

Chapter 8. 

 

3.5 Analytical Methods 

3.5.1 Determination of the FAME Concentration 

The FAME concentration was determined using gas chromatography 

mass spectrometry (GC-MS) according to the procedure described in Abidin et 

al. (2012).  The GC-MS analysis was carried out using a Hewlett Packard HP-

6890 instrument, equipped with a DB-WAX (J & W Scientific) capillary column, 

(30 m x 0.25 mm) packed with polyethylene glycol (0.25 µm film thickness); 

Helium at a flow rate of 1.1 mLmin-1 was used as the carrier gas. The amount 

of sample injected was 2 µL and the temperature of the injector and detector 

was 250 °C. The initial oven temperature was 70 °C held for 2 min, then 

increased at 40 °Cmin-1 up to 210 °C, then increased at 7 °Cmin-1 up to 

230 °C and the final temperature held for 11 min. Methyl heptadecanoate was 

used as the internal standard. 
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In order to determine the response factors, stock solutions were 

prepared, using the 5 components and the internal standard, to a concentration 

of approximately 5000 mgL-1, with hexane as the solvent.  These stocks could 

be stored for up to a week in the refrigerator, in an amber glass bottle.  The 

calibration standards were made up by adding a known mass of each stock to a 

2 mL amber vial.  This was done in triplicate for each analytical run.  The 

standards were used to determine the response factor according to equations 

3.4-3.6. 

 

i

i
i

 AR, component of ratio Area

MR , component of ratio Mass
RF component, i the of factor Response

i

ith                      (3.4) 

 

Where: 

is

ii

m standard, internal the of mass

m , component of mass
 MRi                      (3.5)                                                     

 

is

ii

a standard, internal the of area

a , component of area
 ARi                    (3.6)                                                

 

The samples were prepared by adding a known mass of sample and 

internal standard solution to a 2 mL amber vial.  This was diluted with hexane.  

The calibration information could then be used to calculate the component 

masses according to equation 3.7.  The mass and molar concentrations were 

subsequently calculated according to equations 3.8 and 3.9.   

 

iisii ARmRFm                                                  (3.7) 




s

i

m

m
  gg ion,concentrat mass                                                 (3.8) 
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3-

M

ionconcentrat mass
mmol ion,concentrat molar                          (3.9) 

 

Where ms is the sample mass (g); Moil
 is the molar mass of the oil (gmol-

1) and  is the calculated reaction mixture density (gm-3). 
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3.5.2 Liquid Chromatography Methods Investigated for 

Monitoring Biodiesel Production 

Various liquid chromatography methods were investigated for their 

potential use to monitor biodiesel reaction products.  The justification for 

assessing each method is discussed in Chapter 7. 

   

3.5.2.1 The High Performance Liquid Chromatography (HPLC) 

Instrument 

The HPLC work was carried out using a Hewlett Packard model 1100 

HPLC system with a binary pump, a variable loop injector system, a column 

oven, a refractive index detector and a diode array detector. 

 

A Waters NovaPak© C18 with a 3.9 mm internal diameter, 300 mm in 

length and preloaded with 4 m silica particles was used for the separation.  

For Method 1 two columns were used and one column was used for Method 2. 

 

3.5.2.2 The Liquid Chromatography-Mass Spectrometry (LC-MS) 

Instrument 

The LC-MS work was carried out using a Waters Acquity ultra 

performance liquid chromatography (UPLC) system interfaced to a Waters 

Synapt HDMS quadrupole time-of-flight (TOF) mass spectrometer, using 

positive ion.  A Phenomenex Kinetix C18 UPLC column (150 mm x 2.1 mm x 

2.1 µm) was used for the separation. 

 

3.5.2.3 LC Method 1 

Method 1 was carried out using the HPLC instrument.  An isocratic 

elution was used with the mobile phase consisting of acetone:acetonitrile 

63.5:36.5 (v/v) with a flow rate of 1 mLmin-1 and the run time was set at 130 

min.  The injection volume was 10 µL of 5% (w/v) oil in chloroform and the oven 

temperature was set at 25 ºC.  Attenuation was fixed at 500 x 103 RI units and 
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the refractive index detector was maintained at a temperature of 35 ºC 

(Hishamuddin 2009). 

 

3.5.2.4 LC Method 2 

Method 2 was carried out using the HPLC instrument.  The 

chromatography used a binary gradient with mobile phase A consisting of 

acetonitrile:methanol 4:1 (v/v) and mobile phase B consisting of n-

hexane:isopropanol 8:5 (v/v).  The separation started with 100% A from 0 min 

till 2.2 min then 34% A and 66% B after 25.5 min followed by an isocratic 

elution of 34% A and 66% B ending at a run time of  30 min and a total flow rate 

of 1.3 mLmin-1.  The oven was set at a temperature of 30 ºC and the UV 

detector was set at a wavelength of 210 nm.  The injection volume was 10 L of 

sample of varying concentrations dissolved in mobile phase B (Di Nicola et al. 

2008; Santori et al. 2009). 

 

3.5.2.5 LC Method 3 

Method 3 was carried out using the LC-MS instrument.  The 

chromatography used a binary method with acetonitrile as solvent A and 2-

propanol as solvent B.  The separation was carried out using a binary gradient 

with a flow rate of 0.15 mlmin-1 starting with 90% A and 10% B changing to 

90% B in 22 min.  An injection volume of 2 L was used (Lee & Di Gioia 2007).       

 

3.5.2.6 LC Method 4 

Method 4 was carried out using the LC-MS instrument. The 

chromatography used a binary method with acetonitrile as solvent A and 2-

propanol as solvent B.  The separation was carried out using a binary gradient 

with a flow rate of 0.15 mlmin-1 starting with 90% A and 10% B changing to 

70% B in 20 min.  An injection volume of 10 L was used        

 

The calibration was carried out using external standards.  UCO has 

many components and in order to simplify the method it has been assumed that 

each component of a given species gives a similar mass spectrometric 
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response.  Two calibration standards were used for each of the MG, DG and 

TG species.   

 

The external standard method was used for the LC-MS calibration.  

Stock solutions of each component were prepared using 2-propanol as the 

solvent.  Specified volumes were added to a 25 mL volumetric flask and the 

volume made up using a solvent of acetonitirile:2-propanol (90:10 v/v) which 

corresponds to the initial conditions for the analysis.  500 µL of this solution was 

transferred to a 10 mL flask and further diluted with the acetonitrile:2-propanol 

solvent.  This solution was the highest concentration for the calibration curve.  A 

series of 1:1 dilutions were carried out to form a calibration series of 6 

standards.  An aliquot of each standard was transferred to a 2 mL clear vial for 

analysis. 

 

The linear portion of the calibration curve was used to determine the 

calibration constants according to equation 3.10.  In theory the intercept should 

be zero however it was found that this was not the case for all components due 

to interaction with the solvents.  The linear equation used is: 

 

intercept  c RF  a iii                                                   (3.10) 

 

Where ai is the area of component i and ci is the concentration of 

component I (mgL-1) and RFi is the response factor for component i. 

 

In order to prepare the samples a known mass of approximately 0.5 g 

was added to a 10 mL volumetric flask and diluted using 2-propanol.  From 

there 50 µL of each solution was diluted by 1:100 using the acetonitrile: 2-

propanol solution.  A portion of this was transferred to a 2 mL vial for analysis.  

Equation 3.10 was then rearranged in order to calculate the concentration 

according to equation 3.11.   

 

i

i
i

RF

intercept - a
  c                                                           (3.11) 
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This method was selected for monitoring the MG, DG and TG concentrations 
and the results are discussed in Chapter 7. 

 
 

3.5.3 Determination of the FFAs Concentration 

The FFAs concentration was determined by titration using ASTM D974 

(ASTM standard D974-08), specifically developed to determine the acidic or 

basic constituents of highly coloured oils.   In order to determine the acid 

content 2 ± 0.2 g of sample was dissolved in 100 mL of a solution of toluene:2-

propanol:water (100:99:1 v:v:v).  The resulting solution was titrated at room 

temperature using a standardised 0.1 M solution of potassium hydroxide (KOH) 

in 2-propanol and p-naphtholbenzein indicator.  A colour change from orange to 

green indicated that the end point had been reached.  The acid value of the oil 

could then be calculated using equation 3.12.   

 

By assuming that all the acid present in the samples is FFAs it is 

possible to calculate the wt% of FFAs in the oil using equation 3.13.  The 

calculation to determine the molar concentration of FFAs is shown in equation 

3.14.  

   

  
W

56.1  M B -A 
  KOH/sample mg  Value,Acid


                             (3.12) 

 

  
W

28.2  M B -A 
  FFA wt%


                                                (3.13) 

 

  
1000
 

W

M  B-A
  mol.m ion,concentratFFA 3- 




                              (3.14) 

 

Where, A is the volume of KOH solution required for the titration and B is the 

volume of KOH for the blank (mL); M is the molar concentration of the KOH 

solution; W is the mass of sample (g) and  is the density (gm-3). 
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3.5.4 Determination of Water Concentration 

The water content was determined using the Karl Fisher titration method 

and a Mitsubishi Moisture Meter (CA-20) as the analytical instrument.  

Hydranal® Coulomat Oil was used as the anode solution and Hydranal® 

Coulomat GC was used as the cathode solution.   

 

A micropipette was used to add a known mass of sample to the cell.  The 

water content was determined automatically by the cell.  

 

3.5.5 Oil Derivitisation 

In order to determine the fatty acid composition of the UCO, a sample of 

oil was first derivatized.  A 100 mg was dissolved in 10 mL hexane and then 

derivitized using 100 µL of a 2 M potassium hydroxide in methanol solution.  

Components were mixed using a vortex mixer and then centrifuged.  The 

supernatant was analysed by GC-MS for the FAME composition which could 

then be used to determine the fatty acid composition.   

 

3.5.6 Measurement of Liquid Bulk Density 

The density of the UCO was determined using a pycnometer.  A 

pycnometer is a glass bottle with a close fitting glass stopper with a capillary 

tube through it to ensure a precise volume is added.  Water was used as the 

reference material to determine the density of the UCO.  The pycnometer was 

filled with deionised water with the volume calculated according to equation 

3.15: 

 

O

O

2

2

H

Hm
  V  water,of Volume


                                                  (3.15) 

 

Where mH2O is the experimentally determined mass of water and H2O is 

the density of water.  The procedure was repeated for UCO and the mass of 

sample was experimentally determined.  The volume in the pycnometer was 
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assumed to be the same as the water volume.  The density of oil (L) was then 

calculated according to equation 3.16:  

 

 
 

m

m
   liquid, ofDensity 

22H

L

OHO

L





                                         (3.16) 

 

where mL is the mass of the liquid sample, UCO (kg). 

 

3.5.7 UCO-Methanol Solubility Analysis 

The solubility of methanol in oil was investigated using a similar set up to 

the batch experiments described in Section 3.4.  However a smaller, 100 mL 

jacked batch reactor was used in place of the 500 mL reactor.  A known mass 

of UCO (approximately 40g) was added to the batch reactor.  Once the oil 

reached 30 C a known amount of methanol was added in increments using a 

micropippette.  The mixture changed from transparent to cloudy when the 

saturation point was reached.  The temperature was then increased by 10 C.  

As the temperature increased, excess methanol dissolved in the UCO and the 

mixture became transparent.  The process was then repeated for the new 

temperature.  The results of this work are reported in Chapter 5.  
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Chapter 4: Characterisation of 
Fresh and Used Catalysts 

 

4.1 Introduction  

This chapter details the results of the catalyst characterisation, carried 

out on the catalysts investigated for biodiesel production.  The catalysts 

investigated are Purolite D5082, Novozyme 435 and Amano Lipase PS-IM.  

Field emission gun – scanning electron microscopy (FEG-SEM), elemental 

analysis, Fourier transform – infrared (FT-IR), surface area, pore volume, 

average pore diameter and sodium capacity were used to characterise the 

fresh and used catalyst samples.  In addition a bicinchoninic acid (BCA) assay 

was carried out on the immobilised enzymes.  The true density and particle size 

distribution of the fresh catalysts was also measured.  

 

Purolite D5082 is a cation exchange resin developed by Purolite 

International UK Ltd for the esterification pre-treatment of biodiesel.  This 

catalyst has been developed in conjunction with Purolite D5081.  Purolite 

D5081 has been studied in detail by Abidin et al. (2012) and a limited number of 

experimental results have been presented for comparison.  These cation-

exchange resins consist of sulphonated polystyrene cross-linked with 

divinylbenzene (DVB) with sulphonic acid as the cation exchanger (Andrijanto 

et al. 2012).  This catalyst has a high degree of DVB cross-linking and as a 

result exhibits very little volume change (swelling), has a dense matrix and 

improved oxidation resistance.  Esterification pre-treatment was investigated 

using Purolite D5082. 

 

Novozyme 435 and Amano Lipase PS-IM are immobilised enzymes and 

the class of enzymes investigated for biodiesel production are lipases (Souza et 

al. 2009).  Novozyme 435 is supplied by Novozymes UK Ltd and consists of 

Candida antarctica lipase B immobilised on acrylic resin.  Amano Lipase PS-IM 

consists of Amano Lipase PS immobilised on diatomaceous earth.  Amano 
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Lipase is a lipase from Pseudomanas cepacia, recently reclassified as 

Burkholderia cepacia (Torres et al. 2008).  The catalytic activity of lipases is 

due to the structure of the polypeptide chains which form a catalytic triad 

composed of the Serine, Aspartate and Histidine amino acid residues (Orçaire 

et al. 2006).   

 

A high conversion is possible using Novozyme 435 to catalyse the 

esterification reaction of material with a high concentration of free fatty acids 

such  as palm fatty acid distillate and soybean oil deodoriser distillate (Talukder 

et al. 2009; Souza et al. 2009).  It was expected that a high conversion would 

be possible if Novozyme 435 was used for the esterification pre-treatment of 

UCO.  Amano Lipase PS-IM has been shown to be active for the 

transesterification reaction (Tongboriboon et al. 2010; Li et al. 2011)  is 

comprised of a lipase from Pseudomanas cepacia (recently reclassified as 

Burkholderia cepacia) immobilized on diatomaceous earth (Orçaire et al. 2006; 

Kataoka et al. 2010).  Diatomaceous earth is composed of the crushed remains 

of fossilised algae.  It has been shown that Amano Lipase PS-IM gives the 

highest conversion of the commercially available lipase catalysts for 

transesterification of vegetable oil and as a result it was investigated for the 

transesterification reaction of UCO (Tongboriboon et al. 2010).   

 

4.2 Field Emission Gun-Scanning Electron 
Microscopy (FEG-SEM) Analysis 

FEG-SEM images of the fresh catalysts are shown in Figures 4.1 – 4.3. 

Structural changes to the fresh and used Purolite, D5082 and Novozyme 435 

could not be observed using FEG-SEM.   

 

Purolite D5082 and Novozyme 435 are supplied as beads and the 

surface morphology of a single bead is shown in Figures 4.1(a) and 4.2(a).  

From this it can be seen that there are differences in the surface morphology 

with Purolite D5082 having a very smooth surface and very few features in 

comparison to Novozyme 435 which has a large number of surface features. 
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Figure 4.1.  The FEG-SEM images of Purolite D5082. Where (a) shows a catalyst 
bead at a magnification of 450 X and (b) shows a sample of crushed catalyst at a 
magnification of 50 000 X. 

(a) 

(a) 

(b) 

200 nm 

100 µm 

100 µm 
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Figure 4.2.  The FEG-SEM images of Novozyme 435 with (a) showing a single 
bead with a magnification of 450 X and image (b) showing a sample of crushed 
catalyst with a magnification of 50 000 X. 

 

(a) 

100 µm 

200 nm 

(b) 
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Figure 4.3.  FEG-SEM images of Amano Lipase PS-IM with (a) a magnification of 
500 X and (b) a magnification of 2000 X. 

 

A sample of Purolite D5082 and Novozyme 435 were crushed in order to 

view the internal structure of these catalysts and these images are shown in 

(a) 

20 µm 

100 µm 

(b) 
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Figures 4.1(b) and 4.2(b).  From this it can be seen that the two catalysts have 

a very similar structure.  Purolite D5081 appears to have the largest spheres, 

which allow for the formation of the largest pores, which indicates that the 

internal mass transfer resistance may be lower when compared to Purolite 

D5082.  Novozyme 435 appears to have the most porous internal structure. 

 

Amano Lipase PS-IM was supplied as a powder and the structure of this 

catalyst at two different magnifications is shown in Figure 4.3.  From these data 

it can be seen that the morphology of this catalyst is very different.  

