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Abstract

This paper describes an unstructured/hybrid mesh framework providing a

robust environment for multiscale atmospheric modeling. The framework

builds on nonoscillatory forward-in-time MPDATA solvers using finite vol-

ume edge based discretization, and admits meshes with arbitrarily shaped

cells. The numerical formulation is equally applicable to global and limited

area models. Theoretical considerations are supported with canonical exam-

ples of slab-symmetric, nonhydrostatic orographic problems in weakly and

strongly stratified flow regimes and three-dimensional hydrostatic analogues

of the strongly stratified case on a slowly and rapidly rotating sphere.

Keywords: unstructured meshes, atmospheric waves, geospherical
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1. Introduction

The higher resolutions necessary to capture detailed flow features in mul-

tiscale geophysical flows are not available in routinely used Cartesian-grid

models, because they would require a many-fold increase in the number of

computational points. The rigid connectivity of structured grids used in
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the simulation of atmospheric/oceanic circulations (viz. rotating stratified

flows) imposes severe limitations on mesh adaptivity to flow features or the

complex geometry of physical domains. In contrast, for many problems,

a wide range of scales in atmospheric flows, heterogeneous distribution of

regions of interest, or complex geometry can be accommodated efficiently

with fully unstructured mesh technology. The realization of limitations of

structured grids versus potential benefits of flexible meshing has stimulated

recent interest within the atmospheric science community in the development

of unstructured mesh solvers; see [1] and references therein for reviews.

Studies exploring modeling of atmospheric flows on unstructured meshes

date back to the nineteen sixties [2], but the arguments for flexible mesh

adaptivity have emerged more recently (cf. the collection of papers in the

special issue [3]) with the advent of multiscale Earth-system modeling and

climate prediction. However, as yet, adaptive-mesh atmospheric models have

not met the demands of the modern operational weather prediction and cli-

mate studies, reviewed in the collection of works [4].

Even though the operational efficacy of unstructured meshes is yet to be

proven, Earth-system modeling invokes research activities in a broad range

of processes and phenomena, the computational study of which may benefit

from capabilities of flexible meshing. One such important research area is the

modeling of inertia-gravity waves. These waves are ubiquitous in the atmo-

sphere and oceans, evince the abundance of multiscale phenomena [5], and

are consequential for weather and climate [6]. Their occurrence and form de-

pend on a relative magnitude and structure of ambient flow, density/entropy

stratification and forcing.
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To date, research into unstructured mesh atmospheric models was largely

confined to idealized applications addressing either synoptic flows in the low-

est order long-wave approximation governed by the shallow water equations,

or small-scale buoyant phenomena occurring in a neutrally stratified quies-

cent atmosphere — prototypes of natural convection and density currents.

Compared to these two diverse classes of motions, applications addressing

the dynamics of internal inertia-gravity waves are scarce. In particular, the

authors are unaware of any published fully unstructured mesh solutions em-

ulating the theory of mountain waves. Because of their intricacy, such so-

lutions constitute canonical benchmarks for numerical weather prediction

codes. Here we demonstrate original solutions for two such benchmarks, in

two and three spatial dimensions for nonhydrostatic and primitive hydro-

static equations, respectively, thus substantiating the potential of unstruc-

tured meshes for simulation of the inertia-gravity wave dynamics.

This paper presents an algorithmic framework suitable for the develop-

ment of all-scale atmospheric flow unstructured/hybrid mesh models. The

proposed approach generalizes the methodologies proven in the structured

grid computational model EULAG for simulating thermo-fluid flows across

a wide range of scales and physical scenarios; see [7] for a review and com-

prehensive list of references. The key elements of the framework include the

median-dual finite volume edge-based [8], nonoscillatory advection schemes

MPDATA [9]; a robust nonsymmetric Krylov-subspace elliptic solver [10];

and a class of nonoscillatory forward-in-time (NFT) algorithms for integrat-

ing governing PDEs. The NFT algorithms, reviewed in [7], have been already

utilized in the authors’ recent developments of unstructured mesh solvers for
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gas dynamics [11]. Herein, the unstructured mesh NFT framework is em-

ployed to derive a new model for stratified orographic flows.

