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Abstract. The last five years have seen the emergence of a family of optical 

interferometric techniques that provide deformation measurements throughout three-

dimensional (3-D) weakly scattering materials. They include wavelength scanning 

interferometry (WSI), tilt scanning interferometry (TSI), phase contrast spectral 

optical coherence tomography (PC SOCT) and hyperspectral interferometry (HSI) and 

can be thought of as a marriage between the phase sensing capabilities of Phase 

Shifting Interferometry and the depth-sensing capabilities of Optical Coherence 

Tomography. It was recently shown that some closely related 3-D optical imaging 

techniques can be treated as shift-invariant linear filtering operations. In this paper, we 

extend that work to include WSI, TSI, PC SOCT and HSI as spatial filtering 

operations and also relate the properties of their transfer functions in the spatial 
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frequency domain to their spatial resolution and phase sensitivity, for depth-resolved 

displacement measurements. 

 

Keywords: Phase imaging, speckle interferometry, optical coherence 

tomography, wavelength scanning, frequency scanning, tilt scanning, 

displacement measurement, linear filtering. 

 

1. Introduction 

The use of phase information to provide data on displacement, strain and velocity 

fields has become widespread in experimental solid and fluid mechanics. In solid 

mechanics, optical techniques such as speckle and moiré interferometry, or digital 

holography, provide phase images related to the deformation state of the surface of a 

3-D object. In fluid mechanics, holographic particle image velocimetry and Doppler 

OCT can be used to measure internal velocity fields. Increasing the dimensionality of 

the measurements, whether through the addition of a further spatial axis, time axis, or 

wavenumber axis, provides information that can increase the reliability of both the 

process of phase unwrapping, and of subsequent application specific post-processing 

steps such as estimation of the elastic modulus fields. From an experimental 

viewpoint, the simplest approach to increasing the dimensionality of the measurement 

is through the addition of a time axis. Providing the frequency of the interference 

signal lies below the temporal Nyquist limit for the camera being used, the phase can 

be tracked as a function of time at each camera pixel. An alternative to the ‘2 spatial +  

time’ axes, involves the acquisition of time independent data that allows phase 

volumes to be reconstructed along all three spatial coordinates. 
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Wavelength scanning interferometry [1, 2], tilt scanning interferometry [3, 4], phase 

contrast spectral optical coherence tomography [5, 6] and hyperspectral interferometry 

[7] have been developed over the past five years and can be regarded as a combination 

of the depth-sensing capabilities of optical coherence tomography and the phase-

sensitive capabilities of traditional 2-D full-field interferometric techniques [1-3, 5, 6]. 

By either tuning the wavelength or changing the illumination direction, depth 

information is encoded in the temporal frequencies of the interference signal. This can 

be thought of as being equivalent to temporal phase shifting by either changing the 

magnitude or the direction of the illumination wave vector. Fourier transformation 

along the time axis is then used to reconstruct the object microstructure and to measure 

phase changes within it.  

 

It is also apparent that these techniques are a form of optical tomography and can be 

analysed in equivalent terms.  The measurement of 3-D structures from interferometric 

measurement of the scattered field (i.e. holography) was first considered by Wolf [8] 

and expressed in a frequency space representation [9, 10], while synthesis of 3-D 

images has been advanced by others [11, 12]. More recently a mathematical 

framework was proposed that considered holography, tomography and methods of 3-D 

microscopy as linear filtering operations [13] and this approach will be adopted to 

compare the depth-resolved, displacement measuring systems that are the subject of 

this paper. 

 

The following section provides, in chronological order, a brief overview of the phase 

contrast techniques that have been developed to date to measure internal displacement 
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fields within weakly scattering transparent materials. Section 3 introduces the 

theoretical framework in which optical tomography is viewed as a linear filtering 

operation. Section 4 presents WSI, TSI, PC SOCT and HSI as linear filtering 

operations focusing on their transfer functions and their associated point spread 

functions that ultimately determine the spatial resolution and phase sensitivity of the 

individual techniques. 
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2. Recent advances on depth-resolved displacement measurements 

2.1 Low coherence speckle interferometry (LCSI)  

This approach, which can also be regarded as a phase-sensitive version of time-

domain OCT, involves the use of a low coherence, i.e. broad spectral bandwidth, light 

source such as a super luminescent light emitting diode (SLED). As a result, an 

interference signal is produced only from those parts of the sample where the object 

and reference wave path lengths are matched to within the coherence length of the 

light source [14, 15].   2-D phase difference maps are produced that encode the 

displacement field for one ‘slice’ within the sample. By axially moving the 

illumination beam, different coherent slices can be measured, as schematically shown 

in Fig. 1 (a). LCSI has some attractive features, in particular experimental simplicity, 

however an additional scanning device is required to obtain a full 3-D phase volume. 

