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Abstract. We present two methods for process planning of 2.5D 
machined parts. The first method is based on feature recognition from a 
3D model. We embedded the shape and the machining method of two 
generic classes of machining features in a set of OPS5 rules to form a 
machining feature recognizer. When successfully recognizing a 
machining feature, machining instructions, in terms of the tool entrance 
face, drive face and part face, for cutting the machining feature will be 
generated and further processed to produce NC codes. 

The second method is based on learning the shape and the machining 
method of the machining feature. When a machining feature cannot be 
recognized by the former feature recognizer, the user can use the 
machining feature as a positive training example to instruct the system 
about the tool entrance face, drive face and part face of the machining 
feature. The system then builds a new rule, using the boundary shape of 
the unrecognized machining feature as the rule's matching condition 
and the acquired machining instruction as the rule's action. The new 
rule can be used subsequently for process planning of machining 
features that have shapes similar to the memorized one. 

 
 

1. Introduction 
 

Process planning has been the focus of much CAD/CAM 
automation research which has led to the emergence of the 
'feature' concept. The abstraction of feature tends to depend on 
the researcher's points of interest. In the context of process 
planning of machined parts, however, feature can be regarded 
as a collection of shapes and technological attributes (Shah et 
al. 1988) associated with the machining processes of the 
machined parts. 

Based on the ways of creating and using features, two 
approaches used by researchers can be discerned. One is called 
feature recognition and the other, the design by feature method. 
The former approach has been used by researchers (Grayer 
1977, Joshi and Chang 1988) to recognize machining form 

features from the computer model with the assumptions that 
the features are present in the model and that they can be 
identified and extracted for further communication to support 
other design and manufacturing activities. The latter approach 
has been adopted by researchers (Descotte and Latcombe 1984, 
Cutkosky et al. 1988) who emphasize the incorporation of 
feature information more explicitly in a computer model 
during the design process so as to minimize or eliminate the 
expensive feature recognition process. 

From the design and manufacturing standpoints, features 
which are relevant to functional performance may not be 
relevant to manufacturing and vice versa. For instance, the use 
of strengthening ribs is a common design feature to reinforce 
the structural strength of castings. However, the ribs can be 
obtained by methods, such as casting or machining the 
surrounding material of the ribs, or can be fabricated by 
welding. Many design-by-feature-based prototype systems 
(Turner and Anderson 1988) resolved this design and 
manufacturing features mapping problem by using a 
predefined set of manufacturing oriented features for design 
purposes. As a consequence, these systems tend to limit the 
designer's ability in designing with design features and restrict 
the choice of manufacturing processes. 

Some feature-recognition-based approaches (Henderson 
1984, Requicha and Vandenbranke 1989) employed AI 
techniques in their work, yet they are basically relying on a 
finite set of primitive machining feature templates, such as 
hole, pocket, etc., together with their syntactic interaction 
patterns for recognition. Since primitive machining features 
can combine in an unpredictable manner to form compound 
machining features, pre-defining the syntactic pattern of 
feature combination will limit the system's recognition power. 
To deal with the process planning of compound machining 
features, we believe that the system should possess learning 
ability so that its process planning capability can grow. 
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Four basic machine learning strategies have been described 
in (Cohen and Feigenbaum 1982). They are: 

 
1. Rote learning, in which the environment provides 

explicit information which is then memorized by the 
learning agent without much inference. 

2. Learning from instruction, in which the learning agent 
has to hypothesis the missing details from the provided 
information, then transform and integrate the new 
knowledge with prior knowledge so that it can be used in 
the future. 

3. Learning from examples, in which the learning agent 
develops a general scheme for handling future situations 
after it has encountered a number of positive and 
negative examples of situations. 

4. Learning by analogy, in which the learning agent extends 
the scope of its existing knowledge by detecting the 
similarities and differences between the old and new 
situations. 

 
Our research is on the automation of process planning of 

machined parts which consist of compound machining 
features. We used the PADL-2 solid modeller (Volecker and 
Rosenberg 1986) as a design front end for modelling the 
material stock and the finished part. By a Boolean subtraction 
operation between the stock and the part models we obtained 
the boundary representation (BRep) of the cavity volumes of 
material. We integrated the PADL-2 modeller with the rule-
based VAX-OPS5 AI environment to facilitate the 
implementation of two process planning methods. The first 
method uses a set of OPS5 rules to recognize machining 
features from the cavity volume model and generate 
appropriate machining instruction when recognition is 
successful. The second method attempts to use the machine 
learning strategies 1, 2 and 3, as mentioned above, to handle 
compound machining features that cannot be recognized by the 
first method. 

The sequel of this paper is presented in the following 
manner. Section 2 introduces the architecture of our 
experimental system. Section 3 describes the representation of 
the cavity volume model in the solid modelling environment. 
Section 4 describes the transfer of the cavity volume 
information from the solid modelling domain to the OPS5 AI 
environment. Section 5 defines the representation of two 
categories of machining features, their recognition method and 
rules. Section 6 describes the post-processing of the 
recognition result to generate NC machine codes. Section 7 
describes the mechanism of the learning method. Section 8 
concludes our work. 
 

