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Abstract: The relationship between local thermal comfort,  local skin wettedness (wlocal) and local galvanic skin 
conductance (GSC) in 4 body segments during two different exercise intensities was compared in 10 males. In a 
balanced order, participants walked at 35% VO2max for 45 minutes (WALK) (29.0 ± 1.9°C, 29.8 ± 3.6% RH, no 
wind) in one test and in a separate test ran at 70% VO2max for 45 minutes (RUN) (26.2 ± 2.1°C, 31.1 ± 7.0% RH, 
no wind). During both tests, participants wore a loose fitting 100% polyester long sleeve top and trouser 
ensemble with a low resistance to heat and vapour transfer (total thermal resistance of 0.154 m2·K·W-1 and total 
water vapour resistance of 35.9 m2·Pa·W-1). wlocal, change from baseline in GSC (ΔGSC) and local thermal 
comfort were recorded every 5 minutes. The results suggest that both wlocal and ΔGSC are strong predictors of 
thermal comfort during the WALK when sweat production is low and thermal discomfort minimal (r2>0.78 and 
r2>0.71, respectively). Interestingly, during the RUN wlocal plateaued at ~0.6-0.8 due to the high sweat 
production, whilst ΔGSC gradually increased throughout the experiment. ΔGSC had a similar  relationship with 
thermal comfort to wlocal during the RUN (r2>0.95 and r2>0.94, respectively). Despite the strength of these 
relationships, the ability of wlocal to predict local thermal comfort accurately dramatically reduces in the 
exponential part of the curve. In a situation of uncompensated heat stress such as high metabolic rate in hot 
climate, where sweat production is high, ΔGSC shows to be a better predictor of local thermal comfort than 
wlocal. The wlocal data shows regional differences in the threshold which triggers local discomfort during the 

WALK than RUN; lower values are found for upper arms (0.22 ± 0.03  and 0.28 ±0.22) and upper legs (0.22 ± 

0.11 and 0.22 ±0.10), higher values for upper back (0.30 ± 0.12and 0.36 ±0.10) and chest (0.27 ± 0.10and 

0.39 ±0.32), respectively. However, no regional differences in the threshold of discomfort are found in the 

∆GSC data. Instead, the data suggests that the degree of discomfort experienced appears to be related to the 
amount of sweat within and around the skin (as indirectly measured by ΔGSC) at each body site.  

Key words: Regional, thermal discomfort, skin wettedness, galvanic skin conductance. 

Abbreviations: 

w; skin wettedness 

wlocal; local skin wettedness  

wbody; whole body skin wettedness  

GSC; Galvanic skin conductance 

∆GSC; change from baseline for galvanic skin conductance 

1. Introduction 

Skin wettedness (w) was first introduced by Gagge (1937) and is defined as the ratio between the 

actual evaporative heat loss and the maximum possible evaporative heat loss for a given 

environmental condition (Havenith et al. 2002). A closely linked definition is that it represents the 

fraction of total body surface area covered with sweat. As a dimensionless (nd) variable, it is usually 

expressed as a decimal fraction, with 1.00 representing the upper limit when sweat covers the entire 

skin surface and 0.06 representing the minimal value due to insensible perspiration (Nishi and Gagge, 

1977). Since its introduction many researchers have reported a strong influence of whole body skin 

wettedness (wbody) on thermal comfort (Gagge et al. 1969; Nishi and Gagge, 1977; Winslow et al. 

1939). More recently, research has investigated regional differences in sensitivity to local skin 

wettedness (wlocal) using specialised clothing garments comprised of impermeable and permeable 
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material to manipulate wlocal (Fukazawa and Havenith, 2009; Umbach, 1982). Although this technique 

is useful for determining regional sensitivity per se, in real conditions the natural distribution of sweat 

production and skin temperature (Tsk) will be prevalent. Therefore to provide clothing manufacturers 

information on regional sensitivity to w with ecological validity, it would be more appropriate to 

assess the natural distribution of physiological and perceptual responses. Lee et al. (2011) recently 

addressed this and developed a qualitative method based on subjective perceptions to predict locally 

wet skin in uniform clothing. During a rest-exercise protocol, participants marked areas on a body 

map that felt wet due to sweat. Areas initially marked were the ‘first perceived wetted region’ and the 

most frequently marked regions were named the ‘most wetted region’. They found the chest, forehead 

and upper back were most frequently reported as the first wetted region. These areas are known to 

produce large volumes of sweat in comparison to other locations (Cotter et al. 1995; Kuno, 1956; 

Smith and Havenith, 2011, 2012). This contrasts to Fukazawa and Havenith (2009), who through 

manipulation of wlocal in individual body areas determined local humidity sensitivities and found the 

extremities to have a lower wlocal threshold (i.e. more sensitive) than areas of the torso. The methods 

used may explain the differences  observed between the two studies but by combining the quantitative 

methods of Fukazawa and Havenith (2009) and the ecologically valid methods used by Lee et al. 