Diatomaceous earth is comprised of crushed, fossilised algae and various parts 

of the algal structure can be seen, particularly in Figure 4.3(b).      

 

4.3 Particle Size Distribution 

The cumulative particle size distribution of the fresh catalysts is shown in 

Figures 4.4 – 4.6.  It was observed that the particle size of the catalysts 

remained similar at the end of the experiments indicating that there was no 

mechanical damage to the catalyst.  It is expected that the particle size 

distribution will be similar for fresh and used catalyst.   

 

From the data it can be seen that Purolite D5082 and Novozyme 435 

have relatively similar average particle sizes with d50‘s of 519 and 588 µm (d50 

is the diameter corresponding to 50 volume % on the relative cumulative 

particle diameter distribution curve).  However Novozyme 435 has a much 

broader size distribution with a relative span of 0.858 when compared to 

Purolite D5082 with a relative span of 0.476.  In comparison Amano Lipase PS-

IM has a much smaller average particle size with a d50 of 63.6 µm and the 

narrowest particle size distribution with a relative span of 1.058. 
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Figure 4.4. The cumulative particle size distribution for Purolite D5082.  dx0 is the 
diameter corresponding to x0 volume % on the relative cumulative particle 
diameter distribution curve. 

 

 

 

Figure 4.5.  The cumulative particle size distribution for Novozyme 435.  dx0 is the 
diameter corresponding to x0 volume % on the relative cumulative particle 
diameter distribution curve. 

d10 = 304 µm  

d50 = 588 µm 

d90 = 808 µm 

 

d10 = 399 µm  

d50 = 508 µm 

d90 = 640 µm 
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Figure 4.6.  The cumulative particle size distribution for Amano Lipase PS-IM.  dx0 
is the diameter corresponding to x0 volume % on the relative cumulative particle 
diameter distribution curve.  

 

4.4 Surface Area, Pore Volume and Average 
Pore Diameter 

The surface area, pore volume and average pore diameter has been 

compared for the fresh and used catalysts and the results are given in Table 

4.1.  These measurements are useful for developing an understanding of the 

number of active catalytic sites which can be reached by the reagents. 

 

Novozyme 435 has the largest pores and total pore volume.  Amano 

Lipase PS-IM is a fine powder and there are no measurable pores.  Purolite 

D5082 has the largest surface area followed by Novozyme 435 while Amano 

Lipase PS-IM has a substantially smaller Brunauer-Emmett-Teller (BET) 

surface area.  A substantial portion of the surface areas for porous catalysts is 

due to the internal surface area and the small surface area for Amano Lipase 

PS-IM can be attributed to the lack of measurable pores.   

 

d10 = 23.8 µm  

d50 = 63.6 µm 

d90 = 124 µm 
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The reusability of Purolite D5082 was investigated by comparing the 

effect of washing with methanol in an ultrasonic bath only and using sulphuric 

acid to regenerate the catalyst, as detailed in Chapter 3, Section 3.4.1.1.  

Purolite D5082, Fresh and Cycle 2 were washed with methanol and Purolite 

D5082, Cycle 1-2, Cycle 2-2 and Cycle 3 were regenerated using sulphuric 

acid.  The fresh catalyst has the largest surface area, with a steady decrease 

after each reusability cycle.  In addition it can be seen that there is a slight 

increase in the pore diameter after each use with a corresponding increase in 

the total pore volume.  These data indicate that there are changes to the 

structural properties after each cycle however differences as a result of the two 

cleaning regimes is negligible.   

 

In terms of Novozyme 435 it can be seen that the BET surface area and 

total pore volume have increased for the fresh catalyst when compared to Cycle 

2, while the average pore diameter has decreased by approximately 12%.  This 

suggests that there has been some damage to the surface area during use 

which has resulted in the formation of additional smaller pores.  The reduction 

in pore diameter could also be due to pore blockage.   

 

Table 4.1.  Surface area, pore volume and average pore diameter 

Catalyst BET Surface 
Area (m2.g-1) 

Average Pore 
Diameter (nm) 

Total Pore 
Volume 
(cm3.g-1) 

Purolite D5082, Fresh 483 3.13 0.240 
Purolite D5082, Cycle 1-2 526 3.33 0.303 
Purolite D5082, Cycle 2 464 3.31 0.263 
Purolite D5082, Cycle 2-2 474 3.41 0.292 
Purolite D5082, Cycle 3 461 3.40 0.274 
Novozyme 435, Fresh 81.6 17.7 0.449 
Novozyme 435, Cycle 2 116 15.5 0.533 
Amano Lipase PS-IM 0.0717 n/a n/a 

 

4.5 True Density and Porosity 

The true density of the catalysts is given in Table 4.2.  The true density 

was determined using gas pycnometry (Chapter 3, Section 3.3.4).  The porosity 

was calculated using the true density and the pore volume, Section 4.4.  From 

these data it can be seen that Novozyme 435 has the lowest density while 
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Amano Lipase PS-IM has the highest true density.  Srivastava & Albertsson 

(2005) reported a bulk density of 0.43 gcm-3 for Novozyme 435.  The bulk 

density is expected to be lower than the true density because bulk density 

applies to the packing of beads and thus incorporates air.  

 

Amano Lipase PS-IM has no measurable pores and as a result the 

porosity is zero.  The porosity of Purolite D5082 is greater than Novozyme 435.  

The porosity for Novozyme 435 and Purolite D5082 are similar with Purolite 

D5082 having a slightly larger value.       

 

Table 4.2.  True density of the fresh catalysts 

Catalyst True Density (g.cm-3) Porosity (-) 

Purolite D5082 1.39 0.354 
Novozyme 435 1.22 0.250 
Amano Lipase PS-IM 2.24 0 

 

4.6 Elemental Analysis 

The elemental analysis was used to investigate the elemental 

composition of the catalysts and to determine if this changed when the catalyst 

was used for biodiesel production.  The results of the elemental analysis are 

given in Table 4.3.   

 

From these data it can be seen that the Purolite D5082 samples contain 

a trace amount of nitrogen although this is not typical of the chemical structure.  

The levels is low (<1%) and it has been assumed that this is a contaminant in 

the sample.  The percentage nitrogen appears to be increasing with reusability 

cycles however this can be attributed to the decrease in sulphur.  The changes 

in carbon, hydrogen and oxygen are relatively small and have been attributed to 

experimental error.  There is a drop in the percentage sulphur with a drop of 2% 

after the first cycle and 8% after the second cycle.  It was expected that there 

would be a loss of sulphur after the first cycle because this type of catalyst has 

been shown to leach sulphur (Abidin et al. 2012).  After the second cycle the 

catalyst was left in sulphuric acid overnight in order to regenerate the catalyst.  
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The decrease in percentage sulphur indicates that the catalyst was not 

regenerated.   

 

From the data in Table 4.3 it can be seen that Novozyme 435 contains 

nitrogen.  In this case it is expected because lipases are composed of a long 

chain of amino acids which include nitrogen as part of the chemical structure.   

The elemental composition for the used catalyst remains approximately 

constant and changes in the catalytic activity cannot be attributed to a single 

element.   

 

Table 4.3.  The elemental analysis data for the fresh and used catalysts 

Catalyst wt% C wt% H wt% S wt% N wt% O* 

Purolite D5082, Fresh 64.27 5.13 5.17 0.09 25.36 
Purolite D5082, Cycle 2 64.05 5.11 5.04 0.10 25.71 
Purolite D5082, Cycle 3 64.47 5.17 4.67 0.12 25.58 
Novozyme 435, Fresh 68.53 8.14 n/a 1.31 22.02 
Novozyme 435, Cycle 2 68.98 8.15 n/a 1.23 21.64 
Novozyme 435, Cycle 3 68.14 8.11 n/a 1.35 22.41 
Amano lipase PS-IM 4.50 0.65 n/a 0.19 n/a 
* Oxygen by difference 

 

The percentage carbon, hydrogen and nitrogen are low for Amano 

Lipase PS-IM however this catalyst is immobilised on diatomaceous earth 

which is comprised mainly of silica and alumina (Korunic 1998).  In this case 

the percentage carbon, hydrogen and nitrogen can be attributed to the lipase 

with the remaining elemental composition being silicon and aluminium from the 

diatomaceous earth support and oxygen from both the support and the lipase. 

 

4.7 Fourier Transform-Infra Red Measurements  

Fourier transform-infra red (FT-IR) measurements were used to 

investigate the functional groups present on the various catalysts and to 

determine if changes could be observed on used catalyst samples.   

 

The infrared absorbance spectra for Purolite D5082 Fresh and used are 

given in Figures 4.7-4.9.  From these spectra it can be seen that all the Purolite 

D5082 samples have peaks at the same wavenumbers indicating that the same 
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functional groups are present.  The infrared wavenumber assignments for 

Purolite D5082 are summarised in Table 4.4 (Stuart 2004; Smith 1999).  

 

Table 4.4.  The infrared wavenumber assignment for Purolite D5082 

Wavenumber (cm-1) Assignment 

3461-3430 O-H stretching vibration of hygroscopic water 
2924 C-H2 stretching vibration (asymmetric) 
2853 C-H2 stretching vibration (symmetric) 
2362-2332 Atmospheric CO2 

1631 - 1629 C=C aromatic stretch and  
C-H deformation and skeletal vibrations in DVB 

1449 - 1442 C-CH3 bending vibration (asymmetric) 
1224 – 1215 SO3

- stretching vibrations (asymmetric) 
1185 - 1020 SO3- stretching vibrations (symmetric) (Singare et 

al. 2011) 
902-671 C-H out-of-plane deformation vibrations of 

monosubstituted and disubstituted benzene rings 

 

 

 

Figure 4.7.  The infrared absorbance spectrum of Purolite D5082, Fresh. 
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Figure 4.8.  The FT-IR absorbance spectrum of Purolite D5082, Cycle 2. 

 

 

Figure 4.9.  The infrared absorbance spectrum of Purolite D5082. Cycle 3. 

 

The infrared absorbance spectra for Novozyme 435 are given in Figures 

4.10 and 4.11, and the infrared wavenumber assignments are given in Table 
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4.5.  Novozyme 435 consists of Candida antarctica lipase B immobilised on 

acrylic resin and as a result is expected that the spectra will consist of the sum 

of the spectra for the lipase and the acrylic resin.  Given the complex nature of 

the sample it has been found that some of the peaks could be attributed to 

more than one functional group and where appropriate more than one 

assignment has been listed. 

 

From Figures 4.10 and 4.11 it can be seen that the spectra for the fresh 

and used catalyst are very similar with both catalysts having peaks for the same 

wavenumbers.  This indicates that there are no significant changes to the 

structure after a single use. 

 

Table 4.5. The infrared wavenumber assignment for Novozyme 435 

Wavenumber (cm-1) Assignment 

3435-3389 N-H stretching 
2951 C-H2 stretching vibration (asymmetric) 
2362-2332 Combination C-H stretching and atmospheric CO2 

1730-1713 C=O stretching 
1659-1656 80% C=O stretching, 10% C-N stretching and  10% 

N-H bending (Stuart 2004) 
1546-1512 60% N-H bending and 40% C-N stretching (Stuart 

2004)  
1452 CH3 bending (asymmetric)  
1385 C-H bending (symmetrical) 
1269 O-H bending, C-C-O stretching  
1196 C-N stretching 
1147-1143 C-N stretching and C-O-C bending 
991 - 704 C-H out-of-plane deformation vibrations of mono- 

and disubstituted benzene rings  
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Figure 4.10.  The infrared absorbance spectrum of Novozyme 435, Fresh. 

 

 

Figure 4.11. The infrared absorbance spectrum of Novozyme 435, Cycle 2. 

 

The spectra for Amano Lipase PS-IM is given in Figure 4.12 and the 

wavenumber assignment is given in Table 4.6.  In this case it is expected that 
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the spectrum is a sum of the lipase and the diatomaceous earth components.  

Due to the complex nature of the sample it is possible to assign more than one 

function group to a peak.  In particular it is expected that the peak with a 

wavenumber of 1086 cm-1 represents the sum of numerous functional groups 

because this peak is large and broad.   

 

Table 4.6.  The infrared wavenumber assignment for Amano Lipase PS-IM 

Wavenumber (cm-1) Assignment 

3416 N-H stretching  
2930 C-H2 stretching vibration (asymmetric) 
1881 C=O stretch (symmetric) 
1641 80% C=O stretching, 10% C-N stretching and  10% 

N-H bending (Stuart 2004) 
1086 Si-O-Si stretch (asymmetric) 

Si-O silanol stretch 
C-H bending (symmetrical) 
O-H bending 
C-N stretching 
C-H stretching in aliphatic and aromatic compounds 

793 Si-O-Si stretch (symmetric) 
N-H stretching 

617 C=O bending 

 

 

 

Figure 4.12.  The infrared absorbance spectrum of Amano Lipase PS-IM. 
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4.8 Sodium Capacity 

Sodium capacity is a measure of the ion-exchange capacity of solids.  

The sodium capacity of the fresh and used catalysts is given in Table 4.7.  

From the data it can be seen that the ion-exchange resin catalyst, Purolite 

D5082 has the highest sodium capacity.   

 

From these data it can be seen that there is a decrease in the sodium 

capacity of Purolite D5082, Cycle 2 when compared to Purolite D5082, Fresh.  

Purolite D5082, Cycle 2 was washed in methanol and it can be seen that there 

is also a decrease in the percentage sulphur, Section 4.6 and this corresponds 

with previous findings showing sulphur leaching (Abidin et al. 2012; Andrijanto 

et al. 2012).  Purolite D5082, Cycle 2-2 and Purolite D5082, Cycle 3 were both 

regenerated using sulphuric acid and have a higher sodium capacity than fresh 

Purolite D5082.  These catalysts were washed extensively with water in order 

to remove the sulphuric acid.  However the increase in sodium capacity 

indicates that some sulphuric acid remained in the pores of the catalyst.     

 

The sodium capacity of the immobilised enzymes is lower than the ion-

exchange resin however the catalytic action of enzymes is based on specific 

structural properties and is not dependant on the sodium capacity.  Novozyme 

435, Fresh and Amano Lipase PS-IM have similar acid capacities.  There is a 

reduction in the sodium capacity of the used Novozyme 435 suggesting there is 

a loss of enzyme during the reaction.   

 

Table 4.7.  The sodium capacity of fresh and selected used catalyst 

Catalyst Sodium Capacity (mmolg-1) 

Purolite D5081, Fresh 1.82 
Purolite D5082, Cycle 2 1.72 
Purolite D5082, Cycle 2-2 2.73 
Purolite D5082, Cycle 3 2.56 
Novozyme 435, Fresh 0.436 
Novozyme 435, Cycle 2 0.189 
Amano Lipase PS-IM 0.330 
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4.9 BCA Assay 

The results of the BCA Assay are shown in Table 4.8.  From these data it 

can be seen that the initial protein loading on the fresh Novozyme 435 is much 

higher than Amano Lipase PS-IM.   

 

In the case of Novozyme 435 it can be seen that there is a substantial 

reduction in the amount of immobilised protein after the first cycle.  The amount 

of protein lost in subsequent samples is considerably smaller. 

 

Table 4.8.  Results of the BCA Assay 

Catalyst Mass of immobilised 
enzyme  (mgg-1 support) 

Fresh Amano Lipase PS-IM 20.68 
Fresh Novozyme 435 39.47 
Novozyme 435, after Cycle 1 7.16 
Novozyme 435, after Cycle 3  6.84 

 

4.10  Conclusions 

Three catalysts, investigated for biodiesel production, have been 

characterised and they are Purolite D5082, Novozyme 435 and Amano Lipase 

PS-IM.  The physical properties have been characterised using FEG-SEM, 

surface area, pore volume and diameter measurements, true density and 

porosity.  The chemical properties have been characterised using elemental 

analysis, FTIR measurements and sodium capacity.  In addition the 

immobilised enzymes have been characterised using a BCA assay.    

 

From the FEG-SEM it could be seen that Purolite D5082 and Novozyme 

435 have similar internal and external structures as both catalysts are porous 

beads.  In contrast Amano Lipase PS-IM is immobilised on diatomaceous earth 

and part of the algal structure could be observed.  This fits with the results of 

the particle size distribution measurements which showed that Purolite D5082 

and Novozyme 435 had similar average sizes while the average particle size for 

Amano Lipase PS-IM was considerably smaller. 
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It was found that Purolite D5082 has the largest BET surface area 

followed by Novozyme 435 and then Amano Lipase PS-IM which had a much 

smaller BET surface area.  In addition Novozyme 435 has the largest pores and 

total pore volume while Amano Lipase PS-IM has no measurable pores.  

