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Emergence of the coherent reflected field for a single 
realisation of spherical scatterer locations in a solid matrix 

V J Pinfield and R E Challis 

Electrical Systems and Optics Division, Faculty of Engineering, University of 
Nottingham, University Park, Nottingham NG7 2RD, UK 

Email: valerie.pinfield@nottingham.ac.uk 

Abstract. The acoustic field reflected from a region containing spherical scatterers is most 
often estimated by use of the coherent field; that is, the field resulting from the summed 
scattered fields from the scatterers, averaged over all possible configurations of scatterer 
locations. It is this ensemble-averaged coherent field which is equivalent to the field reflected 
from a homogeneous medium with properties which can be derived mathematically using 
ensemble-averaging techniques. Such properties include the effective density, and the effective 
wavenumber, which can be derived from multiple scattering theories, or by other 
homogenisation methods. Experimentally, although ensemble-averaging can be effected in 
practice in fluid systems due to the motion of the scatterers during the measurement time-scale, 
measurements in solid materials have fixed locations of scatterers. Averaging can only be 
achieved by using “large” sample areas, multiple samples or measurements in different 
locations, or “large” receiver areas. However, in the context of NDE applications we are 
interested in the field resulting from a specific region of material, rather than the average over a 
large region. Our study addresses the question of when the coherent field (resulting from 
averaging over many scatterer configurations) can be used as an accurate description of the 
field reflected by a region of scatterers at fixed locations. In this paper we present results of 
simulations of the scattered reflected field from a region of solid material containing spherical 
cavities. Simulations of single realisations of scatterer locations are compared with the 
coherent field, to demonstrate the validity or otherwise of the use of the coherent field to 
describe the response of a particular configuration of scatterers.  

1.  Introduction 
The field of acoustic wave propagation in heterogeneous materials has a long history and remains a 
topic of study due to its range of significant applications. One such application is the use of ultrasonic 
non-destructive testing techniques for aerospace components, which has prompted the current work. 
Our interest is in the signal backscattered from a region of small cavities in a composite material.  

The majority of published work concerned with acoustic propagation in heterogeneous media 
considers the coherent field, that is the field which has the same characteristics as that propagating in a 
homogeneous medium, but with modified properties. This coherent field emerges only on averaging 
the locations of scatterers, a process known as ensemble-averaging, or homogenization  [1]- [5]. The 
properties of the equivalent homogeneous medium or effective medium resulting from the coherence 
condition can be used to define the response of the material. These properties include the effective 
wavenumber, which is widely used to obtain the speed of wave propagation in materials. In an 
experimental measurement, the ensemble averaging process may be effected by measurements over a 
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large area of sample, multiple samples, a large received area, or by a time-averaging (if scatterers are 
mobile). In some circumstances however, we are interested in the response of a particular region of 
material, which may not be coherent, since the scatterers are fixed and the region small.  

In this study, we investigate the conditions for coherence for a particular configuration, in which 
the response of a plane slab of scatterers in a solid matrix is simulated, using a single receiving point. 
Thus we eliminate the effects of averaging at the receiver, but consider the response of a planar region. 
A range of simulations has been carried out to investigate the emergence of the coherent field over a 
range of cavity radii and concentrations (number density). We establish the dependence of the degree 
of incoherence of the field with these parameters compared with the wavelength. We also investigate 
the variability in the degree of incoherence of the signal.  

2.  The models 
The computational models for the study of the backscattered field have been presented in previous 
papers  [6]- [7] and only a brief summary is presented here. 

2.1.  Discrete scatterer model  
Scatterers are located randomly within a solid matrix, in a slab region as shown in Figure 1a. A 
transmitting and receiving surface is coupled directly to the solid and its response is assumed to relate 
to the normal displacement at the surface. The incident field at each scatterer is assumed to be the 
plane wave transmitted from the surface. The discrete scatterer model simulates the field at a point on 
the receiving surface obtained from the sum over the scattered fields from each scatterer. The 
scatterers are taken to be spherical cavities of identical radius. Only single scattering is considered, 
and the anisotropy of the scattered field is included using the far-field scattering amplitude, derived 
from Rayleigh partial wave expansions according to the method of Ying and Truell  [8].  

