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Abstract

While humans can separate a sound of interest amidst a cacophony of con-

tending sounds in an echoic environment, machine-based methods lag behind

in solving this task. This thesis thus aims at improving performance of audio

separation algorithms when they are “informed” i.e. have access to source

location information. These locations are assumed to be known a priori in

this work, for example by video processing.

Initially, a multi-microphone array based method combined with binary

time-frequency masking is proposed. A robust least squares frequency invari-

ant data independent beamformer designed with the location information is

utilized to estimate the sources. To further enhance the estimated sources,

binary time-frequency masking based post-processing is used but cepstral

domain smoothing is required to mitigate musical noise.

To tackle the under-determined case and further improve separation per-

formance at higher reverberation times, a two-microphone based method

which is inspired by human auditory processing and generates soft time-

frequency masks is described. In this approach interaural level difference,

interaural phase difference and mixing vectors are probabilistically mod-

eled in the time-frequency domain and the model parameters are learned

through the expectation-maximization (EM) algorithm. A direction vector

is estimated for each source, using the location information, which is used as

the mean parameter of the mixing vector model. Soft time-frequency masks

are used to reconstruct the sources. A spatial covariance model is then in-
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tegrated into the probabilistic model framework that encodes the spatial

characteristics of the enclosure and further improves the separation perfor-

mance in challenging scenarios i.e. when sources are in close proximity and

when the level of reverberation is high.

Finally, new dereverberation based pre-processing is proposed based on

the cascade of three dereverberation stages where each enhances the two-

microphone reverberant mixture. The dereverberation stages are based on

amplitude spectral subtraction, where the late reverberation is estimated and

suppressed. The combination of such dereverberation based pre-processing

and use of soft mask separation yields the best separation performance. All

methods are evaluated with real and synthetic mixtures formed for example

from speech signals from the TIMIT database and measured room impulse

responses.
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Chapter 1

INTRODUCTION

1.1 Motivation

Almost everyday we encounter numerous instances where we need to focus

on one sound of interest in the presence of many distracting sounds. It could

be

• the parents’ call to the children among other sound sources such as a

television, a pet, or a vacuum cleaner within a home, or

• it may be a meeting room or an office setting where multiple speakers

are simultaneously active and there is a need to follow one speaker, or

• it could be listening to a certain talker while multiple talkers are also

active along with other background noise, as in a cocktail party situ-

ation [5], illustrated in Fig. 1.1.

Humans with normal hearing abilities, if required to undertake the afore-

mentioned tasks will perform reasonably well. This remarkable performance

of the human hearing system in conducting such complicated tasks is due

to the complex auditory processing that is yet to be fully understood. Hu-

mans exploit multiple cues or features and there are numerous processes

and complex mechanisms that make the difficult task of isolating a single

1
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Figure 1.1. The Cocktail Party, 1965. Alex Katz.

sound among other competing sounds in realistic reverberant environments

possible.

As technology progresses, more and more research is being done for the

development of advanced machines that could benefit mankind in one way

or another. Among many others, one need for these machines is to acquire

human-like hearing capabilities (machine audition), or specifically, separate

sounds from their reverberant mixtures as this would enable multiple appli-

cation areas. To name a few, consider

• the performance of automatic speech recognition (ASR) systems (in

smart phones, and computers) in realistic environments, with com-

peting sources, reverberation and background noise. The performance

degradation of such ASR systems could be considerably reduced by in-

corporating a pre-processing stage for reverberant speech separation.
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• People with hearing difficulties require more sophisticated devices,

such as, hearing aids or cochlear implants to better deal with everyday

challenging acoustic scenarios. This will help tens of millions of people

around the world and they can also carry out tasks that other humans

with normal-hearing do.

• Within a meeting or teleconference room with typically multiple speak-

ers and high levels of reverberation, robust source separation systems

are required to enable convenient hands-free operation, and automatic

speech transcription.

• In robotics applications, for instance, the robot needs to understand

the directives in realistic environments in order to fulfil different tasks

[6].

• In surveillance or forensic applications, where either there are record-

ings with mixtures of sounds or it is a real-time data feed; the source

of interest could be extracted from the acoustic mixture.

The above-mentioned examples are just a few among many more where

a sound of interest needs to be separated or extracted from a reverberant

mixture of multiple sounds. Hence, there is sufficient motivation to develop

efficient algorithms for machine-based reverberant sound source separation.

The current source separation algorithms can solve limited (with con-

straints on source statistics, the number of sources and microphones, or the

amount of reverberation) versions of the source separation problem. Some

methods, i.e. beamforming, typically require a large number of observations

(microphones) to enhance a source coming from a certain direction and re-

ject interferers from other directions [7]. For an improved performance, these

methods are only effective when the number of sources is less than the num-

ber of microphones i.e. the over-determined case. Their performance is

also limited at higher levels of reverberation, and thus, are not practically
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very useful [8]. In blind source separation (BSS) using independent compo-

nent analysis (ICA), an unmixing matrix is estimated assuming the mixed

sources to be statistically independent. However, only determined or over-

determined cases could be solved [9]. Computational auditory scene analysis

(CASA) based methods follow a different approach in that they are inspired

by the human auditory processing. They aim to model the fundamental cues

that humans utilize in performing the separation task and typically utilize

one or two microphones (i.e. are monaural or binaural). They generally ex-

ploit the time-frequency representation of observations and aim to estimate

time-frequency masks to segregate individual sources from the mixture [10].

Assuming that the sources do not overlap in the time-frequency domain,

these techniques are capable of solving the under-determined case i.e. more

sources than microphones. Monaural cues i.e. pitch, onset/offset, and bin-

aural cues i.e. interaural level and phase differences are typically used to

identify the time-frequency points belonging to a certain source, and gen-

erate either hard (binary) or soft (probabilistic) time-frequency masks [11].

The masks are applied to the mixture to reconstruct the sources.

The performance of current source separation systems in realistic rever-

berant conditions is very limited. Reverberation distorts the cues, such as,

the interaural level and phase difference, which are typically exploited by the

separation systems. The assumptions on which the different techniques are

based are also weakened due to reverberation. For instance, sparsity, which

is usually exploited in time-frequency CASA-based methods, which assumes

that signals are sparse in the time-frequency domain. Reverberation smears

and increases energy across time. As such the signal becomes less sparse in

the time-frequency domain, thus, causing degradation of the performance

of separation algorithms. Separation performance further deteriorates when

the number of sources in the mixtures increases.



Section 1.2. Aims and Objectives 5

1.2 Aims and Objectives

In many applications, information about the locations of the sound sources

may be known a priori, or it may have been estimated through independent

video processing. Can the source locations be used to advantage? Can this

“informed” approach better tackle reverberation and the case of multiple

speakers? To answer these and other similar questions, this thesis aims to

develop multiple signal processing techniques for informed source separation

in enclosed reverberant environments. The location information in this work

however is assumed to be derived from video processing but this is not

the subject of this thesis, further details can be found in [12, 13]. Such

location information is used in all the contribution chapters, i.e. Chapters

3-6, whereas the room spatial characteristics are employed in Chapter 5. In

the evaluation studies later in Chapter 3 of the thesis, the effect of estimation

errors in such location information is also studied. Complexity issues and

real-time implementation are outside of the scope of this thesis.

The aims of this thesis are summarized as follows:

Exploit multi-microphone array based method combined with binary time-frequency

masking to segregate sources in reverberant environments

A multi-microphone beamforming method with binary time-frequency based

post-processing is studied. The beamformer, utilizing the known source lo-

cations, provides an estimate of the speech sources. The source estimates

are further enhanced by exploiting binary time-frequency masking. The aim

of binary masking is to suppress any energy from the interfering source that

has remained in the estimate of the target source obtained by the beam-

former. Since the binary masks tend to generate unwanted musical noise,

cepstral processing is also incorporated.
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Study a two-microphone model-based method that generates soft time-frequency

masks for under-determined reverberant source separation

To further the separation performance when the level of reverberation is high,

and to be able to solve the under-determined problem, a two-microphone

model-based approach is pursued. Inspired by the human auditory pro-

cessing, the combined probabilistic models of the interaural level and phase

differences and the mixing vectors are used. Since the source locations are

assumed to be known, they are utilized within the modeling. Parameters

of the models are estimated using the expectation-maximization algorithm.

Soft (probabilistic) masks are obtained from the posterior probabilities to

separate the sources from their reverberant mixtures.

Investigate modeling of the properties of the enclosure using a spatial covariance

model

To utilize additional spatial properties of the enclosure, such as the rever-

beration time, and the wall reflective properties, a spatial covariance model

is studied. The spatial covariance model is used in conjunction with the

aforementioned models and is shown to improve the separation.

Explore a pre-processing stage and a novel cascade structure for binaural dere-

verberation based on amplitude spectral subtraction

To tackle high levels of reverberation, a dereverberation based pre-processing

is studied. It is based on amplitude spectral subtraction. The pre-processing

is evaluated both as a single stage and also as a cascade structure.

The objectives of this study include

• Developing efficient algorithms that are able to separate multiple sounds

from their reverberant mixtures by exploiting the source locations.

• Publishing the work in leading journals and conferences in the area.
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1.3 Organization of this thesis

Chapter 2 gives background for the related topics which will be studied in

the later part of the thesis. It begins by describing sound production and

its propagation within rooms. The room impulse response, reverberation

time and other important related parameters are then introduced. Time-

frequency representation of signals is studied before reviewing the different

approaches to the source separation problem, including blind source separa-

tion, beamforming, and computational auditory scene analysis. The different

performance evaluation measures are also discussed.

Chapter 3 describes a multi-microphone array based approach combined

with binary time-frequency masking. Exploiting the knowledge of the loca-

tions of the sources, a robust least squares frequency invariant data indepen-

dent beamformer is designed. A binary time-frequency masking based post-

processing is then introduced. The estimated sources by the robust beam-

former are further refined using the binary masks. To smooth the binary

masks, since they tend to produce musical noise, cepstral based smoothing

is applied.

Chapter 4 illustrates a two-microphone based algorithm inspired by the

human auditory processing. It presents the probabilistic models of the in-

teraural level and phase difference and mixing vectors. The models utilize

the information of the locations of the sources. The models are combined

and their parameters are estimated using the expectation-maximization algo-

rithm. Experimental evaluation then follows which are conducted in varying

scenarios.

Chapter 5 studies the spatial covariance model. The spatial covariance

model exploits the spatial characteristics of the enclosure such as its rever-

beration time and wall reflection properties. The spatial covariance model is

combined with the models explained in Chapter 4, with the aim to further
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the separation performance in highly reverberant scenarios.

Chapter 6 investigates pre-processing based on dereverberation. Single-

microphone spectral subtraction based dereverberation methods are studied

first, and then extended to the binaural context. The two-microphone based

dereverberation is utilized as a pre-processing stages before source separa-

tion. To further suppress that late reverberation, a new cascade structure

is then studied. The cascade structure is also used as a pre-processor. A

variety of experiments are performed in the dereverberation-only, and joint

dereverberation and source separation processing contexts.

Chapter 7 summarizes the findings and the conclusions and discusses

directions for future work.



Chapter 2

BACKGROUND AND

LITERATURE REVIEW OF

SOUND SOURCE

SEPARATION IN

REVERBERANT

ENVIRONMENTS

2.1 Introduction

This chapter provides some background and a brief insight into the relevant

topics discussed in the later chapters. Although the areas could be discussed

in more detail, the focus here was to provide coverage which is sufficient for

a reasonable overall understanding of the area, and not shallow enough to

skip essential concepts. Further detail can be obtained through the extensive

list of references provided.

The chapter begins by introducing sound production and propagation

in enclosed environments. After discussing the room impulse response, im-

9
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portant parameters such as the reverberation time, direct-to-reverberation

ratio, and the critical distance are defined. A section explaining the time-

frequency representation of signals follows next. The different approaches

to the source separation problem are then briefly reviewed, including blind

source separation, beamforming, and computational auditory scene analysis.

Since the computational auditory scene analysis based methods are more rel-

evant to this thesis, they are reviewed in relatively more detail. Different

performance evaluation measures are then explained which are used to test

the performance of the algorithms developed, as detailed in the forthcoming

chapters.

2.2 Room Acoustics

Sound is produced by the physical vibrations of the sound source and prop-

agates as a pressure wave through air (or another medium). Sound waves

emitted in an enclosed environment are subject to multiple reflections and

diffractions with wall surfaces and objects within the enclosure, before being

received by a sensor (ear or microphone), as depicted in Fig. 2.1. Reflections

of the source signals are sensitive to characteristics of the geometry of the

environment, and the materials and objects within it. Thus, the received

sound signal will be a mixture of the delayed and attenuated versions of the

original source signal (along with the direct path signal). The propagation of

sound and the reflections for a certain source-receiver position i.e. the room

acoustic properties, can be fully described by the room impulse response

(RIR).

The RIR is composed of three main parts, namely, the direct-path, early

reflections and late reverberation, illustrated in Fig. 2.2. The direct-path of
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Figure 2.1. Multi-path reflections of sound waves in a room environ-
ment, from, SAE Institute (www.sae.edu).

the RIR in Fig. 2.2 is shown in blue, the early reflections in green (described

as all energy between 10-50 ms here), and late reverberation in red. The

direct-path signal is the sound received directly from the source without any

reflections, and travels the shortest distance. Since the direct-path sound

propagates from the original direction of the source, it has accurate infor-

mation of the location of the source [14]. Early reflections arrive after the

direct-path and there is evidence that they also improve intelligibility. Late

reverberation starts after the early reflections and typically begins in the

range of 50-100 milliseconds [15]. There is evidence of a perceptual mech-

anism in humans, termed as the precedence effect that aids in localizing

sounds within reverberant environments [16].

Reverberation time (RT60) is an important parameter in room acous-
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Figure 2.2. An illustration of an RIR with the direct-path, early
reflections and late reverberation signals in blue, green and red respec-
tively. Samples beyond 50 ms (800 samples at a sampling rate of 16000
Hz) are considered as late reverberation.

tics. It is the time taken by the sound signal power to decrease by 60 dB from

the time when the sound source is switched off [17]. Studies by Sabine [15]

indicate that the RT60 is directly proportional to the volume of the room

and inversely proportional to the amount of absorption. If the volume of the

room is denoted by “Vol”, and αSabine and A denote the absorption coef-

ficient and total absorption area respectively, the RT60, in seconds, can be

estimated as [17]

RT60Sabine =
24 ln(10)

c

V ol

αSabineA
(2.2.1)

where c is the speed of sound in air. An alternative equation to estimate the
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RT60 (in seconds) is also given by Eyring [17] as

RT60Eyring =
24 ln(10)

c

V ol

ln(1− αEyring)A
(2.2.2)

where αEyring is the Eyring sound absorption coefficient. Theoretically, from

both the equations, it could be observed that the RT60 is independent of

the distance of the sound source from the receiver [18]. The RIR is also

characterized by another important parameter that compares the energies of

its different components, called the direct-to-reverberation energy ratio

(DRR). It is the ratio of the energy of the direct-path signal (and usually

some early reflections) to the remaining reverberant part [15]. When a sound

source is at a position from the receiver that the direct-path energy is equal

to the reverberant part energy, it is said to be at the critical distance [17].

The performance of current source separation systems at medium or

higher RT60s (> 300 ms) is limited. The late reflections within a room arrive

with perceptible delay at the receiver and distort the information contained

in the sound [19]. Even state-of-the-art source separation methods [9,20–22]

fail to overcome this problem. New techniques are thus required that could

mitigate the effects of reverberation and thereby improve the separation

performance.

2.3 Time-frequency Representation

Time-frequency representation is a very useful way to analyze (and process)

speech signals that provides a representation of the signal over both time

and frequency. The short-time Fourier transform (STFT) is typically used

to transform the signal into the time-frequency domain.

Fig. 2.3 shows the speech waveform of an example utterance taken from
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Figure 2.3. The waveform of a 2.5 second long example utterance
“Don’t ask me to carry an oily rag like that”, sampled at 16 kHz.

the TIMIT database [23] where a female speaker says, “Don’t ask me to

carry an oily rag like that”. The spectrogram, the magnitude squared of

the STFT coefficients, of the same utterance is provided in Fig. 2.4, with

time on the horizontal axis and frequency on the vertical axis. The analy-

sis window in this example was 32 ms (512-point at sampling frequency of

16000 Hz). This means that the whole utterance was divided into chunks

of size 512 each, and a 512-point fast Fourier transform (FFT) was taken.

Each FFT thus represents the spectral activity over the 32 ms duration of

the signal, giving us the variation of the spectrum of the signal over time.

It can be observed from the spectrogram that most of the time-frequency

points contain insignificant energy, indicating that this signal representation

is sparse [24].
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Figure 2.4. Spectrogram of the utterance “Don’t ask me to carry an
oily rag like that” with an analysis window of 32 ms.

The speech signal is convolved with a room impulse response and the

spectrogram of the reverberant speech is shown in Fig. 2.5. RT60 of the

room was 320 ms. It can be seen that the spectrogram is considerably

blurred and time-frequency points with no or less energy are now filled by

reverberation energy.

It is the late reverberation that causes temporal smearing of the signal

and significantly degrades the performance of many signal processing appli-

cations [17,25]. There is evidence of certain perceptual mechanisms that help

humans to adapt to different reverberant conditions [19]. Although humans

with normal hearing do well in tackling the reverberation challenge [19],

reverberation remains a challenge to machine-based processing. Different
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Figure 2.5. Spectrogram of the reverberant speech. The utterance in
Fig. 2.4 was convolved with the room impulse response with an RT60
of 320 ms.

dereverberation methods have been proposed to mitigate the effects of re-

verberation [17]. Sound source separation systems also tend to compensate

for the distortions caused due to reverberation, but generally still provide

poor performance in the presence of reverberation equivalent to realistic lev-

els, such as when RT60 > 300 ms. This motivates the development of source

separation algorithms that are relatively more robust to reverberation. Some

of the different approaches to source separation are discussed next.

