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Abstract

An arbitrary finite volume approach is developed for discretising partial differen-
tial equations governing fluid flows on the sphere. Unconventionally for unstructured-
mesh global models, the governing equations are cast in the anholonomic geospher-
ical framework established in computational meteorology. The resulting discretisa-
tion retains proven properties of the geospherical formulation, while it offers the
flexibility of unstructured meshes in enabling irregular spatial resolution. The lat-
ter allows for a global enhancement of the spatial resolution away from the polar
regions as well as for a local mesh refinement. A class of non-oscillatory forward in
time edge-based solvers is developed and applied to numerical examples of three-
dimensional hydrostatic flows, including shallow-water benchmarks, on a rotating
sphere.
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1 INTRODUCTION

Contemporary global models used for simulating atmospheric flows are pre-
dominantly based on the latitude-longitude (hereafter lat-lon, for brevity)
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structured grids with rigid connectivity. Such grids are far from optimal, be-
cause they preclude heterogeneous spatial resolution. In particular, the lack
of the grid optimality impairs the efficiency of computations in polar regions
[1]; whereas, in general, it can limit the accuracy of representing the multi-
physics process interactions over a broad range of scales [2]. For structured
grids and meshes relying on spherical symmetries, typically the only avail-
able mesh adaptivity technique is the point enrichment. However, the point
enrichment impedes smooth mesh spacing and requires special treatments of
interfaces between fine and coarse regions [3]. In contrast, a fully unstructured-
mesh technology 1 enables smooth variability of mesh spacing — e.g., in ac-
cord with flow field gradient anywhere in the computational domain — thus
benefiting adaptivity techniques and providing means for minimizing trun-
cation errors via the optimal data-point distribution. Unstructured meshes
have proven record of accommodating efficiently a wide range of scales, inter-
mittent distribution of forcing regions, and complex geometry; see [7–9] for
illustrations.

The realisation of limitations of structured lat-lon grids and attraction of
flexible meshing for flows on a sphere has stimulated research for over four
decades; early contributions and their review include [10–13]. The early works
explored a range of approaches, including hexagonal-icosaheadral, triangular,
cubic and reduced grids or polar cups. The primary goal was to circumvent the
CFL limitations via mesh coarsening in the polar regions, while maintaining
uniform accuracy of discretisation everywhere in the mesh. More recent de-
velopments aim also at improved resolution away from the poles and explore
mesh flexibility required for the effective mesh adaptivity. Notwithstanding
the efforts, except for a few numerical weather prediction (NWP) models on
icosahedral grids (cf. [14] and references therein), thus far there seem to be no
sole alternative to the classical lat-lon formulation embraced widely in opera-
tional NWP and climate studies [15]. The quest for an alternative improving
on limitations of the structured lat-lon grid continues, as reviewed recently
in [1,16,17]. Up to date, most studies of global modelling using unstructured-
mesh technology have concentrated on the solution of the shallow water equa-
tions using spherical polygonal, usually triangular, meshes. Majority of them
retained some elements of the icosahedron approach [18], either by taking
advantage of its straightforward procedures for mesh generation, metric prop-
erties, or regular data structure. Concomitantly, the equations of motion have
been formulated using two distinct modi operandi. One approach operates in a
global rotating Cartesian framework with the origin in the centre of the Earth,

1 A mesh, consisting of either irregular or regular elements, is referred to as un-
structured if the discretisation associated with it does not rely on a systematic
principle for identification of neighbouring points; examples of unstructured data
arrangements include flexible element and edge-based connectivity, in contrast to
structured data arrangements such as “i,j,k” indexing or binary trees [4,5].
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e.g. [19,2]. It circumvents theoretical complexities of differential manifolds (cf.
Chpt. XIV in [20]) by evaluating a flow on the sphere’s surface directly as a
three-dimensional flow in an Euclidean space. Another approach follows the
formalism of calculus on manifolds, while employing local coordinate map-
pings with origins representing individual computational cells on the sphere’s
surface; see [16] for a comprehensive discussion, list of references and example
of numerical realization.

Here, we report on the development of a different approach. In essence, we
start with the governing equations of motion formulated in the classical lat-
lon framework, section 7.2 in [21], and circumvent limitations of the frame-
work by discretising the equations using an unstructured-mesh technology.
It might be argued that this is still akin to the second modus operandi, as
the classical framework does adhere to the principles of differential geometry.
Yet its atlas consists of only three charts, with the primary chart covering
nearly the entire surface of the sphere and the remaining two degenerated to
the special boundary conditions for differentiating dependent variables in the
vicinity of the poles. Nevertheless, the aim of our approach is distinct, as its
goal is to retain the benefits of the classical formulation — common in theoret-
ical geo/astro physics — while alleviating its shortcomings by manipulating
the inhomogeneity and anisotropy of discretisation admitted by unstructured
meshes. This is diametrically different from covering the spherical surface with
multitude of charts to assure the uniformity of distretisation.

There are multiple benefits in adopting the geospherical coordinates approach,
and most global atmospheric models employ it. For lat-lon grids the benefits
of straightforward grid specification, analytic evaluation of geometrical met-
rics, and maturity of flow solvers relying on index data structure and grid or-
thogonality make the geospherical framework a natural choice. However, other
proven properties of the classical geospherical formulation are not grid specific
and can be retained on more flexible unstructured meshes. The key one of such
desirable properties is the physicality of the velocity vector, [21], with zonal
and meridional wind components directly measurable in local Cartesian coor-
dinate systems. This is important for the conservativity and the accuracy of a
numerical model formulation (section 3.3 in [22]) emphasizing mean/climatic
circulations of planetary and stellar systems. Another beneficial property of
the geospherical framework is an exact analytic representation of the spherical
surface. This aspect is offered also by schemes utilising icosahedral properties
but at the price of limited mesh flexibility and complexity in constructing
high-order spatial operators [16]. Some finite-element global models provide
flexible meshing by using various forms of isoparametric elements (e.g., based
on polynomial mappings [23]) for sphere discretisation. In effect, the accuracy
of representing the geometry of a spherical surface depends on the elements
used. Conversely, inaccurate representation of spherical surface can introduce
significant errors in solution of the governing PDEs. Consider that if the cur-
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vature of triangular elements is neglected by covering the Earth with flat tiles
[19], the resulting errors in the radial displacement of an element (and ar-
guably, of the isentropes aloft) are ∼ r(δα)2/8 where (δα and r denote the
angular resolution and sphere’s radius, respectively) — i.e, insignificant for
elements with angular size of 0.1 degree, but comparable to 200 m tall moun-
tains at a 1◦ resolution. Yet another benefit of formulating the problem in
the geospherical framework is that it simplifies the unstructured-mesh gener-
ation. Notably, the required computational meshes are generated for a simple
geometry of the primary chart. In consequence, the mesh generation (and im-
plementation of mesh manipulation techniques used in adaptivity) are much
easier than for the approaches that require generating flexible meshes directly
on a sphere embedded in an Euclidean space. For example, in two-dimensional
(2D) shallow water and three-dimensional (3D) hydrostatic models of the type
illustrated in this paper, flexible meshes are generated for a rectangle — in the
same spirit as the regular lat-lon grid. In general, 3D meshes in the geospheri-
cal framework are generated for a simple hexahedron; whereas, a generation of
3D prismatic meshes, commonly used in atmospheric global models is straight-
forward.