 
 

(a)  
 

(b)  

Figure 1 Configuration of the models: (a) discrete scatterer model (above 
dashed line) and (b) effective medium model (below dashed line). The 
coordinates (z,R) of a cavity relative to the receiving point are shown.  
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The normal displacement at the receiving surface is given by  
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where the far-field amplitude is related to the scattering coefficients by  
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The wavenumber in the solid matrix is denoted by k and the angle,  , is taken relative to the forward 
z-direction. Pn are the Legendre polynomials and r is the distance from the scatterer to the receiving 
point. The normal displacement of the transmitted plane wave at the transmitting surface is ,inczu . The 

notation for the scattering coefficients, An, is adopted from earlier references, and is presented in  [9].  
In the discrete scatterer model, there are no interfaces between the solid matrix and the region 

containing scatterers. The model predicts the response from a single realisation of scatterer locations 
for a particular cavity radius and number density (expressed as a volume fraction). 

2.2.  Ensemble-average model 
An estimate of the ensemble-average limit, that is the coherent field, is obtained by numerical 
integration over the discrete scatterer model field equations using random locations for scatterers. 

2.3.  Effective medium model 
In the effective medium model, the region containing scatterers is replaced by a homogeneous material 
(Figure 1b) whose properties are assigned using ensemble-averaged scattering theory formulations. 
Thus in this model, there are interfaces at the front and back of the slab region at which the material 
properties change. The effective density used in the model is the volume averaged density.  

 eff 1     (3) 

where  is the volume fraction of cavities and  is the density of the solid matrix. The Foldy 
wavenumber  [1] was used to obtain the wave speed, taking the same partial Rayleigh wave analysis 
for the scattering coefficients  [9]. 
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where a is the radius of the cavities and Keff is the effective wavenumber of the region. These 
properties are used to define an effective impedance for the layer, permitting standard reflection and 
transmission coefficients to be assigned to the interfaces. Thus the reflected coherent signal can be 
expressed in the usual way as  

   min
12 2 2 2

,eff ,inc 12 12 21 121 1ikz ikd ikd
z z e r t t e r e
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where max mind z z   is the thickness of the layer and ijr , ijt are the displacement reflection and 

transmission coefficients between regions i and j. Region 1 is between the transmitter and the slab, and 
region 2 is the slab region whose effective properties are under consideration.  

 

11th Anglo-French Physical Acoustics Conference (AFPAC 2012) IOP Publishing
Journal of Physics: Conference Series 457 (2013) 012009 doi:10.1088/1742-6596/457/1/012009

3



 
 
 
 
 
 

These models incorporate some simplifications in order to enable the simulation of a large slab 
region. Other workers have studied the coherent field using techniques such as finite difference 
methods, which are constrained to smaller scale simulations, but are able to adopt higher order 
assumptions on the incident field for example. Since we are interested in the emergence of the 
coherent field and its dependence on the length scales of the system, we consider the field at a single 
point on the receiving surface in order to remove any effects of averaging at the receiver. 

2.4.  Numerical calculations 
Numerical calculations were carried out using Matlab. The fields were calculated in the frequency 
domain with a sampling frequency of 50 MHz and 1024 samples. Time-domain results were obtained 
using experimentally sampled transmit-receive signals to model the transmitted signal for a 5,10 MHz 
centre-frequency transducer. A range of cavity radii from 5-20 m and concentrations by volume of 1-
20% were simulated. Each discrete scatterer model simulation represents a single realization of cavity 
locations, all of the same size. The solid matrix was assigned properties appropriate to an averaged 
fibre-resin composite, with a longitudinal wave speed of 3035 ms-1, a density of 1564 kgm-3, and a 
shear modulus of 3.6 GPa. The simulation aims to represent the response of a slab, but must be 
constrained in the lateral direction for calculation purposes. Tests showed that a maximum radial 
coordinate of Rmax=20 mm (see Figure 1) was sufficient to capture the full response. Other system 
parameters are listed in Table 1. 

 
Table 1. System parameters. 

Distance zmin /mm 2 
Layer thickness / mm 1  
Cavity conc / v/v% 1, 2, 5,10, 20  
Cavity radius / µm 5.0, 7.9, 10.0, 15.9, 20.0  
Millions of cavities at 20 v/v% 
(respectively with radius) 

480, 120, 60, 15, 7.5  

 
All time-domain results have been plotted time-shifted to the arrival of the first reflection from the 

front of the layer and have been scaled by concentration for ease of comparison. Frequency-domain 
results were windowed in the time domain to smooth out the edge-wave ripples caused by truncation 
of the region. Fuller details of the simulation are given in  [6]- [7]. 