2.4 Blind Source Separation

Blind source separation (BSS) algorithms attempt to separate the source

signals without the prior knowledge of sources or the mixing process. De-

pending on how the signals are mixed, algorithms can be classified as instan-
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taneous, anechoic and reverberant (or convolutive) [26]. In the instantaneous

mixing case each source signal appears within all the mixture channels at

the same time with differing intensity. The anechoic mixing differs from the

instantaneous case in that each source signal reaches the microphone with

a delay [27]. The anechoic mixing model is sometimes referred to as an in-

stantaneous mixing model with delays [26]. Mixing is reverberant (or echoic)

when there are multiple reflective paths between each source and each micro-

phone. The source separation task is challenging when source signals arrive

at microphones from multiple directions and with different delays.

Time-domain convolutive BSS is computationally demanding because of

the convolution calculation associated with the length of the room impulse

response. Time-domain methods generally also have low convergence speeds,

which motivates the transformation to the frequency-domain. Since convo-

lution in the time-domain corresponds to multiplication in the frequency

domain, the separation problem is simplified and instantaneous mixtures

are obtained at each frequency bin. However, the main downside to the

frequency-domain approach is the permutation problem (arbitrary order of

sources). Most instantaneous BSS algorithms yield source estimates with

scaling ambiguities and arbitrary order of sources. Applying such algorithms

independently to each frequency bin and combining them can potentially

lead to unintelligible and incorrect source estimates. The arbitrary scaling

which occurs at each frequency bin is usually overcome by restricting the

demixing matrix or the source estimates to be normalized [26]. On the other

hand, the arbitrary order of sources in each frequency bin can lead to a

total loss of the source separation achieved in the frequency domain when

combined incorrectly.

The ratio of the number of sources to the number of microphones also

influences the complexity of the separation process. A mixture is termed

as determined when the number of microphones is equal to the number of
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sources; over-determined when the number of microphones is larger than

the number of sources; and under-determined (or over-complete) when the

number of microphones is smaller than the number of sources [27]. Source

separation is generally more difficult in the under-determined case.

In convolutive source separation (CSS), for I audio sources recorded by

N microphones, the noise-free convolutive audio mixtures obtained can be

described mathematically as

xm(ts) =

I∑
j=1

P∑
p=1

hmj(p)sj(ts − p+ 1) (2.4.1)

where sj is the source signal from a source j = 1, ..., I, xm is the received

signal by microphone m = 1, ..., N , and hmj(p), p = 1, . . . , P , is the p-th tap

coefficient of the impulse response from source j to microphone m and ts is

the discrete time index.

In time-domain CSS, the sources are estimated using a set of unmixing

filters such that

yj(ts) =

N∑
m=1

Q∑
q=1

wjm(q)xm(ts − q + 1) (2.4.2)

where wjm(q), q = 1, . . . , Q, is the q-th tap weight from microphone m to

source j.

The CSS problem in the time-domain can be converted to multiple

complex-valued instantaneous problems in the frequency-domain by using

a T -point windowed short-time Fourier transformation (STFT), provided

T >> P . The time-domain signals xm(ts), are converted into time-frequency

domain signals xm(ω, t), where ω and t are respectively, frequency and time

frame indices. The N observed mixed signals can be described as a noise-free

vector in the time-frequency domain as
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x(ω, t) = H(ω)s(ω, t) (2.4.3)

where x(ω, t) is an N×1 observation column vector for frequency bin ω,

H(ω) is an N×I mixing matrix, s(ω, t) is an I×1 speech sources vector, and

the source separation can be described as

y(ω, t) = W(ω)x(ω, t) (2.4.4)

where W(ω) is I×N separation matrix. By applying an inverse STFT

(ISTFT), y(ω, t) can be converted back to the time-domain as

y(ts) = ISTFT (y(ω, t)) (2.4.5)

BSS methods could broadly be classified as based on second-order statis-

tics (SOS) or higher-order statistics (HOS). In SOS-based separation algo-

rithms the sources are separated on the basis of decorrelation rather than

independence and assume that the sources are statistically non-stationary

or have a minimum phase mixing system [28].

Utilizing SOS, Parra and Spence [21] exploited non-stationarity of speech

and proposed a solution to the source permutation problem. Separation was

performed in the frequency domain. They used a multiple decorrelation

approach and least-squares optimization to estimate the mixing/unmixing

matrix as well as to estimate the signal and noise powers. They proposed

to impose a smoothness constraint on the unmixing filters that forces the

frequency bins to align. It is achieved by constraining the filter length in the

time-domain to be much less than the frame size of the Fourier transform

[28]. Many researchers have focussed on tackling the source permutation

problem [29–32].

Another statistical technique that uses HOS is independent component
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analysis (ICA). In the ICA model, the data variables are assumed to be

linear mixtures of some unknown latent variables, and the mixing system

is also unknown. The latent variables are assumed non-Gaussian and mu-

tually independent, and they are called the independent components of the

observed data. These independent components, also termed as sources, can

be estimated by ICA. Typical assumptions of ICA can be summarized as

follows: sources are assumed to be statistically independent of each other;

all but one of the sources must have non-Gaussian distribution; the mixing

matrix is usually assumed to be square and invertible (and the number of

sources is equal to the number of mixtures, a determined problem) [28]. ICA

generally suffers from permutation, scaling and data length problems.

Kim et al. in [33] proposed independent vector analysis (IVA), which pre-

serves the higher-order dependencies and structures of signals across differ-

ent frequencies to overcome the permutation problem in ICA. IVA exploits a

dependency model which captures inter-frequency dependencies. The inter-

frequency dependencies depend on a modified model for the source signal

prior. The IVA method defines each source prior as a multivariate super-

Gaussian distribution. Thus, it can potentially preserve the higher-order

dependencies and structures of frequency components. Moreover, the per-

mutation problem can be potentially avoided leading to an improved sepa-

ration performance [33].

Taking the effects of reverberation and longer room impulse responses

into perspective, Araki et al. in [22] studied the poor performance of frequency-

domain BSS at higher reverberations. They reported that it was not very

useful to be constrained by the condition where the Fourier transform frame

size is greater than the filter length of the room impulse response. They

also showed that both short and long frames fail: for a longer frame size,

the number of samples in each frequency is small, therefore, the zero-mean

and independence assumptions collapse and correct estimation of statistics
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become challenging. For the case of a short frame, failure results because

the frame size will not cover the reverberation. For instance, an RT60 of 500

ms correspond to the impulse response filter length of 4000, with a sampling

rate of 8 kHz. So, the Fourier transform (FT) frame sizes of 1024 or 2048

are short and do not cover the entire reverberation profile. Whereas if the

frame size increased to 4096, there will be insufficient samples at each fre-

quency to apply a learning algorithm and the independence assumptions will

collapse giving a poor separation performance. The authors concluded that

there existed an optimum frame size that was determined by the trade-off

between covering the entire reverberation and maintaining the independence

assumption.

2.5 Beamforming

Beamforming techniques tackle the source separation problem from a spatial

viewpoint. A beamformer, or a spatial filter, is a processor whose objective

is to estimate the signal arriving from a desired direction in the presence of

noise and interfering signals [34]. Fig. 2.6 illustrates a beamformer’s beam

pattern, where a source of interest is accepted by forming the main lobe

towards it, while interferers are nulled from other directions.

In a delay-and-sum beamformer, with microphones arranged in a linear

array, a sound source of interest from the far field arrives at the microphones

with a delay and a particular angle relative to the array. If suitable delays

are applied, all the advanced signals could be time-aligned and their sum

would lead to the cancelation of any uncorrelated noise. It is frequency-

dependent and the frequency selectivity generally depends on the size of the

array and the distance between the microphones. Beamforming methods

generally require a large number of microphones for an improved perfor-

mance, and typically need prior information about the source directions.
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Figure 2.6. An illustration of a beam pattern with the main lobe
pointed towards the desired source and a null towards the interferer.

A large number of microphones are required for a beamformer to achieve

separation, in contrast, humans use only two ears to perform the same task.

Further issues with beamforming are array geometry, as a uniform linear

array will not provide 360 degrees azimuth response whereas a circular array

can overcome this generally with more microphones. Moreover, the spacing

between microphones is critical for a broadband signal such as speech as it

will determine the limitations of the response of the array for example due

to spatial aliasing [7, 35].

Computational auditory scene analysis based methods aim to mimic the

abilities of the human hearing system, but utilize mixtures from either one

or two microphones. These techniques are discussed in detail in the next

section.
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2.6 Computational Auditory Scene Analysis

Computational Auditory Scene Analysis (CASA)-based source separation

methods are inspired by the human auditory processing and exploit the cues

that humans make use of within the auditory scene analysis [36]. These

methods generally utilize mixtures from one microphone (monaural) or two

microphones (binaural), and typically exploit the time-frequency signal rep-

resentation, also referred to as time-frequency (TF) masking or ideal binary

mask (IBM).

TF masking relies on the assumption of signal sparseness i.e. the major-

ity of the samples of each signal are almost zero and thus the sources rarely

overlap [24]. A TF mask (or filter) is based on a TF representation of a

signal, commonly obtained by a short-time Fourier transform (STFT) [37].

Broadly speaking, masks could either be binary (hard) or soft (probabilis-

tic). Speech sources can be perfectly demixed via binary TF masks provided

the TF representations of the sources do not overlap [38], a condition that

Yilmaz and Rickard [38] term W-disjoint orthogonality. Let S1(ω, t) and

S2(ω, t) be the STFT of two speech signals s1(ts) and s2(ts) respectively.

Then the W-disjoint orthogonality (WDO) assumption can be written as

S1(ω, t) S2(ω, t) = 0, ∀ ω, t (2.6.1)

where t denotes the time index and ω is the frequency index. Speech signals

have generally been found to have sparse time-frequency representations

and satisfy a weakened form of eq. (2.6.1) in that the product of their TF

representations is almost always small [38].

Roman et al. [39] and Yilmaz and Rickard [38] provided a study for bin-

aural speech separation. In [39] authors used spatial localization cues: in-

teraural time differences (ITD) and interaural intensity differences (IID) for

speech separation. Their work was motivated by the way in which the human
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auditory system performs the speech separation task. In [38] the authors in-

troduced the concept of approximate W-disjoint orthogonality. They showed

that ideal binary TF masks do exist that could separate multiple speech sig-

nals from a single mixture. The Degenerate Unmixing Estimation Technique

(DUET) technique [38,40] calculates a two-dimensional histogram of the ob-

served interaural level and time differences, and finds its peaks which would

correspond to the number of sources. They approximated masks when two

anechoic mixtures were given, assumed that the interaural cues were con-

stant at all frequencies, and that there was no spatial aliasing, which limits

its use in practical reverberant situations.

The TF masking based methods have further been developed and are

combined with either ICA or beamforming in several studies, discussed in

the following sections.

2.6.1 ICA and TF Masking

Kolossa and Orglmeister [41] proposed non-linear post-processing in the form

of TF masking applied to the output of the frequency-domain ICA. Tests

were based only for the special case of two sources and sensors. Initially,

signal estimates were obtained by applying ICA to the mixtures. Direction

of arrival information was used for permutation correction. The output was

then further enhanced by exploiting the approximate WDO of speech signals.

The authors claimed that the algorithm was applicable for demixing an ar-

bitrary number of sources as long as the approximate disjoint orthogonality

requirement was met. In their proposed post-processing method, the mag-

nitudes of the ICA outputs at each frequency bin and at each time frame

were compared. Assuming WDO, only one output would be dominant at

any given frame and bin. Thus, bins with greatest magnitudes were held

and others were set to zero. The combined ICA and TF masking method

was applied to in-car, reverberant (RT60 of 300 ms) and artificial speech
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recordings. SNR improvement of 15 dB for the in-car case was claimed.

The post-processing was tested in conjunction with two ICA algorithms and

one beamformer. It was shown that the non-linear post-processing added

between 1 dB and 6 dB (3.8 dB on average) to the output SNR. It was

concluded that TF masking can significantly improve separation if used as

a post-processing step for frequency-domain ICA algorithms.

Araki et al. [42] proposed a solution for under-determined source sepa-

ration by combining a sparseness approach and ICA. They first extracted

one source using binary TF masking and then applied frequency-domain

ICA to separate the remaining mixtures. They considered the case with two

sensors (microphones) and three speech sources. The speech sources were

assumed to be mutually independent and sufficiently sparse in the TF do-

main. They employed the TF approach because they claim speech signals

are more sparse in the TF domain than in the time-domain. The authors

pointed out that in [40] the signal sparsity assumption was used to extract

signals using a binary TF mask, but the method results in discontinuous

zero-padding of the extracted signals and thus are severely distorted (musi-

cal noise is introduced). The authors claim to have overcome the musical

noise problem. They remove only one source with a binary mask in the first

stage and separate the remaining sources by ICA in the second stage. Tests

were also performed in reverberant conditions with RT60 of 130 ms and 200

ms claiming separation with little distortion.

Araki et al. [43], in a later work, used a continuous (soft) mask instead

of a binary mask (which they used earlier), and reported that the signals

extracted through binary masks contained loud musical noise. They con-

sidered the under-determined case with more sources (I) than sensors (N).

The non-binary continuous mask was based on a directivity pattern. As they

had done previously, in the first stage they remove I-N sources by utilizing

the directivity pattern of a null beamformer (which generates nulls towards
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the given I-N directions) and employ N × N ICA at the second stage to

separate the remaining sources. Experimental results were given for I = 3,

N = 2 and I = 4, N = 2. For I = 3, N = 2 when RT60 = 0 ms, they

mentioned that the method by Yilmaz and Rickard [38] gave unsatisfactory

signal-to-distortion ratio and a large level of musical noise was also present.

While they claimed that with their proposed method they obtained high

signal-to-distortion ratio values with no serious deterioration in separation

performance. The performance of all methods was worse in the reverberant

case with RT60 = 130 ms (compared with the results when RT60 is 0 ms).

However, the authors claimed to be able to obtain higher SDR without musi-

cal noise compared with the method by Yilmaz and Rickard in a reverberant

environment.

Saruwatari et al. [6] proposed a two-stage real-time algorithm by com-

bining a single-input multiple-output (SIMO) ICA technique and binary TF

masking. In the first stage, the SIMO ICA is used to generate mutiple SIMO

signals at each microphone. A binary mask is introduced in the second stage

to efficiently reduce the remaining error in ICA. They also considered rever-

beration and claimed that their method outperformed the conventional ICA

and binary masking techniques.

Sawada et al. [44] combined ICA and phase-based TF masking to extract

certain dominant sources of interest that were assumed to be close to the

sensors, to have dominant power and be non-Gaussian. Unlike their previ-

ous work, they initially apply ICA to remove independent components and

obtain basis vectors. A TF masking stage follows that reduces the residuals

caused by ICA (in the under-determined case). It was claimed that the basis

vector normalization and clustering can be used to determine the number of

target sources and align the permutation ambiguity of ICA.

Araki et al. [45] presented a new sparse source separation method for

non-linearly arranged sensors by utilizing the k-means clustering algorithm
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(a commonly used unsupervised learning algorithm) and binary TF masking.

Experiments were performed for under-determined conditions with RT60 of

128 ms and 300 ms. The distance (R) between sensors was varied i.e. R

= 50, 110, 170 cm. Separation results were shown with two sensors, two-

dimensional three sensors, four sensors. It was concluded that the direct-

to-reverberant ratio was important for current sparse source separation; and

sparse source separation in reverberant conditions was still an open problem.

Pederson et al. in [46] and [47] used an iterative method by combining

instantaneous ICA and binary masking to segregate each signal (using only

two microphones). Their algorithm flows as follows: a two-input two-output

ICA algorithm is applied to the input mixtures, not knowing the number

of sources in the mixtures. The estimated outputs of ICA are re-scaled

and transformed to the frequency-domain by the use of STFT. Binary TF

masks are then determined for each TF unit by comparing the amplitudes

of the two spectrograms. Then each of the two binary masks are applied to

the original microphone mixtures in the TF domain. After the application

of masks the sources are reconstructed in the time-domain by the inverse

STFT. A stopping criterion is devised to stop further processing when the

signal consists of only one source or when the mask is too sparse. With

this iterative algorithm the authors claim to separate successfully mixtures

having up to seven speech sources and to have achieved high signal-to-noise

ratio (SNR) gains in reverberant conditions (with RT60 of 400 ms). The

method proposed in [47] was compared with other methods i.e. with DUET

[38] in the instantaneous and convolutive cases and results were given. Their

method gave better ∆ SNR compared to the instantaneous DUET, while the

convolutive DUET gave similar results.

Kolossa et al. [48] combined ICA and TFmasking together with uncertainty-

based decoding techniques to separate the source of interest when multiple

speakers are simultaneously active. They mentioned that by using TF mask-
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ing, part of the information of the original signals might be lost along with

the interfering sources, thus each estimated mask is considered uncertain. A

complex Gaussian uncertainty model was used to estimate the uncertainty

in the spectrum domain. A linear four-microphone array was used and ex-

periments were performed in noisy conditions with RT60 of approximately

160 ms.

Sawada et al. [49] proposed a frequency-domain two-stage convolutive

source separation method that could also be applied to the under-determined

case. In the first stage the expectation-maximization (EM) algorithm is used

in which frequency-domain samples of the mixtures are clustered (in a fre-

quency bin-wise manner) into each source. The second stage aligns the

permutation ambiguities introduced by the first stage. They claim to ob-

tain good results with this two-stage method even in reverberant conditions.

Experimental results were also provided for the under-determined case with

reverberation (varied from 130 ms to 450 ms) of four speakers and three

microphones. The proposed method was shown to perform best compared

to three other BSS methods.

Jan et al. [50] devised a multi-stage approach by combining ICA and ideal

binary masking (IBM) to separate convolutive speech mixtures from two mi-

crophones. They also apply post-filtering in the cepstral domain. Firstly,

they separate the signals from the two-microphones recordings using ICA.

They then estimate the IBM by comparing the energies of the correspond-

ing time-frequency units of the separated sources obtained from the first

stage. Lastly, they employ cepstral smoothing to reduce the musical noise

introduced by TF masking. They evaluated their algorithm for simulated

reverberant mixtures as well as real recordings claiming increased efficiency

and improved signal quality. Detailed results were provided for a separation

example with two sources and sensors with varying Fourier transform frame

lengths, RT60s and microphone noise. The proposed algorithm was also
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compared with two other methods [47] [50] and provided results in which it

outperformed both.

