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Abstract 
Differential hypoid gear pairs have been the mechanism of choice for high torque capacity 
final drives in all forms of vehicles, at least since mid 19th century. Transmission efficiency 
as well noise and vibration concerns require combined elastohydrodynamic and tooth contact 
analysis of hypoid gear teeth pairs through mesh. Although such analyses have been reported 
for general cases of elliptical point contact conjunctions with angled flow entrainment, they 
do not comply with the prevailing load and kinematic conditions in differential gears. In 
particular, teeth pair contacts are subject to significant loads of order of several kN requiring 
solution to the EHL problem at such high loads. The current analysis reports solutions for 
rolling and sliding elastohydrodynamics of hypoid gear teeth pairs at realistic drive torques, 
not hitherto reported in literature.        
 
Keywords: Hypoid gears, Elastohydrodynamics, Tooth Contact Analysis, Elliptical 
point contact, Angled entrainment flow  

 
Nomenclature  

a : Contact semi-major half-width 
b  : Contact semi-minor half-width  

pE  : Young’s modulus of elasticity of pinion gear material 

 rE  : Reduced elastic modulus of the contact: 
2 21 1/ p w

p wE E
 

      
  

 

wE  : Young’s modulus of elasticity of gear wheel material 

F : Contact load per meshing pair (obtained through tooth contact analysis) 
*G  : Material’s parameter 

h  : Film thickness 

0ch  : Central contact film thickness 

0ch   : Central film thickness at the inlet meniscus for flooded condition 

mh  : Minimum film thickness 
*h  : Dimensionless film thickness 

m  : Inlet boundary parameter 
*m  : Starvation demarcation boundary parameter 
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,g pn n  : Unit vectors along the gear wheel and the pinion gear axes 

minor,majorn n : Unit vectors along the major and minor axes of the elliptical footprint  

p  : Pressure 

pr  : Radius of pinion gear tooth in the zx plane of contact 

wr  : Radius of gear wheel tooth in the zx plane of contact 

gearR  : Position vector of the contact point from the gear wheel axis 

pR  : Radius of pinion gear tooth in the zy plane of contact 

pinR  :Position vector of the contact point from the pinion axis 

wR  : Radius of gear wheel tooth in the zy plane of contact  

zxR  : Equivalent radius of contact along the direction of minor axis of elliptical footprint 

zyR  : Equivalent radius of contact along the direction of major axis of elliptical footprint 

s : Contact profile of the equivalent ellipsoidal solid 
U  : Speed of entraining motion 

*U  : Speed (Rolling viscosity) parameter 

,g pv v  : Spatial velocity of points of contact on gear wheel and on the pinion 

,n n
g pv v  : Normal components of  ,g pv v  

,t t
g pv v  : Tangential (surface) components of  ,g pv v  

, ,,t major t major
g pv v : Components of  ,t t

g pv v  along the major axis of the elliptical footprint 

,minor ,minor,t t
g pv v : Components of  ,t t

g pv v  along the minor axis of the elliptical footprint 

W : Calculated contact load (integrated pressure distribution) 
*W  : Load parameter 

x : Direction/distance along the minor axis of the elliptical footprint 
y : Direction/distance along the major axis of the elliptical footprint 

,c cx y  : Lubricant film rupture boundaries along minor and major axes of the elliptical 

footprint 
z : Orthogonal direction to the plane of contact 
 
Greek Symbols: 
  : Lubricant pressure-viscosity coefficient 
  : Contact deflection 

p  : Error in pressure convergence 

w  : Error in load convergence 
  : Lubricant dynamic viscosity at pressure p 

0  : Lubricant dynamic viscosity at atmospheric pressure 

  : Pinion angle 

  : Angle of lubricant entrainment into the contact 
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  : Stribeck’s oil film parameter 
  : Lubricant density at pressure p 

0  : Lubricant density at atmospheric pressure 

rms  : Root mean square of composite surface roughness 

  : Film relaxation damping factor 

p  : Poisson’s ratio of the pinion gear material  

w  : Poisson’s ratio of the gear wheel material 

g  : Angular velocity of the gear wheel 

p  : Angular velocity of the pinion gear 

  : Pressure under-relaxation factor 
 

1. Introduction 
 
It is claimed that the history of differential gears goes back to at least 1050 BC where 
reference is made in the Chinese Book of Song (479-420 BC) to their use in the South 
Pointing Chariot of Liu Song Dynasty. However, modern automotive differential gears used 
today are evolutions of the bevel gear pairs patented in Paris in 1827 by Onésiphore 
Pecqueur. The English bicycle entrepreneur, James Starley used a version of this in a chain-
driven form in 1876. This paved the way for its inclusion in the very first 3-wheeled car built 
by Karl Benz in 1885. Ever since, differential gear pairs with their orthogonal axes have 
become the final drive feature in all vehicles. The high load carrying capacity usually 
required of the final drive constitutes partially conforming meshing teeth pairs. This 
requirement brings about the hypoid gear pair geometry, which also presents gradual changes 
in geometry of an elliptical contact footprint.  The hypoid gear teeth pairs form elliptical 
contact footprints and are often subject to high loads of the order of several kN. The 
differential gear pair also enjoys a lower transmission error than other forms of gearing and 
thus runs rather silently. Relatively low engine torques at higher engine speeds are increased 
at the expense of the angular momentum resident on the pinion gear.  
 