2. System's architecture 
 
Figure 1 illustrates our method of linking the VAX-OPS5 AI 

environment with the PADL-2 solid modeller. The VAX-OPS5 
AI environment is an extended implementation of the OPS5 
language (Forgy and McDermott 1977) which consists of a 
database and production rules that manipulate the database. 
Data in the database is represented by the Object-Attribute-
Value (O-A-V) triplets method. The VAX-OPS5 run-time 
system controls the execution of OPS5 programs. It consists of 
a recognize-act cycle, command interpreter and run-time 
compiler. During the recognize phase, the system compares 
working-memory elements of the database with the condition 
elements on the left-hand side of each rule. As the left-hand 
sides of rules are satisfied, the run-time system creates a 
conflict set that contains records of the working-memory 
elements that match the condition elements of a rule. Each 
record includes a rule name and a list of the time tags of 
working-memory elements that match the condition elements 
on the rule's left-hand side. The run-time system uses either the 
Lexicographic-Sort (LEX) or the Means-Ends-Analysis (MEA) 
conflict resolution strategy to order and select the records in 
the conflict set. Both strategies apply in the order of the 
following rules: refraction, recency and specificity 
(McDermott and Forgy 1978). The MEA strategy is similar to 
the LEX strategy except that it includes an extra step after 
refraction, which orders the records in the conflict set 
according to the recency of the working-memory element 
matching the first condition element in each rule. Our testbed 
system uses the MEA strategy as the most important condition 
element is always placed first on the left-hand side of each 
rule. After the run-time system selects a record from the 
conflict set, the recognize-act cycle enters the act phase. 
During this phase, variables assigned in the rule's left-hand 
side are bound to values and the actions on the right-hand side 
of the rule to which the record refers execute. The VAX-OPS5 
command interpreter is used to control the execution of a 
program interactively. By virtue of the run-time compiler, new 
rules can be added to an executing program. 

We installed two new input command parsers, one in front 
of PADL-2 and the other in the AI environment, for filtering 
our system commands. When the command, 'ALEX', is 
intercepted in the solid modeller, the system will switch to the 
command parser of the AI environment. The command, 'OPS', 
is for going into the OPS5 command interpreter and the 
command, 'MODEL', is for returning from the AI environment 
to the solid modeller. The 'new definitional statement' decision 
block is to catch the use of a group of specially designed non-
PADL solid expression statements which have to be converted 
into the PADL-2 legal syntax before passing to the PADL-2 
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parser. The purpose of implementing the non-PADL 
statements is to provide an optional input format to facilitate 

the solid modelling process. 
  

 
Figure 1. System’s architecture 
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3. BRep in the solid modeller 
 

PADL-2 records the construction history of a solid model, in 
terms of the type and size of simple solid primitives, Boolean 
and spatial operators used, in a constructive solid geometry 
(CSG) binary tree data structure. When the explicit BRep of 
the solid model is required, the CSG data is manipulated by a 
set of boundary evaluation routines. The generated BRep is 
maintained internally in a hierarchical boundary file (bflle). 
The design of the bflle is based on the so-called maximal-face 
(Silva 1981) scheme in which surface regions (or faces) of the 
same halfspace are collectively addressed by a single logical 
pointer. For many applications, this maximal-face 
representation scheme is undesirable, especially from the 
standpoint of machining process planning which demands 
distinction of individual face entities. Moreover, the 
hierarchical nature of the bflle also restricts the design of 
procedural routines as the bfile information has to be addressed 
in a top-down manner. 

To overcome these problems, the hierarchical bfile 
representation is converted into the modified winged-edge data 
structure representation (Weiler 1985). In the winged-edge data 
structure, the BRep is based on the connected-face (Silva 
1981) scheme which is congenial with human interpretation of 
an engineering object boundary. The procedures of converting 
bfile to a winged-edge data structure can be found in (Chan 
and Tan 1988). 
 
 
3.1 The cavity volume model 
 

In our feature recognition we used the cavity volume model 
because we considered that depressions identified on a part 
model may not necessarily require machining operations as 
they may have been produced by some former manufacturing 
processes. Recognizing machining features solely based on the 
part model also can hardly identify such aspects as the need of 
a surface milling operation. For machine understanding of the 
net machining regions, we believed that the stock information 
is essential and the use of the regularized Boolean subtraction 
operator between the stock and part models can simplify the 
task of revealing the genuine machining regions. Although this 
method is at the expense of boundary evaluation, we 
considered that the shortcoming can be compensated by the 
advantage that the cavity volume model, hereafter called the 
MC_VOL, offers explicitly the complete geometrical and 
topological bounding envelope of the net machining regions. 

Based on the user specified stock and part names, our 
system performs the regularized Boolean subtraction and 
boundary evaluation operations to obtain the intermediate 

bflies of the stock, part and MC_VOL models, and afterwards, 
performs their bfile-to-winged-edge data structure conversion. 
The sequence for establishing the winged-edge data structures 
of stock, part and MC_VOL is illustrated in Figure 2. Figure 3 
is a condensed picture of the entire BRep structures which are 
maintained in the system together with the PADL-2 inherent 
data representation methods. 

As MC_VOL may represent several spatially disjointed sub-
volumes, the sub-volumes are virtually separated by checking 
their face connection relationship. A pointer 
(MC_VOL_CHILD in Figure 3) is assigned for each identified 
sub-volume to provide an access path to its own sets of faces, 
edges and vertices. The pointers to the sub-volumes are stored 
in a list, MC_VOL_LIST, as shown in Figure 3. 
 
