

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288380321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Twenty Dirty Tricks to Train Software Engineers

Ray Dawson

Dept of Computer Science
Loughborough University

Loughborough, Leics. LE11 3TU, UK
+(44) 1509 222679

R.J.Dawson@Lboro.ac.UK

Abstract
Many employers find that graduates and sandwich students
come to them poorly prepared for the every day problems
encountered at the workplace. Although many university
students undertake team projects at their institutions, an
education environment has limitations that prevent the
participants experiencing the full range of problems
encountered in the real world. To overcome this, action was
taken on courses at the Plessey Telecommunications
company and Loughborough University to disrupt the
students’ software development progress. These actions
appear mean and vindictive, and are labeled ‘dirty tricks’ in
this paper, but their value has been appreciated by both the
students and their employers. The experiences and learning
provided by twenty ‘dirty tricks’ are described and their
contribution towards teaching essential workplace skills is
identified. The feedback from both students and employers
has been mostly informal but the universally favourable
comments received give strong indications that the courses
achieved their aim of preparing the students for the
workplace. The paper identifies some limitations on the
number and types of ‘dirty tricks’ that can be employed at a
university and concludes that companies would benefit if
such dirty tricks were employed in company graduate
induction programmes as well as in university courses.

Keywords: Education, Training, Project,

Teamwork, Work experience

1. BACKGROUND
This paper is based on the experience of training projects to
simulate the ‘real world’ given to graduates and
undergraduates over the past 17 years. The history of these
training projects can be traced back to when they were first
introduced for new graduates by the author at the Training

School at the Plessey Telecommunications company [4]

(which later became GPT and is now part of the Siemens
group). The author has since moved to Loughborough
University, but the training courses at Plessey were
continued after the author’s departure and the trainers have
kept the author informed of all developments in the course.
The author has been involved in the development of similar
projects for undergraduates at Loughborough where many
of the features of the Plessey course have been adapted for
the university environment [5].

2. SIMULATING THE REAL WORLD
In 1993 a two week, full time training course was set up at
the Plessey company at the request of the company’s
software managers. Their experience of new computer
science and software engineering graduates was that it
would usually take up to six months before these graduates
made a “useful contribution” to a software department. In
discussions with these software managers it soon became
clear that they believed that it was not just a lack of
knowledge of the company tools and product line that
reduced the graduates’ effectiveness in the early months,
but rather it was their lack of awareness of and preparation
for the realities of the workplace such as changing
objectives, problems with clients, or the pressures of
imposed deadlines [2,4,6,7,12,13]. The course was set up to
fill this gap in the graduates’ education with up to twenty
computer science graduates participating each year.

The course duration was two working weeks consisting of a
half day of lectures at the beginning, a half day review
session at the end, and the remainder devoted to a project
that simulated a real working environment. The initial
lectures were to prepare the students for the project. The
aims were explained and the difficulties encountered in real
world software engineering projects were described. This
was then followed by the project itself. The students
worked in teams of four or five members each and with two
to four teams working on similar projects in competition
with each other. The students were subjected to the typical
company working procedures, methodologies and deadlines
with role play by the course leader to simulate a customer, a
manager and other personnel as required. When available,
other training staff members were used to play some of the
different roles. The review at the end of the course allowed

students to describe their experiences and the course leader
to draw attention to the lessons that can be drawn.

At Loughborough University a teaching module for second
year undergraduates was organized with similar aims to the
Plessey course. The format of the course had to be altered,
however, to fit in the modular framework of the university
degree. The university real world projects were run over a
period of eight to ten weeks on a part time basis, the
students studying five other modules in parallel. Team sizes
have varied from four to ten with many more groups
working in parallel. The numbers of students involved
(between 120 and 160 each year) and a general lack of staff
time did mean that the module leader’s contact with the
teams was limited in comparison with the Plessey company
course. However, there was sufficient time and resource to
allow the role play to create the necessary personnel for a
real world simulation.

3. WHAT ARE ‘DIRTY TRICKS’?
Group project work is very common in university
education, and often the groups work on realistic software
developments [3,5,8,11], so what was new in the Plessey
and Loughborough University real world projects? The
difference lay in the lengths taken to make the students
experience the most adverse aspects of software
development encountered in the real world [4]. Every
experienced worker knows the real world is full of surprises
that can hinder a development [2,9]. A disruptive software
upgrade, the departure of a key team member or political
infighting between different stake holders are common
events in real life but they are seldom experienced on a
university course [6]. Indeed at a university events such as
software upgrades are timed to occur in the holidays
whenever possible precisely to avoid any disruption to
students’ work. The whole ethos of an education
establishment is to produce the best possible environment
for the students to learn, but this can create an artificial
atmosphere well removed from the real world.