Studies of elliptical point contacts commenced after the pioneering paper on 
elastohydrodynamic lubrication (EHL) by Grubin (1949), based on his work with Ertel 
(1939). In fact, Grubin provides a film thickness equation based on his analytical solution of 
circular point contact EHL. The equation takes into account the effect of contact load, surface 
velocities and lubricant rheological parameters; viscosity and pressure-viscosity coefficient. 
However, it ignores the side leakage from the contact, requiring a correction factor which has 
been described by Gohar (2001). Although, this equation is used successfully in many 
industrial applications, it only provides an estimate of the thickness of a flat film, not the 
minimum film thickness which is in the vicinity of the pressure spike at the exit from an EHL 
conjunction. The study of film shape was carried out later through optical interferometry by 
Gohar and Cameron (1963). Numerical work on EHL, first undertaken by Dowson and 
Higginson (1959) for infinite line contact, was extended by Archard and Kirk (1961), 
Archard and Cowking (1965) and Cameron and Gohar (1966) to the case of point contacts, 
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predictions of the last of which agreed well with their earlier interferometric studies. The 
numerical analyses was further refined and extended to elliptical footprint geometries. The 
volume of simulation results yielded extrapolated oil film thickness formulae in terms of 
contact geometry, material and lubricant properties as well as load and contact kinematics. 
These expressions were obtained for the minimum film thickness at the exit constriction from 
the contact. The early contributions include those of Archard and Cowking (1965), Cheng 
(1970), Ranger et al (1975) and Hamrock and Dowson (1976a, 1976b). Others obtained 
extrapolated oil film thickness equations through optical interferometric studies. These 
include the studies by Westlake and Cameron (1973) for elliptical point contacts and that of 
Jackson (1973) who revised the work of Westlake.  
 
Although these earlier equations are still in use in academe and industry to provide a quick 
estimate of lubricant film thickness, there are a number of shortcomings associated with 
them. Firstly, the range of operating parameters used, such as load and speed based on the 
original simulated results are somewhat limited due to difficulties in computation resources 
and stability of method of formulation and solution at the time. Method of solution was 
largely based on Voghpol transformation of Reynolds equation with Gauss-Seidel iterations 
and over-relaxation, which is only suitable for light to medium loads. Secondly, the earlier 
analyses excluded certain salient practical features, including inlet boundary starvation, 
lubricant flow at an angle to the elliptical contact footprint and the effect of squeeze film 
motion, all of which are essential for estimation of lubricant film thickness in hypoid gear 
teeth pair contacts. Relevant correction factors to take into account the effect of starvation 
was presented for numerical predictions by Hamrock and Dowson (1977) and by Wedeven et 
al (1971) through optical interferometry. With regard to the directional lubricant flow into an 
elliptical point contact conjunction, Mostofi and Gohar (1982) provided numerical 
predictions as well as extrapolated film thickness equations for both the central flat and the 
minimum exit constriction films. Furthermore, for the first time they included the effect of 
squeeze film action in their numerical analysis. At the time, the insufficient computational 
resource and method of solution (see above) impeded convergence at very high contact loads 
or transient analyses which are necessary for hypoid gear teeth pair contacts through mesh. 
Squeeze film action in Mostofi and Gohar (1982) represents a quasi-steady analysis as a 
series of arbitrarily chosen squeeze film velocities were used, rather than those which would 
be experienced in transient dynamics as described by Gohar and Rahnejat (2008). 
Nevertheless, their predictions agreed very well with the interferometric studies of Gohar 
(1971) for angled surface flows in elliptical point contacts under combined rolling and sliding 
conditions.  
 
At high loads and under steady state entraining motion an inverse solution to the EHL 
problem was presented by Evans and Snidle (1982), who employed their approach for the 
elastohydrodynamic analysis with the rolling velocity vector coinciding with the major axis 
of the elliptical contact footprint. This condition is prevalent in highly loaded contact of 
Wildhaber-Novikov gears, used for example in some helicopter transmissions (Evans and 
Snidle, 1983). The results obtained by them shows that the film thickness is in fact one-third 
of the value which would be predicted by Mostofi and Gohar’s extrapolated oil film thickness 
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equation. Therefore, although the oil film thickness equations are readily used in combined 
dynamics and tribological studies (Rahnejat and Gohar, 1985, Rahnejat, 1985, Mehdigoli et 
al, 1990, and De la Cruz et al, 2010), care should be taken that extrapolation with these 
equations remain within the range of their original parametric studies.  
 