2.6.2 Beamforming and TF Masking

Some studies have focussed on combining beamforming and TF masking to

further enhance the separation. Roman and Wang [10] and Roman, Srin-

vasan and Wang [51] established a method for two-microphone sound sep-

aration of mixtures contaminated with interferences and reverberation by

utilizing adaptive beamforming. The adaptive beamformer, having known

the source directions, first cancels the target source. Then the TF units that

were highly attenuated in the first stage (to have likely originated from the

target location) are set to unity to get an estimate of the IBM.

Boldt et al. [52] use two cardioids (first-order differential beamformers)

to calculate the IBM. Having the information of the directions of target and

interfering signals, both the cardioids that are pointing in opposite directions

provide the basis for IBM estimation. A theoretical derivation was provided

and it was shown that it is possible to calculate the IBM without having

access to the unmixed signals.

In [53] Beh et al. proposed a two-stage algorithm to separate two sound

sources by combining matched beamforming and TF masking. The beam-

former estimates the sources and then the residual interference is suppressed

by TF masking. The locations of the sources were assumed to be known

and to estimate the impulse response the beamformer uses a least-squares

method. The beamwidth of the beamformer was controlled to preserve the

original source content to a maximum. The output of the beamformer still

contained unwanted acoustic content which was further reduced by using TF

masking.
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2.6.3 Other related work

Aarabi et al. [54] proposed a multi-microphone TF masking technique that

uses both the magnitude and phase information of the TF blocks (units) for

comparison. They assume that the direction (or the time-delay of arrival,

as they call it) of the target speaker is known. They mentioned that the

popular source separation techniques (ICA, beamforming, and others) are

not specifically designed to deal with speech signals. Utilizing certain char-

acteristics of speech could greatly enhance the signal separation problem.

They claimed that their algorithm was capable of preserving speech features

from the direction of interest and degrading features from other directions.

The two noisy mixtures from two microphones were first transformed into

frequency-domain representations. A phase-error was derived for each TF

unit based on the information from the two microphones. Each TF unit for

each microphone was given a value between zero and one. The TF units

with smaller phase-error were ‘rewarded ’ by larger value ‘1’ and TF units

with large phase-errors were ‘punished ’ by a small value ‘0’.

Later in 2004, Aarabi and Shi [55] based their two-microphone algorithm

upon phase-error based filters which depend only on the phase of the signals.

First, TF phase-error filters are obtained. The time difference of arrival

(TDOA) of sources and phases of microphone signals were assumed to be

known. The individual TF units were rewarded or punished based on the

observed and expected phases of those units. Their aim was to maintain the

spectral structure of the sources thus preserving the main contents of the

speech source. Soft masking was utilized and experiments were performed

both in anechoic and low reverberant (RT60 = 100 ms) conditions. The

authors mentioned that the SNR gain simulations were useful but could

not truly portray the effectiveness of the speech enhancement technique.

A better way was to test the output on a speech recognition system. A

speaker-independent digit recognition system was used for testing.
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Takenouchi and Hamada [56] applied TF masking to an equilateral trian-

gle array to obtain three delay estimates for each microphone pair. Cermak

et al. [57] proposed a three-stage algorithm employing TF binary masking,

beamforming and non-linear post-processing. They claim that their method

removes the musical noise (introduced by binary TF masking) and suppresses

the interference in all time-frequency slots.

Given the binaural mixtures, Mouba and Marchand [58] used

expectation-maximization based clustering, where the interaural level and

time differences at each TF point are mapped to an azimuth angle to sepa-

rate the sources. Mandel et al. [59] model the interaural spatial parameters

as Gaussian distributions and use expectation-maximization to estimate the

model parameters. The posterior probabilities, after a fixed number of iter-

ations, are used to construct probabilistic masks for each source, with the

assumption that total number of sources are known a priori.

The different methods described above are able to perform source sep-

aration in constrained scenarios i.e. with either no or very low levels of

reverberation, and consider the simple case of mixtures of only two sound

sources. The performance of even the state-of-the-art methods in realistic

reverberant and multi-speaker environments is limited. New techniques need

to be developed that could tackle the reverberation problem well and provide

improved performance in multi-source scenarios. This thesis focuses on the

development of such algorithms, by exploiting the knowledge of the locations

of the sound sources that could either be known a priori or calculated by a

video processing system. Estimating these locations is not within the scope

of this thesis, but further details can be found in [12,13,60,61].

Evaluating the performance of source separation systems is discussed

next.
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2.7 Performance Evaluation Metrics

An important task in the evaluation of source separation algorithms is to

have suitable subjective and/or objective evaluation metrics to quantify how

well the algorithms have performed. In the speech separation context, typi-

cally there are two things to focus within the processed speech: the overall

speech quality and the intelligibility. The overall speech quality is generally

the notion of the listener relating to the perceived speech in that how well it

sounds. Whereas, the intelligibility has to do with perceiving the content of

the utterance in that what is being uttered. In general, speech rated as of

good quality is highly intelligible and vice versa; however, speech perceived

as of bad quality may give a high intelligibly score [62]. Subjective listening

tests are the most accurate way of performance evaluation, but they are

expensive, require intensive labour and thus are time-consuming. Objective

measures have therefore been developed. Different evaluation measures are

used in different domains depending on the type of processing involved and

the distortions produced due to that processing [63]. The evaluation met-

rics used in this thesis are discussed as follows. The main motivation for

using these specific metrics was because of their usage by the wider research

community within this research area and their suitability for the different

algorithms developed in this thesis.

2.7.1 Objective Measures

Signal-to-distortion ratio

The Signal-to-distortion ratio (SDR) which is the ratio of the energy in the

original signal to the energy in interference from other signals and other arti-

facts proposed in [64] is used as an evaluation metric throughout this thesis.

The implementation provided in BSS EV AL toolbox is utilized. Consider

the anechoic original time-domain signals be represented as si(ts), · · ·, sI(ts),
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the anechoic target signal denoted as st(ts), and the estimated target as

ŝt(ts). The SDR is expressed in terms of the three time-domain signals pro-

duced by projecting the estimated signal onto the space of the original signals

i.e. the target signal starg(ts), the error caused by interference, eintf (ts), and

the error because of the artifacts, eartf (ts). Let P (·) be the projection op-

erator and τmax be the maximum number of samples utilized in the shifting

process, the three signals can be expressed as [65]

starg(ts) = P (ŝt, st, τmax) (2.7.1)

eintf (ts) = P (ŝt, {si}, τmax)− P (ŝt, st, τmax) (2.7.2)

eartf (ts) = ŝt − P (ŝt, {si}, τmax) (2.7.3)

SDR can be written as

SDR = 10 log10
∥starget∥2

∥eintf + eartf∥2
(2.7.4)

where ∥ · ∥2 denote square of the vector 2-norm (the sum of squares of all

entries). Late reverberation from the sources and any other unexplained

noise (including musical noise) is considered as the artifact error.

The signal-to-interference ratio (SIR) and signal-to-artifact ratio (SAR),

defined below, are also used in Chapter 3.

SIR = 10 log10
∥starget∥2

∥eintf∥2
(2.7.5)

SAR = 10 log10
∥starget∥2 + ∥eintf∥2

∥eartf∥2
(2.7.6)

In contrast to SDR, the SIR metric does not penalize reverberation. In

Chapter 6 where dereverberation methods are studied, the SNR and the

segmental SNR (segSNR) are also used for evaluation. The SNR is defined
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as

SNR = 10 log10

∑T
ts=1 s

2
t (ts)∑T

ts=1(st(ts)− ŝt(ts))2
(2.7.7)

where T is the length of the signal. The segSNR is a frame based measure

which is obtained by averaging frame level estimates of SNR [63,66].

Performance Index

Adopting Performance Index (PI) as an evaluation metric is motivated by

assessing the performance at each frequency bin to provide an insight into the

separation achieved by the frequency-domain convolutive source separation

algorithm. Utilizing the matrices H and W in eq. (2.4.3) and (2.4.4), the

matrix G is obtained as, G = WH. Assuming that the number of source

signals equals the number of mixtures, the PI as a function of matrix G is

written as [28,67,68]

PI(G) =
[ 1
n

n∑
i=1

( m∑
k=1

abs(Gik)

maxkabs(Gik)
− 1

)]
+
[ 1

m

m∑
k=1

( n∑
i=1

abs(Gik)

maxiabs(Gik)
− 1

)]
(2.7.8)

where Gik is the ik-th element of G. Lower bound for the PI is zero while the

upper bound is the function of the normalization factor. PI with a value zero

means superior separation performance. The algorithm detailed in Chapter

3 is evaluated with this criterion.

Perceptual Evaluation of Speech Quality

The Perceptual Evaluation of Speech Quality (PESQ) measure is an inter-

national telecommunication union (ITU-T) standard originally designed for

the assessment of speech quality within telephony applications. PESQ com-

pares the original and the processed (separated) signals after transforming

them to a representation that is inspired by psychoacoustics. PESQ is used



Section 2.8. Summary 35

in Chapter 6 of this thesis. Precisely, the implementation provided in [69] is

used.

2.7.2 Subjective Measures

Mean opinion score

In many applications, the ultimate goal of the sound processing algorithms

is an enhanced human listening experience. In Mean opinion score (MOS),

the algorithm performance is subjectively measured by conducting listening

experiments involving human subjects. MOS tests for voice are specified

by the ITU-T recommendation P.800 with the following scale (Table 2.1).

Subjects listen to the processed signals and give their opinions. The arith-

Table 2.1. Opinion scale.
Category rating Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

metic mean of a collection of these opinion scores is termed as the mean

opinion score. MOS is used in Chapter 3 of this thesis.

2.8 Summary

This chapter provided background of the important issues relating to sound

source separation in reverberant enclosures. It highlighted the hazard posed

by reverberation and discussed some approaches to the source separation

problem. CASA-based methods, that aim to model the cues that humans

make use of while performing the source segregation task, were reviewed

in detail. Different methods used on their own or in conjunction with TF

masking were then reviewed followed by a description of different perfor-
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mance evaluation measures. The following points highlight some limitations

of the current separation algorithms and demand for an improved perfor-

mance, specifically in reverberant scenarios.

1. Most of the works, for instance, [38], [56], [46], [47] consider an anechoic

environment (no reflections occur) and thus their mixing systems are

either anechoic or instantaneous. Instantaneous BSS does not take

signal propagation delay and reverberation into account. They can

not model real-world scenarios that are convolutive.

2. Room reverberation poses great threat to the source separation prob-

lem. Even the most sophisticated algorithms are practically ineffective

with medium or high level of reverberation i.e. with RT60 > 300ms

or RT60 > 500 ms respectively. Since, a realistic average-sized office

room may have an RT60 of 500 ms or more, there is a need for more

robust techniques that work well in reverberant conditions.

3. Most earlier works have focussed on scenarios with two speakers only

e.g. [47], [38]. Robust algorithms need to be developed to separate

more than two speech sources in order to be applicable in practical

situations.

4. TF masking is mostly exploited in the under-determined area. There

are instances where multiple-microphone algorithms need to be used

e.g beamforming. Work is required to incorporate TF masking in these

conditions to enhance the separation process.

The above-mentioned points provide sufficient motivation for the devel-

opment of new algorithms that are more efficient in real-world reverberant

environments. The rest of this thesis will aim to develop such algorithms

with the assumption that the locations of the sound sources are known. In

the following chapter, a multi-microphone based method is proposed that

also utilizes binary time-frequency masking.



Chapter 3

BEAMFORMING AND

BINARY TIME-FREQUENCY

MASKING FOR SOURCE

SEPARATION

3.1 Introduction

This chapter presents a novel multi-microphone source separation approach

which exploits spatial beamforming and binary time-frequency masking.

Typically, for sound sources measured in reverberant rooms, for instance

with reverberation time over 300 ms, the performance of audio-only blind

source separation (BSS) methods is limited. Therefore, in the proposed ap-

proach, the source location information is utilized to facilitate a robust least

squares frequency invariant data independent (RLSFIDI) beamformer. The

convex optimization approach in the beamformer design also allows com-

pensation for the possible uncertainties in source location and direction of

arrival estimates. Sources separated by the RLSFIDI beamformer are fur-

ther enhanced by applying a binary time-frequency masking technique as

a post-filtering process. The RLSFIDI beamformer design for linear array

configurations in a 3-D room environment is explained in the following sec-

37
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tion.

3.2 Robust Least Squares Frequency Invariant Data Independent

Beamformer

The least squares approach is a suitable choice for data independent beam-

former design [7], by assuming the over-determined case with N > I, which

provides greater degrees of freedom. The over-determined least squares prob-

lem for the beamformer design for one of the sources is obtained as

min
w(ω)

||HT (ω)w(ω)− rd(ω)||22 (3.2.1)

where rd(ω) is an Ix1 desired response vector and can be designed from

a 1D window e.g. the Dolph-Chebyshev or Kaiser windows [70], wT (ω) is

one of the beamformer weight vectors which corresponds to one row vector

of W(ω) in (2.4.4), and (·)T and || · ||2 denote respectively the transpose

operation and the Euclidean norm.

A frequency-invariant beamformer design can be obtained by assuming

the same coefficients for all frequency bins i.e. rd(ω) = rd [71]. If the

wavelengths of the low frequencies of the source signals are greater than

twice the spacing between the microphones then this design leads to spatially

white noise [70]. In audio-only (unimodal) CSS systems there are no priori

assumptions on the source statistics of the mixing system. Assuming that the

sound source locations are known, the mixing filter is formulated as H(ω) =

[d(ω, θ1, ϕ1), ...,d(ω, θI , ϕI)], where d(·) denotes the beamformer response

vector and θ and ϕ are the elevation and azimuth angles. The elevation

(θi) and azimuth (ϕi) angles of arrival to the center of the microphone array

are calculated as ri =
√

(uxi − u′
xm

)2 + (uyi − u′
ym)

2 + (uzi − u′
zm)

2, θi =

tan−1(
uyi−u

′
ym

uxi−u
′
xm

), ϕi = sin−1(
uyi−u

′
ym

riSin(θi)
), where uxi , uyi and uzi are the 3-D

locations of the speaker i, while u
′
xm

, u
′
ym and u

′
zm are Cartesian coordinates
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of the center of the microphone array.

The 3-D positions ofN -microphone array, with the sensors equally spaced,

are written in matrix form as

U
′
=


u

′
x1

u
′
y1 u

′
z1

...
...

...

u
′
xN

u
′
yN

u
′
zN

 (3.2.2)

where the Cartesian coordinates of the m-th sensor (microphone) are in the

m-th row of matrix U
′
.

The beamformer response d(ω, θi, ϕi) for frequency bin ω and for source

of interest (SOI) i = 1, ..., I, can be derived [72] as

d(ω, θi, ϕi) =



exp(−jκ(sin(θi). cos(ϕi).u
′
x1

+ sin(θi).

sin(ϕi).u
′
y1 + cos(θi).u

′
z1))

...

exp(−jκ(sin(θi). cos(ϕi).u
′
xN

+ sin(θi).

sin(ϕi).u
′
yN

+ cos(θi).u
′
zN

))


(3.2.3)

where κ = ω/c and c is the speed of sound in air at room temperature i.e

343 m/s.

To design the beam pattern which allows the SOI, and to better block the

interferences in the least squares problem in (3.2.1), the following constraints

are used

| wH(ω)d(ω, θi +∆θ, ϕi +∆ϕ) | = 1

| wH(ω)d(ω, θj +∆θ, ϕj +∆ϕ) | < ε ∀ω (3.2.4)
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where θi, ϕi and θj , ϕj , j = 1, ..., I except i, are respectively, the angles of

arrival of the SOI and interference, and ∆θ and ∆ϕ have angular ranges

defined by α1 ≤ ∆θ ≤ α2 and α3 ≤ ∆ϕ ≤ α4, where α1, α3 and α2, α4 are

lower and upper limits respectively, and ε is the bound for interference.

The white noise gain (WNG) is a measure of the robustness of a beam-

former and a robust superdirectional beamformer can be designed by con-

straining the WNG. Superdirective beamformers are extremely sensitive to

small errors in the sensor array characteristics and to spatially white noise.

The errors due to array characteristics are nearly uncorrelated from sensor

to sensor and affect the beamformer in a manner similar to spatially white

noise. The WNG is also controlled here by adding the following constraint

wH(ω)w(ω) ≤ 1

γ
∀ω (3.2.5)

where γ is the bound for the WNG.

The constraints in (3.2.4) for each discrete pair of elevation and azimuth

angles, and the respective constraint for WNG in (3.2.5) are convex [70].

And the unconstrained least squares problem in (3.2.1) is a convex function,

therefore convex optimization [73] is used to calculate the weight vectorw(ω)

for each frequency bin ω.

Finally, W(ω) = [w1(ω), ...,wI(ω)]
T is placed in the equation, y(ω, t) =

W(ω)x(ω, t), to estimate the sources. These estimated sources are further

enhanced by applying the binary time-frequency masking technique, dis-

cussed in the following section.

3.3 Post-Processing: Binary TF Masking

As mentioned above, the RLSFIDI beamformer accepts the target signal

from a certain direction and suppresses interferences and reflections, but
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the removal of interference is not perfect, therefore the ideal binary mask

(IBM) technique is used as a post-processing stage. The block diagram of

combining the output of the RLSFIDI beamformer and TF masking is shown

in Fig. 3.1. The separated time-domain speech signal yi(ts) of speaker i is

converted into the time-frequency domain yi(ω, t), where ω is the normalized

frequency index. By using a T -point windowed discrete short-time Fourier

transformation the spectrograms are obtained as

yi(ω, t) = STFT (yi(ts)) i = 1, ..., I (3.3.1)

where t and ω respectively represent time and frequency bin indices.

From the above TF representations, binary masks are estimated by com-

paring the amplitudes of the spectrograms [2,74]. The binary masks for three

audio sources are estimated as

BM1(ω, t) =

 1, if |y1(ω, t)| > τ |y2(ω, t)| & |y1(ω, t)| > τ |y3(ω, t)|

0, otherwise ∀(ω, t)
(3.3.2)

BM2(ω, t) =

 1, if |y2(ω, t)| > τ |y3(ω, t)| & |y2(ω, t)| > τ |y1(ω, t)|

0, otherwise ∀(ω, t)
(3.3.3)

BM3(ω, t) =

 1, if |y3(ω, t)| > τ |y1(ω, t)| & |y3(ω, t)| > τ |y2(ω, t)|

0, otherwise ∀(ω, t)
(3.3.4)

where τ is a parameter to control how much of the interfering signals should

be removed at each iteration [2, 74].
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Each of the three binary masks are then applied to the original mixtures in

the time-frequency domain in order to enhance the separated signals as

yi(ω, t) = BMi(ω, t)xi(ω, t) i = 1, 2, 3. (3.3.5)

The enhanced signals are transformed to the time-domain by applying an

inverse short-time Fourier transform (ISTFT).