 

From the elemental analysis it could be seen that with Purolite D5082 

there was a reduction in the percentage sulphur which would lead to a 

reduction in catalytic activity.  It was found that the sodium capacity of used 

Purolite D5082 was higher than the fresh, indicating that some of the sulphuric 

acid used to regenerate the catalyst remained behind in the pores.  This 

sulphuric acid would have been removed when samples of catalyst were 

crushed and dried prior to elemental analysis.   

 

The catalytic activity of Novozyme 435 is due to structural properties of 

the lipase and as result changes to the catalytic activity cannot be attributed to 

a single element or functional group.  The BCA assay showed a loss of protein 

after one use and this could explain the reduction in catalytic activity and the 

reduction in sodium capacity although the sodium capacity may not be a direct 

measure of catalytic activity. 

 

Significant differences in the chemical structure of the three catalysts 

could be observed using FT-IR.  However changes to the functional groups 

could not be observed with FT-IR.   
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Chapter 5: Used Cooking Oil 
Characterisation and Batch 
Experiment Reproducibility  

 

5.1 Introduction 

Key aspects relating to the development of the experimental procedures 

are discussed in this chapter.  The results of the used cooking oil (UCO) 

characterisation are discussed in Section 5.2.  This is followed by a discussion 

of the various sampling procedures for the experiments including why it was 

necessary and how this would have affected reproducibility in Section 5.3. 

 

5.2 UCO Characterisation 

Various methods have been used to characterise the UCO and the 

results are given in Table 5.1.  From these data it can be seen that the UCO is 

composed mainly of triglycerides (TG), however water is usually introduced as 

part of the cooking process leading to hydrolysis of the TGs to form diglycerides 

(DG), monoglycerides (MG), free fatty acids (FFAs) and fatty acid methyl esters 

(FAME) as a result of the cooking process.   

 

Due to the complex composition of the oil there are a number of methods 

available to express the molar mass which can be used to calculate the mole 

ratio.  A common method for determining the oil composition is to convert all the 

lipid components to FAME using a sodium hydroxide derivitisation method, 

Chapter 3, Section 3.5.5.  The FAMEs can readily be separated and quantified 

by GC-MS although the results are generally expressed in terms of the fatty 

acid composition.  The fatty acid composition varies depending on the type of 

vegetable oil and the UCO used for this work has a similar composition to 

soybean oil  (Akoh et al. 2007).   
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The fatty acid composition can be used to estimate a molar mass by 

assuming the oil is comprised totally of FFAs.  This information combined with 

the FFA% was used to calculate the mole ratio for esterification.  Alternatively it 

could be assumed that the oil is comprised of just triglycerides.  In this case the 

average FFAs molar mass can be combined with the glycerol components to 

calculate the average molar mass of triglycerides.  This molar mass was used 

to calculate the mole ratio for the transesterification experiments. 

 

Table 5.1. Results of the UCO characterisation 

Property Value 

Fatty Acid Composition (wt%) 

Linoleic acid 

Oleic acid 

Palmitic acid 

Stearic acid 

Linolenic acid 

 

43 

36 

13 

3.8 

3.6 

Molar Mass, average FFAs (gmol-1) 278.0 

Molar Mass, average TGs (gmol-1) 867.4 

FAME Concentration (molm-3) 17.42 

FFA  (%wt/wt) 8.42 

Acid Value (mg KOHg-1) 16.6 

Water (%wt/wt) 0.531 

TG concentration (%) 84 

DG concentration (%) 7.0 

MG concentration (%) 0.3 

Density (kgm-3) 924 

 

 

5.3 Solubility of Methanol in Oil 

Methanol has been used as the reagent to convert UCO to biodiesel.  

The UCO for these experiments is a translucent, dark brown liquid; a typical 

example is the UCO rich layer shown in Figure 5.2.  Methanol and vegetable oil 

are sparingly soluble leading to the formation of an emulsion when sufficient 
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methanol is added.  Heterogeneous catalysts are being used to investigate the 

production of biodiesel and this means that depending on the amount of 

methanol added this leads to the formation of a two or three phase system.  

This can lead to poor contacting between the phases and affect the extent of 

conversion.  A co-solvent can be used to improve contacting (Talukder et al. 

2009; Su & Wei 2008) and thus conversion however heterogeneous catalysts 

are being investigated to simplify product recovery.  In addition it can be more 

difficult to take a representative sample when an emulsion is formed   

 

The solubility of methanol in oil has been investigated and the solubility 

curve is given in Figure 5.1.  The solubility experiment was carried out in 

triplicate.  A temperature range of 30 – 60 C was used because this was the 

expected temperature range for the experiments.  The methanol concentration 

has been expressed as a mole ratio, rather than the conventional mass 

concentration, because mole ratio is the measure used for the experiments, 

and these units have been deemed more useful.  

 

From Figure 5.1 it can be seen that the solubility of methanol in UCO at 

60 C corresponds to a methanol to FFA mole ratio of 22:1 and a concentration 

of 0.17 gg-1.  This is substantially higher than the solubility of methanol in 

Jatropha curcas oil reported by Y. Liu et al. (2009) as 0.070 gg-1 at 60 C and a 

value of 0.075 gg-1 reported by Zhou et al. (2006).  In contrast Shimada et al. 

(2002) found that the solubility of methanol in vegetable oil (a mixture of 

soybean and rapeseed) corresponds to a mole ratio of 23:1.  The composition 

of UCO in this study has a similar composition to soybean oil.  These data 

indicate that there is substantial variation of methanol solubility in vegetable 

oils.   
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Figure 5.1.  The solubility curve for methanol in UCO. 

 

5.4 Batch Experiment Reproducibility 

There are a number of factors which affect experimental reproducibility 

with the most significant factor being the instrument used for the analysis, 

followed by the experimental protocol and then the skill of the person carrying 

out the work.  A number of figures have been presented in this section in order 

to discuss and compare reproducibility of the different experiment types.  A 

more detailed discussion of the results in terms of conversion is presented in 

the relevant sections later in the thesis.   

 

5.4.1 Reproducibility of the Experiments Catalysed by the Ion-

exchange Resin, Purolite D5082 

The experiments using the ion-exchange resin, Purolite D5082, were 

carried out using relatively high mole ratios (an optimum conditions 83 g of 

methanol was mixed with 180 g of UCO) leading to the formation of a pale 

yellow emulsion.  An example of the final reaction product is shown in Figure 

5.2.  Methanol has a lower specific gravity when compared to UCO and as a 
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result the top layer contains mostly methanol with a trace of water and glycerol.  

In comparison the non-polar components can be found in the UCO rich layer.  

 

 

Figure 5.2. An example of the reaction product composition when Purolite D5082 
is used as the catalyst.  

 

The progress of esterification using Purolite D5082 was monitored 

primarily using a titration to determine the FFAs concentration.  A relatively 

large sample of (2.00 ± 0.20) g was used for the analysis.  Three experiments 

were carried out at the optimum conditions in order to investigate 

reproducibility.  The result of these experiments is shown in Figure 5.3.  From 

these data it can be seen that the largest error is at 80 min where the difference 

is 9% however overall the difference between the highest and lowest value is 

within 5.5%.  This shows there is reasonably good reproducibility from this type 

of experiment and analysis.  In this case the sample size was large enough to 

minimise errors associated with getting a representative sample from an 

emulsion.  It was assumed that a similar error applied to the FFAs conversion 

for all esterification reactions catalysed by Purolite D5082. 
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Figure 5.3.  Investigation of the reproducibility of the FFA conversion results for 

the ion-exchange resin catalysts.  (With a temperature of 60 C, Purolite D5082 
as the catalyst with a loading of 5 wt%, a methanol to FFA mole ratio of 62:1 and 
a stirrer speed of 450 rpm) 

 

 

Figure 5.4.  Investigation of the reproducibility of the FAME concentration results 

for Purolite D5082.  (With a temperature of 60 C, a catalyst loading of 5 wt%, a 
methanol to FFA mole ratio of 62:1 and a stirrer speed of 450 rpm) 
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The FAME concentration was also determined for these experiments 

and the results are shown in Figure 5.4.  From Figure 5.4 it can be seen that 

the data are more scattered than the FFA conversion data.  The FAME 

concentration has been analysed by GCMS and a single drop with a weight of 

approximately 0.01g is sufficient for the analysis.  It is difficult to ensure that a 

single drop is a representative sample, particularly when the reaction mixture 

forms an emulsion.  In addition there will be a larger error from weighing when 

compared to the FFA titration samples.  It can be seen that when the analysis is 

carried out in triplicate it is possible to obtain a reasonable trend as this 

compensates for the difficulties getting a representative sample.   

 

5.4.2 Reproducibility of the Experiments Catalysed by 

Novozyme 435 

The experiments carried out using Novozyme 435 used the lowest mole 

ratios (at optimum conditions 12 g of methanol was mixed with 263 g of UCO) 

and at the reaction temperature the methanol was fully dissolved in the oil.  An 

example of the final reaction product is shown in Figure 5.5.  In this case the 

polar phase is composed mainly of glycerol which forms during the reaction.  It 

was observed that, for reaction conditions where the conversion was negligible 

the polar layer did form at the end of the experiment. 

 

 

Figure 5.5.  An example of the reaction product composition when Novozyme 
435 is used as the catalyst.  
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A figure showing the typical reproducibility of the FFAs conversion using 

Novozyme 435 as the catalyst is shown in Figure 5.6 and the FAME 

concentration reproducibility is shown in Figure 5.7.  In terms of the FFAs 

conversion it appears there for the first 2 h of reaction time there is a lot of 

scatter in the data after which the FFAs tend toward the same value.  However 

it can be seen that the FFAs conversion for Run 2 are below the average value 

while for Run 4 they are greater than this average.  This suggests that the 

variation is due to a small error in the initial reaction conditions.  These data 

indicate that overall there is good reproducibility of the FFAs conversion data, 

however, care must be taken comparing results in the first 2 h of reaction time.  

In addition it can be seen that the conversion of FFAs reduce after 5 h of 

reaction time.  This is due to side reactions which will be discussed in Chapters 

6 and 7. 

 

 

 

Figure 5.6.  Reproducibility of the FFA% when using Novozyme 435 as the 

catalyst.  (With a temperature of 60 C, a catalyst loading of 1 wt%, a methanol to 
FFA mole ratio of 6.2:1 and a stirrer speed of 650 rpm) 
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Generally lipases are only active at the interface between a polar and a 

non-polar phase, typified by an emulsion.  The existence of an interface causes 

the lid covering the active site of a lipase to open.  This allows the substrate to 

reach the active site and a reaction to occur (Paiva et al. 2000).  A possible 

explanation for this is that Novozyme 435 is an immobilised enzyme and it is 

possible to immobilise enzymes in the open conformation (Willis & Marangoni 

2008).  In addition investigations of lipase structures have found that the lid on 

the Novozyme 435 lipase (Candida antacrtica lipase B) is very small.         

 

In terms of the FAME concentration it can be seen that there is some 

scatter although as expected the differences are smaller when compared to 

Figure 5.4.  Overall there is an error of approximately 20 %.  Novozyme 435 

was used primarily as an esterification catalyst and the results were monitored 

based on the FFAs conversion.  There were a small number of experiments 

where the FAME was important and these experiments were repeated to 

confirm the trend.   

 

 

Figure 5.7. Reproducibility of the FAME concentration when using Novozyme 

435 as the catalyst (With a temperature of 60 C, a catalyst loading of 1 wt%,  a 
methanol to FFA mole ratio of 6.2:1 and a stirrer speed of 650 rpm) 
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5.4.3 Reproducibility of the Experiments Catalysed by Amano 

Lipase PS-IM 

Amano Lipase PS-IM has a greater methanol tolerance when compared 

to Novozyme 435.  The amount of methanol used was greater than for 

Novozyme 435 and less than Purolite D5082 (at optimum conditions 26 g of 

methanol was mixed with 233 g of UCO).  In addition it was found that it was 

necessary to add water to the reaction mixture.  As a result when using Amano 

Lipase PS-IM as the catalyst, an emulsion was formed.  Two examples of the 

final reaction product are shown in Figure 5.8 and these show the comparison 

for a high conversion and no conversion.  The main components of the polar 

phase are methanol, water and glycerol.  Water and glycerol have a higher 

specific gravity than UCO while methanol has a lower specific gravity.  When 

the conversion is high methanol is consumed and glycerol is formed and as a 

result the density of the polar layer increases steadily with increasing 

conversion.      

 

 

Figure 5.8.  Examples of the reaction product composition when Amano Lipase 
PS-IM is use as the catalyst.  Vial A contains an example of the reaction product 
when the conversion is low with Vial B an example at high conversion.   

 

Injecting samples containing water onto a GC column is generally 

avoided because it is detrimental to the analysis and the column.  It was 

expected that the FAME and FFAs would be in the non-polar layer and as a 
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result the samples were centrifuged and the non-polar layer analysed for FAME 

and FFAs.  The polar and non-polar layers from selected experiments were 

analysed and the average results are given in Figure 5.8.  From this it can be 

seen that the non-polar layer contains approximately 40 wt% FAME compared 

to 1 wt% in the polar layer.  In addition the polar layer is approximately 4.5 % of 

the total mass.  This shows that the FAME in the polar layer can be regarded as 

negligible.      

 

 

Figure 5.9.  Reproducibility of the FFAs data when using Amano Lipase PS-IM as 

the catalyst.  (With a temperature of 40 C, a methanol to triglycerides mole ratio 
of 3.12:1, a catalyst loading of 0.786 wt%, 5 vol% of water added and a stirrer 
speed of 500 rpm) 

 

The reproducibility of the FFAs concentration is shown in Figure 5.9 and 

from this it can be seen that the scatter is relatively low.  This is particularly true 

for Runs 1 and 2.  There are some substantial differences in the data for Run 3 

however it is consistently low relative to the other two runs.  This suggests there 

was a problem with the initial reaction conditions rather than the analytical 

technique.  As discussed in previous sections (Sections 5.3.2 and 5.3.3) is 

possible to obtain a more consistent data set with this analysis because a 

relatively large sample is analysed.  From the data it can be seen that the FFAs 
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are a reaction intermediate with FFAs formed due to the addition of water and 

subsequently consumed by the esterification reaction. 

 

In contrast it can be seen that there is a large scatter in the FAME 

concentration data, Figure 5.10.  In this case the reaction mixture forms an 

emulsion and this makes it more difficult to take consistent samples particularly 

when the amount of sample required is small.  It can be seen that when the 

results of three experimental trends are averaged the overall trend is 

reasonable.  Amano Lipase PS-IM was used as a transesterification catalyst 

and the FAME analysis was important for monitoring the amount of product 

formed.  The FAME analysis was carried out in triplicate in order to minimise 

the error. 

 

 

Figure 5.10.  Reproducibility of the FAME data when using Amano Lipase PS-IM 

as the catalyst.  (With a temperature of 40 C, a methanol to triglycerides mole 
ratio of 3.12:1, a catalyst loading of 0.786 wt%, 5 vol% of water added and a 
stirrer speed of 500 rpm) 
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5.5 Conclusions 

In this chapter methods used for the UCO characterisation were 

discussed with the main emphasis on their reproducibility of the methods.  It 

was shown that as expected the TGs had stared to break down during the 

cooking process and the UCO contained approximately 8.42 wt% FFAs. 

 

It has been shown that there was a high degree of reproducibility in the 

FFAs concentrations even when the reaction mixture formed an emulsion.  

However it was more difficult to achieve reproducible data for the FAME 

concentrations.  This has been attributed to the small sample size used for 

analysis, particularly when the reaction mixture forms an emulsion.  In order to 

compensate for this the experiments using Novozyme 435 were repeated to 

confirm the overall trend and for the transesterification experiments using 

Amano Lipase PS-IM the FAME analysis was carried out in triplicate.     
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Chapter 6: Esterification Pre-
treatment of the Free Fatty 
Acids in Used Cooking Oil 

 

6.1 Introduction  

The conventional transesterification process is generally carried out 

using vegetable oil as the raw material (Balat and Balat 2010; Atadashi et al. 

2013).  Vegetable oil is an expensive raw material (Park et al. 2010; Zabeti et 

al. 2009) and there are ethical concerns regarding the use of a potential food 

source as fuel (Enweremadu and Mbarawa 2009).  Alternative raw materials 

have been investigated and these include non-edible oils such as Jatropha 

curacas (Patil et al. 2009), by-products from oil refining such as palm fatty acid 

distillate (Talukder et al. 2009), animal fats (Da Rós et al. 2010), algal oil 

(Semwal et al. 2011) and used cooking oil (UCO) (Enweremadu and Mbarawa 

2009; Akoh et al. 2007).  UCO is a waste material and this means that it is 

possible to reduce the amount of waste going to landfill and use a relatively 

cheap material.   