3.  Results 

3.1.  Time-domain results 
Results of the models are shown in Figure 2 in the time-domain using signals with centre frequencies 
(c.f.) of 5 and10 MHz. The results have been scaled by concentration for convenience of comparison. 
In each figure, the coherent response (from the effective medium model) can be seen to display 
reflections from the front and back of the layer with the appropriate time delay between them. 
However, the discrete scatterer responses (in black) show varying degrees of agreement with this 
coherent field. In Figure 2a, the discrete scatterer response for 10 m radius cavities at 2%, with a 
10 MHz c.f. signal, shows a relatively high degree of incoherence, although the initial response is 
similar to the front face reflection in the coherent field. There is a significant signal between the two 
coherent reflections, and after them, and the back-wall reflection in the coherent response is not 
clearly identifiable. At a higher concentration Figure 2b, some of the incoherence is reduced, 
especially the signal received after the termination of the coherent field. Reducing the radius has a 
more marked effect at improving coherence. Comparison of Figure 2b (for 10 m radius) and Figure 
2c (for 5 m radius) shows that the reduction in radius produces a nearly-coherent field at 10% 
concentration (by volume) with a 10 MHz c.f. signal. It should be noted that since these are at the 
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same volume concentration, the number density is significantly larger at the smaller radius. There is, 
however, a difference in arrival time of the back wall echo between the discrete scatterer and effective 
medium models, because the discrete scatterer model is a single scattering model, and is not able to 
predict the change in effective wave speed due to the porosity, which does occur in the coherent field. 
A reduction in the centre frequency of the signal also has a significant effect in the emergence of the 
coherent response from the discrete scatterer model, as seen by comparing Figure 2b (a 10 MHz c.f. 
signal) and Figure 2d, which shows the response with a 5 MHz c.f. In this case, both front and back-
face reflections of the coherent field are produced from this single realization of scatterers in the 
discrete scatterer model. The difference in arrival time is also clear here, but the plane-wave-like 
behavior arising from the discrete scatterer model for these single realisations is apparent. 
Comparisons between various pairs of these figures indicate that coherent field emerges at lower 
frequency, smaller cavity radius (at constant volume concentration) and higher concentrations.  

 
 

 

(a)  (b) 
 

(c)  (d) 

Figure 2 Time-domain results of discrete scatterer (black) and effective medium model (red) 
simulations for various cavity radii, concentrations and signal centre frequencies (c.f.) (a) 10 m 

radius, 2 v/v% with 10 MHz c.f. (b) 10 m radius, 10 v/v% with 10 MHz c.f. (c) 5 m radius, 
10 v/v% with 10 MHz c.f (d) 10 m radius, 10 v/v% with 5 MHz c.f. 

3.2.  Frequency-domain results 
In the frequency domain, the response to a time-domain impulse is typical of that of a thick layer for 
the effective medium model, showing regularly spaced resonance peaks (Figure 3). The integrated 
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ensemble-average response is also shown (in blue) illustrating a close agreement with the effective 
medium model, with a slight difference in peak spacing due to the difference in sound speed between 
the ensemble average (single scattering model) and the effective medium model. Figure 3 also shows 
the response from the discrete scatterer model (in black) for a single realisation of scatterer locations, 
for a cavity radius of 10 m at a concentration of 2% (scaled by concentration). Whilst the discrete 
scatterer response matches that of the effective medium model at the lowest frequencies, i.e. is a 
coherent response, it rapidly diverges as the frequency increases, showing increased incoherence.  

 

Figure 3 Frequency domain response for a slab of cavities of 10 m radius for the effective medium 
model (red) and integrated ensemble average model (blue), and the discrete scatterer model at 2 v/v% 

(scaled by concentration). 

3.3.  Deviation from coherence 
In order to investigate the conditions for the emergence of the coherent field from the incoherent 

response of a single realisation of scatterers, we quantify the degree of incoherence using the 
frequency domain response, such as that shown in Figure 3. As the measure of the degree of 
incoherence, we have adopted the sum of the squared residuals (RSS) between the discrete scatterer 
response and a reference response, taken to be either the effective medium (coherent) or ensemble 
average response. The sum is taken up to each frequency in turn. The RSS is normalised by 
cumulative sum of the square of the reference response. Further details are provided in  [7]. A higher 
value of RSS indicates a less coherent response. The RSS value increases strongly with frequency (or 
bandwidth), and is also higher for larger cavity radii (at constant volume concentration), and for lower 
concentrations; these trends in the degree of coherence were previously observed in the time-domain 
responses of Figure 2.  

The trends in the degree of coherence were established quantitatively by specifying a maximum 
value of RSS (relative to the effective medium response) which produced a coherent response; this 
value was estimated by assessing which time-domain responses were acceptably coherent. This 
maximum value of RSS=0.3 was then used to determine the maximum bandwidth (frequency) 
permitted to operate within this limit, for each condition of radius and concentration. The criterion is 
thus equivalent to specifying the maximum frequency at which a coherent response could be expected, 
for a single realisation of scatterers, for the particular cavity radius and concentration. Figure 4 shows 
how the maximum frequency varies with cavity radius and concentration for a single realisation at 
each condition. At larger cavity radius, a lower operating frequency is required to obtain coherence at 
the same concentration. Conversely, a lower frequency is required when working at lower 
concentrations of cavities at the same radius.  