The generalisation of geospherical framework to arbitrary unstructured meshes
offers an efficient numerical development path for extending mature methods
operating on lat-lon grids to flexible meshes. In particular, the presented ap-
proach builds on the methodologies developed for an established structured-
grid computational model EULAG for simulating thermo-fluid flows across a
wide range of scales and physical scenarios; see [24] for a recent review. EU-
LAG has a proven record in fluid dynamics of rotating stratified flows and in
diverse areas of atmospheric applications. Its numerical concepts form a par-
ticularly convenient base for advancing the proposed generalisation to flexible
unstructured-mesh model. Especially relevant is the capability of EULAG’s
algorithms to accommodate abruptly changing control volumes (due to the un-
derlying mathematical and numerical model formulation in generalised, time
dependent curvilinear coordinates), demonstrated with diverse tests across a
range of scales and problems from mesoscale gravity wave dynamics to ide-
alised terrestrial climate [25,26].

The first necessary step towards enabling the generalisation of EULAG’s
methodologies to hybrid unstructured meshes was the derivation of MPDATA
(multidimensional positive definite advection transport algorithm [27], a key
feature of EULAG) for an edge-based data structure [28,29]. Further essential
steps included developments of a class of edge based non-oscillatory forward-
in-time solvers for compressible fluid equations [30,31]. Moreover, the potential
for implementation of mesh adaptivity to the edge-based MPDATA methodol-
ogy was explored in [6] where an explicit, analytical form of the error estimator
naturally arising from MPDATA was used in combination with mesh move-
ment, remeshing and mesh enrichment strategies. Comparisons reported for
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these edge based developments show that the unstructured mesh codes retain
proven properties of the standard EULAG and embody structured grids as a
special case.

In the following section we introduce an abstract form of governing equations
written in geospherical framework. Section 3 presents features of the analyti-
cal and numerical aspects of the unstructured-mesh algorithms developed for
global flows. Section 4 substantiates the theoretical and numerical formulation
of the approach with selected benchmark calculations for the shallow water
equations. Section 5 illustrates the potential of the unstructured-mesh dis-
crtisation in geospherical framework for simulating geophysical flows across
scales. It employs examples of (effectively) meso-scale orographic 3D flows at
a range of Froude numbers, using mesh refinement on reduced planets [32].
Remarks in section 6 conclude the paper.

2 GEOSPHERICAL FRAMEWORK

The notation and terminology adopted throughout this paper bridge the ten-
sorial formalism of the presentation in [25] with the nomenclature traditional
in global-scale atmospheric applications, stemming from the use of orthogonal
coordinates [33,34]. In [25] the integrations of PDEs governing atmospheric dy-
namics were generalised for time-dependent non-orthogonal curvilinear coor-
dinates, to enable dynamic grid adaptivity by means of continuous mappings.
The adopted notation aims at future development of a unified framework for
combining continuous mappings with an unstructured-mesh discretisation.

We consider finite-volume approximations for an inhomogeneous archetype
PDE representing a conservative form of an evolutionary problem for a scalar
variable ψ advected with a fluid flow on the sphere

∂Gψ

∂t
+ ∇ · (Gv∗ψ) = GR . (1)

From the perspective of numerical methods, such an abstract PDE underlies
a range of applications from elementary advective transport of the density
of a passive tracer to elaborate systems of PDE describing complex dynam-
ics of weather and climate [24,31]. In (1) the Jacobian G ≡ |gpq|1/2 is de-
fined in terms of the metric tensor gpq of the spherical coordinate system
x = (x1, x2) ≡ (x, y) ≡ (λ, ϕ) with the metric form ds2 = gpqdx

pdxq =
g11dx

1dx1 + g22dx
2dx2 ≡ (hxdλ)2 + (hydϕ)2, where hx =

√
g11 = r cosϕ,

hy =
√
g22 = r with λ, ϕ and r denoting, respectively, the longitude and lati-

tude angles and the sphere’s radius. Consequently, G = hxhy, v∗ = ẋ denotes
the contravariant velocity, and ∇ = (∂/∂x, ∂/∂y) ≡ (∂/∂λ, ∂/∂ϕ). Whenever
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R refers to the right-hand-side of a momentum equation, it accounts for pres-
sure gradient terms as well as Coriolis and metric forces in a form familiar
from meteorological applications [33,34]. An elementary example illustrating
the symbolic form in (1) is the set of shallow water equations

∂GD
∂t

+ ∇ · (Gv∗D) = 0 ,

∂GQx

∂t
+ ∇ · (Gv∗Qx) = G

(
− g

hx
D∂H
∂x

+ fQy −
1

GD
∂hx

∂y
QxQy

)
, (2)

∂GQy

∂t
+ ∇ · (Gv∗Qy) = G

(
− g

hy

D∂H
∂y

− fQx +
1

GD
∂hx

∂y
Q2

x

)
,

where D and H denote, respectively, the depth of the shallow water and the
height of its surface (in the absence of orography/bathymetry, H ≡ D), g
is the gravitational acceleration, and f = f0 sinϕ is the Coriolis parameter.
The momentum vector Q = Dv, where v denotes a physical velocity (with
dimensions of length/time), related to the contravariant velocity via

(vx, vy) =
(
hxv

∗

x, hyv
∗

y

)
≡
(
hxλ̇, hyϕ̇

)
. (3)

Notably, when accounting for the mass continuity equation, the momentum
equation in (2) is mathematically equivalent to the Newtonian-law form for
the velocity evolution.