(2011) would be useful in order to determine regional differences in thermal comfort when 

distribution of wlocal is natural.  

Fukazawa and Havenith (2009) focused upon the transition from ‘comfortable’ to ‘uncomfortable’ 

and therefore the level of discomfort experienced at their threshold was minimal. Higher levels of 

thermal discomfort have rarely been explored and neither has its relationship with wlocal.  Doherty and 

Arens, (1988) noted that the ability to predict w using either the Pierce two-node model or Fanger’s 

comfort equation was significantly reduced at high exercise intensity in comparison to rest, low and 

moderate exercise intensities. Errors in predicting w will result in inaccurate predictions of thermal 

discomfort as exercise intensity increases. Interestingly, Lee et al. (2011) reported the diminishing 

role of w during heavy sweating and claimed that perceived skin wettedness was valid for predicting 

thermal discomfort during rest or light intensity exercise rather than conditions where sweat 

production is high. In such conditions wlocal is likely to reach ceiling values (1.0). If thermal 

discomfort worsens, whilst w plateaus, another factor must be influencing thermal discomfort or an 

alternative measurement is required to aid its prediction.  

It has previously been stated that the epidermis swells due to the presence of sweat, which may 

stimulate the skins tactile mechanoreceptors and contribute towards discomfort (Berglund, 1995; 

Berglund and Cunningham, 1986). A parameter which monitors the process of sweat production more 

closely, such as sweat gland activity, skin hydration and surface sweat may have a stronger correlation 

with perceptual responses than surface sweat measurements alone, as indicated wlocal. The 
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measurement chosen in the present study is galvanic skin conductance (GSC), which reflects the 

ability of the skin to transmit an electrical current that is enhanced by the presence of sweat (Edelberg, 

1972).  GSC is associated with the autonomic nervous system due to the activity of sweat glands in 

the response to emotional and thermoregulatory sweating (Tarchanoff, 1890). Darrow (1964) found 

an increase in GSC before sweat was present on the skin surface thus reflecting pre-secretory sweat 

gland activity. It has frequently been used to assess precursor sweat in response to various 

psychological stimuli (Machado-Moreira et al. 2009) and thermal stimuli (Caldwell et al.  2011). 

Additionally, Thomas and Korr (1957) found that GSC correlated linearly with increasing and 

decreasing number of active sweat glands (r2=0.81). This was later supported by Fowles (1986) who 

established that changes in GSC depend upon how much sweat is delivered to the duct and on the 

number of sweat glands activated. These findings suggest that GSC reflects both intradermal sweat 

and that on the skin surface in contrast to wlocal, which only reflects surface sweat.  As a result it is 

hypothesised that GSC may be a better predictor of thermal discomfort during high levels of sweat 

production and when higher levels of discomfort exist. This is particularly relevant when exercising at 

higher metabolic rates and/or when exercising in warm-hot conditions where sweat production will be 

high. 

Due to the uncertainties of wlocal to predict thermal discomfort at higher metabolic rates and in order to 

gain a better understanding of the factors that drive thermal discomfort during such conditions, the 

present study aims to compare the relation between thermal comfort and wlocal and GSC during two 

different exercise intensities. Due to the reported regional differences in sweat production (Cotter et 

al. 1995; Kuno, 1956; Smith and Havenith, 2011, 2012) and perceptual responses (Fukazawa and 

Havenith, 2009; Lee et al. 2011) the regional differences in sensitivity to sweat will also be explored 

using the two different variables.  

2. Methods 

2.1. Participants 

Ten British males (height 182.1 ± 7.5cm, body mass 74.8 ± 8.5 kg, age 23.0 ± 2.8 yrs, VO2max 52.9 ± 

5.2 ml·kg-1·min-1) were recruited from the staff and student population of Loughborough University. 

The selection criteria included only Caucasian males, aged between 18-45 years to reduce any 

systemic errors due to ethnic or age-related differences in thermoregulatory responses.   

2.2. Experimental design 

The aim of the investigation was to monitor the physiological responses including wlocal, skin 

temperature (Tsk), core temperature (Tc), body temperature (Tb), GSC and perception of local and 

whole body thermal comfort. The relationship between local thermal comfort, wlocal and GSC was 
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investigated during two different conditions specifically designed to produce two different levels of 

sweat production (i.e. high and low) and discomfort levels. For this purpose, each participant 

completed a pre-test session to assess fitness level and two main tests on separate days (with a 

minimum of 1 day separating tests) in a balanced order. The experiment was treated as a repeated 

measures design.  

2.3. Experimental protocol   

During the first visit, participants’ stature and body mass were recorded followed by a submaximal 

fitness test based on the Åstrand-Rhyming method (ACSM, 2006). The test comprised of four 

progressive exercise stages on a treadmill (h/p/cosmos mercury 4.0 h/p/cosmos sports and medical 

gmbh, Nussdorf, Traunstein, Germany) each lasting 5 minutes. Heart rate (Polar Electro Oy, Kemple, 

Finland) was recorded during the last minute of each stage.  Estimation of VO2max was based upon the 

linear relationship between heart rate and work rate based upon treadmill speed and angle (Epstein et 

al. 1987) and data extrapolated to their age predicted heart rate max. 