In the courses at Plessey and Loughborough University
steps were taken to re-introduce the problems experienced
in the real world. This amounted to purposely hindering and
disrupting the software development processes of the
students involved. A series of actions were taken that at first
sight appear to be mean and somewhat vindictive and which
could even be interpreted as a sadistic desire to antagonize
the innocent participants. This was not the case. Every
‘dirty trick’ action described in this paper has its purpose in
simulating a common real life situation and each has an
associated learning experience which will be of value to
those on whom the dirty trick is inflicted!

In the next section twenty ‘dirty trick’ actions to simulate
real world experience are described, and in each case the
lessons that can be learned are detailed. In practice, the full
collection of all twenty tricks has never been played on any
one group of students, but each of the actions described has
been tried either at the Plessey company or at

Loughborough University at some point, and each has been
found to give a valuable experience. Some of the tricks,
such as banning overtime or purposely bringing down a
computer, proved to be difficult or impossible in the
university environment. Other tricks, such as changing the
hardware platform, proved impractical in the company
training school. Some tricks such as the inadequate
specification and the changing requirements have been used
every time the course has run. In general about half the
tricks described may be used in any one course, with it
being the responsibility of the course leader to decide which
tricks are appropriate and possible at any one time.

4. THE TWENTY ‘DIRTY TRICKS’

4.1 Give an Inadequate Specification
The students should be given a "specification" of typically
no more than two or three pages long. Although it will at
first sight appear to describe what is wanted, it should when
examined in detail be far too vague. Statements should be
ambiguous in places and some aspects can be omitted
altogether. Although it should be labeled a specification it
will in fact be no more than a concept document outlining
the initial ideas of the project only.

Why? As any practicing software engineer will know, in the
real world complete, unambiguous specifications are rare if
they ever exist. This, however, is not the experience of
students on undergraduate courses. Their set coursework is
usually fully defined with teachers, in the interests of
fairness, accepting any solution that could be considered to
meet the requirements of the assignment as given. Students
sometimes will seek clarification but this is not actively
encouraged with students more likely to be told to read the
question more carefully. This is an unfortunate training as
the real world is not as forgiving.

Lessons Learned: An inadequate specification is needed to
teach students that close liaison with the customer will be
required to obtain the requirements, and the developers
themselves may need to produce the specification to obtain
detailed agreement with the customer.

4.2 Make Sure All Assumptions are Wrong
If the students have not sought clarification when the
specification is ambiguous the ‘customer’ should ensure
that the assumptions they have made are the wrong ones.
This involves deliberately choosing variations on the
project scenario to catch them out. This philosophy should
be extended to any additional features included because the
students assume that the customer will be pleased to receive
a ‘superior’ product with added bells and whistles. In
practice, in the role of customer it is not usually difficult to
find some plausible reason to reject any unrequested
addition. For example, an extra password feature could be
rejected because "only authorized personnel will have
access to the computer anyway".

Why? It is very common for students to make assumptions
about what the customer would like. This is again part of
their university experience where in the interests of fairness
the teacher will accept any solution that fits the
specification. Unfortunately, undergraduate students who
deliver work with extra, unrequested features are often
rewarded for their initiative with extra marks. This creates a
dangerous ethos that any extras can be assumed acceptable
without the need to ask the customer first.

Lesson Learned: This trick may seem to be particularly
mean but there is an important lesson here that
communication with the customer is essential at every stage
of development. Students must learn that they do not have
the whole picture of the problem and that different people
with different viewpoints may have a quite different
perspective on the needs and priorities. Asking first instead
of making assumptions is an essential survival philosophy
for software developers.

4.3 Present an Uncertain and Naive Customer
In the role play employed, the customer should be typical of
many real world clients in not being sure of what he or she
wants. As in the real world, knowing there is a problem
should not be the same as knowing what the solution should
be. This is particularly significant if the customers are
personnel that have no experience of computers so that they
cannot even imagine what form the solution should take.

Why? The usual student scenario is that the students expect
their ‘customer’, the teacher who gives the assignment, to
know far more than they do - they make the reasonable
assumption that if the teacher is going to mark the work
delivered then they must know what they want. Role play is
needed to ensure the students can experience other types of
customer. Representing a customer without computer
literacy is surprisingly difficult for software engineering
educators who are inevitably experts in the field, but it
gives a valuable experience for the students who have not
usually experienced such a customer before.

Lessons Learned: The lessons in dealing with uncertain and
naive customers are that tact and a great deal of patience are
required, and that customer education and training can be as
significant a deliverable as the software itself.
Undergraduate courses again fail to give students any
experience of this.

4.4 Change the Requirements and Priorities
Once the project assignment has been set it should be
changed on a regular basis. The aim here should be to
change the specification in ways that seem perfectly
reasonable so that the customer is not seen to be making
arbitrary changes. For example a university class scheduling
system may be given the additional requirement to ensure
that wheelchair bound students are not scheduled in rooms
with no wheelchair access.

Why? In a real world nothing stands still, the requirements
and priorities of a project are changing all the time. In the
artificial world of education and training, however, it is
unusual for an exercise to be altered from the time it is set
to the time the students hand in their work. To prepare
students for the real world the requirements and priorities
must change as frequently as possible. For example, at
Loughborough University recent projects lasting eight
weeks had changes to the requirements made every week.