Ddv
dt

≡ D
(
∂

∂t
+ v∗ · ∇

)
v = R , (4)

where R = (Rx, Ry) is a shorthand for the forces in the parenthetic terms on
the rhs of equations for (Qx, Qy) in (2).

3 NUMERICAL APPROXIMATIONS

3.1 Non-oscillatory forward-in-time algorithm

For integrating PDEs governing fluid motion on the sphere, we employ the non-
oscillatory forward-in-time (NFT) template algorithm generalised to the edge-
based data structure [31]. Here, we extend it to the geospherical framework.
A set of conservative PDEs (1) can be written in a vector form as

∂GΦΦΦ

∂t
+ ∇ · (VΦΦΦ) = GR , (5)
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where ΦΦΦ is a vector of dependent variables — (D, Qx, Qy) in the case of (2) —
and R is the vector of the associated rhs forcings. Furthermore, V = Gv∗ is the
advective velocity — termed as such, for the role it plays in advection schemes;
cf. section 4.1 of [27]. The corresponding NFT algorithm approximates the
space-time control volume integral of (5) directly (i.e., without splitting) to
the second order 2 as

∀i,n ΦΦΦn+1
i = Ai(ΦΦΦ

n + 0.5δtRn, Vn+1/2, G) + 0.5δtRn+1
i

≡ Φ̂ΦΦi + 0.5δtRn+1
i . (6)

where n and i have usual meaning of the temporal and spatial position, and
A is a shorthand for the edge based MPDATA [28]. Following the experience
with structured-grid MPDATA schemes for continuous mappings — see [27]
and references therein — the reduction of the Jacobian G in (6) is accounted
for within the discrete transport operator, the technical aspects of which will
be explained shortly. The Vn+1/2 argument of A denotes a O(δt2) estimate
of Gv∗ at t + 0.5δt; whereas Rn+1 is a second-order-accurate finite-volume
representation of R. For the overall second-order accuracy of (6), it would
suffice to consider only an O(δt)2 representation of R, yet with Rn+1 = R(t+
δt)+O(δt3) the algorithm (6) admits schemes for wave propagation with zero
amplitude error [35].

Implementing the template (6) requires two specifications: i) a first-order es-
timate of the advecting velocity V at tn+1/2; and ii) a second-order estimate
of the rhs R at tn+1. For Vn+1/2 one can use either a linear extrapolation,
or a first-order solution to the governing system. It has been shown in [35],
that integrating the evolutionary form (4) — rather than the mathematically
equivalent conservation form (1) — provides means of stabilisation for elastic
problems on co-located grids. Here we use this option exclusively, employ-
ing over half δt the centered-in-space forward-in-time Euler scheme for each
component of the physical velocity vector v

∀i,n ṽ
n+1/2
i = vn

i − 0.5δtv∗|ni · ∇iv + 0.5δtŘn
i , (7)

where ∇i denotes a centered finite-volume approximation of the gradient op-
erator at the ith node, and Ř symbolizes the specific counterpart of R (e.g.
R/D in the case of (2)). The advective velocity in (6) is computed readily

in the sequence ṽ
n+1/2
i → v∗|n+1/2

i and v∗|n+1/2
i → (Gv∗)

n+1/2
i = V

n+1/2
i by

means of local transformations. In the case of (2) with the transformation (3),

V
n+1/2
i = (hy ṽx, hxṽy)

n+1/2
i .

2 The NFT algorithm is congruent with the trapezoidal trajectory integral of the
evolutionary form of (5); see section 2.2 in [31] for a recent discussion.
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In general, a provision of an O(δt3) estimate of Rn+1 in (6) is problem depen-
dent; see [31] for a range of examples. For all computations reported in this
paper, R ≡ 0 in the mass continuity equation; advancing its solution first pro-
vides explicitly the pressure gradient force in R for momenta; hereafter Re.
However, the Coriolis and metric forces depend on momenta and are, there-
fore, implicit; hereafter Ri. Rewriting the rhs forcing as the sum of explicit
and implicit contributions R = Re + Ri, leads to a refined form of (6)

∀i,n Qn+1
i =

̂̂
Qi + 0.5δtRin+1

i , (8)

where
̂̂
Q ≡ Q̂+0.5δtRen+1, with Q̂ defined by the identity in (6). In shallow-

water examples discussed later in the paper, (8) is iterated as

∀i,n Q
n+1,µ
i =

̂̂
Qi + 0.5δtRi

(
Dn+1

i ,Qn+1,µ−1
i

)
, (9)

where µ = 1, .., m numbers successive iterations, and the first guess Rin+1, 0

is either a first-order predictor or, simply, Rin+1, 0 = Rin. In the 3D examples
extending the shallow-water equations to rotating stratified flows, the Ri is
further decomposed into the Coriolis and metric terms Ri = CQ + M(D,Q),
respectively, linear and nonlinear in Q; here C refers to the skew-symmetric
matrix of the Coriolis-force coefficients. In consequence, only the metric terms
are iterated, whereas the Coriolis terms are inverted algebraically according
to

∀i,n Q
n+1,µ
i =

˜̃
Qi + 0.5δt [I − C]−1

M
(
Dn+1

i ,Qn+1,µ−1
i

)
, (10)

where
˜̃
Q = [I − C]−1̂̂Q, and I is the identity matrix. Because in all problems

considered in this paper the time-scales associated with the Coriolis and met-
ric forces are much longer than the time-scale of advection and gravity waves,
the δt required for the computational stability also warrants rapid convergence
of iterations in (9) and (10). Depending on the initial guess, at most two itera-
tions suffice for providing an O(δt3) estimate of the entire Rn+1 for momenta.
Notably, the computationally intensive explicit part Φ̂ΦΦ of (6) is evaluated only
once per time step; cf. [34,31] for further discussion. Moreover, because (6)
assumes a co-located mesh, the iterative operations involve only nodal values.