Furthermore, the parts of the sample that fall outside the coherence ‘gate’ contribute a 

dc offset to the recorded intensity distribution, which reduces significantly the number 

of gray levels available for detecting the modulation of the interference signal.  

2.2 Wavelength-scanning interferometry 

In WSI, a setup of which is illustrated in Fig. 1 (b), light scattered by different layers 

within the material is combined with a reference wave [1, 2]. The optical path 

difference between object and reference wave varies linearly with the depth of the 

scattering layer within the sample. Therefore the frequency of the interference signal 

produced by tuning the wavelength also varies linearly with depth. The signals from 

different scattering layers can therefore be separated from one another by spectral 

analysis of the time-varying interference signal measured at each pixel in the image 

plane. 3-D displacement fields can be determined by measuring phase changes in the 
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Fourier domain between two successive scans of the sample. WSI has the benefit of a 

higher signal-to-noise ratio than LCSI, and is intrinsically a 3-D technique. However, a 

laser source that can tune reliably over an extended wavelength range is required and 

furthermore the sample needs to be kept mechanically stable for the duration of the 

scan. 

2.3 Tilt-Scanning Interferometry 

In TSI, depth-resolved displacements are measured by tilting the illumination angle 

during the acquisition of image sequences [3]. Figure 1 (c) shows a simplified 

schematic setup of this technique. The depth-encoding frequency shift can be regarded 

as coming from the Doppler shift of the photons reflected from the tilting mirror in the 

object illumination beam path. As in WSI, spectral analysis of the time-varying 

intensity signal at a given camera pixel provides depth-resolved information, the 

magnitude relating to the specimen structure and the phase relating to the optical path 

differences between the scatterers lying within the volume.  Figure 2 shows the setup 

for bending beam experiments, and sample wrapped phase maps from the proof of 

principle experiments detailed in [3]. The top row shows the horizontal in-plane phase-

change distribution for different slices within an epoxy resin beam measured relative 

to a reference surface at z = z1, starting at the object surface z - z1 = 0 mm (left) in 

steps of 1.74 mm down to z - z1 = 5.22 mm (right). Good agreement was achieved 

between the experimentally-determined displacement fields and a finite element 

model. While TSI has similar stability requirements as WSI, it has the attractive 

feature of working at a single wavelength, thereby avoiding the need for an expensive 

tunable laser and side-stepping errors due to dispersion. 
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2.4 Phase Contrast Spectral OCT 

Spectral OCT involves illumination with a sheet of low coherence light extending into 

the sample from the surface [5, 6]. The intersection of the sheet with the sample forms 

a line, which is imaged onto a 2-D sensor through a diffraction grating. Figure 1(d) 

illustrates how it works. The resulting images have one spatial axis and one 

wavenumber axis, the latter being converted to the depth spatial coordinate by Fourier 

transformation. As with low-coherence interferometry therefore, some form of 

scanning is required to measure 3-D volumes. In [5] a method was presented to 

measure out-of-plane displacement fields from the phase information in the spectral 

OCT images, and this was extended in [6] to the measurement of both in-plane and 

out-of-plane displacement fields. An example of the application of the technique to 

deformation measurement of a porcine cornea after a small change in the intraocular 

pressure is shown in Fig. 3. The phase change in a cross section of the cornea is 

encoded as wrapped phase fringes where white represents  and black – In this case 

the interferometer sensitivity was purely out-of-plane, i.e. the phase is proportional to 

the corneal displacement along the horizontal direction in Fig. 3. Each fringe 

corresponds to a displacement of ~/2n ~305nm, with n=1.37 the refractive index of 

the cornea.   

2.5 Hyperspectral Interferometry 

Hyperspectral interferometry has been recently proposed for the measurement of 

surface profiles [7]. By using a broad-band light source and a hyperspectral imaging 

system, a set of interferograms at different wave numbers are recorded simultaneously 

on a high resolution image sensor. These are then assembled to form a three-

dimensional intensity distribution. By Fourier transformation along the wavenumber 
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axis, an absolute optical path difference is obtained for each pixel independently of the 

other pixels in the field of view.  An example from a proof-of-principle experiment, in 

which a set of 62 interferograms (three of them enlarged 10×) with a 0.5 nm spectral 

separation were acquired in a single shot, is shown in Fig. 4, together with the resultant 

reconstructed surface profile of a 120 m stepped object. In effect, HSI can be 

considered to be a full-field single-shot version of spectral OCT, and thus Fig. 1(d) 

still illustrates the principle behind it, the only difference with PC SOCT being that the 

imaging system produces a sequence of 2-D images along one axis of the CCD sensor, 

instead of images of a line on the object. The main limitation of the approach is the 

limited spatial resolution, however the fact that all the data is acquired simultaneously 

means that fringe movement due to vibration can be effectively frozen through the use 

of a sufficiently short exposure duration.  