 
3.2 MC_VOL face classification 
 

The surface. boundary of MC_VOL can be modelled as 
follows: 
 
bMC_VOL  = b(S ↔ P) 
  = ( bS∩cP )U(iS∩bP )U[bS∩bP∩k(iS∩cP )] 
 
where   b ::   = the surface boundary point set of 
             S ::  = stock solid model 
           ↔ ::  = regularized Boolean difference 
             P ::  = part solid model 
             ∩::  = intersects 
             c ::  = the complement point set 
           U ::  = unions 
              i ::  = the interior point set 
             k ::  = the closure point set 
 
(For rigorous understanding of the above expressions please 
refer to Requicha and Tilove 1978). 

 
For a valid machining operation, P is a proper sub-set of  
S :. ( bS∩cP ) ≠ 0 
(bS∩cP ) is defined as the tool entrance boundary 
(TE_FACE)  
Again since P is a proper sub-set of S :. (iS∩bP) ≠ 0 
(iS∩bP) is defined as the machining generated boundary 
(MC_FACE)  
 
Since bS and bP are two-dimensional (bS∩bP ) is either : 

(a) null ( i.e. disjoint) 
(b) two-dimensional (overlap)  
(c) one-dimensional (intersect) 

 
The last term, [bS∩bP∩k(iS∩cP)] excludes cases (a) and (b) 

and refers to those relevant point sets that lie on the  
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Figure 2. Building the winged-edge based BRep data. 
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Figure 3. System’s BRep structure 
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Figure 4. Face boundaries of MC_VOL 
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intersection edge formed by bS and bP as illustrated in Figure 
4. 

Based on the surface boundary expression shown above, 
each face of MC_VOL is classified as TE_FACE or 
MC_FACE by testing the face's halfspace parameters and 
boundary edges with those of the faces of S. The face 
classification result is stored in the integer variable, FCCODE, 
of each face as shown in Figure 3. 

Each edge of the MC_VOL is also classified into either, 
convex, concave or smooth indicating that the solid angle θ 
between two adjacent faces of MC_VOL is either 0° < θ < 
180°, 180° < θ < 360° or θ =180° respectively. The edge 

convexity is augmented in the BRep of MC_VOL (Figure 3) 
for feature recognition purpose. 
 
 
3.3 MC_FACE classification 
 

With the above face classification, the MC_VOL can be 
considered to be bounded by a collection of TE_FACE and 
MC_FACE. Using the drive face and part face concept of the 
Automatically Programmed Tools (APT) NC language, it can 
be conceived that the TE_FACE or MC_FACE can become a 
part face or a drive face during machining operation. This idea   

 
Figure 5. Face taxonomy of MC_VOL 
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Figure 6. Frame-based data example. 
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is illustrated in Figure 5. We made use of this change of 
MC_VOL face status to drive the recognition process which 
will be described in section 5.1. 
 
 
 
4.  Representing the MC_VOL in the AI environment 
 

The O-A-V triplets data format of OPS5 has led to the 
design of a frame-based data structure in the AI environment. 
By issuing the command 'BFRAME mv_x', where mv_x is 
assumed to be the system name of a sub-volume of MC_VOL, 
the BRep of mv_x is extracted and copied internally from the 
winged-edge data structure to the frame-based data structure. 
Presented in Appendix 1 is the data structure declaration 
section of the system program in the original OPS5 language 
syntax. As an example, when a straight cylindrical hole is 
drilled perpendicularly through two parallel planar faces of a 
stock model, the form of MC_VOL generated will be a 
cylindrical column. Its BRep represention in the AI 
environment is illustrated in Figure 6. To utilize the strength of 
OPS5 in symbolic pattern matching and to facilitate human 
interpretation/interrogation of the BRep information, some 
attribute values are converted from integer codes into explicit 
symbolic strings during the data copying process. For example, 
the edge convexity has been translated from integer code 1, -1, 
or 0 to CONVEX, CONCAVE or SMOOTH respectively. 
 
 
5. Classification of machining features 
 

We classified 2.5D machining features into two categories. 
Category 1 (MFcat1 refers to one-dimensional machining 
features that involve only the feed motion of the machine 
spindle axis for machining. Category 2 (MFcat2) covers those 
that will involve the interpolated feed motion of the machine's 
x and y axes for contour machining. 

The following criteria are assumed for MFcat1: 
 
(i) the MC_VOL can be machined by one or more one-

dimensional machining operations, i.e. 
MC_VOLcat1 :: = {1DMOPn}     where n ≥ 1 and n = 
positive integers; 
 

(ii) each lDMOP(i) consists of the following structure which 
is similar to that used by Choi et al.  (1984): 

 
lDMOP(i) ::= HSS HES EDG HBS 
where HSS is a planar TE_FACE, 

 

HES is a positive surface normal cylindrical or conical 
MC_FACE,  

EDG is a closed circular edge with HES and HBS as 
adjacent faces, 

and HBS is either a planar TE_FACE, planar MC_FACE or 
conical MC_FACE; 

(iii) the joining condition between cylindrical and planar 
faces or between conical and planar faces must be that 
the axis vector of the cylindrical or conical face is 
parallel to the surface normal vector of the planar face; 

 (iv) joining condition between cylindrical and conical faces 
or between conical and conical faces must be co-axial. 