3.2 Edge-based finite-volume discretisation

For flow problems considered in this paper, the spatial discretisation assumed
in the template algorithm (6) uses the 2D edge-based median-dual finite vol-
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ume approach [28]. This approach allows to circumvent theoretical complex-
ity of tensorial formulation, by integrating the generic physical form of the
governing PDE over arbitrarily-shaped cells on an arbitrary manifold, and it
lends itself well to various mesh adaptivity techniques [28,6]. A schematic of
the edge-based data structure for an arbitrary hybrid mesh on a 2D plane is
shown in Fig. 1. The median-dual finite-volume approach constructs the con-
trol volume associated with the vertex i by joining the centers of polygonal
mesh cells encompassing the vertex i and midpoints of edges originating in
the vertex i, Fig. 1. The approach is readily applicable to 3D hybrid meshes
[28].

jSi j

Fig. 1. The edge-based, median-dual approach in 2D. The edge connecting vertices
i and j pierces the face Sj shared by 2D computational (dual) cells surrounding
vertexes i and j. Open circles represent centers of the polygonal mesh cells.

Having defined the mesh in planar geometry, 3 all geometric elements such
as cell volume, cell face area, and normals are evaluated from elementary
vector calculus. Hereafter, Sj ≡ Sjnj symbolizes the oriented surface element
with nj denoting the normal; V•

i is the planar area of the cell containing
vertex i. In the geospherical framework all metric aspects are accounted for
analytically. Thus, the governing set of geospherical PDEs (5) can be viewed
as a set of modified planar PDEs. In particular, the transformations defining
the advective velocity in terms of the contravariant and physical velocities,
and the definition of the finite-volume cell area on the surface of the sphere
Vi = GiV•

i suffice for implementing the MPDATA operator A in (6).

Let Ψ = Φn +0.5δtRn in (6). Technically, MPDATA consists of a series of the
first-order upwind (alias donor-cell) steps, with the first step providing firs-
order-accurate solution, and subsequent steps compensating the truncation

3 This immediate benefit of the geospherical framework makes the task of mesh gen-
eration particularly straightforward compared to procedures required by methods
using meshes defined directly on a sphere.
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error of the preceding step while preserving the sign of the transported variable
Ψ. Employing the Gauss divergence theorem in the edge-based finite-volume
framework [28], each upwind step can be written as

Ψn+1
i = Ψn

i − δt

Vi

l(i)∑

j=1

F⊥

j Sj . (11)

The fluxes Fj⊥ are interpreted as the mean normal fluxes through the cell
face Sj averaged over the temporal increment δt. They assume the functional
dependence on the cell-volume averaged field Ψ and the normal advective
velocity V ⊥ at the face Sj, in a form

F⊥

j (Ψi,Ψj, V
⊥

j ) = [V ⊥

j ]+Ψi + [V ⊥

j ]−Ψj , (12)

with

[V ]+ ≡ 0.5(V + |V |) , [V ]− ≡ 0.5(V − |V |) . (13)

The nonnegative/nonpositive parts of V ⊥

j always coincide with outflow/inflow
from the ith cell. The summation in (11) is over all l(i) edges connecting vertex
i with its immediate neighbors j, and Sj refers both to the cell face pierced by
the jth edge and to its oriented surface area; see Fig. 1. With this notation,
the entire MPDATA procedure can be written in a compact functional form
as

Ψ
(k)
i = Ψ

(k−1)
i − δt

Vi

l(i)∑

j=1

F⊥

j

(
Ψ

(k−1)
i ,Ψ

(k−1)
j , V

⊥,(k)
j

)
Sj , (14)

with k = 1, .., IORD such that

Ψ(0) ≡ Ψn ; Ψ(IORD) ≡ Ψn+1

V ⊥,(k+1) = V ⊥
(
V(k),Ψ(k),∇Ψ(k)

)
; V

⊥,(1)
j ≡ V ⊥|n+1/2

j .

In (14), the first iteration uses for arguments of F⊥

j the transported field values

from the preceding time step and an O(δt2) estimate of the velocity at tn+1/2.
In context of the governing equations (2),

V ⊥|n+1/2
j Sj =

(
δy

(hyṽx)i + (hy ṽx)j

2
− δx

(hxṽy)i + (hxṽy)j

2

)n+1/2

, (15)

where δx = xj − xi and δy = yj − yi are the zonal and meridional angular
increments, and ṽx and ṽy are the components of the physical velocity pre-
dictor (7). In subsequent iterations in (14), the compensating antidiffusive
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Table 1
Scalar advection on an irregular triangular mesh (cf. Fig. 7); solid-body rotation
past the poles. The two rows list, respectively: a) spatial (and temporal) resolution
relative to a reference mesh with 128×64 nodes; and b) L2 norm of the MPDATA
solution error.

δξ/δξo 6 3 1.5 0.75

L2 0.01253 0.00428 0.00111 0.00028

velocity is defined by the leading truncation error of the preceding upwind
step as V ⊥,(k+1) ≡ −(Error/ψ)(k); namely,

V
⊥,(k+1)
j = |V ⊥,(k)

j | |Ψk
j | − |Ψk

i |
|Ψk

j | + |Ψk
i | + ε

(16)

−δt
2
V

⊥,(k)
j

(
V(k) · ∇|Ψk|

|Ψk|
+ ∇ · V(k)

)

Sj

,

where V(k) = Gv∗,(k) and ε denotes a small constant, e.g. 10−10, to assure
that the denominator does not vanish where Ψ

(k)
j = Ψ

(k)
i = 0. In practice,

one corrective iteration suffices for recovering the second-order accuracy of
time-space centered schemes. The latter is highlighted in table 1 that lists the
solution errors in function of the unstructured-mesh characteristic spacing,
for scalar advection of a cosine-bell tracer profile in a rotational flow past the
poles with constant angular velocity — a test case that we adopted from [36].

The remaining implementation details of (16) follow the planar formulation
[6]. Applying the Gauss theorem to an augmented vector field ΨeI , with eI

denoting a unit vector in the Ith direction, the partial derivatives are evaluated
as

(
∂Ψ

∂xI

)

j

=
1

Vj




l(i)∑

m=1

Ψ̄i,mSI
m +

l(j)∑

m′=1

Ψ̄j,m′

SI
m′


 , V j ≡ Vi + Vj ; (17)

where, Ψ ≡ |Ψ(k)|, Ψ̄i,m ≡ 0.5(Ψi + Ψm), and SI
m denotes the Ith area com-

ponent of the oriented surface element at the mth edge. The associated “Ψ”
denominator in the second term on the rhs of (16) is evaluated as a surface-area
weighted average from the same control volume

Ψj =
1

Sj




l(i)∑

m=1

Ψ̄i,m|SI
m| +

l(j)∑

m′=1

Ψ̄j,m′|SI
m′ | + ε


 ;
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Sj ≡
l(i)∑

m=1

|SI
m| +

l(j)∑

m′=1

|SI
m′ | . (18)

In the geospherical framework implementation of the forcing terms Rn in (8)
we evaluate gradients according to:

(
∂H

∂x

)

i

=
hyi

V i




l(i)∑

m=1

H i,mSx
m


 ;

(
∂H

∂y

)

i

=
hxi

V i




l(i)∑

m=1

H i,mSy
m


 ; (19)

Recall that the spherical area of the cell, already contains the Jacobian hxhy.