 

3. 3-D optical imaging as a shift-invariant linear filtering operation 

3.1 Tomographic reconstruction 

Consider a weakly scattering, non dispersive material of complex refractive index 

n’(r) = n + n(r), with small variations n(r) around a uniform index n and r a 

position vector in 3-D space as shown in Fig. 5. A small volume V in this material, 

which we will refer to as the object, is illuminated by a plane wave Ai exp(iki r) with 

wave vector ki and constant amplitude Ai. The scattered field is measured at a great 

distance R away from V, much larger than the dimensions of V. Under this far field 

assumption, this is equivalent to observing the object at a point along the ‘observation’ 

wave vector ko The object microstructure within V is represented by the scattering 

potential  
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2 2 2( ) ( ) 2 ( ) ( )k n n n n      r r r
,    (1) 

 

with k=2/=|ko|=|ki| the wavenumber associated with the wavelength in the material, 

related to the vacuum wavelength v byv/n. Using scalar diffraction theory and the 

previous assumptions it has been shown [9, 16] that the scattered field U observed at 

r~Rko/|ko|, is given by:  

 

  3
exp( )

( )=  ( ') exp '  d '
4

i

V

i RA
U i

R
   

o

o

k
k r K r r

  
 (2) 

 

where K/2 is used as the Fourier variable, with K=ko–ki the ‘scattering’ vector 

defined in terms of the observation and illumination wave vectors. This equation is a 

simplified version of the well known theorem of diffraction tomography [17]. Its 

significance is that the scattered wave is a spherical wave exp(i|ko|R)/R the complex 

amplitude of which is proportional to the 3-D Fourier transform of the scattering 

potential. If the illumination consists of a single plane wave of wave vector ki, all 

Fourier components of the scattering potential accessible by scattering at different 

observation directions ko are limited to those located on a sphere described by the 

arrowhead of the scattering vector K. This is known as the Ewald sphere for the 

specific wavelength ; it has radius k and is centred at ki (see Fig. 5(b)). If a single 

illumination and observation direction is used, e.g. speckle interferometry with 

collimated illumination and observation as illustrated in Fig. 5(a), then a single point 

in K-space is obtained, labelled A in Fig. 5 (b), which represents a single spatial 

frequency of the scattering potential. In object-space this corresponds to a plane wave 

exp(iKr) which is usually visualized as 3-D parallel sinusoidal fringes known in 

holography and crystallography as Bragg planes, the normal of which is aligned with 

K and the separation or period of which is given by 2/|K|. If the object moves by an 
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amount r then the plane wave advances by a phase  = Kr. This is the phase 

change used in speckle interferometry for surface deformation measurements. The K 

vector is recognized here, and from inspection of Fig. 5(a), as the familiar ‘sensitivity’ 

vector. We will later come back to comment on the dual meaning of K as the 

‘scattering’ and ‘sensitivity’ vector. 

In order to calculate or ‘reconstruct’ the scattering potential with a certain degree of 

spatial resolution, the complex amplitude of the scattered field must be measured, for 

example with an interferometer, over an extended region of K-space. Different wave 

vectors ko and ki can be combined, by using multiple illumination wavelengths and 

illumination and observation directions, to populate K-space. In general, only a certain 

portion of K-space is accessible with a given experimental technique, and this region 

can be  regarded as a K-space ‘window’ or ‘transfer’ function. If we denote ( ) K  the 

Fourier transform of the scattering potential ( ) r , we can express Eq. (2) simply as 

( ) ( )U ok K , where  indicates proportionality. Considering a transfer function 

G( )ok that accounts for the observation directions ko at which the ‘measured’ field Um 

is obtained: 

 

( ) ( ) G( )  ( ) G( )mU U  o o o ok k k K k   .
  