 

For the main tests, pre and post-test nude mass were recorded. Participants self-inserted a rectal 

thermistor (Grant Instrument Ltd, Cambridge, UK) 10 cm beyond the anal sphincter.  Eight skin 

thermistors (Grant Instrument Ltd, Cambridge, UK) were attached to the skin using 3MTM 

TransporeTM surgical tape, (3 MTM United Kingdom PLC). Eight humidity sensors (MSR electronics 

GmbH, Switzerland) were fixed to a holder and glued to the skin using Collodion U.S.P (Mavidon 

Medical Products, USA) to estimate wlocal.  Sensors were located ~2mm from the skin at the following 

locations; chest, abdomen, upper back, lower back, upper arm, lower arm, upper leg and lower leg. 

Four pairs of pre-gelled electrodes were attached to the chest, upper back, upper arm and thigh for the 

measurement of GSC using MP35 Biopac Systems (MP35 Biopac Systems, Goleta, California, USA), 

set to record at 35 Hz. Once equipped participants dressed in a standard clothing ensemble consisting 

of a 100% polyester long sleeve top and trouser ensemble with loose fit and a high permeability to 

favour ventilation, resulting in low resistance to heat and vapour transfer (total thermal resistance of 

0.154 m2·K·W-1 and total water vapour resistance of 35.9 m2·Pa·W-1) tested on a standing thermal 

manikin (Newton, Measurement Technology Northwest, USA).  

 

Once dressed and fully equipped the participant sat at rest in a thermoneutral environment (mean ± 

SD; 19.8 ± 1.6°C, 40.6 ± 4.1% RH) for 15 minutes to allow physiological responses to stabilise. 

During rest, participants were familiarised with the sensation scales and allowed to practice rating 

their sensations (see below for details). Following the rest period, participants entered the 

environmental chamber where they began exercising. For the WALK condition, participants walked 

for 45 minutes at 35% VO2max in a chamber at 29.0 ± 1.9°C, 29.8 ± 3.6% RH, with no wind. During 
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the RUN, participants walked at 35% VO2max for 5 minutes, followed immediately by a run at 70% 

VO2max for 40 minutes in a chamber at 26.2 ± 2.1°C, 31.1 ± 7.0% RH, with no wind. Participants 

could drink ad libitum. 

 

2.4. Measurement and Calculations 

Body mass was measured at the beginning and end of each experimental session as well as fluid 

intake to determine gross sweat loss (GSL) in grams (g) and grams per surface area (SA) per hour 

(g·m2·h-1).   

Mean skin temperature and wbody was calculated using the following equation based on eight 

measurement sites (as used by Umbach, 1982):  

Mean values = (chest*0.14) + (abdomen*0.08) + (upper back0.11) + (lower back*0.11) + 

(thigh*0.2) + (calf*0.15) + (upper arm*0.12) + (forearm*0.09)	

  

Local skin wettedness is defined as the ratio between the maximum evaporation and the actual 

evaporation for a given environment (Havenith et al. 2002).  It is measured and estimated using the 

same techniques as described by Fukazawa and Havenith (2009). Local skin wettedness (wlocal) was 

measured using humidity sensors as described earlier, which were located 2mm from the skin surface. 

Local skin wettedness (wlocal) was calculated using the following equation:  

,
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Pa is the water vapour pressure of ambient air, which is calculated using the same equations above 

with ambient values replacing skin values for RH and temperature. e  refers to an exponential 

function. 

In order to reduce errors in the measurement of GSC and compare within and between individuals 

during both conditions, GSC was standardised as a change from baseline (∆GSC) (Wilder, 1962). The 

baseline value was defined as the lowest GSC value recorded during the 15 minute stabilisation period 

in a thermoneutral environment. Data from pilot tests confirmed the reduced variation within and 

between individuals over numerous tests by expressing it as ∆GSC. Mean ∆GSC was averaged over 

the four sites (chest, upper back, upper arm and upper leg).  

All physiological data was measured and recorded continuously (recorded at 10 seconds intervals) 

during the test with 5-minute averages calculated. 

2.5. Perceptual responses 

Participants rated their thermal comfort on the following 6-point Likert scale with intermediary 

values; 0 = comfortable, -2 = slightly uncomfortable, -4 = uncomfortable, -6 = very uncomfortable 

(modified version based on Gagge et al. 1967). Participants were introduced to the scale and 

instructed how to interpret and score them. They scored each sensation for their whole body and each 

local body region (chest, upper back, upper arms, and upper legs) during the last 5 minutes of rest and 

at 5 minute intervals during exercise. Regional sensitivity to wlocal and ΔGSC was defined by two 

factors: the threshold of discomfort and the intensity of discomfort experienced. The threshold of 

discomfort was defined as the wlocal and ΔGSC that corresponds with a comfort vote of -1.  The 

intensity of discomfort experienced was defined as the highest discomfort vote scored. 

