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Abstract

While humans can separate a sound of interest amidst a cacophony of con-
tending sounds in an echoic environment, machine-based methods lag behind
in solving this task. This thesis thus aims at improving performance of audio
separation algorithms when they are “informed” i.e. have access to source
location information. These locations are assumed to be known a priori in
this work, for example by video processing.

Initially, a multi-microphone array based method combined with binary
time-frequency masking is proposed. A robust least squares frequency invari-
ant data independent beamformer designed with the location information is
utilized to estimate the sources. To further enhance the estimated sources,
binary time-frequency masking based post-processing is used but cepstral
domain smoothing is required to mitigate musical noise.

To tackle the under-determined case and further improve separation per-
formance at higher reverberation times, a two-microphone based method
which is inspired by human auditory processing and generates soft time-
frequency masks is described. In this approach interaural level difference,
interaural phase difference and mixing vectors are probabilistically mod-
eled in the time-frequency domain and the model parameters are learned
through the expectation-maximization (EM) algorithm. A direction vector
is estimated for each source, using the location information, which is used as
the mean parameter of the mixing vector model. Soft time-frequency masks

are used to reconstruct the sources. A spatial covariance model is then in-
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tegrated into the probabilistic model framework that encodes the spatial
characteristics of the enclosure and further improves the separation perfor-
mance in challenging scenarios i.e. when sources are in close proximity and
when the level of reverberation is high.

Finally, new dereverberation based pre-processing is proposed based on
the cascade of three dereverberation stages where each enhances the two-
microphone reverberant mixture. The dereverberation stages are based on
amplitude spectral subtraction, where the late reverberation is estimated and
suppressed. The combination of such dereverberation based pre-processing
and use of soft mask separation yields the best separation performance. All
methods are evaluated with real and synthetic mixtures formed for example
from speech signals from the TIMIT database and measured room impulse

responses.
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Chapter 1

INTRODUCTION

1.1 Motivation

Almost everyday we encounter numerous instances where we need to focus
on one sound of interest in the presence of many distracting sounds. It could

be

e the parents’ call to the children among other sound sources such as a

television, a pet, or a vacuum cleaner within a home, or

e it may be a meeting room or an office setting where multiple speakers

are simultaneously active and there is a need to follow one speaker, or

e it could be listening to a certain talker while multiple talkers are also
active along with other background noise, as in a cocktail party situ-

ation [5], illustrated in Fig. 1.1.

Humans with normal hearing abilities, if required to undertake the afore-
mentioned tasks will perform reasonably well. This remarkable performance
of the human hearing system in conducting such complicated tasks is due
to the complex auditory processing that is yet to be fully understood. Hu-
mans exploit multiple cues or features and there are numerous processes

and complex mechanisms that make the difficult task of isolating a single
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Figure 1.1. The Cocktail Party, 1965. Alex Katz.

sound among other competing sounds in realistic reverberant environments
possible.

As technology progresses, more and more research is being done for the
development of advanced machines that could benefit mankind in one way
or another. Among many others, one need for these machines is to acquire
human-like hearing capabilities (machine audition), or specifically, separate
sounds from their reverberant mixtures as this would enable multiple appli-

cation areas. To name a few, consider

e the performance of automatic speech recognition (ASR) systems (in
smart phones, and computers) in realistic environments, with com-
peting sources, reverberation and background noise. The performance
degradation of such ASR systems could be considerably reduced by in-

corporating a pre-processing stage for reverberant speech separation.
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e People with hearing difficulties require more sophisticated devices,
such as, hearing aids or cochlear implants to better deal with everyday
challenging acoustic scenarios. This will help tens of millions of people
around the world and they can also carry out tasks that other humans

with normal-hearing do.

e Within a meeting or teleconference room with typically multiple speak-
ers and high levels of reverberation, robust source separation systems
are required to enable convenient hands-free operation, and automatic

speech transcription.

e In robotics applications, for instance, the robot needs to understand

the directives in realistic environments in order to fulfil different tasks
[6].

e In surveillance or forensic applications, where either there are record-
ings with mixtures of sounds or it is a real-time data feed; the source

of interest could be extracted from the acoustic mixture.

The above-mentioned examples are just a few among many more where
a sound of interest needs to be separated or extracted from a reverberant
mixture of multiple sounds. Hence, there is sufficient motivation to develop
efficient algorithms for machine-based reverberant sound source separation.

The current source separation algorithms can solve limited (with con-
straints on source statistics, the number of sources and microphones, or the
amount of reverberation) versions of the source separation problem. Some
methods, i.e. beamforming, typically require a large number of observations
(microphones) to enhance a source coming from a certain direction and re-
ject interferers from other directions [7]. For an improved performance, these
methods are only effective when the number of sources is less than the num-
ber of microphones i.e. the over-determined case. Their performance is

also limited at higher levels of reverberation, and thus, are not practically



Section 1.1. Motivation 4

very useful [8]. In blind source separation (BSS) using independent compo-
nent analysis (ICA), an unmixing matrix is estimated assuming the mixed
sources to be statistically independent. However, only determined or over-
determined cases could be solved [9]. Computational auditory scene analysis
(CASA) based methods follow a different approach in that they are inspired
by the human auditory processing. They aim to model the fundamental cues
that humans utilize in performing the separation task and typically utilize
one or two microphones (i.e. are monaural or binaural). They generally ex-
ploit the time-frequency representation of observations and aim to estimate
time-frequency masks to segregate individual sources from the mixture [10].
Assuming that the sources do not overlap in the time-frequency domain,
these techniques are capable of solving the under-determined case i.e. more
sources than microphones. Monaural cues i.e. pitch, onset/offset, and bin-
aural cues i.e. interaural level and phase differences are typically used to
identify the time-frequency points belonging to a certain source, and gen-
erate either hard (binary) or soft (probabilistic) time-frequency masks [11].
The masks are applied to the mixture to reconstruct the sources.

The performance of current source separation systems in realistic rever-
berant conditions is very limited. Reverberation distorts the cues, such as,
the interaural level and phase difference, which are typically exploited by the
separation systems. The assumptions on which the different techniques are
based are also weakened due to reverberation. For instance, sparsity, which
is usually exploited in time-frequency CASA-based methods, which assumes
that signals are sparse in the time-frequency domain. Reverberation smears
and increases energy across time. As such the signal becomes less sparse in
the time-frequency domain, thus, causing degradation of the performance
of separation algorithms. Separation performance further deteriorates when

the number of sources in the mixtures increases.
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1.2 Aims and Objectives

In many applications, information about the locations of the sound sources
may be known a priori, or it may have been estimated through independent
video processing. Can the source locations be used to advantage? Can this
“informed” approach better tackle reverberation and the case of multiple
speakers? To answer these and other similar questions, this thesis aims to
develop multiple signal processing techniques for informed source separation
in enclosed reverberant environments. The location information in this work
however is assumed to be derived from video processing but this is not
the subject of this thesis, further details can be found in [12,13]. Such
location information is used in all the contribution chapters, i.e. Chapters
3-6, whereas the room spatial characteristics are employed in Chapter 5. In
the evaluation studies later in Chapter 3 of the thesis, the effect of estimation
errors in such location information is also studied. Complexity issues and
real-time implementation are outside of the scope of this thesis.

The aims of this thesis are summarized as follows:

Exploit multi-microphone array based method combined with binary time-frequency

masking to segregate sources in reverberant environments

A multi-microphone beamforming method with binary time-frequency based
post-processing is studied. The beamformer, utilizing the known source lo-
cations, provides an estimate of the speech sources. The source estimates
are further enhanced by exploiting binary time-frequency masking. The aim
of binary masking is to suppress any energy from the interfering source that
has remained in the estimate of the target source obtained by the beam-
former. Since the binary masks tend to generate unwanted musical noise,

cepstral processing is also incorporated.
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Study a two-microphone model-based method that generates soft time-frequency

masks for under-determined reverberant source separation

To further the separation performance when the level of reverberation is high,
and to be able to solve the under-determined problem, a two-microphone
model-based approach is pursued. Inspired by the human auditory pro-
cessing, the combined probabilistic models of the interaural level and phase
differences and the mixing vectors are used. Since the source locations are
assumed to be known, they are utilized within the modeling. Parameters
of the models are estimated using the expectation-maximization algorithm.
Soft (probabilistic) masks are obtained from the posterior probabilities to

separate the sources from their reverberant mixtures.

Investigate modeling of the properties of the enclosure using a spatial covariance

model

To utilize additional spatial properties of the enclosure, such as the rever-
beration time, and the wall reflective properties, a spatial covariance model
is studied. The spatial covariance model is used in conjunction with the

aforementioned models and is shown to improve the separation.

Explore a pre-processing stage and a novel cascade structure for binaural dere-
verberation based on amplitude spectral subtraction

To tackle high levels of reverberation, a dereverberation based pre-processing
is studied. It is based on amplitude spectral subtraction. The pre-processing

is evaluated both as a single stage and also as a cascade structure.

The objectives of this study include

e Developing efficient algorithms that are able to separate multiple sounds

from their reverberant mixtures by exploiting the source locations.

e Publishing the work in leading journals and conferences in the area.
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1.3 Organization of this thesis

Chapter 2 gives background for the related topics which will be studied in
the later part of the thesis. It begins by describing sound production and
its propagation within rooms. The room impulse response, reverberation
time and other important related parameters are then introduced. Time-
frequency representation of signals is studied before reviewing the different
approaches to the source separation problem, including blind source separa-
tion, beamforming, and computational auditory scene analysis. The different
performance evaluation measures are also discussed.

Chapter 3 describes a multi-microphone array based approach combined
with binary time-frequency masking. Exploiting the knowledge of the loca-
tions of the sources, a robust least squares frequency invariant data indepen-
dent beamformer is designed. A binary time-frequency masking based post-
processing is then introduced. The estimated sources by the robust beam-
former are further refined using the binary masks. To smooth the binary
masks, since they tend to produce musical noise, cepstral based smoothing
is applied.

Chapter 4 illustrates a two-microphone based algorithm inspired by the
human auditory processing. It presents the probabilistic models of the in-
teraural level and phase difference and mixing vectors. The models utilize
the information of the locations of the sources. The models are combined
and their parameters are estimated using the expectation-maximization algo-
rithm. Experimental evaluation then follows which are conducted in varying
scenarios.

Chapter 5 studies the spatial covariance model. The spatial covariance
model exploits the spatial characteristics of the enclosure such as its rever-
beration time and wall reflection properties. The spatial covariance model is

combined with the models explained in Chapter 4, with the aim to further
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the separation performance in highly reverberant scenarios.

Chapter 6 investigates pre-processing based on dereverberation. Single-
microphone spectral subtraction based dereverberation methods are studied
first, and then extended to the binaural context. The two-microphone based
dereverberation is utilized as a pre-processing stages before source separa-
tion. To further suppress that late reverberation, a new cascade structure
is then studied. The cascade structure is also used as a pre-processor. A
variety of experiments are performed in the dereverberation-only, and joint
dereverberation and source separation processing contexts.

Chapter 7 summarizes the findings and the conclusions and discusses

directions for future work.



Chapter 2

BACKGROUND AND
LITERATURE REVIEW OF
SOUND SOURCE
SEPARATION IN
REVERBERANT
ENVIRONMENTS

2.1 Introduction

This chapter provides some background and a brief insight into the relevant
topics discussed in the later chapters. Although the areas could be discussed
in more detail, the focus here was to provide coverage which is sufficient for
a reasonable overall understanding of the area, and not shallow enough to
skip essential concepts. Further detail can be obtained through the extensive
list of references provided.

The chapter begins by introducing sound production and propagation

in enclosed environments. After discussing the room impulse response, im-
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portant parameters such as the reverberation time, direct-to-reverberation
ratio, and the critical distance are defined. A section explaining the time-
frequency representation of signals follows next. The different approaches
to the source separation problem are then briefly reviewed, including blind
source separation, beamforming, and computational auditory scene analysis.
Since the computational auditory scene analysis based methods are more rel-
evant to this thesis, they are reviewed in relatively more detail. Different
performance evaluation measures are then explained which are used to test
the performance of the algorithms developed, as detailed in the forthcoming

chapters.

2.2 Room Acoustics

Sound is produced by the physical vibrations of the sound source and prop-
agates as a pressure wave through air (or another medium). Sound waves
emitted in an enclosed environment are subject to multiple reflections and
diffractions with wall surfaces and objects within the enclosure, before being
received by a sensor (ear or microphone), as depicted in Fig. 2.1. Reflections
of the source signals are sensitive to characteristics of the geometry of the
environment, and the materials and objects within it. Thus, the received
sound signal will be a mixture of the delayed and attenuated versions of the
original source signal (along with the direct path signal). The propagation of
sound and the reflections for a certain source-receiver position i.e. the room
acoustic properties, can be fully described by the room impulse response

(RIR).

The RIR is composed of three main parts, namely, the direct-path, early

reflections and late reverberation, illustrated in Fig. 2.2. The direct-path of
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Figure 2.1. Multi-path reflections of sound waves in a room environ-
ment, from, SAE Institute (www.sae.edu).

the RIR in Fig. 2.2 is shown in blue, the early reflections in green (described
as all energy between 10-50 ms here), and late reverberation in red. The
direct-path signal is the sound received directly from the source without any
reflections, and travels the shortest distance. Since the direct-path sound
propagates from the original direction of the source, it has accurate infor-
mation of the location of the source [14]. Early reflections arrive after the
direct-path and there is evidence that they also improve intelligibility. Late
reverberation starts after the early reflections and typically begins in the
range of 50-100 milliseconds [15]. There is evidence of a perceptual mech-
anism in humans, termed as the precedence effect that aids in localizing

sounds within reverberant environments [16].

Reverberation time (RT60) is an important parameter in room acous-
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Figure 2.2. An illustration of an RIR with the direct-path, early
reflections and late reverberation signals in blue, green and red respec-
tively. Samples beyond 50 ms (800 samples at a sampling rate of 16000
Hz) are considered as late reverberation.

tics. It is the time taken by the sound signal power to decrease by 60 dB from
the time when the sound source is switched off [17]. Studies by Sabine [15]
indicate that the RT60 is directly proportional to the volume of the room
and inversely proportional to the amount of absorption. If the volume of the
room is denoted by “Vol”, and aggpine and A denote the absorption coef-
ficient and total absorption area respectively, the RT60, in seconds, can be

estimated as [17]
241n(10) Vol

RT6OSabine —
c aSabineA

(2.2.1)

where c is the speed of sound in air. An alternative equation to estimate the
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RT60 (in seconds) is also given by Eyring [17] as

241n(10) Vol
c In(1 — agyring)A

RT60EYT ™9 = (2.2.2)

where agyring is the Eyring sound absorption coefficient. Theoretically, from
both the equations, it could be observed that the RT60 is independent of
the distance of the sound source from the receiver [18]. The RIR is also
characterized by another important parameter that compares the energies of
its different components, called the direct-to-reverberation energy ratio
(DRR). It is the ratio of the energy of the direct-path signal (and usually
some early reflections) to the remaining reverberant part [15]. When a sound
source is at a position from the receiver that the direct-path energy is equal
to the reverberant part energy, it is said to be at the critical distance [17].
The performance of current source separation systems at medium or
higher RT60s (> 300 ms) is limited. The late reflections within a room arrive
with perceptible delay at the receiver and distort the information contained
in the sound [19]. Even state-of-the-art source separation methods [9,20-22]
fail to overcome this problem. New techniques are thus required that could
mitigate the effects of reverberation and thereby improve the separation

performance.

2.3 Time-frequency Representation

Time-frequency representation is a very useful way to analyze (and process)
speech signals that provides a representation of the signal over both time
and frequency. The short-time Fourier transform (STFT) is typically used

to transform the signal into the time-frequency domain.

Fig. 2.3 shows the speech waveform of an example utterance taken from
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Figure 2.3. The waveform of a 2.5 second long example utterance
“Don’t ask me to carry an oily rag like that”, sampled at 16 kHz.

the TIMIT database [23] where a female speaker says, “Don’t ask me to
carry an oily rag like that”. The spectrogram, the magnitude squared of
the STF'T coefficients, of the same utterance is provided in Fig. 2.4, with
time on the horizontal axis and frequency on the vertical axis. The analy-
sis window in this example was 32 ms (512-point at sampling frequency of
16000 Hz). This means that the whole utterance was divided into chunks
of size 512 each, and a 512-point fast Fourier transform (FFT) was taken.
FEach FFT thus represents the spectral activity over the 32 ms duration of
the signal, giving us the variation of the spectrum of the signal over time.
It can be observed from the spectrogram that most of the time-frequency
points contain insignificant energy, indicating that this signal representation

is sparse [24].
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Spectrogram of the clean speech
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Figure 2.4. Spectrogram of the utterance “Don’t ask me to carry an
oily rag like that” with an analysis window of 32 ms.

The speech signal is convolved with a room impulse response and the
spectrogram of the reverberant speech is shown in Fig. 2.5. RT60 of the
room was 320 ms. It can be seen that the spectrogram is considerably
blurred and time-frequency points with no or less energy are now filled by

reverberation energy.

It is the late reverberation that causes temporal smearing of the signal
and significantly degrades the performance of many signal processing appli-
cations [17,25]. There is evidence of certain perceptual mechanisms that help
humans to adapt to different reverberant conditions [19]. Although humans
with normal hearing do well in tackling the reverberation challenge [19],

reverberation remains a challenge to machine-based processing. Different
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Figure 2.5. Spectrogram of the reverberant speech. The utterance in
Fig. 2.4 was convolved with the room impulse response with an RT60
of 320 ms.

dereverberation methods have been proposed to mitigate the effects of re-
verberation [17]. Sound source separation systems also tend to compensate
for the distortions caused due to reverberation, but generally still provide
poor performance in the presence of reverberation equivalent to realistic lev-
els, such as when RT60 > 300 ms. This motivates the development of source
separation algorithms that are relatively more robust to reverberation. Some

of the different approaches to source separation are discussed next.

2.4 Blind Source Separation

Blind source separation (BSS) algorithms attempt to separate the source
signals without the prior knowledge of sources or the mixing process. De-

pending on how the signals are mixed, algorithms can be classified as instan-
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taneous, anechoic and reverberant (or convolutive) [26]. In the instantaneous
mixing case each source signal appears within all the mixture channels at
the same time with differing intensity. The anechoic mixing differs from the
instantaneous case in that each source signal reaches the microphone with
a delay [27]. The anechoic mixing model is sometimes referred to as an in-
stantaneous mixing model with delays [26]. Mixing is reverberant (or echoic)
when there are multiple reflective paths between each source and each micro-
phone. The source separation task is challenging when source signals arrive
at microphones from multiple directions and with different delays.

Time-domain convolutive BSS is computationally demanding because of
the convolution calculation associated with the length of the room impulse
response. Time-domain methods generally also have low convergence speeds,
which motivates the transformation to the frequency-domain. Since convo-
lution in the time-domain corresponds to multiplication in the frequency
domain, the separation problem is simplified and instantaneous mixtures
are obtained at each frequency bin. However, the main downside to the
frequency-domain approach is the permutation problem (arbitrary order of
sources). Most instantaneous BSS algorithms yield source estimates with
scaling ambiguities and arbitrary order of sources. Applying such algorithms
independently to each frequency bin and combining them can potentially
lead to unintelligible and incorrect source estimates. The arbitrary scaling
which occurs at each frequency bin is usually overcome by restricting the
demixing matrix or the source estimates to be normalized [26]. On the other
hand, the arbitrary order of sources in each frequency bin can lead to a
total loss of the source separation achieved in the frequency domain when
combined incorrectly.

The ratio of the number of sources to the number of microphones also
influences the complexity of the separation process. A mixture is termed

as determined when the number of microphones is equal to the number of
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sources; over-determined when the number of microphones is larger than
the number of sources; and under-determined (or over-complete) when the
number of microphones is smaller than the number of sources [27]. Source
separation is generally more difficult in the under-determined case.

In convolutive source separation (CSS), for I audio sources recorded by
N microphones, the noise-free convolutive audio mixtures obtained can be

described mathematically as

Tm(ts) =D > hmi(p)s;(ts —p+ 1) (2.4.1)

j=1p=1

where s; is the source signal from a source j = 1,...,I, x,, is the received
signal by microphone m = 1,..., N, and hy,(p), p=1,..., P, is the p-th tap
coefficient of the impulse response from source j to microphone m and ¢, is
the discrete time index.

In time-domain CSS, the sources are estimated using a set of unmixing

filters such that

N Q
Yi(ts) = DY wim(@)wm(ts — g+ 1) (2.4.2)

m=1 g=1

where wjm(q), ¢ = 1,...,Q, is the ¢-th tap weight from microphone m to
source j.