 (3) 

 

It is convenient now to: 1) replace ko by K in the left hand side of Eq. (3), as this just 

represents a K-space coordinate; 2) to write G( )ok  in the right hand side as a transfer 

function in the variable K+ki; and 3) to define a new transfer function 

H( ) G( ) iK K +k  that is a shifted version of G(K)  by –ki. Therefore Eq. (3) reduces 

to: 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 

 

( )  ( ) H( )mU  K K K  ,
  

   (4) 

 

The convolution theorem allows us to write Eq. (4) in terms of the ‘reconstructed’ 

object, 
1( )= { ( )}m mU FT Ur K , the impulse response of the system, 

1H( ) {H( )}FT r K , and the scattering potential. If   denotes convolution, then 

 

( ) = ( ) H( )mU  r r r
.      (5) 

 

Equations (4) and (5) express the reconstruction problem as a linear, shift invariant, 

filtering operation [13]. H(r) is a key function for all the depth-resolving techniques 

since it determines their spatial resolution and sensitivity. We therefore now consider 

how to evaluate this function on a case-by-case basis. 

3.1 Monochromatic optical tomography 

Each of the depth-resolved methods described in section 2 are interferometric and are 

analogous to holographic methods that measure both the phase and amplitude of the 

scattered field. In common with all far-field optical instruments, however, they only 

collect a fraction of the scattered field by the entrance pupil, defined by the object-

space numerical aperture of the system NA= n sin() where  is the half-angle 

subtended by the cone of rays accepted by the aperture from a point in the object. It 

has been shown in [13] that when an axially symmetric system with finite NA is used 

to measure the complex scattered field, the transfer function can be written as  
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  2

o A2
ˆG ( ) step 1 NNA

k
k

k

 
    
 

K
K K n

,   (6) 

 

where step(x) is the Heaviside step function. This corresponds to a portion of a sphere 

of radius k and centred at the origin of K-space, indicated in Eq. (6) by the Dirac delta 

function. It is clear that the finite NA places a restriction on the wave vectors accepted 

by the system and this constraint is manifest in the term 2

o A
ˆstep 1 Nk   

 
K n  

where on̂  is a unit vector along the observation axis (see Fig. 6). To find the impulse 

response we notice that the scattering potential, as defined before, includes a factor k
2
. 

On the other hand, the transfer function G ( )NA K  in Eq. (6) includes a normalization 

factor 1/k
2
. When the object is illuminated by a wave vector ki the transfer function for 

reconstruction can be conveniently expressed as a version of G ( )NA K

 

shifted by ki: 

2H ( ) G ( )NA NAk iK K +k . Finally, we can define an ‘object function’ 
2O( ) ( ) / kr r  

that represents the object microstructure and is independent of the wavelength used to 

reconstruct it. From Eqs. (4) and (5), this leads to a simple expression for the 

reconstructed object: 

 

( ) = O( ) H ( )m NAU r r r .    (7) 

 

Thus, tomographic reconstruction using a monochromatic single plane wave 

illumination can be summarized as a linear filtering operation with transfer function 

H ( )NA K  and impulse response HNA(r). Figure 6(b) shows the transfer function and 

6(c) indicates the axial and lateral bandwidths: 
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2 2

A A

, A

1
(1 1 N ) N

2

2 N

z

x y

k k k

k k

    

 
     (8) 

 

The significance of these K-space bandwidths lies in the fact that the impulse 

response, i.e. the resolution, of the tomographic imaging systems is inversely 

proportional to them. For a rectangular transfer function with bandwidths kx, ky and 

kz, and uniform power spectral density in K-space, the extent of the impulse response 

along x-, y- and z-axes, measured as the distance between first zero-crossing points is 

given by:  

 
2 2 2

δ ;   δ ;    δ
x y z

x y z
k k k

  
    
  

, (9) 

with = 2. If the power distribution in K-space is not uniform, then the width of the 

peak is broadened by a factor > 2 that depends on the specific spectral power density. 

In 1-D, this is equivalent to windowing the signal, for example using  Hanning 

window. An extended transfer function as in this case has associated with it a mean 

scattering or sensitivity vector K which points to the centroid of the transfer function 

as shown in Fig.  6(c). 