3.3 Periodic and polar boundaries

Fig. 2. Periodic boundaries: (left)a finite volumes for periodic node; (right) coarse
computational mesh showing periodic nodes seen in the physical space on a sphere

For the implementation of periodic boundary conditions in x-direction, con-
sider a split dual cell shown in Fig. 2. The indices il and ir mark computational
points with matching y coordinate, respectively, on the left and right bound-
aries of the domain. The finite volume integration of (11) for the points il and
ir becomes

ψn+1
ir = ψn+1

il
= ψn

il
− δt

Vil + Vir

(
l(il)∑

j=1

F⊥

j Sj +
l(ir)∑

j=1

F⊥

j Sj) , (20)

where Vil and Vir are the left and right complementary parts of the total
control volume. The evaluation of derivatives in (17) and (19) follows the
same principle, because it employs the Gauss divergence theorem analogously
to the accumulation of fluxes in (20).
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Figure 2 highlights a particular case where for every node on the left bound-
ary there exists a matching node on the right boundary with the coinciding
coordinate y. For unstructured meshes this is not generally the case and we
enforce it during mesh generation. Specifically, if |yir − yil| < 0.25δy, we em-
ploy mesh movement and edge swapping to enforce yir = yil [37,6], and if
|yir − yil| ≥ 0.25δy we introduce additional matching nodes on the opposite
boundaries of the computational domain and reconnect them using supplemen-
tary edges. Alternatively, the later may be achieved by constructing for each
unmatched periodic node, a degenerated polygonal finite-volume cell contain-
ing a hanging node(s) [37]. We found that both treatments perform similarly.

North pole 
i

k

k

Fig. 3. A finite volume cell for a node neighbouring the north pole.

The polar boundary conditions are inherent in the geospherical framework.
Here we describe the original formulation consistent with the unstructured
finite-volume schemes outlined in sections 3.1 and 3.2. We avoid placing nodes
at the poles, where the geospherical framework may introduce singularities in
the archetype PDE (1) and the related discretisations. It is beneficial and
easy, to generate a mesh such that the nodes closest to the pole are placed at
the same distance from it. The distance is dictated by a half of the average
internal edge length in this region. Figure 3 shows that these nodes form a
solid line, parallel to the dashed line that corresponds to the position of the
north pole. The resulting finite volume for a point i is shown in the figure.
The implementation of (14) for the point i is the same as for any other node,
because the normal velocity V ⊥

j at the cell face (dashed line) on the pole is zero,
hence there is no contribution from fluxes through this face. To substantiate,
note that in (15) at the north pole cell face, the first term becomes zero because
δy = π/2 − π/2 = 0, and hx = r cos(π/2) nullifies the second term.

In the entire procedure (14-19) only steps (17) and (19) require special treat-
ments in the polar regions. When evaluating derivatives (19) at the point i,
the information from the node k positioned on the sphere on the opposite side
of the pole, is required to evaluate contributions form the cell face on the north
pole. In the geospherical coordinates point k (marked in red) corresponds to
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a mesh node placed at xk = xi + π/2. This is schematically shown in Figure
3. During the unstructured mesh generation we ensure that for every node of
the type i a corresponding node k exists. When the enforcement of the con-
dition for the nodes i and k to be on the opposite sides of the pole impacts
on mesh flexibility, we use values interpolated to the position xi + π/2. When
computing the partial derivatives (17) that enter the antidiffusive velocities
(16) of MPDATA, the contributions from the point k are also required for
evaluation of Ψ̄i,m ≡ 0.5(Ψi + Ψm) whenever m coincides with the point k.
Then, for Ψs representing the momentum components, the contributions from
k are taken with an opposite sign. The treatment at the south pole follows
the same principles.

4 NUMERICAL RESULTS

4.1 Shallow-water equations on the Sphere

The scalar advection of a cosine-bell summarised in table 1, tested the handling
of kinematics. The two following benchmarks, a constant angular velocity
zonal flow past an isolated mountain and the evolution of the Rossby-Haurwitz
wave number 4, test the handling of the planetary wave dynamics, epitomising
global weather in linear and nonlinear regimes.

4.1.1 Zonal orographic flow

The first problem is a zonal flow past a conical hill centered in mid latitudes,
studied by Grose and Hoskins [38]. The flow is characterised by small Rossby
and Froude numbers (here Ro = U/Lf and Fr = U/

√
gH, with L denoting the

horizontal scale of the problem) and, therefore, it is well explained by the linear
theory [38]. This problem was proposed by Williamson et al. [33] for evaluating
the efficacy of numerical methods for global-scale dynamics and has become a
benchmark in the field. In [39] it was extended to 3D nonhydrostatic Boussi-
nesq fluid, and employed to assess the relative merits of different analytic
formulations of the governing equations versus truncation errors of different
integration schemes. To allow the comparison with the results in [39] and, thus,
to exemplify the capability of shallow-water equations to approximate long-
wave solutions of PDE systems governing 3D continuously stratified flows, here
we follow the setup of [39]. The ambient zonal flow assumes ve = (U0 cosϕ, 0),
so the corresponding He = H0 − 0.5g−1(r f0 + U0)U0 sin2 ϕ assures that the
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system (2) is satisfied identically in the absence of an orographic forcing. 4

The hill embedded in the ambient flow is centered at (λ, ϕ) = (3π/2, π/6); it
is 2 · 103 m high, and has the base radius π/9. At the equator, the ambient
wind U0 = 20 ms−1, whereas the depth of the fluid H0 = 8 · 103 m.

Fig. 4. Zonal orographic flow; meridional velocity component, after 15 simulated
days, using an irregular triangular mesh with 8436 points. The contour interval is
2 ms−1 and no zero contour lines are shown. The hill contours are 0.25, 0.5 and 0.75
of its height.

5.e-07

-5.e-07
mass

energy
days 1.0e-07

-4.0e-05

days

enstrophy

Fig. 5. Zonal orographic flow; mass, energy and potential enstrophy conservation
errors, for single precision solution using an irregular triangular mesh.