 

UCO contains free fatty acids (FFAs), which form due to hydrolysis of 

triglycerides during cooking (Ozbay et al. 2008) and this results in an unwanted 

saponification side reaction during transesterification, when a base catalyst is 

used (Di Serio et al. 2008).  In addition, most biodiesel specifications impose an 

upper limit on the FFAs content (Knothe 2005) as they can cause engine 

damage due to deposit formation.  FFAs can be converted to biodiesel by 

means of an esterification reaction using a short chain alcohol such as 

methanol and an acid catalyst.  A schematic of the reaction is shown in Chapter 

1, Figure 1.2.  Currently most esterification processes use homogeneous 

catalysts such as sulfuric or sulfonic acid (Enweremadu and Mbarawa 2009; 

Melero et al. 2009a), however, homogenous catalysts are difficult to separate 

from the products, generate large amounts of waste water, and require 

expensive materials to prevent associated corrosion (Caetano et al. 2009).  As 
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a result, solid acid catalysts such as ion-exchange resins have been 

investigated as heterogeneous esterification catalysts with high FFA 

conversions reported (Ozbay et al. 2008; Feng et al. 2010; Abidin et al. 2012).   

 

Advances in enzyme technology are providing a greater choice of 

catalysts with research to date focusing on transesterification (Halim and 

Harunkamaruddin 2008; Al-Zuhair et al. 2009), however hydrolysis and 

esterification (Akoh et al. 2007; Talukder et al. 2009) reactions can also be 

used to form biodiesel.  It has been shown that Novozyme 435 can be used to 

catalyse transesterification and hydrolysis reactions for the production of 

biodiesel, however the fastest reaction rates are achieved when Novozyme 435 

is used to esterify free fatty acids (Tongboriboon et al. 2010).  The work to date 

has focused on the esterification of material with a high concentration of free 

fatty acids such as palm fatty acid distillate which contains more than 93 wt% 

FFAs (Talukder et al. 2009) and soybean oil deodorizer distillate containing 80 

wt% FFAs (Souza et al. 2009).  Reports on the use of Novozyme 435 to convert 

the FFAs in UCO to biodiesel prior to transesterification are limited. 

 

Although acid and enzyme catalysts catalyse both esterification and 

transesterification, the reaction rates for transesterification are often much 

slower compared to using a basic catalyst (Lam et al. 2010).  In this chapter the 

esterification pre-treatment of UCO to transform FFAs using batch kinetic 

studies is discussed.  Two catalysts, Purolite D5082 and Novozyme 435, have 

been investigated in detail and the results are presented in Sections 6.2 and 

6.3, respectively.  Purolite D5081 has been studied in detail by Abidin et al. 

(2012).  High conversions are possible using Novozyme 435, Purolite D5082 

and Purolite D5081 to catalyse the esterification reaction, however, there were 

significant differences in the optimum conditions identified.   A comparison of 

the optimum conditions and conversions is provided in Section 6.4.      
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6.2 Optimisation of Purolite D5082  

6.2.1 Effect of Catalyst Loading  

The initial experimental conditions were based on the work by Abidin et al. 

(2012) using Purolite D5081 and catalyst loadings of 0.75 – 1.5 wt%.  However 

the initial conversion was relatively low and it was found that it was necessary 

to increase the loading to 5 wt%, in order to increase the conversion.  The 

results of this work are shown in Figure 6.1.   

 

From these data it can be seen that a catalyst loading of 5 wt% was 

required in order to reach an equilibrium conversion of 90% within 8 h and as a 

result this loading was selected as the optimum catalyst loading for subsequent 

experiments.   

 

 

Figure 6.1. Effect of catalyst loading on the FFA conversion. (With a temperature 

of 60 C, mole ratio of 93:1 and a stirrer speed of 450 rpm) 
 
 

6.2.2 Effect of the Methanol to FFA Mole Ratio 

The esterification reaction is an equilibrium limited reaction with one 

mole of methanol required to convert one mole of FFA to one mole of FAME.  
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The reaction scheme is given in Chapter 1, Figure 1.2.  It is expected that 

conversion will increase with an increase in mole ratio.  The effect of the mole 

ratio on FFA conversion using Purolite D5082 is shown in Figure 6.2(a) and (b).   

 

 

 
Figure 6.2. Effect of the methanol to FFA mole ratio on the FFA conversion with 
(a) showing the overall conversion trend and (b) showing the conversion at 2h. 

(With a temperature of 60 C, a catalyst loading of 5 wt% and stirrer speed of 450 
rpm) 

 

(a) 

(b) 
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From Figure 6.2 it can be seen that conversion increases with increasing 

mole ratio until a ratio of 62:1 after which no further increase is observed.  On 

this basis a mole ratio of 62:1 has been selected as the optimum mole ratio 

because it gives the maximum conversion without using excess methanol. 

 

Methanol is sparingly soluble in UCO, leading to the formation of an 

emulsion at high mole ratios.  The solubility of methanol in oil is shown in 

Chapter 5, Section 5.3.1 and at 60 C the solubility of methanol in oil 

corresponds to a mole ratio of 22:1.  For the experiment with a mole ratio of 

16:1 the methanol would have been fully dissolved compared to the rest of the 

experiments, where an emulsion formed.  The mole ratio trend indicates that 

this change in the nature of the reaction mixture does not affect conversion.     

 

6.2.3 Effect of Temperature 

Conversion is expected to increase with increasing temperature.  

However the maximum recommended temperature for Purolite D5082 is 120 C 

and methanol has a boiling point of 65 C.  Abidin et al. (2012) reported 

concerns regarding methanol loss at temperatures close to the boiling point of 

methanol and as a result 60 C has been selected as the maximum 

temperature for investigation.  The effect of temperature on conversion is 

shown in Figure 6.3. 

 

      From these data it can be seen that conversion increases with 

increasing temperature.  However the increase is small because small 

increments in temperature were used.  A temperature of 60 ºC has been 

selected as the optimum because it results in the fastest reaction rate and 

highest conversion although the difference is small. 
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Figure 6.3.  Effect of temperature on the conversion of FFA. (With catalyst 
loading of 5 wt%, a mole ratio of 62:1 and a stirrer speed of 450 rpm) 

 

6.2.4 A Comparison of FFA and FAME Concentrations 

For the optimisation of the reaction conditions for Purolite D5082 it has 

been assumed that the only reaction taking place is esterification.  In order to 

investigate this further, FAME formation at the optimum reaction conditions has 

been investigated.  The results of this comparison are shown in Figure 6.4.  

From these data it can be seen that the amount of FAME formed during the 

experiment is similar to the amount of FFA consumed.  There are small 

differences and these have been attributed to experimental error.  In particular, 

while the FFAs concentration is determined by means of a titration, the FAME 

concentration is measured using GCMS and the error for these methods will be 

different.  This indicates that there are no side reactions occurring.   
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Figure 6.4.  Comparison of the FFA and FAME concentrations when using 

Purolite D5081 as the catalyst.  (With a temperature of 60 C, a mole ratio of 4:1 a 
catalyst loading of 5 wt% and a stirrer speed of 450 rpm) 

 

6.2.5 Reusability Study 

Reusability studies are conducted to investigate the long term stability of 

heterogeneous catalysts.  The effect of reused cycles and two types of cleaning 

regime, on FFAs conversion, is shown in Figure 6.5.  From the data in Figure 

6.5 it can be seen that when Purolite D5082 was washed with methanol the 

FFA conversion decreased relative to the conversion using fresh catalyst.  It 

has been shown that pore blockage contributes to the loss of activity in Purolite 

D5082 and a similar catalyst, Purolite D5081 (Abidin et al. 2012; Andrijanto et 

al. 2012).  In order to improve the cleaning process,  Purolite D5082 was 

washed with methanol in conjunction with ultrasonic irradiation.  The BET 

surface area, after washing, was similar to the fresh catalyst (Chapter 4, 

Section 4.4).  In contrast Andrijanto et al. (2012) washed Purolite D5081 with 

methanol (no ultrasonic irradiation) and found that there was a substantial drop 

in conversion and BET surface area.  These results indicate that washing with 

methanol is not sufficient to remove vegetable oil from this type of catalyst.  
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Ultrasonic irradiation will help with the removal of the reagent, however this 

would be difficult to apply on an industrial scale. 

 

 

Figure 6.5.  Investigation of the reusability and regeneration of Purolite D5082.  

(With a temperature of 60 C, a mole ratio of 4:1 a catalyst loading of 5 wt% and a 
stirrer speed of 450 rpm)   

 

Previous studies have found that while pore blockages contributes to a 

loss of activity, sulphur leaching occurs during esterification leading to a further 

loss of activity (Abidin et al. 2012).  It has been proposed that these catalysts 

can be regenerated by contacting with sulphuric acid (Andrijanto et al. 2012).  

Purolite D5082 used for cycles 1-2, 2-2 and 3-2 was contacted with sulphuric 

acid and it can be seen that the conversion is the same for each cycle.  In 

addition, the conversion is higher than the fresh catalyst.   

 

From the sodium capacity data in Chapter 4, Section 4.8 it can be seen 

that sodium capacity values for the acid regenerated catalysts are higher than 

the fresh catalyst, while the methanol washed catalyst is lower.  In contrast, the 

elemental analysis data indicate a steady decrease in the sulphur composition 

of Purolite D5082 with increasing reusability cycle (Chapter 4, Section 4.6).  

While these data may appear contradictory, the sodium capacity determination 
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analysis was carried out directly with the catalyst, while it was necessary to 

crush and then dry the samples used sent for elemental analysis.  It is probable 

that the sulphuric acid remaining the pores of the acid regenerated catalyst 

would have been removed during this process.   These data indicate that 

contacting with sulphuric acid residual does not necessarily regenerate Purolite 

D5082 and the increase in activity is due to sulphuric acid in the pores of the 

catalyst. 

 

6.3 Optimisation of Novozyme 435 

6.3.1 Effect of the Methanol to FFA Mole Ratio  

The effect of the methanol to FFA mole ratio on conversion with 

Novozyme 435 as the catalyst is shown in Figure 6.6.  From these data it can 

be seen that the effect of the mole ratio varies significantly for the two catalysts.  

In the case of Purolite D5082, conversion increases with an increase in mole 

ratio tending towards a maximum above which further increase in mole ratio will 

not increase FFA conversion.  This is a typical trend for chemical catalysts.   

 

In comparison, Novozyme 435 catalysis is more sensitive to changes in 

the mole ratio and a high conversion is possible with much lower mole ratios.  

In this case it can be seen there is an optimum methanol to FFA mole ratio of 

6.2:1.  Mole ratios below this value suggest there is insufficient methanol for the 

reaction and increasing the methanol above this range results in a decrease in 

conversion due to poisoning of the catalyst.  Methanol is known to poison 

enzymes including Novozyme 435 (Talukder et al. 2009; Shimada et al. 2002) 

and in the case of transesterification where much larger quantities of methanol 

are required the issue has been mitigated by stepwise addition of methanol.  A 

large reduction in the methanol requirement results in a higher throughput and 

increased process safety. 
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Figure 6.6. Effect of the methanol to FFA mole ratio on the FFA conversion with 
(a) showing the overall conversion trend and (b) showing the conversion at 2h. 

(With a temperature of 40 C, a catalyst loading of 1 wt% and stirrer speed of 450 
rpm) 
 

 

(a) 

(b) 
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6.3.2 Investigation of the External Mass Transfer Limitations 

Vegetable oil and methanol are poorly miscible and the use of a 

heterogeneous catalyst leads to the formation of a three phase system with 

limited mass transfer between the three phases (Zabeti et al. 2009), reducing 

the reaction rate.  An organic solvent can be used to improve contacting.  

However this will need to be removed from the final product (Talukder et al. 

2009) thus eliminating the process step saving of using a heterogeneous 

catalyst.  External mass transfer resistance refers to the resistance across the 

solid-liquid interface in heterogeneous catalyst systems due to the formation of 

a boundary layer around catalyst particles.  Increasing the stirring speed of the 

impeller in a batch reactor reduces the thickness of the boundary layer and 

improves solid suspension.  The effect of increasing the stirring speed for 

Novozyme 435 is shown in Figure 6.7.  From Figure 6.7 it can be seen that the 

increase in conversion is small with increasing stirrer speed, however, in order 

to be certain that mass transfer limitations have been eliminated a stirrer speed 

of 650 rpm was selected for subsequent work.   

 

 

Figure 6.7.  Effect of the stirrer rotational speed on conversion.  (With a 

temperature of 40 C, an  FFA mole ratio of 6.2:1 a catalyst loading of 1 wt%) 
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6.3.3 Investigation of the Internal Mass Transfer Limitations 

Internal mass transfer resistance is due to the resistance of flow inside 

the particles.  The internal mass transfer resistance can be reduced by 

decreasing the particle size because this reduces the diffusion path length.  The 

internal mass transfer resistance from Novozyme 435 was investigated by 

sieving the beads supplied by the manufacturer1 (d50 = 588 µm) into a large 

size fraction (d50 = 845 µm) and a small size fraction (d50 = 430 µm) as shown 

in Figure 6.8 (a).   

 

The effect of various particles sizes on FFA conversion is shown in 

Figure 6.8 (b).  From these data it can be seen that there are intra-particle 

diffusion limitations when using the large size fraction.  When the overall size 

fraction supplied by the manufacturer is compared to the small size fraction it 

can be seen that the difference in conversion is small.  These data indicate that 

with the catalyst supplied by the manufacturer there are some intra-particle 

diffusion limitations due to larger beads.  However, the effect on conversion is 

small and as a result the internal mass transfer limitations are small, particularly 

when the smaller size fractions are compared. 

 

 

                                            

 
1
 d50 is the diameter corresponding to the 50% volume on a relative cumulative particle 

diameter distribution curve. 
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Figure 6.8.  Effect of internal mass transfer limitations on conversion with (a) 
showing the cumulative size distribution of the sieved fractions investigated and 
(b) showing the effect of these size distributions on FFA conversion.  (With a 

temperature of 50 C, and FFA mole ratio of 6.2:1, a catalyst loading of 1 wt% and 
a stirrer speed of 650 rpm) 

 

 

(b) 

(a) 
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6.3.4 Effect of Temperature 

As discussed in Section 6.2.3 the maximum possible temperature for this 

system has been set at 60 °C based on the boiling point of methanol.  The 

maximum recommended reaction temperature for Novozyme 435 is 70 °C, 

(manufacturer’s data).  Figure 6.9 (a) shows the effect of temperature on FFA 

conversion.  From these data it can be seen that it is possible to achieve a 

relatively high initial reaction rate with temperatures as low as 30 C.  Hence 

this reaction could be carried out in warmer countries without additional heating.  

From Figure 6.9 (a) it can be seen that for temperatures of 50 °C and above, 

the conversion reaches a maximum and then has decreased significantly after 

24 hours.  The effect of temperature on the FAME concentration is shown in 

Figure 6.9 (b).  This is compared to the expected FAME concentration, 

calculated based on the change in the FFA concentration according to the 

esterification reaction schematic shown in Chapter 1, Figure 1.2.   From these 

data it can be seen that the amount of FAME formed is higher than expected 

and increasing with an increase in temperature.  The active catalytic site of 

lipases target the carboxyl groups of lipids including monoglycerides (MG), 

diglycerides (DG), triglycerides (TG), FAME and FFAs allowing for reactions 

with water or methanol (MeOH) (Paiva et al. 2000).  Schematics of the possible 

reactions, including esterification are shown in Chapter 2, Figures 2.2 to 2.4.  

The order of preference for the reactions is esterification > transesterification > 

hydrolysis reaction (Tongboriboon et al. 2010).  The reaction mechanism and 

side reactions have been investigated and this is discussed in Chapter 7. 

 

The formation of additional biodiesel is beneficial, however, the main 

purpose of this work is to reduce the FFAs concentration in order to avoid 

downstream processing problems and ensure the final biodiesel specification is 

met.  The reduction in FFAs conversion at longer reaction times has been 

attributed to the increase in water driving the hydrolysis side reactions.  As a 

result the optimum temperature was defined as the temperature at which the 

highest conversion was achieved, combined with a high initial reaction rate and 

this was determined to be 50 C.  The possibility of a more efficient process 

involving the reaction of the MG, DG and TGs will be discussed in Chapter 7.    
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Figure 6.9.  The effect of temperature on esterification reaction with (a) showing 
the FFA conversion and (b) showing a comparison between the expected and 
experimental FAME formation.  (With a FFA mole ratio of 6.2:1, a catalyst loading 
of 1wt% and a stirrer speed of 650 rpm)  

 

 

(a) 

(b) 
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6.3.5 Effect of Catalyst Loading 

Figure 6.10 shows the catalyst loading.  From these data it can be seen 

that conversion is lower with a loading of 0.75 wt% while the conversion for the 

other three loadings investigated, 1.0, 1.25 and 1.50 wt % are very similar.  This 

shows that with a loading of 1.0 wt% there is sufficient catalyst present for the 

reaction with no additional benefits to adding more catalyst. 