The CSS problem in the time-domain can be converted to multiple
complex-valued instantaneous problems in the frequency-domain by using
a T-point windowed short-time Fourier transformation (STFT), provided
T >> P. The time-domain signals x,,(ts), are converted into time-frequency
domain signals z,,(w,t), where w and ¢ are respectively, frequency and time
frame indices. The NV observed mixed signals can be described as a noise-free

vector in the time-frequency domain as
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x(w,t) = H(w)s(w, t) (2.4.3)

where x(w,t) is an Nx1 observation column vector for frequency bin w,
H(w) is an N xI mixing matrix, s(w,t) is an Ix1 speech sources vector, and

the source separation can be described as

y(w,t) = W(w)x(w,t) (2.4.4)

where W (w) is IxN separation matrix. By applying an inverse STFT

(ISTFT), y(w,t) can be converted back to the time-domain as

y(ts) = ISTFT (y(w,t)) (2.4.5)

BSS methods could broadly be classified as based on second-order statis-
tics (SOS) or higher-order statistics (HOS). In SOS-based separation algo-
rithms the sources are separated on the basis of decorrelation rather than
independence and assume that the sources are statistically non-stationary
or have a minimum phase mixing system [28].

Utilizing SOS, Parra and Spence [21] exploited non-stationarity of speech
and proposed a solution to the source permutation problem. Separation was
performed in the frequency domain. They used a multiple decorrelation
approach and least-squares optimization to estimate the mixing/unmixing
matrix as well as to estimate the signal and noise powers. They proposed
to impose a smoothness constraint on the unmixing filters that forces the
frequency bins to align. It is achieved by constraining the filter length in the
time-domain to be much less than the frame size of the Fourier transform
[28]. Many researchers have focussed on tackling the source permutation
problem [29-32].

Another statistical technique that uses HOS is independent component
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analysis (ICA). In the ICA model, the data variables are assumed to be
linear mixtures of some unknown latent variables, and the mixing system
is also unknown. The latent variables are assumed non-Gaussian and mu-
tually independent, and they are called the independent components of the
observed data. These independent components, also termed as sources, can
be estimated by ICA. Typical assumptions of ICA can be summarized as
follows: sources are assumed to be statistically independent of each other;
all but one of the sources must have non-Gaussian distribution; the mixing
matrix is usually assumed to be square and invertible (and the number of
sources is equal to the number of mixtures, a determined problem) [28]. ICA
generally suffers from permutation, scaling and data length problems.

Kim et al. in [33] proposed independent vector analysis (IVA), which pre-
serves the higher-order dependencies and structures of signals across differ-
ent frequencies to overcome the permutation problem in ICA. IVA exploits a
dependency model which captures inter-frequency dependencies. The inter-
frequency dependencies depend on a modified model for the source signal
prior. The IVA method defines each source prior as a multivariate super-
Gaussian distribution. Thus, it can potentially preserve the higher-order
dependencies and structures of frequency components. Moreover, the per-
mutation problem can be potentially avoided leading to an improved sepa-
ration performance [33].

Taking the effects of reverberation and longer room impulse responses
into perspective, Araki et al. in [22] studied the poor performance of frequency-
domain BSS at higher reverberations. They reported that it was not very
useful to be constrained by the condition where the Fourier transform frame
size is greater than the filter length of the room impulse response. They
also showed that both short and long frames fail: for a longer frame size,
the number of samples in each frequency is small, therefore, the zero-mean

and independence assumptions collapse and correct estimation of statistics
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become challenging. For the case of a short frame, failure results because
the frame size will not cover the reverberation. For instance, an RT60 of 500
ms correspond to the impulse response filter length of 4000, with a sampling
rate of 8 kHz. So, the Fourier transform (FT) frame sizes of 1024 or 2048
are short and do not cover the entire reverberation profile. Whereas if the
frame size increased to 4096, there will be insufficient samples at each fre-
quency to apply a learning algorithm and the independence assumptions will
collapse giving a poor separation performance. The authors concluded that
there existed an optimum frame size that was determined by the trade-off
between covering the entire reverberation and maintaining the independence

assumption.

2.5 Beamforming

Beamforming techniques tackle the source separation problem from a spatial
viewpoint. A beamformer, or a spatial filter, is a processor whose objective
is to estimate the signal arriving from a desired direction in the presence of
noise and interfering signals [34]. Fig. 2.6 illustrates a beamformer’s beam
pattern, where a source of interest is accepted by forming the main lobe
towards it, while interferers are nulled from other directions.

In a delay-and-sum beamformer, with microphones arranged in a linear
array, a sound source of interest from the far field arrives at the microphones
with a delay and a particular angle relative to the array. If suitable delays
are applied, all the advanced signals could be time-aligned and their sum
would lead to the cancelation of any uncorrelated noise. It is frequency-
dependent and the frequency selectivity generally depends on the size of the
array and the distance between the microphones. Beamforming methods
generally require a large number of microphones for an improved perfor-

mance, and typically need prior information about the source directions.



Section 2.5. Beamforming 22

Desire__c;l Signal

e
8
%
d
)

/ /

N, 4
\\ N / g

~

\
\“\\ A Vi
/ %\ % Interferer

s

/ // ! N
e

/
>

-

Figure 2.6. An illustration of a beam pattern with the main lobe
pointed towards the desired source and a null towards the interferer.

A large number of microphones are required for a beamformer to achieve
separation, in contrast, humans use only two ears to perform the same task.
Further issues with beamforming are array geometry, as a uniform linear
array will not provide 360 degrees azimuth response whereas a circular array
can overcome this generally with more microphones. Moreover, the spacing
between microphones is critical for a broadband signal such as speech as it
will determine the limitations of the response of the array for example due
to spatial aliasing [7,35].

Computational auditory scene analysis based methods aim to mimic the
abilities of the human hearing system, but utilize mixtures from either one
or two microphones. These techniques are discussed in detail in the next

section.
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2.6 Computational Auditory Scene Analysis

Computational Auditory Scene Analysis (CASA)-based source separation
methods are inspired by the human auditory processing and exploit the cues
that humans make use of within the auditory scene analysis [36]. These
methods generally utilize mixtures from one microphone (monaural) or two
microphones (binaural), and typically exploit the time-frequency signal rep-
resentation, also referred to as time-frequency (TF) masking or ideal binary
mask (IBM).

TF masking relies on the assumption of signal sparseness i.e. the major-
ity of the samples of each signal are almost zero and thus the sources rarely
overlap [24]. A TF mask (or filter) is based on a TF representation of a
signal, commonly obtained by a short-time Fourier transform (STFT) [37].
Broadly speaking, masks could either be binary (hard) or soft (probabilis-
tic). Speech sources can be perfectly demixed via binary TF masks provided
the TF representations of the sources do not overlap [38], a condition that
Yilmaz and Rickard [38] term W-disjoint orthogonality. Let Si(w,t) and
Sa(w,t) be the STFT of two speech signals s1(ts) and sa(ts) respectively.

Then the W-disjoint orthogonality (WDO) assumption can be written as

Si(w,t) So(w,t) =0,V w,t (2.6.1)

where ¢ denotes the time index and w is the frequency index. Speech signals
have generally been found to have sparse time-frequency representations
and satisfy a weakened form of eq. (2.6.1) in that the product of their TF
representations is almost always small [38].

Roman et al. [39] and Yilmaz and Rickard [38] provided a study for bin-
aural speech separation. In [39] authors used spatial localization cues: in-
teraural time differences (ITD) and interaural intensity differences (IID) for

speech separation. Their work was motivated by the way in which the human
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auditory system performs the speech separation task. In [38] the authors in-
troduced the concept of approximate W-disjoint orthogonality. They showed
that ideal binary TF masks do exist that could separate multiple speech sig-
nals from a single mixture. The Degenerate Unmixing Estimation Technique
(DUET) technique [38,40] calculates a two-dimensional histogram of the ob-
served interaural level and time differences, and finds its peaks which would
correspond to the number of sources. They approximated masks when two
anechoic mixtures were given, assumed that the interaural cues were con-
stant at all frequencies, and that there was no spatial aliasing, which limits
its use in practical reverberant situations.

The TF masking based methods have further been developed and are
combined with either ICA or beamforming in several studies, discussed in

the following sections.

2.6.1 ICA and TF Masking

Kolossa and Orglmeister [41] proposed non-linear post-processing in the form
of TF masking applied to the output of the frequency-domain ICA. Tests
were based only for the special case of two sources and sensors. Initially,
signal estimates were obtained by applying ICA to the mixtures. Direction
of arrival information was used for permutation correction. The output was
then further enhanced by exploiting the approximate WDO of speech signals.
The authors claimed that the algorithm was applicable for demixing an ar-
bitrary number of sources as long as the approximate disjoint orthogonality
requirement was met. In their proposed post-processing method, the mag-
nitudes of the ICA outputs at each frequency bin and at each time frame
were compared. Assuming WDO, only one output would be dominant at
any given frame and bin. Thus, bins with greatest magnitudes were held
and others were set to zero. The combined ICA and TF masking method

was applied to in-car, reverberant (RT60 of 300 ms) and artificial speech
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recordings. SNR improvement of 15 dB for the in-car case was claimed.
The post-processing was tested in conjunction with two ICA algorithms and
one beamformer. It was shown that the non-linear post-processing added
between 1 dB and 6 dB (3.8 dB on average) to the output SNR. It was
concluded that TF masking can significantly improve separation if used as
a post-processing step for frequency-domain ICA algorithms.

Araki et al. [42] proposed a solution for under-determined source sepa-
ration by combining a sparseness approach and ICA. They first extracted
one source using binary TF masking and then applied frequency-domain
ICA to separate the remaining mixtures. They considered the case with two
sensors (microphones) and three speech sources. The speech sources were
assumed to be mutually independent and sufficiently sparse in the TF do-
main. They employed the TF approach because they claim speech signals
are more sparse in the TF domain than in the time-domain. The authors
pointed out that in [40] the signal sparsity assumption was used to extract
signals using a binary TF mask, but the method results in discontinuous
zero-padding of the extracted signals and thus are severely distorted (musi-
cal noise is introduced). The authors claim to have overcome the musical
noise problem. They remove only one source with a binary mask in the first
stage and separate the remaining sources by ICA in the second stage. Tests
were also performed in reverberant conditions with RT60 of 130 ms and 200
ms claiming separation with little distortion.

Araki et al. [43], in a later work, used a continuous (soft) mask instead
of a binary mask (which they used earlier), and reported that the signals
extracted through binary masks contained loud musical noise. They con-
sidered the under-determined case with more sources (I) than sensors (N).
The non-binary continuous mask was based on a directivity pattern. As they
had done previously, in the first stage they remove I-N sources by utilizing

the directivity pattern of a null beamformer (which generates nulls towards



Section 2.6. Computational Auditory Scene Analysis 26

the given I-N directions) and employ N x N ICA at the second stage to
separate the remaining sources. Experimental results were given for I = 3,
N=2and I =4, N=2 Forl =3, N =2 when RT60 = 0 ms, they
mentioned that the method by Yilmaz and Rickard [38] gave unsatisfactory
signal-to-distortion ratio and a large level of musical noise was also present.
While they claimed that with their proposed method they obtained high
signal-to-distortion ratio values with no serious deterioration in separation
performance. The performance of all methods was worse in the reverberant
case with RT60 = 130 ms (compared with the results when RT60 is 0 ms).
However, the authors claimed to be able to obtain higher SDR without musi-
cal noise compared with the method by Yilmaz and Rickard in a reverberant
environment.

Saruwatari et al. [6] proposed a two-stage real-time algorithm by com-
bining a single-input multiple-output (SIMO) ICA technique and binary TF
masking. In the first stage, the SIMO ICA is used to generate mutiple SIMO
signals at each microphone. A binary mask is introduced in the second stage
to efficiently reduce the remaining error in ICA. They also considered rever-
beration and claimed that their method outperformed the conventional ICA
and binary masking techniques.

Sawada et al. [44] combined ICA and phase-based TF masking to extract
certain dominant sources of interest that were assumed to be close to the
sensors, to have dominant power and be non-Gaussian. Unlike their previ-
ous work, they initially apply ICA to remove independent components and
obtain basis vectors. A TF masking stage follows that reduces the residuals
caused by ICA (in the under-determined case). It was claimed that the basis
vector normalization and clustering can be used to determine the number of
target sources and align the permutation ambiguity of ICA.

Araki et al. [45] presented a new sparse source separation method for

non-linearly arranged sensors by utilizing the k-means clustering algorithm
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(a commonly used unsupervised learning algorithm) and binary TF masking.
Experiments were performed for under-determined conditions with RT60 of
128 ms and 300 ms. The distance (R) between sensors was varied i.e. R
= 50, 110, 170 cm. Separation results were shown with two sensors, two-
dimensional three sensors, four sensors. It was concluded that the direct-
to-reverberant ratio was important for current sparse source separation; and
sparse source separation in reverberant conditions was still an open problem.

Pederson et al. in [46] and [47] used an iterative method by combining
instantaneous ICA and binary masking to segregate each signal (using only
two microphones). Their algorithm flows as follows: a two-input two-output
ICA algorithm is applied to the input mixtures, not knowing the number
of sources in the mixtures. The estimated outputs of ICA are re-scaled
and transformed to the frequency-domain by the use of STFT. Binary TF
masks are then determined for each TF unit by comparing the amplitudes
of the two spectrograms. Then each of the two binary masks are applied to
the original microphone mixtures in the TF domain. After the application
of masks the sources are reconstructed in the time-domain by the inverse
STFT. A stopping criterion is devised to stop further processing when the
signal consists of only one source or when the mask is too sparse. With
this iterative algorithm the authors claim to separate successfully mixtures
having up to seven speech sources and to have achieved high signal-to-noise
ratio (SNR) gains in reverberant conditions (with RT60 of 400 ms). The
method proposed in [47] was compared with other methods i.e. with DUET
[38] in the instantaneous and convolutive cases and results were given. Their
method gave better A SNR compared to the instantaneous DUET, while the
convolutive DUET gave similar results.

Kolossa et al. [48] combined ICA and TF masking together with uncertainty-
based decoding techniques to separate the source of interest when multiple

speakers are simultaneously active. They mentioned that by using TF mask-
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ing, part of the information of the original signals might be lost along with
the interfering sources, thus each estimated mask is considered uncertain. A
complex Gaussian uncertainty model was used to estimate the uncertainty
in the spectrum domain. A linear four-microphone array was used and ex-
periments were performed in noisy conditions with RT60 of approximately
160 ms.

Sawada et al. [49] proposed a frequency-domain two-stage convolutive
source separation method that could also be applied to the under-determined
case. In the first stage the expectation-maximization (EM) algorithm is used
in which frequency-domain samples of the mixtures are clustered (in a fre-
quency bin-wise manner) into each source. The second stage aligns the
permutation ambiguities introduced by the first stage. They claim to ob-
tain good results with this two-stage method even in reverberant conditions.
Experimental results were also provided for the under-determined case with
reverberation (varied from 130 ms to 450 ms) of four speakers and three
microphones. The proposed method was shown to perform best compared
to three other BSS methods.

Jan et al. [50] devised a multi-stage approach by combining ICA and ideal
binary masking (IBM) to separate convolutive speech mixtures from two mi-
crophones. They also apply post-filtering in the cepstral domain. Firstly,
they separate the signals from the two-microphones recordings using ICA.
They then estimate the IBM by comparing the energies of the correspond-
ing time-frequency units of the separated sources obtained from the first
stage. Lastly, they employ cepstral smoothing to reduce the musical noise
introduced by TF masking. They evaluated their algorithm for simulated
reverberant mixtures as well as real recordings claiming increased efficiency
and improved signal quality. Detailed results were provided for a separation
example with two sources and sensors with varying Fourier transform frame

lengths, RT60s and microphone noise. The proposed algorithm was also
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compared with two other methods [47] [50] and provided results in which it

outperformed both.

2.6.2 Beamforming and TF Masking

Some studies have focussed on combining beamforming and TF masking to
further enhance the separation. Roman and Wang [10] and Roman, Srin-
vasan and Wang [51] established a method for two-microphone sound sep-
aration of mixtures contaminated with interferences and reverberation by
utilizing adaptive beamforming. The adaptive beamformer, having known
the source directions, first cancels the target source. Then the TF units that
were highly attenuated in the first stage (to have likely originated from the
target location) are set to unity to get an estimate of the IBM.

Boldt et al. [52] use two cardioids (first-order differential beamformers)
to calculate the IBM. Having the information of the directions of target and
interfering signals, both the cardioids that are pointing in opposite directions
provide the basis for IBM estimation. A theoretical derivation was provided
and it was shown that it is possible to calculate the IBM without having
access to the unmixed signals.

In [53] Beh et al. proposed a two-stage algorithm to separate two sound
sources by combining matched beamforming and TF masking. The beam-
former estimates the sources and then the residual interference is suppressed
by TF masking. The locations of the sources were assumed to be known
and to estimate the impulse response the beamformer uses a least-squares
method. The beamwidth of the beamformer was controlled to preserve the
original source content to a maximum. The output of the beamformer still
contained unwanted acoustic content which was further reduced by using TF

masking.
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2.6.3 Other related work

Aarabi et al. [54] proposed a multi-microphone TF masking technique that
uses both the magnitude and phase information of the TF blocks (units) for
comparison. They assume that the direction (or the time-delay of arrival,
as they call it) of the target speaker is known. They mentioned that the
popular source separation techniques (ICA, beamforming, and others) are
not specifically designed to deal with speech signals. Utilizing certain char-
acteristics of speech could greatly enhance the signal separation problem.
They claimed that their algorithm was capable of preserving speech features
from the direction of interest and degrading features from other directions.
The two noisy mixtures from two microphones were first transformed into
frequency-domain representations. A phase-error was derived for each TF
unit based on the information from the two microphones. Each TF unit for
each microphone was given a value between zero and one. The TF units
with smaller phase-error were ‘rewarded’ by larger value ‘1’ and TF units
with large phase-errors were ‘punished’ by a small value ‘0.

Later in 2004, Aarabi and Shi [55] based their two-microphone algorithm
upon phase-error based filters which depend only on the phase of the signals.
First, TF phase-error filters are obtained. The time difference of arrival
(TDOA) of sources and phases of microphone signals were assumed to be
known. The individual TF units were rewarded or punished based on the
observed and expected phases of those units. Their aim was to maintain the
spectral structure of the sources thus preserving the main contents of the
speech source. Soft masking was utilized and experiments were performed
both in anechoic and low reverberant (RT60 = 100 ms) conditions. The
authors mentioned that the SNR gain simulations were useful but could
not truly portray the effectiveness of the speech enhancement technique.
A better way was to test the output on a speech recognition system. A

speaker-independent digit recognition system was used for testing.
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Takenouchi and Hamada [56] applied TF masking to an equilateral trian-
gle array to obtain three delay estimates for each microphone pair. Cermak
et al. [57] proposed a three-stage algorithm employing TF binary masking,
beamforming and non-linear post-processing. They claim that their method
removes the musical noise (introduced by binary TF masking) and suppresses
the interference in all time-frequency slots.

Given the binaural mixtures, Mouba and Marchand [58] used
expectation-maximization based clustering, where the interaural level and
time differences at each TF point are mapped to an azimuth angle to sepa-
rate the sources. Mandel et al. [59] model the interaural spatial parameters
as Gaussian distributions and use expectation-maximization to estimate the
model parameters. The posterior probabilities, after a fixed number of iter-
ations, are used to construct probabilistic masks for each source, with the
assumption that total number of sources are known a priori.

The different methods described above are able to perform source sep-
aration in constrained scenarios i.e. with either no or very low levels of
reverberation, and consider the simple case of mixtures of only two sound
sources. The performance of even the state-of-the-art methods in realistic
reverberant and multi-speaker environments is limited. New techniques need
to be developed that could tackle the reverberation problem well and provide
improved performance in multi-source scenarios. This thesis focuses on the
development of such algorithms, by exploiting the knowledge of the locations
of the sound sources that could either be known a priori or calculated by a
video processing system. Estimating these locations is not within the scope
of this thesis, but further details can be found in [12,13,60,61].

Evaluating the performance of source separation systems is discussed

next.
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2.7 Performance Evaluation Metrics

An important task in the evaluation of source separation algorithms is to
have suitable subjective and/or objective evaluation metrics to quantify how
well the algorithms have performed. In the speech separation context, typi-
cally there are two things to focus within the processed speech: the overall
speech quality and the intelligibility. The overall speech quality is generally
the notion of the listener relating to the perceived speech in that how well it
sounds. Whereas, the intelligibility has to do with perceiving the content of
the utterance in that what is being uttered. In general, speech rated as of
good quality is highly intelligible and vice versa; however, speech perceived
as of bad quality may give a high intelligibly score [62]. Subjective listening
tests are the most accurate way of performance evaluation, but they are
expensive, require intensive labour and thus are time-consuming. Objective
measures have therefore been developed. Different evaluation measures are
used in different domains depending on the type of processing involved and
the distortions produced due to that processing [63]. The evaluation met-
rics used in this thesis are discussed as follows. The main motivation for
using these specific metrics was because of their usage by the wider research
community within this research area and their suitability for the different

algorithms developed in this thesis.