The structured grid NFT framework is formulated in generalized time-

dependent curvilinear coordinates, enabling dynamic grid adaptivity via con-

tinuous mappings in either Cartesian or spherical domains [7]. Unconven-

tionally for flexible mesh models, the unstructured mesh NFT framework is

also formulated in curvilinear coordinates. In particular, this is useful for

modeling global circulations in spherical geometry [1] employing a classical

geospherical reference frame with the governing equations cast in the latitude-

longitude surface-based coordinates (section 7.2 in [12]). While retaining the

benefits of the classical formulation, common in theoretical geo/astro physics,

its notorious limitations associated with the convergence of meridians in the

polar regions are circumvented by exploiting the flexibility of unstructured

meshes. The latter is highlighted in Figure 1, which shows two alternate

views of the mesh employed in simulations of global rotating stratified flows

past an isolated mountain discussed in section 4.

Figure 1: Triangular mesh in the physical space on a sphere and in a transformed (com-

putational) latitude-longitude domain underlying the geospherical framework
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2. A general NFT unstructured mesh framework

The NFT methods had been put forward in the early nineties in the con-

text of geophysical flows and structured grid solvers [13]. NFT labels a class

of second-order-accurate, either semi-Lagrangian (trajectory wise) or Eule-

rian (finite-volume wise), algorithms that rely on the strengths of two-time-

level nonlinear advection techniques that suppress/reduce/control numerical

oscillations characteristic of higher-order linear schemes. The underlying

theory derives from the truncation-error analysis of the forward-in-time ap-

proximations [13] for an archetype system of inhomogeneous PDEs for fluids

∂GΦΦΦ

∂t
+ ∇ · (VΦΦΦ) = GRRR , (1)

in abstraction from any particular assumptions on the nature of the vec-

tor of conservative dependent variables ΦΦΦ and the associated vector of the

right-hand-side (rhs) forcings RRR, but driven solely by the requirement of

the second-order accuracy for an arbitrary advective velocity V(x, t) := Gẋ.

Here, G ≡ |gpq|1/2 is the Jacobian defined in terms of the metric tensor gpq

of a curvilinear coordinate system x = (x1, x2, x3) ≡ (x, y, z) with the fun-

damental metric form ds2 = gpqdxpdxq, so ẋ is the contravariant velocity in

the curvilinear coordinate frame; see [14] for an exposition. The resulting

template algorithm for (1) takes a compact functional form

ΦΦΦn+1

i = Ai(ΦΦΦ
n + 0.5δtRRRn, Vn+1/2, G) + 0.5δtRRRn+1

i ≡ Φ̂̂Φ̂Φi + 0.5δtRRRn+1

i , (2)

where n and i refer to the temporal and spatial position on the mesh, A
symbolizes a forward-in-time nonoscillatory transport operator (viz. advec-

tion scheme) assumed second-order accurate for a homogeneous case of (1)
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with time-independent V. Furthermore, Vn+1/2 is an O(δt2) estimate of V

at t+0.5δt, and RRRn+1 = RRR(t+δt)+OOO(δt3) can either be an explicit estimate

(viz. predictor) or depend implicitly on the components of ΦΦΦ.

In NFT schemes there are two elements defining the solver: i) the choice

of the transport operator A; and ii) the approach for evaluating RRRn+1 on the

rhs. For the former, our method of choice is MPDATA [9], for its genuine

multidimensionality free of splitting errors, easy accuracy-sustaining gener-

alization to unstructured meshes, and suitability for DNS, LES, and ILES.

In general, the evaluation of RRRn+1 depends on the physical problem, the par-

ticular form of governing PDEs and a selection of dependent variables. Two

diverse implementations of the outlined abstract framework will be presented

in the following sections.

3. A local area nonhydrostatic model

First, we illustrate how the approach can be used for the development of

local area nonhydrostatic models. Here, the unstructured mesh NFT frame-

work is applied in an xz Cartesian plane with the metric tensor gpq = δpq,

upon which G ≡ 1 in (1) and (2). The benchmark problem addressed is

a stratified ambient flow with a constant buoyancy frequency N = 1 s−1

and uniform wind V0 = (U0, 0), U0 = 10 ms−1, impinging on an isolated

ridge of the form h(x) = h0[1 + (x/L)2]−1 centered at the origin of the

[−16.7L, 25L] × [0, 25L] domain. The hill’s half-width L is fixed, whereas

the height h0 = 0.25L or h0 = 0.5L. The respective Froude numbers,

Fr = U0/Nh0, are Fr = 1.66 or Fr = 0.83 indicating a weakly- and

strongly-nonlinear gravity-wave responses [15]. The problem is nonhydro-
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static, because NL/U0 = 2.4; that is, the horizontal scale of the problem

is comparable to the asymptotic wavelength λ0 ≈ 2πU0/N of the induced

mountain wave. The solutions are obtained by the canonical incompressible

Boussinesq model [5], for which the governing conservation laws of mass,

momentum and thermodynamic properties take the form

∇ · (Vρo) = 0 , (3)