With the use of better solution methods such as the effective influence Newton-Raphson 
(EIN) low relaxation method and multi-level multi-grid techniques, elastohydrodynamic 
lubrication problems at high loads and under transient conditions, including the effect of 
squeeze film action have been reported. Some initial contributions are due to Dowson and 
Ehret (1999), Ehret et al (1997), Venner and Lubrecht (2000a, 2000b), and Jalali-Vahid et al, 
1998a, 1998b, 2000, 2001).  Since the original contribution by Mostofi and Gohar (1982), 
solutions taking into account combined rolling and sliding elliptical point contact EHL with 
directional lubricant entrainment into the contact include those by Chittenden et al (1985), 
who provided extrapolated oil film thickness formulae along the major and minor axes of the 
elliptical point contact footprint. More recent solutions by Jalali-Vahid et al (1998a, 2000) 
showed very good agreement with interferometric studies of Gohar (1971) and extended the 
solution to high loads and low speeds of entraining motion, thus providing a large range of 
operating conditions. This analysis showed that extrapolated equations of Mostofi and Gohar 
(1982) and Chittenden et al (1985) provide good agreement with numerical predictions at 
moderate loads and begin to deviate from the numerical solutions at loads exceeding several 
hundred N. This is in line with the same significant deviations noted between numerical 
results of Evans and Snidle (1983) with such extrapolated equations.                     
 
In gear applications and especially in hypoid gears, it is necessary to compute the principal 
radii of curvature of the pinion and gear wheel teeth through mesh. One method of achieving 
this is through tooth contact analysis (TCA). The method is outlined in detail by Litvin and 
Fuentes (2004). At any instant of time in differential hypoid gears several teeth pairs are in 
contact in order to carry the high torques generated. TCA calculates the load share per pair of 
teeth during any meshing cycle as well as the corresponding meshing stiffness and the static 
transmission error. Using this approach all alignment, manufacturing and assembly errors can 
be accommodated.  
  
Some representative literature for TCA, for which there have been many, include the work of 
Litvin and Fuentes (2004) for the design of low noise spiral bevel gears, as well as 
investigating meshing of face-milled spiral bevel gears. Subsequently, finite element analysis 
was employed to determine the contact stresses of TCA-defined conjugate contacting 
surfaces (Litvin et al, 2002). Simon (2009a) presented a method to obtain the optimal tooth 
modifications for head-cutter spiral bevel gears.  Recently, Kolivand and Kahraman (2009) 
presented a different approach to TCA, termed ease of topology method.   
 
EHL and thermal EHL analyses represent one of the main applications of TCA. Xu and 
Kahraman (2007) and Kolivand et al (2010) have investigated mechanical inefficiencies in 
gearing arising from the EHL of meshing gear pairs, where a line contact approximation is 
made with flow along the contact width. Simon (2009b) presented a thermo-
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elastohydrodynamic analysis of hypoid gear pairs with point contact geometry, but at 
relatively low input torque, not representative of vehicle differentials. Again, the flow vector 
is assumed along the minor axis of the contact ellipse, this being a shortcoming as 
experimental evidence, for example by Gohar (1971) and numerical work by Chittenden et al 
(1985) and Jalali-Vahid et al (2000) suggest significant side-leakage flow along the major 
axis of the contact ellipse. The repercussion is that continuity of flow would be breached, as 
well as errors introduced in evaluation of contact temperatures due to the side leakage flow. 
Assumption of line contact footprint can be considered as reasonable in circumstances which 
promote an elliptical point contact of large aspect ratio.  Thus, the works of Xu and 
Kahraman (2007) and Kolivand et al (2010) and that of Simon (2009b) have progressed the 
applications of EHL to proper gear meshing problems determined through TCA, where for 
completeness of the solution an elliptical contact condition is assumed at relatively low 
contact loads.  
 
The current paper uses TCA (based on the approach of Vijayakar (2000) and Xu and 
Kahraman, 2007 ). This is to obtain instantaneous contact geometry, sliding velocity and load 
share per teeth pair for simultaneous meshing of 1-3 pairs of teeth in a light truck differential.  
These are input to an isothermal EHL solution of hypoid gear pairs. Realistic engine torque-
speed characteristics are used, for instance an engine torque of 175 Nm at 1852.5 rpm. For 
these conditions load share for teeth pair contacts are in the region of 500-6000 N. Therefore, 
a suitable method of solution is the distributed line low relaxation effective influence 
Newton-Raphson method. This method was used for ball bearings by Venner and Lubrecht 
(2000a, 2000b) and Jalali-Vahid et al (2000, 2001) for elliptical contacts with angled flow, 
but in both cases for moderate loads.  
 
Hitherto, solution of elliptical point contact EHL for hypoid differential gears at high loads 
with lubricant angled flow has not been reported in literature and constitutes the major 
contribution of this paper to the evolving knowledge.   
 

2. Theoretical Model 
 
The method used is a two stage process, combining TCA and EHL analyses. The former 
determines at any instant of time, the number of teeth pairs in contact, their principal radii of 
curvature at their point of contact, the elastostatic elliptical contact footprint, surface 
velocities and load share for any conjugate mating teeth pair. These form the input to the 
elastohydrodynamic analysis.  
 