2.7.1 Objective Measures

Signal-to-distortion ratio

The Signal-to-distortion ratio (SDR) which is the ratio of the energy in the
original signal to the energy in interference from other signals and other arti-
facts proposed in [64] is used as an evaluation metric throughout this thesis.
The implementation provided in BSS_EV AL toolbox is utilized. Consider

the anechoic original time-domain signals be represented as s;(ts), - -, sr(ts),
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the anechoic target signal denoted as sy(ts), and the estimated target as
$¢(ts). The SDR is expressed in terms of the three time-domain signals pro-
duced by projecting the estimated signal onto the space of the original signals
i.e. the target signal siqrq(ts), the error caused by interference, e, f(ts), and
the error because of the artifacts, eq¢f(ts). Let P(-) be the projection op-

erator and 7,4, be the maximum number of samples utilized in the shifting

process, the three signals can be expressed as [65]

Starg(ts) = P (8¢, St; Tmaz) (2.7.1)
eintf(ts) = P(8¢, {si}s Tmax) — P (3¢, St, Tmax) (2.7.2)
eartf(ts) = 5t — P(5¢,{si}, Tmax) (2.7.3)
SDR can be written as
SDR = 10log;, Itarget] (2.7.4)

|€ints + eartrl?

where || - |2 denote square of the vector 2-norm (the sum of squares of all
entries). Late reverberation from the sources and any other unexplained
noise (including musical noise) is considered as the artifact error.

The signal-to-interference ratio (SIR) and signal-to-artifact ratio (SAR),

defined below, are also used in Chapter 3.

2
SIR = 10logy M (2.7.5)
l€ints |
2 . 2
SAR = 101log,, I Stareetl” & [€ints| (2.7.6)

learts 12
In contrast to SDR, the SIR metric does not penalize reverberation. In
Chapter 6 where dereverberation methods are studied, the SNR and the

segmental SNR (segSNR) are also used for evaluation. The SNR is defined
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as

Ziﬂ 5%(753)
St oy (si(ts) = 8u(ts))?

where T is the length of the signal. The segSNR is a frame based measure

which is obtained by averaging frame level estimates of SNR [63,66].

Performance Index

Adopting Performance Index (PI) as an evaluation metric is motivated by
assessing the performance at each frequency bin to provide an insight into the
separation achieved by the frequency-domain convolutive source separation
algorithm. Utilizing the matrices H and W in eq. (2.4.3) and (2.4.4), the
matrix G is obtained as, G = WH. Assuming that the number of source
signals equals the number of mixtures, the PI as a function of matrix G is

written as [28,67,68]

PI(G) = [% Zn: (i ma(;b:abs Gir) 1”
=1 k=1
[;L Z (Z maajsabs Gir) 1)} (2.7.8)
k=1 =1

where G, is the ik-th element of G. Lower bound for the PI is zero while the
upper bound is the function of the normalization factor. PI with a value zero
means superior separation performance. The algorithm detailed in Chapter

3 is evaluated with this criterion.

Perceptual Evaluation of Speech Quality

The Perceptual Evaluation of Speech Quality (PESQ) measure is an inter-
national telecommunication union (ITU-T) standard originally designed for
the assessment of speech quality within telephony applications. PESQ com-
pares the original and the processed (separated) signals after transforming

them to a representation that is inspired by psychoacoustics. PESQ is used
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in Chapter 6 of this thesis. Precisely, the implementation provided in [69] is

used.

2.7.2 Subjective Measures

Mean opinion score

In many applications, the ultimate goal of the sound processing algorithms
is an enhanced human listening experience. In Mean opinion score (MOS),
the algorithm performance is subjectively measured by conducting listening
experiments involving human subjects. MOS tests for voice are specified
by the ITU-T recommendation P.800 with the following scale (Table 2.1).

Subjects listen to the processed signals and give their opinions. The arith-

Table 2.1. Opinion scale.

Category rating | Score
Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

metic mean of a collection of these opinion scores is termed as the mean

opinion score. MOS is used in Chapter 3 of this thesis.

2.8 Summary

This chapter provided background of the important issues relating to sound
source separation in reverberant enclosures. It highlighted the hazard posed
by reverberation and discussed some approaches to the source separation
problem. CASA-based methods, that aim to model the cues that humans
make use of while performing the source segregation task, were reviewed
in detail. Different methods used on their own or in conjunction with TF

masking were then reviewed followed by a description of different perfor-
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mance evaluation measures. The following points highlight some limitations
of the current separation algorithms and demand for an improved perfor-

mance, specifically in reverberant scenarios.

1. Most of the works, for instance, [38], [56], [46], [47] consider an anechoic
environment (no reflections occur) and thus their mixing systems are
either anechoic or instantaneous. Instantaneous BSS does not take
signal propagation delay and reverberation into account. They can

not model real-world scenarios that are convolutive.

2. Room reverberation poses great threat to the source separation prob-
lem. Even the most sophisticated algorithms are practically ineffective
with medium or high level of reverberation i.e. with RT60 > 300ms
or RT60 > 500 ms respectively. Since, a realistic average-sized office
room may have an RT60 of 500 ms or more, there is a need for more

robust techniques that work well in reverberant conditions.

3. Most earlier works have focussed on scenarios with two speakers only
e.g. [47], [38]. Robust algorithms need to be developed to separate
more than two speech sources in order to be applicable in practical

situations.

4. TF masking is mostly exploited in the under-determined area. There
are instances where multiple-microphone algorithms need to be used
e.g beamforming. Work is required to incorporate TF masking in these

conditions to enhance the separation process.

The above-mentioned points provide sufficient motivation for the devel-
opment of new algorithms that are more efficient in real-world reverberant
environments. The rest of this thesis will aim to develop such algorithms
with the assumption that the locations of the sound sources are known. In
the following chapter, a multi-microphone based method is proposed that

also utilizes binary time-frequency masking.



Chapter 3

BEAMFORMING AND
BINARY TIME-FREQUENCY
MASKING FOR SOURCE
SEPARATION

3.1 Introduction

This chapter presents a novel multi-microphone source separation approach
which exploits spatial beamforming and binary time-frequency masking.
Typically, for sound sources measured in reverberant rooms, for instance
with reverberation time over 300 ms, the performance of audio-only blind
source separation (BSS) methods is limited. Therefore, in the proposed ap-
proach, the source location information is utilized to facilitate a robust least
squares frequency invariant data independent (RLSFIDI) beamformer. The
convex optimization approach in the beamformer design also allows com-
pensation for the possible uncertainties in source location and direction of
arrival estimates. Sources separated by the RLSFIDI beamformer are fur-
ther enhanced by applying a binary time-frequency masking technique as
a post-filtering process. The RLSFIDI beamformer design for linear array

configurations in a 3-D room environment is explained in the following sec-

37
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tion.

3.2 Robust Least Squares Frequency Invariant Data Independent

Beamformer

The least squares approach is a suitable choice for data independent beam-
former design [7], by assuming the over-determined case with N > I, which
provides greater degrees of freedom. The over-determined least squares prob-

lem for the beamformer design for one of the sources is obtained as

min ||HT (w)w(w) — rq(w)||3 (3.2.1)

w(w)
where rg(w) is an Ix1 desired response vector and can be designed from
a 1D window e.g. the Dolph-Chebyshev or Kaiser windows [70], w’ (w) is
one of the beamformer weight vectors which corresponds to one row vector
of W(w) in (2.4.4), and (-)T and || - ||2 denote respectively the transpose
operation and the Euclidean norm.

A frequency-invariant beamformer design can be obtained by assuming
the same coefficients for all frequency bins ie. ry(w) = rg [71]. If the
wavelengths of the low frequencies of the source signals are greater than
twice the spacing between the microphones then this design leads to spatially
white noise [70]. In audio-only (unimodal) CSS systems there are no priori
assumptions on the source statistics of the mixing system. Assuming that the
sound source locations are known, the mixing filter is formulated as H(w) =
[d(w, 01, ¢1),...,d(w, 05, ¢1)], where d(-) denotes the beamformer response
vector and € and ¢ are the elevation and azimuth angles. The elevation

(0;) and azimuth (¢;) angles of arrival to the center of the microphone array

are calculated as r; = \/(le =y, )2+ (uy, —uy, )2+ (us =y, )2, 0 =

!/

’
1 Uy Uy P
tan (ﬁ), ¢; = sin (TiSin(GS)’ where ugz,, u,, and u,, are the 3-D

2 Tm

. : . / / / . .
locations of the speaker i, while u,, , u, andu, are Cartesian coordinates

Y
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of the center of the microphone array.
The 3-D positions of N-microphone array, with the sensors equally spaced,

are written in matrix form as

U = (3.2.2)

where the Cartesian coordinates of the m-th sensor (microphone) are in the
m-th row of matrix U’
The beamformer response d(w, 0;, ¢;) for frequency bin w and for source

of interest (SOI) ¢ = 1, ..., I, can be derived [72] as

| exp(—jlﬁ;(sin(ei).cos(qbl-).ulgﬁ1 + sin(6;). ]

sin(¢;).u,, + cos(6;).uz, )
d(w, 0;, &) = (3.2.3)

exp(—jk(sin(6;). cos(qf)i).u;N + sin(6;).

sin(d)i).u;m + cos(6;).uz, )

where k = w/c and c is the speed of sound in air at room temperature i.e
343 m/s.

To design the beam pattern which allows the SOI, and to better block the
interferences in the least squares problem in (3.2.1), the following constraints

are used

| wil(w)d(w, 0; + A8, ¢; + A¢) | = 1

| wH (w)d(w,0; + A0,0; + Ad) | < & Vw (3.2.4)
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where 0;,¢; and 0;,¢;, 7 = 1,...,I except i, are respectively, the angles of
arrival of the SOI and interference, and Af and A¢ have angular ranges
defined by a3 < Af < as and az < A¢ < a4, where ay, a3 and as, ay are
lower and upper limits respectively, and ¢ is the bound for interference.
The white noise gain (WNG) is a measure of the robustness of a beam-
former and a robust superdirectional beamformer can be designed by con-
straining the WNG. Superdirective beamformers are extremely sensitive to
small errors in the sensor array characteristics and to spatially white noise.
The errors due to array characteristics are nearly uncorrelated from sensor
to sensor and affect the beamformer in a manner similar to spatially white

noise. The WNG is also controlled here by adding the following constraint

Yw (3.2.5)

where 7 is the bound for the WNG.

The constraints in (3.2.4) for each discrete pair of elevation and azimuth
angles, and the respective constraint for WNG in (3.2.5) are convex [70].
And the unconstrained least squares problem in (3.2.1) is a convex function,
therefore convex optimization [73] is used to calculate the weight vector w(w)
for each frequency bin w.

Finally, W (w) = [w1(w), ..., w;(w)]” is placed in the equation, y(w,t) =
W (w)x(w,t), to estimate the sources. These estimated sources are further
enhanced by applying the binary time-frequency masking technique, dis-

cussed in the following section.

3.3 Post-Processing: Binary TF Masking

As mentioned above, the RLSFIDI beamformer accepts the target signal

from a certain direction and suppresses interferences and reflections, but
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the removal of interference is not perfect, therefore the ideal binary mask
(IBM) technique is used as a post-processing stage. The block diagram of
combining the output of the RLSFIDI beamformer and TF masking is shown
in Fig. 3.1. The separated time-domain speech signal y;(ts) of speaker i is
converted into the time-frequency domain y;(w, t), where w is the normalized
frequency index. By using a T-point windowed discrete short-time Fourier

transformation the spectrograms are obtained as

yi(w,t) = STFT (yi(ts)) i1=1,...,1 (3.3.1)

where t and w respectively represent time and frequency bin indices.
From the above TF representations, binary masks are estimated by com-
paring the amplitudes of the spectrograms [2,74]. The binary masks for three

audio sources are estimated as

1, if w,t)| > Tlye(w,t)] & w,t)| > 71|ys(w,t
ly1(w, )] > Tly2(w, )] ly1(w, )] > 7lys( (%"3'2)

BM;(w,t) =

0, otherwise V(w, t)

1, if |ya(w,t)] > T|ys(w,t)| & |y2(w,t)| > 7|y (w,t
BlMy(w.1) = ly2(w, t)] > Tlys(w, )] ly2(w, t)] > 7y ( (%|_3'3)

0, otherwise V(w,t)

1, if w, )| > Tl (w,t)| & w,t)| > 7|ya(w,t
BMy(o.1) = lys(w, t)] > 7ly1(w, )] lys(w, )| > 7lya( (2'\3'4)

0, otherwise V(w,t)

where 7 is a parameter to control how much of the interfering signals should

be removed at each iteration [2,74].
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Each of the three binary masks are then applied to the original mixtures in

the time-frequency domain in order to enhance the separated signals as

yi(w,t) = BM;(w, t)z;(w,t) i=1,2,3. (3.3.5)

The enhanced signals are transformed to the time-domain by applying an
inverse short-time Fourier transform (ISTFT).

This binary mask based TF technique considerably improves the sepa-
ration performance of the RLSFIDI beamformer by reducing the interfer-
ences to a much lower level which ultimately provides better estimates of
the separated speech signals. However, a problem with the binary masking
is the introduction of errors in the estimation of the masks i.e. fluctuat-
ing musical noise [74]. To overcome the musical noise a cepstral smoothing

technique [74,75] is used.

3.3.1 Cepstral smoothing technique

In the cepstral smoothing the estimated IBM is first transformed into the
cepstral domain, and different smoothing levels, based on the speech produc-
tion mechanism, are then applied to the transformed mask. The smoothed
mask is converted back to the spectral domain. In this method the musical
artifacts within the signals can be reduced. The broadband structure and
pitch information of the speech signal are also well preserved without being
noticeably affected by the smoothing operation [74]. The estimated masks

in (3.3.2), (3.3.3) and (3.3.4) can be represented in the cepstral domain as:

BM¢{(l,t) = DFT H{In(BM;(w,t)) |w=o..7-1} i=1,2,3 (3.3.6)

where [ is the quefrency bin index; DFT and In denote the discrete Fourier

transform and the natural logarithm operator respectively; T' is the length
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of the DFT and after applying smoothing, the resultant smoothed mask is

given as:

BM;(w,t) = BiBM(I,t — 1) + (1 — B)) BM{ (1) (3.3.7)

where ; controls the smoothing level and is selected according to different

values of quefrency [

Bem) ifl e {07'--alem)}>

Bl - 5pitch if | = lpitchy (338)

/Bpeak if { S {(lerw + 1)7 ceey T} \ lpitch

where len, and Bpiien, are respectively quefrency bin indices for the spectral
envelope and the structure of the pitch harmonics in BM;(w,t), and 0 <
Benv < Bpiteh < Bpear < 1. The symbol “\” excludes lp;tcp, from the quefrency
range (leny+1), ..., 7. The details of the principle for the range of §; and the
method to calculate fpeq; are described in [74]. The final smoothed version

of the spectral mask is given as:

SBM;(w,t) = exp(DFT{BM; (w,t) |i—o...7-1})- (3.3.9)

The smoothed mask is then applied to the segregated speech signals in
(3.3.5) as follows:
y;(w,t) = SBM;(w, t)y;(w,1). (3.3.10)

Finally, by applying the ISTFT, 7,(w,t) is converted back to the time-
domain. The experimental results based on objective and subjective evalu-

ations are presented in the following section.
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3.4 Experiments and Results

Simulations are performed in a room with dimensions 4.6 x 3.5 x 2.5 m3.
Audio signals sampled at 8 KHz were used. Room impulse responses were
generated by the image method [76] for reverberation time (RT60) of 300,
450, and 600 ms. The RT60 was controlled by varying the absorption coef-
ficient of the walls. The source image method assumes point sources which
radiate isotropic pressure waves [76]. This is an assumption which allows
generation of synthetic impulse responses. In reality the sound emitted by
a human is directional therefore from Chapter 4 we also include evaluations
with real room impulse responses.

A linear array configuration of sixteen equally spaced microphones, N =
16, was used. The distance between the microphones was 4 cm. The other
important variables were selected as: STFT length T = 1024 & 2048 and
filter lengths were Q = 512 & 1024, the Hamming window was used with
the overlap factor set to 0.75. Duration of the speech signals was 7 seconds,
T =1, ¢ = 0.1, v = —10 dB, for SOI a; = +5 degrees and g = —5
degrees, for interferences a; = +7 degrees and as = —7 degrees, speed of
sound ¢ = 343 m/s, leny = 8, ljoyy = 16, and lhigh = 120, and parameters for
controlling the smoothing levels were Beny = 0, Bpiten = 0.4, Bpeack = 0.8.

Note that the locations (and thus the direction of arrivals (DOAs)) esti-
mated from the video recordings may contain errors, so in the simulations,
the exact DOAs of the sources are perturbed by zero-mean Gaussian noise
with a standard deviation of 3 degrees, which corresponds approximately to
the average of that for the three speakers given in Fig. 5 of [61]. Such a
simulation set-up is assumed throughout Chapters 3-6.

Evaluation Criteria: The objective evaluation of the algorithms include
performance index (PI) [77], signal-to-interference-noise ratio (SINR) and

ASINR = SINR, — SINR;, percentage of energy loss (PEL), percentage of
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noise residue (PNR) [2]; signal-to-distortion ratio (SDR), signal-to-interference
(SIR) ratio, and signal-to-artifact ratio (SAR) [78]. For a signal separated
using a binary time-frequency mask, the PEL and PNR measures are math-

ematically written as [2,79]

PEL =

T, el (ts 2
HECIC) )

2= (I1(25))?

>i,1(eh(ts))?
T

Zts:1(yt(ts))2

where y!(ts) represents the estimated signal obtained from RLSFIDI beam-

PNR = (3.4.2)

former and I'(ts) is the resynthesized signal obtained after applying the
smoothed estimated masks; €} (¢s) is the signal present in I’(ts) but absent
in y'(ts) and similarly eb(ts) is the signal present in y!(ts) but absent in
It(t,) [2).

SINR; is the ratio of the desired signal to the interfering signal taken
from the mixture. SINR, is the ratio of the desired signal resynthesized
from the ideal binary mask to the difference of the desired resynthesized
signal and the estimated signal [2]. The separation of the speech signals is
evaluated subjectively by listening tests. Mean opinion scores (MOS tests
for voice are specified by ITU-T recommendation P.800) are also provided.

In the first set of simulations, two tests were performed on mixtures with
an RT60 of 130 ms, which were separated by the original independent vector
analysis (IVA) based method [1] and the RLSFIDI beamformer. From the
known source locations, the respective elevation and azimuth angles were
obtained and were used by the RLSFIDI beamformer. The resulting perfor-
mance indices of the first test are shown in Fig. 3.2(a) and the performance
of the original IVA method for the same test is shown in Fig. 3.2(b). The
other objective evaluations for both tests are shown in Table 3.1. These

separations were also evaluated subjectively with MOS [STD]|= 4.1 [0.15]
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Figure 3.2. Performance index at each frequency bin for (a) the RLS-
FIDI beamformer and (b) the original IVA method [1], length of the
signals is 7 s. A lower PI refers to a superior method. The performance
of the IVA method is better than the RLSFIDI beamformer at RT60
= 130 ms.

and 4.2 [0.13] for the RLSFIDI beamformer and IVA methods respectively.
The performance of the higher-order statistics based IVA method at RT60
= 130 ms with data length = 7 s is better than the RLSFIDI beamformer.
The output of the RLSFIDI beamformer was further enhanced by the IBM
technique. The masks of clean, estimated and enhanced speech signals are
shown in Figs. 3.3, 3.4 & 3.5 respectively. The highlighted areas, compared
with the corresponding ones in Figs. 3.3, 3.4 & 3.5 show how the post-
filtering technique improves the speech signals separated by the RLSFIDI
beamformer at the post-filtering process stage. In particular, the regions
highlighted in Fig. 3.5 resemble closely the original sources in the regions
shown in Fig. 3.3; the IBM technique has removed the granular noise shown

in the regions highlighted in Fig 3.4. The post-filtering enhanced the sepa-

rated speech signals as shown in Table 3.2.
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Figure 3.3. Ideal binary masks (IBMs) [2] of the three original speech
signals used in the experiment at RT60 = 130 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with
the corresponding ones in Figs. 3.4 & 3.5 show how the post-filtering
technique improves the output of the RLSFIDI beamformer.

In the second set of simulations, two tests are performed on the mixtures
of length = 7 s for RT60 = 300, 450 & 600 ms, which were separated by
the RLSFIDI beamformer and the IVA method [1]. The respective objec-
tive evaluations for each RT60 are shown in Table 3.3, which affirms the
statement in [80] that with long impulse responses the separation perfor-
mance of CSS algorithms +(based on second-order and higher-order statis-
tics) is highly limited. For the condition 7" > P, the DFT length was
also increased, T' = 2048, but there was no significant improvement ob-
served because the number of samples in each frequency bin was reduced to

truncate(7TFs/T) = 27.
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Frequency (Hz)
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Figure 3.4. Binary masks of the speech signals separated by the RLS-
FIDI beamformer at RT60 = 130 ms; (a) speaker 1, (b) speaker 2 and
(c) speaker 3. The highlighted areas, compared with the corresponding
original speech signals in Fig. 3.3 show that a considerable amount of
interference from the other sources still exists when the ASINR = 14.97
dB.