Lessons Learned: The students learn that events in a real
world make change inevitable so a software engineer must,
therefore, plan for change with open architectures,
adaptable designs and flexible planning.

4.5 Have Conflicting Requirements and Pressures
Introduce the students to a no win situation where it
becomes impossible to satisfy two conflicting requirements.
For example, a requirement to make certain output
graphical may be incompatible with a maintenance
requirement to use a particular software package. Often the
conflict can be between satisfying the ‘customer’ and
pleasing the ‘manager’. A manager may want to save costs
by reusing existing software, whereas the customer may
have quite different ideas based on a desire for
compatibility with other software products.

Why? The nature of education is that students are used to
"right" and "wrong" answers to a problem. They can
therefore have considerable difficulty when encountering a
problem where there is no perfect answer.

Lessons Learned: The lesson here is that in real life
compromise is often necessary and that negotiation is
required to enable such a compromise to be accepted by the
customer. This is a particularly important lesson for certain
students who take pride in being perfectionist; they learn
that perfect solutions will not always be possible in a less
than perfect world.

4.6 Present Customers with Conflicting Ideas
A particular example of conflict can be created by
introducing more than one customer with more than one
solution idea. Most real systems are used by more than one
person and this inevitably means that there will be different
solution ideas. In a training project the role play should
include different customer personalities each with different
priorities and objectives. A ‘manager’ may want a system
that has facilities for monitoring and reporting usage
statistics whereas an ‘operator’ may find this totally
unacceptable. In this case the students would be given quite
different messages from the two different roles, a situation
that can be made more difficult by ensuring that the two
personalities are never available at the same time.

Why? Staff resource restrictions mean that very few
students have encountered a problem with more than one
customer at their university. This type of conflict shows that
more than one viewpoint in a problem is possible, and that

developers need to communicate with all users and
stakeholders to build a complete picture of requirements.

Lessons Learned: Students learn that, unlike in the
university environment, satisfying one person does not
guarantee that the solution offered will be acceptable.
Students also learn that the politics of dealing with people
makes requirements analysis a far more complex task than
simply finding out the facts.

4.7 Present Customers with Different Personalities
It is instructive to provide customer roles with different
personalities as well as viewpoints. In the Plessey training
projects, for example, one customer would be very
enthusiastic readily accepting any suggestion put forward
while another customer would be very reluctant to deviate
from his original ideas. Of the two, experience has shown it
can be the enthusiastic customer that gives the most
problems, leading the students into commitments they could
never achieve with statements such as "Oh yes, that is a
good idea and we could do the same thing with X, Y and Z
too couldn't we?". The students can be drawn into
commitments well beyond their abilities to deliver.

Why? In real life each person is different and so negotiating
styles also need to differ when handling different
personalities. This is not usually experienced by students as
they have rarely encountered more than one customer on a
project.

Lessons Learned: This re-enforces the lesson that it is the
people that complicate the analysis of requirements, and
again it shows that different view points are possible. The
students learn that negotiation is a necessary skill where
care and caution are just as important as the students natural
willingness and enthusiasm to please. They learn to think
before they act and consider the consequences before they
commit themselves, and that even the principle that "the
customer is always right" may require compromise.

4.8 Ban Overtime
The students should be restricted to a strict number of hours
for the project development. For example, at the Plessey
company work on the training projects was limited to set
company hours with no extra work allowed overnight or
even in the lunch hour. In a university environment this
restriction is difficult if not impossible to impose as most
project work is mixed with other work and spread over a
longer period. Often, therefore, it is only when students
comes to their first place of employment that they
experience restrictions on their work time.

Why? Students regularly take extra time to finish their
assignments. Most students will work long hours in the last
few days before a deadline. It is not uncommon to work
through the night and to abandon other work and lectures if
the assignment is significant. This last minute rush becomes
such a way of life for most students that they do not realize

how much extra time is put in and consequently how poor
their original estimates were.

Lessons Learned: Even if no changes are imposed to
disrupt the project there are lessons to be learned in having
a set number of hours to complete a task. For university
students this is an experience that few have encountered
when developing software. It can be a real shock for
students to find the final deadline approaching with no way
of putting in the extra hours of work required. Most are
genuinely surprised to find how bad their time estimation
and planning had been.

4.9 Give Additional Tasks to Disrupt the Schedule
In addition to the project they are working on the students
should be required to undertake further activities which are
not known about in advance. The additional activity could
affect the whole team, for example, a "manager" created by
the role play could call a short notice progress meeting
which requires the preparation of reports as well as the time
to attend the meeting itself. Alternatively an errand could be
found for a key individual to, say, deliver an item to another
site which will take him or her away from the team for half
a day.

Why? In the workplace meetings, training, administration
and even coffee breaks all take time and yet there is rarely
adequate planning for such activities.