This binary mask based TF technique considerably improves the sepa-

ration performance of the RLSFIDI beamformer by reducing the interfer-

ences to a much lower level which ultimately provides better estimates of

the separated speech signals. However, a problem with the binary masking

is the introduction of errors in the estimation of the masks i.e. fluctuat-

ing musical noise [74]. To overcome the musical noise a cepstral smoothing

technique [74,75] is used.

3.3.1 Cepstral smoothing technique

In the cepstral smoothing the estimated IBM is first transformed into the

cepstral domain, and different smoothing levels, based on the speech produc-

tion mechanism, are then applied to the transformed mask. The smoothed

mask is converted back to the spectral domain. In this method the musical

artifacts within the signals can be reduced. The broadband structure and

pitch information of the speech signal are also well preserved without being

noticeably affected by the smoothing operation [74]. The estimated masks

in (3.3.2), (3.3.3) and (3.3.4) can be represented in the cepstral domain as:

BM c
i (l, t) = DFT−1{ln(BMi(ω, t)) |ω=0,..,T−1} i = 1, 2, 3 (3.3.6)

where l is the quefrency bin index; DFT and ln denote the discrete Fourier

transform and the natural logarithm operator respectively; T is the length
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of the DFT and after applying smoothing, the resultant smoothed mask is

given as:

BM s
i (ω, t) = βlBM

s
i (l, t− 1) + (1− βl)BM

c
i (l, t) (3.3.7)

where βl controls the smoothing level and is selected according to different

values of quefrency l

βl =



βenv if l ∈ {0, ..., lenv},

βpitch if l = lpitch,

βpeak if l ∈ {(lenv + 1), ..., T} \ lpitch

(3.3.8)

where lenv and βpitch are respectively quefrency bin indices for the spectral

envelope and the structure of the pitch harmonics in BMi(ω, t), and 0 ≤

βenv < βpitch < βpeak ≤ 1. The symbol “\” excludes lpitch from the quefrency

range (lenv+1), ..., T . The details of the principle for the range of βl and the

method to calculate βpeak are described in [74]. The final smoothed version

of the spectral mask is given as:

SBMi(ω, t) = exp(DFT{BM s
i (ω, t) |l=0,...,T−1}). (3.3.9)

The smoothed mask is then applied to the segregated speech signals in

(3.3.5) as follows:

yi(ω, t) = SBMi(ω, t)yi(ω, t). (3.3.10)

Finally, by applying the ISTFT, yi(ω, t) is converted back to the time-

domain. The experimental results based on objective and subjective evalu-

ations are presented in the following section.
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3.4 Experiments and Results

Simulations are performed in a room with dimensions 4.6 × 3.5 × 2.5 m3.

Audio signals sampled at 8 KHz were used. Room impulse responses were

generated by the image method [76] for reverberation time (RT60) of 300,

450, and 600 ms. The RT60 was controlled by varying the absorption coef-

ficient of the walls. The source image method assumes point sources which

radiate isotropic pressure waves [76]. This is an assumption which allows

generation of synthetic impulse responses. In reality the sound emitted by

a human is directional therefore from Chapter 4 we also include evaluations

with real room impulse responses.

A linear array configuration of sixteen equally spaced microphones, N =

16, was used. The distance between the microphones was 4 cm. The other

important variables were selected as: STFT length T = 1024 & 2048 and

filter lengths were Q = 512 & 1024, the Hamming window was used with

the overlap factor set to 0.75. Duration of the speech signals was 7 seconds,

τ = 1, ε = 0.1, γ = −10 dB, for SOI α1 = +5 degrees and α2 = −5

degrees, for interferences α1 = +7 degrees and α2 = −7 degrees, speed of

sound c = 343 m/s, lenv = 8, llow = 16, and lhigh = 120, and parameters for

controlling the smoothing levels were βenv = 0, βpitch = 0.4, βpeack = 0.8.

Note that the locations (and thus the direction of arrivals (DOAs)) esti-

mated from the video recordings may contain errors, so in the simulations,

the exact DOAs of the sources are perturbed by zero-mean Gaussian noise

with a standard deviation of 3 degrees, which corresponds approximately to

the average of that for the three speakers given in Fig. 5 of [61]. Such a

simulation set-up is assumed throughout Chapters 3-6.

Evaluation Criteria: The objective evaluation of the algorithms include

performance index (PI) [77], signal-to-interference-noise ratio (SINR) and

∆SINR = SINRo − SINRi, percentage of energy loss (PEL), percentage of
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noise residue (PNR) [2]; signal-to-distortion ratio (SDR), signal-to-interference

(SIR) ratio, and signal-to-artifact ratio (SAR) [78]. For a signal separated

using a binary time-frequency mask, the PEL and PNR measures are math-

ematically written as [2, 79]

PEL =

∑T
ts=1(e

t
1(ts))

2∑T
ts=1(I

t(ts))2
(3.4.1)

PNR =

∑T
ts=1(e

t
2(ts))

2∑T
ts=1(y

t(ts))2
(3.4.2)

where yt(ts) represents the estimated signal obtained from RLSFIDI beam-

former and It(ts) is the resynthesized signal obtained after applying the

smoothed estimated masks; et1(ts) is the signal present in It(ts) but absent

in yt(ts) and similarly et2(ts) is the signal present in yt(ts) but absent in

It(ts) [2].

SINRi is the ratio of the desired signal to the interfering signal taken

from the mixture. SINRo is the ratio of the desired signal resynthesized

from the ideal binary mask to the difference of the desired resynthesized

signal and the estimated signal [2]. The separation of the speech signals is

evaluated subjectively by listening tests. Mean opinion scores (MOS tests

for voice are specified by ITU-T recommendation P.800) are also provided.

In the first set of simulations, two tests were performed on mixtures with

an RT60 of 130 ms, which were separated by the original independent vector

analysis (IVA) based method [1] and the RLSFIDI beamformer. From the

known source locations, the respective elevation and azimuth angles were

obtained and were used by the RLSFIDI beamformer. The resulting perfor-

mance indices of the first test are shown in Fig. 3.2(a) and the performance

of the original IVA method for the same test is shown in Fig. 3.2(b). The

other objective evaluations for both tests are shown in Table 3.1. These

separations were also evaluated subjectively with MOS [STD]= 4.1 [0.15]
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Figure 3.2. Performance index at each frequency bin for (a) the RLS-
FIDI beamformer and (b) the original IVA method [1], length of the
signals is 7 s. A lower PI refers to a superior method. The performance
of the IVA method is better than the RLSFIDI beamformer at RT60
= 130 ms.

and 4.2 [0.13] for the RLSFIDI beamformer and IVA methods respectively.

The performance of the higher-order statistics based IVA method at RT60

= 130 ms with data length = 7 s is better than the RLSFIDI beamformer.

The output of the RLSFIDI beamformer was further enhanced by the IBM

technique. The masks of clean, estimated and enhanced speech signals are

shown in Figs. 3.3, 3.4 & 3.5 respectively. The highlighted areas, compared

with the corresponding ones in Figs. 3.3, 3.4 & 3.5 show how the post-

filtering technique improves the speech signals separated by the RLSFIDI

beamformer at the post-filtering process stage. In particular, the regions

highlighted in Fig. 3.5 resemble closely the original sources in the regions

shown in Fig. 3.3; the IBM technique has removed the granular noise shown

in the regions highlighted in Fig 3.4. The post-filtering enhanced the sepa-

rated speech signals as shown in Table 3.2.
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Figure 3.3. Ideal binary masks (IBMs) [2] of the three original speech
signals used in the experiment at RT60 = 130 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with
the corresponding ones in Figs. 3.4 & 3.5 show how the post-filtering
technique improves the output of the RLSFIDI beamformer.

In the second set of simulations, two tests are performed on the mixtures

of length = 7 s for RT60 = 300, 450 & 600 ms, which were separated by

the RLSFIDI beamformer and the IVA method [1]. The respective objec-

tive evaluations for each RT60 are shown in Table 3.3, which affirms the

statement in [80] that with long impulse responses the separation perfor-

mance of CSS algorithms +(based on second-order and higher-order statis-

tics) is highly limited. For the condition T > P , the DFT length was

also increased, T = 2048, but there was no significant improvement ob-

served because the number of samples in each frequency bin was reduced to

truncate(7Fs/T ) = 27.
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Figure 3.4. Binary masks of the speech signals separated by the RLS-
FIDI beamformer at RT60 = 130 ms; (a) speaker 1, (b) speaker 2 and
(c) speaker 3. The highlighted areas, compared with the corresponding
original speech signals in Fig. 3.3 show that a considerable amount of
interference from the other sources still exists when the ∆SINR = 14.97
dB.
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Figure 3.5. Binary masks of the three enhanced speech signals by
the IBM TF masking technique at RT60 = 130 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with the
corresponding ones in Figs. 3.3 & 3.4 show the post-filtering processing
stage improves the output of the RLSFIDI beamformer. For these
enhanced signals PEL = 10.15%, PNR = 11.22%, and SINR = 16.83
dB.
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Figure 3.6. Combined impulse response G = WH by the original IVA
method. The reverberation time RT60 = 300 ms and SIR improvement
was 12.2 dB.

The improved performance of the RLSFIDI beamformer over the original

IVA method, specifically, at RT60 = 300 ms (Table 3.3) when ∆SINR of IVA

method is higher than the RLSFIDI beamformer, is investigated in Figs. 3.6

& 3.7. Actually, the CSS method removed the interferences more effectively,

therefore, the ∆SINR is slightly higher. However, the separated speech sig-

nals are perceptually not of an improved quality, because the reverberations

are not well suppressed. According to the “law of the first wave front” [81],

the precedence effect describes an auditory mechanism which is able to give

greater perceptual weighting to the first wave front of the sound (the direct

path) compared to later wave fronts arriving as reflections from surrounding

surfaces. On the other hand, beamforming accepts the direct path and also

suppresses the later reflections therefore the MOS is better. For comparison,
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Figure 3.7. Combined impulse response G = WH by the RLSFIDI
beamformer. The reverberation time RT60 = 300 ms and SIR improve-
ment was 11.2 dB.

a typical room impulse response for RT60 = 300 ms is shown in Fig. 3.8.

In the final set of simulations, the separated speech signals by the RLS-

FIDI beamformer for each value of RT60 were further enhanced by applying

the IBM technique. The respective objective evaluations for each RT60 are

shown in Table 3.4. To show the performance of TF masking as a post-

processing stage, the results for RT60 = 300 ms for the first test are pre-

sented. The ideal binary masks (IBMs) of the three clean speech sources are

shown in Fig. 3.9. In Fig. 3.10 the estimated binary masks (BMs) of the

output signals obtained from the RLSFIDI beamformer are shown. These

binary masks are applied on the spectrograms of the three selected micro-

phones and masks of the enhanced speech signals are shown in Fig. 3.11.



Section 3.4. Experiments and Results 55

Figure 3.8. A typical room impulse response for reverberation time
RT60 = 300 ms is provided for comparison.

For comparison, two regions are shown in one of the three speech signals,

which are marked as G1,H1, I1, J1,K1, L1 in the IBMs, G2, H2, I2, J2,K2, L2

in the SBMs, and G3,H3, I3, J3,K3, L3 in the final separated signals. From

the highlighted regions, it can be observed that the interference within one

source that comes from the other is reduced gradually in the post-processing

stage. The listening tests are also performed for each case and MOSs are

presented in Table 3.5, which indicates that at higher RT60 the performance

of the RLSFIDI beamformer is better than the IVA algorithm. The pro-

posed solution not only improves the performance at lower RT60s but also

at higher RT60 when the performance of conventional CSS algorithms is

limited.
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Figure 3.9. Ideal binary masks (IBMs) [2] of the three original speech
signals used in the experiment at RT60 = 300 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with the
corresponding ones in Figs. 3.10 & 3.11 show how the post-filtering
technique improves the output of the RLSFIDI beamformer.
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Figure 3.10. Binary masks of the speech signals separated by the RLS-
FIDI beamformer at RT60 = 300 ms; (a) speaker 1, (b) speaker 2 and
(c) speaker 3. The highlighted areas, compared with the corresponding
original speech signals in Fig. 3.9 show that a considerable amount of
interference from the other sources still exists when the ∆SINR = 11.25
dB.
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Figure 3.11. Binary masks of the three enhanced speech signals by
the IBM TF masking technique at RT60 = 300 ms; (a) speaker 1,
(b) speaker 2 and (c) speaker 3. The highlighted areas, compared
with the corresponding ones in Figs. 3.9 & 3.10 show the post-filtering
processing stage improves the output of the RLSFIDI beamformer. For
these enhanced signals PEL = 24.82 %, PNR = 28.04 %, and ∆SINR
= 12.18 dB.
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3.5 Summary

In this chapter a beamforming based method combined with a post-processing

scheme based on binary time-frequency masking for the separation of mul-

tiple sources in a reverberant environment was studied. Cepstral processing

was also utilized to smooth the masks. The beamformer exploited the knowl-

edge of the sound source locations (and thus the directions of arrival of the

sources to the microphone array). A robust least squares frequency invariant

data independent (RLSFIDI) beamformer was implemented with a linear ar-

ray configuration. The performance of the RLSFIDI beamformer was further

enhanced by applying a binary TF masking, or ideal binary masking (IBM)

technique in the post-filtering stage. The proposed approach was shown to

provide better separation than the IVA method.

Although the proposed beamforming method combined with the binary

time-frequency masking achieves considerable separation improvement at

low (and mildly medium) reverberation levels, the performance at high lev-

els of reverberation is still limited. Further, this performance is achievable

only with sixteen microphones in the array; reducing the number of sensors

will generally deteriorate the separation performance. These limitations pro-

vide strong motivation to pursue new methods that require lesser number of

sensors and are relatively more robust to reverberation.

Additionally, the time-frequency masking based post-processing in this

chapter utilized binary or hard masks. A disadvantage of such masks is

the introduction of musical noise due to estimation errors. To alleviate this

problem, more flexible, soft or probabilistic masks need to be used.

To achieve the aforementioned objectives, in the proceeding chapter, a

two-microphone based source separation method is proposed that generates

soft time-frequency masks in order to separate sources from their acoustic

mixtures. The method, inspired by human auditory processing, is based
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on the probabilistic modeling of three cues, the interaural level difference

(ILD), the interaural phase difference (IPD) and the mixing vectors. The

sound source location information is also utilized within the modeling. The

parameters for the models are estimated using EM. The algorithm generates

probabilistic time-frequency masks that are used to isolate the individual

sources.



Chapter 4

INFORMED MODEL-BASED

SOURCE SEPARATION IN

REAL REVERBERANT

ROOMS

4.1 Introduction

This chapter describes an informed model-based source separation algorithm

that utilizes observations from only two microphones. Given the reverber-

ant mixtures, containing at least two sources, the interaural level difference

(ILD), interaural phase difference (IPD), and the mixing vectors are mod-

eled probabilistically. The sound source location estimates (assumed to be

known, potentially obtained using information from video) are utilized in

the probabilistic modeling. Direction vectors towards each source in the

mixture are calculated using the source location estimates as described in

Section 4.3.1. The direction vectors are used as the mean parameter of the

mixing vector model. The source location estimates are also utilized in the

overall algorithm initialization. The optimum parameters of the probabilis-

tic models are estimated by the expectation-maximization (EM) algorithm

as detailed in Section 4.4. The EM algorithm, after a fixed number of itera-

62
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tions, generates soft time-frequency masks. The probabilistic time-frequency

masks are applied to the reverberant mixtures to reconstruct the individual

sources. As discussed earlier, it is assumed that the number of sources “I ”

and their locations are estimated through video processing and are known

a priori. It is further assumed that the source signals are sparse and that

they do not overlap in the time-frequency domain [82] [24] [38]. In this work

and the remainder of the thesis two and three sources are considered. How-

ever, the method may work if the number of sources in the mixture further

increase as the separation in the time-frequency space may still be possible

but confirming this is left as future work. The sparsity assumption would

weaken as the sources grow in number and thus force the method to fail.

4.2 The ILD, IPD, and Mixing vector models

Consider a stereo-recorded speech signal with the left and right sensor (ears

or microphones) mixture signals denoted as l(ts) and r(ts). The mixtures are

sampled with the sampling frequency fa (sampling period Ta = 1/fa) and

hence are available at discrete time indices ts for processing. The convolutive

mixing model for the left and right sensors respectively, as shown in Fig.

4.1, can be written as l(ts) =
∑I

i=1 si(ts) ∗ hli(ts), and r(ts) =
∑I

i=1 si(ts) ∗

hri(ts), where si(ts) denote the speech sources, hli(ts) and hri(ts) are the

impulse responses associated with the enclosure from source i to the left

and right sensors respectively, and ∗ denotes the discrete time convolution

operation. The time domain signals are then converted to the TF domain

using the short-time Fourier transform (STFT). The interaural spectrogram

is obtained by taking the ratio of the STFT of the left and right channels

at each time frame t and frequency ω [58] as, L(ω,t)
R(ω,t) = 10α(ω,t)/20ejϕ(ω,t).

Thus, the observed interaural spatial cues are α(ω, t), the ILD, measured

in dB, and ϕ(ω, t), the IPD. Since the sources are assumed to be physically
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stationary, the corresponding room impulse responses (RIRs) are assumed

to be time invariant. Because of the phase wrapping, the IPD observations,

∠(L(ω,t)R(ω,t)), are constrained to be in the range [−π, π) and thus cannot be

assigned to a source directly.

Figure 4.1. Signal notations. The left and right sensor convolu-
tive mixtures are transformed to the TF-domain to obtain L(ω, t) and
R(ω, t), and x(ω, t) is formed by concatenating L(ω, t) and R(ω, t) as
shown in the bottom righthand part of the image.