Figure 4 shows the isolines of meridional velocity components after 15 (sim-
ulated) days. This solution was obtained on an irregular triangular mesh (of
the type shown in Fig. 7) consisting of 8436 points, using the constant time
step δt = 40 s. The pattern is consistent with the linear solution of Grose and
Hoskins (fig. 3 in [38]) and closely matches the Cartesian grid solution gener-
ated with EULAG for continuously stratified 3D nonhydrostatic Boussinesq
fluid (Fig. 1 in [39]). Figure 5 complements the solution displayed in Fig. 4
with the history of the conservation errors. It shows the normalised (by the
corresponding initial values) domain integrals of the mass, energy and poten-
tial enstrophy perturbations (with respect to the initial values) in function
of time, sampled every simulated hour; the values obtained after 15 days are
listed in table 2. The 15 day long conservation histories of mass and energy
evince errors oscillating near numerical zero. For an equivalent double preci-
sion run (not shown) the mass conservation error drops to O(10−15), whereas
the energy and the potential enstrophy errors remain similar. This is unsur-
prising as, by design, the mass conservation is ensured to the round-off error;

4 Alternatively, the assumed ambient wind ve is geostrophic, as it results from the
balance of pressure and Coriolis forces.
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whereas the conservation of energy and enstrophy depends on truncation er-
rors of the solution method as well as on the post-processing. Altogether, the
results quoted appear to be consistent with corresponding results documented
in the literature; cf. [40] for similar metrics obtained from the spectral-element
calculations employing (presumably) 13 times more grid points.

Table 2
Zonal orographic flow; mass, energy and potential enstrophy conservation errors
after 15 simulated days.

mass energy potential enstrophy

single precision −2.8 · 10−8 −6.1 · 10−9 −3.7 · 10−5

double precision +3.9 · 10−15 +2.3 · 10−8 −3.7 · 10−5

To further quantify the accuracy of the approach, table 3 summarises the
mesh convergence study, for the solutions after 15 days. In the absence of
a matching analytic solution, a numerical result obtained on a fine irregular
triangular mesh, consisting of 121761 points, was taken as a reference. The
error norms are calculated for a sequence of meshes with spatial resolution δξ
decreasing as

√
2, with δξk = 2−k/2δξ0, k = −1, 0, .., 3, δξ0 = 2.8125◦, and the

high-resolution reference mesh corresponding to k = 4. The table shows ratios
of the error norms ‖ ψ′

k ‖ / ‖ ψ′

k+1 ‖ (for height and velocity fields) in function
of the ratio of consecutive mesh resolutions δξk/δξk+1 at a constant Courant
number. Here, prime denotes deviation from the reference result mapped on
a given mesh. The second-order asymptotic convergence rate is evident in the
table.

Table 3
Zonal orographic flow on a sphere; the resolution ratios for consecutive meshes are
shown together with the corresponding ratios of the solution error norms.

δξk/δξk+1 21/2/20 20/2−1/2 2−1/2/2−2/2 2−2/2/2−3/2

L1(H
′

k)/L1(H
′

k+1) 1.75 1.87 1.88 2.00

L1(v
′

k)/L1(v
′

k+1) 1.76 2.04 1.89 2.03

L2(H
′

k)/L2(H
′

k+1) 1.93 1.92 1.90 1.98

L2(v
′

k)/L2(v
′

k+1) 1.77 2.01 1.93 2.00

4.1.2 Rossby-Haurwitz wave

The Rossby-Haurwitz (RH) waves are analytic solutions of the solenoidal non-
linear barotropic vorticity equation on the sphere. They propagate zonally
without change of shape [41], and are reminiscent of some large scale waves
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Fig. 6. Free-surface perturbation H/H0 − 1 for the Rossby-Haurwitz wave number
4 test, after 5 simulated days; the contour interval is 0.025.

in the atmosphere. However, the classical RH waves are not regularly ob-
served in the atmosphere. Arguably, this is because they are unstable, given
sufficiently short zonal wavelength and sufficient amplitude [42]. In particu-
lar, when simulated with the shallow water equations (thus admitting small
perturbations to the analytic solutions with suppressed free surface) the wave
with zonal wave number 4 was found to change its form a little over 24 days,
while twice shorter RH waves break completely within a week [42]. Because
of this marginal stability [43], RH wave number 4 is a convenient vehicle to
test capability of numerical methods for maintaining subtle nonlinear balance
of wave form solutions over extended integration time. The simulation of the
RH wave number 4 with shallow water equations was included in the suite of
tests proposed by Williamson et al. [33], and has become another benchmark
in the field. Figure 6 shows our solution after 5 days of the simulated time,
obtained on an irregular triangular mesh consisting of 7722 points. This result
is in good agreement with theoretical estimates (0.34π eastward displacement
after 5 days), and it reproduces the Cartesian-grid solution documented in
[34].

The edge-based structure of the flow solver permits its application on arbi-
trary polygonal meshes. To examine sensitivity of the solutions to details of
the mesh, the test was repeated using Cartesian and triangularised Carte-
sian meshes (8256 points) as well as an equilateral triangular mesh with 8352
points operating on equilateral hexagonal finite volumes; Fig. 7. The corre-
sponding solutions are not shown because their departures from the results in
Fig. 6 are insignificant, despite unavoidable small differences in mesh resolu-
tion. The solution in Fig. 8 uses a distinct mesh. It was obtained on a mesh
with only 5764 points distributed irregularly in the computational space, but
with a near equidistribution of points in the physical space. This is illustrated
in Fig. 9 that shows an akin mesh, coarsened for visual clarity. Some depar-
tures from symmetry in the polar regions seen in Fig. 8 indicate a need for
more than 8 points in a polar circumference to avoid overstretched finite vol-
umes in the geospherical framework and to resolve fields’ gradients. This is
consistent with earlier findings using reduced grids in high latitudes; see [1]
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Cartesian                irregular triangular

triangularized Cartesian       equilateral triangular 

Fig. 7. Selection of computational meshes (zoomed on the upper left quarters) used
by the edge-based solver for the Rossby-Haurwitz wave benchmark.

Fig. 8. As in Fig. 6, but for the free-surface perturbation obtained on the mesh
equidistributed in the physical space on a sphere

and references therein.