Lessons Learned: Planners in the real world will be aware
that there is a tendency, whether in software development or
otherwise, to forget the time overhead of activities not
directly related to the principle task. The students learn that
these other activities are commonplace so they must be
more realistic and flexible in their planning.

4.10 Change the Deadlines
The students should be told part way through the project
that the customer requires the product at an earlier date than
originally specified. There should be room for negotiation
with scope for only some deliverables to be delivered at the
earlier date, the rest being delivered later or possibly being
dropped altogether. However, the students should not be
offered any compromise in the first instance, all flexibility
only coming through negotiation.

Why? Changing the delivery date for a project is a
particularly hard hitting exercise for students who are used
to being given a project with a delivery schedule fixed from
the outset. In real life deadlines do change but it is a matter
of negotiation of what the change will be and what the cost
will be to the customer. In an education or training
environment, however, there is not usually any scope to
negotiate in terms of cost, but negotiation may be possible
if the project requires a number of deliverables to be
produced at different stages.

Lessons Learned: The lessons in this are that deadlines are
subject to a number of influences. Students are used to

negotiation over deadlines when trying to persuade their
supervisors to allow late delivery of their work because they
had been ill, their computer had crashed, or whatever. They
are quite unprepared, however, for the tables to be turned
with the project "customer" asking for an earlier delivery.
They learn that simply complaining about their position is
less likely to yield results than well argued negotiation, but
also that this is a two sided affair with both parties looking
for maximum advantage. Once again, there are also lessons
that change is inevitable and that flexibility is a major asset
in project planning.

4.11 Introduce Quality Inspections
Role play in project work in a real world simulation needs
to include characters other than the management and
customers. The role of a quality auditor requiring
inspections at very short notice can be usefully introduced.
This is particularly effective when the team is feeling most
vulnerable, such as when the project is about two thirds
complete and the first sign of problems of integration of
team members work start to appear.

Why? Many students pride themselves in being able to
produce "high quality" software. In reality code comments
and documentation are often produced at the end of the
project despite what they may claim. This can be a problem
in the workplace when outside influences can mean a team
member can be lost at short notice leaving others to
continue their work.

Lessons Learned: Students learn that the real world requires
standards that must be maintained throughout a project and
not handled as an afterthought.

4.12 Present a ‘Different Truth’
The customer should say one thing one day and something
else the next and then deny that anything different has been
said. Put more bluntly this means telling bare faced lies!
However, the different statements should not be obviously
contradictory but should be disguised in a different
emphasis or in a different context. For example it may be
stated one day that "only the manager will use the software"
but the next day this becomes "the management team will
use the software". This change could mean that in addition
to the manager, the section leaders and even the manager’s
secretary are involved with all the potential multi-user
access this implies. However, while the change may have
major significance there is only a slight change in the
words. This leaves the students with some degree of self
doubt about what the were told in the first instance which in
turn undermines any attempt to protest.

Why? Students need to appreciate that in the real world
mistakes are made but not everyone will own up to them or
even realize they have made a mistake at all.

Lessons Learned: The lesson here is not simply that there
are dishonest people about but that genuine mistakes can be
made. The students learn the value of having agreements on

paper and not just in spoken form. They learn to protect
themselves by taking notes during interviews and meetings
and to double check they have accurately recorded the
information. They learn the hard way that they cannot rely
on the word of others or even their own memories without
written evidence.

4.13 Change the Team
The team membership should be changed mid project if at
all possible. Where there are a number of team projects
working in parallel this can be achieved by swapping team
members around. Ideally only small changes affecting just
one team member should be made but this should be done
more than once during the life of the project. If the team has
a dominant character that monopolizes the planning that
person should be the prime target for any change.

Why? Another unreal aspect of group project work in
educational and training environments is that project team
membership usually remains stable. In the real world this is
less likely to be the case. The stability of a team on a
project of more than a few months can easily be disturbed
by members joining or leaving the team.

Lessons Learned: The lesson in this is that communication
is a necessary part of team work. If the removal of key team
members means the team can no longer function then it
means that they had kept too much information to
themselves. The students learn that for effective teamwork
each member needs to know their own role and how it fits
with others. If the team communicate well and the team
structure is known then a flexible approach means that it
can be adapted to meet unexpected personnel problems.

4.14 Change the Working Procedures
In the role of manager, the course leader should lay down
the working practices expected of the student teams. For
example, regular progress meetings and interim internal
reports could be required. However, this like the project
specification should not be stable. The project manager
could change his or her mind, could suffer from other work
pressures that prevent his attendance at meetings, or could
even be replaced himself. In terms of the role play this
would simply involve the course leader announcing that the
previous manager had been promoted to a job elsewhere
and that now a new manager had taken over, though to
make the change effective the new manager would need a
new personality who requires significant changes in
procedure and the product produced.

Why? Changes in management personnel and procedures
are not experienced at university where changes in the
teaching staff or teaching conditions would not normally
occur during the course of a student project.