 
Similarly, the following criteria are assumed for MFcat2: 
 

(i) the MC_VOL can be machined by one or more 2.5D 
machining operations, i.e. 
MC_VOLcatl :: = {2.5DMOPm} where m ≥ 1 and m = 
positive integers, 

(ii) each 2.5DMOP(i) consists of the following structure: 
2.5DMOP(i) ::= PSS {PESn} {EDGn} PBS 

 
where PSS is a planar TE_FACE, 
 

{PESn} is a set of connected planar or cylindrical faces 
with the number of faces = n and their face classification 
can be TE_FACE or MC_FACE, 
{EDGn} is a list of n linked edges and each edge has a 
face of {PESn} and PBS as adjacent faces,  
 

and PBS is either a planar TE_FACE or MC_FACE. 
 
(iii) the joining condition between cylindrical and planar 

faces in {PESn} must be that the axis vector of the 
cylindrical face is orthogonal to the surface normal 
vector of the planar face, 

(iv) edges in {EDGn} have solid angle between adjacent 
faces either equal to 90° or 270°. 

 
The structures of lDMOP(i) and 2.5DMOP(i) described 

above can be illustrated by using entity relationship (E-R) 
diagrams shown in Figures 7 (a) and (b) respectively. 

The criteria defined above for MFcat1 also include the 
definition of a compound configuration of MFcat1 because the 
number of machining operations n of {lDM0Pn} can be greater 
than one. Physically, this refers to multi-diameter stepped 
holes which can be regarded as a string of co-axial holes which 
have a common HSS. This idea is illustrated by Figure 8 which 
shows a machined part with a counter-sunk, non-through 
drilled hole. Since machining of the hole will involve only z-  
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Figure 7. Structures of 1DMOP and 2.5DMOP 
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Figure 8. Compound MC_VOLcat1 matching feature 
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Figure 9. Compound MC_VOLcat2 machining feature 
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axis feed motion of the spindle, the corresponding MC_VOL 
belongs to MC_VOLcat1 which consists of two lDMOP and 
hence n is 2. The upper counter- sunk hole is lDMOP(l) which 
has planar face 101 as HSS, cylindrical face 102 as HES, 
planar face 103 as HBS and circular edge 102 as EDG. The 
lower drilled hole is 1DMOP(2) which has planar face 101 as 
HSS, cylindrical face 104 as HES, conical face 105 as HBS 
and circular edge 203 as EDG. 

Similarly, the criteria defined above for MFcat1 also describe 
compound configurations when m of {2.5DMOPm} is greater 
than one. Physical examples are a nested pocket (a pocket 
within a pocket) and a pocket that has an island on its base. For 
the former example, there are two 2.5DMOP machining 
operations, one for the upper pocket and the other for the lower 
pocket. The upper and the lower pockets will each has its own 
{PESn} and PBS but they will share the same PSS. For the 
latter example there are also two 2.5DMOP machining 
operations, one for the pocket and the other for the island as 
illustrated in Figure 9. 
 
 
5.1 Method and rules for recognizing machining features 
 

Forward chaining rules which define the dissected 
geometrical/topological structure of MC_VOL in accordance 
with the previously defined criteria for MFcat1 and MFcat2 as 
well as their possible compound configuration relationships are 
constructed. The rules are arranged in a cluster of context trees 

so that the rule searching is based on depth-first strategy. The 
current system default sequence is to hunt for MFcat1 first, then 
MFcat2 followed by MFcat1/MFcat2 compound configurations. 

The system currently handles the sub-volumes of MC_VOL 
one at a time and order is decided by the user. The frame-based 
BRep of a specific sub-volume of MC_VOL is established in 
the AI environment as described in Section 4. Based on the 
recognize-act cycle mechanism of OPS5, the system 
continually tries to match the conditions of a selected rule with 
the MC_VOL's BRep as well as the run-time generated data. 
During the inference process, the actions of the rules perform 
various important functions. For instance, they may change the 
inference results into new facts and inherit them to the 
subsequent rules, modify or remove some of the existing facts, 
or directly access the winged-edge data and the procedural 
routines of the solid modeller via OPS5 foreign procedural 
languages interface facility. 

 
The sample part shown in Figure 12 is used to illustrate the 

method and the rules used to find machining operation face 
sets. The part has a cylindrical stepped hole below the base of 
the upper pocket so it represents a MFcat2 compounded with a 
MFcat1. As there are quite a number of rules invoked during the 
recognition process, only the rules for finding the upper pocket 
and the hole are described. The important rules are shown in 
the readable OPS5 language syntax with comments in 
Appendix 2. The function and effect of the rules are also 
summarized below in the order of their firing sequence. 

 
Rule                         Function and effect 

OPLAN The user enters the command 'OPLAN' to activate this rule which makes some 
preparation work for later returning to the command parser when no more machining 
face sets can be found. It then calls for the finding of MFcat1 and MFcat2 and activates 
RULE_DETECT_NON_CC_DEP. 

RULE_DETECT_NON_CC_DEP This rule finds the TE_FACE that has the largest surface area from the boundary faces 
of MC_VOL. 