A source positioned at a certain location is modeled with a frequency-

dependent interaural time difference (ITD) τ(ω), and a frequency-dependent

ILD as in [59]. The recorded IPD for each TF point, cannot always be

mapped to the respective τ due to spatial aliasing. The model also requires

that τ and the length of h(ts) should be smaller than the Fourier transform

window. With the inter-microphone distance kept approximately the same

as the distance between the two ears of an average-sized human head (around
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0.17 m), the delay is much smaller than the Fourier analysis window of 1024

samples at a sampling frequency of 16 KHz (64 ms). Any portion of h(ts)

over one window length is considered part of the noise. A top-down approach

as described in [83] is thus adopted that makes it possible to map a τ to a

recorded IPD at any desired group of frequencies. The phase residual error,

the difference between the recorded IPD and the predicted IPD (by a delay of

τ samples), in the interval [−π, π) is defined as, ϕ̂(ω, t; τ) = ∠(L(ω,t)R(ω,t)e
−jωτ ).

The phase residual is modeled with a Gaussian distribution denoted as p(·)

with mean ξ(ω) and variance σ2(ω) that are dependent on frequency,

p(ϕ(ω, t)|τ(ω), σ2(ω)) = N (ϕ̂(ω, t; τ)|ξ(ω), σ2(ω)). (4.2.1)

The ILD is also modeled with a Gaussian distribution with mean µ(ω) and

variance η2(ω),

p(α(ω, t)|µ(ω), η2(ω)) = N (α(ω, t)|µ(ω), η2(ω)). (4.2.2)

The STFTs of the left and right channels are concatenated to form a new

mixture x(ω, t) as shown in Fig. 4.1. Assuming the W-disjoint orthogonality

(WDO) property [38] of speech signals, the signals are sparse in the TF

domain and only one source is dominant at each TF point, the STFT of the

recordings x(ω, t) at each time t and frequency ω can be written as [84],

x(ω, t) =
I∑

i=1

hi(ω)si(ω, t) (4.2.3)

and approximated as

x(ω, t) ≈ hd(ω)sd(ω, t) (4.2.4)

where hd(ω) = [hld(ω), hrd(ω)]
T is the mixing vector from the dominant

source sd(ω, t) to the left and right sensor at that TF point, assumed to
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be time invariant. The vector x(ω, t) is normalized to have a unit norm to

eliminate the effects of source scaling. The mixing vectors are modeled for

each source with a Gaussian model as [84], [85]

p(x(ω, t)|di(ω), ς
2
i (ω)) =

1

πς2i (ω)
exp

(
− ∥x(ω, t)− (dH

i (ω)x(ω, t)).di(ω)∥2

ς2i (ω)

) (4.2.5)

where di(ω) is the direction vector of the direct-path of the source signal i

which will be derived using the source location estimates obtained from the

video measurements, ς2i (ω) is the variance of the model, (·)H is the Hermi-

tian transpose, and ∥ · ∥ indicates the Euclidean norm operator. In [85], [84],

and [86] the authors proposed the use of an eigen decomposition of a sam-

ple covariance matrix to define unit norm vectors di(ω) to represent the

source directions in the probabilistic modeling of the mixing vectors. This

approach, however, will be sensitive to estimation errors due to short data

lengths, statistical non-stationarity in the audio scene and background noise.

In contrast, in the proposed method the direction vectors are estimated

through vision on the basis of a plane wave assumption, as discussed in

Section 4.3.1 which thereby overcomes these shortcomings. Due to the com-

paratively accurate estimation of the mean parameter of the mixing vector

model, and thus the improved posterior probability, the resulting TF masks

for all sources that are found through the probabilistic modeling will then

be enhanced, as explained in Section 4.4.2. The estimation of the parameter

di(ω) is described next.

4.3 Source Location Information and the Combined Models

As mentioned earlier, it is assumed that the source locations are known.

These locations could potentially be estimated using the visual modality.

Once the 3-D locations of the speakers are available, the mean parameter
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di(ω) is calculated as follows.

4.3.1 Parameter di Calculation

After estimating the 3-D position of each speaker i, the elevation (θi) and

azimuth (ϕi) angles of arrival to the coordinates of the center of the micro-

phones, p
′
xc
, p

′
yc and p

′
zc , are calculated as

θi = tan−1
( pyi − p

′
yc

pxi − p′xc

)
(4.3.1)

and

ϕi = sin−1
(pyi − p

′
yc

ri sin(θi)

)
(4.3.2)

where ri =
√

(pxi − p′xc
)2 + (pyi − p′yc)

2 + (pzi − p′zc)
2. The direct-path weight

vector di(ω) for frequency bin ω and for source of interest i = 1, ..., I, can

then be derived [72] as

di(ω) =



exp(−jκ(sin(θi). cos(ϕi).p
′
x1

+ sin(θi).

sin(ϕi).p
′
y1 + cos(θi).p

′
z1))

exp(−jκ(sin(θi). cos(ϕi).p
′
x2

+ sin(θi).

sin(ϕi).p
′
y2 + cos(θi).p

′
z2))


(4.3.3)

where p
′
xj
, p

′
yj and p

′
zj for j = 1, 2 are the 3-D positions of the sensors and

κ = ω/cs and cs is the speed of sound in air at room temperature. The

vector di(ω) is normalized to unity length before it is used in the model.

4.3.2 Combining the Models

To obtain enhanced time-frequency masks for each static source the video-

initialized IPD and ILD models, and the model for the mixing vectors that

utilize the direct-path weight vector in Eq. (4.3.3) obtained with the aid of
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video are used in conjunction. Since the sources are differently distributed

in the mixture spectrograms, in terms of their IPD, ILD and their mixing,

the parameters of the above models cannot be obtained directly from those

mixtures. It is a hidden maximum-likelihood parameter estimation prob-

lem and thus the expectation-maximization algorithm is employed for its

solution. Considering the models to be conditionally independent, they are

combined given their corresponding parameters as

p(α(ω, t), ϕ(ω, t),x(ω, t)|Θ̃) = N (α(ω, t)|µ(ω), η2(ω))

. N (ϕ̂(ω, t)|ξ(ω), σ2(ω))

. N (x(ω, t)|d(ω), ς2(ω))

(4.3.4)

where Θ̃ denotes all of the model parameters. It is emphasized that it is

only the noise in the measurements of ILD and IPD that is assumed to be

conditionally independent and this same assumption is adopted as in [59] for

the measurement related to the source direction vector. However, the con-

ditional independence assumption offers particular advantage in algorithm

development; namely, at each iteration of the EM algorithm, the parameters

can be updated separately. As in [59], the dependence between ILD and IPD

is introduced through prior assumptions on the mean values of the model pa-

rameters. Since the ILD and IPD may have dependence on source direction,

the assumption of the conditional independence amongst the noise compo-

nents may only be an approximation. Modeling such dependence is beyond

the scope of this study, but is an interesting point for further investigation.
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4.4 Model Parameters and Expectation-Maximization

4.4.1 Model Parameters

All of the model parameters Θ̃ can be collected as a parameter vector

Θ̃ = {µi(ω), η2i (ω), ξiτ (ω), σ2iτ (ω),di(ω), ς
2
i (ω), ψiτ} (4.4.1)

where µi, ξiτ , and di and η
2
i , σ

2
iτ , and ς

2
i are respectively the means and vari-

ances of the ILD, IPD, and mixing vector models. The subscript i indicates

that the parameters belong to the source i, and τ and ω show the depen-

dency on delay and frequency. The parameter di(ω) is included since it is

used within the EM algorithm but highlight that since it is obtained from

the video it remains constant throughout the algorithm. The parameter ψiτ

is the mixing weight, i.e. the estimate of the probability of any TF point

belonging to source i at a delay τ . Note that ψiτ is obtained from the hidden

variable ziτ (ω, t) that qualifies the assignment of a TF unit to source i for

the delay τ [59]. The hidden variable is an important variable and is unity

if the TF point belongs to both source i and delay τ and zero otherwise.

In more detail, the probability of ziτ (ω, t) is equivalent to ψiτ which is the

estimate of the joint probability of a TF point being from source i at a delay

τ . Since discrete values of τ are pre-defined, ψiτ is a two-dimensional matrix

of the probability of being in each discrete state. ziτ (ω, t) is not explicitly

calculated. The parameter ψiτ is computed in the expectation step of the

EM algorithm. ψiτ is estimated by placing a Gaussian with its mean at each

cross-correlation peak and a standard deviation of one sample [59].

The log value of the likelihood function (L) given the observations can
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be written as

L(Θ̃) =
∑
ω,t

log p(α(ω, t), ϕ(ω, t),x(ω, t)|Θ̃)

=
∑
ω,t

log
∑
i,τ

[ N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω))

. N (x(ω, t)|di(ω), ς
2
i (ω)). ψiτ ]

(4.4.2)

and the maximum likelihood solution is the parameter vector which maxi-

mizes this quantity.

4.4.2 The Expectation-Maximization Algorithm

The algorithm is initialized using the estimated locations of the speakers pro-

vided by video. In the expectation step (E-step) the posterior probabilities

are calculated given the observations and the estimates of the parameters as

ϵiτ (ω, t) = ψiτ . N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω))

. N (x(ω, t)|di(ω), ς
2
i (ω))

(4.4.3)

where ϵiτ (ω, t) is the expectation of the hidden variable. In the maximiza-

tion step (M-step), the parameters are updated using the observations and

ϵiτ (ω, t) from the E-step. The IPD and ILD parameters and ψiτ are re-

estimated as in [59]. The mean parameter of the mixing vectors di(ω) is

obtained through video as discussed in Section 4.3.1 and ς2i (ω) is updated

as [84]

ς2i (ω) =

∑
t,τ ϵiτ (ω, t).∥x(ω, t)− (dH

i (ω) x(ω, t)).di(ω)∥2∑
t,τ ϵiτ (ω, t)

. (4.4.4)
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The mixing vector model starts contributing from the second iteration,

as in the first iteration the occupation likelihood ϵiτ (ω, t) is calculated using

only the ILD and IPD models. The initial value of ς2i (ω) is computed af-

ter the first iteration using ϵiτ (ω, t). Since the algorithm is initialized with

source locations estimates from video and ϵiτ (ω, t) contains the correct order

of the sources the permutation problem is bypassed. The probabilistic masks

for each source can be formed as Mi(ω, t) ≡
∑

τ ϵiτ (ω, t). The time domain

source estimates are obtained by applying the TF masks to the mixtures

and taking the inverse STFT. The efficacy of the proposed approach is ex-

perimentally verified in the next section. A brief summary of the proposed

scheme is given in Algorithm 1.

Algorithm 1 Brief summary of the proposed audio-visual source sep-
aration approach

Input: Synchronized audio-visual measurements
Output: Separated speech sources

1: Obtain the speaker locations when the sources are judged physically
stationary

2: Calculate parameter di as in Section 4.3.1
3: Initialize the EM algorithm in Section 4.4.2 with speaker locations

and PHAT-Histogram
4: Run the EM algorithm as in Section 4.4.2 to generate time-

frequency masks for all sources
5: Apply the time-frequency masks to the mixtures to reconstruct the

sources

4.5 Experimental Evaluation in a Room Environment

The performance of the proposed algorithm is evaluated in two main sets

of experiments and is compared with five other algorithms, two are audio-

only and three are audio-visual. Firstly, mixtures of two sources are simu-

lated with varying reverberation times (RT60s) using synthetic room impulse

responses (RIRs), different model complexities and separation angles, and
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three sources with varying separation angles utilizing real RIRs. Compar-

isons are provided in all of the above scenarios with two other state-of-the-

art audio-only algorithms to highlight the advantage of the audio-visual ap-

proach to source separation. Secondly, experiments are performed for vary-

ing RT60s for both two and three source mixtures and the proposed method

is compared with three other state-of-the-art audio-visual algorithms.

4.5.1 Common Experimental Settings

Room Layout

The room setting is shown in Fig. 4.2. Experiments were performed for mix-

tures of both two and three speech sources. The desired source was located in

front of the sensors at 0◦ azimuth and the interferer was positioned at one of

the six different azimuths between 15◦ and 90◦ i.e. [15◦, 30◦, 45◦, 60◦, 75◦, 90◦]

for the case of two speakers. In the three-speaker case the third source was

located symmetrically with the same azimuth, as shown for approximately

60◦ in Fig. 4.2.

Figure 4.2. The room layout showing one of the approximate positions
of the sources and the sensors.
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Table 4.1. Different Parameters Used In Experiments

STFT frame length 1024
Velocity of sound 343 m/s
Reverberation time 565 ms (real) or

160-600 ms (image method)
Room dimensions [9 5 3.5] m

Source signal duration 2.5 s (TIMIT)
Sensor spacing 0.17 m

Speech Data and Room Impulse Responses

Speech signals from the TIMIT acoustic-phonetic continuous speech corpus

[23] were used. Utterances were randomly chosen to form mixtures with

different combinations i.e. male-male, male-female, and female-female. The

first (16k×2.5) samples of the TIMIT speech sources were used and were

normalized to unity variance before convolving with the RIRs. The real RIRs

were used from [4] which were measured in a real classroom with an RT60

of approximately 565 ms. The center location was used in the experiments

with the sensor-to-speaker distance of 1 m. The image method [3] was also

used to evaluate the proposed algorithm for varying RT60s.

Evaluation of Separation Performance

The signal-to-distortion ratio (SDR) as in [64] was used to evaluate the

performance of the algorithm in cases where the original speech sources were

available. SDR is the ratio of the energy of the original signal to the energy

from interferers, other noise energy and artifacts.

4.5.2 Results and Comparison With Other Audio-Only Algorithms

Extensive experiments were conducted to test the robustness and consistency

of the proposed algorithm. The common parameters used in all experiments

are given in Table 4.1. As mentioned earlier, to emphasize the advantage of

the multimodal approach over audio-only methods in realistic multi-speaker
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environments the results are compared with [59], referred to as Mandel,

and [86], termed as Alinaghi.

Different model complexities, for ILD and IPD, were evaluated similar

to [59]. For instance, the ILD and IPD model complexity of Θ00 will have

no ILD contribution and an IPD model with zero mean and a standard

deviation that varies only by source, whereas Θ11 will have a frequency-

independent ILD model and an IPD model with a frequency-independent

mean and a standard deviation that varies by source and τ , while ΘΩΩ uses

the full frequency-dependent ILD and IPD model parameters. And ΘG
ΩΩ has

parameters similar to ΘΩΩ but includes a garbage source and an ILD prior

as described in [59].

In Fig. 4.3, the two model complexities Θ11 and Θ00 for two sources were

simulated with an interferer at 75◦. The speech files from the TIMIT dataset

were convolved with the RIRs generated using the image method [3] to obtain

the reverberant mixtures. The RT60 was varied to evaluate performance of

the algorithms at different levels of reverberation. A curve that corresponds

to the model which uses the ideal di vector found from the known source

locations has also been included in the results. The curve provides an upper

bound for performance improvement for the algorithm. The results indicate

the improved performance of the proposed technique over [59] and [86]. In

Fig. 4.3(a), for RT60 of 210 ms the proposed algorithm gives an output

of 12.98 dB, Mandel’s algorithm gives 12.37 dB and Alinaghi 12.41 dB. As

the RT60 increases the proposed algorithm still performs best, for example

at 565 ms it is 6.11 dB, which is 1.16 dB higher than Mandel and 0.87 dB

higher than the method by Alinaghi. In Fig. 4.3(b), with a simpler model

Θ00, at an RT60 of 210 ms the proposed method outputs 13.57 dB, compared

to Mandel, 13.35 dB, and Alinagi, 13.05 dB. At the maximum RT60 of 565

ms the proposed algorithm gives an output of 5.43 dB, 1.05 dB higher than

Mandel and 0.52 dB higher than Alinaghi. The ILD cues fade away with
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Figure 4.3. Comparison of performance at different RT60s. The in-
terferer was located at 75◦ azimuth. Synthetic RIRs using [3] were used
to simulate varying RT60s. The Θ11 (a) and Θ00 (b) modes are under
consideration.

increasing reverberation and thus the direct-path direction vector obtained

by video information in the proposed algorithm contributes to better model

the mixing vectors and improve the separation performance.

In Fig. 4.4 (a) the proposed algorithm was evaluated for all the model

complexities. Real RIRs from [4] were utilized to form acoustic mixtures in
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this set of experiments. The results indicate that the proposed algorithm’s

performance is consistently best for all models. In [86] the authors reported

that their algorithm showed significant improvement over [59] with simpler

models but the improvement diminished with the increasing model complex-

ity as confirmed in Fig. 4.4 (a), specifically when the ILD model started con-

tributing. In contrast, the performance of the proposed algorithm is clearly

shown not to deteriorate with increasing complexity and shows consistent

improvement over all the models. The average improvement across the mod-

els in the Alinaghi method over the Mandel method is 1.53 dB, whereas for

the proposed method is 2.39 dB. In Fig. 4.4 (b) the SDR as a function of

the separation angle between the speakers for the Θ11 model is shown. Com-

paratively, over all angles the proposed algorithm that utilizes the estimate

of the source direct-path direction vector, by exploiting visual information,

yields an average improvement of 1.53 dB whereas Alinaghi’s method gives

0.75 dB. Results in Fig. 4.5 show SDR as a function of separation angle i.e.

between 15◦ and 90◦ for mixtures of three speakers with the most complex

frequency-dependent mode ΘΩΩ using real RIRs. The two interferers on ei-

ther side of the target were positioned symmetrically with the same azimuth.

The interferer to the left was simulated by reversing the order of the sensors.

At the minimum separation angle of 15◦ the proposed algorithm gives an

output of 2.16 dB, whereas Mandel, 0.9 dB, and Alinaghi, 1.43 dB. The re-

sults indicate that the method in [86] offers improvement over [59] at smaller

separation angles from 15◦ to 45◦ but no significant improvement at larger

separation angles. The proposed algorithm, in contrast, shows consistent

improvement over all separation angles, specifically in the difficult scenario

with smaller separation angles, over both [59] and [86] in the three-speaker

reverberant case confirming the suitability of the audio-visual approach in

multi-speaker realistic settings, and the value of adding visual information

in audio source separation.
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4.5.3 Results and Comparison with Other Audio-Visual Methods

The proposed approach is next compared with three other audio-visual algo-

rithms, the beamforming based method in [87] which is referred to as Naqvi,

the technique in [88], which is termed as Maganti and the scheme in [89]

using robust beamforming, referred to as RLSFIDI. Similar to the proposed

work, these audio-visual methods employ the visual modality to estimate

the speaker locations which are then utilized within the algorithms.