 

 

Figure 6.10. Effect of catalyst loading on conversion.  (With a temperature of 50 

C, a methanol to FFA mole ratio of 6.2:1 and a stirrer speed of 650 rpm) 

 

6.3.6 Reusability Study 

The effect of reusing Novozyme 435 on conversion is shown in Figure 

6.11.  From these data it can be seen that after the first use there is an overall 

reduction in conversion.  The trend for cycles 2-4 is similar indicating that the 

largest loss in catalytic activity occurs due to the first cycle (Fresh catalyst).  

From the BCA Assay results (Chapter 4, Section 4.9) it can be seen that there 

is a substantial reduction in the amount of protein bonded to the surface of the 

catalyst after cycle 1.       
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  In addition the trend for cycles 2-4 is not following the expected 

equilibrium trend as conversion increases to a maximum and then decreases.  

Analytical and kinetic modelling work detailed in Chapter 7 has confirmed the 

existence of side reactions including hydrolysis.  The MGs and DGs found in 

UCO can be converted by the hydrolysis reaction to FFAs, and glycerol or DGs 

according the reaction scheme in Chapter 2, Figure 2.2.  The FFAs are 

subsequently converted to FAME.  The trend in cycles 2-4 is typical of a 

reaction intermediate.  These data indicate that overall the catalytic activity of 

Novozyme 435 is decreasing with the esterification activity decreasing at a 

faster rate than hydrolysis.  One potential explanation is water accumulation in 

the pores of the catalysts with the water not fully removed during the washing 

and drying process.    

 

From the data in Figure 6.11 it can be seen that the maximum 

conversion occurs between 180 and 240 min and in this range the decrease in 

conversion is approximately 5% per cycle 

 

 

Figure 6.11.  Investigation of the reusability of Novozyme 435. (With a 

temperature of 50 C, a FFA mole ratio of 6.2:1, a catalyst loading of 1wt% and a 
stirrer speed of 650 rpm) 
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6.4 A Comparison of Novozyme 435, Purolite 
D5082 and Purolite D5081  

The optimum conditions have been identified for Purolite D5081 (Abidin 

et al. 2012), Purolite D5082 (Section 5.2) and Novozyme 435 (Section 5.3) and 

a summary is given in Table 6.1. 

 

Table 6.1.  Comparison of the optimum reaction conditions 

Catalyst Purolite D5081 Purolite D5082 Novozyme 435 

FFA to methanol  Mole Ratio  93 62 6.2 

Temperature (C)  60 60 50 

Catalyst Loading (wt%) 1.25 5.00 1.00 

Stirrer speed (rpm) 350 450 650 

 

One of the most noticeable differences is the effect of the mole ratio on 

conversion and the resulting optimum mole ratios.  In the case of both ion-

exchange resins, conversion increased with increasing FFA mole ratio until the 

optimum mole ratio was reached and at that point conversion remained 

approximately constant.  In contrast with Novozyme 435 there was a clear peak 

in conversion, identified as the optimum mole ratio with conversion decreasing 

for values above and below this optimum.  This is because Novozyme 435 is 

poisoned by high levels of methanol.  Purolite D5081 had the highest optimum 

FFA mole ratio of 93:1.  Purolite D5082 had a slightly lower optimum mole ratio 

of 62:1 which offsets somewhat the much higher catalyst loading required.  For 

Novozyme 435 the mole ratio was an order of magnitude lower with a value of 

6.2:1.        

 

The differences in optimum mole ratios affect the composition and nature 

of the reaction mixture.  This in turn affects the formation of a boundary layer 

around the catalyst.  The methanol dissolves fully in oil at a mole ratio of 6.2:1 

as this is below the solubility of methanol in oil.  However, mole ratios of 62:1 

and 93:1 are above the solubility point and an emulsion is formed.  The 

solubility of methanol in UCO is given in Chapter 5, Section 5.3.  This was 

found to affect the stirrer speed required to eliminate external mass transfer 



Chapter 6: Esterification Pre-treatment of the Free Fatty Acids in Used Cooking 
Oil  132 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

limitations.  In the case of Purolite D5081 a stirrer speed of 350 rpm was 

sufficient to eliminate mass transfer limitations, while with Novozyme 435 a 

stirrer speed of 650 rpm was required.  The other factor to consider with stirrer 

speed is that the catalyst should be fully suspended in the reaction medium and 

this is affected by the size and density of the catalyst particles. 

 

Novozyme 435 has been shown to have a much lower selectivity for the 

esterification reaction compared to Purolite D5082.  A comparison of the FAME 

and FFA concentrations using Novozyme 435 and Purolite D5082 showed that 

Purolite D5082 catalyses only the esterification reaction, whilst Novozyme 435 

catalyses the esterification, transesterification and hydrolysis reactions.  In this 

case the side reactions are beneficial because this leads to the formation of the 

desired product.  However, a poorly controlled process will result in a low FFAs 

conversion. 

 

A comparison of conversion for the three catalysts at their optimum 

conditions is shown in Figure 6.12.  Given that there is a large difference in the 

effect of mole ratio on conversion, depending on the choice of catalyst, it would 

not be meaningful to compare these catalysts at the same reaction conditions.  

From these data it can be seen that with Novozyme 435 the initial reaction rate 

is the fastest, followed by Purolite D5081,  however the conversion after 600 

min of reaction time is slightly lower with Novozyme 435 reaching 90% 

compared to 94% with Purolite D5081.  The esterification reaction is an 

equilibrium limited reaction and as a result increasing the mole ratio and thus 

the amount of methanol will affect the equilibrium position.  As a result, the 

conversion after 600 min of reaction time should be regarded as a function of 

both the catalyst type and mole ratio.  In addition, a higher impeller stirring 

speed is required with Novozyme 435 in order to mitigate external mass 

transfer limitations.  The conversion from Purolite D5082 remains the lowest 

throughout the reaction.   

 

Novozyme 435 offers numerous benefits over Purolite D5081 and 

Purolite D5082 because a high conversion is achieved at a much lower mole 

ratio, lower temperature and catalyst loading.  In particular, the significant 
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reduction in methanol requirements suggests that for the same equipment size 

a much higher capacity is possible and the process will be safer.  In addition, 

the side reactions with Novozyme 435 mean that better process control is 

required in order to prevent FFA formation.   A disadvantage is that the cost of 

enzymes tends to be much greater than that for ion-exchange resins. 

 

 

Figure 6.12.  Comparison of catalytic performances of the three catalysts at their 
optimum reaction conditions. 

 

6.5 Conclusions 

The catalytic action of two types of catalysts, ion-exchange resins 

(Purolite D5082 and Purolite D5081) and an immobilized enzyme (Novozyme 

435) were compared for the esterification pre-treatment of UCO for the 

preparation of biodiesel.  A high conversion of FFAs to biodiesel was achieved 

with Purolite D5081, Purolite D5082 and Novozyme 435 with the optimum 

reaction conditions summarised in Table 6.1.  The optimum reaction conditions 

have been identified for Purolite D5082 and Novozyme 435 using batch kinetic 

studies.  A detailed investigation of Purolite D5081 has been previously 

reported (Abidin et al. 2012).   
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The highest conversion of 94% is possible with Purolite D5081 compared 

to 90% conversion of FFAs using Novozyme 435 and 88% with Purolite D5082 

after 8h of reaction time.  This difference can be explained in part because the 

higher mole ratio used with Purolite D5081 will have affected the equilibrium.  

Purolite D5082 did not reach equilibrium in the reaction time.  It was found that 

using Novozyme 435 as the catalyst resulted in a large reduction in the amount 

of methanol required with the optimum FFA mole ratio going from 98:1 with 

Purolite D5081 to 6.2:1 with Novozyme 435.  Purolite D5082 required a lower 

mole ratio of 62:1 when compared to Purolite D5081 which compensates for the 

higher catalyst loading required.  The decrease in the mole ratio, for Novozyme 

435, changed the composition in the reaction medium and as a result a much 

higher stirring speed was required to eliminate mass transfer limitations.   

 

Relatively high reaction rates were possible with Novozyme 435 at a 

temperature of 30 C indicating that this reaction could be carried out without 

heating in some parts of the world.  Side reactions with Novozyme 435 at 

vigorous reaction conditions such as high temperatures and during the 

reusability study did occur.  One of the advantages of a heterogeneous catalyst 

is that they can be reused and in the case of Novozyme 435 it was found that 

there is a lot of potential to reuse this catalyst providing the reaction time is less 

than 4 h. 

 



Chapter 7: Liquid Chromatography Development and Kinetic Modelling  135 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

Chapter 7: Liquid 
Chromatography Development 
and Kinetic Modelling 

 

7.1 Introduction  

It was found that when Novozyme 435 is used for the esterification pre-

treatment of cooking this leads to the formation of additional fatty acid methyl 

esters (FAME) at high temperatures, as discussed in Chapter 6.  It has been 

shown that Novozyme 435 can be used to catalyse hydrolysis and 

transesterification reactions (Ganesan et al. 2009; Tongboriboon et al. 2010; 

Lam et al. 2010) although the reaction rate is very low.  In order to investigate 

this hypothesis further it was necessary to develop a method to monitor the 

MG, DG and TG concentrations. 

 

Gas Chromatography (GC) and liquid chromatography (LC) are the most 

common methods for investigating the production of biodiesel (Li et al. 2008).  

LC was selected for further investigation because the substances under 

investigation, particularly the triglycerides (TG), diglycerides (DG) and 

monoglycerides (MG) have high molecular weights, high boiling points and low 

volatilities.  As a result they are not readily vaporised and separated by GC and 

need to be derivitised (Li et al. 2008; Holcapek et al. 1999).   

 

The concentration data can then be analysed using a kinetic model to 

investigate the reaction mechanisms.  Cheirslip et al. (2008) developed a series 

of models to investigate if lipases catalyse the reaction according to the 

hydrolysis esterification series or if this reaction occurs in parallel with 

transesterification. 

 

In this chapter, the work carried out to develop an LC method for 

monitoring the MGs, DGs and TGs is discussed in Section 7.2.  Once an LC 

method had been developed a series of batch experiments were monitored for 
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the MG, DG, TG, FFAs and FAME concentrations and these results are 

presented in Section 7.3.  The results in section 7.3 were used to carry out 

some kinetic modelling in order to investigate the reaction mechanism and 

these results are presented in Section 7.4.  

 

7.2 Development of a Liquid chromatography 
(LC) Method 

Various methods have been investigated for the analysis of the reaction 

mixture for the production of biodiesel. 

 

7.2.1 Results of LC Method 1  

This method was selected because it was used in the department by 

Hishamuddin (2009)  and as a result all the equipment, columns and necessary 

data were readily available making it possible to rapidly assess the results and 

determine if this method could be adapted for the analysis of biodiesel.  A 

comparison of the results for palm oil and used cooking oil (UCO) is shown in 

Figure 7.1.  The trend for palm oil corresponds to the results reported by 

Hishamuddin (2009), although Hishamuddin (2009) applied a baseline 

correction algorithm.  For the UCO trend many of the peaks correspond to the 

palm oil data although the areas are different.  The UCO was derived from 

soybean oil which has different composition of triglycerides. 

 

Hishamuddin (2009) reported the peaks for components eluting in the 

first 10 min as ‘other’ and these components would have been primarily MGs 

and DGs with the first TG component eluting at about 35 min.  In the case of 

UCO there are lot of peaks in the first 35 min and this was expected because 

the UCO is known to contain significant quantities of FFAs, MGs and DGs.   

 

These data show that it is possible to assess the composition of 

biodiesel using liquid chromatography although Method 1 is not suitable 

because the resolution of the FFA, MG and DG peaks is low.   
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Figure 7.1.  Comparison of chromatograms for UCO and palm oil using LC 
method 1. 

 

 

7.2.2 Results of LC Method 2 

Method 2 was based on the method reported by Santori et al. (2009) and 

Di Nicola et al. (2008).  This method was selected because it was designed to 

analyse a broad range of components involved in the manufacture of biodiesel, 

achieving a reasonable separation without the additional complexity of the 

ternary gradient required in the method used by Holcapek et al. (1999).  A 

comparison of the chromatograms generated using UCO and palm oil is shown 

in Figure 7.2. 

 

In the case of palm oil there is a cluster of peaks between 19 – 22 min 

and these are expected to be TGs.  The elution times reported by Santori et al. 

(2009) for TGs are 24 to 28 min.  There are peaks along the length of the 

chromatogram for UCO due to the range of components.  The resolution of the 

peaks is better than Method 1 although there is no clear distinction between all 

peaks.  Santori et al. (2009) was able to obtain a peak resolution, however, a 

different column was used for the separation.   
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Figure 7.2.  Comparison of the chromatograms for UCO and palm oil using LC 
Method 2 

 

From Figure 7.2 it can be seen that there was potential to adapt this 

method for biodiesel analysis.  In order to assess if this method could be used 

to quantify the biodiesel components, the possibility of characterising the FAME 

composition of UCO was investigated.  The retention times for the FAME 

standards are given in Table 7.1 alongside those reported by Di Nicola et al. 

(2008).  From Table 7.1 it can be seen that the components are eluting in the 

same order as that reported in the literature for this method although the elution 

times are roughly half those reported by Di Nicola et al. (2008).  This fits with 

the experimental retention time for the TGs, suggesting the components have a 

lower affinity for the column in use, compared to the column used by Di Nicola 

et al. (2008). 
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Table 7.1.  Retention times for methyl esters, experimentally determined and 
from literature 

Component Name Experimental Retention 

time (min) 

Literature Retention 

time (min)*  

Methyl linolenate 3.0 6.03 

Methyl linoleate 4.0 7.60 

Methyl oleate 5.4 10.06 

Methyl palmitate 5.7 10.15 

Methyl stearate 7.8 13.73 

*Di Nicola et al., 2008 

 

The response factor used to determine concentrations with an external 

standard is defined in equation 7.1 and assumes the response is linear in the 

selected concentration range.   

 

)

)
)

1-

2
1-2

(mg.L ionConcentrat

(mAU  AreaPeak
.L.mg((mAU) Factor Response                  (7. 1)  

 

Initially the calibration was carried out with a concentration range of 1000 

– 10, 000 mg/L.  However, it was found that there was a strong response with 

methyl linolenate with a linear response for the concentration range of 100 – 

1000 mg/L and this range was used for calibration.  Methyl palmitate and 

methyl oleate co-eluted as reported by Di Nicola et al. (2008) and a combined 

response factor was estimated for these two components.  A plot of the 

calibration data is shown in Figure 7.3 and the response factors are given in 

Table 7.2.     

 

From these data it can be seen that there is a large variation in response 

factors for the methyl esters and this is inversely proportional to the number of 

double bonds.  Methyl stearate and methyl palmitate have no double bonds and 

different carbon chain lengths and the response factors are very similar.  The 

value of the response factors are a measure of the detection limit with a small 

response factors due to small peaks resulting from poor UV absorbance.  This 
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indicates that the limit of detection for saturated compounds is relatively high 

and this was also observed by Türkan & Kalay (2006).     

 

 

Figure 7.3.  Calibration data for the determination of the methyl ester 
concentrations using LC Method 2. 