Lessons Learned: There are three lessons here. Firstly the
lesson that teams need to be flexible and adaptable is re-
enforced, secondly, that time must be planned for the
inevitable disruption caused, and thirdly, the importance of

quality in both product and development process is
emphasized. On this last point it is usually possible to show
that teams who are well organized and have actively
promoted quality in their work are more able to adapt to
externally imposed changes.

4.15 Upgrade the Software
If possible, the software used for the project development
should be ‘upgraded’ to a later version during the project
life. The upgrade should be claimed to be fully backwards
compatible and the students should be told that the upgrade
should not affect them. It will of course, as any experienced
software engineer will know. One course at Loughborough
University experienced an upgrade of database software
which completely eliminated any further work before the
end of the project! This effect was more severe than even
the module leader had anticipated.

Why? The purpose of this trick is to dampen students
enthusiasm and desire for all the latest software and
gadgetry. Students tend to believe that being up to date with
the latest fashion is the only real measure of quality.

Lessons Learned: Students need to learn that the whole
picture must be taken into account and that every new
acquisition has a price in terms of time and effort as well as
in monetary terms, and this must be balanced against the
gains obtained. It also teaches students to be realistic, to
have a healthy skepticism of manufacturers’ claims, and to
always allow contingency time for the inevitable
unexpected problems every project encounters.

4.16 Change the Hardware
Towards the end of the project the customer should
announce that they have just decided to standardize on a
particular hardware platform which is different from the
system under development in the project. Obviously the
customer will then want the product to be changed to work
on this new platform. The trick is to make this change
possible, though at a price. If the product is being
developed in, say, C or Java then the change is at least
theoretically possible, but in practice the different
environments will inevitably mean some quite extensive
changes are needed in the software being produced.

Why? Handled correctly this could be the students first
introduction to legacy systems. The students will need to
decide whether to take time to change the existing system
with the risk loosing some product functionality through the
time lost, or to continue with on the current, legacy
platform to enable the full product to be developed. The
answer will depend on the circumstances of each project,
but either way it is instructive for students to have to
consider the problem.

Lessons Learned: This teaches the value of keeping to
standard features of a programming language and the
problems and issues of porting software. Even if the
students opt not to change platforms (and usually that is the

only practical option) by pressing the students to consider
the problem the lessons can still be effective.

4.17 Crash the Hardware
This may be a trick held in reserve in case any project team
appears to be doing too well. If a mainframe is being used
then bringing down the computer is relatively straight
forward unless there are users not involved in the training
who are sharing the computer. If PCs or other single user
computers are being used then there is often the opportunity
to take down a server to give the same effect. In the
‘customer’ role, however, the course leader should be
unsympathetic about the delays incurred.

Why? A hardware crash is typical of the every day disasters
that occurs in most software projects. Projects are
completed late far too frequently in the software industry
and yet whenever this happens, the developers always seem
to be able to put the delay down to some excuse or other.

Lessons Learned: The students need to be shown that to
always have an excuse is unacceptable, disasters are not
exceptional in the real world and to assume, as students
usually do, that everything will go smoothly is not
reasonable. The universities, in their attempts to be fair do,
unfortunately, encourage an excuse culture by always trying
to take into account any unforeseen adverse circumstances a
student may encounter. Students need to learn there are
limits for excuses in the real world.
A useful by-product of taking the hardware out of action for
a while is that students can find themselves with time to
stop and think. Such reflection will often cause the teams to
reassess and adjust their approach. This is a useful lesson in
the value of reviewing and updating plans throughout a
project, activities which are often forgotten in the rush to
meet an approaching deadline.

4.18 Slow the Software
When a project is in its later stages of development the
development hardware and software tend to be under the
greatest demand. This will often mean that performance
starts to suffer with compilations, builds and test runs taking
annoying lengths of time that leave the students frustrated,
looking at an hourglass on the computer screen. If this does
not happen of its own accord it should be made to happen
by loading the computers or network with unrelated activity
such that everything slows down.

Why? The slowing down of a system under load is a
common event and so it cannot be acceptable as an excuse.

Lessons Learned: Like the hardware crashes, the main
lesson is to show students they must be more realistic in
their planning. Some of the more organized students
manage to avoid time wasting by ensuring they have other
tasks they can undertake while waiting for the computer to
respond. This acts as a useful lesson to other students that
action can often be taken to minimize the effect of these
every day disasters if a little thought is given beforehand.

4.19 Disrupt the File Store
If possible, disrupt the file store the students are using. At
Plessey this was done over a lunch period by replacing the
students file area with a copy made the previous evening.
This sort of disruption is relatively straight forward if the
file store area is kept on a central machine. However it
becomes much more difficult in distributed systems and
indeed, to the best of the author’s knowledge, it has not
been successfully carried out in such an environment

Why? This sort of restoration of the last backup dump is
not uncommon in a main frame style environment. Whether,
the students are then told that computer problems have
meant the file store “has reverted to the state at the last
backup” or whether the students are left to work this out for
themselves, the effect will vary enormously from one team
to another.