  2.1- Elastohydrodynamic Analysis 

Pressures generated in a lubricated conjunction are obtained through use of Reynolds (1886) 

equation. The form of equation suitable for lubricant entrainment at any angle  to the minor 
axis of an elliptical contact footprint is (figure 1): 
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   
3 3

6 cos sin
h p h p

U h h
x x y y x y

     
 

          
               

                                     (1) 

 
The speed of entraining motion of the lubricant U through the contact is considered to be 
constant at any instant of time. Any localised changes in the speed of entraining motion due 
to angled flow are considered small due to the minute contact footprint size. In reality, there 
will be small variations along the contact footprint. However, the rate of change of lubricant 
entrainment velocity is small compared with the rates of change of the principal radii of 
curvature through mesh. In fact Reynolds equation, based on laminar flow, assumes an 
instantaneous steady speed of entraining motion. The form of Reynolds equation (1) omits 
the squeeze film effect as the result of approach and separation of gear teeth pairs. This is a 
transient effect which often increases the load carrying capacity of the contact as noted by 
Gohar and Rahnejat (2008).   
 
 
 
 
 
 

 

 

 

Figure 1: Representation of an elliptical point contact conjunction with angled 
entrainment flow 

The omission of squeeze film term in Reynolds equation renders a series of quasi-static 
solutions as opposed to transient analysis through gear teeth pair mesh. Film thickness at any 
spatial location within the contact domain is given by: 
 

     0, , ,ch x y h s x y x y           (2) 

where, the undeformed parabolic conjunctional profile is: 
2 2

( , )
2 2zx zy

x y
s x y

R R
     

 and zx zyR R are the equivalent radii of contact of an ellipsoidal solid against a semi-infinite 

elastic half-space, representing the instantaneous contact of any pinion to gear wheel teeth 
pair in the planes zx (along the minor axis of the contact ellipse) and zy (along its major axis, 
figure 2):  

1 1 1

zx p wR r r
   and  

1 1 1

zy w pR R R
                   (3)

   

y 

            x 

Flow direction 

ߠ
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The instantaneous radii of pinion and gear teeth are determined through TCA (Vijayakar, 
2000, Litvin et al, 2004, and Xu and Kahraman, 2007).  

 
 
 

Figure 2: Contact Geometry of the equivalent ellipsoidal solid 
 

The localised contact deflection  ,x y is obtained by solution of the elasticity potential 

integral: 

   
   

1 1 1 1

2 2

1 1

,1
,

A
r

p x y dx dy
x y

E x x y y
 

  
        (4) 

 
where, (x,y) represents a point where deflection of the semi-infinite elastic half-space of 

reduced elastic modulus rE is calculated due to any arbitrary pressure distribution  1 1,p x y .   

 
To obtain a solution to the EHL problem, comprising equations (1)-(4), the lubricant 
rheological state is required: 
 
For piezo-viscous lubricant behaviour (Roeland, 1966): 
    

      9
0 0 0exp ln 9.67 1 5.1 10 ln 9.67

Z
p            

                                             (5)  

where:  

   9
0 0

,  as 1.96 MPa
ln 9.67 5.1 10 ln 9.67

p
p

c
Z c

 
   

    
 
For lubricant density (Dowson and Higginson, 1959): 
 

9

0 9

0.6 10
1

1 1.7 10

p

p
 





 
    

          (6) 
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2.1.1 Boundary Conditions 
It is usual to assume a drowned or fully flooded inlet boundary condition in numerical 
analysis of EHL problems. In order to ensure this, the following conditions should be met:

, 0x p   and  , 0y p  . This means that the inlet boundary should be set a 

suitable distance from the leading edge of the elliptical contact footprint. In numerical 
analysis a distance of 4-5 times the contact footprint semi-half-widths are chosen for this 
purpose (Hamrock and Dowson, 1976a, 1976b). The inlet distance changes with load in both 

directions;  or yxm b a .  Furthermore, the starvation boundary is also a function of height 

of the lubricant film at an assumed far distant inlet meniscus; coh  , which affects the central 

film thickness within the contact, coh  as a function of speed of entraining motion. Birkhoff 

and Hays (1963) determined the starvation boundary as:  11.293co

co

h
h

  . Therefore, the 

inlet boundary parameter; m must vary according to load and speed combination so that just 
flooded conditions are satisfied through mesh.  This means that m should be set at the so-
called starvation boundary; the demarcation line between flooded and starved conditions. 
This is not often taken into account in the reported literature. Here, the starvation boundary 
parameters obtained numerically by Hamrock and Dowson (1977) and experimentally 
through optical interferometric studies by Wedeven et al (1971) are used: 

Hamrock and Dowson (1977):  
0.582

*
01 3.06 c

Rm h
 

   
 

     (7) 

Wedeven et al (1971):  
2

2 3
*

01 3.52 c
Rm h

 
   

   
       (8) 

where for the flow component along the minor axis:  , zxR R b  , and for that along the 

major axis:  , zyR R a  .       