2.6. Data analysis 

Statistical analysis was conducted using Statistical Package (SPSS) version 18.0.  Analysis of the 

main effect of condition, location and time were analysed using three-way repeated measures 

ANOVA. Post hoc comparisons using Bonferroni correction were performed to analyse individual 

differences. In some instances, differences between conditions were analysed using Paired samples t-

test and corrected for multiple comparisons. Pearson’s correlation analysis was performed to assess 

the relationship between local thermal comfort and each physiological parameter (wlocal, ΔGSC, Tsk 

and Tc). Where data were observed to have non-linear relations (scatterplots), they were first 

transformed using appropriate transformations to produce an approximate linear relationship and 

subsequently they were analysed with the standard linear Pearson correlation to assess the 

relationship. Unless otherwise stated, all measurements are means with standard deviations (± S.D) 

and significance is defined as p<0.05.  
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3. Results 

3.1. Participants 

Participant 7 was deemed as a ‘non responder’ as local and whole body thermal comfort was 

maintained at the same value throughout each test and was subsequently removed from the analysis. 

All data is expressed without participant 7. 

3.2. Experimental design  

No significant differences were found in Tc at rest between the WALK (37.0 ± 0.3°C) and RUN (37.1 

± 0.3°C) (p>0.05). However, the increase in Tc from baseline to the end of the experiment was 

significantly less for the WALK (37.2 ± 0.3°C) than the RUN (38.1 ± 0.4°C, p<0.001). Alongside 

this, GSL was significantly higher at the end of RUN compared to the WALK (516.7 ± 132.8 and 

271.5 ± 90.5 g·m-2·hr-1, respectively, p<0.001).  

Table 1 lists the mean (±SD) values at the end of each condition (WALK and RUN) for wlocal, ∆GSC 

and local Tsk. According to three way repeated measures ANOVA, there was a significant effect of 

condition on wlocal and ∆GSC (p<0.05) but not for local Tsk as it was similar between conditions. A 

significant effect of time was found on all three parameters as they increased from rest to the end of 

exercise. No significant effect of location was observed for ∆GSC. A significant effect of location was 

found for wlocal and pairwise comparison revealed that the upper back was significantly higher than all 

other locations and the upper legs were significantly lower than all locations (p<0.05) The chest was 

also significantly higher than the upper arms (p<0.05). A significant effect of location (p<0.001) was 

observed for local Tsk and pairwise comparison revealed the upper legs were significantly cooler than 

the chest and upper back (p<0.05).  

3.3. The relationship between thermal comfort, wlocal and ΔGSC  

Figure 1 and Figure 2 illustrate the relationships between local thermal comfort and wlocal and ΔGSC 

(respectively) during both conditions. The strength of the relationships (r2) between thermal comfort 

and each variable are displayed in Table 2.  In Figure 1, during the WALK, a strong linear 

relationship exists between local thermal comfort and wlocal (r2>0.78, p<0.001). However, during the 

RUN, local thermal comfort has an exponential relationship with wlocal and therefore was transformed 

(using an exponential function) for further analysis and the result indicated strong significant 

relationships (r2>0.94, p<0.001). The relationship between thermal comfort and ∆GSC was curvilinear 

for both conditions (Figure 2) and was transformed (square root) prior to analysis. The strength of 

these relationships improves from the WALK (r2>0.71, p<0.001) to the RUN (r2>0.95, p<0.001) at 

each location. Local thermal comfort did not consistently have good relationships with local Tsk and 

where relationships did exist they were significant and linear (r2=0.37 to 0.96, p<0.05). Local thermal 
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comfort had a strong relationship with Tc which was strengthened during the RUN in comparison to 

the WALK (r2=0.82 and r2=0.50, respectively, p<0.05).  

3.4. Regional sensitivity to wlocal and ∆GSC.  

Local and whole body threshold of discomfort according to wlocal and ∆GSC are displayed in Table 3. 

The threshold of discomfort are defined as the point at which participants no longer feel comfortable 

(-1 vote). The values in Table 3 are the mean of each individual’s wlocal and ∆GSC value at the 

threshold. Two-way repeated measures ANOVA revealed no significant effect of condition for wlocal. 

(p>0.05) ). A significant effect of location is observed for wlocal but not for ∆GSC. Pairwise 

comparison with Bonferroni correction revealed no significant differences between locations for wlocal. 

Without Bonferroni corrections the upper back was significantly less sensitive than all other locations 

and the chest was significantly less sensitive than the upper legs. According to Table 3, threshold of 

discomfort for wlocal indicate that the upper legs and upper arms are the most sensitive during the 

WALK due to the lower wlocal values (0.22 ± 0.11 and 0.22 ± 0.03, respectively). The upper back is 

classed as the least sensitive as it requires a higher wlocal values before participants no longer felt 

comfortable (0.30 ± 0.12). During the RUN the threshold of discomfort for wlocal occur at higher 

values than the WALK but suggest a similar order of sensitivity, with the extremities being more 

sensitive than the torso areas. If the same principle is applied to ∆GSC then the upper back and upper 

arm are the most sensitive and the upper legs the least sensitive.  