Section 3.4. Experiments and Results 50

G
Frequency (Hz)
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Figure 3.5. Binary masks of the three enhanced speech signals by
the IBM TF masking technique at RT60 = 130 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with the
corresponding ones in Figs. 3.3 & 3.4 show the post-filtering processing
stage improves the output of the RLSFIDI beamformer. For these
enhanced signals PEL = 10.15%, PNR = 11.22%, and SINR = 16.83
dB.
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Figure 3.6. Combined impulse response G = W H by the original IVA
method. The reverberation time RT60 = 300 ms and SIR improvement
was 12.2 dB.

The improved performance of the RLSFIDI beamformer over the original
IVA method, specifically, at RT60 = 300 ms (Table 3.3) when ASINR of IVA
method is higher than the RLSFIDI beamformer, is investigated in Figs. 3.6
& 3.7. Actually, the CSS method removed the interferences more effectively,
therefore, the ASINR is slightly higher. However, the separated speech sig-
nals are perceptually not of an improved quality, because the reverberations
are not well suppressed. According to the “law of the first wave front” [81],
the precedence effect describes an auditory mechanism which is able to give
greater perceptual weighting to the first wave front of the sound (the direct
path) compared to later wave fronts arriving as reflections from surrounding
surfaces. On the other hand, beamforming accepts the direct path and also

suppresses the later reflections therefore the MOS is better. For comparison,
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Figure 3.7. Combined impulse response G = W H by the RLSFIDI
beamformer. The reverberation time RT60 = 300 ms and SIR improve-
ment was 11.2 dB.
a typical room impulse response for RT60 = 300 ms is shown in Fig. 3.8.
In the final set of simulations, the separated speech signals by the RLS-
FIDI beamformer for each value of RT60 were further enhanced by applying
the IBM technique. The respective objective evaluations for each RT60 are
shown in Table 3.4. To show the performance of TF masking as a post-
processing stage, the results for RT60 = 300 ms for the first test are pre-
sented. The ideal binary masks (IBMs) of the three clean speech sources are
shown in Fig. 3.9. In Fig. 3.10 the estimated binary masks (BMj) of the
output signals obtained from the RLSFIDI beamformer are shown. These
binary masks are applied on the spectrograms of the three selected micro-

phones and masks of the enhanced speech signals are shown in Fig. 3.11.
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Figure 3.8. A typical room impulse response for reverberation time
RT60 = 300 ms is provided for comparison.

For comparison, two regions are shown in one of the three speech signals,
which are marked as G+, Hy, I1, J1, K1, L1 in the IBMs, Go, Ho, I5, Jo, Ko, Lo
in the SBMj,, and Gs, Hs, I3, J3, K3, L3 in the final separated signals. From
the highlighted regions, it can be observed that the interference within one
source that comes from the other is reduced gradually in the post-processing
stage. The listening tests are also performed for each case and MOSs are
presented in Table 3.5, which indicates that at higher RT60 the performance
of the RLSFIDI beamformer is better than the IVA algorithm. The pro-
posed solution not only improves the performance at lower RT60s but also
at higher RT60 when the performance of conventional CSS algorithms is

limited.
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Figure 3.9. Ideal binary masks (IBMs) [2] of the three original speech
signals used in the experiment at RT60 = 300 ms; (a) speaker 1, (b)
speaker 2 and (c) speaker 3. The highlighted areas, compared with the
corresponding ones in Figs. 3.10 & 3.11 show how the post-filtering
technique improves the output of the RLSFIDI beamformer.
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(b)

Frequency (Hz)

Figure 3.10. Binary masks of the speech signals separated by the RLS-
FIDI beamformer at RT60 = 300 ms; (a) speaker 1, (b) speaker 2 and
(c) speaker 3. The highlighted areas, compared with the corresponding
original speech signals in Fig. 3.9 show that a considerable amount of

interference from the other sources still exists when the ASINR = 11.25
dB.
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(b)

Frequency (Hz)

Figure 3.11. Binary masks of the three enhanced speech signals by
the IBM TF masking technique at RT60 = 300 ms; (a) speaker 1,
(b) speaker 2 and (c) speaker 3. The highlighted areas, compared
with the corresponding ones in Figs. 3.9 & 3.10 show the post-filtering
processing stage improves the output of the RLSFIDI beamformer. For
these enhanced signals PEL = 24.82 %, PNR = 28.04 %, and ASINR
= 12.18 dB.
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3.5 Summary

In this chapter a beamforming based method combined with a post-processing
scheme based on binary time-frequency masking for the separation of mul-
tiple sources in a reverberant environment was studied. Cepstral processing
was also utilized to smooth the masks. The beamformer exploited the knowl-
edge of the sound source locations (and thus the directions of arrival of the
sources to the microphone array). A robust least squares frequency invariant
data independent (RLSFIDI) beamformer was implemented with a linear ar-
ray configuration. The performance of the RLSFIDI beamformer was further
enhanced by applying a binary TF masking, or ideal binary masking (IBM)
technique in the post-filtering stage. The proposed approach was shown to
provide better separation than the IVA method.

Although the proposed beamforming method combined with the binary
time-frequency masking achieves considerable separation improvement at
low (and mildly medium) reverberation levels, the performance at high lev-
els of reverberation is still limited. Further, this performance is achievable
only with sixteen microphones in the array; reducing the number of sensors
will generally deteriorate the separation performance. These limitations pro-
vide strong motivation to pursue new methods that require lesser number of
sensors and are relatively more robust to reverberation.

Additionally, the time-frequency masking based post-processing in this
chapter utilized binary or hard masks. A disadvantage of such masks is
the introduction of musical noise due to estimation errors. To alleviate this
problem, more flexible, soft or probabilistic masks need to be used.

To achieve the aforementioned objectives, in the proceeding chapter, a
two-microphone based source separation method is proposed that generates
soft time-frequency masks in order to separate sources from their acoustic

mixtures. The method, inspired by human auditory processing, is based
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on the probabilistic modeling of three cues, the interaural level difference
(ILD), the interaural phase difference (IPD) and the mixing vectors. The
sound source location information is also utilized within the modeling. The
parameters for the models are estimated using EM. The algorithm generates
probabilistic time-frequency masks that are used to isolate the individual

sources.



Chapter 4

INFORMED MODEL-BASED
SOURCE SEPARATION IN
REAL REVERBERANT
ROOMS

4.1 Introduction

This chapter describes an informed model-based source separation algorithm
that utilizes observations from only two microphones. Given the reverber-
ant mixtures, containing at least two sources, the interaural level difference
(ILD), interaural phase difference (IPD), and the mixing vectors are mod-
eled probabilistically. The sound source location estimates (assumed to be
known, potentially obtained using information from video) are utilized in
the probabilistic modeling. Direction vectors towards each source in the
mixture are calculated using the source location estimates as described in
Section 4.3.1. The direction vectors are used as the mean parameter of the
mixing vector model. The source location estimates are also utilized in the
overall algorithm initialization. The optimum parameters of the probabilis-
tic models are estimated by the expectation-maximization (EM) algorithm

as detailed in Section 4.4. The EM algorithm, after a fixed number of itera-

62
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tions, generates soft time-frequency masks. The probabilistic time-frequency
masks are applied to the reverberant mixtures to reconstruct the individual
sources. As discussed earlier, it is assumed that the number of sources “I”
and their locations are estimated through video processing and are known
a priori. It is further assumed that the source signals are sparse and that
they do not overlap in the time-frequency domain [82] [24] [38]. In this work
and the remainder of the thesis two and three sources are considered. How-
ever, the method may work if the number of sources in the mixture further
increase as the separation in the time-frequency space may still be possible
but confirming this is left as future work. The sparsity assumption would

weaken as the sources grow in number and thus force the method to fail.

4.2 The ILD, IPD, and Mixing vector models

Consider a stereo-recorded speech signal with the left and right sensor (ears
or microphones) mixture signals denoted as {(¢s) and r(ts). The mixtures are
sampled with the sampling frequency f, (sampling period T, = 1/f,) and
hence are available at discrete time indices ¢, for processing. The convolutive
mixing model for the left and right sensors respectively, as shown in Fig.
4.1, can be written as [(ts) = S0, s;(ts) % hyi(ts), and r(ts) = SOL_| si(ts) *
hri(ts), where s;(ts) denote the speech sources, hy;(ts) and h,i(ts) are the
impulse responses associated with the enclosure from source i to the left
and right sensors respectively, and * denotes the discrete time convolution
operation. The time domain signals are then converted to the TF domain
using the short-time Fourier transform (STFT). The interaural spectrogram
is obtained by taking the ratio of the STF'T of the left and right channels
at each time frame ¢ and frequency w [58] as, % = 10*(Wt)/20¢id(wit),
Thus, the observed interaural spatial cues are a(w,t), the ILD, measured

in dB, and ¢(w,t), the IPD. Since the sources are assumed to be physically
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stationary, the corresponding room impulse responses (RIRs) are assumed

to be time invariant. Because of the phase wrapping, the IPD observations,

4( L(Ld,t)

R 1t)), are constrained to be in the range [—m,7) and thus cannot be

assigned to a source directly.

A

r(ts) ~ ,.-"- I(ts) T
ST#:T N STiF“T X(wt) = || Lwt) [|R(w,)
R(w,t) L{wt)

Figure 4.1. Signal notations. The left and right sensor convolu-
tive mixtures are transformed to the TF-domain to obtain L(w,t) and
R(w,t), and x(w,t) is formed by concatenating L(w,t) and R(w,t) as
shown in the bottom righthand part of the image.

A source positioned at a certain location is modeled with a frequency-
dependent interaural time difference (ITD) 7(w), and a frequency-dependent
ILD as in [59]. The recorded IPD for each TF point, cannot always be
mapped to the respective 7 due to spatial aliasing. The model also requires
that 7 and the length of h(ts) should be smaller than the Fourier transform
window. With the inter-microphone distance kept approximately the same

as the distance between the two ears of an average-sized human head (around
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0.17 m), the delay is much smaller than the Fourier analysis window of 1024
samples at a sampling frequency of 16 KHz (64 ms). Any portion of h(ts)
over one window length is considered part of the noise. A top-down approach
as described in [83] is thus adopted that makes it possible to map a 7 to a
recorded IPD at any desired group of frequencies. The phase residual error,
the difference between the recorded IPD and the predicted IPD (by a delay of

L(‘-‘)’t) e*jUJT).

7 samples), in the interval [—m, 7) is defined as, ¢(w,t;7) = L(W

The phase residual is modeled with a Gaussian distribution denoted as p(-)

with mean ¢(w) and variance 0?(w) that are dependent on frequency,

p((w, 1)|T(w), o*(w)) = N (d(w, £ 7) |E(w), 0% (w))- (4.2.1)

The ILD is also modeled with a Gaussian distribution with mean p(w) and

variance n%(w),

plafw,t)u(w), n(w)) = N(a(w, ) u(w), n*w)). (4.2.2)

The STFTs of the left and right channels are concatenated to form a new
mixture x(w, t) as shown in Fig. 4.1. Assuming the W-disjoint orthogonality
(WDO) property [38] of speech signals, the signals are sparse in the TF
domain and only one source is dominant at each TF point, the STF'T of the

recordings x(w, t) at each time ¢ and frequency w can be written as [84],

I
x(w,t) = > hi(w)si(w, t) (4.2.3)
i=1
and approximated as
x(w,t) =~ hg(w)sq(w, t) (4.2.4)
where hg(w) = [ha(w), hra(w)]? is the mixing vector from the dominant

source sq(w,t) to the left and right sensor at that TF point, assumed to



Section 4.3.  Source Location Information and the Combined Models 66

be time invariant. The vector x(w,t) is normalized to have a unit norm to
eliminate the effects of source scaling. The mixing vectors are modeled for

each source with a Gaussian model as [84], [85]

(4.2.5)

1 (_ [x(w, ) — (de(W)X(w,t)).di(w)\P)

57— €Xp 5
76 (w) i (W)

where d;(w) is the direction vector of the direct-path of the source signal i

which will be derived using the source location estimates obtained from the

H i the Hermi-

video measurements, ¢?(w) is the variance of the model, (-)
tian transpose, and || - || indicates the Euclidean norm operator. In [85], [84],
and [86] the authors proposed the use of an eigen decomposition of a sam-
ple covariance matrix to define unit norm vectors d;(w) to represent the
source directions in the probabilistic modeling of the mixing vectors. This
approach, however, will be sensitive to estimation errors due to short data
lengths, statistical non-stationarity in the audio scene and background noise.
In contrast, in the proposed method the direction vectors are estimated
through vision on the basis of a plane wave assumption, as discussed in
Section 4.3.1 which thereby overcomes these shortcomings. Due to the com-
paratively accurate estimation of the mean parameter of the mixing vector
model, and thus the improved posterior probability, the resulting TF masks
for all sources that are found through the probabilistic modeling will then

be enhanced, as explained in Section 4.4.2. The estimation of the parameter

d;(w) is described next.

4.3 Source Location Information and the Combined Models

As mentioned earlier, it is assumed that the source locations are known.
These locations could potentially be estimated using the visual modality.

Once the 3-D locations of the speakers are available, the mean parameter
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d;(w) is calculated as follows.

4.3.1 Parameter d; Calculation

After estimating the 3-D position of each speaker i, the elevation (6;) and
azimuth (¢;) angles of arrival to the coordinates of the center of the micro-

phones, p;c, plyc and pIZC, are calculated as

!’

6; = tan! (M) (4.3.1)
p;ti - pxc
and
-1 DPy; _pyc>
; = —_— 4.3.2
¢i = sin (ri sin(6;) ( )

where r; = \/(pr — )+ (py; — 1y, )? + (P2, — P, )2 The direct-path weight
vector d;(w) for frequency bin w and for source of interest i = 1,..., I, can

then be derived [72] as

exp(—jk(sin(6;). cos(qﬁi).p;l + sin(6;).
di(w) = sin(¢;).py, + cos(0:).p,,)) (43.3)
exp(—jk(sin(6;). cos(qﬁz-).pgc2 + sin(6;).

sin(qbi).p;2 + cos(ei).p:m))

where plx],, p;j and plzj for j = 1,2 are the 3-D positions of the sensors and
Kk = w/cs and ¢4 is the speed of sound in air at room temperature. The

vector d;(w) is normalized to unity length before it is used in the model.

4.3.2 Combining the Models

To obtain enhanced time-frequency masks for each static source the video-
initialized IPD and ILD models, and the model for the mixing vectors that

utilize the direct-path weight vector in Eq. (4.3.3) obtained with the aid of
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video are used in conjunction. Since the sources are differently distributed
in the mixture spectrograms, in terms of their IPD, ILD and their mixing,
the parameters of the above models cannot be obtained directly from those
mixtures. It is a hidden maximum-likelihood parameter estimation prob-
lem and thus the expectation-maximization algorithm is employed for its
solution. Considering the models to be conditionally independent, they are

combined given their corresponding parameters as

plafw, 1), plw, 1), x(w, 1)|0) = N (a(w, t)|p(w), 7* ()
N (d(w, b)]€(w), o2 (w)) (4.34)
N (x(w, 1)|d(w), 2 (w))

where © denotes all of the model parameters. It is emphasized that it is
only the noise in the measurements of ILD and IPD that is assumed to be
conditionally independent and this same assumption is adopted as in [59] for
the measurement related to the source direction vector. However, the con-
ditional independence assumption offers particular advantage in algorithm
development; namely, at each iteration of the EM algorithm, the parameters
can be updated separately. As in [59], the dependence between ILD and IPD
is introduced through prior assumptions on the mean values of the model pa-
rameters. Since the ILD and IPD may have dependence on source direction,
the assumption of the conditional independence amongst the noise compo-
nents may only be an approximation. Modeling such dependence is beyond

the scope of this study, but is an interesting point for further investigation.
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4.4 Model Parameters and Expectation-Maximization

4.4.1 Model Parameters

All of the model parameters © can be collected as a parameter vector

0 = {1i(w), 1} (), &ir (W), 0 (W), di (W), (W), ir } (4.4.1)

2

where pu;, &+, and d; and 7712, o, and §i2 are respectively the means and vari-
ances of the ILD, IPD, and mixing vector models. The subscript ¢ indicates
that the parameters belong to the source i, and 7 and w show the depen-
dency on delay and frequency. The parameter d;(w) is included since it is
used within the EM algorithm but highlight that since it is obtained from
the video it remains constant throughout the algorithm. The parameter ;,
is the mixing weight, i.e. the estimate of the probability of any TF point
belonging to source i at a delay 7. Note that 1;; is obtained from the hidden
variable z;;(w,t) that qualifies the assignment of a TF unit to source i for
the delay 7 [59]. The hidden variable is an important variable and is unity
if the TF point belongs to both source ¢ and delay 7 and zero otherwise.
In more detail, the probability of z;;(w,t) is equivalent to v;; which is the
estimate of the joint probability of a TF point being from source 7 at a delay
7. Since discrete values of 7 are pre-defined, ;; is a two-dimensional matrix
of the probability of being in each discrete state. z;r(w,t) is not explicitly
calculated. The parameter 1;; is computed in the expectation step of the
EM algorithm. ;; is estimated by placing a Gaussian with its mean at each

cross-correlation peak and a standard deviation of one sample [59].

The log value of the likelihood function (L) given the observations can
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be written as
L(©) = logp(a(w,t), d(w,t),x(w,t)|)
w,t

= 0 N(a(w, t)|pi(w),n? (w
;18;;[ (afw, )| pi(w), m; (w)) (442)

N (w, t57)[ir (@), 07 (w))
: N<X(w7t)’di<w)7§i2(w))- Yir ]

and the maximum likelihood solution is the parameter vector which maxi-

mizes this quantity.

4.4.2 The Expectation-Maximization Algorithm

The algorithm is initialized using the estimated locations of the speakers pro-
vided by video. In the expectation step (E-step) the posterior probabilities

are calculated given the observations and the estimates of the parameters as

eir(w,t) = Yir . N(a(w, )W), 77 ()
N (S(w, 8 7)[€ir (w), 07 (w)) (4.4.3)
N (x(w, )]di(w), ¢ (w))

where €;;(w,t) is the expectation of the hidden variable. In the maximiza-
tion step (M-step), the parameters are updated using the observations and
€ir(w,t) from the E-step. The IPD and ILD parameters and ;, are re-
estimated as in [59]. The mean parameter of the mixing vectors d;(w) is
obtained through video as discussed in Section 4.3.1 and ¢?(w) is updated

as [84]

_ 2t Gir(@,t)-[x(w, 1) — (A (w) x(w,1)).di(w)]?
Zt,f 61‘7—(&), t) .

P (w) (4.4.4)
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The mixing vector model starts contributing from the second iteration,
as in the first iteration the occupation likelihood €;-(w, t) is calculated using
only the ILD and IPD models. The initial value of ¢?(w) is computed af-
ter the first iteration using €;,(w,t). Since the algorithm is initialized with
source locations estimates from video and €, (w, t) contains the correct order
of the sources the permutation problem is bypassed. The probabilistic masks
for each source can be formed as M;(w,t) = > _€r(w,t). The time domain
source estimates are obtained by applying the TF masks to the mixtures
and taking the inverse STFT. The efficacy of the proposed approach is ex-
perimentally verified in the next section. A brief summary of the proposed

scheme is given in Algorithm 1.

Algorithm 1 Brief summary of the proposed audio-visual source sep-
aration approach

Input: Synchronized audio-visual measurements

Output: Separated speech sources

1: Obtain the speaker locations when the sources are judged physically
stationary

2: Calculate parameter d; as in Section 4.3.1

3: Initialize the EM algorithm in Section 4.4.2 with speaker locations
and PHAT-Histogram

4: Run the EM algorithm as in Section 4.4.2 to generate time-
frequency masks for all sources

5: Apply the time-frequency masks to the mixtures to reconstruct the
sources

4.5 Experimental Evaluation in a Room Environment

The performance of the proposed algorithm is evaluated in two main sets
of experiments and is compared with five other algorithms, two are audio-
only and three are audio-visual. Firstly, mixtures of two sources are simu-
lated with varying reverberation times (RT60s) using synthetic room impulse

responses (RIRs), different model complexities and separation angles, and



Section 4.5. Experimental Evaluation in a Room Environment 72

three sources with varying separation angles utilizing real RIRs. Compar-
isons are provided in all of the above scenarios with two other state-of-the-
art audio-only algorithms to highlight the advantage of the audio-visual ap-
proach to source separation. Secondly, experiments are performed for vary-
ing RT60s for both two and three source mixtures and the proposed method

is compared with three other state-of-the-art audio-visual algorithms.