 
In fact, these boundary lines yield quite similar results as shown for the contact of a pair of 
teeth through mesh in the differential hypoid gears used in the current study (figure 3). Thus, 

the inlet condition is set as *m m using Hamrock and Dowson’s starvation boundary. The 
procedure requires an initial estimation of the central oil film thickness at any instant of time 
through mesh. In the current analysis, the central flat film thickness is found using the Grubin 
(1949) film thickness equation, including the side-leakage correction factor (Gohar, 2001): 
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        (9)

Figure 3: Inlet boundary for a teeth pair through mesh 
 

The outlet boundary condition used is that of Swift (1932) - Stieber (1933):

0 at  and 0 at c c
p pp x x p y yx y
        , where the film rupture positions, 

 and c cx y are obtained by letting any negatively generated pressures to zero in the iterative 

numerical analysis. 
  

2.1.2 Method of solution of EHL problem and convergence Criteria 
Reynolds equation is discretised using finite differences in the same manner described by 
Jalali-Vahid et al (2000). Solution for pressure at any nodal position (i,j) with a computation 
grid covering the solution domain is based on low line relaxation effective influence Newton-
Raphson method with Gauss-Seidel iterations, fully described by Jalali-Vahid et al (2000, 
2001) and Ehret et al (1997).  

The iterative process comprises the following steps:  

1- At each pinion angle,   (commencing at the beginning of a meshing cycle), an initial 

guess is made for the central oil film thickness, using equation (9). The data for 
contact geometry, load and speed of entraining motion required for this purpose are 
obtained through TCA (section 2.2) 
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2- Using the film thickness obtained in step 1, the inlet boundary condition is set as 
*m m for both the inlet boundaries ahead of the major and minor axes of the 

Hertzian contact ellipse. Now a grid of x yn n is used to cover the domain bounded by 

the inlet menisci along the x (minor axis) and y (major axis) and extend beyond the 
elliptical contact to include the conjunctional exit boundaries at the lubricant film 

rupture points; cx and cy .  

3- The pressure distribution and the corresponding lubricant film contour are obtained by 
simultaneous solution of equations (1)-(6) in an iterative manner, where two 
convergence criteria should be satisfied. 

4- The first criterion seeks to compute nodal pressures within a specified limit: 

       
1

, ,

,

k k
i j i j

pk
i j i j

p p

p



                  (10)   

where, 5 410 10p
   . When the criterion is not satisfied, the generated pressures 

are under-relaxed as: 1
. , , ,k k

i j i j i jp p p i j   . The under-relaxation factor is usually 

0.01 0.8    and the steps 3-4 are repeated. 

5- The second criterion seeks to converge the integrated pressure distribution (i.e. 
lubricant reaction, W) with the instantaneous load share of a contacting teeth pair 
through mesh, F. Recall that at any instant of time between 1-3 pairs of teeth are in 
simultaneous mesh in the case of the differential hypoid gear pair investigated here. 

The lubricant reaction is: W pdxdy   . Thus, the load convergence criterion is:

w

F W

F


                     (11) 

where, 0.001 0.05w  . If the criterion is not met, the central film thickness coh is 

adjusted and the entire iterative process; steps (3)-(5) are repeated: 

1
0 0

l l
c c

F
h h

W


    
 

                   (12) 

where, 0.1 0.1    is termed a damping factor.  

 
In the above process, the indices i , j refer to a computational grid position, k denotes 
the pressure convergence iteration counter and l , the load convergence iteration 
counter. 
  

6- When both the convergence criteria are met, the pinion angle is advanced within the 
meshing cycle and the entire process is repeated. To observe the contact conditions 
for any pair of meshing teeth, the meshing cycle is sub-divided into 10 discrete steps 
of the pinion angle rotation.   
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2.2 Tooth Contact Analysis (TCA) 
The geometrical, kinematics and load data required for the EHL analysis can be obtained 
from the TCA analysis.  
 
The contact load per teeth pair is a function of the dynamic response of the system. However, 
its distribution among teeth pairs in simultaneous contact is defined quasi-statically. A load 
distribution factor is calculated as a function of the pinion angle for all such contacts. This is 
the ratio of the applied load iF  on a given flank under consideration (figure 4) to the total 

transmitted load tF  (Xu and Kahraman, 2007): i

t

F
lf

F


                                                

(13) 

A similar technique was followed for spur and helical gears by Vaishya and Singh (2001) and 
He et al (2007). 

 
Figure 4: Contact footprint and direction of angled flow  

  
The velocity of any point on the pinion and gear teeth in contact may be obtained as:  

    and p p p pin g g g gearv n R v n R                    (14) 

 
݊௣ and ݊௚	are the unit vectors along the pinion and gear axes respectively. ܴ௣௜௡ and ܴ௚௘௔௥ are 

the position vectors of contact point with respect to the coordinate system attached to the axes 
of the pinion and the gear respectively. These velocities can be resolved along the normal 
direction (ݒ௣௡	ܽ݊݀	ݒ௚௡) and along the tangential plane (ݒ௣௧	ܽ݊݀	ݒ௚௧). The equality of the normal 

components is a non-holonomic constraint function for contact assurance: 0n n
p gv v  . The 

tangential components can be used to obtain the rolling and sliding contact velocities. These 
components themselves can be presented as those along the major and minor axes of the 
Hertzian contact ellipse using vector dot products:  
 

, , , ,,  ,   and t major t major t minor t minor
p p major g g major p p minor g g minorv v n v v n v v n v v n                        (15) 
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where, ݒ௣
௧,௠௔௝௢௥ and ݒ௣

௧,௠௜௡௢௥ are the components of pinion surface velocities along the major 

and minor axis. ݒ௚
௧,௠௔௝௢௥ and ݒ௚

௧,௠௜௡௢௥ are the components of gear surface velocities along the 

major and minor axis. ݊௠௔௝௢௥ and ݊௠௜௡௢௥ are the unit vectors of the major and minor axis. 