The intensity of discomfort (i.e. the highest discomfort score reported) and the corresponding wlocal 

reached varied between locations, these are listed in Table 4. Two-way repeated measures ANOVA 

revealed a significant effect of condition for wlocal, ∆GSC and thermal comfort as all locations were 

significantly higher during the RUN compared to the WALK (p<0.05). A significant effect of location 

was observed for thermal comfort, with the whole body (3.3) and chest (3.1) scoring significantly 

higher discomfort votes than the upper legs (2.4). A significant effect of location was observed for 

wlocal and pairwise comparison showed significant differences between all locations except the whole 

body and the upper arm, the chest and the upper back (p>0.05). No significant effect of location was 

observed for ∆GSC. 

During the WALK the chest and upper back scored the highest vote (>-2.0), followed closely by the 

upper arm (-1.9 ± 1.3) whilst the upper legs scored the lowest discomfort score (-1.7 ± 1.1). The 

discomfort scores appear to be relative to wlocal as the chest and upper back also had the highest wlocal 

(0.57 ± 0.19 and 0.65 ± 0.21, respectively) and the upper legs have the lowest wlocal (0.32 ± 0.03). 

However, the exception appears to be the upper arm which also had a high discomfort score, similar 

to the lower back (-1.9) yet a low wlocal (0.37 ± 0.14). This response was mirrored by the ∆GSC data 

as the highest discomfort scored corresponded with the highest ∆GSC values, except the arms. During 
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the RUN, a similar response to the WALK occurred, with the highest discomfort scores corresponding 

with the highest wlocal and ∆GSC. 

4. Discussion 

4.1. A comparison of wlocal and ΔGSC in predicting thermal discomfort during different exercise 
intensities 

Past research has established the relationship between whole body thermal comfort and wbody and 0.30 

has been defined as the threshold of discomfort at rest (Gagge et al. 1969; Nishi and Gagge, 1977; 

Winslow et al. 1939). Research has moved forward by identifying regional differences in thermal 

comfort to wlocal (Fukazawa and Havenith, 2009; Umbach, 1982). However, the research has mainly 

focused upon the threshold of discomfort for w and since its introduction by Gagge (1937) researchers 

have confirmed the diminishing role of w during heavy sweating on the prediction of thermal 

discomfort (Doherty and Arens, 1988; Lee, et al. 2011). As a result, this study aimed to address the 

relationship between thermal discomfort and w and introduce ∆GSC that could improve and/or aid the 

prediction of thermal discomfort during high levels of sweat production as found in exercise.  

Table 2 indicates the strength of the relationship between thermal comfort and wlocal and ∆GSC, 

respectively. The results indicated a strong linear relationship between local thermal comfort and wlocal 

during the WALK at all locations (r2>0.78 to 0.98). During the RUN, wlocal increased and tended to 

plateau at values >0.60, during which thermal discomfort however continued to increase. As such, an 

exponential relationship is observed between the two variables. Using the data in the present study to 

predict thermal discomfort at higher metabolic rates requires the data to be transformed, which is 

useful in terms of analysis but poses several issues when interpreting the findings. During high sweat 

production, wlocal will reach ceiling values and the sensitivity of wlocal to predict thermal comfort 

beyond a moderately uncomfortable state diminishes. As a result the uncertainty in predicting thermal 

discomfort will increase dramatically in the exponential part of the curve. Here, a small change in 

wlocal leads to a big change in comfort. Any variations or uncertainty in wlocal will thus  result in large 

errors in the prediction of local thermal discomfort. Lee et al. (2011) claimed that predicting comfort 

was more difficult at higher w, which is supported by the findings of this study. 

The plateau in wlocal at values >0.60 and the concomitant increase in thermal discomfort suggests 

either another factor must be driving discomfort or there are errors with the measurement. The 

measurement of wlocal in the present study was achieved using humidity sensors located in the 

microclimate, approximately 2 mm from the skin. Even though this is relatively close, the distance 

between the humidity sensor and the skin may not be sufficient to provide a true representation of 

surface wlocal at higher sweat rates. If the skin is fully saturated with sweat then it should have reached 
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a maximum value of 1.0, yet in some cases the skin visually appeared to be completely saturated, but 

wlocal did not exceed 0.85 ± 0.09. It is plausible that a measurement artefact may contribute to the 

underestimation of wlocal but the plateau is a true representation of the surface being saturated with 

sweat, illustrating the issues associated with the measurement of wlocal as used in the present study and 

by others (Fukazawa & Havenith, 2009; Umbach, 1982). 