4.5.1 Common Experimental Settings

Room Layout

The room setting is shown in Fig. 4.2. Experiments were performed for mix-
tures of both two and three speech sources. The desired source was located in
front of the sensors at 0° azimuth and the interferer was positioned at one of
the six different azimuths between 15° and 90° i.e. [15°,30°,45°,60°, 75°,90°]
for the case of two speakers. In the three-speaker case the third source was
located symmetrically with the same azimuth, as shown for approximately

60° in Fig. 4.2.

-90°

-

90° 7/
[=} ra
. ST
Microphones | ¢+————— @
L&
=B

Figure 4.2. The room layout showing one of the approximate positions
of the sources and the sensors.
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Table 4.1. Different Parameters Used In Experiments

STFT frame length 1024
Velocity of sound 343 m/s
Reverberation time 565 ms (real) or
160-600 ms (image method)
Room dimensions 95 3.5 m
Source signal duration 2.5 s (TIMIT)
Sensor spacing 0.17 m

Speech Data and Room Impulse Responses

Speech signals from the TIMIT acoustic-phonetic continuous speech corpus
[23] were used. Utterances were randomly chosen to form mixtures with
different combinations i.e. male-male, male-female, and female-female. The
first (16kx2.5) samples of the TIMIT speech sources were used and were
normalized to unity variance before convolving with the RIRs. The real RIRs
were used from [4] which were measured in a real classroom with an RT60
of approximately 565 ms. The center location was used in the experiments
with the sensor-to-speaker distance of 1 m. The image method [3] was also

used to evaluate the proposed algorithm for varying RT60s.

Evaluation of Separation Performance

The signal-to-distortion ratio (SDR) as in [64] was used to evaluate the
performance of the algorithm in cases where the original speech sources were
available. SDR is the ratio of the energy of the original signal to the energy

from interferers, other noise energy and artifacts.

4.5.2 Results and Comparison With Other Audio-Only Algorithms

Extensive experiments were conducted to test the robustness and consistency
of the proposed algorithm. The common parameters used in all experiments
are given in Table 4.1. As mentioned earlier, to emphasize the advantage of

the multimodal approach over audio-only methods in realistic multi-speaker
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environments the results are compared with [59], referred to as Mandel,
and [86], termed as Alinaghi.

Different model complexities, for ILD and IPD, were evaluated similar
to [59]. For instance, the ILD and IPD model complexity of Oy will have
no ILD contribution and an IPD model with zero mean and a standard
deviation that varies only by source, whereas ©1; will have a frequency-
independent ILD model and an IPD model with a frequency-independent
mean and a standard deviation that varies by source and 7, while Oqq uses
the full frequency-dependent ILD and IPD model parameters. And @gﬂ has
parameters similar to Oqq but includes a garbage source and an ILD prior
as described in [59].

In Fig. 4.3, the two model complexities ©1; and O for two sources were
simulated with an interferer at 75°. The speech files from the TIMIT dataset
were convolved with the RIRs generated using the image method [3] to obtain
the reverberant mixtures. The RT60 was varied to evaluate performance of
the algorithms at different levels of reverberation. A curve that corresponds
to the model which uses the ideal d; vector found from the known source
locations has also been included in the results. The curve provides an upper
bound for performance improvement for the algorithm. The results indicate
the improved performance of the proposed technique over [59] and [86]. In
Fig. 4.3(a), for RT60 of 210 ms the proposed algorithm gives an output
of 12.98 dB, Mandel’s algorithm gives 12.37 dB and Alinaghi 12.41 dB. As
the RT60 increases the proposed algorithm still performs best, for example
at 565 ms it is 6.11 dB, which is 1.16 dB higher than Mandel and 0.87 dB
higher than the method by Alinaghi. In Fig. 4.3(b), with a simpler model
Oo, at an RT60 of 210 ms the proposed method outputs 13.57 dB, compared
to Mandel, 13.35 dB, and Alinagi, 13.05 dB. At the maximum RT60 of 565
ms the proposed algorithm gives an output of 5.43 dB, 1.05 dB higher than

Mandel and 0.52 dB higher than Alinaghi. The ILD cues fade away with
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Comparison showing SDR as a function of RT60 for 611' Masker at 75 azimuth
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Figure 4.3. Comparison of performance at different RT60s. The in-
terferer was located at 75° azimuth. Synthetic RIRs using [3] were used
to simulate varying RT60s. The ©1; (a) and Og (b) modes are under
consideration.

increasing reverberation and thus the direct-path direction vector obtained
by video information in the proposed algorithm contributes to better model
the mixing vectors and improve the separation performance.

In Fig. 4.4 (a) the proposed algorithm was evaluated for all the model

complexities. Real RIRs from [4] were utilized to form acoustic mixtures in
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this set of experiments. The results indicate that the proposed algorithm’s
performance is consistently best for all models. In [86] the authors reported
that their algorithm showed significant improvement over [59] with simpler
models but the improvement diminished with the increasing model complex-
ity as confirmed in Fig. 4.4 (a), specifically when the ILD model started con-
tributing. In contrast, the performance of the proposed algorithm is clearly
shown not to deteriorate with increasing complexity and shows consistent
improvement over all the models. The average improvement across the mod-
els in the Alinaghi method over the Mandel method is 1.53 dB, whereas for
the proposed method is 2.39 dB. In Fig. 4.4 (b) the SDR as a function of
the separation angle between the speakers for the ©11 model is shown. Com-
paratively, over all angles the proposed algorithm that utilizes the estimate
of the source direct-path direction vector, by exploiting visual information,
yields an average improvement of 1.53 dB whereas Alinaghi’s method gives
0.75 dB. Results in Fig. 4.5 show SDR as a function of separation angle i.e.
between 15° and 90° for mixtures of three speakers with the most complex
frequency-dependent mode GOqq using real RIRs. The two interferers on ei-
ther side of the target were positioned symmetrically with the same azimuth.
The interferer to the left was simulated by reversing the order of the sensors.
At the minimum separation angle of 15° the proposed algorithm gives an
output of 2.16 dB, whereas Mandel, 0.9 dB, and Alinaghi, 1.43 dB. The re-
sults indicate that the method in [86] offers improvement over [59] at smaller
separation angles from 15° to 45° but no significant improvement at larger
separation angles. The proposed algorithm, in contrast, shows consistent
improvement over all separation angles, specifically in the difficult scenario
with smaller separation angles, over both [59] and [86] in the three-speaker
reverberant case confirming the suitability of the audio-visual approach in
multi-speaker realistic settings, and the value of adding visual information

in audio source separation.
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4.5.3 Results and Comparison with Other Audio-Visual Methods

The proposed approach is next compared with three other audio-visual algo-
rithms, the beamforming based method in [87] which is referred to as Naqvi,
the technique in [88], which is termed as Maganti and the scheme in [89]
using robust beamforming, referred to as RLSFIDI. Similar to the proposed
work, these audio-visual methods employ the visual modality to estimate
the speaker locations which are then utilized within the algorithms.

The multimodal approach to BSS [87] uses the visual modality to en-
hance the separation of both static and moving sources. The speaker posi-
tions estimated by a 3-D tracker are used to initialize the frequency domain
BSS algorithm for the physically stationary speakers and beamforming if
the speakers are moving. The algorithm’s performance is reasonable at low
reverberation when the direct path signal is strong but deteriorates at higher
RT60s when the direct-to-reverberant ratio (DRR) is low. The beamformer
is also generally limited to the determined and overdetermined cases and
achieves improved performance with larger number of audio sensors.

In [88] an audio-video multispeaker tracker is proposed to localize sources
and then separate them using microphone array beamforming. A postfilter-
ing stage is then applied after the beamforming to further enhance the sep-
aration. The overall objective of the system is automatic speech recognition
which lies outside the scope of the proposed work, thus, the output of the
speech enhancement part is compared.

In [89] a robust least squares frequency invariant data independent beam-
former is implemented. The MCMC-PF based tracker estimates the direc-
tion of arrival of the sources using visual images obtained from at least two
cameras. The robust beamformer, given the spatial knowledge of the speak-
ers, uses a convex optimization approach to provide a precise beam for the
desired source. To control the sensitivity of the beamformer a white noise

constraint is used. The scheme provides significant improvement at lower
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RT60s but the performance degrades as reverberation increases. The origi-
nal code used in [89] is employed in the comparison.

In contrast, in [90] a speech source is separated by utilizing its coher-
ence with the speaker’s lip movements. Parameters describing a speaker’s
lip shape are extracted using a face processing system. The authors provide
results for separation of simple vowel-plosive combinations from other mean-
ingful utterances and acknowledge that separating complex mixtures would
be increasingly difficult. In the extension of their work in [91], the spectral
content of the sound that is linked with coherent lip movements is exploited
and assessment is provided on two audio-visual corpora, one having vowel-
plosive utterances similar to their previous work and the second containing
meaningful speech spoken by a French speaker. They discuss the determined
case and the underdetermined case with two sensors and three sources but
reported that performance was limited as the phonetic complexity increased.
These works, as in [92,93], require the speakers to be right in front of the
camera(s), with the face clearly visible so that facial cues can be observed.
The proposed approach is more general, in that only head localization infor-
mation is required and therefore audio-visual recordings with low resolution
can be processed. Hence the methods in [90-93] are not included in the

comparison.

Results

The experimental results in Fig. 4.6 provide the average SDR (dB) as a
function of RT60 for ten random mixtures of two sources for the proposed
method and the three other audio-visual methods i.e. Naqvi, Maganti, and
RLSFIDI. The masker was positioned at -15 degrees azimuth i.e. the mini-
mum and most challenging separation angle in the earlier simulations. The
other algorithms were each evaluated with two, four and eight microphones

at all RT60s. The proposed algorithm gives better separation, using only
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two microphones, than all the other algorithms at all RT60s except at 160
ms where the RLSFIDI outperforms the proposed method with four micro-
phones. The Naqvi and Maganti methods adopt the general trend by im-
proving the separation as the number of microphones is increased, since the
increased number of filter coeflicients provides better interference removal.
The postfiltering stage in Maganti’s scheme refines the output further from
its previous beamforming stage by exploiting sparsity of the speech sources.
Masking postfilters are obtained by retaining the maximum filter output
values at each frequency bin. The final postfilter is then applied to the
beamformer output. This scheme considerably improves the performance
over that of Naqvi for all number of microphones and all RT60s in terms
of the SDR, but introduces musical noise which was observed when the re-
constructed source was listened to. In the RLSFIDI method the designed
unmixing filters used are frequency invariant and data independent thus the
source statistics and RT60 are not considered. Also, since the physical sep-
aration between the sources is only 15°, the increased spatial selectivity of
the RLSFIDI design appears to deteriorate the separation performance at
higher RT60s. In summary, the RLSFIDI method with eight microphones
has the best performance among the three competing techniques below RT60
of around 450 ms and Maganti with eight microphones above 450 ms.

The results in Fig. 4.7 show the average SDR (dB) as a function of
RT60 for ten random mixtures for the proposed method and the three other
audio-visual methods when separating three sources. Each of these three
algorithms was run by using four and eight microphones. Having three
sources in the mixture, the case of only two-microphones becomes under-
determined and solution is not possible through the beamformers in Naqvi,
Maganti, and RLSFIDI, unlike the proposed algorithm which can handle
the underdetermined case too. The improved spatial selectivity of the RLS-

FIDI design again explains this advantage but this degrades with increasing
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RT60. All the algorithms follow this general trend of degraded performance
with increased RT60. For 160 ms, 210 ms and 300 ms utilizing the eight
microphones mixture RLSFIDI performs best. This is the strength of the
RLSFIDI method that at lower RT60s, with reduced reflections, and hence
fewer reflections from the interfering source and overall reverberation leak
through the precise beam formed for the desired source, the separation per-
formance is greatly enhanced. This behaviour changes as the RT60 increases
beyond 300 ms, where even increasing the number of microphones does not
stop the deterioration in the separation performance of the beamformer. In
Fig. 4.8, as an example, the beam patterns for the RLSFIDI beamformer
are provided using four and eight microphones for the case of three sources.
The sources are positioned at —45°, 0°, and 45°. The beam towards the
desired source becomes more precise as the number of microphones is in-
creased. Note, that for Fig. 4.6 the masker is at —15° which explains why

separating three sources can be better with beamforming.
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4.6 Summary

This chapter explained a source separation algorithm that utilizes visual
contribution in terms of the source location estimates. By utilizing this
visual information, it has been confirmed that more accurate TF masks can
be obtained which give improved source estimates, particularly in highly
reverberant multi-speaker environments. The proposed algorithm has been
experimentally tested in a variety of settings including real room impulse
responses confirming its robustness over two other audio-only methods and
three similar audio-visual algorithms in both the two-speaker and three-
speaker cases.

Two further questions remain: can additional cues associated with the
spatial properties of the sources and the enclosure enhance the separation
performance, specifically when the level of reverberation is high? Can the
knowledge of the properties of the room, alongside knowing the source loca-
tions, such as its total wall area, reflective characteristics of the wall surfaces,
and the reverberation time be used to achieve additional advantage in highly
reverberant scenarios?

To address these questions, in the following chapter, the spatial covari-
ance model, a model that utilizes the knowledge of the spatial properties
of the sources and the room is investigated. The model is evaluated when
used in conjunction with the ILD and IPD models, and also when used in

combination with the ILD, IPD, and mixing vector models.
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SDR as a function of different model complexities. Masker at 30 azimuth
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Figure 4.4. In (a) the performance at different model complexities
Oid ipa for two sources with the interferer at 30° azimuth is shown.
The graph in (b) indicates results at different separation angles for
model ©1;. The position of the interferer was varied in steps of 15°
between 15° to 90°. Real binaural RIRs from [4] were used. Results
were averaged over five random mixtures. The proposed method yields
a considerable improvement at all modes and separation angles.



Section 4.6. Summary 83
SDR as a function of separation angle for 3 speakers at OQQ.
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Figure 4.5. Results of the three-speaker case at different separation
angles using the real RIRs at the ©gq mode. The interferers were lo-
cated symmetrically to both sides of the target source. Results indicate

that our proposed method performs best at all separation angles.
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Figure 4.6. Comparison of SDR (in decibels) performance as a func-
tion of RT60 using the proposed algorithm utilizing two microphones
and the Naqvi, Maganti and RLSFIDI methods employing two, four
and eight microphones for mixtures of two sources.
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SDR (dB) comparison with other audio-visual methods for mixtures of three sources
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Figure 4.7. Comparison of SDR (in decibels) performance as a func-
tion of RT60 using the proposed algorithm utilizing two microphones
and the Naqvi, Maganti and RLSFIDI methods employing four and
eight microphones for mixtures of three sources.
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Figure 4.8. Beam patterns achieved by the RLSFIDI beamformer
with four microphones in (a) and eight microphones in (b) for the case
of three sources. It is clearly visible that as the number of sensors is
increased the beam for the desired source becomes more precise strictly
allowing the desired source and forming a null towards the interferer.
With fewer microphones the interferers and reverberation leak through
with the desired source degrading the separation performance.



Chapter 5

INFORMED SPATIAL
COVARIANCE MODEL:
MODELING SPATIAL
PROPERTIES OF THE
SOURCES AND THE ROOM

5.1 Introduction

This chapter investigates modeling the spatial characteristics of the sound
sources and the enclosure to mitigate the degradation caused by the high
level of reverberation. It aims to model the contribution of individual sources
to both the mixture channels (left and right microphones) with a zero-mean
Gaussian distribution. The covariance of the distribution is modeled by
exploiting the location information of the sources, the reflective attributes
of the wall surfaces, the area and the reverberation time of the room. The
model operates in the time-frequency (short-time Fourier transform) domain
and is fused with models of the interaural cues discussed in Chapter 4 to
further the separation performance, specifically in the cases when the room

is highly reverberant.
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Consider, for instance, the case when there are speakers in a meeting or
teleconference room and the enclosure is highly reverberant; performance of
the current source separation methods in such environments is very limited.
Can additional cues assist in improving the separation performance in such
acoustically hostile environments? This chapter thus addresses this question
by incorporating the spatial covariance model to the ILD and IPD models
discussed in Chapter 4. The spatial covariance model utilizes the knowl-
edge of the locations of the speakers and properties of the room, which are
assumed to be known as before.

Similar to Chapter 4, the optimal parameters of the combined mod-
els are estimated in a maximum-likelihood sense through the expectation-
maximization (EM) algorithm. The estimation of a parameter in the spatial
covariance model makes use of the known speaker locations. In the E-step,
the posterior probabilities are calculated whereby TF points are assigned to
sources using the observations and the initial values of the parameters. In
the M-step, the parameters of the models are updated based on the mea-
surements and the probabilities from the E-step. The combined algorithm

generates TF masks that are used to separate the individual sources.

5.2 The Spatial Covariance Model

Given the two-channel reverberant mixtures, I(¢;) and r(¢s), a new signal
x(ts) is formed by concatenating them. The contribution of “I” sources to

both the left and right channels can also be represented as [94]
I
x(ts) = ) img,(ts) (5.2.1)
i=1

where img; (t5) = [imgyi(ts), imgri(ts)]” is the spatial image of the i*" source
to the left and right channels. Assuming the sources are uncorrelated, x(w, t),

the short-time Fourier transform (STFT) of x(¢5), is modeled as a zero-mean
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Gaussian distribution with the covariance matrix [94]

I
Ry (w,t) = Zvi(w,t)Ri(w), (5.2.2)

where v;(w,t) is the time-varying scalar variance and R;(w) is the time-
invariant covariance matrix utilizing the spatial properties of the source i
and the enclosure. From results based on statistical room acoustics [95],
it is assumed that the impulse response is the sum of the direct path and
the diffuse part. The diffuse propagation of sound is due to reverberation.
Reverberation increases the spatial spreading of the source due to multiple
reflections with wall surfaces and other objects in the room. The spatial
covariance of the source i, R;(w), is thus estimated as the sum of the direct
path direction vector and the covariance matrix of the reverberant part [94]
[95]
1 Q(dy, w)

R;(w) = di(w)df (@) + o2, (5.2.3)
Q(dp,w) 1

where d;(w) is the direct-path direction vector, o2, is the variance of the

v
reverberant part and €(dj.,w) depends on the distance between left and
right sensors dj- and the frequency w. The intensity of the reverberation

observed at both the microphones is assumed to have diffuse characteristics

with the same power,

sin(27rwdy,. /c)

9] =
(dir, ) 2nwdy,. /¢

(5.2.4)

where c¢ is the speed of sound in air at room temperature. The variance of

the reverberant part is given by [94]

4 2
Trey = 14(1652)7 (5.2.5)



Section 5.2. The Spatial Covariance Model 89

where A is the total wall area and f is the wall reflection coefficient estimated
from the room reverberation time (RT60), assumed to be known a priori,
using Eyring’s formula [95] as

13.82

B 2.
nychT60) (5.2.6)

B=exp (-

where Lg,. is computed using the z, y and 2z dimensions of the rectangular
room as, Ly, = (L% + L%, + L%)

To estimate the scalar variance v;(w,t) for the computation of the co-
variance matrix Rx(w,t) in Eq. 5.2.2, the method in [96] is followed where it
is obtained by minimizing the sum over all TF units (w, ¢) of the Kullback-
Leibler (KL) divergence between the theoretical covariance matrix Ry (w,t)
and the covariance matrix of the observed mixture R (w,t). The variance
for each source is then given as, assuming only a single source is active at
each TF point,

vil(w, 1) = % Ry ()R (w, )] (5.2.7)

where tr[.] is the trace operator. The covariance matrix of the observed
mixture is calculated as [96]

Y Alw — w, t' — t)x(w', t")x" (W', 1)

Robs t) =
x (W7 ) Ew/t/A(w’ — W, t— t)

(5.2.8)

where A is a two-dimensional window describing the weighting in the neigh-
bourhood of the TF point under consideration.

The probability distribution of the model is given as [97]

P(x(w,t)[{vi(w,t),R;(w),V i}) =
1
det(mRx(w, 1))

) ; (5.2.9)
exp(—x" (w, )Ry (w, t)x(w, t))

where (-) is the Hermitian transpose, and the mean is assumed zero.
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To accomplish the calculation of the spatial covariance matrix in Eq.
(5.2.3), the direct-path direction vector is estimated using the spatial loca-
tions of the sources as

d;(w) = [hui, hei]© (5.2.10)
where

hy = exp(%(sin(@i). cos(d)z-).p;:l + sin(6;). sin(gﬁi).p;/l + cos(Gi).p;l))
(5.2.11)

and

hyi = exp(%(sin(ﬁi). Cos(gbi).p;r + sin(6;). sin(gbi).p;r + cos(@i).p;r)).
(5.2.12)
Here [ps;, py;,P-;] is the location estimate of speaker i, p;m, p;m and p;m,
wherein m is the left or right sensor index, are the 3-D positions of the
sensors and c is the speed of sound in air at room temperature. The eleva-
tion (0;) and azimuth (¢;) angles of arrival to the center of the microphones

of each speaker i are computed respectively as §; = tan™! (M) and ¢; =

Px; =Pz,

sin~! (,Z”;';fg;) ) , where r; = \/ (P2, — P2.)* + (Py; — Py )? + (P2 — p,)?, while

p;c, p;Jc and p/ZC are coordinates of the center of the microphones.

