

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

International Journal of Computer Integrated Manufacturing
Vol 7, No 2, 77-99, 1994

Process planning by recognizing and learning
machining features

A. K. W. CHAN and K. CASE

Abstract. We present two methods for process planning of 2.5D
machined parts. The first method is based on feature recognition from a
3D model. We embedded the shape and the machining method of two
generic classes of machining features in a set of OPS5 rules to form a
machining feature recognizer. When successfully recognizing a
machining feature, machining instructions, in terms of the tool entrance
face, drive face and part face, for cutting the machining feature will be
generated and further processed to produce NC codes.

The second method is based on learning the shape and the machining
method of the machining feature. When a machining feature cannot be
recognized by the former feature recognizer, the user can use the
machining feature as a positive training example to instruct the system
about the tool entrance face, drive face and part face of the machining
feature. The system then builds a new rule, using the boundary shape of
the unrecognized machining feature as the rule's matching condition
and the acquired machining instruction as the rule's action. The new
rule can be used subsequently for process planning of machining
features that have shapes similar to the memorized one.

1. Introduction

Process planning has been the focus of much CAD/CAM
automation research which has led to the emergence of the
'feature' concept. The abstraction of feature tends to depend on
the researcher's points of interest. In the context of process
planning of machined parts, however, feature can be regarded
as a collection of shapes and technological attributes (Shah et
al. 1988) associated with the machining processes of the
machined parts.

Based on the ways of creating and using features, two
approaches used by researchers can be discerned. One is called
feature recognition and the other, the design by feature method.
The former approach has been used by researchers (Grayer
1977, Joshi and Chang 1988) to recognize machining form

features from the computer model with the assumptions that
the features are present in the model and that they can be
identified and extracted for further communication to support
other design and manufacturing activities. The latter approach
has been adopted by researchers (Descotte and Latcombe 1984,
Cutkosky et al. 1988) who emphasize the incorporation of
feature information more explicitly in a computer model
during the design process so as to minimize or eliminate the
expensive feature recognition process.

From the design and manufacturing standpoints, features
which are relevant to functional performance may not be
relevant to manufacturing and vice versa. For instance, the use
of strengthening ribs is a common design feature to reinforce
the structural strength of castings. However, the ribs can be
obtained by methods, such as casting or machining the
surrounding material of the ribs, or can be fabricated by
welding. Many design-by-feature-based prototype systems
(Turner and Anderson 1988) resolved this design and
manufacturing features mapping problem by using a
predefined set of manufacturing oriented features for design
purposes. As a consequence, these systems tend to limit the
designer's ability in designing with design features and restrict
the choice of manufacturing processes.

Some feature-recognition-based approaches (Henderson
1984, Requicha and Vandenbranke 1989) employed AI
techniques in their work, yet they are basically relying on a
finite set of primitive machining feature templates, such as
hole, pocket, etc., together with their syntactic interaction
patterns for recognition. Since primitive machining features
can combine in an unpredictable manner to form compound
machining features, pre-defining the syntactic pattern of
feature combination will limit the system's recognition power.
To deal with the process planning of compound machining
features, we believe that the system should possess learning
ability so that its process planning capability can grow.

Authors: A. K. W. Chan, Department of Mechanical Engineering,
University of Hong Kong, Pokfulam Road, Hong Kong; K. Case,
Department of Manufacturing Engineering, Loughborough University of
Technology, Loughborough, Leicestershire, LE11 3TU, UK.

2

Four basic machine learning strategies have been described
in (Cohen and Feigenbaum 1982). They are:

1. Rote learning, in which the environment provides

explicit information which is then memorized by the
learning agent without much inference.

2. Learning from instruction, in which the learning agent
has to hypothesis the missing details from the provided
information, then transform and integrate the new
knowledge with prior knowledge so that it can be used in
the future.

3. Learning from examples, in which the learning agent
develops a general scheme for handling future situations
after it has encountered a number of positive and
negative examples of situations.

4. Learning by analogy, in which the learning agent extends
the scope of its existing knowledge by detecting the
similarities and differences between the old and new
situations.

Our research is on the automation of process planning of

machined parts which consist of compound machining
features. We used the PADL-2 solid modeller (Volecker and
Rosenberg 1986) as a design front end for modelling the
material stock and the finished part. By a Boolean subtraction
operation between the stock and the part models we obtained
the boundary representation (BRep) of the cavity volumes of
material. We integrated the PADL-2 modeller with the rule-
based VAX-OPS5 AI environment to facilitate the
implementation of two process planning methods. The first
method uses a set of OPS5 rules to recognize machining
features from the cavity volume model and generate
appropriate machining instruction when recognition is
successful. The second method attempts to use the machine
learning strategies 1, 2 and 3, as mentioned above, to handle
compound machining features that cannot be recognized by the
first method.

The sequel of this paper is presented in the following
manner. Section 2 introduces the architecture of our
experimental system. Section 3 describes the representation of
the cavity volume model in the solid modelling environment.
Section 4 describes the transfer of the cavity volume
information from the solid modelling domain to the OPS5 AI
environment. Section 5 defines the representation of two
categories of machining features, their recognition method and
rules. Section 6 describes the post-processing of the
recognition result to generate NC machine codes. Section 7
describes the mechanism of the learning method. Section 8
concludes our work.