 
Thus, the speed of entraining motion along the minor and major axes of the elliptical 
footprint in equation (1) and figure 1 are obtained as:    
 

௥ݒ
௠௔௝௢௥ ൌ ௣ݒ

௧,௠௔௝௢௥ ൅ ௚ݒ
௧,௠௔௝௢௥ ൌ  (16)                                                                              ߠ݊݅ݏܷ

௥௠௜௡௢௥ݒ ൌ ௣ݒ
௧,௠௜௡௢௥ ൅ ௚ݒ

௧,௠௜௡௢௥ ൌ  (17)																																																																																										ߠݏ݋ܷܿ

 
Clearly, the lubricant entrainment into the contact takes place at an angle to the minor axis of 
the Hertzian contact footprint:  

ߠ ൌ tanିଵ ൭ݒ௥
௠௔௝௢௥

௥௠௜௡௢௥൘ݒ ൱                                                                                                (19) 

The specifications for the face-hobbed and lapped hypoid gear pair in this study are listed in 
table 1a. Table 1b provides the mechanical properties of the contacting surfaces and 
rheological properties of the lubricant. The results of contact kinematics are given in table 2. 

Table 1a: Gear pair parameters  
Pinion parameters:  
Number of pinion teeth 13 
Pinion face-width (mm) 33.851 
Pinion face angle (deg) 29.056 
Pinion pitch angle (deg) 29.056 
Pinion root angle (deg) 29.056 
Pinion spiral angle (deg) 45.989 
Pinion pitch apex (mm) -9.085 
Pinion face apex (mm) 1.368 
Pinion Outer cone distance (mm) 83.084 
Pinion offset (mm) 24.0000028 
Pinion hand Right 

  
 

Gear parameters:  
Number of gear teeth 36 
Gear face width (mm) 29.999 
Gear face angle (deg) 59.653 
Gear pitch angle (deg) 59.653 
Gear root angle (deg) 59.653 
Gear spiral angle (deg) 27.601 
Gear pitch apex (mm)               8.987 
Gear face apex (mm) 10.948 
Gear Outer cone distance (mm) 95.598 
Gear offset (mm) 24 
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Table 1b: Properties of contacting solids and the Lubricant  

Pressure viscosity coefficient (α) 2.6X10-8 [Pa-1]  
Atmospheric dynamic viscosity ( ߟ଴ሻ 0.135 [Pa-s] 
Inlet density ߩ଴ 846 [kg/m3] 
Modulus of elasticity of contacting solids 210 [GPa] 
Poisson’s ratio of contacting solids 0.3 [-]  

 
 
Table 2: Equivalent geometry, Load share and kinematics of a teeth pair through mesh  
 

pinion 
angle 

(Rad) 
Contact 

load F (N) 

Magnitude 
of 

entraining 
velocity 

[m/s] 

Velocity 
along the 

minor axis 
sinU   

(m/s) 

Velocity 
along the 
major axis 

cosU 
(m/s) 

Equivalent 
radius zxR  

(m)  

Equivalent 
radius zyR

(m) 
0.503 744.5 18.04 7.98 16.18 0.0157 1.0067 
0.581 1700.4 17.61 8.11 15.63 0.0160 1.0626 
0.675 2716.0 17.12 8.30 14.97 0.0164 1.1228 
0.770 3944.3 16.65 8.51 14.31 0.0168 1.1754 
0.864 5343.6 16.21 8.74 13.65 0.0174 1.2204 
0.958 5764.1 15.80 8.98 12.99 0.0180 1.2578 
1.052 4542.1 15.41 9.24 12.33 0.0186 1.2876 
1.147 3554.6 15.04 9.50 11.66 0.0194 1.3098 
1.241 2363.3 14.70 9.78 10.98 0.0202 1.3243 
1.335 939.2 14.39 10.06 10.29 0.0211 1.3313 

 
From table 2, it can be observed that significant lubricant entrainment occurs along the major 
axis of the contact ellipse. This side-leakage flow has a significant effect on film thickness 
and should not be ignored. This may be appreciated by fixing the direction of lubricant 
entrainment and noting the orientation of the elliptical contact footprint with respect to it as a 
pair of teeth progress through mesh (figure 5). The precession of the contact footprint with 
respect to the fixed lubricant velocity vector is as the result of combined rolling and sliding 
motion of teeth pair through mesh. The variation in the aspect ratio is as the result of 

instantaneous contact geometry, being approximately proportional to 

2
3

zx

zy

R

R


 
  