5.3 Incorporating the Spatial Covariance Model

The spatial covariance model is incorporated in the source separation frame-
work described in Chapter 4 in two different contexts: firstly, it is combined
with the interaural level difference (ILD) and the interaural phase difference
(IPD) models; secondly, it is combined with the ILD, IPD, and mixing vector

models.
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5.3.1 The Combined ILD, IPD and Spatial Covariance Models

The spatial covariance model is first combined with the ILD and IPD models.
The spatial covariance model which utilizes the spatial properties of the
sources and the room is believed to further the separation performance,
specifically when the level of reverberation is high. The combined models

given their parameters can be written as

plalw, t), p(w, t), x(w, £)|8) = N (a(w, t)|u(w), n*(w))

N ($(w, )W), o*(w)). N (x(w, )]0, Rx(w, 1)),

(5.3.1)

wherein conditional independence is assumed between the noise models. The
parameters of the combined models are estimated, similar to the previous
chapter, using the expectation-maximization (EM) algorithm and can be

collected as

@ = {/‘i(w)a 771'2("'))’ gi‘f'(w)a 0-1'27-("‘})’ Ui(wa t), I/er} (5'3'2)

2 2
where M, giTa and N 05

= are respectively the means and variances of the

ILD, IPD models, and v; is the scalar variance. The subscript ¢ indicates that
the parameters belong to the source 7, and 7 and w describe the dependency
on delay and frequency.

The log likelihood function (£) given the observations can be written as

L£(©) = logp(a(w,t), $(w, 1), x(w,1)|®)
w,t
= log > [ N(a(w,t)|pi(w),n} (w)) (5.3.3)
w,t 0T
N (D(w, t;7)|€ir (W), 02 (w)). N (x(w, )]0, Ry (w, ). Yir |-

Similar to the preceding chapter, the EM algorithm is initialized with

the known estimated locations of the speakers. In the expectation step (E-
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step) of the EM algorithm, the posterior probabilities are computed given

the observations and the estimates of the parameters as

EiT(wat) = wi’r . N(a(("}?tﬂui(w)? 777,2(("0))
N (d(w, t;7)|€ir (W), 02 (w)). N(x(w, )]0, Rx(w, 1)),

(5.3.4)

where €&;(w,t) is the expectation of the hidden variable m;;(w,t), which
is unity if the TF point belongs to both source ¢ and delay 7 and zero
otherwise. In the maximization step (M-step), the parameters of the models
are updated using the observations and €;-(w,t) from the E-step. The IPD

residual model parameters are estimated as

S, dlw, t;7)éir (w, )

gi'r (W) = Zt . (w’ t) (535)
2 (B, 7) = &ir(w))?Eir (w, 1)
o7 (w) = =4 S (@, 0) . (5.3.6)
The ILD model parameters are updated as
Y alw, e (@, 1) 5o

i) = Zt,r €ir(w,t

Y(a(w,t) — wi(w)? >, Eir(w,t)
>y €ir(w, 1) : (5.3.8)

The parameter v;; is initialized using a PHAT histogram [59]. The spatial

(W) =

covariance matrix of the ith source R;(w) is obtained using Eq. (5.2.3)
whereas the parameter v;(w,t) is estimated as in Eq. (5.2.7).

The spatial covariance model starts contributing from the second iter-
ation, as in the first iteration when calculating € (w,t), the source i with
delay 7 is assumed dominant at the corresponding TF unit, and is calculated

using only the ILD and IPD models. Also, since €;,(w, t) contains the correct
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order of the sources as in [59] the permutation problem is avoided. The TF
mask for each source can be obtained as M;(w,t) = 3. & (w,t). The masks

are applied to the mixtures to obtain the individual sources.

5.3.2 The Combined ILD, IPD, Mixing Vector and Spatial Co-
variance Models

The spatial covariance model is also used in combination with the ILD, IPD

and the mixing vector models. The new parameter set is given as

C:) = {Mi(w)> 771‘2(“})7 &T(W)v 02‘27(“})7 ’Ui(wv t)v di(w)a CZ-Q(LU), wm'} (5'3'9)

2

2 and ¢? are respectively the means and

where p;, &-, and d; and 771.2, o
variances of the ILD, IPD, and mixing vector models and v; is the scalar

variance. The log likelihood function (£) is now written as

L£(6) =§J%§]wawmmmﬁw»

. N(&(W, t;7)|&ir (W), U?T(w)). N(x(w, )]0, Ry (w, t)). (5.3.10)

N (x(w, t)]di(w), F(w)). vir ],

assuming conditional independence between the noise models. The EM algo-
rithm iterates similarly with the combined posterior probabilities computed

as

Eir(w, 1) = tir - N(a(w, 1)|pi(w), 7} (w))
. N(q@(w, t; T)|£Z'T(W)7 01‘27((‘}))‘ N(X(Wa t)|07 Rx(w7 t)))a (5311)
N (x(w, t)|di(w), 5} (w)).
All the corresponding parameters are estimated as explained in Section 5.3.1

and Chapter 4. The mixing vector and spatial covariance models start con-

tributing from the second iteration. The TF masks for the individual sources
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are then obtained as

Mi(w,t) =) éir(w, ). (5.3.12)

T

Masks are applied to the mixtures to reconstruct individual sources.

5.4 Experimental Evaluation in a Room Environment

Experiments are performed with the spatial covariance model used in both
the contexts explained in Section 5.3.1 and Section 5.3.2. The room settings
are similar as in Chapter 4. Speech data were chosen from the TIMIT [23]
database. The first 40,000 (16kx2.5) samples of the TIMIT sources were
used and were normalized to unity variance. The source image method [3]
was used to evaluate the different models for varying RT60s. The different
reverberation times under consideration are: 160 ms, 300 ms, 485 ms and
600 ms. The signal-to-distortion ratio (SDR) [64] was used to measure the
separation performance of the algorithms.

Detailed experiments were performed ranging from mixtures simulated
with varying reverberation times (RT60s), sources with varying separation
angles, and different model complexities. The spatial covariance model used
in conjunction with the ILD and IPD models, termed as IIM+SC, is com-
pared with the ILD and IPD models, referred to as IIM, and the com-
bined ILD, IPD, mixing vectors and the spatial covariance models, termed
as [IMM+SC. The common parameters used in all experiments are given in

Table 5.1.

Table 5.1. Common Parameters Used In Simulations

STFT frame length 1024
Velocity of sound 343 m/s
Reverberation time | 160-600 ms (image method)
Room dimensions [953.5] m
Source signal duration 2.5 s (TIMIT)
Sensor spacing 0.17m
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In the first set of experiments the target source was positioned at 0°
azimuth while the interferer at 75°. The level of reverberation was then
varied from 160 ms to 600 ms, and the separation performance measured
for the three different model complexities, Ogg, ©11 and Oqq. The different
model complexities [59], O;.p rpp, mean that the parameters of the ILD

and IPD models are either frequency-dependent or are fixed across frequency.
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5.4.1 Results

Fig. 5.1 shows results for the models with the complexity O with the in-
terferer located at 75°. With this complexity the mean of the ILD model
is zero and the standard deviation is oo, while the IPD model has a mean
zero and a frequency-independent standard deviation. The results indicate
that combining the spatial covariance model to the ILD and IPD models
the separation improves consistently over all RT60s. The separation, nev-
ertheless, is best over all RT60s when the maximum cues are utilized, the
IIMM+SC method. As the level of reverberation increase, the advantage of
the IIM+SC method over the IIM technique also increase, for instance, at
an RT60 of 160 ms it is 0.42 dB and at 600 ms it is 0.71 dB better than the
IIM method. A similar trend is followed by the IIMM+SC method, in that
it is 1.19 dB and 1.81 dB better than the IIM technique at 160 ms and 600

ms respectively.

SDR as a function of RT60 for @00 mode. Masker at 75 azimuth
12 ‘

oA IM
K = B =IM+SC
10 A —=fe— IIMM+SC | |
8t i
)
=
x 6’ m
[a)]
9]
4+ i
2+ i

150 200 250 300 350 400 450 500 550 600
Reverberation time (ms)

Figure 5.1. SDR (dB) for the Oy model. The interference is placed
at 75°
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Fig. 5.2 provides the separation results in terms of the SDR (dB)
over a range of RT60s for the complexity ©1;. Within this complexity the
means and the variances of both the ILD and IPD models are frequency-
independent. All the methods follow the similar trend of degrading per-
formance as the level of reverberation increases and improved performance
while exploiting more cues. At the RT60 of 300 ms, the IIMM+SC is 1.12
dB and 0.64 dB better than the IIM and IIM+SC methods, while at 600 ms

it is 1.47 dB and 0.98 dB better respectively.

SDR as a function of RT60 for 911 mode. Masker at 75 azimuth
11 ‘ ‘
CoAG M
107 B - B - IIM+SC
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Figure 5.2. SDR (dB) for the ©1; model. The interference is placed
at 75°
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In Fig. 5.3 results are shown for the ©qq complexity with the masker
positioned at 75°. The means and variances of the ILD and IPD models in
this complexity depend on frequency. At 160 ms, the IIM method has an
SDR of 7.51 dB, whereas, the IIM+SC and IIMM+SC are 7.80 dB and 8.44
dB respectively. As the reverberation increases the separation performance
degrades, in that at 600 ms, the IIM, I[IM+SC and IIMM+SC techniques

have an SDR of 1.55 dB, 2.01 dB, and 2.88 dB respectively.

SDR as a function of RT60 for @QQ mode. Masker at 75 azimuth
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Figure 5.3. SDR (dB) for the ©gq model with the interference placed
at 75°

Figures 5.4, 5.5, and 5.6 depict the scenario, over the range of RT60s,
when the target and interferer are separated by 15°. Separation in this sce-
nario is particularly challenging since the sources are close together and the
interaural cues become indistinct, hence, greatly degrading the separation
performance.

In Fig. 5.4, for the Ogy complexity, it can be observed that all the
methods in general perform worse when the separation between the sources

is smaller than if they are well apart. At 300 ms the IIM method has an
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SDR of 1.81 dB whereas in the similar complexity but with the separation
angle of 75° the SDR was 7.42 dB. The IIM+SC improves the separation of
IIM by around 0.6 dB, while the IIMM+SC method by 2.47 dB at 300 ms.
As the RT60 increases, the contribution by the spatial covariance model also
slightly increase and at 600 ms the IIM+SC is 0.8 dB better than the IIM
method, while the IIMM+SC performs best by improving separation around

2.87 dB over the IIM method.

SDR as a function of RT60 for @00 mode. Masker at 15 azimuth
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Figure 5.4. SDR (dB) for the ©g model with the interference placed
at 15°
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Fig. 5.5 shows results for the ©1; complexity with the separation an-
gle of 15°. Within this complexity, since there is contribution from the
ILD and IPD cues (although the parameters of these models are not de-
pendent on frequency), the contribution from the spatial covariance model
is slightly reduced. For instance at 485 ms, the IIM+SC method is 0.5 dB
while IIMM+SC is 2.26 dB better than IIM. When frequency dependency
is introduced within the parameters of the ILD and IPD models, the ©qgq
complexity, results for which are shown in Fig. 5.6, the performance of the
IIM technique further deteriorates. As stated previously, to the fact that
the sources are too closely spaced, the interaural cues are almost identical.
At 485 ms, the addition of the spatial covariance model to the ILD and IPD
models, IIM+SC, improve the performance by 0.51 dB, while the IIMM+SC

method by 1.94 dB.

SDR as a function of RT60 for @11 mode. Masker at 15 azimuth
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Figure 5.5. SDR (dB) for the ©;; model with the interference placed
at 15°
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SDR as a function of RT60 for G)QQ mode. Masker at 15 azimuth
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Figure 5.6. SDR (dB) for the ©gq model with the interference placed
at 15°



Section 5.5. Summary 102

5.5 Summary

This chapter presented the spatial covariance model that utilized the loca-
tions of the speakers, potentially estimated through a video process, and
the attributes of the room such as its wall reflective properties, wall area
and reverberation time of the room. The model was used in conjunction
with the ILD and IPD models and ILD, IPD, and mixing vector models.
The parameters for the models were obtained using the EM algorithm that
produced improved TF masks for each source. The masks were used to ex-
tract the sources. Experimental results verified that the proposed algorithm
can perform better, in general, than the algorithm that uses only the ILD
and IPD models, over all considered levels of reverberation. The separation
performance was specifically better when the separation angle between the
sources was small and the mixture was highly reverberant. The inclusion of
the spatial covariance model improves the separation, but the improvement
is not very significant i.e. typically less than 1 dB in terms of SDR. Further
refinements may be required to achieve additional improvement, possibly in
terms of source variance estimation, or incorporating the model in way that
it is refined at each EM iteration, but this is left for future research.

In a further step to tackle the room reverberation, the proceeding chap-
ter explores binaural dereverberation schemes that suppress the late compo-
nents of reverberation from the observed mixtures before source separation.
Within this pre-processing, based on spectral subtraction, the late rever-
berant components are estimated, in the time-frequency domain, and are
suppressed to dereverberate the mixture. A novel cascade structure is also
investigated, within which three dereverberation stages are utilized provide
an increased reverberation suppression. The source separation algorithm is
then run on the dereverberated mixtures to give enhanced estimates of the

sources.



Chapter 6

DEREVERBERATION BASED
PRE-PROCESSING FOR THE
SUPPRESSION OF LATE
REVERBERATION BEFORE
SOURCE SEPARATION

6.1 Introduction

Room reverberation, produced by multiple reflections of the sound on wall
surfaces and objects in an enclosure, remains a challenge for many signal pro-
cessing applications, such as automatic speech recognition (ASR), hearing
aids and hands-free telephony. Specifically, the late reflections of the room
impulse response (RIR) cause spreading of the speech spectra and degrade
the quality of speech and the intelligibility [25]. The objective of dereverber-
ation algorithms is to suppress the effects of reverberation while minimally
distorting the speech structure.

Monaural dereverberation algorithms based on spectral subtraction, e.g.
[25,98], have been proposed to suppress the effects of late reflections. Effec-

tive extension of the monaural methods to the binaural context is important

103
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as this would enable their utilization in multiple applications. Such exten-
sions must produce minimal musical noise and also preserve the binaural
cues i.e. interaural time difference (ITD) and the interaural level difference

(ILD) [99,100].

6.2 Monaural Dereverberation and Extension into the Binaural
Context

In spectral subtraction based dereverberation techniques, given a reverberant
signal in the TF domain, for instance, Sy, (w,t), a dereverberated signal,
Sein(w, t), can be obtained by subtracting the late reverberant component

Srevlate (w’ t) as,

Setn(w,t) = Spes(w, ) — Srevps, (@, 1) (6.2.1)

where w is the frequency index at the time frame ¢. Alternatively, the process

can also be expressed as

Sein(w,t) = G(w,t)Spep(w, t) (6.2.2)

where G(w,t) is a gain function applied to the observed reverberant signal,

and can be computed by estimating the late reverberant component as

. Scln(wat) o Srev(wat) - Srevlate (w,t)
Glt) = G2 = o . (6.2.3)

In the monaural dereverberation method in [98], a statistical model of
the room impulse response is proposed in order to subtract spectrally the

late reverberant components, assuming that the direct-to-reverberant (DRR)
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ratio is low. The gain function is computed as

1
VST Rpost(w, t) + 1

Glw,t) =1 (6.2.4)

where STRpost(w,t) is the a posteriori signal-to-interference ratio (SIR) cal-

culated as
ST’G’U bl t 2
STRpost(w, 1) = ’2(7(“”

O-STeUlate (w’ t)

(6.2.5)

where U?g o (w, t) is the variance of the late reverberant speech component
T€Vate

and is estimated as

O-%revlate (w,t) = exp(=2xT}) - 0% (W)t — Nigse) (6.2.6)

rev

3ln(10)
RT60 °

where Kk = T; indicates the time from which the late reverberation
starts, myge is the number of samples related to T;, RT60 indicates the
reverberation time (assumed to be known), and 0?97.% is the variance of the

reverberant mixture computed by recursive averaging [99]

O'%«Tev (W) =0 - 0% (w,t—1)4+ (1 —=06) - [Spev(w,t)|? (6.2.7)

Tev

where ¢ € [0,1] is the smoothing factor.

This monaural scheme is extended to the binaural form in [99] where
a delay-and-sum beamformer is used to generate a reference signal by av-
eraging the time-aligned left and right reverberant signals. The reference
signal is then processed to generate the weighting gains using Eq. (6.2.4).
In [100] the left and the right reverberant mixtures are separately processed
to yield two gains. The two gains are then combined, e.g. by taking the
minimum, maximum or average, and applied to both the channels. The
procedure in [100] is adopted by independently processing the two channel

signals and two gain functions are obtained. A single gain is then formed
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using the following linear combination [101],

Grew = oG + (1 — a)GR (6.2.8)

where Gy, and G are the left and right channel gains and « is a weighting
factor chosen empirically, 0 < « < 1. The proposed scheme allows the
suppression of late reverberation in a flexible way by selecting a suitable .

The processing is depicted in Fig. 6.1.

./'-
s ~
Left channel ~  Right channel
(L) ! (R)
Reverberant Reverberant
signal (L) signal (R)
Y Y
Late reverb Late reverb
estimation (L) estimation (R}
Y Y
Gain Gain
derivation (L} derivation (R)

' '

New binaural gain formation
Grew = (1-0).GL + a.GRr

!

Musical noise reduction: gain
magnitude regularization
I

J v

- o

Dereverberated Dereverberated
signal (L) signal (R)

Figure 6.1. Processing overview with the bilateral signal processing
and gain derivation.
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Due to errors in the estimation of the weighting gains, musical noise is
likely to have been introduced. Smoothing of the derived gain is performed
as in [99], [102] where an estimation is performed to detect if a frame contains
speech (has high SIR) or not, and thus attenuate the frames with low SIRs.

The power ratio of the enhanced signal and the reverberant signal [102],

w
> Grew(w, t).]Y (w, 1)]?
C(t) = = (6.2.9)

w
oY (w )
w=1

is computed to indicate whether the SIR of a time frame is low or high. If
((t) is approximately unity, the SIR of that frame is assumed to be high,
and if (t) is nearly zero, the SIR is supposed to be low. A moving average
window is then applied to smooth the weighting gain magnitudes [99].

To verify the suitability of the above binaural dereverberation scheme,
in the context of source separation, it is appended as a pre-processing stage
to the source separation method described in Chapter 4. Since the source
separation algorithm also utilizes models of the ILD and IPD, experimen-
tal evaluation is considered to be useful in that the results would indicate
whether the binaural dereverberation based pre-processing preserves the bin-

aural cues or not.

6.3 Experimental Evaluation

Experiments were conducted by pre-processing the observed reverberant
mixture using the aforementioned binaural dereverberation method and then
performing the source separation described in Chapter 4. Results were com-
pared with only the source separation algorithm in order to highlight the gain
that could be achieved by including the pre-processing. The speech files in

these experiments also come from the TIMIT database [23]. Experiments
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were performed for mixtures of two and three speech sources. Real RIRs
used, that come from [103], were convolved with speech sources to generate
the reverberant mixtures. These RIRs were measured in real rooms having
different reverberation times.

For evaluation purposes, the signal-to-distortion ratio (SDR) [64] was
used. Perceptual evaluation of speech quality (PESQ) [63] was also used
as a performance measurement metric to reveal the quality of the pro-
cessed speech. Results for the scheme with the pre-processing, referred to as
derev+IIMM, are compared with the source separation method in Chapter
4, termed as IIMM.

Results in Fig. 6.2 depict the SDR (dB) at different RT60s when the
interfering source is at a relatively smaller separation angle of 15°. The O1;
model is under consideration here, where both the ILD and IPD models
are frequency-independent. The graph clearly indicates the improvement
achieved by incorporating the binaural dereverberation based pre-processing.
The improvement is consistent over all the RT60s and generally increases
when the RT60 grows. For instance, at RT60 of 320 ms, the derev+IIMM
is 1.61 dB and at 890 ms it is 3.59 dB better than IIMM.

The PESQ results for the same scenario are shown in Fig. 6.3. These
results indicate that the pre-processing, by suppressing the late reverberant
components, improves the quality of the separated speech. At 320 ms, the
derev-IIMM method improves the PESQ by 0.13 and at 890 ms by 0.15.