2. System's architecture

Figure 1 illustrates our method of linking the VAX-OPS5 AI

environment with the PADL-2 solid modeller. The VAX-OPS5
AI environment is an extended implementation of the OPS5
language (Forgy and McDermott 1977) which consists of a
database and production rules that manipulate the database.
Data in the database is represented by the Object-Attribute-
Value (O-A-V) triplets method. The VAX-OPS5 run-time
system controls the execution of OPS5 programs. It consists of
a recognize-act cycle, command interpreter and run-time
compiler. During the recognize phase, the system compares
working-memory elements of the database with the condition
elements on the left-hand side of each rule. As the left-hand
sides of rules are satisfied, the run-time system creates a
conflict set that contains records of the working-memory
elements that match the condition elements of a rule. Each
record includes a rule name and a list of the time tags of
working-memory elements that match the condition elements
on the rule's left-hand side. The run-time system uses either the
Lexicographic-Sort (LEX) or the Means-Ends-Analysis (MEA)
conflict resolution strategy to order and select the records in
the conflict set. Both strategies apply in the order of the
following rules: refraction, recency and specificity
(McDermott and Forgy 1978). The MEA strategy is similar to
the LEX strategy except that it includes an extra step after
refraction, which orders the records in the conflict set
according to the recency of the working-memory element
matching the first condition element in each rule. Our testbed
system uses the MEA strategy as the most important condition
element is always placed first on the left-hand side of each
rule. After the run-time system selects a record from the
conflict set, the recognize-act cycle enters the act phase.
During this phase, variables assigned in the rule's left-hand
side are bound to values and the actions on the right-hand side
of the rule to which the record refers execute. The VAX-OPS5
command interpreter is used to control the execution of a
program interactively. By virtue of the run-time compiler, new
rules can be added to an executing program.

We installed two new input command parsers, one in front
of PADL-2 and the other in the AI environment, for filtering
our system commands. When the command, 'ALEX', is
intercepted in the solid modeller, the system will switch to the
command parser of the AI environment. The command, 'OPS',
is for going into the OPS5 command interpreter and the
command, 'MODEL', is for returning from the AI environment
to the solid modeller. The 'new definitional statement' decision
block is to catch the use of a group of specially designed non-
PADL solid expression statements which have to be converted
into the PADL-2 legal syntax before passing to the PADL-2

3

parser. The purpose of implementing the non-PADL
statements is to provide an optional input format to facilitate

the solid modelling process.

Figure 1. System’s architecture

4

3. BRep in the solid modeller

PADL-2 records the construction history of a solid model, in
terms of the type and size of simple solid primitives, Boolean
and spatial operators used, in a constructive solid geometry
(CSG) binary tree data structure. When the explicit BRep of
the solid model is required, the CSG data is manipulated by a
set of boundary evaluation routines. The generated BRep is
maintained internally in a hierarchical boundary file (bflle).
The design of the bflle is based on the so-called maximal-face
(Silva 1981) scheme in which surface regions (or faces) of the
same halfspace are collectively addressed by a single logical
pointer. For many applications, this maximal-face
representation scheme is undesirable, especially from the
standpoint of machining process planning which demands
distinction of individual face entities. Moreover, the
hierarchical nature of the bflle also restricts the design of
procedural routines as the bfile information has to be addressed
in a top-down manner.

To overcome these problems, the hierarchical bfile
representation is converted into the modified winged-edge data
structure representation (Weiler 1985). In the winged-edge data
structure, the BRep is based on the connected-face (Silva
1981) scheme which is congenial with human interpretation of
an engineering object boundary. The procedures of converting
bfile to a winged-edge data structure can be found in (Chan
and Tan 1988).

3.1 The cavity volume model

In our feature recognition we used the cavity volume model
because we considered that depressions identified on a part
model may not necessarily require machining operations as
they may have been produced by some former manufacturing
processes. Recognizing machining features solely based on the
part model also can hardly identify such aspects as the need of
a surface milling operation. For machine understanding of the
net machining regions, we believed that the stock information
is essential and the use of the regularized Boolean subtraction
operator between the stock and part models can simplify the
task of revealing the genuine machining regions. Although this
method is at the expense of boundary evaluation, we
considered that the shortcoming can be compensated by the
advantage that the cavity volume model, hereafter called the
MC_VOL, offers explicitly the complete geometrical and
topological bounding envelope of the net machining regions.

Based on the user specified stock and part names, our
system performs the regularized Boolean subtraction and
boundary evaluation operations to obtain the intermediate

bflies of the stock, part and MC_VOL models, and afterwards,
performs their bfile-to-winged-edge data structure conversion.
The sequence for establishing the winged-edge data structures
of stock, part and MC_VOL is illustrated in Figure 2. Figure 3
is a condensed picture of the entire BRep structures which are
maintained in the system together with the PADL-2 inherent
data representation methods.

As MC_VOL may represent several spatially disjointed sub-
volumes, the sub-volumes are virtually separated by checking
their face connection relationship. A pointer
(MC_VOL_CHILD in Figure 3) is assigned for each identified
sub-volume to provide an access path to its own sets of faces,
edges and vertices. The pointers to the sub-volumes are stored
in a list, MC_VOL_LIST, as shown in Figure 3.

3.2 MC_VOL face classification

The surface. boundary of MC_VOL can be modelled as
follows:

bMC_VOL = b(S ↔ P)
 = (bS∩cP)U(iS∩bP)U[bS∩bP∩k(iS∩cP)]

where b :: = the surface boundary point set of
 S :: = stock solid model
 ↔ :: = regularized Boolean difference
 P :: = part solid model
 ∩:: = intersects
 c :: = the complement point set
 U :: = unions
 i :: = the interior point set
 k :: = the closure point set

(For rigorous understanding of the above expressions please
refer to Requicha and Tilove 1978).