RULE_UPDATE_LGFAC_TIME_FLAG Based on the founded TE_FACE, this rule activates two rules, one finding MFcat2 with 
round corners and the other finding MFcat2 without round corners. 

RULE_FIND_NON_CC_DEP_TYPEl Since the pocket of the part has round corners, this rule is invoked. It stores the 
TE_FACE in a temporary working frame and calls for the search of the DRIV_FC of the 
pocket. 

RULE_FIND_DRIVFC_LIST This rule is activated many times recording all the DRIV_FC, i.e., the wall faces of the 
pocket, in a temporary working frame. 

RULE_FIND_PLN_PARTFC_TYPEl Finds the PART_FC, i.e., the base face of the pocket, transfers the identities of the found 
TE_FACE, DRIV_FC and PART_FC from the temporary working frame to a new 
frame. It also calls for the test of compound machining features that may exist below the 
base face of the pocket. 

RULE_PLN_PARTFC_CYL_TEST Tests if there is any cylindrical hole below the base face of the pocket. 
RULE_PLN/CYL/PLN_l Finds the cylindrical hole below the base face of the pocket and transfers the identities of 

the TE_FACE, DRIV-FC and PART-FC to a new frame. 
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Figure 10. Part ‘A’ and Part ‘B’ 
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Figure 11. Cutter oaths of part ‘A’ and part ‘B’ 
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Figure 12. An illustrated test part 
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When no more machining features are found, the system will 
return to the command parser to wait for the user's command. 
By issuing another command, 'WOPLAN', the machining 
operation face sets stored in the above two frames will be 
written to a machining operation file. 
 
 
6. Tool path generation 
 

The machining operation file stores the TE_FACE, 
DRIV_FC and PART_FC information of each MFcat1 or 
MFcat2 in an independent record. We used a modified NC tool 
path generation module (Wong 1989) to read the machining 
operation file and process the machining operations 
sequentially. For MFcat1 the tool path is a straight line from 
the HSS to the HBS. For MFcat2, the {PES0n} faces are offset 
towards the inner side of MC_VOL by an amount equal to the 
radius of the cutter used plus a default clearance allowed for 
subsequent fine machining operation. The PBS face is offset 
towards the inner side by an amount conceived to be the 
distance between the bottom face of a flat-end milling cutter 
and the PBS. This offset distance is a linear function of the 
axial depth of cut and is determined automatically based on 
the material type. The offset surfaces will intersect to form a 
group of virtual two-dimensional curve segments which are 
further processed to produce a list of zig-zag cutter paths for 
rough machining. The zig-zag path direction is always along 
the x-axis of the modelling space coordinate system. 
Similarly, a list of cutter paths around the {PESn} is formed 
for fine machining. Whenever cutter retraction is required, it 
will be raised to a safe height which is determined by 
evaluating the bounding envelope of the stock. A simple 
cutter file and a machinability data file are maintained in the 
system so that cutting speed, feed and axial depth of cut are 
generated automatically. The speed, feed, delay time and 
coolant postprocessor-based instructions are also inserted in 
the cutter path list at appropriate positions. They can be 
displayed on the screen together with the cutter path to 
facilitate visual verification. The cutter path can also be 
edited interactively. The cutter path data will be further 
processed to produce NC program. 
 
 
7. The learning agent  
 

We use the two parts, part A and part B, illustrated in 
Figure 10 to describe the learning agent. As the cylindrical 
through hole of part A passes right through edge 3327, the 
boundary structure of the MC_VOL is different from the 

defined structures of MFcat1 or MFcat2 and therefore it cannot 
be recognized by the feature recognizer of the system. To 
activate the learning agent, the user can issue the command 
'LEARN mv_x ', where mv_x is the system given name of the 
MC_VOL. When activated, the learning agent will ask the 
user to indicate which faces are to be used as the TE_FACE, 
PART_FC and DRIV_FC for machining the MC_VOL. The 
input process is assisted by interactive graphic facility, by 
which the user manipulates the mouse cursor to pick the 
correct faces. As for the MC_VOL of part A, face 3335 will 
be used as TE_FACE since it is a planar surface orthogonal to 
the entrance direction of the cutting tool. Face 3329 (or 3320) 
will be regarded as the PART_FC since it will be a tool exit 
face for machining the through hole and face 3380 will be 
conceived as the DRIV_FC for drilling the through hole. 

Having acquired the three machining faces, the learning 
agent asks the user for a rule name. The agent then extracts 
the MC_VOL BRep from the frame-based database and uses 
the information as condition clauses to build a new OPS5 
rule. The actions of the new rule are to create a new frame for 
storing the three acquired machining faces and to write them 
to a machining operation file. The new rule generated after 
learning part A is shown in Appendix 3 with explanation 
notes. Building of the rule is by using the run-time compiling 
facility of VAX-OPS5. The execution codes of the new rule 
are added to the rule base of the system in the same working 
session. The context of the new rule is also stored in a file, 
called OPS$BUILD.OPS. 