Power-law fits of the maximum frequency, fmax as a function of radius, a, and volume fraction,    
(each for a single realisation of the discrete scatterer model) were determined according to the relation 
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 max /MHzf D a m     (6) 

where the fitted values are  =-0.71,  =0.32 with a constant factor D=36.7 (in appropriate mixed 
units). These fits are shown by coloured lines on Figure 4. It might be expected that the limit for 
coherent response would be related to the magnitude of the wavelength, compared with the mean 
distance between scatterers, as a measure of the typical length scale of heterogeneity in the system. 
This is equivalent to a coherence limit defined by the number density of scatterers per cubic 
wavelength. This was tested by an alternative power law fit (shown in black on Figure 4) where 

   11 1 3
max /MHz ms μmf G a   (7) 

which resulted in a fit of G=335.1 ms-1, corresponding to around 8 scatterers per (linear) wavelength. 
This functional dependence, however, does not appear to fit the data so well, as is clear on the plots, 
especially at small radius and high concentration.  

 
 

(a)  (b) 

Figure 4 Maximum bandwidth plotted against (a) radius and (b) concentration of cavities  
(a) concentrations of [1,2,5,10 %] are represented by blue, green, red, purple symbols respectively (b) 
radii of [5.0,7.9,10.0,15.9,20.0 m] represented by blue, green, red, light blue, purple. The coloured 
fitted lines are given by equation (6), and the black fitted curves are for the fit on number density in 

equation (7). 

3.4.  Variability of incoherence 
Thus far, the discrete scatterer results shown here have been for only a single realisation of scatterer 
locations. Since the configuration of scatterer locations is random, a different field response will be 
obtained for each new realisation, for a fixed cavity radius and concentration. The discrete scatterer 
model response averaged over many realisations will of course be the coherent field, since it that is an 
ensemble average response. However, each of the individual discrete scatterer model responses will be 
incoherent, and deviate from the coherent field by a different degree. By taking many realisations, we 
obtain the mean degree of incoherence, and the spread of that quantity. This has been determined 
using 15 simulations of the discrete scatterer model for a cavity radius of 10 m for each 
concentration. The sum of squared residuals (RSS) was calculated between each discrete scatterer 
response (scaled by concentration) and the ensemble average response. Then, the mean and standard 
deviation of the RSS were calculated. The results are shown in Figure 5 as a function of frequency for 
the various concentrations; the curves are considerably smoothed compared with the results from any 
single realisation. Figure 5 shows the mean +/- one standard deviation shown by error bars, 
demonstrating the high degree of variation in the RSS value for different realisations of the same 
system. The RSS relative to the effective medium response (true coherent response) are similar, but 
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include the error due to the effective wave speed which is not accounted for in the discrete scatterer 
and ensemble average models. Due to the spread of RSS values under the same conditions (radius, 
frequency, concentration), the definition of a coherent response condition would therefore require a 
confidence limit specification based on the standard deviation, to ensure that any single realisation 
would be likely to fall within an acceptable coherence level. At the approximate coherence condition 
obtained here, the standard deviation in RSS is around half the mean. Thus any definition of the 
coherence condition must consider the likely range of single realisation responses. 

 
 

(a)  (b) 

Figure 5 The mean sum of squared residuals (RSS) as a function of frequency (bandwidth) for 10 m 
radius cavities for concentrations of [1,2,5,10 %] shown in [blue, green, red, light blue] respectively; 

(a) mean of 15 simulations (b) mean+/- one standard deviation.  

4.   Conclusions 
We have shown the results of simulations of the back scattered acoustic response from a slab region 
containing cavities in a solid matrix. The simulations have shown the emergence of the coherent 
response for even a single realisation of scatterer locations, under certain conditions. As expected, 
coherence results where there is small radius, higher concentration and lower frequency (longer  
wavelength). The degree of incoherence has been quantified and used to determine a maximum 
frequency at which coherence could be expected for a single realisation of scatterers for specific cavity 
radius and concentrations. The dependence on radius and concentration was compared with the 
criterion that the wavelength should be large compared with the average interparticle spacing; the fit  
showed similar trends but was not quantitatively accurate. We have also shown the significant 
variability in the degree of incoherence between multiple realisations of the same system (radius, 
concentration). Different realisations can produce quite different degrees of coherence. Although the 
model includes some simplifications, it has enabled some interesting features of the response of single 
realisations of scatterers to be explored. 
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