For a valid machining operation, P is a proper sub-set of
S :. (bS∩cP) ≠ 0
(bS∩cP) is defined as the tool entrance boundary
(TE_FACE)
Again since P is a proper sub-set of S :. (iS∩bP) ≠ 0
(iS∩bP) is defined as the machining generated boundary
(MC_FACE)

Since bS and bP are two-dimensional (bS∩bP) is either :

(a) null (i.e. disjoint)
(b) two-dimensional (overlap)
(c) one-dimensional (intersect)

The last term, [bS∩bP∩k(iS∩cP)] excludes cases (a) and (b)

and refers to those relevant point sets that lie on the

5

Figure 2. Building the winged-edge based BRep data.

6

Figure 3. System’s BRep structure

7

Figure 4. Face boundaries of MC_VOL

8

intersection edge formed by bS and bP as illustrated in Figure
4.

Based on the surface boundary expression shown above,
each face of MC_VOL is classified as TE_FACE or
MC_FACE by testing the face's halfspace parameters and
boundary edges with those of the faces of S. The face
classification result is stored in the integer variable, FCCODE,
of each face as shown in Figure 3.

Each edge of the MC_VOL is also classified into either,
convex, concave or smooth indicating that the solid angle θ
between two adjacent faces of MC_VOL is either 0° < θ <
180°, 180° < θ < 360° or θ =180° respectively. The edge

convexity is augmented in the BRep of MC_VOL (Figure 3)
for feature recognition purpose.

3.3 MC_FACE classification

With the above face classification, the MC_VOL can be
considered to be bounded by a collection of TE_FACE and
MC_FACE. Using the drive face and part face concept of the
Automatically Programmed Tools (APT) NC language, it can
be conceived that the TE_FACE or MC_FACE can become a
part face or a drive face during machining operation. This idea

Figure 5. Face taxonomy of MC_VOL

9

Figure 6. Frame-based data example.

10

is illustrated in Figure 5. We made use of this change of
MC_VOL face status to drive the recognition process which
will be described in section 5.1.

4. Representing the MC_VOL in the AI environment

The O-A-V triplets data format of OPS5 has led to the
design of a frame-based data structure in the AI environment.
By issuing the command 'BFRAME mv_x', where mv_x is
assumed to be the system name of a sub-volume of MC_VOL,
the BRep of mv_x is extracted and copied internally from the
winged-edge data structure to the frame-based data structure.
Presented in Appendix 1 is the data structure declaration
section of the system program in the original OPS5 language
syntax. As an example, when a straight cylindrical hole is
drilled perpendicularly through two parallel planar faces of a
stock model, the form of MC_VOL generated will be a
cylindrical column. Its BRep represention in the AI
environment is illustrated in Figure 6. To utilize the strength of
OPS5 in symbolic pattern matching and to facilitate human
interpretation/interrogation of the BRep information, some
attribute values are converted from integer codes into explicit
symbolic strings during the data copying process. For example,
the edge convexity has been translated from integer code 1, -1,
or 0 to CONVEX, CONCAVE or SMOOTH respectively.

5. Classification of machining features

We classified 2.5D machining features into two categories.
Category 1 (MFcat1 refers to one-dimensional machining
features that involve only the feed motion of the machine
spindle axis for machining. Category 2 (MFcat2) covers those
that will involve the interpolated feed motion of the machine's
x and y axes for contour machining.

The following criteria are assumed for MFcat1:

(i) the MC_VOL can be machined by one or more one-

dimensional machining operations, i.e.
MC_VOLcat1 :: = {1DMOPn} where n ≥ 1 and n =
positive integers;

(ii) each lDMOP(i) consists of the following structure which
is similar to that used by Choi et al. (1984):

lDMOP(i) ::= HSS HES EDG HBS
where HSS is a planar TE_FACE,

HES is a positive surface normal cylindrical or conical
MC_FACE,

EDG is a closed circular edge with HES and HBS as
adjacent faces,

and HBS is either a planar TE_FACE, planar MC_FACE or
conical MC_FACE;

(iii) the joining condition between cylindrical and planar
faces or between conical and planar faces must be that
the axis vector of the cylindrical or conical face is
parallel to the surface normal vector of the planar face;

 (iv) joining condition between cylindrical and conical faces
or between conical and conical faces must be co-axial.

Similarly, the following criteria are assumed for MFcat2:

(i) the MC_VOL can be machined by one or more 2.5D
machining operations, i.e.
MC_VOLcatl :: = {2.5DMOPm} where m ≥ 1 and m =
positive integers,

(ii) each 2.5DMOP(i) consists of the following structure:
2.5DMOP(i) ::= PSS {PESn} {EDGn} PBS

where PSS is a planar TE_FACE,

{PESn} is a set of connected planar or cylindrical faces
with the number of faces = n and their face classification
can be TE_FACE or MC_FACE,
{EDGn} is a list of n linked edges and each edge has a
face of {PESn} and PBS as adjacent faces,

and PBS is either a planar TE_FACE or MC_FACE.

(iii) the joining condition between cylindrical and planar

faces in {PESn} must be that the axis vector of the
cylindrical face is orthogonal to the surface normal
vector of the planar face,

(iv) edges in {EDGn} have solid angle between adjacent
faces either equal to 90° or 270°.