Fig. 9. Evenly distributed mesh in the physical space on a sphere

All tests were continued to verify the solutions after 14 days. Almost indis-
tinguishable results were obtained on the Cartesian and equilateral triangular
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meshes, Fig. 10, and they are consistent with predictions of a spectral model
[40]. However, the solution obtained on the triangularised Cartesian mesh,
Fig. 11, shows a pronounced North-South asymmetry. This mesh was pur-
posely designed to assess an influence of anisotropic meshing on simulated
wave propagation. Notably, a similar experiment with the same triangularised
Cartesian mesh, but with antisymmetric slopes of hypotenuses across the equa-
tor does recover the solution symmetry (not shown).

Fig. 10. As in Fig. 6, but for the solution after 14 days, using the equilateral trian-
gular mesh.

Fig. 11. As in Fig. 10, but using the directionally-biased triangularised Cartesian
mesh

The solution obtained on the irregular triangular mesh with 7722 points,
Fig. 12, indicates unstable waves. A stable wave solution, close to that shown
in Fig. 10 was regained for an irregular triangular mesh containing 30589
points; i.e., with a halved resolution. Further investigation showed this test
case to favor meshes, the truncation errors of which do not interfere with
the solution symmetry. In particular, for regular grids (especially for Carte-
sian) the wave solutions remained stable for long simulation times. However,
even small perturbations triggered by mesh truncation errors ultimately led
to growth of some unstable modes. The manifestation of influence of such
perturbations occurred at different simulated lengths of time and depended
on the mesh resolution and the integration time step (viz. Courant number).
A similar unstable wave behaviour resulted from a test using the Cartesian-
grid EULAG-type solver employed in [34], but with a small random noise
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introduced in the initial condition. These observations are compatible with
findings of the study reported in [43] that, contrary to common beliefs, the
zonal wavenumber 4 Rossby-Haurwitz wave is dynamically unstable and will
eventually break if sufficiently perturbed.

Fig. 12. As in Fig. 10, but for unstable solution on the coarser (7722 points) irregular
triangular mesh.

Figure 13 documents that the wave instability in the solution highlighted
in Fig. 12 has no distinct impact on the conservation of mass, energy and
enstrophy. At day 14, the respective single-precision error values are 3.85·10−7,
−1.36 · 10−5 and −1.91 · 10−4. From the considered integral error measures,
only the unrealistically high value of the L2 norm ratio in Fig. 14 recorded
at day 11 evidences the emergence of fine scales in the RH wave pattern on
the coarse mesh, indicative of the growing instability. The L2 height error
was computed by taking a solution on a fine Cartesian mesh (1025x505) as a
reference. The slope in figure 14 represents a ratio between L2 norms calculated
using triangular meshes consisting of 7722 and 30589 points.

0.0
mass

energy

days

-1.5e-05

0.0

-2.0e-04

days

enstrophy

Fig. 13. Mass, energy and potential enstrophy conservation errors, in single preci-
sion, a solution of the Rossby-Haurwitz wave benchmark, using an irregular 7722
points triangular mesh

4.2 3D extension

Examples of the preceding section illustrate the performance of the proposed
approach, in the context of smooth large-scale motions excited with weak per-
turbations from equilibrated reference states. Here, we consider a stiff problem
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Fig. 14. A history of the L2 height error norm ratio between a coarse and a twice
finer irregular triangular meshes. The Rossby-Haurwitz wave test problem

with multiplicity of emerging solution scales. For this purpose, we employ 3D
primitive equations expressed in a hybrid Eulerian-Lagrangian form with a
material coordinate ζ monotonically increasing with height, cf. section 7.4 in
[21]. Such formulation is close in form to a coupled set of shallow water layers
(2). The governing PDEs can be written compactly as

∂GD
∂t

+ ∇ · (Gv∗D) = 0 ,

∂GQx

∂t
+ ∇ · (Gv∗Qx) = G

(
− 1

hx
D∂M
∂x

+ fQy −
1

GD
∂hx

∂y
QxQy

)
, (21)

∂GQy

∂t
+ ∇ · (Gv∗Qy) = G

(
− 1

hy
D∂M
∂y

− fQx +
1

GD
∂hx

∂y
Q2

x

)
,

∂M

∂ζ
= Π ,

where, in contrast to (2), the position vector x = (x, y, ζ) has now three
components, and the generalised density is D ≡ ∂p/∂ζ . The pressure gradient
force depends on the Montgomery potential (or Bernoulli function) M = gH+
ζΠ, where H is the height of a material surface, and Π is a transform of the
pressure p. Consequently, the last equation in (21) is an expression of the
hydrostatic balance. For example in isentropic model [45] ζ ≡ θ, where θ
is the potential temperature, so Π is the Exner function; 5 whereas in the
isosteric/isopycnic model [46,47], ζ = ρ−1 is the specific volume, so Π ≡ p.
Furthermore, to the Boussinesq approximation the isopycnic model amounts

5 The Exner function is Π = cp(p/po)
Rd/Cp , where cp is the specific heat at constant

pressure, Rd is the gas constant for dry air, and po is a reference pressure.
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to the isentropic one; cf. [46].

All prognostic equations of the system (21) adhere to the form of an archetype
PDE (1). Their integration follows the template algorithm described in sec-
tion 3.1, where all outlined steps apply now simultaneously to all discrete val-
ues of ζ . The only significant difference between integrating the shallow water
equations (2) and (21) lies in the recovery of pressure. In the case of shallow
water, the pressure gradient force is readily computable after integrating the
mass continuity equation with the homogeneous form of (7). In the case of (21),
it involves the additional step of integrating the tridiagonal problem implied
by the hydrostatic-balance relation. First, assuming the free-surface boundary
condition aloft, the pressure p is recovered by integrating Dn+1 = ∂pn+1/∂ζ
downward, with successive upward integration of ∂Mn+1/∂ζ = Πn+1, to estab-
lish the values of Mn+1 for all discrete values of ζ . Subsequently, the momenta
are evaluated for all ζ following the procedure outlined in section 3.1. All de-
tails of the discretisation in the horizontal follow the description in sections 3.2
and 3.3.

The physical problem addressed in this section is a response of stratified
fluid to mesoscale orographic forcing at a range of Froude numbers; here
Fr = U0/Nh0, with U0, N and h0 denoting, respectively, characteristic values
of ambient wind, buoyancy frequency, and mountain height. To simulate at-
mospheric mesoscale motions without incurring the computational expense as-
sociated with discretising the Earth surface with mesoscale resolutions [44,14],
we reduce the planet’s radius hundredfold; see [32] for a thorough exposition.