The multimodal approach to BSS [87] uses the visual modality to en-

hance the separation of both static and moving sources. The speaker posi-

tions estimated by a 3-D tracker are used to initialize the frequency domain

BSS algorithm for the physically stationary speakers and beamforming if

the speakers are moving. The algorithm’s performance is reasonable at low

reverberation when the direct path signal is strong but deteriorates at higher

RT60s when the direct-to-reverberant ratio (DRR) is low. The beamformer

is also generally limited to the determined and overdetermined cases and

achieves improved performance with larger number of audio sensors.

In [88] an audio-video multispeaker tracker is proposed to localize sources

and then separate them using microphone array beamforming. A postfilter-

ing stage is then applied after the beamforming to further enhance the sep-

aration. The overall objective of the system is automatic speech recognition

which lies outside the scope of the proposed work, thus, the output of the

speech enhancement part is compared.

In [89] a robust least squares frequency invariant data independent beam-

former is implemented. The MCMC-PF based tracker estimates the direc-

tion of arrival of the sources using visual images obtained from at least two

cameras. The robust beamformer, given the spatial knowledge of the speak-

ers, uses a convex optimization approach to provide a precise beam for the

desired source. To control the sensitivity of the beamformer a white noise

constraint is used. The scheme provides significant improvement at lower
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RT60s but the performance degrades as reverberation increases. The origi-

nal code used in [89] is employed in the comparison.

In contrast, in [90] a speech source is separated by utilizing its coher-

ence with the speaker’s lip movements. Parameters describing a speaker’s

lip shape are extracted using a face processing system. The authors provide

results for separation of simple vowel-plosive combinations from other mean-

ingful utterances and acknowledge that separating complex mixtures would

be increasingly difficult. In the extension of their work in [91], the spectral

content of the sound that is linked with coherent lip movements is exploited

and assessment is provided on two audio-visual corpora, one having vowel-

plosive utterances similar to their previous work and the second containing

meaningful speech spoken by a French speaker. They discuss the determined

case and the underdetermined case with two sensors and three sources but

reported that performance was limited as the phonetic complexity increased.

These works, as in [92, 93], require the speakers to be right in front of the

camera(s), with the face clearly visible so that facial cues can be observed.

The proposed approach is more general, in that only head localization infor-

mation is required and therefore audio-visual recordings with low resolution

can be processed. Hence the methods in [90–93] are not included in the

comparison.

Results

The experimental results in Fig. 4.6 provide the average SDR (dB) as a

function of RT60 for ten random mixtures of two sources for the proposed

method and the three other audio-visual methods i.e. Naqvi, Maganti, and

RLSFIDI. The masker was positioned at -15 degrees azimuth i.e. the mini-

mum and most challenging separation angle in the earlier simulations. The

other algorithms were each evaluated with two, four and eight microphones

at all RT60s. The proposed algorithm gives better separation, using only
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two microphones, than all the other algorithms at all RT60s except at 160

ms where the RLSFIDI outperforms the proposed method with four micro-

phones. The Naqvi and Maganti methods adopt the general trend by im-

proving the separation as the number of microphones is increased, since the

increased number of filter coefficients provides better interference removal.

The postfiltering stage in Maganti’s scheme refines the output further from

its previous beamforming stage by exploiting sparsity of the speech sources.

Masking postfilters are obtained by retaining the maximum filter output

values at each frequency bin. The final postfilter is then applied to the

beamformer output. This scheme considerably improves the performance

over that of Naqvi for all number of microphones and all RT60s in terms

of the SDR, but introduces musical noise which was observed when the re-

constructed source was listened to. In the RLSFIDI method the designed

unmixing filters used are frequency invariant and data independent thus the

source statistics and RT60 are not considered. Also, since the physical sep-

aration between the sources is only 15◦, the increased spatial selectivity of

the RLSFIDI design appears to deteriorate the separation performance at

higher RT60s. In summary, the RLSFIDI method with eight microphones

has the best performance among the three competing techniques below RT60

of around 450 ms and Maganti with eight microphones above 450 ms.

The results in Fig. 4.7 show the average SDR (dB) as a function of

RT60 for ten random mixtures for the proposed method and the three other

audio-visual methods when separating three sources. Each of these three

algorithms was run by using four and eight microphones. Having three

sources in the mixture, the case of only two-microphones becomes under-

determined and solution is not possible through the beamformers in Naqvi,

Maganti, and RLSFIDI, unlike the proposed algorithm which can handle

the underdetermined case too. The improved spatial selectivity of the RLS-

FIDI design again explains this advantage but this degrades with increasing
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RT60. All the algorithms follow this general trend of degraded performance

with increased RT60. For 160 ms, 210 ms and 300 ms utilizing the eight

microphones mixture RLSFIDI performs best. This is the strength of the

RLSFIDI method that at lower RT60s, with reduced reflections, and hence

fewer reflections from the interfering source and overall reverberation leak

through the precise beam formed for the desired source, the separation per-

formance is greatly enhanced. This behaviour changes as the RT60 increases

beyond 300 ms, where even increasing the number of microphones does not

stop the deterioration in the separation performance of the beamformer. In

Fig. 4.8, as an example, the beam patterns for the RLSFIDI beamformer

are provided using four and eight microphones for the case of three sources.

The sources are positioned at −45◦, 0◦, and 45◦. The beam towards the

desired source becomes more precise as the number of microphones is in-

creased. Note, that for Fig. 4.6 the masker is at −15◦ which explains why

separating three sources can be better with beamforming.
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4.6 Summary

This chapter explained a source separation algorithm that utilizes visual

contribution in terms of the source location estimates. By utilizing this

visual information, it has been confirmed that more accurate TF masks can

be obtained which give improved source estimates, particularly in highly

reverberant multi-speaker environments. The proposed algorithm has been

experimentally tested in a variety of settings including real room impulse

responses confirming its robustness over two other audio-only methods and

three similar audio-visual algorithms in both the two-speaker and three-

speaker cases.

Two further questions remain: can additional cues associated with the

spatial properties of the sources and the enclosure enhance the separation

performance, specifically when the level of reverberation is high? Can the

knowledge of the properties of the room, alongside knowing the source loca-

tions, such as its total wall area, reflective characteristics of the wall surfaces,

and the reverberation time be used to achieve additional advantage in highly

reverberant scenarios?

To address these questions, in the following chapter, the spatial covari-

ance model, a model that utilizes the knowledge of the spatial properties

of the sources and the room is investigated. The model is evaluated when

used in conjunction with the ILD and IPD models, and also when used in

combination with the ILD, IPD, and mixing vector models.
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Figure 4.4. In (a) the performance at different model complexities
Θild ipd for two sources with the interferer at 30◦ azimuth is shown.
The graph in (b) indicates results at different separation angles for
model Θ11. The position of the interferer was varied in steps of 15◦

between 15◦ to 90◦. Real binaural RIRs from [4] were used. Results
were averaged over five random mixtures. The proposed method yields
a considerable improvement at all modes and separation angles.
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Figure 4.5. Results of the three-speaker case at different separation
angles using the real RIRs at the ΘΩΩ mode. The interferers were lo-
cated symmetrically to both sides of the target source. Results indicate
that our proposed method performs best at all separation angles.
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Figure 4.6. Comparison of SDR (in decibels) performance as a func-
tion of RT60 using the proposed algorithm utilizing two microphones
and the Naqvi, Maganti and RLSFIDI methods employing two, four
and eight microphones for mixtures of two sources.
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Figure 4.7. Comparison of SDR (in decibels) performance as a func-
tion of RT60 using the proposed algorithm utilizing two microphones
and the Naqvi, Maganti and RLSFIDI methods employing four and
eight microphones for mixtures of three sources.
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(a)

(b)

Figure 4.8. Beam patterns achieved by the RLSFIDI beamformer
with four microphones in (a) and eight microphones in (b) for the case
of three sources. It is clearly visible that as the number of sensors is
increased the beam for the desired source becomes more precise strictly
allowing the desired source and forming a null towards the interferer.
With fewer microphones the interferers and reverberation leak through
with the desired source degrading the separation performance.



Chapter 5

INFORMED SPATIAL

COVARIANCE MODEL:

MODELING SPATIAL

PROPERTIES OF THE

SOURCES AND THE ROOM

5.1 Introduction

This chapter investigates modeling the spatial characteristics of the sound

sources and the enclosure to mitigate the degradation caused by the high

level of reverberation. It aims to model the contribution of individual sources

to both the mixture channels (left and right microphones) with a zero-mean

Gaussian distribution. The covariance of the distribution is modeled by

exploiting the location information of the sources, the reflective attributes

of the wall surfaces, the area and the reverberation time of the room. The

model operates in the time-frequency (short-time Fourier transform) domain

and is fused with models of the interaural cues discussed in Chapter 4 to

further the separation performance, specifically in the cases when the room

is highly reverberant.

86
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Consider, for instance, the case when there are speakers in a meeting or

teleconference room and the enclosure is highly reverberant; performance of

the current source separation methods in such environments is very limited.

Can additional cues assist in improving the separation performance in such

acoustically hostile environments? This chapter thus addresses this question

by incorporating the spatial covariance model to the ILD and IPD models

discussed in Chapter 4. The spatial covariance model utilizes the knowl-

edge of the locations of the speakers and properties of the room, which are

assumed to be known as before.

Similar to Chapter 4, the optimal parameters of the combined mod-

els are estimated in a maximum-likelihood sense through the expectation-

maximization (EM) algorithm. The estimation of a parameter in the spatial

covariance model makes use of the known speaker locations. In the E-step,

the posterior probabilities are calculated whereby TF points are assigned to

sources using the observations and the initial values of the parameters. In

the M-step, the parameters of the models are updated based on the mea-

surements and the probabilities from the E-step. The combined algorithm

generates TF masks that are used to separate the individual sources.

5.2 The Spatial Covariance Model

Given the two-channel reverberant mixtures, l(ts) and r(ts), a new signal

x(ts) is formed by concatenating them. The contribution of “I ” sources to

both the left and right channels can also be represented as [94]

x(ts) =

I∑
i=1

imgi(ts) (5.2.1)

where imgi(ts) = [imgli(ts), imgri(ts)]
T is the spatial image of the ith source

to the left and right channels. Assuming the sources are uncorrelated, x(ω, t),

the short-time Fourier transform (STFT) of x(ts), is modeled as a zero-mean
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Gaussian distribution with the covariance matrix [94]

Rx(ω, t) =

I∑
i=1

vi(ω, t)Ri(ω), (5.2.2)

where vi(ω, t) is the time-varying scalar variance and Ri(ω) is the time-

invariant covariance matrix utilizing the spatial properties of the source i

and the enclosure. From results based on statistical room acoustics [95],

it is assumed that the impulse response is the sum of the direct path and

the diffuse part. The diffuse propagation of sound is due to reverberation.

Reverberation increases the spatial spreading of the source due to multiple

reflections with wall surfaces and other objects in the room. The spatial

covariance of the source i, Ri(ω), is thus estimated as the sum of the direct

path direction vector and the covariance matrix of the reverberant part [94]

[95]

Ri(ω) = di(ω)d
H
i (ω) + σ2rev

 1 Ω(dlr, ω)

Ω(dlr, ω) 1

 (5.2.3)

where di(ω) is the direct-path direction vector, σ2rev is the variance of the

reverberant part and Ω(dlr, ω) depends on the distance between left and

right sensors dlr and the frequency ω. The intensity of the reverberation

observed at both the microphones is assumed to have diffuse characteristics

with the same power,

Ω(dlr, ω) =
sin(2πωdlr/c)

2πωdlr/c
(5.2.4)

where c is the speed of sound in air at room temperature. The variance of

the reverberant part is given by [94]

σ2rev =
4β2

A(1− β2)
, (5.2.5)
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where A is the total wall area and β is the wall reflection coefficient estimated

from the room reverberation time (RT60), assumed to be known a priori,

using Eyring’s formula [95] as

β = exp
(
− 13.82

LxyzcRT60

)
(5.2.6)

where Lxyz is computed using the x, y and z dimensions of the rectangular

room as, Lxyz = ( 1
Lx

+ 1
Ly

+ 1
Lz

).

To estimate the scalar variance vi(ω, t) for the computation of the co-

variance matrix Rx(ω, t) in Eq. 5.2.2, the method in [96] is followed where it

is obtained by minimizing the sum over all TF units (ω, t) of the Kullback-

Leibler (KL) divergence between the theoretical covariance matrix Rx(ω, t)

and the covariance matrix of the observed mixture Robs
x (ω, t). The variance

for each source is then given as, assuming only a single source is active at

each TF point,

vi(ω, t) =
1

2
tr[R−1

i (ω)Robs
x (ω, t)] (5.2.7)

where tr[.] is the trace operator. The covariance matrix of the observed

mixture is calculated as [96]

Robs
x (ω, t) =

Σω′t′∆(ω′ − ω, t′ − t)x(ω′, t′)xH(ω′, t′)

Σω′t′∆(ω′ − ω, t′ − t)
(5.2.8)

where ∆ is a two-dimensional window describing the weighting in the neigh-

bourhood of the TF point under consideration.

The probability distribution of the model is given as [97]

P (x(ω, t)|{vi(ω, t),Ri(ω), ∀ i}) =
1

det(πRx(ω, t))
exp(−xH(ω, t)R−1

x (ω, t)x(ω, t))
(5.2.9)

where (·)H is the Hermitian transpose, and the mean is assumed zero.
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To accomplish the calculation of the spatial covariance matrix in Eq.

(5.2.3), the direct-path direction vector is estimated using the spatial loca-

tions of the sources as

di(ω) = [hli, hri]
T (5.2.10)

where

hli = exp(
−jω
c

(sin(θi). cos(ϕi).p
′
xl
+ sin(θi). sin(ϕi).p

′
yl
+ cos(θi).p

′
zl
))

(5.2.11)

and

hri = exp(
−jω
c

(sin(θi). cos(ϕi).p
′
xr

+ sin(θi). sin(ϕi).p
′
yr + cos(θi).p

′
zr)).

(5.2.12)

Here [pxi , pyi , pzi ] is the location estimate of speaker i, p
′
xm

, p
′
ym and p

′
zm ,

wherein m is the left or right sensor index, are the 3-D positions of the

sensors and c is the speed of sound in air at room temperature. The eleva-

tion (θi) and azimuth (ϕi) angles of arrival to the center of the microphones

of each speaker i are computed respectively as θi = tan−1
(

pyi−p
′
yc

pxi−p′xc

)
and ϕi =

sin−1
(

pyi−p
′
yc

ri sin(θi)

)
, where ri =

√
(pxi − p′xc

)2 + (pyi − p′yc)
2 + (pzi − p′zc)

2, while

p
′
xc
, p

′
yc and p

′
zc are coordinates of the center of the microphones.

5.3 Incorporating the Spatial Covariance Model

The spatial covariance model is incorporated in the source separation frame-

work described in Chapter 4 in two different contexts: firstly, it is combined

with the interaural level difference (ILD) and the interaural phase difference

(IPD) models; secondly, it is combined with the ILD, IPD, and mixing vector

models.
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5.3.1 The Combined ILD, IPD and Spatial Covariance Models

The spatial covariance model is first combined with the ILD and IPD models.

The spatial covariance model which utilizes the spatial properties of the

sources and the room is believed to further the separation performance,

specifically when the level of reverberation is high. The combined models

given their parameters can be written as

p(α(ω, t), ϕ(ω, t),x(ω, t)|Θ̂) = N (α(ω, t)|µ(ω), η2(ω))

. N (ϕ̂(ω, t)|ξ(ω), σ2(ω)). N (x(ω, t)|0,Rx(ω, t)),

(5.3.1)

wherein conditional independence is assumed between the noise models. The

parameters of the combined models are estimated, similar to the previous

chapter, using the expectation-maximization (EM) algorithm and can be

collected as

Θ̂ = {µi(ω), η2i (ω), ξiτ (ω), σ2iτ (ω), vi(ω, t), ψiτ} (5.3.2)

where µi, ξiτ , and η2i , σ
2
iτ are respectively the means and variances of the

ILD, IPD models, and vi is the scalar variance. The subscript i indicates that

the parameters belong to the source i, and τ and ω describe the dependency

on delay and frequency.

The log likelihood function (L) given the observations can be written as

L(Θ̂) =
∑
ω,t

log p(α(ω, t), ϕ(ω, t),x(ω, t)|Θ̂)

=
∑
ω,t

log
∑
i,τ

[ N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω)). N (x(ω, t)|0,Rx(ω, t)). ψiτ ].

(5.3.3)

Similar to the preceding chapter, the EM algorithm is initialized with

the known estimated locations of the speakers. In the expectation step (E-
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step) of the EM algorithm, the posterior probabilities are computed given

the observations and the estimates of the parameters as

ϵ̃iτ (ω, t) = ψiτ . N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω)). N (x(ω, t)|0,Rx(ω, t))),

(5.3.4)

where ϵ̃iτ (ω, t) is the expectation of the hidden variable miτ (ω, t), which

is unity if the TF point belongs to both source i and delay τ and zero

otherwise. In the maximization step (M-step), the parameters of the models

are updated using the observations and ϵ̃iτ (ω, t) from the E-step. The IPD

residual model parameters are estimated as

ξiτ (ω) =

∑
t ϕ̂(ω, t; τ)ϵ̃iτ (ω, t)∑

t ϵ̃iτ (ω, t)
(5.3.5)

σ2iτ (ω) =

∑
t(ϕ̂(ω, t; τ)− ξiτ (ω))

2ϵ̃iτ (ω, t)∑
t ϵ̃iτ (ω, t)

. (5.3.6)

The ILD model parameters are updated as

µi(ω) =

∑
t,τ α(ω, t)ϵ̃iτ (ω, t)∑

t,τ ϵ̃iτ (ω, t)
(5.3.7)

η2i (ω) =

∑
t(α(ω, t)− µi(ω))

2
∑

τ ϵ̃iτ (ω, t)∑
t,τ ϵ̃iτ (ω, t)

. (5.3.8)

The parameter ψiτ is initialized using a PHAT histogram [59]. The spatial

covariance matrix of the ith source Ri(ω) is obtained using Eq. (5.2.3)

whereas the parameter vi(ω, t) is estimated as in Eq. (5.2.7).