Fig. 6.4 provides results for the ©qn model with the masker at 15°
azimuth. A similar general trend of improved performance over all RT60s is
followed when the frequency-dependent ILD and IPD models are considered.
The derev+IIMM method provides an improvement, in terms of SDR, of 1.02
dB at 320 ms and 1.71 dB at 890 ms. Fig. 6.5 shows the PESQ results for the
similar experimental setting. Results over all RT60s show an improvement

in quality, in terms of the PESQ measure, when the mixtures are first pre-
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SDR as a function of RT60 for G)11 model in the two—speaker case. Masker at 15
8
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Figure 6.2. SDR (dB) for the ©1; model with varying RT60s and the
interference positioned at 15° azimuth.

processed before separation.

The following section explores a novel cascade structure for binaural dere-
verberation. The study is motivated by the fact that realistic environments
are highly reverberant, and in these circumstances the performance of even
the state-of-the-art methods degrades significantly, as such there is a need for
additional processing to mitigate the distortions produced by reverberation

and thus improve the separation performance.

6.4 Cascade Structure for Spectral Subtraction Based Binaural
Dereverberation

A cascade structure for spectral subtraction based binaural dereverberation

of audio signals is investigated. Three binaural dereverberation blocks are
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PESQ as a function of RT60 for @11 model with masker at 15’
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Figure 6.3. PESQ for the ©;; model with varying RT60s with the
interference located at 15° azimuth.

utilized. The first two stages exploit distinct observations to model and
suppress the late reverberation by deriving a gain function. The musical
noise artifacts generated due to the processing at the first two stages are
mitigated by smoothing the spectral magnitudes of the weighting gains. The
third stage linearly combines the gains obtained from the first two stages
and further enhances the binaural signals. The binaural gains, obtained by
independently processing the left and right channel signals are combined as
a convex mixture.

The entire dereverberation process is a combination of three cascaded
stages. Each stage takes in a binaural input and gives a binaural output
in the time-domain. The algorithm diagram is given in Fig. 6.6. The
enhancement of each stage is cumulative as the overall non-linearity in the

processing is a form of nesting which relates to a fixed point iteration [104].



Section 6.4. Cascade Structure for Spectral Subtraction Based Binaural Dereverberation 111

SDR as a function of RT60 for @QQ model in the two—speaker case. Masker at 15
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Figure 6.4. SDR (dB) for the ©qq model with varying RT60s and the
interference positioned at 15° azimuth.

With a cascade of these non-linear processors, a higher overall enhance-
ment is achievable which may not be possible by each stage individually, or
by repeatedly cascading the same block.

The time-domain left and right channel reverberant signals are input to
the first stage where they are independently processed using the monaural
dereverberation method proposed in [98], described in Section 6.2. This
method, which is referred to as LB-RIR (the acronym is derived from the
authors’ names, Lebart et al., and their technique which is based on RIR
modeling), is extended into the binaural context using the proposed method
to obtain a gain function which is then smoothed, as explained in Section

6.2.

Stage 2 makes use of the monaural scheme in [25], which is termed as
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PESQ as a function of RT60 for G)QQ model with masker at 15~
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Figure 6.5. PESQ for the Ogq model with varying RT60s with the
interference located at 15° azimuth.
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Figure 6.6. The proposed cascaded approach for binaural dereverber-

ation.

WW-SMOOTH (the acronym is derived from the authors’ names, Wu and

Wang, and their method which is based on smoothing of the signal spec-

trum). This method is motivated by the observation that the spreading due

to the late reverberation causes smoothing of the signal spectrum in the time

domain. Thus, the power of the late reverberant component is estimated as

the smoothed and shifted version of the power of the reverberant speech in
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the TF domain

Xreunaee (@) = vt = p) # [ Xrew (w, £)? (6.4.1)

€Vlate

where * indicates the convolution operation, v is a scaling factor, and p is
the shift delay. The term w(t) is a smoothing function given as the shifted

Rayleigh distribution [25]

_ —(t—a)? .
o oxp(Zf) if t> —a

0, otherwise

where a indicates the integer but non-zero number of frames and needs to
be smaller than p. Here a = 5 while p = 7 as in [25].

The method in [25] is also extended to binaural in a similar manner as
in stage 1, and the smoothing of the weighting gain follows accordingly. The
enhanced signals from stage 2 are forwarded to stage 3. The weighting gains
from stage 1 and stage 2 are linearly fused to form a combined gain. The
fused gain is used to further suppress the late reverberant components from
the left and right channel signals and give the final dereverberated signals.

The advantage of the proposed approach is next experimentally verified.

6.5 Experimental Evaluation

The proposed cascade structure for binaural dereverberation is experimen-
tally tested in two processing contexts: firstly, for the purpose of dereverber-
ation only; secondly, using the proposed cascade as a pre-process to a source
separation algorithm.

The anechoic speech utterances in all experiments come from the TIMIT
database [23]. Real binaural RIRs (BRIRs) from the Aachen impulse re-
sponse (AIR) database [105] were used in the dereverberation-only experi-

ments while in the joint dereverberation and source separation experiments
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RIRs are used from [103]. The frame length used was 512 and the frame
overlap was 75 percent. The other parameter values were the same as in the

original works [25,98,99].

6.5.1 Dereverberation-only

Speech files from TIMIT were chosen randomly containing both male and
female speakers. In the AIR database [105], the first set of BRIRs used here
were measured in an office room with source-to-microphone distance of 1
m and 3 m with an RT60 of 0.37 s and 0.48 s respectively. The BRIRs in
the second set were measured in a lecture room with source-to-microphone
distance of 2.25 m, 5.56 m and 10.2 m with an RT60 of 0.70 s, 0.79 s, and
0.83 s respectively. Both the LB-RIR and WW-SMOOTH schemes were
applied to the observed reverberant signals without any inverse filtering.
For performance evaluation in the dereverberation-only case, three objec-
tive measures were used including the signal-to-noise ratio (SNR), segmental

SNR (segSNR), and the perceptual evaluation of speech quality (PESQ) [63].

Table 6.1. Mean values of SNR (dB), segmental SNR (segSNR) (dB)
and PESQ for three random signals from TIMIT convolved with BRIRs
from the Aachen database. RT60s of 0.37, 0.48, 0.70, 0.79, and 0.83
seconds under consideration.

RT60 | SNR (dB) Improv. | segSNR (dB) Improv. | PESQ Improv.
(s) LB-RIR Cascade | LB-RIR Cascade LB-RIR Cascade
0.37s | 0.40 0.65 0.64 0.98 0.16 0.32
0.48s | 0.86 1.37 1.21 2.06 0.09 0.20
0.70s | 0.87 1.27 1.73 2.33 0.24 0.27
0.79s | 0.75 1.22 1.14 1.87 0.16 0.30
0.83s | 1.12 1.71 1.50 2.34 0.22 0.32

Table 6.1 summarizes the experimental results in the context of dereverberation-

only processing. LB-RIR in the table means that the signal is enhanced using



Section 6.5. Experimental Evaluation 115

the LB-RIR method and extended to binaural as in [99]. Each value in the
table is an average of three randomly selected speech signals from the TIMIT
database. It can be seen that the proposed approach provides an improve-
ment in all the three evaluation metrics. Over all the RT60s, the proposed
method gives a mean SNR gain of 1.13 dB, mean segSNR gain of 1.92 dB,
and PESQ improvement of 0.28, compared to LB-RIR which gives an SNR

gain of 0.8 dB, segSNR gain 1.24 dB, and a PESQ improvement of 0.17.

6.5.2 Dereverberation and Source Separation

In this set of experiments the proposed cascade structure is used as a pre-
processing stage before the source separation (termed as Cascade+IIMM),
as was also done in Section 6.3. BRIRs used here [103] were measured in
four different rooms with RT60s of 0.32, 0.47, 0.68, and 0.89 seconds.

Fig. 6.7 provides a comparison, in terms of SDR (dB), between the
source separation algorithm, IIMM, the derev+IIMM scheme, and the Cas-
cade+IIMM approach. The scenario under consideration here is the same as
in Fig. 6.4 so as to highlight the gain achieved with the proposed cascade.
The Casacade+IIMM furthers the SDR consistently, and over all RT60s,
provides an average improvement of around 1.5 dB over the derev+IIMM
method.

Fig. 6.8 gives the PESQ comparisons for the different methods, with the
experimental setting similar to Fig. 6.5. The cascaded approach performs
well in terms of PESQ too, with notable improvement of 0.24 at the RT60
of 680 ms.

Figures 6.9 and 6.10 provide results in terms of SDR (dB) and PESQ
respectively for mixtures of three sources. The three sources were mixed
with varying levels of reverberation. The target was at 0° azimuth while the
interfering sources were symmetrically located at a separation of 45° on its

either sides. In terms of SDR, both the derev+IIMM and Cascade+IIMM
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SDR as a function of RT60 for OQQ model in the two—speaker case. Masker at 15
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Figure 6.7. SDR (dB) for the Ogq model with varying RT60s and
the interference positioned at 15° azimuth. Cascade+IIMM providing
a superior performance.

improve performance over the IIMM method by 1.5 dB and 2.56 dB respec-
tively on average over all the considered RT60s. Alongside SDR, the PESQ
scores also show consistent improvement. On average over all RT60s, the
Casacade+IIMM method provides 0.27 and the derev+IIMM scheme 0.15

improvement in terms of PESQ over the IIMM approach.

6.6 Summary

This chapter studied binaural dereverberation techniques based on ampli-
tude spectral subtraction and their utilization in the context of source sepa-
ration. Late reverberation is said to have deleterious effects on the fine signal
spectrum and suppressing them can generally improve the performance of

many signal processing applications. A monaural dereverberation scheme
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PESQ as a function of RT60 for @QQ model with masker at 15’
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Figure 6.8. PESQ for the Ogqn model with varying RT60s with the
interference located at 15° azimuth. Cascade+IIMM showing an im-
proved performance.

based on the model of room impulse response was first studied and then
extended into the binaural context. It was then used as a pre-processing
stage to the source separation algorithm and the performance was compared
in different scenarios. The pre-processing proved to be useful in that it pro-
vided improvements both in terms of SDR and PESQ, when used with source
separation.

Later, a cascade structure was explored to achieve further enhancement.
The proposed cascade had three stages, with each stage providing signal
enhancement. The cascade structure for binaural dereverberation was also
used as a pre-process before source separation. The cascade was also evalu-
ated for dereverberation purposes too. Detailed experiments were conducted

and real data was utilized. The cascade structure was shown to provide im-
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SDR as a function of RT60 in the three—speaker case.
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Figure 6.9. SDR (dB) for the ©gn model with varying RT60s for
mixtures of three speakers. The interfering sources positioned at 45°
symmetrically on both sides of the target source.

proved performance over its single-stage counterpart, both in the context of

dereverberation only and joint dereverberation and source separation.
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PESQ as a function of RT60 for the three—speaker case
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Figure 6.10. PESQ results for varying RT60s in the three-source case.
Cascade+IIMM providing an improved performance.



Chapter 7

CONCLUSION

This thesis introduced new techniques for separating multiple sound sources
from their reverberant mixtures. It assumed that the locations of the sound
sources were known a priori or provided by independent video processing.

Humans are skilled at selectively attending to one sound of interest while
many sounds are simultaneously present. Machines, in contrast, can only
perform simple forms of these tasks i.e. in anechoic conditions or typically
mixtures with only two sources. The performance of the current source
separation systems in multi-source realistic reverberant environments is very
limited. The work in this thesis aimed at improving the performance of such
source separation algorithms in reverberant scenarios by exploiting the sound
source locations.

In Chapter 3 a new multi-microphone array based method combined
with binary time-frequency masking was presented. A robust least squares
frequency invariant data independent beamformer was designed. The ro-
bust beamformer being aware of the source locations provided improved
estimates of the sources. A white noise gain constraint was also added for
further robustness. The beamformer weight vectors were estimated using
convex optimization techniques. With the intention to further enhance the
separated sources, binary time-frequency masking based post-processing was
incorporated. The sources estimated by the beamformer were transformed

into the time-frequency domain, and the amplitudes of the corresponding

120
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time-frequency points were compared. Binary masks were thus obtained for
each source. Since the ideal binary masks are likely to have introduced un-
wanted musical noise, smoothing was applied in the cepstral domain. The
smoothed binary masks were applied to the mixture to give the final sepa-
rated sources. Experimental results indicated that the binary time-frequency
masking based processing significantly improved the separations, but intro-
duced musical noise. For instance, at RT'60 of 600 ms, the robust beamformer
without post-processing provided an average advantage of 2.27 dB in terms
of the signal-to-distortion ratio (SDR) over the independent vector analysis
(IVA) based method. When the post-processing was introduced, for example
at RT60 of 300 ms, the signal-to-interference-noise ratio improved from 11.25
dB to 12.18 dB, thus further enhancing the sources. The proposed method
was applicable only in the over-determined setting. The next chapter thus
pursued a two-microphone method inspired by human hearing.

In Chapter 4 a novel computational auditory scene analysis (CASA)
based approach was proposed that utilized the combined probabilistic models
of the interaural level and phase differences and mixing vectors, and exploited
the information about the source locations. The method was based on the
assumption that signals are sparse in the time-frequency domain and do not
overlap. Using the source location estimates, direction vectors towards each
source were calculated. The direction vectors were used as the mean param-
eter of the mixing vector model. The parameters of the probabilistic models
were estimated by the iterative expectation-maximization (EM) algorithm.
The source location estimates were also utilized in the overall algorithm ini-
tialization. After a fixed number of iterations, soft time-frequency masks
were obtained using the posterior probabilities of the combined models. The
probabilistic time-frequency masks were applied to the reverberant mixtures
to estimate the individual sources. Extensive experiments were performed

to test the advantage of the known source directions on the separation. This
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was done through comparisons with other competing methods in varying
scenarios. The proposed method was found to be more efficient than others,
specifically in multi-source highly reverberant cases and when sources are
in close proximity. For instance, the proposed scheme when compared with
other audio-only methods, on average at different model complexities using
real room impulse responses (RIRs) with RT60 around 565 ms, in terms of
SDR, performed 2.39 dB and 1.53 dB better than the method in [59] and [86]
respectively. When compared with methods that estimate the source loca-
tions through video (audio-visual methods), the proposed method in the
two-source case, performed on average over 5 dB better than three meth-
ods, [87-89], when they also utilized two microphone mixtures. Increasing
the number of microphones in the competing methods improves their per-
formance. But even with eight microphones, the proposed method (utilizing
only two microphones) is approximately 2.7 dB, 1.5 dB, and 2.6 dB bet-
ter than the method in [87], [88] and [89] respectively. Furthermore, in the
three-source case, the proposed method provided an average advantage of
around 2.8 dB over [87], 2.1 dB over [88], and 0.2 dB over [89], when all the
competing methods use eight microphones.

To investigate the usefulness of the knowledge of the spatial character-
istics of the enclosure such as the reverberation time and the wall reflective
properties, Chapter 5 introduced the spatial covariance model. The spatial
covariance model was evaluated by combining it with the models described in
Chapter 4. Results highlighted that the complementary information about
the spatial properties of the sources and the room can be useful in further-
ing the separation performance and mitigating the effects of reverberation,
specifically when sources are relatively closely spaced. For example, consider-
ing the frequency-dependent models, the spatial covariance model combined
with the models described in Chpater 4, termed as IIMM+SC in Chapter 5,

improves performance approximately 2 dB over the IIM model that utilizes
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only the ILD and IPD models.

Finally, in Chapter 6 a pre-processing stage was presented for two-
channel dereverberation based on amplitude spectral subtraction. The single-
channel spectral subtraction methods were reviewed. The single-channel
method was extended to the binaural context, and was incorporated in to
the source separation algorithm proposed in Chapter 4. Experimental re-
sults indicated that the pre-processing was useful in suppressing the late re-
verberant components before source separation, and provided improvement
in the separation. A novel cascade structure to further suppress the late
reverberation was investigated. Three dereverberation blocks were concate-
nated where each stage provided signal enhancement. Two state-of-the-art
monaural spectral subtraction schemes were utilized and were extended to
the binaural context. The cascade structure was experimentally evaluated
in two different processing contexts. Firstly, it was used for the purpose of
two-channel dereverberation only. Secondly, the cascade was used in con-
junction with the two-channel source separation algorithm. Results from
extensive experiments in both processing contexts demonstrated that the
cascade structure gives an increased late reverberation suppression. The
method is also beneficial when used as a pre-processing stage to source sep-
aration. The two-channel dereverberation scheme also preserved binaural
cues which were exploited within the source separation algorithm. The pro-
posed cascade when used solely for dereverberation utilizing real RIRs, at
RT60 of 790 ms, provided a signal-to-noise ratio (SNR) improvement of 1.22
dB compared with 0.75 dB by the single stage method, segmental SNR im-
provement of 1.87 dB as compared to 1.14 dB, and a perceptual evaluation of
speech quality (PESQ) improvement of 0.30 compared to 0.16 by the single
stage method. When the cascade structure was utilized as pre-processing
stage to the separation algorithm in Chapter 4, termed Cascade+IIMM, it

gave on average around 3 dB improvement in terms of SDR for RT60s over
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400 ms when compared with the separation algorithm with no pre-processing
(IIMM). The PESQ results were also consistent where the Cascade+IIMM

provided an improvement of 0.27 over the IIMM method.

7.1 Future Work

The techniques proposed in this thesis could be extended in a number of
ways and different directions could be explored. The robust beamformer
proposed in Chapter 3 was based on a linear array with sixteen microphones.
Circular microphone array [106] or other geometries could be investigated.
Also, in the post-processing stage when the binary masks were applied to a
mixture, not all the sixteen mixtures were utilized. Either by some means
of combining masks from all mixtures or something as simple as selecting,
at each time-frequency point, the microphone with the higher estimated
signal-to-noise ratio might further improve the performance.

The two-channel model-based approach could potentially be improved
in a number of ways. The models of the interaural level and phase differ-
ences (ILD and IPD) and mixing vectors are combined assuming they are
conditionally independent since this assumption offers particular advantage
in algorithm development. Although there is some dependence between the
ILD, IPD and the source directions (the parameter that aids the mixing vec-
tor model), it was not modeled in this work. Modeling such dependence is a
very interesting point to be investigated. This dependence modeling is likely
to further improve the quality of the time-frequency masks and thus the es-
timated sources. Another possibility is including a model for reverberation.
The model should be capable of better distinguishing the direct-path sounds
than the later reflections. A possibility to do this might be including a model
for the precedence effect [107]. The precedence effect is a perceptual mecha-

nism that aids humans to localize sounds in reverberant environments. The
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model is expected to give a greater weighting to the direct-sound compared
to the later reflections.

Pitch cues are utilized to group sound components within the time-
frequency domain [37] [108] in order to segregate them. Efficiently modeling
this monaural cue, and combining it with the model of binaural cues ex-
ploiting source directions (as proposed in Chapter 4 of this thesis) is also a
potential direction for future research.

The combined models also assumed the sound sources to be physically
stationary. In practice, however, the sources are likely to change their posi-
tions. The case of the moving sources will be explored. A potential solution
for this might be in the context of audio-visual source separation. Visual
tracking could be utilized and the models be fed with the source locations.
However, synchronization of the audio and visual measurements may be a
challenge.

The spatial covariance model assumed the reverberation time was known.
Estimating the reverberation time was not focussed upon in this thesis but
could be pursued in future. The spectral subtraction based dereverberation
exploited state-of-the-art monaural algorithms that were extended into the
binaural context. When the bilateral gains were combined to form a single
gain, the weighting factor was chosen empirically. An efficient mechanism
could to be devised for the determination of the weighting factor.

The cascade structure proposed here was based on three concatenated
stages and exploited two different monaural methods. Different combina-
tions and number of stages could be investigated.

Finally, future work could focus on reducing the current algorithm com-
plexity. This would allow real-time implementation and its utilization in

multiple application fields.



References

[1] T. Kim, H. Attias, S. Lee, and T. Lee, “Blind source separation exploiting
higher-order frequency dependencies,” IEEE Transactions on Audio, Speech

and Language Processing, vol. 15, no. 1, 2007.

[2] M. S. Pedersen, D. Liang, J. Larsen, and U. Kjems, “Two-microphone
separation of speech mixtures,” IEFE Transactions on Neural Networks,

vol. 19, no. 3, pp. 475-492, 2008.

[3] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” Journal of the Acoustical Society of America, vol. 65,

no. 4, pp. 943-950, 1979.

[4] B. Shinn-Cunningham, N. Kopco, and T. Martin, “Localizing nearby
sound sources in a classroom: Binaural room impulse responses,” Journal of

the Acoustical Society of America, vol. 117, no. 5, pp. 3100-3115, 2005.

[5] C. Cherry, “Some experiments on the recognition of speech, with one and
with two ears,” Journal of the Acoustical Society of America, vol. 25, no. 5,

pp. 975-979, 1953.

[6] H.Saruwatari, Y. Mori, T. Takatani, S. Ukai, K. Shikano, T. Heikata, and
T. Morita, “Two-stage source separation based on ICA and binary masking
for real-time robot audition system,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2005, Edmont, Alberta,

Canada., pp. 2303-2308, 2005.