Eqs. (9) can be used to estimate, from the extension of the transfer function in K-

space, the axial and lateral depth resolutions. We consider here the maximum overall 

bandwidth along kx or kz, essentially defined by the bounding box of the transfer 

function. Due to the lesser contribution of those spatial frequencies at opposed corners 

of the ‘diamond’, this figure will not be achieved in practice ( will be greater than 2) 

and should be taken as an absolute theoretical maximum.
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4. K-space representation of depth-resolved displacement measurement 

techniques 

4.1 WSI, HSI and PC SOCT 

We will see that WSI, PC-SOCT and HSI are all equivalent in terms of their 

representation in K-space, regardless of the differences in their practical 

implementation as described in Sections 2.2, 2.4 and 2.5. The reconstructed object 

microstructure ( )WSIU r  (valid also for PC-SOCT and HSI) is simply the superposition 

of all the instantaneous monochromatic optical tomography reconstructions for all the 

different illumination wavelengths 2 < 1 within the source spectral range  = 

1 -  when the illumination direction remains fixed. In terms of wave vectors, this is 

equivalent to a scan of |ki| between k1=k0–k/2 and k2=k0+k/2 with 

1 22 [(1 ) (1 )]k       and k0 the central wavenumber. According to Eq. (43):  

 

( ) O( )H ( )WSI WSIU K K K      (10) 

 

with transfer function 

2

1

2 ˆH ( )= ( )G ( )

k

WSI NA i

k

k S k k dkK K +n

   (11)

 

 

and where S(k) is the amplitude spectral density of the light source. Figure 7(a) shows 

a schematic setup of WSI with normal collimated illumination and observation with a 
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finite numerical aperture NA. Figure 7(b) shows the Ewald sphere representation in K-

space of the transfer function corresponding to the WSI system depicted in Fig. 7(a). 

For simplicity, only the plane with axes kx, kz is shown in the figure. To aid with the 

geometric construction, two spheres are indicated corresponding to wave numbers k1 

and k2 (k1<k2). The transfer function is shown again in Fig. 7(c) with the effective 

sensitivity vector K. 

Similarly, Fig. 8(a) shows a schematic setup of PC-SOCT with dual sensitivity [5]. In 

this case the object is illuminated sequentially from both sides on the plane xz to 

achieve different sensitivities but the same spatial resolution for each illumination 

direction. The transfer function corresponding to left illumination is shown in Fig. 

8(b). Figure 8(c) shows the transfer functions and effective sensitivity vectors K1 and 

K2 obtained if left and right illumination directions are used sequentially. In-plane 

and out-of-plane sensitivities are achieved by combining the phase obtained from the 

3-D Fourier transforms of the transfer functions corresponding to each illumination 

direction.  

The transfer functions depicted in Figs. 7(b)-(c) and 8(b)-(c) define what spatial 

frequencies in the object can be captured by the depth-resolved imaging system. In the 

kx, ky plane, not depicted here, the transfer function is simply a circle representing the 

input aperture of the imaging lens, its radius representing the maximum transverse 

spatial frequencies allowed. Figure 9(a) illustrates the transfer function for WSI, PC-

SOCT and HSI for different illumination directions, NA = 0.04 and k/k0 = 0.1 in a K-

space normalized by k0. From the dimensions of the transfer function ‘diamond’, it can 

be shown that for a WSI, PC-SOCT or HSI system with numerical aperture NA, 

illumination angle  and source spectral bandwidth k between k1 and k2, the 

bandwidths of the transfer function in the axial and lateral directions are given by: 
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 




   (13) 

 

 

1 A2 Nyk k 
        (14) 

Figure 9(b) shows a plot of the above equations (normalized to the central 

wavenumber k0) for illumination angles 0 in the plane xz in Fig. 8(a), for 

NA=0.04 and k/k0 =0.1. The horizontal and vertical axes correspond to K-space 

directions kx and kz. Note the constant value of ky for all . The axial bandwidth, that 

is inversely related to the depth resolution, is maximum for normal illumination and 

minimum for transmission, as expected. The lateral bandwidth kx increases with 

increasing illumination angles except around normal illumination, where it is the same 

as ky. 

Figure 10 shows the positive values of the real part of the impulse response in the 

plane xz corresponding to different transfer functions as indicated in Fig. 9(a) for 

various illumination directions, NA=0.04 and k/k0 =0.1. Fig. 10(a) shows the impulse 

response for the case of  = 0 (backscattering). The cosinusoidal fringes in the real part 

of the impulse response are important because they can be regarded as being 

responsible for the phase sensitivity of the technique. A displacement r of a point 
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source will produce a phase change  = Kr in the reconstruction of that point. 

The x and z axes are normalized to the central wavelength 0. Figure 10(b) shows 

again the real part of the impulse response, this time for an illumination angle c = /2. 

Figures 10 (c) and (d) correspond to the case when c = /4 and /4, respectively. 

These symmetric illuminations lead to fringes across the impulse response of equal 

spacing but opposite orientations. The addition and subtraction of the phase changes 

measured in each case after object deformation enables the measurement of out-of-

plane and in-plane displacements, respectively. 