Fig. 15. Perspective display of the mesh (4532 points) used in 3D orographic-flow
experiments; the vertical scale is exaggerated for clarity of visualisation.

The experimental setups are as follows. The ambient wind ve = (U0 cosϕ, 0),
with U0 = 10 ms−1. Following section 4.1.1, the corresponding undisturbed
height of the material surfaces is specified as He(x, y, ζk) = (k − 1)δz −
0.5g−1(r f0 + U0)U0 sin2 ϕ, with uniform separation in the vertical δz = 40 m
and k = 1, .., 91. The assumed buoyancy frequency N = 0.04 s−1 defines the
vertical scale of the problem in terms of the wavelength λZ = 2πU0/N =
1571 m of the dominant vertically propagating hydrostatic mountain wave.
In order to relate to linear solutions in [46], the analytic axisymmetric hill is
placed at the equator; cf. [32] for a discussion. Its height decays as h(l) =
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h0[1 + (l/L)2]−3/2, where l(x, y) denotes the distance from the centre of the
hill on the spherical surface, and L = 12.4 · 103 m is the hill’s profile half-
width. The calculations conducted for h0 = 125, 250, 500 m, correspond to
Fr = 2, 1, 0.5. Figure 15 illustrates the surface topography (h0 = 500 m) and
the horizontal mesh consisting of 4532 points. The coarsest resolution is 12.3◦,
in the polar regions. In the equatorial region and the vicinity of significant
topography the mesh is refined, with the resolution of 2.8◦.

Calculations were carried for T = 4 h of the simulated time, starting with
the ambient flow perturbed impulsively by the presence of the hill, such
that H(x, 0) = max [He(x), h(x), ε]). Notably, this introduces material lay-
ers with vanishing thickness at the mountain slopes. Thanks to the positivity
of the NFT numerics this poses no technical difficulties [47]. The integration
time step δt = 8 s is limited by the CFL condition accounting for the phase
speed of the external gravity wave (≈ 200 ms−1). The total simulated time
is T ≈ 2τgw ≈ 12τadv, where the gravity-wave time scale τgw = λz/cgz as-
sumes a linear estimate of the group velocity in the vertical cgz = U2

0 /LN ,
and τadv = L/U0 is an advective time scale. Noteworthy, by comparison with
the standard Cartesian 128x64 grid with the resolution 2.8◦, the unstructured
mesh discussed has the same resolution on the equator and is about four times
coarser near the poles, whereas the employed δt is eight times larger than the
corresponding time step permissible in the runs performed with the Cartesian
grid (not shown).

The developed solutions for three selected Froude numbers (Fr = 2, 1 and 0.5)
are highlighted in Figs. 16 and 17; to facilitate the visualisation, the results
were interpolated to a fine Cartesian grid in the horizontal. The heights of
isopycnals are shown after 4 hours of simulated time in the vertical plane at
the equator, and along the undisturbed surface He with maximum equatorial
elevation at about the eighth of the vertical wavelength. 6 The three results
shown capture (from the top down) the transition from the linear regime
at Fr>

∼
2 to a fully nonlinear flow at Fr<

∼
0.5 [48]. At Fr = 2 the flow is

predominantly over the hill, with all isopycnals gently displaced by the hill
height — in a qualitative agreement with the predictions of the infinitesimal-
amplitude linear theory [46]. At Fr = 1, isopycnals collapse at the lee slope of
the hill, and the tendency is apparent for the stagnation near the hill top on the
windward side, concomitant with the steepening of the isopycnals aloft on the
lee — still consistent with the linear theory predictions [46]. At Fr = 0.5, the
flow below the dimensionless height z/h0 = 1 − Fr is predominantly around
the hill. It is blocked at the windward side, as evidenced by isopycnals ending
at the hill and by a large deflection of the flow vectors in the horizontal. In

6 Because of the shallowness of the domain, in the problem posed, the corresponding
calculations with the isentropic model produce similar results, with only slightly
larger wave amplitude aloft.
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Fig. 16. Isopycnal elevation after 4h of simulated time in the vertical equatorial
cross section; Fr = 2, 1 and 0.5 from the top to bottom.

the lee, the flow evinces complex topology indicative of the intense low-level
eddies with the reversed uphill flow [49,48]; see [50] for a succinct review of
this intricate problem.

5 REMARKS

A concept was proposed and explored of using unstructured meshes for dis-
cretising PDEs of geophysical fluid dynamics cast in the classical anholonomic
latitude-longitude (lat-lon) spherical framework (viz. the geospherical frame-
work). The results demonstrate that multiple benefits of the geospherical co-
ordinates extensively exploited in the standard lat-lon finite difference and
spectral models hold in the context of unstructured meshes. This first (to our
knowledge) generalisation of the geospherical framework to fully unstructured
meshes illustrated here with finite volume discretisation (viz linear elements)
indicates the suitability of the concept for arbitrarily shaped hybrid meshes
which can include higher order elements/discretisations.

The approach adds flexibility in terms of mesh anisotropy and inhomogene-
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Fig. 17. Displacement field of the isopycnal surfaces with the equatorial undisturbed
height He ≈ λz/8, for Fr = 2, 1 and 0.5, correspondingly to Fig. 16; contour interval
is ≈ 0.01λz , no zero contour lines are shown. The reference arrow length for the
superimposed flow is U0 far upstream of the hill centre.

ity unattainable by many discretisation schemes. This is important for the
efficacy of discretisation and for mesh adaptivity. A broad variety of com-
putational meshes can be easily implemented as shown in examples of mesh
with local static refinement used in the three-dimensional computations and
a study of sensitivity of the solutions to details of computational mesh in
two-dimensions. In principle, the proposed concept admits as special cases all
former discretisations which used geospherical framework.

The presented generalisation of EULAG numerics to unstructured meshes re-
tains proven properties of NFT MPDATA structured grid solvers. Indeed,
the proposed framework promotes an implementation/translation of mature
structured-mesh based methodologies building on a wealth of existing experi-
ence. Higher resolutions, necessary to fully resolve detailed flow features in
highly multiscale geophysical flows are not available in current structured
meshes based global models. Flexible unstructured and adaptive meshes may
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offer an efficient alternative to the many-fold increase in computational points
required by lat-lon grids to achieve such desired resolutions. The proposed
framework is suitable for studying the potential of unstructured meshes in
this context.
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