The structures of lDMOP(i) and 2.5DMOP(i) described

above can be illustrated by using entity relationship (E-R)
diagrams shown in Figures 7 (a) and (b) respectively.

The criteria defined above for MFcat1 also include the
definition of a compound configuration of MFcat1 because the
number of machining operations n of {lDM0Pn} can be greater
than one. Physically, this refers to multi-diameter stepped
holes which can be regarded as a string of co-axial holes which
have a common HSS. This idea is illustrated by Figure 8 which
shows a machined part with a counter-sunk, non-through
drilled hole. Since machining of the hole will involve only z-

11

Figure 7. Structures of 1DMOP and 2.5DMOP

12

Figure 8. Compound MC_VOLcat1 matching feature

13

Figure 9. Compound MC_VOLcat2 machining feature

14

axis feed motion of the spindle, the corresponding MC_VOL
belongs to MC_VOLcat1 which consists of two lDMOP and
hence n is 2. The upper counter- sunk hole is lDMOP(l) which
has planar face 101 as HSS, cylindrical face 102 as HES,
planar face 103 as HBS and circular edge 102 as EDG. The
lower drilled hole is 1DMOP(2) which has planar face 101 as
HSS, cylindrical face 104 as HES, conical face 105 as HBS
and circular edge 203 as EDG.

Similarly, the criteria defined above for MFcat1 also describe
compound configurations when m of {2.5DMOPm} is greater
than one. Physical examples are a nested pocket (a pocket
within a pocket) and a pocket that has an island on its base. For
the former example, there are two 2.5DMOP machining
operations, one for the upper pocket and the other for the lower
pocket. The upper and the lower pockets will each has its own
{PESn} and PBS but they will share the same PSS. For the
latter example there are also two 2.5DMOP machining
operations, one for the pocket and the other for the island as
illustrated in Figure 9.

5.1 Method and rules for recognizing machining features

Forward chaining rules which define the dissected
geometrical/topological structure of MC_VOL in accordance
with the previously defined criteria for MFcat1 and MFcat2 as
well as their possible compound configuration relationships are
constructed. The rules are arranged in a cluster of context trees

so that the rule searching is based on depth-first strategy. The
current system default sequence is to hunt for MFcat1 first, then
MFcat2 followed by MFcat1/MFcat2 compound configurations.

The system currently handles the sub-volumes of MC_VOL
one at a time and order is decided by the user. The frame-based
BRep of a specific sub-volume of MC_VOL is established in
the AI environment as described in Section 4. Based on the
recognize-act cycle mechanism of OPS5, the system
continually tries to match the conditions of a selected rule with
the MC_VOL's BRep as well as the run-time generated data.
During the inference process, the actions of the rules perform
various important functions. For instance, they may change the
inference results into new facts and inherit them to the
subsequent rules, modify or remove some of the existing facts,
or directly access the winged-edge data and the procedural
routines of the solid modeller via OPS5 foreign procedural
languages interface facility.

The sample part shown in Figure 12 is used to illustrate the

method and the rules used to find machining operation face
sets. The part has a cylindrical stepped hole below the base of
the upper pocket so it represents a MFcat2 compounded with a
MFcat1. As there are quite a number of rules invoked during the
recognition process, only the rules for finding the upper pocket
and the hole are described. The important rules are shown in
the readable OPS5 language syntax with comments in
Appendix 2. The function and effect of the rules are also
summarized below in the order of their firing sequence.

Rule Function and effect

OPLAN The user enters the command 'OPLAN' to activate this rule which makes some
preparation work for later returning to the command parser when no more machining
face sets can be found. It then calls for the finding of MFcat1 and MFcat2 and activates
RULE_DETECT_NON_CC_DEP.

RULE_DETECT_NON_CC_DEP This rule finds the TE_FACE that has the largest surface area from the boundary faces
of MC_VOL.

RULE_UPDATE_LGFAC_TIME_FLAG Based on the founded TE_FACE, this rule activates two rules, one finding MFcat2 with
round corners and the other finding MFcat2 without round corners.

RULE_FIND_NON_CC_DEP_TYPEl Since the pocket of the part has round corners, this rule is invoked. It stores the
TE_FACE in a temporary working frame and calls for the search of the DRIV_FC of the
pocket.

RULE_FIND_DRIVFC_LIST This rule is activated many times recording all the DRIV_FC, i.e., the wall faces of the
pocket, in a temporary working frame.

RULE_FIND_PLN_PARTFC_TYPEl Finds the PART_FC, i.e., the base face of the pocket, transfers the identities of the found
TE_FACE, DRIV_FC and PART_FC from the temporary working frame to a new
frame. It also calls for the test of compound machining features that may exist below the
base face of the pocket.

RULE_PLN_PARTFC_CYL_TEST Tests if there is any cylindrical hole below the base face of the pocket.
RULE_PLN/CYL/PLN_l Finds the cylindrical hole below the base face of the pocket and transfers the identities of

the TE_FACE, DRIV-FC and PART-FC to a new frame.

15

Figure 10. Part ‘A’ and Part ‘B’

16

Figure 11. Cutter oaths of part ‘A’ and part ‘B’

17

Figure 12. An illustrated test part

18

When no more machining features are found, the system will
return to the command parser to wait for the user's command.
By issuing another command, 'WOPLAN', the machining
operation face sets stored in the above two frames will be
written to a machining operation file.