 

4.2 Tilt-Scanning Interferometry 

Similar to the WSI case, the reconstructed object microstructure in TSI, ( )TSIU r , 

results from the superposition of the individual monochromatic optical tomography 

reconstructions for all the different illumination directions i i

2
ˆ




 k n  , with 

i
ˆ ˆˆ sin  + cos    n i k  a unit vector subtending an angle   to the z-axis inside the 

material. According to Eq. (4):  

 

( ) O( ) H ( )TSI TSIU K K K      (15) 

 

with transfer function 

 

/2

2

/2

ˆ ˆH ( )= ( )G sin   + cos   
c

c

TSI NAk k d

 

 

   





  
 k K ( i k )

 (16)
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where ( ) is the angular density of the measurements and is usually approximately 

constant. Figure 11(a) shows a schematic view of a TSI optical setup, where 

interferograms with left and right illumination directions are recorded in sequence. 

Figure 11(b) shows a 2-D slice of K-space with the illumination, observation, and 

scattering vectors. The angle  of the illumination wave vector ki changes sequentially 

around a central value c. The tilting range  is also indicated. The observation wave 

vectors ko lie within a cone that is captured by the imaging lens of the system, 

characterized by the numerical aperture. The transfer function represents all the 

possible spatial frequencies that are captured by the system and is given by the 

superposition of the scattering vectors K=ko–ki. Figure 11(b) shows graphically the 

sum of vectors –ki and all possible ko. For a single illumination direction, this 

corresponds to wave vectors lying on a spherical shell of radius k but shifted by the 

illumination wave vector –ki. Multiple illumination directions have the effect of 

spreading this transfer function into a ‘diamond’ shape region. The sensitivity vectors 

for left and right illuminations, K1 and K2, point to the centroid of their respective 

transfer functions, as shown in Fig. 11(c). By adding and subtracting phases K1r and 

K2r, the out-of-plane and in-plane sensitivities are obtained, respectively. The axial 

and lateral bandwidths kz and kx are indicated in Fig. 11(c), and these ultimately 

determine the axial and lateral spatial resolutions. Note how the Ewald spheres that 

correspond to the maximum and minimum illumination angles, bound the spatial 

frequencies that are measured with the TSI system. 

Figure 12(a) illustrates the transfer function for TSI for different central illumination 

directions c, NA = 0.04 and  = 0.2 rad in a K-space normalized by k. From the 

geometry depicted it can be shown that for a TSI system with numerical aperture NA 
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and illumination angle ranging from 1 to 2 (1 < 2) the bandwidths of the transfer 

function in the axial and lateral dimensions are given by 
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  (18) 

 

A2 Nyk k 
          (19) 

 

Figure 12(b) shows a plot of the above equations for all possible central illumination 

angles c in the plane xz, for NA=0.04 and an illumination angle range =0.2 rad.
  

The axial bandwidth is minimum for normal illumination and maximum at c=/2. It 

does not reach the origin for c=, the minimum bandwidth in that case being due to 

the NA of the system, according to Eq. (17). The lateral bandwidth kx decreases with 

increasing illumination angles, and atc=/2 it is the same as ky, which remains 

constant for all c. 

Figure 13 shows the magnitude and the real part of the impulse response in the plane 

xz corresponding to different transfer functions for a TSI system as indicated in Fig. 10 

(a) for various central illumination directions, NA=0.04 and =0.2 rad. 
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5. Discussion 
 

In general terms, a transfer function H( )K  centred at the origin (e.g. due to forward 

scattering, results in an impulse response H( )r  with nearly no phase gradient (see Fig. 

14 (a)). The spatial extent of the impulse response defines the resolution of the 3-D 

image according to Eqn. (9). The effect of shifting H( )K  from the origin by a wave 

vector K is to add a phase term to the impulse response. This is expressed by the 

Fourier transform shift theorem: {H( )}( ) exp( )H( )FT i  K - K r K r r , from which 

it is clear also that the vector K is the phase gradient within the impulse response 

(see Fig. 14 (b)). For the measurement of deformation, this phase variation within the 

impulse response has a greater significance linked to the view of K as the sensitivity 

vector. If the object is deformed such that an individual scattering particle moves, its 

image (or reconstruction) will move in unison. Measurement of the phase change at a 

given point can be used to determine the object displacement along K.  

The interpretation of optical tomography as a linear filtering operation provides a 

powerful tool to compare the relative advantages and limitations of different systems. 