Lessons Learned: This gives an excellent lesson in
configuration management, particularly when contrast can
be made between a number of teams working in
competition to each other. A well organized team with good
configuration management can recover remarkably quickly,
other teams may never recover. It also shows the students
the value of quality in the development process as a team
that knows and keeps to systematic processes, even though
the files have reverted to their state half a day previously,
can loose far less than the half day overall.

4.20 Say “I Told You So!”
This is probably the most infuriating trick of all. At the start
of the project the students can be told what sort of
experiences they will encounter, and they can be told when
they will feel they are on target (up to about three quarters
of the way through), when they will start to go wrong (in
the integration phase) and how badly they will fare overall -
yet the project will still follow the same pattern. The course
leader can then give a very smug expression and declare “I
told you so!”.

Why? The expression “I told you so” is so annoying for
those at the receiving end who then feel frustrated, rather

guilty and angry with themselves, but nothing works better
than these few words to drive a point home!

Lessons Learned: The students learn much about
themselves and in particular their own limitations through
the activities described in this paper. They learn to become
much more realistic about their own and others’ capabilities
and about the environment they work in. Above all they
learn that they still have much to learn.

5. STUDENT REACTIONS
Whenever the courses at either the company or the
university have been described the first reaction of
academics and industrialists is surprise that the author ever
lived to tell the tale! Concern is expressed that the students
would get angry, frustrated and disillusioned on these
courses and this could prevent any value being gained. This
in fact is quite the opposite of the real case. Providing the
students have the aims and objectives explained to them at
the beginning and have the lessons reviewed at the end they
have all been very appreciative of the value of the course.
Indeed many comment that they found they have enjoyed
the challenge and that the course had proved to give one of
the their most interesting and rewarding learning
experiences.

In the sixteen years of running these courses there have only
been two cases, both at the company, where the student has
taken exception to the ‘dirty tricks’ used. In both cases they
declared the actions were completely unfair and they
declined to participate further in the course. Significantly,
in each case the graduate later proved to be unable to fit in
to the company’s software development environment and
both left the company after only a short period. It must be
stressed that the Plessey Telecommunications software
development environment was and still is typical of any
company with a large software component to its products.
The vast majority of graduates settle in well and employees
recruited from other companies have no difficulty adapting
to the environment at the company. It must be concluded,
therefore, that the two graduates concerned were
exceptional cases that are likely to have had difficulties in
any software development organisation.

Pr
ob

le
m

un

de
rs

ta
nd

in
g

Pe
op

le

ha
nd

lin
g

sk
ill

s

N
eg

ot
ia

tio
n

sk
ill

s

C
om

pr
om

is
e

sk
ill

s

Pl
an

ni
ng

 sk
ill

s

A
da

pt
ab

ili
ty

Q
ua

lit
y

un
de

rs
ta

nd
in

g

O
rg

an
iz

at
io

na
l

sk
ill

s

D
es

ig
n

sk
ill

s

Po
ss

ib
le

 a
t a

un

iv
er

si
ty

?

Inadequate specification
Make assumptions wrong

Uncertain customer
Change requirements

Conflicting requirements

Conflicting customer ideas
Different personalities

Ban overtime X
Additional tasks ?

Change deadlines ?
Quality inspections

Different truths
Change the teams X

Change working procedures
Upgrade the software ?
Change the hardware
Crash the hardware X
Slow the software X

Disrupt the file store X
Say “I told you so”

Table 1: The skills and understanding gained from the twenty dirty tricks.

6. THE OVERALL LEARNING EXPERIENCE
Each individual ‘dirty trick’ gives its own real world
experience and learning outcomes. Overall the course gives
a good preparation for the workplace. Several essential
skills for software engineering are developed. The students
gain a greater understanding of what requirements analysis
really means, that there is not necessarily right or wrong
answers to everything and that the people in the system
make the analysis considerably more complicated [6]. They
learn that people are human and make mistakes so they
must be realistic about how correct and complete
information they are given may be. They learn the value of
people handling skills and that negotiation and compromise
are also essential skills for dealing with some conflicts.
They learn that change is inevitable, that disasters are not
exceptional and that project planning must allow time for
the many unexpected problems that occur each day. They
also learn they must be flexible and adaptable in their
designs, organisation, methods and planning to cope with
the unexpected. Above all they learn to be more realistic in
their expectations and to know some of their own
limitations.

Table 1 shows where some of the essential skills come from
in terms of the dirty tricks inflicted on the students. The
table should not be taken as being a complete and exact
coverage of the relationship between the skills and tricks
described. For example, problem understanding could to
some extent be gained from all the dirty tricks employed.
The table, therefore, concentrates on the most significant
outcomes and emphasis of each action.