 

Table 7.2. Response factors for the methyl esters 

Component CN:DB* Response factor 

((mAU)2.L.mg-1) 

Methyl linolenate C18:3 14.03** 

Methyl linoleate C18:2 3.484 

Methyl oleate C18:1 0.5704 

Methyl palmitate C16:0 0.1227 

Methyl stearate C18:0 0.1134 

Methyl palmitate + Methyl oleate n/a 0.3527 

*CN is the carbon number and DB is the number of double bonds in the acyl chain (Santori et 
al., 2009) 
**For the concentration range 100 – 1000mg/L 

 

In order to characterise the FAME composition of UCO a sample was 

derivitised to FAMEs and analysed by GC and HPLC and a comparison of the 

FAME compositions are given in Table 7.3. 
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Table 7.3. Comparison of the methyl ester composition of UCO using HPLC and 
GC Analyses 

 FAME Composition (%) 

Component HPLC Run 1 HPLC Run 2 HPLC Run 3 GC* GC 

Methyl linoleate 32.2 32.6 32.6 43.2 43.2 

Methyl oleate n/a n/a n/a n/a 35.9 

Methyl palmitate n/a n/a n/a n/a 13.5 

Methyl oleate + 

methyl palmitate 

65.1 66.2 64.2 49.4 n/a 

Methyl stearate 1.49 0.00 2.05 3.8 3.8 

Methyl linolenate 1.23 1.23 1.16 3.7 3.7 

*These data were modified by adding the methyl palmitate and methyl oleate concentrations 
together for comparison with HPLC 

 

From Table 7.3 it can be seen that the results for each HPLC run are 

similar indicating good reproducibility with the HPLC method.  The biggest 

difference between the results is for methyl stearate, however this component 

has the smallest response factor and one of the lowest concentrations for the 

sample resulting in small to non-existent peaks.  In order to determine the 

concentration of methyl palmitate and methyl oleate it was necessary to 

estimate a combined response factor.  When the GC and HPLC results are 

compared it can be seen that there is a reasonable agreement between the 

results.   

 

From these data it can be seen that there is potential to use liquid 

chromatography to investigate the production of biodiesel.  However, 

improvements to the method are still required because there is co-elution of the 

components.  In addition the UV/vis detector is not suitable because of the low 

response from saturated lipids meaning that calibration would be difficult. 

 

7.2.3 Results for LC Method 3  

Ultra high performance liquid chromatography (UPLC) was used to 

separate the components based on the method proposed by Lee & Di Gioia 

(2007) for Method 3.  The components were detected using a time-of-flight 

(TOF) mass spectrometer (MS) and the resulting chromatogram for UCO is 
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shown in Figure 7.4.  From these data it can be seen that there is some 

separation of the components, however, the peaks are tightly clustered in the 

first part of the run.  In order to improve the quality of the data, changes were 

made to the solvent gradient, sample concentration and injection, creating 

Method 4. 

 

 

Figure 7.4.  The UPLC chromatogram for UCO chromatogram using method 3 
and the base peak ion (BPI) setting. 

 

 

7.2.4 Results for Method 4 

The amendments to Method 3 improved the separation of the 

components; however there is still some co-elution of the components.  A 

typical chromatogram for UCO, using Method 4, is shown in Figure 7.5 using 

the base peak ion (BPI) setting.   

 

In order for components to be detected, by the TOF mass spectrometer, 

they need to be charged.  Based on the standards it was found that a Na+ ion 

was incorporated into the MG, DG and TGs and these components were 

detected based on the mass-to-charge ratio (m/z).  The FAMEs and glycerol 
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could not be analysed using this method because they do not charge readily.  

The FFAs lose a proton to become negatively charged and can be detected 

when the TOF detector is run in the negative mode.  However, the FFAs were 

not well separated by the column and formed broad peaks that were not 

suitable for calibration.  As robust methods existed for the analysis of the FAME 

and FFAs concentrations it was decided to continue using these methods.       

 

 

Figure 7.5. A typical UPLC chromatogram of used cooking oil (UCO) using the 
base peak ion (BPI) setting from Method 4.  The inset shows the extracted ion 
chromatogram for the 1, 2 and 1, 3 isomers of dioleoyl-glycerol which gives a 
sodiated molecular ion [M+Na]+ at m/z 643.5. 

 

 

The time-of-flight (TOF) detector can be used to further separate the 

components based on the individual mass-to-charge ratios (m/z).  The 

extracted ion chromatogram for dioleoyl-glycerol is shown as an inset in Figure 

7.5.  This chromatogram has two significant peaks that correspond to two 

isomers of dioleoyl-glycerol separated by the UPLC column.   
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UCO has a complex composition and in order to simplify the method it 

has been assumed that each component of a given species provides a similar 

mass spectrometric response.  In addition, given the size of the molecules it is 

possible there is carbon 13 present and molecules with one additional carbon 

13 have also been included in the concentration calculations.  Two calibration 

standards were used for each of the MG, DG and TG species.  It can be seen 

from the inset in Figure 7.5 that many of the components form multiple peaks 

due to isomers and as a result the total area under all peaks for the relevant 

component was used as the peak area.  A typical calibration curve for 

trilinoleate is shown in Figure 7.6.  From this figure it can be seen that the 

calibration curves are linear for the concentration investigated. 

 

 

Figure 7.6.  Typical calibration curve for trilinoleate 
 

It has been found that individual diglycerides can be separated into two 

peaks corresponding to the 1, 2 and 1, 3 positional isomers of the diglyeceride.  

During the reaction these peaks disappear at different rates, an example of this 

is shown in Figure 7.7.  The peaks at two reaction times for dioleoyl-glycerol 

have been compared to the 1, 3 dioleoyl-glycerol standard which is composed 

predominantly of the 1, 3 isomer.  The second peak corresponds to the 1, 2 
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isomer.  From the data it can be seen that the 1, 3 isomer is transesterified 

preferentially over the 1, 2 isomer by the Novozyme 435 enzyme catalyst.  A 

comparison of the concentration of two palmitoyl-oleoyl-glycerol isomers during 

the reaction is shown in Figure 7.8.  The concentration has been calculated for 

these two species because there is better separation of the isomers than 

dioleoyl-glycerol and it has been assumed that the isomers elute in the same 

order.  Novozyme 435 was used to catalyse the reaction and these data show 

that this catalyst has some stereoselectivity.  Enzymes have been investigated 

for biodiesel production, but these data indicate that information on the fatty 

acid composition of a particular oil may not be sufficient to determine how well 

the enzyme will catalyse a particular reaction.  The isomer composition can also 

determine the rate and the extent of reaction.  

 

 

Figure 7.7.  Selected ion LC-MS chromatograms showing depletion of 1,3 
positional isomer of dioleoyl-glycerol [M+Na]+ ion at m/z 643.5 and comparison 
with the dioleoyl-glycerol standard containing predominantly 1, 3 positional 
isomers. 
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Figure 7.8.  A comparison of the rate of disappearance of diglyceride peaks 
(palmitoyl-oleoyl-glycerol)  

 
 

It was found that there was some scatter in the concentration results 

using Method 4, particularly with regard to the TG concentrations.  As a result, 

a quality control sample was injected at regular intervals to ensure the 

instrument behaved consistently.  The quality control sample was made by 

adding 100 L of each sample to a vial to make up a mixture of all samples.  A 

typical plot of the concentration with injection time is shown in Figure 7.9.  The 

quality control sample was injected repeatedly at the start of the sequence as 

part of the column conditioning procedure.  From Figure 7.9 it can be seen that 

initially there was some scatter, however, the results settled and overall the 

results were consistent, indicating that the instrument was behaving 

consistently.    

 

It has been found that while Method 4 can be used to quantify the MG, 

DG and TG concentrations, it was not possible to use Method 4 to analyse 

other components found in the UCO.  The FAMEs and glycerol could not be 

analysed because they do not charge well and the FFAs are not well separated 

by the column.  
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Figure 7.9.  A typical comparison of concentrations from the quality control 
sample and various intervals during the analysis 

 

 

7.2.5 Liquid Chromatography Applied to Batch Experiments      

It was proposed that the additional FAME formation that occurred when 

Novozyme 435 was used to catalyse the esterification pre-treatment of UCO 

(Chapter 6) was due to transesterification side reactions.  In order to investigate 

this further a method has been developed to determine the MG, DG and TG 

concentrations.  A comparison of the change in concentration of the MG, DG, 

TG, FAME and FFAs is shown in Fig. 7.10.   

 

From the data in Figure 7.10 it can be seen that the MG concentration 

increases slightly and then decreases, which is typical of a reaction 

intermediate.  The DG concentration decreases steadily during the course of 

the reaction.  At the end of the 6 h reaction time most of the MG and DGs have 

been consumed and this would account for the additional FAME formation.  In 

contrast, the change in TG concentration is very small.  Overall, there is a slight 

decrease in the concentration of triglycerides.  Thus, while the TGs will react, 
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the rate is much slower when compared to the MGs and DGs.  This is 

consistent with previous experiments where it was found that when Novozyme 

435 was used as a transesterification catalyst, the transesterification of 

triglycerides was the rate limiting step with no accumulation of MG or DGs 

during the reaction (Türkan & Kalay 2006).   

 

It was found that the extent of FAME formation varied with temperature 

(Chapter 6) and the change in concentrations at 60 C is shown in Figure 7.11.  

From these data it can be seen that the trends for most of the components is 

similar to Figure 7.10.  However, the TG concentration is decreasing faster at 

the higher temperature. 

 

 

Figure 7.10.  Change in the concentration of the triglycerides (TG), diglycerides 
(DG), monoglycerides (MG), fatty acid methyl esters (FAME / biodiesel) and fatty 
acids (FFAs) during the pre-treatment of UCO for biodiesel production.  This 

experiment was carried out using Novozyme 435 as the catalyst at 50 C. 
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Figure 7.11.  Change in the concentration of the triglycerides (TG), diglycerides 
(DG), monoglycerides (MG), fatty acid methyl esters (FAME / biodiesel) and fatty 
acids (FFAs) during the pre-treatment of UCO for biodiesel production.  This 

experiment was carried out using Novozyme 435 as the catalyst at 60 C. 

 

 

7.3 Kinetic Modelling 

7.3.1 Results using the Literature Model 

Various mechanisms for the reactions catalysed by enzymes to form 

biodiesel were investigated by Cheirsilp et al. (2008).  It was found that 

mechanism 3, which allowed for the simultaneous transesterification and 

esterification hydrolysis reactions gave the best fit to the experimental data.   

 

The differential equations proposed by Cheirsilp et al. (2008) were 

solved by means of the MATLAB “ode23s” function.  This was combined with 

the MATLAB “fminsearch” function to minimise the residual of the sum of 

squares, ie., the difference between the experimental and calculated values.  

The difference between the model and experimental data was condensed into a 

single value, using the sum of squares, for the “fminsearch” and weighting has 

not been applied.  The program code is given in Appendix A.  It was found that 
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the model predicted a reasonable fit for most of the components.  The 

comparison for the MG, DG and TG concentrations is shown in Figure 7.12.    

 

 

Figure 7.12.  A comparison of the MG, DG and TG concentration trends predicted 
by Cheirsilip et al. (2008) Mechanism 3 and the experimentally determined 

concentrations.  Using Novozyme 435 at 50 C. 

 

However it was found that there was a substantial difference between 

the predicted and experimental water concentrations as shown in Figure 7.13.  

This is because the model developed by Cheirslip et al. (2008) does not allow 

for water formation.  The system investigated by Cheirslip et al. (2008) required 

the addition of water as a part of the transesterification reaction.  In contrast the 

system investigated as part of this work using Novozyme 435 did not require 

water addition for the reaction to proceed. 
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Figure 7.13. A comparison of the water concentration trends predicted by 
Cheirslip Mechanism 3 and the experimentally determined concentrations.  

Novozyme 435 at 50 C. 

 

 

7.3.2 Development of the Kinetic Model 

The model developed by Cheirsilp et al. (2008) was amended to allow for 

water formation and the resulting conceptual scheme is shown in Figure 7.14.   

In order to simplify the model it was assumed that the components can be 

grouped together.  It was also assumed that the inhibition of the enzyme by 

alcohol followed the competitive inhibition model. It has been shown that for the 

reaction conditions investigated there are no mass transfer limitations (Haigh et 

al. 2013) and as a result this model applies to the intrinsic reaction kinetics.   

 

The reactions are expected to follow a Ping Pong Bi Bi mechanism as 

detailed in Chapter 2, Section 2.5.  A schematic representation and detailed 

mechanism for the esterification reaction are shown in Figures 2.7 and 2.8.  

According to this reaction scheme, the free enzyme (E) reacts with alcohol (Al), 

triglycerides (T), diglycerides (D), monoglycerides (M) and FFAs (F) to form the 

associated complexes; EAl, ET, ED, EM and EF respectively.  The 

hydrolysis and esterification reactions are then expected to occur in parallel 
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with the ET, ED and EM complexes reacting with water (W) to form F or with 

Al to form esters (Es) eventually leading the formation of glycerol (G).   

 

 

Figure 7.14.  The conceptual scheme of the amended mechanism 

 

The rate expressions have been developed by assuming that the 

hydrolysis and esterification reactions are rate limiting and the resulting rate 

equations are: 
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dt
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eTmT           (7.2) 
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Where the [E*] is: 

)
K

Al
[F] + ([M] + K[D] + K[T] + K + K(

][E
[E*] = 

I

mFmMmDmT

T

1

                                            (7. 8) 

 

VmT, VmD and VmM are the hydrolysis rate constants and are defined as 

VmT = k3k1/k2, VmD = k7k5/k6 and VmM = k11k9/k10.  VeEs is the esterification rate 

constant and is defined as VeEs = k15k13/k14.  VeT, VeD and VeM are the rate 

constants for transesterification and defined as VeT = k4k1/k2,  VeD = k8k5/k6 and 

VeM = k12k9/k10.  The equilibrium constants KmT, KmD, KmM, KmF and the inhibition 

constant KI are defined as KmT = k1/k2, KmD = k5/k6, KmM = k9/k10, KmF = k13/k14 

and KI = k17/k16. 

 

The unknown parameters were determined by fitting equations (7.2) to 

(7.8) to the batch experimental data using MATLAB according to the method 

described in Section 7.4.1.  

 

7.3.3 Results using the Amended Kinetic Model 

A comparison of the model and experimental water concentrations is 

shown in Figure 7.15.  From these data it can be seen that the amended model 

allows water formation and there is a good agreement between the amended 

model and the experimental water concentrations although the model predicts a 

slightly higher water concentration.  A comparison of the experimentally 

determined concentrations compared to those predicted by the model for the 

MG, DG, TG and FAME concentrations is shown in Figure 7.16.  There is a 

reasonable fit between the experimental and model parameters.   
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Figure 7.15.  A comparison of the experimental and model water concentrations 
using the amended model. 

 

In the case of the DG and MG concentrations the model developed by 

Cheirsilp et al. (2008) fits these concentrations better than the amended model.  

The amended model predicts a faster initial decrease in the concentration than 

the experimental data.  One of the assumptions made as part of the model 

development was that all the DG species could be treated as a single 

component.  However, it can be seen from Figures 7.7 and 7.8 that the 1, 2 and 

1, 3 positional isomers react at different rates and the DG trend is the sum of 

these two trends.  The model could be improved by allowing for both DG 

isomers.  However this would increase the complexity of the model and 

substantially increase the complexity of the component analysis.             

 



Chapter 7: Liquid Chromatography Development and Kinetic Modelling  155 

Environmentally Benign Biodiesel Production by Heterogeneous Catalysis  2013 

 

 

Figure 7.16.  A comparison of the concentrations from the experiments 
compared to those predicted by the model with (a) the MG, DG and TG 
concentrations and (b) showing the FAME concentrations.  The experiment was 

carried out at 50 C using Novozyme 435.  

 

 

The parameters predicted by the model for this system are shown in 

Table 7.4 and have been compared to the values found in the literature 

(a) 

(b) 
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(Cheirsilp et al. 2008).  From these data it can be seen that there are 

substantial differences between these values, as expected, because the 

systems investigated are different.  Novozyme 435 was used instead of 

immobilized Pseudomonas sp, methanol was used in place of ethanol, water 

was not added to the reaction mixture and the model has been modified to 

allow for water formation during the esterification reaction.  Novozyme 435 is 

known to result in slow reactions with TGs (Tongboriboon et al. 2010; Ganesan 

et al. 2009) and the parameters for the TG reactions (VmT and VeT)  are lower 

than the literature values.  From these data it can be seen that the DGs and 

MGs react more readily than the TGs.  As expected the esterification reaction 

rate constant (Ves) is greater than the literature value because Novozyme 435 

has been shown to favour the esterification reaction (Tongboriboon et al. 2010).  

The value for the alcohol inhibition constant (KI) is greater than the literature 

value and this can be accounted for because methanol was used instead of 

ethanol.  The two catalysts exhibit different levels of alcohol tolerance.  Overall 

the data indicate that Novozyme 435 can catalyse the transesterification 

reaction in parallel with the hydrolysis esterification reaction sequence.   