Even though they may differ considerably in their physical implementation, all the 

methods reviewed and some others in the literature reduce to different strategies to 

populate K-space. Whereas WSI, PC SOCT  and HSI rely on the source spectral 

bandwidth to increase the depth resolution,  TSI relies on the width of the angular 

scan. It is clear from Fig. 12 (a) that the maximum depth resolution in TSI is achieved 

for a central illumination angle c=/2 (only viable in certain cases depending on the 

object studied). This illumination direction is also interesting because it results in an 

axially symmetric impulse response and equal in-plane and out-of-plane sensitivities. 
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There are other realizations of TSI: in biology, Lauer microscopy is used to produce 

tomographic views of cells [13, 18]. In a backscattering configuration  this is 

essentially the same as TSI, the only difference being that in TSI the central angle is 

non zero, which greatly increases depth resolution and also allows the separation of in-

plane and out-of-plane sensitivity by combining phase measurements obtained for 

different illumination directions, symmetric with respect to the observation direction. 

Another technique known as angular spectrum scanning, essentially TSI but using a 

spatially incoherent ring source of variable radius, was used successfully in 2-D 

absolute distance profilometry [19].  

It should be pointed out that there are some limitations to the model presented here 

which could be improved in the future. We have found upper bounds to the 

bandwidths of the transfer functions in all axes in K-space. A better estimate for the 

spatial resolution could be achieved by computing geometric moments of the transfer 

functions, to account for the ‘diamond’ shape and for the non uniform power density 

in K-space. 

We also limited the discussion to the case in which the illumination and observation 

are done within a material medium in which small variations of refractive index exist. 

In real applications, however, an air/material interface is often present (e.g. air/epoxy, 

air/cornea) and the illumination and observation directions set by the optical system do 

not correspond to the ki and ko vectors within the material. This refraction effect has 

multiple consequences; while lateral resolution and sensitivity remain unchanged, 

axial resolution decreases within the medium in proportion to its mean refractive index 

n. Moreover, the axial displacement sensitivity increases in proportion to the mean 

refractive index. Refraction at curved interfaces leads to distortions of the 
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reconstructed object, which can be minimized by immersing the sample in a cell with 

index matching fluid and looking through a flat window. 

In backscatter WSI, PC-SOCT and HSI the numerical aperture of the imaging system 

controls the lateral resolution. At oblique incidence, the illumination angle can become 

dominant for small numerical apertures, however, the angular bandwidth of the 

illumination also has a great influence. For example, scanning white light 

interferometry (SWLI) [20] which is commonly used for profilometry, uses a broad 

angular spectrum for the illumination to double the lateral resolution. Depth resolution 

is controlled by a combination of spectral and angular bandwidths according to Eqn. 

(12). In the case of  SWLI the depth resolution is dominated by the angular bandwidth 

when objective lenses of high numerical aperture are used, and this is the sole cause of 

high depth resolution in monochromatic confocal microscopy [21]. In WSI, PC-SOCT 

and HSI lenses of small numerical aperture are commonly used, and the dominant 

parameter that controls the depth resolution is the spectral bandwidth of the light 

source. 

In comparison, both the lateral and depth resolution in TSI depend strongly on the 

tilting range and the central illumination angle. In the special case of a 90 degree 

illumination angle, the tilting range has no effect on the lateral resolution and is solely 

due to the numerical aperture, while the depth resolution is determined by the tilting 

range. 

 

6. Conclusions 
 

A family of techniques recently developed for high sensitivity depth-resolved 

measurements in semitransparent scattering materials were presented within a 
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common framework that represents optical tomographic methods as linear filtering 

operations. WSI, PCSOCT, HSI and TSI were all expressed in terms of their transfer 

functions in K-space, which provides direct information on the accessible spatial 

frequencies in the object microstructure given certain illumination and observation 

directions and the spectral bandwidth of the light source. The reconstructed object 

microstructure is simply the convolution of the object function and the impulse 

response of the system. Phase sensitivity, used for the determination of 3-D 

distribution of displacement fields, is determined by the phase gradient within the 

impulse response function, given by the average scattering vector K. 
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Figure Captions 
 
Fig. 1  Different techniques have been used to measure displacement fields with phase 

sensitivity: a) Low Coherence Speckle Interferometry; b) Wavelength Scanning 

Interferometry; c) Tilt Scanning Interferometry and d) phase contrast Spectral Optical 

Coherence Tomography and Hyperspectral Interferometry. BS: beam splitter, SLED: 

super luminescent light emitting diode, O: object, CCD: charged coupled device 

photodetector array, G: diffraction grating, TS: translation stage. 
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Fig. 2 Left: Schematic view of an epoxy resin beam undergoing 3-point bending; 

Right: in-plane (top row) and out-of-plane (bottom row) wrapped phase-change 

distribution for different slices within the beam. Black represents – and white +. 