The new rule can be considered as an independent process 
planning rule not only for part A but also for other machined 
parts that have MC_VOL BRep pattern similar to that of part 
A. For instance, the part B, shown in Figure 10, has similar 
BRep pattern and hence it can also be handled by the new 
rule. Activation of the new rule is by issuing the command 
'RECALL name', where name is the user's given rule name 
during the learning process. The new rule uses the memorized 
BRep pattern to match with the BRep pattern of part B and 
the actions of the new rule generates the machining operation 
file. Using the NC module to process the machining operation 
file, the corresponding cutter path can be produced. The 
generated cutter paths for the two parts are illustrated in 
Figure 11. 
 
8. Conclusions 
 

We integrated the VAX-OPS5 AI environment with the 
PADL-2 solid modeller for implementing two process 
planning methods for 2.5D mechanical parts. The resultant 
system was developed using both the rule-based OPS5 
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language and FORTRAN procedural languages. The tight 
connection enables direct internal information transfer 
between the two environments. 

The first feature-recognition-based method can be used to 
recognize machining features whose shapes are in 
conformance with the system defined machining feature 
templates. It can handle machined parts with reasonable 
complex shapes such as the one illustrated in Figure 12. 

The second method is an attempt to emulate the mental 
activities of a human process planner when tackling an 'odd 
shaped' machining feature without prior process planning 
knowledge of that particular machining feature. The method 
requires the user's explicit instruction concerning the 
machining method of the odd shaped machining feature in the 
first encounter. The system then memorizes by hard its shape 
and the associated machining method as an independent rule 
for process planning of machining features that have shape 
similar to the memorized one. The method is based on the 
assumption that a subset of complex machining features have 

generic shape patterns but the generic shape patterns are 
factory dependent and the range of the patterns is so wide that 
it is difficult, if not impossible, to pre-define and implement 
them either in a feature-recognition-based system or in a 
design by feature-based system. We consider that an 
intelligent process planning system that can be taught to 
acquire new process planning knowledge to adapt to different 
factory working environments during its service life is a more 
desirable solution. 
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Appendix 1. Declaration of frame-based data structure. 
 
(LITERALIZE SOLID  ; a solid frame with the following attributes or (slots) : 
 IDENTY  ; identity pointer 
 SYSNAM  ; user/system given ASCII name 
 RGMOTN  ; rigid motion pointer 
 CLASCD  ; reserved 
 FACLST  ; pointer to face list frame 
 UTFLG1) ; utility flag for internal use 
; 
(VECTOR-ATTRIBUTE FACESS) ; a list for storing face pointers 
(LITERALIZE FACLST ; aface list frame 
 IDENTY 
 FACNUM  ; number of faces 
 UTFLGl 
 FACESS)  ; pointers to face frames 
; 
(LITERALIZE FACE  ; a face frame 
 IDENTY 
 FACTYP ; face swface type 
 CLASCD  ; face classification  
 FACNOR ; face swface normal code  
 FACLOP ; a pointer to face loop frame  
 UTFLGl) 
; 
(VECTOR-ATTRIBUTE EDGLOP) ; a list for storing face edge loop pointers 
(LITERALIZE FACLOP  ; a face loop frame 
 IDENTY 
 LOPNUM  ; number of face edge loops 
 UTFLGl 
 EDGLOP).  ; pointers to edge(i) frame of loop(i) 
; 
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(LITERALIZE EDGE  ; an edge frame 
 IDENTY 
 EDGTYP  ; edge curve type 
 CLASCD  ; convexity classification 
 LFTFAC  ; left adjacent face 
 LFENUM ; number of edges of left adjacent face 
 RHTFAC ; right adjacent face 
 RFENUM  ; number of edges of right adjacent face 
 UTFLGl) 
 
 
 
Appendix 2. Recognition rules for the part shown in Figure 12. 
 
 
;assuming that the MC_VOL shown in Figure 15 has been established in the data base and the command, 'OPLAN' is issued in the A1 
environment, then the following rules will be activated (P OPLAN 

{<oplan> (OPLAN)}; match the 'OPLAN' command 
(SOLID "FACLST <faclst>); make sure that there is a MC_VOL present 
··> 
(REMOVE <oplan>) ; remove OPLAN command to avoid re-firing of this rule 
(MAKE ALEX) ; go back to AI command parser when no more rules can be invoked 

(MAKE DETECT_NON_CC_DEP); want to hunt for MFcat2 
(MAKE DETECT_CC_DEP) ; want to hunt for MFcat1 

;  
(P RULE_DETECT_NON_CC_DEP ; find the largest TE_FACE 
(DETECT_NON_CC_DEP); receive the message token from the above rule 
(SOLID ^FACLST <faclst>) ; get the face list of MC_VOL 
··> 
(MAKE FIND_PLN_PARTFC_TYPE3),· 
(MAKE FIND_PLN_PARTFC_TYPE2) ; want to find different PART_FC 
conditions 
(MAKE FIND_PLN_PARTFC_TYPEI) ; 
(MAKE TOOL_ENT_FACE (XLGFAC <faclst>))) ;find the largest TE_FACE by the external procedure XLGFAC 

; 
(P RULE_UPDATE_LGFAC_TIME_FLAG ;increase the priority of the largest TE_FACE 
{<token> (TOOL_ENT_FACE <fl>)}; receive TE_FACE f1 
{<face> (FACE "IDENTY <fl>)} ; inherit the largest TE_FACE found 
··> 
(REMOVE <token>); remove the message token 
(MODIFY <face>); update TE_FACE's time flat 
(MAKE FIND_NON_CC_DEP_TYPE2) ; find MFcat2 without round corners 
(MAKE FIND_NON_CC_DEP_TYPEl)) ;find MFcat2 with round corners 