 

Table 7.4.  The Model Parameters 

Parameters Predicted Values 
(mol-1min-1) 

Literature Values* 
(mol-1.min-1) 

VmT 0.0130 1.27 
VmD 0.447 1.35 
VmM 78.6 3.25 
VeEs 48.4 23.1 
VeT 0.00430 45.9 
VeD 25.5 19.6 
VeM 18.5 16.1 
KmT 0.00770 0.482 
KmD 0.00290 0.387 
KmM 3.92 0.329 
KmF 0.00410 0.187 
KI 764 14.7 

*Cheirsilp et al. (2008) 
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7.4 Conclusions 

It was found that when Novozyme 435 is used as the esterification 

pretreatment catalyst for the preparation of biodiesel from UCO the amount of 

FAME formed was higher than expected (Chapter 6).  It was proposed that this 

was due to transesterification side reactions and various liquid chromatography 

methods have been investigated to monitor the MG, DG and TG 

concentrations.  It was found that Method 4 using UPLC and a TOF MS 

detector was most suitable for the analysis.  It has been shown that this method 

has sufficient sensitivity to monitor the progress of specific isomers with the 1, 3 

DG isomers being consumed faster than the 1, 2 isomer. 

   

A series of batch experiments was subsequently monitored for the MG, 

DG, TG, FAME and FFAs concentrations and it was found that the MGs and 

DGs were reacting confirming the existence of side reactions at high 

temperatures.  In addition it was found that while there was reduction in the TG 

concentration at higher temperatures, the rate was very slow. 

 

Cheirslip et al. (2008) used kinetic modelling to show that enzyme 

catalysed reactions proceed with transesterification in parallel with the 

hydrolysis esterification sequence of reactions.  The proposed model was 

amended to allow for water formation and it was found that there was a good fit 

between the proposed model and the experimental results.  These results show 

Novozyme 435 can simultaneously catalyse the hydrolysis, esterification and 

transesterification reactions in UCO.  
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Chapter 8: Enzymatic 
Biodiesel Production 

 

8.1 Introduction  

Enzyme catalysts have been widely considered for the production of 

biodiesel (Enweremadu & Mbarawa 2009; Ganesan et al. 2009; Atadashi et al. 

2013).  One of the advantages of enzyme catalyst is that  high conversions are 

possible at relatively benign operating conditions (Shahid & Jamal 2011).  

Another advantage is that the saponification side reactions, due to water and 

free fatty acids (FFAs), do not occur.  The class of enzyme catalysts used to 

investigate biodiesel production are lipases (Semwal et al. 2011; Akoh et al. 

2007).  The function of lipases is to catalyse the breakdown of lipids by cleaving 

the carboxyl bond (Paiva et al. 2000; Souza et al. 2009).  The lipases most 

frequently investigated for biodiesel production are a lipase from Candida 

antarctica lipase B and Pseudomanas cepacia.  P. cepacia has recently been 

reclassified as Burkholderia cepacia (Torres et al. 2008) however for simplicity 

the name P. cepacia has been used for this work.   

 

Lipases can be used in a free or immobilised form however given that 

the aim of this work is to investigate heterogeneous catalysts the focus will be 

on immobilised enzymes.  A commercially available form of C. antarctica is 

Novozyme 435 with acrylic resin as the immobilisation support (Tongboriboon 

et al. 2010), and while it has been found that high conversions are possible a 

long reaction time is required (Al-Zuhair et al. 2009).  Novozyme 435 has been 

investigated for the esterification pre-treatment reaction (Chapter 6) and is has 

been shown that the transesterification of triglycerides (TG) is very slow 

(Chapter 7).   

 

The transesterification reaction catalysed by P. cepacia has been widely 

reported however most researchers have focused on immobilisation of the free 

enzyme (Li et al. 2011; Zheng et al. 2012).  There are limited reports on a 
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commercially available form of P. cepacia immobilised on diatomaceous earth, 

known as Amano Lipase PS-IM and manufactured by Amano Lipase Inc.  On 

this basis Amano Lipase PS-IM will be investigated for the transesterification 

reaction.      

 

Esterification pre-treatment to convert the FFAs in used cooking oil 

(UCO) to fatty acid methyl esters (FAME), prior to transesterification, was 

discussed in Chapter 6.  This is particularly relevant when base catalysts are 

used to catalyse the transesterification reaction because FFAs react with the 

catalysts leading to unwanted saponification side reactions (Enweremadu & 

Mbarawa 2009).  Lipases are not affected by FFAs (Chen et al. 2009; Lam et 

al. 2010).  In Chapter 7 it was shown that the simultaneous esterification of 

FFAs and transesterification of diglycerides (DG) and monoglycerides (MG) is 

possible using Novozyme 435.  However the conversion of TGs, which make 

up the bulk of UCO, was relatively low and it is hoped that Amano Lipase PS-IM 

will be more effective at the transesterification of TGs.  As a result it is proposed 

to carry out Amano Lipase PS-IM catalysed transesterification (enzymatic 

biodiesel production stage 1), followed by Novozyme 435 catalysed 

esterification and transesterification (enzymatic biodiesel production stage 2).   

 

Enzymatic biodiesel production stage 1, using Amano Lipase PS-IM as 

the catalyst, is discussed in Section 8.2, starting with the effect of water on the 

FFAs concentration and TG conversion in Section 8.2.1.  The TG conversion 

was calculated using the FAME concentration and the assumption that the 

UCO initially added is composed only of TGs which can be converted to FAME.  

The effect on TG conversion of the mole ratio and stepwise addition of 

methanol are discussed in Section 8.2.2.  The effect of stirring speed, 

temperature and catalyst loading are discussed in Sections 8.2.3-8.2.5.  

Enzymatic biodiesel production stage 2 using Novozyme 435 as the catalyst is 

discussed in Section 8.3.   
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8.2 Enzymatic Biodiesel Production Stage 1 

8.2.1 Effect of water 

The effect of water addition, on conversion, using Amano Lipase PS-IM 

has been investigated and the results are given in Figure 8.1. There is 

approximately 0.53 wt% water initially present in the UCO in addition to the 

water added to the reaction mixture.  From these data it can be seen that water 

is required in order for the reaction to proceed.  Overall the FFAs concentration 

increases with increasing water addition.  In comparison it can be seen from 

Figure 8.1 (b) that when sufficient water is added this results in a high TG 

conversion with a similar conversion for an addition of 5 and 10 vol%.  Further 

increases in the amount of water result in a steady decrease in the TG 

conversion.      

 

It has been shown that Amano Lipase PS-IM can catalyse 

transesterification, esterification and hydrolysis (Cheirsilp et al. 2008).  These 

data suggest that as the water concentration increases the hydrolysis side 

reaction is favoured.  It should be possible to convert the FFAs to FAME using 

Novozyme 435, thus increasing the TG conversion, however the aim of stage 1 

is to maximise the TG conversion.  Similar high TG conversions are achieved 

when 5 and 10 vol% water are added to the reaction mixture.  The addition and 

subsequent removal of water will increase the costs and it is preferable to 

minimise the amount of water added.  On this basis the optimum water addition 

is 5 vol%    
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Figure 8.1.  The effect of water addition on the (a) FFAs concentration and (b) the 
TG conversion using Amano Lipase PS-IM as the catalyst. (With a mole ratio of 

3.12:1, a temperature of 40 C, a catalyst loading of 0.786 wt% and a stirrer speed 
500 rpm) 

 

 

(a) 

(b) 
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8.2.2 Effect of methanol 

The effect of the methanol to TG mole ratio on TG conversion using 

Amano lipase PS-IM is shown in Figure 8.2.  From these data it can be seen 

that Amano lipase PS-IM follows a similar trend to Novozyme 435 in that there 

is an optimum conversion.  The catalyst is poisoned at higher values and for 

lower mole ratios there is insufficient methanol for conversion.  Amano Lipase 

PS-IM has a higher methanol tolerance when compared to Novozyme 435.  

The methanol to FFAs mole ratio with Novozyme 435 was found to be 6.3:1.  

This corresponds to a methanol to TG mole ratio of 1.25:1.  The water added 

when using Amano Lipase PS-IM will dilute the methanol and may increase the 

mole ratio that can be used.  The optimum mole ratio is 3:1.   

 

A TG conversion of 40% was achieved at the optimum mole ratio of 3:1.  

Shimada et al. (2002) showed that it is possible to overcome this problem and 

increase conversion using stepwise addition of methanol.  The effect of 

stepwise addition of methanol is shown in Figure 8.3 with methanol added after 

4 h.  These data indicate that for the conditions investigated there is no 

additional conversion when methanol is added after 4 h of reaction time.  It is 

possible that conversion could be improved with the right conditions.  However, 

it can be seen from Figure 8.2 (b) that conversion is very sensitive to changes 

in the mole ratio and they may be difficult to identify.  There are cases where 

the benefits of stepwise addition of alcohol are limited (Shah et al. 2004; 

Tongboriboon et al. 2010).  An increase in TG conversion is not possible using 

stepwise addition of methanol at the conditions investigated.   
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Figure 8.2.  The effect of the methanol to TG mole ratio on TG conversion with (a) 
showing the overall conversion trend and (b) showing the conversion at 3h.  

(With water addition of 5 vol%, a temperature of 40 C, 0.786 wt% and a stirrer 
speed 500 rpm) 

 

 

(a) 

(b) 
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Figure 8.3.  The effect of stepwise addition of methanol on TG conversion.  (With 

water addition of 5 vol%, a temperature of 40 C, a catalyst loading of 0.786 wt% 
and a stirrer speed 500 rpm) 

 

8.2.3 Effect of stirring speed 

The effect of stirring speed on TG conversion is shown in Figure 8.4.  

Increasing the stirring speed is expected to eliminate external mass transfer 

limitations and ensure the heterogeneous catalyst is well suspended.  From 

these data it can be seen that with a stirring speed of 300 rpm the conversion is 

low indicating that there are external mass transfer limitations at these 

conditions.  When the stirrer speed is increased to 700 rpm it can be seen that 

the conversion is slightly lower than a speed of 500 rpm.  This can be explained 

in part by experimental error; however it is also possible that the high speed is 

damaging the catalyst particularly at longer reaction times.  500 rpm has been 

selected as the optimum stirrer speed because it gives the highest conversion 

at the lowest possible speed. 
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Figure 8.4.  The effect of stirring speed on TG conversion.  (With water addition 

of 5 vol%, a mole ratio of 3:1, a temperature of 40 C and a catalyst loading of 
0.786 wt%.) 

 

 

8.2.4 Effect of temperature 

The effect of temperature on the conversion of TGs is shown in Figure 

8.5.  From these data it can be seen there is a large drop in conversion when 

the temperature is increased to 50 C.  According to the manufacturer’s data 

the activity of this catalyst should increase with increasing temperature up to 60 

C.  The mole ratio is relatively high and it is expected that the reduction in 

conversion is due to a combination of the high temperature and a high mole 

ratio. 

 

The TG conversion at 30 and 40 C is relatively similar and allowing for 

experimental error the conversion could be considered to be the same.  Given 

that the conversion is marginally higher at the lower temperature of 30 C, this 

value has been selected as the optimum. 
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Figure 8.5.  The effect of temperature on TG conversion.  (With water addition of 
5 vol%, a mole ratio of 3:1, a catalyst loading of 0.786 wt% and a stirrer speed of 
500 rpm) 

 

 

8.2.5 Effect of catalyst loading 

The effect of catalyst loading on conversion is shown in Figure 8.6.  

From these data it can be seen that conversion increases with an increase in 

catalyst loading until a maximum is reached.  At this point increasing the 

catalyst loading will not increase conversion because there are sufficient 

catalytic sites available to catalyse the reaction.  On this basis a loading of 

0.786 wt% has been identified as the optimum catalyst loading for this system. 
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Figure 8.6.  The effect of catalyst loading on TG conversion.  (With water addition 

of 5 vol%, a mole ratio of 3:1, a temperature of 30 C and a stirrer speed of 500 
rpm) 

   

 

8.3 Enzymatic Biodiesel Production Stage 2 

Amano Lipase PS-IM has been investigated for the transesterification 

reaction to convert UCO to biodiesel.  The reactions are not affected by the 

presence of FFAs and as a result UCO was used as the raw material.  While 

the FFAs do not lead to the undesirable saponification side reaction during 

transesterification they still need to be removed from the final product in order 

to meet the biodiesel specifications.  The esterification reaction can be used to 

convert the FFAs to biodiesel, thus increasing conversion.  The FFAs 

concentration at the optimum reaction conditions is shown in Figure 8.7.  From 

these data it can be seen that FFAs are formed at low reactions times and the 

concentration subsequently decreases steadily.  After 8 h of reaction time the 

FFAs concentration is 200 molm-3.              
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Figure 8.7.  The FFAs concentration trend at optimum conditions.  (With water 

addition of 5 vol%, a mole ratio of 3:1, a temperature of 30 C, a catalyst loading 
of 0.789 wt% and a stirrer speed of 500 rpm) 

 

 

In Chapter 7, Section 7.4, it was found that Novozyme 435 could 

simultaneously catalyse the esterification of FFAs and the transesterification of 

monoglycerides (MG) and diglycerides (DG).  On this basis it is proposed that 

Novozyme 435 would be more suitable as a post-treatment catalyst for 

enzymatic biodiesel production, in order to convert the FFAs and any unreacted 

MGs, DGs to FAME.  After transesterification the reaction mixture was 

separated from the catalyst by filtration and left in a separating funnel overnight.  

The reaction product separated into a UCO rich top layer and a glycerol rich 

bottom layer as shown in Chapter 5, Figure 5.8, vial B.  The UCO rich layer 

contains the FAME produced during transesterification and is referred to as the 

stage 1 product.  There is still some water and methanol in the stage 1 product.    

Rotary evaporation can be used to remove the methanol and water, however it 

may also remove some of the FAMEs.  As a result experiments were carried 

out to determine if rotary evaporation was a necessary and suitable treatment 

step.  The FAME concentration of the stage 1 product before and after drying 

was measured and it was found that there was a slight increase in the FAME 
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concentration which has been attributed to a slight decrease in the mass of the 

stage 1 product due to water and methanol removal.   

 

A comparison of the FAME and FFAs concentration trend using the 

untreated and dried stage 1 product is shown in Figure 8.8.  From these data it 

can be seen that more FAME is formed using the dried transesterification 

product.  In addition while this is less clear from the scale the reduction in FFAs 

is greater using the dried stage 1 product.  This indicates that the methanol and 

water remaining behind in the transesterification product inhibited the 

esterification and transesterification reactions.        

 

 

Figure 8.8.  A comparison of the FFAs and FAME concentrations and the effect 
of raw material type when using Novozyme 435 for enzymatic biodiesel 
production stage 2.  (With a methanol to TGs mole ratio of 1.25:1, a temperature 

of 50 C, a catalyst loading of 1.00 wt% and a stirrer speed of 650 rpm) 

 

 

From Figure 8.8 it can be seen that the amount of FAME formed is 

greater than the amount of FFAs consumed.  Novozyme 435 can convert FFAs, 

MGs and DGs to FAME and in order to confirm this, the ratio of FAME formed 

to FFAs consumed has been calculated.  The ratio of the untreated stage 1 
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product is 2.4:1 compared to a ratio of 2.5:1 for the dried stage 1 product.  The 

esterification reaction converts one mole of FFAs to one mole of FAME, 

Chapter 1, Figure 1.2 and a ratio of 1:1 would be expected if esterification was 

the only reaction occurring during stage 2.     

 

The overall conversion of TGs in the second stage is shown in Figure 

8.9.  From these data it can be seen that the TG conversion increases from 

43% to 55% in the second stage.  The TG conversion reaches 55% after 2 h of 

reaction time indicating that this time would be sufficient for stage 2. 

 

From these data it can be seen that it is possible to improve conversion 

using Novozyme 435.  However the overall conversion is still relatively low and 

the final product is not suitable for use as biodiesel.  In addition, the FFAs 

concentration is also too high to meet the biodiesel standards.  Stage 2 was 

carried out using the optimum conditions identified in Chapter 5 for the 

esterification pre-treatment reaction and further improvement may be possible 

in stage 2.     

 

 

Figure 8.9.  The overall TG conversion for enzymatic biodiesel production stage 

2.  (With a methanol to TGs mole ratio of 1.25:1, a temperature of 50 C, a 
catalyst loading of 1.00 wt% and a stirrer speed of 650 rpm) 
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8.4 Conclusions 

The enzymatic production of biodiesel from UCO has been investigated 

using Amano Lipase PS-IM in stage 1 and Novozyme 435 in stage 2.  A 

detailed investigation to determine the optimum conditions for Amano Lipase 

PS-IM were carried out.  It was found that the optimum conditions are the 

addition of 5 vol% water, a mole ratio of 3:1, a stirring speed of 500 rpm, a 

temperature of 30 C and a catalyst loading of 0.789 wt% giving a conversion of 

43%.   