6. Tool path generation

The machining operation file stores the TE_FACE,
DRIV_FC and PART_FC information of each MFcat1 or
MFcat2 in an independent record. We used a modified NC tool
path generation module (Wong 1989) to read the machining
operation file and process the machining operations
sequentially. For MFcat1 the tool path is a straight line from
the HSS to the HBS. For MFcat2, the {PES0n} faces are offset
towards the inner side of MC_VOL by an amount equal to the
radius of the cutter used plus a default clearance allowed for
subsequent fine machining operation. The PBS face is offset
towards the inner side by an amount conceived to be the
distance between the bottom face of a flat-end milling cutter
and the PBS. This offset distance is a linear function of the
axial depth of cut and is determined automatically based on
the material type. The offset surfaces will intersect to form a
group of virtual two-dimensional curve segments which are
further processed to produce a list of zig-zag cutter paths for
rough machining. The zig-zag path direction is always along
the x-axis of the modelling space coordinate system.
Similarly, a list of cutter paths around the {PESn} is formed
for fine machining. Whenever cutter retraction is required, it
will be raised to a safe height which is determined by
evaluating the bounding envelope of the stock. A simple
cutter file and a machinability data file are maintained in the
system so that cutting speed, feed and axial depth of cut are
generated automatically. The speed, feed, delay time and
coolant postprocessor-based instructions are also inserted in
the cutter path list at appropriate positions. They can be
displayed on the screen together with the cutter path to
facilitate visual verification. The cutter path can also be
edited interactively. The cutter path data will be further
processed to produce NC program.

7. The learning agent

We use the two parts, part A and part B, illustrated in
Figure 10 to describe the learning agent. As the cylindrical
through hole of part A passes right through edge 3327, the
boundary structure of the MC_VOL is different from the

defined structures of MFcat1 or MFcat2 and therefore it cannot
be recognized by the feature recognizer of the system. To
activate the learning agent, the user can issue the command
'LEARN mv_x ', where mv_x is the system given name of the
MC_VOL. When activated, the learning agent will ask the
user to indicate which faces are to be used as the TE_FACE,
PART_FC and DRIV_FC for machining the MC_VOL. The
input process is assisted by interactive graphic facility, by
which the user manipulates the mouse cursor to pick the
correct faces. As for the MC_VOL of part A, face 3335 will
be used as TE_FACE since it is a planar surface orthogonal to
the entrance direction of the cutting tool. Face 3329 (or 3320)
will be regarded as the PART_FC since it will be a tool exit
face for machining the through hole and face 3380 will be
conceived as the DRIV_FC for drilling the through hole.

Having acquired the three machining faces, the learning
agent asks the user for a rule name. The agent then extracts
the MC_VOL BRep from the frame-based database and uses
the information as condition clauses to build a new OPS5
rule. The actions of the new rule are to create a new frame for
storing the three acquired machining faces and to write them
to a machining operation file. The new rule generated after
learning part A is shown in Appendix 3 with explanation
notes. Building of the rule is by using the run-time compiling
facility of VAX-OPS5. The execution codes of the new rule
are added to the rule base of the system in the same working
session. The context of the new rule is also stored in a file,
called OPS$BUILD.OPS.

The new rule can be considered as an independent process
planning rule not only for part A but also for other machined
parts that have MC_VOL BRep pattern similar to that of part
A. For instance, the part B, shown in Figure 10, has similar
BRep pattern and hence it can also be handled by the new
rule. Activation of the new rule is by issuing the command
'RECALL name', where name is the user's given rule name
during the learning process. The new rule uses the memorized
BRep pattern to match with the BRep pattern of part B and
the actions of the new rule generates the machining operation
file. Using the NC module to process the machining operation
file, the corresponding cutter path can be produced. The
generated cutter paths for the two parts are illustrated in
Figure 11.

8. Conclusions

We integrated the VAX-OPS5 AI environment with the
PADL-2 solid modeller for implementing two process
planning methods for 2.5D mechanical parts. The resultant
system was developed using both the rule-based OPS5

19

language and FORTRAN procedural languages. The tight
connection enables direct internal information transfer
between the two environments.

The first feature-recognition-based method can be used to
recognize machining features whose shapes are in
conformance with the system defined machining feature
templates. It can handle machined parts with reasonable
complex shapes such as the one illustrated in Figure 12.

The second method is an attempt to emulate the mental
activities of a human process planner when tackling an 'odd
shaped' machining feature without prior process planning
knowledge of that particular machining feature. The method
requires the user's explicit instruction concerning the
machining method of the odd shaped machining feature in the
first encounter. The system then memorizes by hard its shape
and the associated machining method as an independent rule
for process planning of machining features that have shape
similar to the memorized one. The method is based on the
assumption that a subset of complex machining features have

generic shape patterns but the generic shape patterns are
factory dependent and the range of the patterns is so wide that
it is difficult, if not impossible, to pre-define and implement
them either in a feature-recognition-based system or in a
design by feature-based system. We consider that an
intelligent process planning system that can be taught to
acquire new process planning knowledge to adapt to different
factory working environments during its service life is a more
desirable solution.

Acknowledgements

The authors wish to thank the Committee on Research and
Conference Grants of the University of Hong Kong for
financial support. Thanks are also due to the Department of
Mechanical Engineering and the Computer Centre of the
University of Hong Kong for providing the interactive
computing facilities.

Appendix 1. Declaration of frame-based data structure.