∂ρoV
I

∂t
+ ∇ · (VρoV

I) = −ρo
∂p̃

∂xI
+ ρog

θ′

θo
δI3 ,

∂ρoθ

∂t
+ ∇ · (Vρoθ) = 0 .

Here, ρ and θ denote the density and potential temperature1, V I (I = 1 and

I = 3) refers to the velocity components in the horizontal and the vertical,

and p̃ = p′/ρo. Subscripts o denote constant values of the static reference

state, while primes denote perturbations with respect to the static ambient

state characterized by constant stratification So = N2/g, with the accelera-

tion of gravity g = 9.81 ms−2. The lower boundary is impermeable, whereas

at the top and the lateral boundaries (V − V0) · n = 0 is assumed; n is

the outward unit normal to the model boundaries. The 2λ0-thick absorb-

ing layers adjacent to the top and lateral boundaries mitigate wave reflec-

tions, thus mimicking open boundary conditions. The initial flow is potential,

V(x, t = 0) = V0 − ∇φ, determined by mass continuity and the boundary

conditions.

The execution of the template algorithm (2) for (3) proceeds in three

distinct stages. First, the estimate of the advective velocity at t + 0.5δt is

1The potential temperature in (3) amounts to the specific entropy, because s = cp ln θ;

cp is the specific heat at constant pressure.
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evaluated using, in general, either a linear extrapolation in time or a first-

order predictor.2 Second, advecting the auxiliary fields Φn + 0.5δtRn for

the momentum components and θ provides the respective Φ̂̂Φ̂Φ counterparts of

(2). For adiabatic dynamics considered here, this stage already completes the

solution of the entropy equation and provides an O(δt3) estimate of the buoy-

ancy force on the rhs of the vertical momentum equation. In consequence,

in the corresponding realizations of (2) for momenta

ρoV
n+1

i = ρ̂oVi − 0.5δt

(
ρo∇p̃ − ρog

θ′

θo

k

)n+1

i

(4)

the components of the pressure gradient ∇p̃n+1 are the only unknowns on the

rhs; here k = ∇z denotes the unit vector in the vertical. The third stage of

the solution procedure consists of formulating and inverting a sparse linear

problem for pressure. Acting with the discrete divergence operator on (4),

and noting that ∇i · (ρoV)n+1 must vanish on the left-hand-side due to the

continuity constraint in (3), implies the discretized elliptic pressure equation

∀i ∇i ·
(
ρ̃oV − 0.5δtρo∇p̃n+1

)
= 0 , (5)

where ρ̃oV = ρ̂oV + 0.5δtgρo(θ
′/θo)

n+1k forms the explicit part of the prob-

lem. The resulting system (5) is solved to a specified tolerance using the

preconditioned generalized conjugate residual algorithm, broadly discussed

in [10] and references therein. With the selected model setups, the integra-

bility condition for (5),
∮

ρoV
n+1 · n = 0, is satisfied to machine precision.

2Here, we use exclusively the advective (nonconservative) centered-in-space Euler-

forward predictor with an implicit pressure-correction leading to the associated elliptic

problem, required to assure nondivergent solutions.
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Notably, Dirichlet boundary conditions for Vn+1 imply Neumann conditions

for pressure p̃n+1 via
(
ρ̃oV − 0.5δtρo∇p̃n+1

)
·n = V0 ·n. Given the solution

to (5), combining the updated buoyancy and pressure-gradient components

on the rhs of (4) completes the solution.

Figure 2: Details of mesh in the vicinity of the hill; edges of the triangular mesh (left) and

the polygonal median-dual finite-volume mesh (right).