; 
(P RULE_FIND_NON_CC_DEP_TYPEl; MFcat2 with round corners 
(FIND_NON_CC_DEP_TYPEl); receive the message token 
{<face> (FACE ^IDENTY <fl> ^FACTYP PLN ^CLASCD TE_FACE 
^UTFLGl NIL)}; TE_FACE is planar 
(EDGE ^EDGTYP ELP ^CLASCD CONVEX ^LFTFAC <f1> 
^LFENUM > 1 ^RHTFAC <f2> ^UTFLGl NIL); edge is convex, left face is f1 and right face is f2, f1 has more than 1 edges 
(FACE ^IDENTY <f2> ^FACTYP CYL) ; f2 is a cylindrical face 
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··> 
(MODIFY <face> ^UTFLGl NON_CC_DEP); change the utility flag status 
(MAKE MC/OPER ^NUMBER TEMPOR ^TOENFC <fl> ^DFCNUM 0);create and initialize a temporary frame for storing the 

machining operation face sets 
(MAKE NON_CC_DEP_FOUND_TOKEN)); issue a message token 
; this rule will be re-invoked many times to find all the DRIV FC  

(P RULE_FIND_DRIVFC_LIST 
(NON_CC_DEP_FOUND_TOKEN) 
(FACE ^IDENTY <f1> ^UTFLGl <>NIL); f1's utility flag is not nil 
{<edge> (EDGE ^CLASCD CONVEX ^LFI'FAC <f1> ^RHTFAC <12> ^UTFLGl NIL)} 
{<face2> (FACE ^IDENTY <f1> ^UTFLGl NIL)} 
{<mdoper> (MC/OPER ^TOENFC <f1> ^DFCNUM <number>)};get the pointer of the temporary machining operation frame 
··> 
(MAKE TEFCLS ^IDENTY <fl> ^TEFACE <fl>); make a frame for recording f1 as the TE_FACE of f2 
(MODIFY <edge> ^UTFLGl FIND_DRIVFC_LIST) (MODIFY <face2> ^UTFLGl FIND_DRIVFC_LIST) (MODIFY <mdoper> 

^DFCNUM (COMPUTE 1 + <number>) 
"DRIVFC <f1> (SUBSTR <mdoper> DRIVFC INF))) ; update the found DRIV _FC in the temporary machining operation frame 

by the SUBSTR function and update the number of DRIV _FC found by the COMPUTE function 
; 

(P RULE_FIND_PLN_PARTFC_TYPEl 
(FIND_PLN_PARTFC_TYPEI) 
{<face1> (FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD MC_FACE ^UTFLGl NIL)} 
(EDGE ^CLASCD CONVEX ^LFTFAC <f1> ^LFENUM > 1 ^RHTFAC <f1>) 
(FACE ^IDENTY <f1> ^UTFLGl << FIND_DRIVFC_LIST  
FIND_NEST_DEP_DRIVFC_LIST >>) ; flag status is either FIND_DRIVFC_UST or 
FIND-NEST-DEP-DRIVFC-liST 
{<mdoper> (MC/OPER ^NUMBER TEMPOR)} 
··> 
(MODIFY <face1> ^CLASCD PART_FC ^UTFLGl FIND_PLN_PARTFC) 
; change f1' s face classification attribute value from MC_FACE to PART_FC and its utility flag status to FIND_PLN_PARTFC 
(MAKE TEFCLS ^IDENTY <f1> ^TEFACE (SUBSTR <mdoper> TOENFC 
TOENFC)) ; make a frame for recording the TE_FACE of f1, which is inherited from the TE_FACE of the temporary machining 

operation record 
(MAKE MC/OPER ^NUMBER (GENATOM) ^TOENFC (SUBSTR <mdoper>  
TOENFC TOENFC) ^PARTFC <f1> ^DFCNUM (SUBSTR <mdoper>  
DFCNUM DFCNUM) ^DRIVFC (SUBSTR <mdoper> DRIVFC INF)); make a permanent machining operation record and inherit 

the information from the temporary machining operation record. The record number is generated by the run-time system using the 
GENATOM function. 

(REMOVE <mdoper>) ; remove the temporary machining operation record 
(MAKE FIND_PLN_PARTFC_NON_CC_DEP); try to hunt for nested pocket or island on f1 which is a PART _FC 
(MAKE RULE_PLN_PARTFC_CON_TEST); try to hunt for conical hole on f1 
(MAKE RULE_PLN_PARTFC_CYL_TEST)); try to hunt for cylindrical hole on f1 
; 
(P RULE_PLN_PARTFC_CYL_TEST; preliminary test for PART_FC 
(RULE_PLN_PARTFC_CYL_TEST) 
(FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD PART_FC ^FACLOP <faclop1> AUTFLG1 <>NIL) 
(FACLOP ^IDENTY <faclop1> ^LOPNUM > 1) ; f1 has an inner edge loop 
(EDGE ^ IDENTY <e1> ^EDGTYP ELP ^CLASCD CONCAV ^LFTFAC <f1> ^LFENUM 1 ^RHTFAC <f2> ^UTFLG1 NIL) 
(FACE ^IDENTY <f2> ^FACTYP CYL ^CLASCD MC FACE ^UTFLG1 NIL) 
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--> 
(MAKE PLN_PARTFC_CYL_TEST_TOKEN)); try to hunt for a cylindrical hole below this PART_FC 