(LITERALIZE SOLID ; a solid frame with the following attributes or (slots) :
 IDENTY ; identity pointer
 SYSNAM ; user/system given ASCII name
 RGMOTN ; rigid motion pointer
 CLASCD ; reserved
 FACLST ; pointer to face list frame
 UTFLG1) ; utility flag for internal use
;
(VECTOR-ATTRIBUTE FACESS) ; a list for storing face pointers
(LITERALIZE FACLST ; aface list frame
 IDENTY
 FACNUM ; number of faces
 UTFLGl
 FACESS) ; pointers to face frames
;
(LITERALIZE FACE ; a face frame
 IDENTY
 FACTYP ; face swface type
 CLASCD ; face classification
 FACNOR ; face swface normal code
 FACLOP ; a pointer to face loop frame
 UTFLGl)
;
(VECTOR-ATTRIBUTE EDGLOP) ; a list for storing face edge loop pointers
(LITERALIZE FACLOP ; a face loop frame
 IDENTY
 LOPNUM ; number of face edge loops
 UTFLGl
 EDGLOP). ; pointers to edge(i) frame of loop(i)
;

20

(LITERALIZE EDGE ; an edge frame
 IDENTY
 EDGTYP ; edge curve type
 CLASCD ; convexity classification
 LFTFAC ; left adjacent face
 LFENUM ; number of edges of left adjacent face
 RHTFAC ; right adjacent face
 RFENUM ; number of edges of right adjacent face
 UTFLGl)

Appendix 2. Recognition rules for the part shown in Figure 12.

;assuming that the MC_VOL shown in Figure 15 has been established in the data base and the command, 'OPLAN' is issued in the A1
environment, then the following rules will be activated (P OPLAN

{<oplan> (OPLAN)}; match the 'OPLAN' command
(SOLID "FACLST <faclst>); make sure that there is a MC_VOL present
··>
(REMOVE <oplan>) ; remove OPLAN command to avoid re-firing of this rule
(MAKE ALEX) ; go back to AI command parser when no more rules can be invoked

(MAKE DETECT_NON_CC_DEP); want to hunt for MFcat2
(MAKE DETECT_CC_DEP) ; want to hunt for MFcat1

;
(P RULE_DETECT_NON_CC_DEP ; find the largest TE_FACE
(DETECT_NON_CC_DEP); receive the message token from the above rule
(SOLID ^FACLST <faclst>) ; get the face list of MC_VOL
··>
(MAKE FIND_PLN_PARTFC_TYPE3),·
(MAKE FIND_PLN_PARTFC_TYPE2) ; want to find different PART_FC
conditions
(MAKE FIND_PLN_PARTFC_TYPEI) ;
(MAKE TOOL_ENT_FACE (XLGFAC <faclst>))) ;find the largest TE_FACE by the external procedure XLGFAC

;
(P RULE_UPDATE_LGFAC_TIME_FLAG ;increase the priority of the largest TE_FACE
{<token> (TOOL_ENT_FACE <fl>)}; receive TE_FACE f1
{<face> (FACE "IDENTY <fl>)} ; inherit the largest TE_FACE found
··>
(REMOVE <token>); remove the message token
(MODIFY <face>); update TE_FACE's time flat
(MAKE FIND_NON_CC_DEP_TYPE2) ; find MFcat2 without round corners
(MAKE FIND_NON_CC_DEP_TYPEl)) ;find MFcat2 with round corners

;
(P RULE_FIND_NON_CC_DEP_TYPEl; MFcat2 with round corners
(FIND_NON_CC_DEP_TYPEl); receive the message token
{<face> (FACE ^IDENTY <fl> ^FACTYP PLN ^CLASCD TE_FACE
^UTFLGl NIL)}; TE_FACE is planar
(EDGE ^EDGTYP ELP ^CLASCD CONVEX ^LFTFAC <f1>
^LFENUM > 1 ^RHTFAC <f2> ^UTFLGl NIL); edge is convex, left face is f1 and right face is f2, f1 has more than 1 edges
(FACE ^IDENTY <f2> ^FACTYP CYL) ; f2 is a cylindrical face

21

··>
(MODIFY <face> ^UTFLGl NON_CC_DEP); change the utility flag status
(MAKE MC/OPER ^NUMBER TEMPOR ^TOENFC <fl> ^DFCNUM 0);create and initialize a temporary frame for storing the

machining operation face sets
(MAKE NON_CC_DEP_FOUND_TOKEN)); issue a message token
; this rule will be re-invoked many times to find all the DRIV FC

(P RULE_FIND_DRIVFC_LIST
(NON_CC_DEP_FOUND_TOKEN)
(FACE ^IDENTY <f1> ^UTFLGl <>NIL); f1's utility flag is not nil
{<edge> (EDGE ^CLASCD CONVEX ^LFI'FAC <f1> ^RHTFAC <12> ^UTFLGl NIL)}
{<face2> (FACE ^IDENTY <f1> ^UTFLGl NIL)}
{<mdoper> (MC/OPER ^TOENFC <f1> ^DFCNUM <number>)};get the pointer of the temporary machining operation frame
··>
(MAKE TEFCLS ^IDENTY <fl> ^TEFACE <fl>); make a frame for recording f1 as the TE_FACE of f2
(MODIFY <edge> ^UTFLGl FIND_DRIVFC_LIST) (MODIFY <face2> ^UTFLGl FIND_DRIVFC_LIST) (MODIFY <mdoper>

^DFCNUM (COMPUTE 1 + <number>)
"DRIVFC <f1> (SUBSTR <mdoper> DRIVFC INF))) ; update the found DRIV _FC in the temporary machining operation frame

by the SUBSTR function and update the number of DRIV _FC found by the COMPUTE function
;