The classic work of Gagge et al. (1967) demonstrated the diminishing role of Tsk on thermal sensation 

as it rises above 33°C. It is proposed that sweating maintains Tsk at a favourable level and thus thermal 

sensation does not increase but discomfort will. This continual increase in thermal discomfort was 

found to correlate with w. In the present study, Tsk demonstrated moderate-strong relationship with 

thermal comfort, which actually improved from the WALK to the RUN despite a significantly higher 

GSL. Although this does not support the findings of Gagge et al. (1967), Thermal comfort had a 

stronger relationship with ΔGSC than Tsk.  

Another factor that may contribute towards an increased thermal discomfort at high metabolic rates is 

Tc. An increase in sweat production typical occurs concomitantly with an increase in Tc so with heat 

exposure and/or with exercise higher thermal discomfort votes will likely be influenced by both. 

Stronger relationships were observed between local thermal discomfort and ∆GSC (r2>0.71) than Tc 

(r2>0.50). The relationship between thermal discomfort and ∆GSC strengthened as metabolic rate 

increased (WALK; r2>0.71 and RUN; r2>0.95). GSC has been reported to represent pre secretory 

sweat gland activity (Caldwell et al.  2011; Darrow, 1964; Machado-Moreira et al. 2009), the number 

of active sweat glands (Thomas and Korr, 1957) and the amount of sweat produced (Fowles, 1986). 

Therefore it indicates not only what is happening on the skin surface but also within the epidermis 

where the receptors are located, which may explain why it is a good predictor of thermal comfort. . 

However the number of potential measurement errors both systematic and unsystematic with GSC is 

high.  Considerable pilot testing took place to reduce possible errors during testing. Reliability was 

assessed during pilot tests and whilst some variations did exist the response to a given condition was 

similar. The large variation in individual sweat gland output may accounts for the variation seen in 

GSC but also in that from other studies when measuring sweat (Smith & Havenith, 2011, 2012; Cotter 

et al. 1995; Machado-Moreira et al. 2008). Standardising the value relative to a baseline value aimed 

to reduce these errors but the high dispersion of values reduces the certainty of predicting thermal 

discomfort using GSC as can be seen in Table 3 and 4. As a result more research is required to 

understand the extent to which GSC is influenced by sweat gland activity, epidermal hydration and 

surface sweat. However, the reduced strength of the relationship between thermal comfort and surface 

sweat (as indicated by wlocal) and the increasing relationship between thermal comfort and ΔGSC at 

higher sweat levels suggests that an internal component in the skin could be a strong contributing 

driver for discomfort. Discomfort may be related to the accumulation of sweat in the skin, on the skin 
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and within the clothing layer next to the skin. During sweat production the skin swells, becomes soft 

and enhances the sensitivity of receptors (Berglund and Cunningham, 1986). Gwosdow et al. (1986) 

noted an increase in the friction between skin and clothing as well increased perceived fabric 

coarseness with increasing moisture content in the skin. This aspect seems to be better represented by 

∆GSC than by the surface skin wettedness (wlocal). The perception of thermal comfort may not be a 

solely thermal response but multiple factors relating to the perception of temperature and moisture, in 

which the skin-fabric interaction may play a large role. Potentially the hydration of the skin due to the 

production of sweat has an influential role on perceptual responses but further research is required to 

address this.  

Collectively the comparative relationships between thermal comfort, ∆GSC and wlocal and the issues 

surrounding the methods of measuring wlocal suggest it is not the sweating per se that cannot predict 

thermal discomfort during high sweat rates but wlocal as a parameter on its own. Doherty and Arens 

(1988) stated that models which use w to predict thermal discomfort become less accurate for high 

intensity exercise than at rest or during low-moderate intensity exercise. This also conforms to the 

findings from Lee et al. (2011). 

4.2. Regional differences in local thermal discomfort sensitivity  

To the authors knowledge only Fukazawa and Havenith (2009) and Umbach (1982) have investigated 

regional sensitivity to thermal discomfort using wlocal as a predictor. The methods used to determine 

sensitivity is based on the thresholds for discomfort or the transition away from comfortable and 

noting the corresponding wlocal. The application of such methodologies will be discussed here.  

In the present study, the threshold for discomfort was defined as the point at which the participants no 

longer felt comfortable (-1 vote). These were determined for both wlocal and ∆GSC and values are 

displayed in Table 3. During the WALK, local threshold for discomfort suggests that the upper arms 

and upper legs are the most sensitive areas, due to the lower wlocal required to no longer feel 

comfortable. The upper back was a  significantly less sensitive area than all other location across the 

body. The threshold for discomfort using ∆GSC provide less informative data due to the small 

variations in values in comparison to the range of ∆GSC achieved and thus the significance of the 

differences between the comfort limits are questionable. In addition, Figure 2 suggests the slope of the 

line between local thermal comfort and local ∆GSC suggest that there is not much difference between 

regions in intrinsic sensitivity to moisture. The intensity of discomfort experienced maybe a more 

useful measurement as it may indicate the areas that are more sensitive to efferent inputs such as 

sweat and drive thermal discomfort to higher levels. This is particularly true of the upper legs, which 

according to wlocal are very sensitive areas due to a lower comfort limit and were significantly lower 

than the chest and upper back, , yet the legs scored the lowest discomfort scores at the end of the RUN 
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(-3.1 ± 1.76). The chest and upper back had higher discomfort scores alongside higher wlocal and 