 

. Note that the 

side leakage correction factor obtained by Gohar (2001) is directly proportional to this ratio. 
This brief explanation shows that side leakage flow plays an important role because of the 
complex geometry of hypoid gears which promotes significant rolling and sliding motion. 
The size of the footprint is a function of the equivalent radii and the instantaneous load.        
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Figure 5: Instantaneous contact footprint orientation  

with respect to direction of lubricant entrainment 

 
3. Results and Discussion 

The current analysis investigates the contact conditions for a pair of moderate to highly 
loaded hypoid gear pair of a light truck (tables 1 and 2). The results presented here 
correspond to the interaction of a typical gear teeth pair though a meshing cycle, during 
which between 1-3 teeth pairs carry the transmitted torque. The results correspond to an  
engine torque of 175 Nm at 1852.5 rpm. The transmission is in 4th gear with the ratio of 
0.73:1.Table 2 lists the variation in the load share for a contacting teeth pair through mesh as 
well as the effective radii of curvature of an equivalent ellipsoidal solid contacting a semi-
infinite elastic half-space of reduced elastic modulus rE . Table 2 also lists the speed of 

entraining motion of the lubricant into the contact along the minor and major axes of the 
Hertzian elastostatic contact ellipse. These parameters constitute the input for the 
elastohydrodynamic analysis.  
 
At any instant of time (at a given pinion angle) the contact domain is described by a 
computational mesh of ݊௫	by	݊௬	of 100X100 finite intervals.  Simulation studies were carried 
out on a 2.93 GHz Pentium Intel i7 machine with a total of 5173 CPU seconds (86.2 min).  
  
Figures 6 and 7 show the pressure distribution and the corresponding oil film thickness 
contours at the pinion angles 0.503 rad (at the beginning of contact of a teeth pair)  and at 
0.958 rad, corresponding to the instant of maximum contact load (see table 2). The contour of 
minimum film thickness occurs at the exit constriction. Both cases show an asymmetrical oil 
film contour because of the angled lubricant flow into the contact with significant side 
leakage along the major axis of the elliptical footprint. Therefore, the island of minimum film 
thickness differs from the characteristic horse-shoe constriction when the flow is along the 
minor axis of the ellipse in EHL contacts of, for example, ball bearings. With a ten-fold 
increase in load, the film thickness is hardly altered, but the secondary pressure peak region is 
less pronounced and has moved further towards the exit constriction. These are typical 
characteristics of EHL contacts as noted by Evans and Snidle (1982) and Jalali-Vahid et al 
(2000) among others.        
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(a)- Pressure distribution (b)- Oil film contour 
 
Figure 6: Pressure distribution and oil film contour at the beginning of teeth pair mesh 

with moderate load (pinion angle of 0.503 in Table 2) 
 

(a)- Pressure distribution (b)- Oil film contour 
 

Figure 7: Pressure distribution and oil film contour at maximum contact load  
(pinion angle of 0.958 in Table 2) 

 
A series of pressure profiles and the corresponding lubricant film thickness are shown in 
figure 8 during the meshing cycle. These show that EHL conditions prevail throughout the 
engagement of the teeth pair. Maximum pressures reached are around 1.2 GPa, even with 
loads of the order of 6 KN. This is because the hypoid gear pair teeth geometry is partially 
conforming, promoting a larger contact area than for example spur or helical gears. Thus, an 
assumed one dimensional solution would lead to prediction of much higher pressures than the 
case is in reality. As already noted the film thickness is almost unaffected by large variation 
in contact load. For the case presented here the minimum film thickness remains around 
0.9 1.1 m , which is well in excess of the composite root mean square surface roughness of 
the contiguous bodies in contact. The fairly thick minimum elastohydrodynamic films are due 
to high speed of entraining motion encountered in the reported application (see Table 2).  The 
surface roughness of modern differential hypoid gear teeth which are ground and lapped are 
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in the range 0.1-0.2 m  (Kolivand and Kahraman, 2010). With lower speeds of entraining 
motion and similarly high loads encountered here, worst tribological conditions are usually 
encountered. The results described here correspond to driving conditions that can often result 
in the axle whine phenomenon (Koronias et al, 2011).  The isothermal solution here predicts 
no direct surface interactions.  However, viscous shear of the lubricant generates heat, which 
reduces its effective viscosity. In many cases this reduces the film thickness and can promote 
mixed regime of lubrication (Xu et al, 2011).  
 