 

It was found that the conversion could be increased in stage 2 

particularly when the stage 1 product was dried using rotary evaporation.  The 

stage 2 batch experiments were carried out using the optimum conditions 

identified for Novozyme 435 in Chapter 5.  It was found that a higher conversion 

was achieved when stage 1 product was dried using rotary evaporation and 

that the FFAs and FAME concentration indicated simultaneous esterification 

and transesterification reactions.  The final TG conversion was 55% and could 

be achieved with 2 h of reaction time. 
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Chapter 9: Conclusions and 
Recommendations for Future 
Work 

 

9.1 Conclusions 

Potential improvements to the biodiesel production process have been 

investigated.  In order to minimise the environmental impact, used cooking oil 

(UCO) was selected as the feedstock along with heterogeneous catalysts.  The 

heterogeneous catalysts were selected on the basis that high yields were 

expected at relatively benign operating conditions.  An ion-exchange resin 

(Purolite D5082) and an immobilised enzyme (Novozyme 435) were 

investigated for the esterification pre-treatment reaction and an immobilised 

enzyme (Amano Lipase PS-IM) was selected for the transesterification reaction.   

 

A detailed characterisation of the fresh and used catalysts was carried 

out in order to gain a better understanding of the catalytic activity of the 

catalysts investigated (Chapter 4).  This information was used to compare the 

catalysts types.  This information was also used to compare fresh and used 

catalysts in order gain a better understanding of the changes and the data were 

linked to reusability studies (Chapter 6).   

 

The UCO was characterised using various chemical and physical 

techniques (Chapter 5) and found to have a similar FFAs composition to 

soybean oil.   

 

The optimum batch reaction conditions of the esterification pre-treatment 

reaction were investigated for Novozyme 435 and Purolite D5082 (Chapter 6).  

The optimum reaction conditions identified for Purolite D5082 were a 

temperature of 60 C, a methanol to free fatty acid (FFA) mole ratio of 62:1, a 

catalyst loading of 5 wt% resulting in an FFAs conversion of 88% after 8 h of 
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reaction time.  The optimum conditions identified for Novozyme 435 were a 

temperature of 50 C, a mole ratio of 6.2:1 and a catalyst loading of 1 wt% 

resulting in a conversion of 90% after 8 h of reaction time.     

 

The catalytic activity of Purolite D5082, Novozyme 435 and previously 

studied Purolite D5081 were compared and it was found that the highest 

conversion, of 97% after an 8 h reaction time, was possible using Purolite 

D5081 (Chapter 6).  There are benefits to using Novozyme 435 because a 

similar conversion was possible using a much smaller mole ratio, a lower 

temperature and a shorter reaction time.  In addition, it was found that the 

reaction rate was still relatively high at 30 C indicating that this reaction could 

be carried out, without additional heating in some parts of the world. 

 

It was proposed that side reactions were occurring during Novozyme 435 

catalysed esterification pre-treatment (Chapter 6).  In order to investigate this 

further an ultra performance liquid chromatography (UPLC-MS) method was 

developed (Chapter 7) to monitor the monoglyceride (MG), diglyceride (DG) 

and triglyceride (TG) concentrations.  From the trends it could be seen that the 

diglycerides were being consumed leading to the formation and subsequent 

consumption of MGs there was very little change in the TG concentration.  This 

confirmed the existence of side reactions.   

 

A kinetic model was developed to investigate the reaction mechanism of 

Novzoyme 435 using the MG, DG, TG, fatty acid methyl ester (FAME) and FFA 

concentrations (Chapter 7).  The parameters of this model were determined by 

fitting the model to experimental data and a reasonably good fit was achieved.  

According to this model, direct esterification was catalysed in parallel with 

sequential esterification hydrolysis reactions.   

 

A two-step enzymatic biodiesel production process was investigated with 

the first stage catalysed by Amano Lipase PS-IM and the second stage 

catalysed by Novozyme 435 (Chapter 8).  The process was investigated 

because the unwanted saponification side reactions do not occur with enzyme 
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catalysts (Chen et al. 2009; Atadashi et al. 2013) and Novozyme 435 has been 

shown to catalyse esterification and transesterification (Chapter 7).  The 

optimum batch reaction conditions for the Amano Lipase PS-IM identified for 

the first step are addition of 5 vol% water, a temperature of 30 C, a methanol 

to UCO mole ratio of 3:1 and a catalyst loading of 0.789 wt% resulting in a TG 

conversion of 43%.  The Novozyme 435 catalysed second stage was carried 

using the optimum conditions identified in Chapter 6.  When the oil layer from 

stage one was dried the final TG conversion was 55%.  

 

Process options to minimise the environmental impact and improve the 

efficiency of biodiesel production have been investigated.  It was found that 

high conversions were possible using Novozyme 435 and previously 

investigated Purolite D5081 for the esterification pre-treatment reaction.  The 

highest conversion of 97% was achieved using Purolite D5081, however there 

were process benefits when using Novozyme 435 because the reaction could 

be carried out using a substantially lower mole ratio, a lower temperature and a 

shorter reaction time.  Amano Lipase PS-IM was investigated for the 

transesterification reaction and the highest conversion was relatively low at 

43%.  This conversion was increased to 55% with a Novozyme 435 catalysed 

post-esterification reaction and further improvements may be possible 

   

9.2 Recommendations for Future Work 

The results of the experimental work indicate a number of areas that 

would be interesting for further research and are discussed below. 

 

9.2.1 Investigate improvements to the analytical method for 

determining the MG, DG and TG concentrations 

The analysis carried out using UPLC-MS, to determine the MG, DG and 

TG concentrations, and the subsequent kinetic modelling has provided some 

useful information on the catalytic activity of Novozyme 435.  However, there is 

scope to improve the concentration data used for the modelling.  The 

concentration data, particularly the TG data was scattered and the reliability of 
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the data could be improved by preparing the samples in triplicate although this 

will result in a substantial increase in the sample preparation and analysis 

times.   

 

It may be necessary to consider an alternative analytical technique in 

order to determine MG, DG and TG concentrations.  This work focused on the 

use of liquid chromatography for the analysis of the reaction products because 

it was deemed the most suitable method for the components which have a 

relatively low volatility.  A gas chromatography method has been specified to 

determine MG, DG and TG concentrations in biodiesel (British Standard Online, 

2011).  This method has been designed to detect low levels of MG, DG and 

TGs in biodiesel, however it may be possible to amend this method for samples 

with much higher concentrations.      

 

9.2.2 Improve the kinetic modelling parameters  

If improvements are made to the quality of the MG, DG and TG data as 

discussed in Section 9.2.1,  these data could be entered into the current model 

in order to improve the model parameters. 

 

To date the modelling work has focused on a very narrow set of reaction 

conditions.  For example, the modelling was carried out using the optimum 

methanol to FFAs mole ratio and assessing the model for a wide range of mole 

ratios would improve the robustness of the parameters particularly the methanol 

inhibition constant (Ki).  The parameters have been calculated at various 

temperatures, however this could be improved by incorporating the Arrhenius 

equation into the model.  

 

The kinetic model was developed to investigate the side reactions 

observed during the Novozyme 435 catalysed, esterification pre-treatment 

reaction.  The same model could be applied to Amano Lipase PS-IM catalysed 

reactions.  It would be interesting to compare the MG, DG and TG 

concentration data and model parameters for the two catalysts, in order to 

compare the catalytic activities and mechanisms.   
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9.2.3 Investigate improvements to the Enzymatic Biodiesel 

Production Process 

A maximum TG conversion of 43% was achieved using Amano Lipase 

PS-IM, which is low compared to the results reported for similar catalysts (Li et 

al. 2011; Da Rós et al. 2010).  A potential explanation for the low conversion is 

that there is a contaminant in the UCO inhibiting or poisoning the Amano Lipase 

PS-IM.  For example Russbueldt & Hoelderich (2009) found that a mineral salt 

contaminant in a UCO was inhibiting the catalytic activity of an ion-exchange 

resin.  Another explanation is that there are lipid components which cannot be 

converted to FAME by Amano Lipase PS-IM.  Abidin (2012) was able to 

achieve a conversion of 75% using the same UCO and an anion exchange 

resin (Diaion PA306s).  In similar way to Novozyme 435 it may be that Amano 

Lipase PS-IM is not able to catalyse the transesterification of one of the main 

lipid classes of MG, DG or TGs.  Alternatively, one or more of the specific MG, 

DG or TG components may not be reacting.  These factors could be 

investigated by carrying out the transesterification reaction using alternative 

vegetable oils, particularly virgin oils such as soybean or sunflower oil.   

 

The UPLC-MS or another method could be used to monitor the MG, DG 

and TG trends and determine which components are being converted.  In this 

case the UPLC-MS method may be the most suitable method because it can be 

used to monitor specific components and it may even be possible to identify 

and monitor specific isomers of MG, DG or TG components in the oil.  This 

method was used to show that the 1,3 DG isomers reacted more readily than 

the 1,2 DG isomers for Novozyme 435 catalysed reactions (Chapter 7). 

 

Amano Lipase PS-IM is composed of Pseudomonas cepacia (recently 

reclassified as Burkholderia cepacia) lipase immobilised on diatomaceous 

earth.  Immobilisation of enzymes has been shown to affect the catalytic activity 

and while this can lead to an increase in conversion it does occasionally result 

in a decrease in conversion (Li et al. 2011; Zheng et al. 2012).  The free lipase 

version of Amano Lipase PS-IM is Amano Lipase PS.  The transesterification 

reaction could be carried out using the free enzyme.  Amano Lipase PS could 
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also be immobilised using one of the techniques described in the literature 

(Zheng et al. 2012; Tongboriboon et al. 2010).  A comparison of these results 

could be used to determine if the immobilisation technique is inhibiting the 

reaction. 

 

Amano Lipase PS-IM is supplied as a fine powder which is not suitable 

for industrial applications particularly continuous flow applications.  Alternative 

immobilisation techniques could be investigated to improve the conversion and 

industrial applicability of Amano Lipase PS-IM 

 

The synergistic effect of mixing lipases with different catalytic activities 

has been reported (Tongboriboon et al. 2010) and it may be possible to mix 

Novozyme 435 and an immobilised Amano Lipase PS to improve the overall 

catalytic activity and increase conversion.  However, a new set of optimum 

conditions would need to be identified because there are substantial differences 

in the water requirements and methanol tolerances for Amano Lipase PS-IM 

and Novozyme 435.  

 

Continuous flow processes are generally considered more suitable for 

industrial applications.  Development of a continuous flow process would follow 

logically from the work described above.  The conversion and immobilisation 

techniques would need to be improved in order for this work to be viable.  In 

addition, a good quality model would be useful to help design and develop an 

effective process.   

 

9.2.4 Carry Out Detailed Economic and Lifecycle Analysis of 

Potential Processes 

This work has focused on the experimental and technical aspects of 

biodiesel production.  However, a complete analysis would need to take into 

account the economic and environmental aspects.   

 

It is widely recognised that enzyme catalysts are expensive when 

compared to chemical catalysts (Li et al. 2011; Atadashi et al. 2013).  In the 
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context of this work it was found that there are benefits to using Novozyme 435 

in place of Purolite D5081 because the Novozyme 435 catalysed reaction can 

be carried out using less methanol, a lower temperature and a shorter reaction 

time and thus offers a number of environmental and economic benefits.  On this 

basis, an economic assessment and life cycle analysis of the Novozyme 435 

and Purolite D5082 catalysed esterification pre-treatment reactions would be 

interesting.  A life cycle analysis should take into account difference in the 

processes used to manufacture the catalysts. 
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Appendix A: MATLAB Code 

A1. Overall Description 

A typical example of the MATLAB code used to carry out the kinetic 

modelling is given in Sections A2 – A4.  The overall code used to carry out the 

kinetic modelling is given in Section A2.  This section of code is used to load 

the required data and input the initial estimate for the parameters.  This code 

can also be modified to use previously calculated parameters and specify the 

number of loops.   

 

This code then calls the objection function using “fminsearch”.  The 

objective function is given in Section A3.  This determines the difference 

between the model and the experimental data and condenses the difference 

into a single value, and shows how close the model is to the experimental data.  

No weighting of the results has been used.  The objective function uses 

“ode23s” to solve the differential equations given in the model.  The model has 

been written up as a separate file given in Section A4.          

 

A2. The overall code; “Enzyme_parm_est_T” 

 

global texp Yexp x0 t0 tf ET  plot_res Y time 

 

ThesisData50c;  % loads data  

texp = Time;   % time in min 

Yexp = Exp1;    

 

ET = 8.33e-5;  %mol/m3, based on the Thielmann paper with 

supporting calculation in the softback book 

 

% Initial concentration ??? 

 

  x0 = Exp1(:,1)'; 

   

  t0 = 0; 

  tf = texp(end);  % min 

   

OPTIONS = optimset('display','iter','maxiter',50); 

 

plot_res = 1; 
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X0_param = [0.5 0.5 2 4 0.5 3 3 1 1 1

 1 5];   %Cheirslip constants (mol-1.min-1) 

%X0_param = Xoptim;  

 

 

[Xoptim,FVAL,EXITFLAG,OUTPUT] = fminsearch(@(x) Enz_obj_est(x), 

X0_param, OPTIONS); 

 

%LB = zeros(1,12); 

%UB = ones(1,12)*inf; 

%[Xoptim,FVAL,EXITFLAG,OUTPUT] = fmincon(@(x) Enz_obj_est(x), 

X0_param,[],[],[],[],LB,UB,[],OPTIONS) 

 

%plot_res = 0; 

figure 

Enz_obj_est(Xoptim) 

 

 

A3. The Objective Function; “Enz_obj_est” 

function fobj = Enz_obj_est(param) 

 

global texp Yexp t0 tf x0 ET plot_res Y time 

 

 

[time, Y] = ode23s(@enzyme_model_T, [t0 tf], x0, [], param);   

   

%linear interpolation 

Ymodel = [interp1(time,Y,texp)]'; 

 

fobj = sum(sum((Ymodel - Yexp).^2))*10;  %need to double check 

the form of this equation - not sure about double sum 

 

if plot_res 

  plot(time, Y, texp, Yexp, 'ro') 

  title('Model Data'), xlabel('Time [min]'), 

ylabel('Concentration???')  

  %legend('model results', 'experimental data') 

  drawnow 

end 

 

 

A4. The Model; “enzyme_model_T” 

function dx = enzyme_model_T(t,x,k) 

global ET  

 

 

%Modified Cheirslip model 

%R = 8.31; 

%k1 = k(1)*exp(-k(2)/R/T) 
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dx(1) = -(k(1)*x(6) + k(5)*x(7))*x(1)* (ET / (1 + k(8)*x(1) + 

k(9)*x(2) + k(10)*x(3) + k(11)*x(5) + x(7)/k(12))); 

dx(2) = ((k(1)*x(6) + k(5)*x(7))*x(1) - (k(2)*x(6) + 

k(6)*x(7))*x(2))*(ET / (1 + k(8)*x(1) + k(9)*x(2) + k(10)*x(3) + 

k(11)*x(5) + x(7)/k(12))); 

dx(3) = ((k(2)*x(6) + k(6)*x(7))*x(2) - (k(3)*x(6) + 

k(7)*x(7))*x(3))*(ET / (1 + k(8)*x(1) + k(9)*x(2) + k(10)*x(3) + 

k(11)*x(5) + x(7)/k(12))); 

dx(4) = (k(3)*x(6) + k(7)*x(7)*x(3))*(ET / (1 + k(8)*x(1) + 

k(9)*x(2) + k(10)*x(3) + k(11)*x(5) + x(7)/k(12))); 

dx(5) = ((k(1)*x(1) + k(2)*x(2) + k(3)*x(3))*x(6) - 

k(4)*x(5)*x(7))*(ET / (1 + k(8)*x(1) + k(9)*x(2) + k(10)*x(3) + 

k(11)*x(5) + x(7)/k(12))); 

dx(6) = -((k(1)*x(1) + k(2)*x(2) + k(3)*x(3))*x(6) - 

k(4)*x(5)*x(7))*(ET / (1 + k(8)*x(1) + k(9)*x(2) + k(10)*x(3) + 

k(11)*x(5) + x(7)/k(12))); %modified water equation 

dx(7) = -(k(5)*x(1) + k(6)*x(2) + k(7)*x(3) + 

k(4)*x(5))*x(7)*(ET / (1 + k(8)*x(1) + k(9)*x(2) + k(10)*x(3) + 

k(11)*x(5) + x(7)/k(12))); 

dx(8) = -dx(7);   % I'm not sure about this.  Need to check the 

maths and maybe amend the model 

 

dx = dx(:); 
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Appendix B: Publications 
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