The spatial covariance model starts contributing from the second iter-

ation, as in the first iteration when calculating ϵ̃iτ (ω, t), the source i with

delay τ is assumed dominant at the corresponding TF unit, and is calculated

using only the ILD and IPD models. Also, since ϵ̃iτ (ω, t) contains the correct
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order of the sources as in [59] the permutation problem is avoided. The TF

mask for each source can be obtained as M̃i(ω, t) ≡
∑

τ ϵ̃iτ (ω, t). The masks

are applied to the mixtures to obtain the individual sources.

5.3.2 The Combined ILD, IPD, Mixing Vector and Spatial Co-

variance Models

The spatial covariance model is also used in combination with the ILD, IPD

and the mixing vector models. The new parameter set is given as

Θ̆ = {µi(ω), η2i (ω), ξiτ (ω), σ2iτ (ω), vi(ω, t),di(ω), ς
2
i (ω), ψiτ} (5.3.9)

where µi, ξiτ , and di and η2i , σ
2
iτ , and ς2i are respectively the means and

variances of the ILD, IPD, and mixing vector models and vi is the scalar

variance. The log likelihood function (L̆) is now written as

L̆(Θ̆) =
∑
ω,t

log
∑
i,τ

[ N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω)). N (x(ω, t)|0,Rx(ω, t)).

N (x(ω, t)|di(ω), ς
2
i (ω)). ψiτ ],

(5.3.10)

assuming conditional independence between the noise models. The EM algo-

rithm iterates similarly with the combined posterior probabilities computed

as

ϵ̆iτ (ω, t) = ψiτ . N (α(ω, t)|µi(ω), η2i (ω))

. N (ϕ̂(ω, t; τ)|ξiτ (ω), σ2iτ (ω)). N (x(ω, t)|0,Rx(ω, t))),

N (x(ω, t)|di(ω), ς
2
i (ω)).

(5.3.11)

All the corresponding parameters are estimated as explained in Section 5.3.1

and Chapter 4. The mixing vector and spatial covariance models start con-

tributing from the second iteration. The TF masks for the individual sources
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are then obtained as

M̆i(ω, t) ≡
∑
τ

ϵ̆iτ (ω, t). (5.3.12)

Masks are applied to the mixtures to reconstruct individual sources.

5.4 Experimental Evaluation in a Room Environment

Experiments are performed with the spatial covariance model used in both

the contexts explained in Section 5.3.1 and Section 5.3.2. The room settings

are similar as in Chapter 4. Speech data were chosen from the TIMIT [23]

database. The first 40,000 (16k×2.5) samples of the TIMIT sources were

used and were normalized to unity variance. The source image method [3]

was used to evaluate the different models for varying RT60s. The different

reverberation times under consideration are: 160 ms, 300 ms, 485 ms and

600 ms. The signal-to-distortion ratio (SDR) [64] was used to measure the

separation performance of the algorithms.

Detailed experiments were performed ranging from mixtures simulated

with varying reverberation times (RT60s), sources with varying separation

angles, and different model complexities. The spatial covariance model used

in conjunction with the ILD and IPD models, termed as IIM+SC, is com-

pared with the ILD and IPD models, referred to as IIM, and the com-

bined ILD, IPD, mixing vectors and the spatial covariance models, termed

as IIMM+SC. The common parameters used in all experiments are given in

Table 5.1.

Table 5.1. Common Parameters Used In Simulations
STFT frame length 1024
Velocity of sound 343 m/s
Reverberation time 160-600 ms (image method)
Room dimensions [9 5 3.5] m

Source signal duration 2.5 s (TIMIT)
Sensor spacing 0.17 m
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In the first set of experiments the target source was positioned at 0◦

azimuth while the interferer at 75◦. The level of reverberation was then

varied from 160 ms to 600 ms, and the separation performance measured

for the three different model complexities, Θ00, Θ11 and ΘΩΩ. The different

model complexities [59], ΘILD IPD, mean that the parameters of the ILD

and IPD models are either frequency-dependent or are fixed across frequency.
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5.4.1 Results

Fig. 5.1 shows results for the models with the complexity Θ00 with the in-

terferer located at 75◦. With this complexity the mean of the ILD model

is zero and the standard deviation is ∞, while the IPD model has a mean

zero and a frequency-independent standard deviation. The results indicate

that combining the spatial covariance model to the ILD and IPD models

the separation improves consistently over all RT60s. The separation, nev-

ertheless, is best over all RT60s when the maximum cues are utilized, the

IIMM+SC method. As the level of reverberation increase, the advantage of

the IIM+SC method over the IIM technique also increase, for instance, at

an RT60 of 160 ms it is 0.42 dB and at 600 ms it is 0.71 dB better than the

IIM method. A similar trend is followed by the IIMM+SC method, in that

it is 1.19 dB and 1.81 dB better than the IIM technique at 160 ms and 600

ms respectively.

150 200 250 300 350 400 450 500 550 600
0

2

4

6

8

10

12

SDR as a function of RT60 for Θ
00

 mode. Masker at 75° azimuth

Reverberation time (ms)

S
D

R
 (

dB
)

 

 
IIM
IIM+SC
IIMM+SC

Figure 5.1. SDR (dB) for the Θ00 model. The interference is placed
at 75◦



Section 5.4. Experimental Evaluation in a Room Environment 97

Fig. 5.2 provides the separation results in terms of the SDR (dB)

over a range of RT60s for the complexity Θ11. Within this complexity the

means and the variances of both the ILD and IPD models are frequency-

independent. All the methods follow the similar trend of degrading per-

formance as the level of reverberation increases and improved performance

while exploiting more cues. At the RT60 of 300 ms, the IIMM+SC is 1.12

dB and 0.64 dB better than the IIM and IIM+SC methods, while at 600 ms

it is 1.47 dB and 0.98 dB better respectively.
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Figure 5.2. SDR (dB) for the Θ11 model. The interference is placed
at 75◦
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In Fig. 5.3 results are shown for the ΘΩΩ complexity with the masker

positioned at 75◦. The means and variances of the ILD and IPD models in

this complexity depend on frequency. At 160 ms, the IIM method has an

SDR of 7.51 dB, whereas, the IIM+SC and IIMM+SC are 7.80 dB and 8.44

dB respectively. As the reverberation increases the separation performance

degrades, in that at 600 ms, the IIM, IIM+SC and IIMM+SC techniques

have an SDR of 1.55 dB, 2.01 dB, and 2.88 dB respectively.
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Figure 5.3. SDR (dB) for the ΘΩΩ model with the interference placed
at 75◦

Figures 5.4, 5.5, and 5.6 depict the scenario, over the range of RT60s,

when the target and interferer are separated by 15◦. Separation in this sce-

nario is particularly challenging since the sources are close together and the

interaural cues become indistinct, hence, greatly degrading the separation

performance.

In Fig. 5.4, for the Θ00 complexity, it can be observed that all the

methods in general perform worse when the separation between the sources

is smaller than if they are well apart. At 300 ms the IIM method has an
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SDR of 1.81 dB whereas in the similar complexity but with the separation

angle of 75◦ the SDR was 7.42 dB. The IIM+SC improves the separation of

IIM by around 0.6 dB, while the IIMM+SC method by 2.47 dB at 300 ms.

As the RT60 increases, the contribution by the spatial covariance model also

slightly increase and at 600 ms the IIM+SC is 0.8 dB better than the IIM

method, while the IIMM+SC performs best by improving separation around

2.87 dB over the IIM method.
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Figure 5.4. SDR (dB) for the Θ00 model with the interference placed
at 15◦
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Fig. 5.5 shows results for the Θ11 complexity with the separation an-

gle of 15◦. Within this complexity, since there is contribution from the

ILD and IPD cues (although the parameters of these models are not de-

pendent on frequency), the contribution from the spatial covariance model

is slightly reduced. For instance at 485 ms, the IIM+SC method is 0.5 dB

while IIMM+SC is 2.26 dB better than IIM. When frequency dependency

is introduced within the parameters of the ILD and IPD models, the ΘΩΩ

complexity, results for which are shown in Fig. 5.6, the performance of the

IIM technique further deteriorates. As stated previously, to the fact that

the sources are too closely spaced, the interaural cues are almost identical.

At 485 ms, the addition of the spatial covariance model to the ILD and IPD

models, IIM+SC, improve the performance by 0.51 dB, while the IIMM+SC

method by 1.94 dB.
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Figure 5.5. SDR (dB) for the Θ11 model with the interference placed
at 15◦
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Figure 5.6. SDR (dB) for the ΘΩΩ model with the interference placed
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5.5 Summary

This chapter presented the spatial covariance model that utilized the loca-

tions of the speakers, potentially estimated through a video process, and

the attributes of the room such as its wall reflective properties, wall area

and reverberation time of the room. The model was used in conjunction

with the ILD and IPD models and ILD, IPD, and mixing vector models.

The parameters for the models were obtained using the EM algorithm that

produced improved TF masks for each source. The masks were used to ex-

tract the sources. Experimental results verified that the proposed algorithm

can perform better, in general, than the algorithm that uses only the ILD

and IPD models, over all considered levels of reverberation. The separation

performance was specifically better when the separation angle between the

sources was small and the mixture was highly reverberant. The inclusion of

the spatial covariance model improves the separation, but the improvement

is not very significant i.e. typically less than 1 dB in terms of SDR. Further

refinements may be required to achieve additional improvement, possibly in

terms of source variance estimation, or incorporating the model in way that

it is refined at each EM iteration, but this is left for future research.

In a further step to tackle the room reverberation, the proceeding chap-

ter explores binaural dereverberation schemes that suppress the late compo-

nents of reverberation from the observed mixtures before source separation.

Within this pre-processing, based on spectral subtraction, the late rever-

berant components are estimated, in the time-frequency domain, and are

suppressed to dereverberate the mixture. A novel cascade structure is also

investigated, within which three dereverberation stages are utilized provide

an increased reverberation suppression. The source separation algorithm is

then run on the dereverberated mixtures to give enhanced estimates of the

sources.



Chapter 6

DEREVERBERATION BASED

PRE-PROCESSING FOR THE

SUPPRESSION OF LATE

REVERBERATION BEFORE

SOURCE SEPARATION

6.1 Introduction

Room reverberation, produced by multiple reflections of the sound on wall

surfaces and objects in an enclosure, remains a challenge for many signal pro-

cessing applications, such as automatic speech recognition (ASR), hearing

aids and hands-free telephony. Specifically, the late reflections of the room

impulse response (RIR) cause spreading of the speech spectra and degrade

the quality of speech and the intelligibility [25]. The objective of dereverber-

ation algorithms is to suppress the effects of reverberation while minimally

distorting the speech structure.

Monaural dereverberation algorithms based on spectral subtraction, e.g.

[25,98], have been proposed to suppress the effects of late reflections. Effec-

tive extension of the monaural methods to the binaural context is important

103
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as this would enable their utilization in multiple applications. Such exten-

sions must produce minimal musical noise and also preserve the binaural

cues i.e. interaural time difference (ITD) and the interaural level difference

(ILD) [99,100].

6.2 Monaural Dereverberation and Extension into the Binaural

Context

In spectral subtraction based dereverberation techniques, given a reverberant

signal in the TF domain, for instance, Srev(ω, t), a dereverberated signal,

Scln(ω, t), can be obtained by subtracting the late reverberant component

Srevlate(ω, t) as,

Scln(ω, t) = Srev(ω, t)− Srevlate(ω, t) (6.2.1)

where ω is the frequency index at the time frame t . Alternatively, the process

can also be expressed as

Scln(ω, t) = G(ω, t)Srev(ω, t) (6.2.2)

where G(ω, t) is a gain function applied to the observed reverberant signal,

and can be computed by estimating the late reverberant component as

G(ω, t) =
Scln(ω, t)

Srev(ω, t)
=
Srev(ω, t)− Srevlate(ω, t)

Srev(ω, t)
. (6.2.3)

In the monaural dereverberation method in [98], a statistical model of

the room impulse response is proposed in order to subtract spectrally the

late reverberant components, assuming that the direct-to-reverberant (DRR)
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ratio is low. The gain function is computed as

G(ω, t) = 1− 1√
SIRpost(ω, t) + 1

(6.2.4)

where SIRpost(ω, t) is the a posteriori signal-to-interference ratio (SIR) cal-

culated as

SIRpost(ω, t) =
|Srev(ω, t)|2

σ2Srevlate
(ω, t)

(6.2.5)

where σ2Srevlate
(ω, t) is the variance of the late reverberant speech component

and is estimated as

σ2Srevlate
(ω, t) = exp(−2κTl) · σ2Srev

(ω, t− nlate) (6.2.6)

where κ = 3ln(10)
RT60 , Tl indicates the time from which the late reverberation

starts, nlate is the number of samples related to Tl, RT60 indicates the

reverberation time (assumed to be known), and σ2Srev
is the variance of the

reverberant mixture computed by recursive averaging [99]

σ2Srev
(ω, t) = δ · σ2Srev

(ω, t− 1) + (1− δ) · |Srev(ω, t)|2 (6.2.7)

where δ ∈ [0,1] is the smoothing factor.

This monaural scheme is extended to the binaural form in [99] where

a delay-and-sum beamformer is used to generate a reference signal by av-

eraging the time-aligned left and right reverberant signals. The reference

signal is then processed to generate the weighting gains using Eq. (6.2.4).

In [100] the left and the right reverberant mixtures are separately processed

to yield two gains. The two gains are then combined, e.g. by taking the

minimum, maximum or average, and applied to both the channels. The

procedure in [100] is adopted by independently processing the two channel

signals and two gain functions are obtained. A single gain is then formed
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using the following linear combination [101],

Gnew = αGL + (1− α)GR (6.2.8)

where GL and GR are the left and right channel gains and α is a weighting

factor chosen empirically, 0 ≤ α ≤ 1. The proposed scheme allows the

suppression of late reverberation in a flexible way by selecting a suitable α.

The processing is depicted in Fig. 6.1.

Figure 6.1. Processing overview with the bilateral signal processing
and gain derivation.
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Due to errors in the estimation of the weighting gains, musical noise is

likely to have been introduced. Smoothing of the derived gain is performed

as in [99], [102] where an estimation is performed to detect if a frame contains

speech (has high SIR) or not, and thus attenuate the frames with low SIRs.

The power ratio of the enhanced signal and the reverberant signal [102],

ζ(t) =

W∑
ω=1

Gnew(ω, t).|Y (ω, t)|2

W∑
ω=1

|Y (ω, t)|2
(6.2.9)

is computed to indicate whether the SIR of a time frame is low or high. If

ζ(t) is approximately unity, the SIR of that frame is assumed to be high,

and if ζ(t) is nearly zero, the SIR is supposed to be low. A moving average

window is then applied to smooth the weighting gain magnitudes [99].

To verify the suitability of the above binaural dereverberation scheme,

in the context of source separation, it is appended as a pre-processing stage

to the source separation method described in Chapter 4. Since the source

separation algorithm also utilizes models of the ILD and IPD, experimen-

tal evaluation is considered to be useful in that the results would indicate

whether the binaural dereverberation based pre-processing preserves the bin-

aural cues or not.

6.3 Experimental Evaluation

Experiments were conducted by pre-processing the observed reverberant

mixture using the aforementioned binaural dereverberation method and then

performing the source separation described in Chapter 4. Results were com-

pared with only the source separation algorithm in order to highlight the gain

that could be achieved by including the pre-processing. The speech files in

these experiments also come from the TIMIT database [23]. Experiments
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were performed for mixtures of two and three speech sources. Real RIRs

used, that come from [103], were convolved with speech sources to generate

the reverberant mixtures. These RIRs were measured in real rooms having

different reverberation times.

For evaluation purposes, the signal-to-distortion ratio (SDR) [64] was

used. Perceptual evaluation of speech quality (PESQ) [63] was also used

as a performance measurement metric to reveal the quality of the pro-

cessed speech. Results for the scheme with the pre-processing, referred to as

derev+IIMM, are compared with the source separation method in Chapter

4, termed as IIMM.

Results in Fig. 6.2 depict the SDR (dB) at different RT60s when the

interfering source is at a relatively smaller separation angle of 15◦. The Θ11

model is under consideration here, where both the ILD and IPD models

are frequency-independent. The graph clearly indicates the improvement

achieved by incorporating the binaural dereverberation based pre-processing.

The improvement is consistent over all the RT60s and generally increases

when the RT60 grows. For instance, at RT60 of 320 ms, the derev+IIMM

is 1.61 dB and at 890 ms it is 3.59 dB better than IIMM.

The PESQ results for the same scenario are shown in Fig. 6.3. These

results indicate that the pre-processing, by suppressing the late reverberant

components, improves the quality of the separated speech. At 320 ms, the

derev-IIMM method improves the PESQ by 0.13 and at 890 ms by 0.15.

Fig. 6.4 provides results for the ΘΩΩ model with the masker at 15◦

azimuth. A similar general trend of improved performance over all RT60s is

followed when the frequency-dependent ILD and IPD models are considered.

The derev+IIMMmethod provides an improvement, in terms of SDR, of 1.02

dB at 320 ms and 1.71 dB at 890 ms. Fig. 6.5 shows the PESQ results for the

similar experimental setting. Results over all RT60s show an improvement

in quality, in terms of the PESQ measure, when the mixtures are first pre-
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Figure 6.2. SDR (dB) for the Θ11 model with varying RT60s and the
interference positioned at 15◦ azimuth.

processed before separation.

The following section explores a novel cascade structure for binaural dere-

verberation. The study is motivated by the fact that realistic environments

are highly reverberant, and in these circumstances the performance of even

the state-of-the-art methods degrades significantly, as such there is a need for

additional processing to mitigate the distortions produced by reverberation

and thus improve the separation performance.