The derivation of MPDATA and discrete differential operators in the

edge-based median-dual finite-volume approach used here are detailed in

[9, 16]. This spatial discretization approach is illustrated in Figure 2. The

edges in the left panel connect nodes of a triangular mesh and pierce faces

of median-dual cells (in the right panel) surrounding each node. In the two

examples considered in this section triangular meshes with approximately

39,500 points were refined to represent both the hill geometry and the main

portion of the wave train. The minimum nodal spacing of L/12 was pre-

scribed in the middle of the hill’s base and was gradually reduced with alti-

tude to L/8 spacing following the main wave train. The nodal spacing was

also smoothly reduced in the upwind and downwind directions (away from

the main portion of the wave train) to 5L/3 and L/2, respectively.

Figure 3 highlights the model solutions for the weakly- and strongly-

nonlinear responses by showing the isentropes in a developing flow after di-
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Figure 3: Isentropes simulated using the two-dimensional nonhydrostatic model; Fr<
∼

2

and Fr<
∼

1, in the left and right plate, respectively.

mensionless time τ = tU0/L = 150.3 In the former case, the mountain wave

propagates at an angle α ≈ 60◦ off the horizontal — measured from the

corresponding contour plot of the vertical velocity (not shown) — consistent

with the linear steady-state prediction α = tan−1
√

(U0/LN)2 − 1; section

2.2.3 in [17]. In contrast, for Fr<
∼

1 the lee wave breaking and strong downs-

lope winds (evidenced by isentrope compression) with the turbulent flow aloft

are indicative of much studied wind-storm phenomena in mountainous ter-

rain [6]. Both solutions were compared with similar solutions generated with

structured grid EULAG model, using a uniform spacing of ≈ L/12 covering

identical domain with 157,184 grid points. Regardless of the fundamental

differences in the spatial discretization and minor (for this problem) discrep-

ancies in the time integration schemes,4 the two model solutions are hardly

distinguishable in figures for the weakly nonlinear case and differ merely in

3This equals 2.5 time periods required for the wave energy of the dominant horizontal

mode with the wavenumber k = 1/L to propagate over the model depth.
4While EULAG uses a fully implicit trapezoidal integration of the gravity-wave forcing

terms and boundary absorbers [7], the unstructured mesh model still represents these

terms explicitly.
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physically insignificant details for Fr<
∼
1; not shown. For substantiation, con-

sider that in the weakly-nonlinear case the structured grid and unstructured

mesh solutions both differ from the linear theory estimates by no more than

≈ 3% in the wavelength λ0 and by no more than ≈ 8% in the propagation

angle α. Furthermore, they both show the same distribution of the wave

amplitude with height, with an average per wavelength (over seven wave-

lenghts) loss of ≈ 7% attributed primarily to the dispersive character of the

nonhydrostatic mountain wave; cf. section 2.2.3 in [17].

4. A global hydrostatic model

The second application of the unstructured mesh NFT framework involves

global hydrostatic flows with the governing PDEs cast in orthogonal latitude-

longitude (ϕ, λ) surface-based coordinates, viz. the classical geospherical

reference frame rooted in the differential calculus on manifolds, see [1] for a

discussion. Here, the fundamental metric form ds2 = g11dx1dx1+g22dx2dx2 ≡
(a cos ϕdλ)2 + (adϕ)2 ≡ (hxdx)2 + (hydy)2, where a denotes the sphere’s ra-

dius. The triple notation and the map factors hx :=
√

g11 = a cos ϕ and

hy :=
√

g22 = a are introduced to: i) bridge a formal tensor notation valid

for generalized time-dependent curvilinear coordinates [14] with the simpli-

fied notation for orthogonal systems common in the meteorological literature

(e.g., section 2.6 in [18]); and ii) relate both these notations to the vector

symbolism of the algorithmic framework (1) and (2). Consequently, the Ja-

cobian G, the Nabla operator ∇, and the advective velocity V in (1) and (2)

become G = hxhy, ∇ = (∂/∂λ, ∂/∂ϕ), and V =
(
Gλ̇, Gϕ̇

)
, respectively.

The particular set of the PDEs adopted describes rotating stratified flu-
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ids under the shallow atmosphere approximation, cast in a hybrid Eulerian-

Lagrangian form with a material coordinate ζ monotonically increasing with

height (section 7.4 in [12]):

∂GD
∂t

+ ∇ · (VD) = 0 ,

∂GQx

∂t
+ ∇ · (VQx) = G

(
− 1

hx

D∂M

∂x
+ fQy −

1

GD
∂hx

∂y
QxQy

)
, (6)

∂GQy

∂t
+ ∇ · (VQy) = G

(
− 1

hy
D∂M

∂y
− fQx +

1

GD
∂hx

∂y
Q2

x

)
,

∂M

∂ζ
= Π .