∆GSC at the end of exercise. This supports findings from Lee et al. (2011) who noted that the areas 

perceived as the wettest regions were the upper back, chest, front and back neck and forehead whilst 

the palms, feet and dorsal hands were the least wet regions. These areas, according to Smith and 

Havenith (2011, 2012) are areas of high and low sweat production, respectively. Perhaps areas which 

score the highest discomfort votes can be deemed as critical areas, in the sense they are the most 

exposed to discomfort as a combination of their intrinsic sensitivity to sweat and the sweat effectively 

present (related to local sweat rate).  

Past researchers have used w to predict the threshold of discomfort and therefore restricted the 

methodology to low wlocal and discomfort scores (Fukazawa and Havenith, 2009; Umbach, 1982). To 

the author’s knowledge this is the first experiment to compare thermal comfort over different exercise 

intensities and the results suggest that higher discomfort scores are relative to the amount of sweat 

produced and accumulated around the skin as indirectly measured by ∆GSC. In this case the areas of 

the torso should be of primary concern when designing clothing to promote thermoregulation and 

thermal comfort. 

The present study aimed to investigate regional differences in thermal comfort sensitivity to the 

presence of sweat using wlocal and GSC. Whilst application using the threshold of discomfort to 

determine regional sensitivity have just been questioned an interesting issues arises when comparing 

the findings between our study and that of Fukazawa and Havenith (2009) and Umbach (1982). 

Though the pattern of sensitivity across the body appears to be similar between all threes studies, the 

values for the thermal comfort limits were much lower in the present study. This is likely due to the 

fact that in both studies they manipulated wlocal to increase independently of others zones. This 

enabled them to identify the ‘true’ threshold of discomfort for individual body sites. Whilst 

mechanistic research is informative it is not representative of real life situations whereby sweat will be 

produced across the body at different rates (Smith and Havenith, 2011, 2012), therefore more 

ecologically valid studies are required. Higher wlocal values for the thresholds of discomfort were 

found by Fukazawa and Havenith (2009) and Umbach (1982), suggesting that more sweat is required 

locally to influence thermal comfort when wlocal is not naturally distributed. In the present study all 

physiological responses increased simultaneously and any changes in local thermal comfort may be 

attributed to other local or whole body changes. The interaction between body segments and the 

influence on local and whole body perceptual responses has been investigated by Arens and Zhang 

(2006) and they found that the overall perceptions are dominated by the one or two most unfavourable 

local perceptions. Their research focused upon regional differences in skin temperature in uniform 

conditions.  Further research is required to understand the interaction between local and whole body 

sweat production on thermal comfort. The interactions between local and whole thermal comfort may 
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explain the lower thresholds for discomfort observed in the present study compared to Fukazawa and 

Havenith (2009) and Umbach (1982) but this requires further comparative research using the same 

perceptual scales.  

5. Conclusions 

The natural variation of physiological responses (∆GSC, wlocal and Tsk) and thermal comfort were 

measured in male participants and the relationships analysed. The results revealed that during high 

levels of sweat production w plateaued at approximately 0.60-0.85, depending on condition, 

suggesting either a maximum value has been reached or a measurement artefact exists with wlocal. This 

resulted in an exponential relationship between thermal comfort and wlocal which reduces the latter’s 

ability to accurately predict the intensity of thermal discomfort experienced when sweat production is 

high. The findings revealed that thermal comfort has a stronger relationship with ∆GSC, especially at 

higher metabolic rates when sweat production is greater. This supports the hypothesis that thermal 

discomfort may be more related to the amount of moisture present within the skin and on and around 

the skin itself, as reflected by ∆GSC, rather than just a proportion of wetted area at skin surface as 

indicated by wlocal. 
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Fig 1: The relationship between local thermal comfort and wlocal in both conditions (WALK and RUN), for the 
whole body and each location. Graphs based on untransformed data. 
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Fig 2: The relationship between local thermal comfort and ΔGSC in both conditions (WALK and RUN), for the 
whole body and at each location. Graphs based on untransformed data. 
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Table 1: The mean values (±SD) of wlocal, ∆GSC and Tsk during the WALK and RUN. Significant differences 
between WALK and RUN during rest is denoted by * (p<0.05) and ** (p<0.001) (without corrections) and by 
$$ p<0.005 (with Bonferroni adjustments). 