(P RULE_FIND_PLN_PARTFC_TYPEl
(FIND_PLN_PARTFC_TYPEI)
{<face1> (FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD MC_FACE ^UTFLGl NIL)}
(EDGE ^CLASCD CONVEX ^LFTFAC <f1> ^LFENUM > 1 ^RHTFAC <f1>)
(FACE ^IDENTY <f1> ^UTFLGl << FIND_DRIVFC_LIST
FIND_NEST_DEP_DRIVFC_LIST >>) ; flag status is either FIND_DRIVFC_UST or
FIND-NEST-DEP-DRIVFC-liST
{<mdoper> (MC/OPER ^NUMBER TEMPOR)}
··>
(MODIFY <face1> ^CLASCD PART_FC ^UTFLGl FIND_PLN_PARTFC)
; change f1' s face classification attribute value from MC_FACE to PART_FC and its utility flag status to FIND_PLN_PARTFC
(MAKE TEFCLS ^IDENTY <f1> ^TEFACE (SUBSTR <mdoper> TOENFC
TOENFC)) ; make a frame for recording the TE_FACE of f1, which is inherited from the TE_FACE of the temporary machining

operation record
(MAKE MC/OPER ^NUMBER (GENATOM) ^TOENFC (SUBSTR <mdoper>
TOENFC TOENFC) ^PARTFC <f1> ^DFCNUM (SUBSTR <mdoper>
DFCNUM DFCNUM) ^DRIVFC (SUBSTR <mdoper> DRIVFC INF)); make a permanent machining operation record and inherit

the information from the temporary machining operation record. The record number is generated by the run-time system using the
GENATOM function.

(REMOVE <mdoper>) ; remove the temporary machining operation record
(MAKE FIND_PLN_PARTFC_NON_CC_DEP); try to hunt for nested pocket or island on f1 which is a PART _FC
(MAKE RULE_PLN_PARTFC_CON_TEST); try to hunt for conical hole on f1
(MAKE RULE_PLN_PARTFC_CYL_TEST)); try to hunt for cylindrical hole on f1
;
(P RULE_PLN_PARTFC_CYL_TEST; preliminary test for PART_FC
(RULE_PLN_PARTFC_CYL_TEST)
(FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD PART_FC ^FACLOP <faclop1> AUTFLG1 <>NIL)
(FACLOP ^IDENTY <faclop1> ^LOPNUM > 1) ; f1 has an inner edge loop
(EDGE ^ IDENTY <e1> ^EDGTYP ELP ^CLASCD CONCAV ^LFTFAC <f1> ^LFENUM 1 ^RHTFAC <f2> ^UTFLG1 NIL)
(FACE ^IDENTY <f2> ^FACTYP CYL ^CLASCD MC FACE ^UTFLG1 NIL)

22

-->
(MAKE PLN_PARTFC_CYL_TEST_TOKEN)); try to hunt for a cylindrical hole below this PART_FC

;
(P RULE_PLN/CYLIPLN_1; a cylindrical hole below a PART_FC
{<token> (PLN_PARTFC_CYL_TEST_TOKEN)}
(FACE ^IDENTY <f1> ^FACTYP PLN ^CLASCD PART_FC ^ UTFLG1 <> NIL)
{<tefcls> (TEFCLS ^IDENTY <f1>)}; get the TE_FACE of f1
{<edge1> (EDGE ^EDGTYP ELP ^CLASCD CONCAV ^LFTFAC <f1> ^LFENUM 1 ^RHTFAC <f2> ^UTFLG1 NIL)}
{<face2> (FACE ^IDENTY <f2> ^FACTYP CYL ^CLASCD MC_FACE
^FACNOR 1 ^UTFLG1 NIL)}
{<edge2> (EDGE ^EDGTYP ELP ^CLASCD CONVEX ^LFTFAC <f3> ^LFENUM 1^RHTFAC <f2> ^UTFLG1 NIL)}
{<face3> (FACE ^IDENTY <f3> ^FACTYP PLN^CLASCD MC_FACE ^ UTFLG1 NIL)}
-->
(REMOVE <token>)
(MODIFY <edge1> ^UTFLG1 PLN/CYLIPLN_1)
(MODIFY <face2> ^CLASCD DRIV_FC ^UTFLG1 PLN/CYLIPLN_1) (MODIFY <edge2> ^UTFLG1 PLN/CYLIPLN_1)
(MODIFY <face3> ^CLASCD PART_FC ^UTFLG1 PLN/CYLIPLN_1) (MAKE TEFCLS ^IDENTY <f2> ^TEFACE (SUBSTR

<tefcls> TEFACE
INF));make a frame for recording the TE_FACE of f3 which is inherited from that of f1
(MAKE TEFCLS ^IDENTY <f3> ^TEFACE (SUBSTR <tefcls> TEFACE
INF));make a frame for recording the TE_FACE of f3 which is inherited from that of f1
(MAKE MC/OPER ^NUMBER (GENATOM) ^TOENFC (SUBSTR <tefcls>
TEFACE INF) ^PARTFC <f3> ^DFCNUM 1 ^DRIVFC <f2>) ; make a new machining operation record frame for storing the

faces involved in the hole drilling operation (MAKE RULE_PLN_PARTFC_CON_TEST); try to hunt for conical hole (MAKE
RULE_PLN_PARTFC_CYL_TEST)); try to hunt for cylindrical hole

Appendix 3. New rule built for part ‘A’

The following new rule is built by applying the learning agent on part 'A' which is shown in Figure 10.