Here the position vector x = (x, y, ζ), and D ≡ ∂p/∂ζ may be viewed as

a generalized mass density. The momentum vector Q = (Qx, Qy) = Dv,

where v is a physical velocity (with dimensions of length/time) measurable

in a local Cartesian frame tangent to the sphere’s surface and related to the

contravariant and the advective velocity via

(vx, vy) =
(
hxλ̇, hyϕ̇

)
=

(
Vxh

−1

y , Vyh
−1

x

)
. (7)

On the rhs of the momentum equations an equivalent of the pressure gradient

force depends on the Montgomery potential (or Bernoulli function) M =

gH +ζΠ, where H is the height of a material surface, and Π is a transform of

the pressure p. An isentropic model [19] is used in the calculations presented

here, hence ζ = θ and Π = cp(p/po)
Rd/cp is the Exner function; wherein Rd

is the gas constant for dry air, and po is a reference pressure. The remaining

terms on the rhs include the Coriolis and the metric forces, with f = 2Ω sin ϕ

and Ω denoting the planetary rotation rate.

Although the system (6) governs continuously stratified fluids, its dis-

cretization in ζ leads to a system resembling a stack of shallow-water layers

12



[1] coupled via the hydrostatic relation ∂M/∂ζ = Π. Because the Lagrangian-

grid interval δkζ = ζk+1 − ζk is fixed for each k = 1, ..., K layer, the pressure

thickness δkp := pk+1 − pk becomes the actual discrete variable in lieu of D.

The continuity and momentum equations in (6) adhere to the form of an

archetype PDE (1), and their integration adopts the template algorithm (2).

The implementation of (2) in the hybrid Eulerian-Lagrangian system (6) is

detailed in [1]. Below we only summarize the three distinct stages of the

model algorithm.

Having predicted the advective velocities Vn+1/2 by integrating to O(δt2)

the evolutionary form of the velocity equation Ddv/dt = R (section 3.1 in

[1]), the Φ̂i on the rhs of (2) representing advection of δp, Qx and Qy aug-

mented with the contributions from their respective forcings are evaluated

independently for all K layers. Due to the homogeneity of the continuity

equation, this stage instantly provides the updated pressure thickness δkp
n+1

i

of each control volume Vn+1

ik = GiV∗

i δkp
n+1

i ; V∗

i is the planar area of the

horizontal cell containing node i [1]. Next, assuming a free-surface bound-

ary condition aloft, the pressure p is recovered recurrently (downward) from

its definition, independently for all horizontal nodes i. Transforming p into

the Exner function, successive upward integration of the hydrostatic relation

∂Mn+1/∂ζ = Πn+1 provides the values of Mn+1 for all discrete values of ζ .

Finally, independent for all ζ , the gradient force at tn+1 is evaluated explicitly

from Mn+1 and δkp
n+1, whereupon the momenta are evaluated iteratively,

locally in all nodes i, assuming implicit representation of the Coriolis force,

with the metric forces lagged (section 3.1 in [1]). The updated momenta

and pressure thickness provide the physical velocity update, whereupon the
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contravariant velocity required to predict the advective velocity for the sub-

sequent time step is diagnosed from (7).

To illustrate the applicability of the algorithmic framework across a broad

range of scales we consider two cases of strongly-stratified and rotating 3D

flow past an isolated hill. The first case, after [1], simulates the mesoscale re-

sponse by reducing the planet’s radius hundredfold while keeping the Earth

rotation fixed [20]. In the second case the rotation rate is also increased

hundredfold, thus simulating the synoptic-scale response. The analytic ax-

isymmetric hill is placed at the equator, and its height decays as h(x, y) =

h0[1 + (l/L)2]−3/2, where l(x, y) denotes the distance from the center of the

hill on the spherical surface. The height and half-width are L = 12.4 · 103 m

and h0 = 500 m, respectively, and the geostrophically balanced zonal ambi-

ent flow ve(ϕ) = (U0 cos ϕ, 0) forms the initial condition, with U0 = 10 ms−1.