 Walk RUN 

 wlocal (nd) ∆GSC 

(µS) 

Tsk (°C) wlocal (nd) ∆GSC (µS) Tsk (°C) 

Whole body 0.46±0.09 4.4±3.4 33.4±0.37 0.68±0.08**$$ 15.6±9.5* 33.4±0.57** 

Chest 0.57±0.18 5.6±6.0 33.7±0.72 0.85±0.09*$ 19.6±0.2* 35.2±1.4 

Upper back 0.65±0.21 3.7±3.8 33.9±0.87 0.83±0.09*$ 18.2±14.0* 33.8±1.18 

Upper arms 0.37±0.14 4.7±2.7 33.4±1.14 0.79±0.06**$$ 15.7±1.5* 34.5±1.49 

Upper legs 0.32±0.03 3.8±4.5 33.3±0.89 0.50±0.09**$$ 11.8±4.7* 32.4±1.44 
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Table 2: Regression coefficients for the prediction of whole body and local thermal comfort. The strength of the relationship (r2) between thermal comfort and each predictor 
(*p<0.05, **p<0.001). † Indicates where data was transformed using exponential function (Y= a + b · ex)] to produce approximate linear relations prior to correlation 

analysis, †† indicates where data was transformed using a square root function  (Y= a + b·√X] to produce approximate linear relations prior to correlation analysis. 

  WALK  RUN 

 Parameter a b r2 a b r2 

Whole body wbody -6.5964 0.9011 0.96** -5.3683 6.585 0.95†** 

 ∆GSC -1.9989 1.8099 0.92††** -0.984 -0.0079 0.97††** 

 Tsk -1.0151 32.022 0.75* -2.2029 69.823 0.94** 

 Tc -5.2145 191.88 0.56* -3.8561 142.3 0.89** 

Chest wlocal -4.7525 0.7399 0.93** -3.2952 4.0198 0.96†** 

 ∆GSC 0.9556 -0.1896 0.78††** -0.9051 0.0967 0.98††** 

 Tsk -0.982 31.823 0.37* -2.5048 84.332 0.96** 

 Tc -5.1596 189.99 0.55* -3.6915 136.34 0.92** 

Upper back wlocal -4.3006 0.855 0.98** -3.1824 3.740 0.96†** 

 ∆GSC -1.5898 0.9911 0.78††** -0.8035 -0.1734 0.97††** 

 Tsk -1.0847 35.283 0.50* -3.762 123.91 0.69* 

 Tc -6.1957 228.33 0.65* -3.2998 121.62 0.87* 

Upper arm wlocal -6.8488 0.5382 0.92** -3.4114 3.7919 0.95†** 

 ∆GSC -0.8114 0.0758 0.71††** -0.9148 -0.1811 0.95††** 

 Tsk -0.8686 27.362 0.75** -1.4516 45.931 0.93** 

 Tc -4.7437 174.51 0.60** -3.6463 134.49 0.90** 

Upper leg wlocal -11.583 1.9072 0.78** -7.9312 10.021 0.94†** 

 ∆GSC -3.061 4.227 0.91††** -0.8735 0.1871 0.97††** 
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 Tsk -0.6533 20.21 0.88** -1.1586 35.52 0.78** 

 Tc -4.1404 152.37 0.58** -2.9783 110.09 0.94** 
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Table 3: The mean (±SD) thermal comfort limits for each location during WALK and RUN, which corresponds 
to when locations no longer felt comfortable. No significant differences between WALK and RUN were found. 

 WALK RUN 

 w ∆GSC w ∆GSC 

Whole body 0.26 ± 0.11 2.4 ± 3.7 0.31 ±0.21 1.5 ± 3.7 

Chest 0.27 ± 0.10 2.2 ± 5.9 0.39 ±0.32 2.6 ± 3.5 

Upper back 0.30 ± 0.12 1.7 ± 3.6 0.36 ±0.10 1.6 ± 1.8 

Upper arm 0.22± 0.11 2.3 ± 3.6 0.28 ±0.22 0.8 ± 0.7 

Upper leg 0.22 ± 0.03 4.4 ± 4.1 0.22 ±0.10 2.0 ± 1.7 

 

Table 4: The maximum discomfort score at the end of each test and the corresponding wlocal and ∆GSC values. 
Significant differences between WALK and RUN is donated by * (p<0.05) or ** (p<0.001). 

 WALK RUN 

 
Discomfort 

score 
w ∆GSC 

Discomfort 

score 
w ∆GSC 

Whole 

body 
-2.2 ± 1.2 0.46 ± 0.09 4.4 ± 3.4 -4.3 ± 1.7** 0.68 ± 0.08** 15.6 ± 9.5** 

Chest -2.1 ±1.4 0.57 ± 0.19 5.6 ± 6.0 -4.0 ± 1.7** 0.85 ± 0.09** 19.6 ± 10.2** 

Upper back -2.1 ± 1.5 0.65 ± 0.21 3.7 ± 3.8 -3.8 ± 1.9* 0.83 ± 0.09* 18.2 ± 14.0* 
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Upper arm -1.9 ± 1.3 0.37 ± 0.14 4.7 ± 2.7 -4.1 ± 1.8** 0.79 ± 0.06** 15.7 ± 11.5* 

Upper leg -1.7 ± 1.1 0.32 ± 0.03 3.9 ± 4.5 -3.1 ± 1.8** 0.50 ± 0.09** 11.8 ± 4.7** 
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