(P PART_A
{ <RECALL> (RECALL PART_A) }
(EDGE ^ IDENTY <3339> ^ EDGTYP ELP ^ CLASCD CONVEX

^ LFTFAC <3335> ^ RHTFAC <3380>)
(EDGE ^ IDENTY <3333> ^ EDGTYP ELP ^ CLASCD CONVEX

^ LFTFAC <3380> ^ RHTFAC <3329>)
(EDGE ^ IDENTY <3327> ^ EDGTYP LIN ^ CLASCD CONVEX

^ LFTFAC <3329> ^ RHTFAC <3320>)
(EDGE ^ IDENTY <3324> ^ EDGTYP ELP ^ CLASCD CONVEX

^ LFTFAC <3380> ^ RHTFAC <3320>)
(FACE ^ IDENTY <3329> ^ FACTYP PLN ^ CLASCD TE_FACE

^ FACNOR 1)
(FACE ^ IDENTY <3320> ^ FACTYP PLN ^ CLASCD TE_FACE

^ FACNOR 1)
(FACE ^ IDENTY <3335> ^ FACTYP PLN ^ CLASCD TE_FACE

^ FACNOR -1)
(FACE ^ IDENTY <3380> ^ FACTYP CYL ^ CLASCD MC_FACE

23

^ FACNOR 1)
-->
(REMOVE <RECALL>)
(MAKE MC/OPER ^ NUMBER (GENATOM) ^ TOENFC <3335>

 ^ PARTFC <3329>
^ DRIVFC <3380>
^ DFCNUM 1)
(MAKE WOPLAN))

Remarks:
1. 'PART_A' is an arbitrary name of the rule provided by user during the learning process.
2. 'RECALL PART_A' is a variable frame added by the system during the rule building process. It is used for the purpose of later on

matching a user's command so that the new rule can be recalled.
3. The integer values enclosed in < > brackets are originally the system assigned integer identities of the corresponding geometric

entities. A special routine of the learning agent encapsulates them in < > brackets thereby converting them into variables of OPS5
format.

4. Using the user instructed machining faces, the 'MAKE MC/OPER ... ' action generates a machining operation frame.
5. The 'MAKE WOPLAN' action retrieves the machining faces from the machining operation frame and writes them in a file for the

NC module to read.

References

CHAN, K. C., and TAN, S. T., 1988, Hierarchical structure to

winged-edge structure: a conversion algorithm, The Visual
Computer, 4, 133-141.

CHOI, B. K., 1984, Automatic recognition of machined
surfaces from a 3D solid model, Computer Aided Design,
Vol. 16, No.2, March, 81-86.

COHEN, P. R. and FEIGENBAUM, E. A., (Eds), 1982, The
Handbook of Artificial Intelligence, Volume 3, Chapter
XIV : Learning and Inductive Inference, (Pitman Books).

CUTKOSKY, M., 1988, Features in process based design,
ASME Computers in Engineering Conference, San
Francisco.

DESCOTTE, Y., and LATOMBE, J., 1984, GARI: an expert
system for process planning, In PICKETT, M. S., and
BOYSE, J. W., Eds., Solid modelling by computers : From
theory to applications, (Plenum Press), 329-346.

FORGY, C., and MCDERMOTT, J., 1977, OPS, a domain-
independent production system language, Proceedings of
the Fifth International Joint Conference on Artificial
Intelligence, 933-939.

GRAYER, A. R., 1977, The automatic production of machined
components starting from a stored geometric description,
In MCPHERSON, D., Ed., Advances in Computer-Aided
Manufacture, (North-Holland), 137-152.

HENDERSON, M. R., 1984, Extraction of feature information
from three dimensional CAD data, Ph.D. thesis, Purdue
University.

JOSHI, S. and CHANG, T. C., 1988, Graph-based heuristics
for recognition of machined features from a 3D solid
model, Computer Aided Design, 20, (2), 58-66.

MCDERMOTT, J. and FORGY, C., 1978, Production system
conflict resolution strategies, In Waterman, D.A., and
Hayes-Roth, F., Eds., Pattern-directed inference systems,
(Academic Press), 177-199.

REQUICHA, A. A. G., and TILOVE, R. B., 1978,
Mathematical foundations of constructive solid geometry:
general topology of closed regular sets, Tech. Memo. No.
27a, Production Automation Project, University of
Rochester.

REQUICHA, A. A. G., and VANDENBRANDE, J. H., 1989,
Form features for mechanical design and manufacturing,
ASME Computers in Engineering, 1, 47-52.

SHAH, J.J., 1988, Current status of features technology
(revised report), Computer Aided Manufacturing -
International, Inc., November.

SILVA, C.E., 1981, Alternative definitions of faces in
boundary representations of solid objects. Tech. Memo.
No. 36, Production Automation Project, University of
Rochester.

TURNER, G. P., and ANDERSON, D. C., 1988, An object-
oriented approach to interactive, feature-based design for
quick turnaround manufacturing, Computers in
Engineering, 1, 551-555.

VOLECKER, H. B., and ROSENBERG, A. V., 1986,
Dissemination of PADL-2 software, ADM-03, (Cornell
Programmable Automation, Cornell University).

WEILER, K.,1985, Edge-based data structures for solid
modelling in curved-surface environments, IEEE Computer
Graphics & Applications, January, 21-40.

WONG, W.Y., 1989, An octree and face oriented approach
for NC machining, M.Phil. thesis, Department of
Mechanical Engineering, University of Hong Kong.