126



References 127

[7] B. Van Veen and K. Buckley, “Beamforming: A versatile approach to

spatial filtering,” IEEFE ASSP Magazine, vol. 5, no. 2, pp. 424, 1988.

[8] D. Wang and G. Brown, “Fundamentals of computational auditory scene
analysis, in computational auditory scene analysis: Principles, algorithms

and applications,” Hoboken, NJ: John Wiley and Sons, 144, 2006.

9] A. Hyvrinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEFE Transactions on Neural Networks, vol. 10, no. 3,

pp.- 626-634, 1999.

[10] N. Roman and D. Wang, “Binaural sound separation for multisource re-
verberant environments,” in Proc. IEEE International Conference on Acous-
tics Speech and Signal Processing, Montreal, Quebec, Canada, pp. 373-376,
2004.

[11] D. Wang, “Time-frequency masking for speech separation and its poten-
tial for hearing aid design,” Trends in Amplification, vol. 12, no. 4, pp. 332—

353, 2008.

[12] M. S. Khan, S. M. Naqvi, A.-Rehman, W. Wang, and J. A. Chambers,
“Video-aided model-based source separation in real reverberant rooms,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,

no. 9, pp. 1900-1912, 2013.

[13] A. Rehman, S. M. Naqvi, W. R. Phan, and J. A. Chambers, “MCMC-
PF based multiple head tracking in a room environment,” 4th UK Computer

Vision Student Workshop (BMVW), 2012.

[14] M. 1. Mandel, “Binaural model-based source separation and localiza-

tion,” PhD Thesis, Columbia Univeristy, USA, 2010.

[15] H. Kuttruff, “Room acoustics,” Spon Press, Ozon, 2009.



References 128

[16] C. Hummersone, “A psychoacoustic engineering approach to machine
sound source separation in reverberant environments,” PhD Thesis, Univer-

sity of Surrey, UK, 2011.

[17] P. A. Naylor and N. D. G. (Eds.), Speech Dereverberation, Signals and

Communication Technology. Springer, 1st Edition, 2010.

[18] M. Jeub, “Joint dereverberation and noise reduction for binaural hearing
aids and mobile phones,” PhD Thesis, RWTH Aachen University, Germany,

2012.

[19] A. J. Watkins, “Perceptual compensation for effects of reverberation in
speech identification,” Journal of the Acoustical Society of America, vol. 118,

no. 1, pp. 249-262, 2005.

[20] T. Kim, H. T. Attias, S. Lee, and T. Lee, “Blind source separation ex-
ploiting higher-order frequency dependencies,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 15, no. 1, pp. 70-79, 2007.

[21] L. Parra and C. Spence, “Convolutive blind separation of non-stationary
sources.,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 3,

pp- 320-327, 2000.

[22] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, “The
fundamental limitation of frequency domain blind source separation for con-
volutive mixtures of speech.,” IEEE Transactions on Speech and Audio Pro-

cessing, vol. 11, no. 2, pp. 109-116, 2003.

[23] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fis-
cus, D. S. Pallett, and N. L. Dahlgren, “DARPA TIMIT
acoustic phonetic continuous speech corpus CDROM. Available:

http://www.ldc.upenn.edu/Catalog/LDC93S1W .html,”



References 129

[24] S. Araki, H. Sawada, R. Mukai, and S. Makino, “Blind sparse source sep-
aration with spatially smoothed time frequency masking,” in Proc. IWAENC
2006, Paris, 2006.

[25] M. Wu and D. Wang, “A two-stage algorithm for one-microphone re-
verberant speech enhancement,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 14, no. 3, pp. 774-784, 2006.

[26] T. Melia, “Underdetermined blind source separation in echoic environ-
ments using linear arrays and sparse representations,” PhD Thesis, Univer-

sity College Dublin, National University of Ireland, 2007.

[27] M. A. Dmour, “Mixture of beamformers for speech separation and ex-

traction,” PhD Thesis, University of Edinburgh, UK, 2010.

[28] S. M. Naqvi, “Multimodal methods for blind source separation of audio

sources,” PhD Thesis, Loughborough University, UK, 2009.

[29] M. Z. Ikram and D. R. Morgan, “Exploring permutation inconsistency in
blind separation of speech signals in a reverberant environment,” in in Proc.
IEEFE International Conference on Acoustics Speech and Signal Processing,

2000.

[30] M. Z. Ikram and D. R. Morgan, “A beamforming approach to permuta-
tion alignment for multichannel frequency-domain blind speech separation,”
in in Proc. IEEFE International Conference on Acoustics Speech and Signal

Processing, pp. 881-884, 2002.

[31] M. Z. Ikram and D. R. Morgan, “Permutation inconsistency in blind
speech separation: Investigation and solutions,” IEEFE Transactions on

Speech and Audio Processing, vol. 13(01), 2005.

[32] S. A. H. Sawada, R. Mukai and S. Makino, “A robust and precise method

for solving the permutation problem of frequency-domain blind source sepa-



References 130

ration,” IEEE Transactions on Speech and Audio Processing, vol. 12, no. 5,

pp. 530-538, 2004.

[33] T.Kim, H. Attias, S. Lee, and T. Lee, “Blind source separation exploiting
higher-order frequency dependencies,” IEEE Transactions on Audio, Speech

and Language processing, vol. 15, pp. 70-79, 2007.

[34] B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach

to spatial filtering,” IEFEE ASSP Magazine, pp. 4—24, 1988.
[35] S. U. Pillai, “Array signal processing,” 1989.

[36] A. S. Bregman, “Auditory scene analysis: The perceptual organization

of sound,” The MIT Press, 1990.

[37] D. Wang, “Time-frequency masking for speech separation and its poten-
tial for hearing aid design,” Trends in Amplification, vol. 12, no. 4, pp. 332—

353, 2008.

[38] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Transactions on Sigal Processing, vol. 52, no. 7,

pp. 18301847, 2004.

[39] N. Roman, D. Wang, and G. J. Brown, “Speech segregation based on
sound localization,” Journal of the Acoustical Society of America, no. 114,

pp. 2236-2252, 2003.

[40] S. Rickard and O. Yilmaz, “On the approximate w-disjoint orthogonality
of speech,” in Proc. IEEE International Conference on Acoustics Speech and

Signal Processing, pp. 529-532, 2002.

[41] D. Kolossa and R. Orglmeister, “Nonlinear postprocessing for blind
speech separation,” in Proc. of ICA’2004, pp. 832-839, 2004.

[42] S. Araki, S. Makino, A. Blin, R. Mukai, and H. Sawada, “Underde-

ternined blind separation of speech in real environments with sparseness



References 131

and ICA.)” in Proc. of the IEEE conference on acoustics, speech and signal

processing, vol. 3., pp. 881-884, 2004.

[43] S. Araki, S. Makino, H. Sawada, and R. Mukai, “Underdeternined blind
separation of convolutive mixtures of speech with directivity pattern based
mask and ICA,” Independent component analysis and blind signal separa-
tion: Proc. of the fifth international congress, ICA 2004, Berlin: Springer.,
pp. 898-905, 2004.

[44] H. Sawada, S. Araki, R. Mukai, and S. Makino, “Blind extraction of
dominant target sources using ICA and time-frequency masking,” IEFEFE

Trans. on Audio, Speech and Lang. Processing., vol. 14, no. 6, 2006.

[45] S. Araki, H. Sawada, R. Mukai, and S. Makino, “Underdeternined blind
sparse source separation for arbitrarily arranged multiple sensors,” Signal

Processing 87., pp. 1833-1847, 2007.

[46] M. S. Pedersen, D. Wang, J. Larsen, and U. Kjems, “Overcomplete blind
source separation by combining ICA and binary time-frequency masking,”
In proc. of IEEE International Workshop on machine learning for Signal

Processing, Mystic,CT,USA., pp. 15-20, 2005.

[47] M. S. Pedersen, D. Wang, J. Larsen, and U. Kjems, “Two-microphone
separation of speech mixutres,” IEEE Transactions on Neural Networks,

vol. 19, no. 3, 2008.

[48] D. Kolossa, R. F. Astudillo, E. Hoffmann, and R. Orglmeister, “Indepen-
dent component analysis and time-frequency masking for speech recognition
in multitalker conditions,” FURASIP Journal on Audio, Speech and Music

Proc., 2010.

[49] H. Sawada, S. Araki, and S. Makino, “Underdetermined convolutive

blind source separation via frequency bin-wise clustering and permutation



References 132

alignment,” IFEE Transactions on Audio, Speech, and Language Processing,

vol. 19, pp. 516-527, 2011.

[50] T. Jan, W. Wang, and D. Wang, “A multistage approach to blind sepa-
ration of convolutive speech mixtures,” Speech Communication 53., pp. 524—

539, 2011.

[51] N. Roman, S. Srinivasan, and D. Wang, “Binaural segregation in multi-
source reverberant envirinments,” Journal of the Acoustical Society of Amer-

1ca, no. 120, pp. 4040-4051, 2006.

[52] J. B. Boldt, U. Kjems, M. S. Pedersen, T. Lunner, and D. Wang, “Es-
timation of ideal binary mask using directional systems,” In Proc. of 11th
Intern. Workshop on Acoustics Echo and Noise Control, Seattle, WA , USA,

2008.

[53] J. Beh, T. Lee, D. Han, and H. Ko, “Sound source separation by using
matched beamforming and time-frequency masking,” The 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October 18-22,

2010, Taipei, Taiwan.

[54] P. Aarabi, G. Shi, and O. Jahromi, “Robust speech separation using
time-frequency masking,” ICMFE °03 Proceedings of the 2003 International

Conference on Multimedia and Fxpo - Volume 2., pp. 741-744, 2004.

[55] P. Aarabi and G. Shi, “Phase-based dual-microphone robust speech en-
hancement,” IEEE Trans. on Sys., Man. and Cybernetics- part B: Cyber-

netics., vol. 34, no. 4, pp. 109-118, 2004.

[56] Y. Takenouchi and N. Hamada, “Time-frequency masking for bss prob-
lem using equilateral triangle microphone array,” In the Proc. of the 2005 In-
ternational Symposium in Intel. Sig. Processing and Comm. Systems.pp.185-

188, Hong Kong, 2005.



References 133

[57] J. Cermak, S. Araki, H. Sawada, and S. Makino, “Blind source separation
based on a beamforming array and time frequency binary masking,” In the
proc. of the 10th international workshop acoustic echo and noise cancellation,

Paris, France. September, 2006.

[58] J.  Mouba and S.  Marchand, “A source localiza-
tion/separation/respatialization system based on unsupervised classification
of interaural cues,” in Proc. Digital Audio Effects (DAFz06) Conference,

Montreal, Canada, pp. 233-238, 2006.

[59] M. I. Mandel, R. J. Weiss, and D. Ellis, “Model-based expectation-
maximization source separation and localization,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 18, no. 2, pp. 382-394, 2010.

[60] S. M. Naqvi, M. Yu, and J. A. Chambers, “A multimodal approach to
blind source separation of moving sources,” IEEFE Journal of Selected Topics

in Signal Processing, vol. 4, pp. 895-910, 2010.

[61] A.ur-Rehman, S. Naqvi, R. Phan, and J. Chambers, “Multispeaker direc-
tion of arrival tracking for multimodal source separation of moving sources,”

in Proc. Sensor Signal Processing for Defence (SSPD 2011), pp. 1-5, 2011.

[62] K. Kondo, “Chapter 2, subjective quality measurement of speech: Its

evlauation, estimation and applications,” Springer, 2012.

[63] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for
speech enhancement,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 16, no. 1, pp. 229-238, 2008.

[64] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE Transactions on Audio, Speech and

Language Processing, vol. 14, no. 4, pp. 1462-1469, 2006.



References 134

[65] M. I. Mandel, S. Bressler, B. S.-Cunningham, and D. Ellis, “Evaluating
source separation algorithms with reverberant speech,” IEEE Transactions
on Audio, Speech and Language processing, vol. 18, no. 7, pp. 1872-1883,

2010.

[66] J. H. L. Hansen and B. L. Pellom, “An effective quality evaluation pro-

tocol for speech enhancement algorithms,” pp. 2819-2822, 1998.

[67] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing:

Learning Algorithms and Applications. John Wiley, 2002.

[68] M. G. Jafari, “Novel sequential algorithms for blind source separation of

instantaneous mixtures,” PhD thesis, King’s College London, 2002.

[69] P. Loizou, “Speech enhancement: Theory and practice,” Boca Raton,

FL: CRC, 2007.

[70] E. Mabande, A. Schad, and W. Kellermann, “Design of robust superdi-
rective beamformers as a convex optimization problem,” in Proc. IEEE In-
ternational Conference on Acoustics Speech and Signal Processing, Taipei,

Tairwan, 2009.

[71] L. C. Parra, “Steerable frequency-invarient beamforming for arbitrary
arrays,” Journal of the Acoustical Society of America, vol. 6, pp. 3839-3847,

2006.

[72] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part IV,

Optimum Array Processing. John Wiley and Sons, Inc., 2002.

[73] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Uni-

versity Press, 2004.

[74] T. Jan, W. Wang, and D. Wang, “A multistage approach to blind sep-
aration of convolutive speech mixtures,” Speech Communication, vol. 53,

pp. 524-539, 2011.



References 135

[75] N.Madhu, C. Breithaupt, and R. Martin, “Temporal smoothing for spec-
tral masks in the cepstral domain for speech separation,” in Proc. IEEE In-

ternational Conference on Acoustics Speech and Signal Processing, pp. 4548,

2008.

[76] J. A. Allen and D. A. Berkley, “Image method for efficently simulating
small-room acousrics,” Journal of the Acoustical Society of America, vol. 65,

no. 4, pp. 943-950, 1979.

[77] S. M. Naqvi, M. Yu, and J. A. Chambers, “A multimodal approach to
blind source separation of moving sources,” IEEFE Journal of Selected Topics

in Signal Processing, vol. 4, no. 5, pp. 895-910, 2010.

[78] E. Vincent, C. Fevotte, and R. Gribonval, “Performance measuremet in
Blind Audio Source Separation,” IEEE Trans. Speech and Audio Processing,

vol. 14, pp. 1462-1469, 2006 /[http://sisec2010.wiki.irisa.fr/tiki-index.php].
[79] D. Ellis, “Chapter 1 evaluating speech separation systems,” 2004.

[80] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Sawada, “The
fundamental limitation of frequency domain blind source separtion for con-
volutive mixtures of speech,” IEEE Transactions on Speech and Audio Pro-

cessing, vol. 11, no. 2, pp. 109-116, 2003.

[81] R. Y. Litovsky, H. S. Colburn, W. A. Yost, and S. J. Guzman, “The
precedence effect,” Journal of the Acoustical Society of America, vol. 106,

pp. 1633-1654, 1999.

[82] D. S. Brungart, P. S. Chang, B. D. Simpson, and D. Wang, “Iso-
lating the energetic component of speech-on-speech masking with ideal
time-frequency segregation,” Journal of the Acoustical Society of America,

vol. 120, pp. 40074018, 2006.



References 136

[83] M. I. Mandel, “Binaural model-based source separation and localiza-

tion,” PhD thesis, Columbia University, 2010.

[84] H. Sawada, S. Araki, and S. Makino, “A two-stage frequency-domain
blind source separation method for underdetermined convolutive mixtures,”
in Proc. of the IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics, New Paltz, NY, 2007.

[85] P.D. O‘Grady and B. A. Pearlmutter, “Soft-LOST: EM on a mixture of
oriented lines,” in Proc. ICA 2004, ser. Lecture Notes in Computer Science,

Springer-Verlag, pp. 430-436, 2004.

[86] A. Alinaghi, W. Wang, and P. J. B. Jackson, “Integrating binaural cues
and blind source separation method for separating reverberant speech mix-

tures,” in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 209-212, 2011.

[87] S. M. Naqvi, M. Yu, and J. A. Chambers, “A multimodal approach to
blind source separation of moving sources,” IEEE Journal of Selected Topics

in Signal Processing, vol. 4, no. 5, pp. 895-910, 2010.

[88] H. K. Maganti, D. Gatica-Perez, and 1. McCowan, “Speech enhance-
ment and recognition in meetings with an audio-visual sensor array,” IEFE

Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8§,

pp. 2257-2269, 2007.

[89] S. M. Naqvi, M. Yu, and J. A. Chambers, “Multimodal blind source sep-
aration for moving sources based on robust beamforming,” in in Proc. of the

IEEFE International Conference on Acoustics, Speech and Signal Processing,

pp. 241-244, 2011,

[90] D. Sodoyer, J. Schwartz, L. Girin, J. Klinkisch, and C. Jutten, “Sepa-

ration of audio-visual speech sources: a new approach exploiting the audio-



References 137

visual coherence of speech stimuli,” EURASIP J. Appl. Signal Process.,

vol. 2002, no. 1, pp. 1165-1173, 2002.

[91] D. Sodoyer, L. Girin, C. Jutten, and J. Schwartz, “Developing an audio-
visual speech source separation algorithm,” Speech Communication, vol. 44,

no. 1-4, pp. 113-125, 2004.

[92] B. Rivet, L. Girin, and C. Jutten, “Mixing audiovisual speech process-
ing and blind source separation for the extraction of speech signals from
convolutive mixtures,” IEEFE Transactions on Audio, Speech, and Language

Processing, vol. 15, no. 1, pp. 96-108, 2007.

[93] A. L. Casanovas, G. Monaci, P. Vandergheynst, and R. Gribonval, “Blind
audiovisual source separation based on sparse redundant representations,”

IEEE Transactions on Multimedia, vol. 12, no. 5, pp. 358-371, 2010.

[94] N. Q. K. Duong, E. Vincent, and R. Gribonval, “Under-determined con-
volutive blind source separation using spatial covariance models,” in Proc.

IEEFE International Conference on Acoustics Speech and Signal Processing,

pp. 9-12, 2010.

[95] T. Gustafsson, B. Rao, and M. Trivedi, “Source localization in reverber-
ant environments: modeling and statistical analysis,” IEEFE Transactions on

Speech and Audio Processing, vol. 11, no. 6, pp. 791-803, 2003.

[96] N. Q. K. Duong, E. Vincent, and R. Gribonval, “Spatial covariance mod-
els for under-determined reverberant audio source separation,” IEEE Work-

shop on Applications of Signal Processing to Audio and Acoustics, pp. 129—
132, 2009.

[97] N. Q. K. Duong, E. Vincent, and R. Gribonval, “Under-determined rever-
berant audio source separation using a full-rank spatial covariance model,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 18,

no. 7, pp. 1830-1840, 2010.



References 138

[98] K. Lebart, J. M. Boucher, and P. N. Denbigh, “A new method based on
spectral subtraction for speech dereverberation,” Acta Acustica United with

Acustica, vol. 87, no. 3, pp. 359-366, 2001.

[99] M. Jeub, M. Schéfer, T. Esch, and P. Vary, “Model-based dereverbera-
tion preserving binaural cues,” IFEE Transactions on Audio, Speech, and

Language Processing, vol. 18, no. 7, pp. 1732-1745, 2010.

. , E. , . ,

[100] A. Tsilfidis, E. Georganti, and J. Mourjopoulos, “Binaural extension
and performance of single-channel spectral subtraction dereverberation al-
gorithms,” Proc. IEEFE International Conference on Acoustics, Speech and

Signal Processing, pp. 1737-1740, 2011.

[101] M. S. Khan, S. M. Naqvi, and J. A. Chambers, “A new cascaded spectral
subtraction approach for binaural speech dereverberation and its application
in source separation,” in Proc. IEEE International Conference on Acoustics

Speech and Signal Processing, 2013.

[102] T. Esch and P. Vary, “Efficient musical noise suppression for speech
enhancement system,” in Proc. IEEFE International Conference on Acoustics,

Speech and Signal Processing, pp. 4409-4412, 2009.

[103] C. Hummersone, “Binaural room impulse responses
(BRIRs),” University — of  Surrey, UK, 2010. Awailable:

http://www.surrey.ac.uk/msr/people/chris-hummersone/BRIRs.

[104] D. P. Mandic and J. A. Chambers, “Recurrent neural networks for pre-
diction,” Wiley Series in Adaptive and Learning Systems for Signal Process-

ing, Communication, and Control, chapter 7, 2001.

[105] M. Jeub, M. Schafer, and P. Vary, “A binaural room impulse response
database for the evaluation of dereverberation algorithms,” Proc. 16th In-

ternational Conference on Digital Signal Processing, pp. 1-5, 2009.



References 139

[106] H. Teutsch and W. Kellermann, “Acoustic source detection and local-
ization based on wavefield decomposition using circular microphone arrays,”

Journal of the Acoustical Society of America, no. 120 (5), 2006.

[107] C. Hummersone, R. Mason, and T. Brookes, “Dynamic precedence ef-
fect modeling for source separation in reverberant environments,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7,

pp. 1867-1871, 2010.

[108] J. Woodruff, “Integrating monaural and binaural cues for sound local-
ization and segregation in reverberant environments,” PhD Thesis, Ohio

State University, USA, 2012.