; 
(P RULE_PLN/CYLIPLN_1; a cylindrical hole below a PART_FC 
{<token> (PLN_PARTFC_CYL_TEST_TOKEN)} 
(FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD PART_FC ^ UTFLG1 <> NIL) 
{<tefcls> (TEFCLS ^IDENTY <f1>)}; get the TE_FACE of f1 
{<edge1> (EDGE ^EDGTYP ELP ^CLASCD CONCAV ^LFTFAC <f1> ^LFENUM 1 ^RHTFAC <f2> ^UTFLG1 NIL)} 
{<face2> (FACE ^IDENTY <f2> ^FACTYP CYL ^CLASCD MC_FACE 
^FACNOR 1 ^UTFLG1 NIL)} 
{<edge2> (EDGE ^EDGTYP ELP ^CLASCD CONVEX ^LFTFAC <f3> ^LFENUM 1^RHTFAC <f2> ^UTFLG1 NIL)} 
{<face3> (FACE ^IDENTY <f3> ^FACTYP PLN^CLASCD MC_FACE ^ UTFLG1 NIL)} 
--> 
(REMOVE <token>) 
(MODIFY <edge1> ^UTFLG1 PLN/CYLIPLN_1) 
(MODIFY <face2> ^CLASCD DRIV_FC ^UTFLG1 PLN/CYLIPLN_1) (MODIFY <edge2> ^UTFLG1 PLN/CYLIPLN_1) 
(MODIFY <face3> ^CLASCD PART_FC ^UTFLG1 PLN/CYLIPLN_1) (MAKE TEFCLS ^IDENTY <f2> ^TEFACE (SUBSTR 

<tefcls> TEFACE 
INF));make a frame for recording the TE_FACE of f3 which is inherited from that of f1 
(MAKE TEFCLS ^IDENTY <f3> ^TEFACE (SUBSTR <tefcls> TEFACE 
INF));make a frame for recording the TE_FACE of f3 which is inherited from that of f1 
(MAKE MC/OPER ^NUMBER (GENATOM) ^TOENFC (SUBSTR <tefcls> 
TEFACE INF) ^PARTFC <f3> ^DFCNUM 1 ^DRIVFC <f2>) ; make a new machining operation record frame for storing the 

faces involved in the hole drilling operation (MAKE RULE_PLN_PARTFC_CON_TEST); try to hunt for conical hole (MAKE 
RULE_PLN_PARTFC_CYL_TEST)); try to hunt for cylindrical hole 
 
 
Appendix 3. New rule built for part ‘A’ 
 
 

The following new rule is built by applying the learning agent on part 'A' which is shown in Figure 10. 
 

(P PART_A 
{ <RECALL> ( RECALL PART_A) } 
( EDGE ^ IDENTY <3339> ^ EDGTYP ELP ^ CLASCD CONVEX 

^ LFTFAC <3335> ^ RHTFAC <3380>) 
( EDGE ^ IDENTY <3333> ^ EDGTYP ELP ^ CLASCD CONVEX 

^ LFTFAC <3380> ^ RHTFAC <3329> ) 
( EDGE ^ IDENTY <3327> ^ EDGTYP LIN ^ CLASCD CONVEX 

^ LFTFAC <3329> ^ RHTFAC <3320> ) 
( EDGE ^ IDENTY <3324> ^ EDGTYP ELP ^ CLASCD CONVEX 

^ LFTFAC <3380> ^ RHTFAC <3320>) 
(FACE ^ IDENTY <3329> ^ FACTYP PLN ^ CLASCD TE_FACE 

^ FACNOR 1) 
( FACE ^ IDENTY <3320> ^ FACTYP PLN ^ CLASCD TE_FACE 

^ FACNOR 1) 
(FACE ^ IDENTY <3335> ^ FACTYP PLN ^ CLASCD TE_FACE 

^ FACNOR -1) 
(FACE ^ IDENTY <3380> ^ FACTYP CYL ^ CLASCD MC_FACE 
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^ FACNOR 1) 
--> 
( REMOVE <RECALL> ) 
( MAKE MC/OPER ^ NUMBER ( GENATOM )  ^ TOENFC <3335> 

 ^ PARTFC <3329>  
^ DRIVFC <3380>  
^ DFCNUM 1) 
( MAKE WOPLAN )) 

 
Remarks: 
1. 'PART_A' is an arbitrary name of the rule provided by user during the learning process. 
2. 'RECALL PART_A' is a variable frame added by the system during the rule building process. It is used for the purpose of later on 

matching a user's command so that the new rule can be recalled. 
3. The integer values enclosed in < > brackets are originally the system assigned integer identities of the corresponding geometric 

entities. A special routine of the learning agent encapsulates them in < > brackets thereby converting them into variables of OPS5 
format. 

4. Using the user instructed machining faces, the 'MAKE MC/OPER ... ' action generates a machining operation frame. 
5. The 'MAKE WOPLAN' action retrieves the machining faces from the machining operation frame and writes them in a file for the 

NC module to read. 
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