In both calculations Fr = 0.5, whereas the Rossby number Ro = U0/Lf

is Ro ≫ 1 and Ro
>
∼

1, respectively, for the meso- and the synoptic-scale re-

sponse.5 The triangular mesh corresponding to the computational dual mesh

employed is shown in Figure 1; for the display of the mesh following the hill

along the lowest model level, see Figure 15 in [1].

Figure 4 shows the instantaneous distribution of the isentropes (i.e., the

instantaneous values of the model material coordinate in the vertical) in

the equatorial xz cross-section after four hours of the simulated time. Fig-

ure 5 shows the concomitant displacements of the isentropic surfaces with

the undisturbed equatorial height H(λ, ϕ = 0, t = 0, ) = 0.25πU0N
−1 (i.e.,

5Because f = 0 at the equator but the results depend on the rotation rate, f =

2Ω sin(L/a) is used as a more representative value.
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the eight of the dominant vertical wavelength λ0 at Ro ≫ 1) together with

the flow vectors on these surfaces.6 Concurrently, Figures 4 and 5 illustrate

salient flow features.

Figure 4: Isentropes in the equatorial-vertical plane, simulated using the 3D hydrostatic

model for global orographic flow with Fr = 0.5; Ro ≫ 1 (left), and Ro>
∼

1 (right).

Figure 5: As in Figure 4 but for vertical displacements of, and superimposed flow vectors

at, the isentropic surface with the undisturbed equatorial height ≈ 0.25πU0N
−1; contours

of the hill height are also superimposed.

For the slowly-rotating, strongly-stratified case (left panels) — already

discussed in [1] for the analogous isopycnic model — the results evince flow

blocking on the lower upwind side of the hill and intense lee eddies, character-

istic of low Froude number 3D mesoscale flows widely studied in laboratory

and numerical simulation [21]. For the hundredfold faster rotation Ro ≈ 5,

6For visualization, the flow vectors were interpolated to a Cartesian grid.
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the Rossby deformation radius LR = hoN/f ≈ 13 · 103 m becomes compara-

ble to L, upon which the effects due to the rotation and stratification occur

on similar horizontal scales while counteracting each other. The planetary

rotation produces strong uplift of the isentropes on the mountain lateral sides

and compensates the vorticity of the lee eddies, whereas aloft the mountain

wave disperses with altitude. These effects are consistent with theoretical

predictions [17, 21], and with the equivalent EULAG solutions (not shown)

on the 128 × 64 × 91 grid. Noteworthy, the unstructured mesh shown in

Figure 1 (repeated at 91 isentropic levels) consists of 4532 nodes, thus effect-

ing in about twice smaller computational problem then in EULAG. Insofar

as the economy of computations is concerned, the differences between the

two models preclude a rigorous comparison.7 Yet contrasting the EULAG

integration wall-clock time ≈ 9 min using 32 processors of IBM Power 575

supercomputer with ≈ 70 min execution of the unstructured mesh model us-

ing a single laptop processor illustrates the potential of unstructured meshes

for a cost-effective simulation of atmospheric flows.

5. Remarks

Herein, a two-dimensional nonhydrostatic model build on an edge-based

unstructured mesh NFT framework is introduced. Canonical benchmarks

demonstrate the suitability of flexible meshing for modeling atmospheric

inertia-gravity waves forming a constitutive element of weather and climate.

Examination of the results against theoretical estimates and respective re-

7EULAG integrates the nonhydrostatic anelastic equations free of the fast external

mode, but the unstructured-mesh hydrostatic model is free of a costly Poisson solver.
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sults obtained with an established structured grid model corroborates our

earlier conclusions [9, 11] that the edge-based discretization sustains the ac-

curacy of structured grid NFT schemes. Furthermore, the results obtained

with a global hydrostatic model demonstrate that the benefits of the classical

geospherical formulation, used in the majority of established weather and cli-

mate models employing either the finite-difference or spectral methods, also

hold for unstructured meshes. The unstructured mesh developments retain

proven properties of the NFT MPDATA structured grid solvers [7] — the ad-

vocated algorithms are fully multidimensional, rigorously sign preserving and

nonlinearly stable. The NFT framework is applicable to arbitrarily shaped

hybrid meshes that allow for investigating optimal mesh-point distributions

[9, 16, 11, 1]. A flexible use of various mesh adaptivity techniques, with an

explicit analytic form of the error estimator naturally arising from MPDATA

is also possible and has already been demonstrated for compressible flows

[16].
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