(a)- Pinion angle of 0.503 (b- Pinion angle of 0.581 

(c)- Pinion angle of 0.675  (d)- Pinion angle of 0.770  

(e)- Pinion angle of 0.864 (f)- Pinion angle of 0.958 
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(g)- Pinion angle of 1.052 (h)- Pinion angle of 1.147 

(i)- Pinion angle of 1.241 (j)- Pinion angle of 1.335 
 

Figure 8: Pressure distribution and film thickness along the  
minor axis of the contact ellipse during a meshing cycle 

 
Under elastohydrodynamic condition, the film thickness is mostly affected by the speed (or 

rolling viscosity) parameter, * cos
r zx

UU E R
  . This parameter attains its minimum value 

around the mid meshing cycle (pinion angle between 0.9-1 rad). Figure 9 shows the variation 

of predicted central and minimum film thickness values, both being around 0.9m. The 
figure also shows the predicted values from the Grubin equation (equation (9)) and those of 
Mostofi and Gohar (1982) and Chittenden et al (1985). These are: 

For Mostofi and Gohar (1982): 

     
2*

0.0707 0.0448* * * * *3 3
3 1* *2 2

3.29 1 0.559

n
cos

m

U
h W G W G cos

W G




       
   

           (20) 

where: * * * * 20
2

,  ,  ,  ,  0.649 0.0875m r
zx r zx r zx

Uh W
h U W G E n cos

R E R E R

           

And for Chittenden et al (1985):   
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0.68 .49 0.073

2
3

* * * *
0 4.31 1 1.23 s

c
e

R
h U G W exp

R


              

            (21) 

* 0.0730.68 0.49

2
3

* * * *3.68 1 0.67m
s

e

R
h U G W exp

R


              

            (22) 

where in this case: 

 * * *0
2

2
,  ,  

4 2 r
r e r e

W
U W G E

E R E

U

R

  


    and 
2 2 2 21 1

,  
e zx zy s zx zy

cos sin sin cos

R R R R R R

   
    .   

Whilst the predictions with the oil film thickness formulae follow similar trends (except 
marginally for that of Mostofi and Gohar, 1982) to the numerical predictions here, they 
actually over-estimate the film thickness. The over-estimation is because the equations do not 
apply to the ranges of load and speed parameters which are typical of differential hypoid 
gears. This is noted in the Introduction section, where similar differences were noted between 
the predictions with Mostofi and Gohar (1982) equation and the numerical results of 
Wildhaber-Novikov gears by Evans and snidle (1983). Another reason is that fully flooded 
condition, well beyond the starvation boundary, is implicit in the reported equations. In fact, 
it is generally thought that in practice most gearing systems are rather starved.  

 

Figure 9: Comparative study of current analysis and those  
of reported film thickness equations 
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Another point noted in the Introduction was the validity of assuming the lubricant flow along 
the minor axis of the contact ellipse. Figure 10 shows a comparison of an analysis with speed 
of entraining motion cosU  along the minor axis (same as Simon, 2009b) and that with the 
same condition in addition to side-leakage at the speed of sinU  along the major axis of the 
contact ellipse. Enhanced film thickness is noted due to increased volumetric flow into the 
contact area. Note that if the side-leakage flow is ignored the predicted film thickness is 

nearly halved. For ground gear teeth pairs with surface roughness of 0.2 m, the composite 

surface roughness is 0.28rms   m. This means that the Stribeck (1907) oil film ratio, 

0.4
1.43

0.28
m

rms

h


   for assumed flow along the minor axis as opposed to 2.9  when the 

flow along the major axis is also taken into account. Thus, the regime of lubrication tends to 
mixed-EHL when the side-leakage flow is ignored.             

 

Figure 10: Film thickness during mesh with and without consideration of  
entrainment along the major axis of the contact ellipse 

 

4- Concluding Remarks 

The current analysis provides solution to the elliptical point contact problem for angled 
lubricant entrainment into the contact. It extends the original works of Chittenden et al (1985) 
and Jalali-Vahid et al (2000) to high contact loads experienced in meshing of differential 
hypoid gears. Whilst the works of Chittenden et al (1985) and Jalali-Vahid et al (2000) are 
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quite generic, they do not apply to the case of hypoid gears as the requisite contact geometry 
is not obtained through tooth contact analysis as is the case in the current study. Realistic 
engine torque-speed characteristics are used, representative of light trucks in drive condition 
under steady state cruising. This extends the works of Xu and Kahraman (2007) who 
assumed a line contact geometry and that of Simon (2009b) who used the correct contact 
geometry but with very low torque, not representative of vehicle differential hypoid gears, as 
well as assuming lubricant entrainment along the minor axis of the Hertzian elliptical contact 
footprint only.  

The current analysis shows that extrapolated oil film thickness equations reported in literature 
over-estimate the lubricant film thickness, because their underlying parametric studies do not 
extend to the contact conditions experienced for differential gear pairs. It is also shown that 
ignoring the flow along the major axis of the contact ellipse under-estimates the film 
thickness and predicts a change in regime of lubrication from elastohydrodynamics to mixed-
elastohydrodynamics. Such conditions may in fact be prevalent when friction and generated 
heat are considered. Therefore, a natural extension of this research is to include the solution 
of energy equation simultaneously with the current analysis. This approach constitutes the 
future direction of the current research. Another important consideration is to remove the 

non-holonomic contact assurance constraint 0n n
p gv v   and include the squeeze film effect 

in Reynolds equation and seek a solution based on pressure convergence only. This approach 
will yield transient EHL analysis.  
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