Fringe spacing is equivalent to ~0.38m and ~0.15m for in-plane and out-of-plane 

sensitivity, respectively.  

 

Fig. 3  Phase change measured on a slice through porcine cornea after a change in the 

intraocular pressure. 

 

Fig. 4 Single shot 2-D profilometry using Hyperspectral Interferometry. Left: 62 

interferograms (0.5 nm separation) of stepped surface and (inset) 3 enlarged images; 

Right: reconstructed surface profile of the stepped surface. 

 

Fig. 5 K-space representation of illumination and scattered fields for optical 

tomography: a) Collimated monochromatic illumination and detection; b) Scattering or 

sensitivity vector K corresponding to the system shown in (a). 

 

Fig. 6 Monochromatic optical tomography: a) optical setup with normal collimated 

illumination and observation with a finite numerical aperture NA; b) Ewald sphere 

representation in K-space of the transfer function corresponding to the system depicted 

in a); c) Transfer function spectral bandwidths and sensitivity vector. 

 

Fig. 7 Wavelength Scanning Interferometry: a) optical setup with normal collimated 

illumination and observation with a finite numerical aperture NA; b) Ewald sphere 

representation in K-space of the transfer function corresponding to the system depicted 

in a); c) Transfer function and sensitivity vector. 
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Fig. 8 Phase Contrast Spectral Optical Coherence Tomography with dual sensitivity: 

a) optical setup with collimated oblique illumination from both left and right sides and 

observation with a finite numerical aperture NA; b) Ewald sphere representation in K-

space of the transfer function corresponding to the left illumination shown in a); c) 

Transfer functions and sensitivity vectors obtained if left and right illumination 

directions are used sequentially. Both in-plane and out-of-plane sensitivities are 

achieved by combining the phase obtained from the 3-D FFT of each transfer function 

diamond.  

 

Fig. 9 a) Simulated transfer functions (K-space coordinates normalized to k0) obtained 

for WSI, PC-SOCT and HSI systems for different illumination directions. (kx, kz) ~ (0, 

2) at the top corresponds to = 0 (backscattering). Then, moving counter-clock-wise, 

 = /4,/2, 3/4,(transmission),/4,/2 and 7/4. In all these cases, NA = 0.04 

and k/k0 = 0.1. b) Bandwidth of the transfer function of a WSI system as a function of 

the illumination angle  in the xz plane. 

 

Fig. 10 Positive values of the real part of the impulse response sections at plane xz 

obtained for NA=0.4 and k/k0 = 0.1 at different illumination directions for a WSI 

system: a) =0 (backscattering), b) =/2, c) =-/4, d) =/4. 

 

Fig. 11 Tilt Scanning Interferometry: a) optical setup with collimated illumination 

tilted an angle  around c, and observation with a finite numerical aperture NA; b) 

Ewald sphere representation in K-space of the transfer function corresponding to the 

left illumination shown in a); c) Transfer functions and sensitivity vectors obtained if 
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left and right illumination directions are used sequentially. Both in-plane (Kx) and out-

of-plane (Kz) sensitivities are achieved by combining the phase obtained from the 3-D 

FFT of each transfer function ‘diamond’. 

 

Fig. 12 Simulated transfer functions (K-space coordinates normalized to k) obtained 

for TSI for different centre illumination directions: a) (kx, kz) ~ (0, 2) at the top 

corresponds to c= 0 (backscattering). Then, moving counter-clock-wise,  = /4,/2, 

3/4,(transmission),/4,/2 and 7/4. In all cases, NA = 0.04 and =0.2 rad. b) 

Bandwidths of the transfer function of a TSI system as a function of the centre 

illumination angle c in the xz plane. 

 

Fig. 13 Positive values of the real part of the impulse response sections at plane xz 

obtained for NA=0.4, =0.2 rad and different illumination directions (rad) for a TSI 

system: a) c=0 (backscattering), b) c =/2, c) c =-/4, d) c=/4. 

 

Fig. 14 Fourier shift theorem and the sensitivity vector: a) A general transfer function 

centred at the origin in K-space (left) has an associated complex impulse response, the 

magnitude, phase, and real and imaginary parts of which are shown schematically 

(right).  b) When the transfer function is shifted from the origin by K, the scattering 

vector corresponding to the centroid of the transfer function, the impulse response has 

the same spatial extent but now includes a phase gradient K, which becomes the 

sensitivity vector of the system. 
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