7. DOES IT WORK?
It is difficult to quote anything other than informal feedback
to justify the claim that these courses are very successful.
Formal feedback forms at both the company and the

university showed the students felt the courses to be
enjoyable and valuable, but as this tends to be the case for
nearly all hands on practical work it is difficult to attribute
any significance to the effect of the ‘dirty trick’ actions.
However, the informal feedback is plentiful and
consistently enthusiastic so there is some reason to feel the
courses are successfully achieving their goal of preparing
the students for the realities of the working environment.
At the Plessey company the informal feedback came from
the software managers and other experienced employees
who worked with the graduates after attending the course.
On some occasions representatives from the students
eventual destination departments attended the review
session at the end of the course to see how their new
recruits were getting on. Always the feedback was that the
experiences the students were getting gave an excellent
preparation for what they would encounter when they
started work in their development teams. The ultimate
indication of the company course’s success was that the
managers, without exception, continued to send new
graduate employees on the course year after year.

At the university the project module specification is subject
to peer scrutiny and the students project work is reviewed
by two internal and one external examiner. All have
expressed satisfaction that the course has value in academic
terms. However, it is the University’s informal feedback
from industrial contacts that arguably gives the greatest
indication of success. The Department of Computer Science
has an Industrial Advisory Committee to give advice and
guidence in its course development. The real world project
module was presented to this committee as recently as June
1999 when it received an enthusiastic response. The real
evidence, however, is in employers’ reaction to graduates
and industrial sandwich year students from the University.
Employers have reported back to the university that they

found the students from Loughborough to be particularly
well prepared for the workplace. The most common
comment being that they seem more able to think and find
out for themselves, whereas many students from elsewhere
have to be “spoon-fed” information and told what to do all
the time. As a result many companies have contacted the
Computer Science Department looking for ways to
encourage more students to apply for positions at their
organisation.

8. COULD THE UNIVERSITIES DO MORE?
The value employers have clearly put on the courses
described prompts the question “Should the universities do
more ‘real world’ preparation?” [6,10]. This, however, is a
controversial subject as many academics would argue that
this is really ‘training’ rather than ‘education’ and the
rightful place for such preparation is at the companies’ own
workplaces. The counter argument is that as the lessons
learned seem to be so significant any course that does not
include some element of real world teaching is failing to
give the complete picture. A balance is needed which
Loughborough University believes it has achieved. The real
world project module is given as one of twelve modules in
the second year, which makes it one thirty-sixth of the
degree. This, it is believed, is neither neglecting the subject
or overdoing it. The picture is not quite as simple as this,
however, as elements of real world teaching can be found in
many of the other modules, but on the other hand, there are
some teaching and learning aspects found in the real world
project module that are not directly connected with the real
world issues discussed in this paper. The ‘dirty tricks’
experience is only given in the one second year module
which it is believed is sufficient.

If the universities do provide a module of real world
preparation, do the companies need to provide any such
training themselves? The answer must be ‘yes’ if the
complete real world experience is to be given. The problem
is that there are some real world experiences that are
difficult or impossible to provide at a university. One
problem lies in the shared nature of the university
computers which means students taking a particular module
are unlikely to have exclusive use of equipment. This makes
it impossible to bring down a computer or network, slow
the software performance or disrupt the file store. It also
means that the timing of activities such as upgrading the
software is limited and may not be possible every time the
real world module is run.

Restricting the development time to set hours also proved to
be surprisingly difficult in the university environment. The
difficulty is that staffing resources means that the students
cannot be supervised at all times during a project - they
have to be left to do some of the work on their own. A
further problem is that the licensing costs of development
software means that if large classes take the module the
software tools used for project work tend to be inexpensive.
This means the students often have their own copies on
their own computers which allows them to by-pass any

restrictions on the use of university owned software and
hardware. Even if the software is not generally available for
student ownership there is often something similar that the
students can use instead. For example, an attempt to restrict
the students access to an Oracle database server was
defeated as students developed and tested their SQL using
Microsoft Access on their own computers.

The universities also have a duty to be fair when assessing
students performance. This means a dirty trick cannot be
used on an individual person or team without doing the
same to all students involved. This severely limits the scope
to provide additional tasks to disrupt the schedule. It also
means that it is not feasible to change the teams mid project
- even if all team members were equally affected it would
make the assessment of individuals very difficult. Fairness
is also associated with openness which is being increasingly
practiced in the universities. For example, at
Loughborough, all coursework hand in dates must be
specified before the module starts which makes changing
deadlines impossible. Other actions become more difficult
but are still possible. Staffing limitations means that more
than one member of staff may not be available so the course
leader may have to play all the roles him or herself. This
and the limited time available means that students get less
interaction with each role though there is still sufficient
contact to ensure valuable experience is gained.

An extra column in Table 1 indicates which of the dirty
tricks given in this paper can be employed on a university
course. Those tricks marked with a ‘?’ indicate it might be
possible but it depends on the circumstances at that
university. Those tricks marked with a ‘X’ will prove
difficult, if not impossible, at any university.