6.4 Cascade Structure for Spectral Subtraction Based Binaural

Dereverberation

A cascade structure for spectral subtraction based binaural dereverberation

of audio signals is investigated. Three binaural dereverberation blocks are
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Figure 6.3. PESQ for the Θ11 model with varying RT60s with the
interference located at 15◦ azimuth.

utilized. The first two stages exploit distinct observations to model and

suppress the late reverberation by deriving a gain function. The musical

noise artifacts generated due to the processing at the first two stages are

mitigated by smoothing the spectral magnitudes of the weighting gains. The

third stage linearly combines the gains obtained from the first two stages

and further enhances the binaural signals. The binaural gains, obtained by

independently processing the left and right channel signals are combined as

a convex mixture.

The entire dereverberation process is a combination of three cascaded

stages. Each stage takes in a binaural input and gives a binaural output

in the time-domain. The algorithm diagram is given in Fig. 6.6. The

enhancement of each stage is cumulative as the overall non-linearity in the

processing is a form of nesting which relates to a fixed point iteration [104].
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Figure 6.4. SDR (dB) for the ΘΩΩ model with varying RT60s and the
interference positioned at 15◦ azimuth.

With a cascade of these non-linear processors, a higher overall enhance-

ment is achievable which may not be possible by each stage individually, or

by repeatedly cascading the same block.

The time-domain left and right channel reverberant signals are input to

the first stage where they are independently processed using the monaural

dereverberation method proposed in [98], described in Section 6.2. This

method, which is referred to as LB-RIR (the acronym is derived from the

authors’ names, Lebart et al., and their technique which is based on RIR

modeling), is extended into the binaural context using the proposed method

to obtain a gain function which is then smoothed, as explained in Section

6.2.

Stage 2 makes use of the monaural scheme in [25], which is termed as
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Figure 6.5. PESQ for the ΘΩΩ model with varying RT60s with the
interference located at 15◦ azimuth.

Figure 6.6. The proposed cascaded approach for binaural dereverber-
ation.

WW-SMOOTH (the acronym is derived from the authors’ names, Wu and

Wang, and their method which is based on smoothing of the signal spec-

trum). This method is motivated by the observation that the spreading due

to the late reverberation causes smoothing of the signal spectrum in the time

domain. Thus, the power of the late reverberant component is estimated as

the smoothed and shifted version of the power of the reverberant speech in
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the TF domain

|Xrevlate(ω, t)|
2 = γϖ(t− ρ) ∗ |Xrev(ω, t)|2 (6.4.1)

where ∗ indicates the convolution operation, γ is a scaling factor, and ρ is

the shift delay. The term ϖ(t) is a smoothing function given as the shifted

Rayleigh distribution [25]

ϖ(t) =


t−a
a2

exp(−(t−a)2

2a2
), if t > −a

0, otherwise

where a indicates the integer but non-zero number of frames and needs to

be smaller than ρ. Here a = 5 while ρ = 7 as in [25].

The method in [25] is also extended to binaural in a similar manner as

in stage 1, and the smoothing of the weighting gain follows accordingly. The

enhanced signals from stage 2 are forwarded to stage 3. The weighting gains

from stage 1 and stage 2 are linearly fused to form a combined gain. The

fused gain is used to further suppress the late reverberant components from

the left and right channel signals and give the final dereverberated signals.

The advantage of the proposed approach is next experimentally verified.

6.5 Experimental Evaluation

The proposed cascade structure for binaural dereverberation is experimen-

tally tested in two processing contexts: firstly, for the purpose of dereverber-

ation only; secondly, using the proposed cascade as a pre-process to a source

separation algorithm.

The anechoic speech utterances in all experiments come from the TIMIT

database [23]. Real binaural RIRs (BRIRs) from the Aachen impulse re-

sponse (AIR) database [105] were used in the dereverberation-only experi-

ments while in the joint dereverberation and source separation experiments
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RIRs are used from [103]. The frame length used was 512 and the frame

overlap was 75 percent. The other parameter values were the same as in the

original works [25,98,99].

6.5.1 Dereverberation-only

Speech files from TIMIT were chosen randomly containing both male and

female speakers. In the AIR database [105], the first set of BRIRs used here

were measured in an office room with source-to-microphone distance of 1

m and 3 m with an RT60 of 0.37 s and 0.48 s respectively. The BRIRs in

the second set were measured in a lecture room with source-to-microphone

distance of 2.25 m, 5.56 m and 10.2 m with an RT60 of 0.70 s, 0.79 s, and

0.83 s respectively. Both the LB-RIR and WW-SMOOTH schemes were

applied to the observed reverberant signals without any inverse filtering.

For performance evaluation in the dereverberation-only case, three objec-

tive measures were used including the signal-to-noise ratio (SNR), segmental

SNR (segSNR), and the perceptual evaluation of speech quality (PESQ) [63].

Table 6.1. Mean values of SNR (dB), segmental SNR (segSNR) (dB)
and PESQ for three random signals from TIMIT convolved with BRIRs
from the Aachen database. RT60s of 0.37, 0.48, 0.70, 0.79, and 0.83
seconds under consideration.

RT60 SNR (dB) Improv. segSNR (dB) Improv. PESQ Improv.
(s) LB-RIR Cascade LB-RIR Cascade LB-RIR Cascade
0.37s 0.40 0.65 0.64 0.98 0.16 0.32
0.48s 0.86 1.37 1.21 2.06 0.09 0.20
0.70s 0.87 1.27 1.73 2.33 0.24 0.27
0.79s 0.75 1.22 1.14 1.87 0.16 0.30
0.83s 1.12 1.71 1.50 2.34 0.22 0.32

Table 6.1 summarizes the experimental results in the context of dereverberation-

only processing. LB-RIR in the table means that the signal is enhanced using
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the LB-RIR method and extended to binaural as in [99]. Each value in the

table is an average of three randomly selected speech signals from the TIMIT

database. It can be seen that the proposed approach provides an improve-

ment in all the three evaluation metrics. Over all the RT60s, the proposed

method gives a mean SNR gain of 1.13 dB, mean segSNR gain of 1.92 dB,

and PESQ improvement of 0.28, compared to LB-RIR which gives an SNR

gain of 0.8 dB, segSNR gain 1.24 dB, and a PESQ improvement of 0.17.

6.5.2 Dereverberation and Source Separation

In this set of experiments the proposed cascade structure is used as a pre-

processing stage before the source separation (termed as Cascade+IIMM),

as was also done in Section 6.3. BRIRs used here [103] were measured in

four different rooms with RT60s of 0.32, 0.47, 0.68, and 0.89 seconds.

Fig. 6.7 provides a comparison, in terms of SDR (dB), between the

source separation algorithm, IIMM, the derev+IIMM scheme, and the Cas-

cade+IIMM approach. The scenario under consideration here is the same as

in Fig. 6.4 so as to highlight the gain achieved with the proposed cascade.

The Casacade+IIMM furthers the SDR consistently, and over all RT60s,

provides an average improvement of around 1.5 dB over the derev+IIMM

method.

Fig. 6.8 gives the PESQ comparisons for the different methods, with the

experimental setting similar to Fig. 6.5. The cascaded approach performs

well in terms of PESQ too, with notable improvement of 0.24 at the RT60

of 680 ms.

Figures 6.9 and 6.10 provide results in terms of SDR (dB) and PESQ

respectively for mixtures of three sources. The three sources were mixed

with varying levels of reverberation. The target was at 0◦ azimuth while the

interfering sources were symmetrically located at a separation of 45◦ on its

either sides. In terms of SDR, both the derev+IIMM and Cascade+IIMM
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Figure 6.7. SDR (dB) for the ΘΩΩ model with varying RT60s and
the interference positioned at 15◦ azimuth. Cascade+IIMM providing
a superior performance.

improve performance over the IIMM method by 1.5 dB and 2.56 dB respec-

tively on average over all the considered RT60s. Alongside SDR, the PESQ

scores also show consistent improvement. On average over all RT60s, the

Casacade+IIMM method provides 0.27 and the derev+IIMM scheme 0.15

improvement in terms of PESQ over the IIMM approach.

6.6 Summary

This chapter studied binaural dereverberation techniques based on ampli-

tude spectral subtraction and their utilization in the context of source sepa-

ration. Late reverberation is said to have deleterious effects on the fine signal

spectrum and suppressing them can generally improve the performance of

many signal processing applications. A monaural dereverberation scheme
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Figure 6.8. PESQ for the ΘΩΩ model with varying RT60s with the
interference located at 15◦ azimuth. Cascade+IIMM showing an im-
proved performance.

based on the model of room impulse response was first studied and then

extended into the binaural context. It was then used as a pre-processing

stage to the source separation algorithm and the performance was compared

in different scenarios. The pre-processing proved to be useful in that it pro-

vided improvements both in terms of SDR and PESQ, when used with source

separation.

Later, a cascade structure was explored to achieve further enhancement.

The proposed cascade had three stages, with each stage providing signal

enhancement. The cascade structure for binaural dereverberation was also

used as a pre-process before source separation. The cascade was also evalu-

ated for dereverberation purposes too. Detailed experiments were conducted

and real data was utilized. The cascade structure was shown to provide im-
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Figure 6.9. SDR (dB) for the ΘΩΩ model with varying RT60s for
mixtures of three speakers. The interfering sources positioned at 45◦

symmetrically on both sides of the target source.

proved performance over its single-stage counterpart, both in the context of

dereverberation only and joint dereverberation and source separation.
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Chapter 7

CONCLUSION

This thesis introduced new techniques for separating multiple sound sources

from their reverberant mixtures. It assumed that the locations of the sound

sources were known a priori or provided by independent video processing.

Humans are skilled at selectively attending to one sound of interest while

many sounds are simultaneously present. Machines, in contrast, can only

perform simple forms of these tasks i.e. in anechoic conditions or typically

mixtures with only two sources. The performance of the current source

separation systems in multi-source realistic reverberant environments is very

limited. The work in this thesis aimed at improving the performance of such

source separation algorithms in reverberant scenarios by exploiting the sound

source locations.

In Chapter 3 a new multi-microphone array based method combined

with binary time-frequency masking was presented. A robust least squares

frequency invariant data independent beamformer was designed. The ro-

bust beamformer being aware of the source locations provided improved

estimates of the sources. A white noise gain constraint was also added for

further robustness. The beamformer weight vectors were estimated using

convex optimization techniques. With the intention to further enhance the

separated sources, binary time-frequency masking based post-processing was

incorporated. The sources estimated by the beamformer were transformed

into the time-frequency domain, and the amplitudes of the corresponding

120
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time-frequency points were compared. Binary masks were thus obtained for

each source. Since the ideal binary masks are likely to have introduced un-

wanted musical noise, smoothing was applied in the cepstral domain. The

smoothed binary masks were applied to the mixture to give the final sepa-

rated sources. Experimental results indicated that the binary time-frequency

masking based processing significantly improved the separations, but intro-

duced musical noise. For instance, at RT60 of 600 ms, the robust beamformer

without post-processing provided an average advantage of 2.27 dB in terms

of the signal-to-distortion ratio (SDR) over the independent vector analysis

(IVA) based method. When the post-processing was introduced, for example

at RT60 of 300 ms, the signal-to-interference-noise ratio improved from 11.25

dB to 12.18 dB, thus further enhancing the sources. The proposed method

was applicable only in the over-determined setting. The next chapter thus

pursued a two-microphone method inspired by human hearing.

In Chapter 4 a novel computational auditory scene analysis (CASA)

based approach was proposed that utilized the combined probabilistic models

of the interaural level and phase differences and mixing vectors, and exploited

the information about the source locations. The method was based on the

assumption that signals are sparse in the time-frequency domain and do not

overlap. Using the source location estimates, direction vectors towards each

source were calculated. The direction vectors were used as the mean param-

eter of the mixing vector model. The parameters of the probabilistic models

were estimated by the iterative expectation-maximization (EM) algorithm.

The source location estimates were also utilized in the overall algorithm ini-

tialization. After a fixed number of iterations, soft time-frequency masks

were obtained using the posterior probabilities of the combined models. The

probabilistic time-frequency masks were applied to the reverberant mixtures

to estimate the individual sources. Extensive experiments were performed

to test the advantage of the known source directions on the separation. This
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was done through comparisons with other competing methods in varying

scenarios. The proposed method was found to be more efficient than others,

specifically in multi-source highly reverberant cases and when sources are

in close proximity. For instance, the proposed scheme when compared with

other audio-only methods, on average at different model complexities using

real room impulse responses (RIRs) with RT60 around 565 ms, in terms of

SDR, performed 2.39 dB and 1.53 dB better than the method in [59] and [86]

respectively. When compared with methods that estimate the source loca-

tions through video (audio-visual methods), the proposed method in the

two-source case, performed on average over 5 dB better than three meth-

ods, [87–89], when they also utilized two microphone mixtures. Increasing

the number of microphones in the competing methods improves their per-

formance. But even with eight microphones, the proposed method (utilizing

only two microphones) is approximately 2.7 dB, 1.5 dB, and 2.6 dB bet-

ter than the method in [87], [88] and [89] respectively. Furthermore, in the

three-source case, the proposed method provided an average advantage of

around 2.8 dB over [87], 2.1 dB over [88], and 0.2 dB over [89], when all the

competing methods use eight microphones.

To investigate the usefulness of the knowledge of the spatial character-

istics of the enclosure such as the reverberation time and the wall reflective

properties, Chapter 5 introduced the spatial covariance model. The spatial

covariance model was evaluated by combining it with the models described in

Chapter 4. Results highlighted that the complementary information about

the spatial properties of the sources and the room can be useful in further-

ing the separation performance and mitigating the effects of reverberation,

specifically when sources are relatively closely spaced. For example, consider-

ing the frequency-dependent models, the spatial covariance model combined

with the models described in Chpater 4, termed as IIMM+SC in Chapter 5,

improves performance approximately 2 dB over the IIM model that utilizes
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only the ILD and IPD models.

Finally, in Chapter 6 a pre-processing stage was presented for two-

channel dereverberation based on amplitude spectral subtraction. The single-

channel spectral subtraction methods were reviewed. The single-channel

method was extended to the binaural context, and was incorporated in to

the source separation algorithm proposed in Chapter 4. Experimental re-

sults indicated that the pre-processing was useful in suppressing the late re-

verberant components before source separation, and provided improvement

in the separation. A novel cascade structure to further suppress the late

reverberation was investigated. Three dereverberation blocks were concate-

nated where each stage provided signal enhancement. Two state-of-the-art

monaural spectral subtraction schemes were utilized and were extended to

the binaural context. The cascade structure was experimentally evaluated

in two different processing contexts. Firstly, it was used for the purpose of

two-channel dereverberation only. Secondly, the cascade was used in con-

junction with the two-channel source separation algorithm. Results from

extensive experiments in both processing contexts demonstrated that the

cascade structure gives an increased late reverberation suppression. The

method is also beneficial when used as a pre-processing stage to source sep-

aration. The two-channel dereverberation scheme also preserved binaural

cues which were exploited within the source separation algorithm. The pro-

posed cascade when used solely for dereverberation utilizing real RIRs, at

RT60 of 790 ms, provided a signal-to-noise ratio (SNR) improvement of 1.22

dB compared with 0.75 dB by the single stage method, segmental SNR im-

provement of 1.87 dB as compared to 1.14 dB, and a perceptual evaluation of

speech quality (PESQ) improvement of 0.30 compared to 0.16 by the single

stage method. When the cascade structure was utilized as pre-processing

stage to the separation algorithm in Chapter 4, termed Cascade+IIMM, it

gave on average around 3 dB improvement in terms of SDR for RT60s over
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400 ms when compared with the separation algorithm with no pre-processing

(IIMM). The PESQ results were also consistent where the Cascade+IIMM

provided an improvement of 0.27 over the IIMM method.

7.1 Future Work

The techniques proposed in this thesis could be extended in a number of

ways and different directions could be explored. The robust beamformer

proposed in Chapter 3 was based on a linear array with sixteen microphones.

Circular microphone array [106] or other geometries could be investigated.

Also, in the post-processing stage when the binary masks were applied to a

mixture, not all the sixteen mixtures were utilized. Either by some means

of combining masks from all mixtures or something as simple as selecting,

at each time-frequency point, the microphone with the higher estimated

signal-to-noise ratio might further improve the performance.

The two-channel model-based approach could potentially be improved

in a number of ways. The models of the interaural level and phase differ-

ences (ILD and IPD) and mixing vectors are combined assuming they are

conditionally independent since this assumption offers particular advantage

in algorithm development. Although there is some dependence between the

ILD, IPD and the source directions (the parameter that aids the mixing vec-

tor model), it was not modeled in this work. Modeling such dependence is a

very interesting point to be investigated. This dependence modeling is likely

to further improve the quality of the time-frequency masks and thus the es-

timated sources. Another possibility is including a model for reverberation.

The model should be capable of better distinguishing the direct-path sounds

than the later reflections. A possibility to do this might be including a model

for the precedence effect [107]. The precedence effect is a perceptual mecha-

nism that aids humans to localize sounds in reverberant environments. The
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model is expected to give a greater weighting to the direct-sound compared

to the later reflections.

Pitch cues are utilized to group sound components within the time-

frequency domain [37] [108] in order to segregate them. Efficiently modeling

this monaural cue, and combining it with the model of binaural cues ex-

ploiting source directions (as proposed in Chapter 4 of this thesis) is also a

potential direction for future research.

The combined models also assumed the sound sources to be physically

stationary. In practice, however, the sources are likely to change their posi-

tions. The case of the moving sources will be explored. A potential solution

for this might be in the context of audio-visual source separation. Visual

tracking could be utilized and the models be fed with the source locations.

However, synchronization of the audio and visual measurements may be a

challenge.

The spatial covariance model assumed the reverberation time was known.

Estimating the reverberation time was not focussed upon in this thesis but

could be pursued in future. The spectral subtraction based dereverberation

exploited state-of-the-art monaural algorithms that were extended into the

binaural context. When the bilateral gains were combined to form a single

gain, the weighting factor was chosen empirically. An efficient mechanism

could to be devised for the determination of the weighting factor.

The cascade structure proposed here was based on three concatenated

stages and exploited two different monaural methods. Different combina-

tions and number of stages could be investigated.

Finally, future work could focus on reducing the current algorithm com-

plexity. This would allow real-time implementation and its utilization in

multiple application fields.
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