9. CONCLUSIONS
This paper has described courses given at the Plessey
Telecommunications company and Loughborough
University to provide new graduates and undergraduate
students with a better preparation for the real world. A
simulation of the real world in a project in an education
environment has many limitations that prevent the
participants experiencing the full range of problems likely
to be encountered in the workplace, however. To overcome
this, action was taken on the Plessey and Loughborough
courses to disrupt the students’ software development
progress. These actions may appear mean and vindictive,
and indeed have been labeled ‘dirty tricks’ in this paper, but
their value has been appreciated by both the students and
their employers. The feedback from the courses described
has been mostly informal in nature but the universally
favourable comments received give a strong indication that
the courses achieved their aim of preparing the students for
the workplace.

The experiences and learning provided by each of the
twenty ‘dirty tricks’ has been listed along with their
contribution towards teaching essential skills such as people

handling and planning. It must be concluded that other
employers would benefit from their graduate and sandwich
student recruits attending courses utilizing dirty tricks
similar to those described in this paper. Whether such
courses should be provided by the employers or beforehand
by the universities is an arguable point. This paper has
shown that such a course can be given at a university as part
of a degree programme and that employers appreciate the
value of such courses. However, this paper has also shown
that the limitations at a university will restrict the number
and nature of the ‘dirty tricks’ employed which reduces the
experiences that students can be given. Therefore, even if
all universities implement modules similar to that provided
at Loughborough, companies would continue to benefit
from organising their own equivalent courses [1].

If, as many employers believe, computer science and
software engineering graduates are “very knowledgeable,
but not a lot of use” then there is much to be gained by
playing a few ‘dirty tricks’ both at university and during
company induction programmes to introduce them to the
realities of a real software engineering development.

Acknowledgements
The author would like to thank Ron Newsham and Roger
Kerridge who kept the author informed of developments in
the graduate training course at the Plessey company. The
author would also like to thank Dr. Ian Newman and Mrs.
Lesley Parks and other colleagues at Loughborough
University who contributed ideas and assistance in the
development of an equivalent course at the university.

References
1. Bach, J., SE education: we’re on our own, IEEE

Software, vol.14,6 (1997), 26-28
2. Burgess, W.P., Can quality survive amidst adversity?

in Proc. of Software Quality Management VII
(Amsterdam, April 1998), Springer, 204-208

3. Chapman, N., Fox, M., Keravnou, E., Lee, M., Levene,
M., Long, D., Rounce, P., Samet, P. and Winder,R.,

'Slick systems' and 'happy hackers': experience with
group projects at UCL, Softw.Eng.J., vol. 8,3 (1993)
132-136

4. Dawson, R.J., Newsham, R.W. and Kerridge, R.S.,
Introducing New Software Engineering Graduates to
the 'Real World' at the GPT Company, Softw.Eng.J.,
vol. 7,3 (1992) 171-176

5. Dawson, R.J., Newsham, R.W. and Fernley, B.W.,
'Bringing the "Real World' of Software Engineering to
University Undergraduate Courses, IEE Proc. in
Software Engineering , 144,5-6 (1997) 287-290

6. Hilburn, T.B., Software Engineering Education: A
Modest Proposal, IEEE Softw., vol.14,6 (1997),44-48

7. Jarke, M. and Pohl,K., Requirements engineering in
2001: (virtually) managing a changing reality,
Softw.Eng.J., vol. 9,6 (1994), 257-266,

8. Leventhal, L.M., and Mynatt, B.T., Components of
typical undergraduate software engineering courses:
Results from a survey, IEEE Trans.Softw.Eng., vol.
SE-13,11 (1987) 1193-1198

9. Mahmood, Z., Software engineering in the UK - Result
of a pilot survey, in Proc. of INSPIRE IV, Training
and Teaching for the Understanding of Software
Quality (Heraklion, Crete, Sept. 1999), British
Computer Society, 111-122

10. McCracken, W.M., SE education: what academia can
do, IEEE Software, vol.14,6 (1997), 27-29

11. Milsom, F., Student Projects and Professionalism, in
The Responsible Software Engineer, Chapter 32, 1996,
Springer, London, 306-319

12. Saunders, B. and Georgiadou, E., Awareness and
practice of information systems development
methodologies in business today, in Proc. of Software
Quality Management VIII (Southampton, UK, April
1999), British Computer Society, 133-144

13. Van Genuchten, M., Why is software late? An
empirical study of reasons for delay in software
development, IEEE Trans.Softw.Eng., vol. SE-17,6
(1991), 582-590

	Abstract
	1. Background
	2. SimulatiNG the Real WorlD
	3. What Are ‘Dirty Tricks’?
	4. The Twenty ‘Dirty Tricks’

	5. Student Reactions
	X
	X
	X

	6. The Overall Learning Experience
	7. Does It Work?
	8. Could the Universities Do More?

	9. Conclusions
	Acknowledgements
	The author would like to thank Ron Newsham and Roger Kerridge who kept the author informed of developments in the graduate training course at the Plessey company. The author would also like to thank Dr. Ian Newman and Mrs. Lesley Parks and other coll...
	References

