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ABSTRACT 

This Engineering Doctorate aims to understand the factors that generate variability in small 
power consumption in commercial office buildings in order to generate more representative, 
building specific estimates of energy consumption.  Current energy modelling practices in 
England are heavily focussed on simplified calculations for compliance with Building 
Regulations, which exclude numerous sources of energy use such as small power. When 
considered, estimates of small power consumption are often based on historic benchmarks, 
which fail to capture the significant variability of this end-use, as well as the dynamic nature 
of office environments.  
 
Six interrelated studies are presented in this thesis resulting in three contributions to existing 
theory and practice. The first contribution consists of new monitored data of energy 
consumption and power demand profiles for individual small power equipment in use in 
contemporary office buildings. These were used to inform a critical review of existing 
benchmarks widely used by designers in the UK. In addition, monthly and annual small 
power consumption data for different tenants occupying similar buildings demonstrated 
variations of up to 73%. The second contribution consists of a cross-disciplinary investigation 
into the factors influencing small power consumption. A study based on the Theory of 
Planned Behaviour demonstrated that perceived behavioural control may account for 17% of 
the variation in electricity use by different tenants. A subsequent monitoring study at the 
equipment level identified that user attitudes and actions may have a greater impact on 
variations in energy consumption than job requirements or computer specification alone. The 
third contribution consists of two predictive models for estimating small power demand and 
energy consumption in office buildings. Outputs from both models were validated and 
demonstrated a good correlation between predictions and monitored data. This research also 
led to the development and publication of industry guidance on how to estimate operational 
energy use at the design stage. 
 
 
KEY WORDS 

Buildings; Performance gap; Energy performance; Operational performance; Predictions; 
Offices; Small power; Plug loads; Appliances; Electricity consumption; Occupant behaviour. 
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1 INTRODUCTION 

The Engineering Doctorate (EngD) programme is a four-year research degree part-funded by 
the Engineering and Physical Sciences Research Council (ESPRC) and is awarded for 
research conducted within an industrial context. The work included in this thesis was 
managed by the Centre for Innovative and Collaborative Construction Engineering (CICE) at 
Loughborough University and sponsored by AECOM, a global multidisciplinary engineering 
consultancy.  
 
 
 

 RESEARCH CONTEXT 1.1

In 2008, the UK Government committed to an 80% reduction in CO2 emissions, compared to 
a 1990 baseline (Climate Change Act, 2008). With buildings accounting for approximately 
40% of the UK’s total carbon emissions, the construction industry is facing increased pressure 
to deliver energy efficient, low carbon buildings (DTI, 2005). Building Regulations have 
become increasingly stringent over the last few decades demanding higher levels of energy 
efficiency, yet most requirements rely on design stage calculations, not on operational 
performance.  There is significant evidence to suggest that the operational energy use in 
buildings is typically far higher than anticipated (Cohen et al., 1999; Bordass et al., 2001; 
Bordass et al., 2004; Pegg, 2007; Carbon Trust, 2011; Burman et al., 2012). Meanwhile, 
operational energy performance is rarely considered at the design stage, with focus being 
mainly on simplified models for compliance with Building Regulations (Kimpian & 
Chisholm, 2012; CIBSE, 2013).   
 
If reductions in CO2 emissions are to be experienced in practice, design stage predictions must 
be improved to better represent the operation of buildings. As a result design will better match 
reality, and improvements will be delivered more effectively. This is the main premise behind 
this EngD which aims to improve predictions of operational energy use through better 
estimates of small power consumption in commercial buildings. As an energy end-use, small 
power encompasses office equipment such as computers, screens and printers, catering 
equipment such as vending machines and microwaves, as well as other miscellaneous plug 
loads. In the USA, small power equipment is estimated to consume approximately 20% of the 
country’s primary energy use and this is expected to increase in the next 20 years (USDOE, 
2009). Similar levels of energy use associated with small power are found in the UK, yet 
these loads are not under the remit of Building Regulations (often being referred to as 
unregulated loads).   As such, detailed estimates of small power consumption are rarely 
undertaken, and designers often rely on industry benchmarks, inherently failing to account for 
the variability of small power loads in different buildings. 
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 RESEARCH SCOPE 1.2

At the outset of this work, the researcher was given a preliminary brief to investigate the 
discrepancies between the predicted and in-use energy performance of commercial buildings. 
This brief encompassed an array of issues, which were initially investigated through a 
literature review.  Figure 1-1 provides an overview of how the scope was ultimately focused. 
Upon reviewing the relevant literature, it was evident that the exclusion of numerous sources 
of energy use from compliance calculations was a key factor contributing to discrepancies 
between design estimates and operational performance. Supporting this, preliminary findings 
from the research project revealed that small power loads were not only a sizeable end-use, 
but also one with significant variations amongst different buildings (even those with similar 
uses and operational characteristics).  Of these loads, computers were the single largest 
consumer of electricity amongst small power office equipment, hence becoming the ultimate 
focus of this thesis. The work investigated commercial office buildings, yet findings are more 
widely applicable to other building types. 

 
Figure 1-1: Scope of work throughout the research project 

 
Small power equipment can impact the operational energy performance of a building not only 
by consuming electricity, but also by generating heat, which can in turn increase the 
building’s cooling demand.  This thesis focuses on the energy consumption resulting directly 
from the use of small power equipment but also attempts to address the wider issues 
surrounding power demand and internal heat gains.  
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 AIMS AND OBJECTIVES 1.3

The aim of this thesis is understand the factors that generate variability in small power 
consumption in commercial office buildings and to demonstrate how these factors should be 
accounted for in order to generate more representative, building specific estimates of 
electricity consumption.  
 
The specific objectives of the research are detailed below: 
 
Objective 1 
Investigate the key factors contributing towards the discrepancies between predicted and 
operational energy performance through a review of existing literature. 
 
Objective 2 
Explore the impact and variability of small power consumption on the operational energy 
performance of office buildings through post-occupancy studies of multiple tenants within 
similar buildings. 
 
Objective 3 
Assess whether industry benchmarks are representative of small power equipment currently 
being used in office buildings. 
 
Objective 4 
Investigate the contributing factors to variations in small power energy consumption in office 
buildings. 
 
Objective 5 
Develop a model to estimate energy consumption of small power equipment, providing 
associated predictions of power demand profiles. 
 
 
 

 RESEARCH JUSTIFICATION 1.4

Current practices surrounding energy modelling focus mainly on simplified models required 
for compliance with Building Regulations.  These do not aim to predict operational energy 
use and deal solely with fixed building services, excluding numerous sources of energy use 
such as small power, servers, external lighting and vertical transportation. They also exclude 
variations in occupant density and operational hours. Results from compliance models often 
generate unrealistic expectations whilst also creating a risk that expected carbon savings 
might not materialise. Recent efforts such as CarbonBuzz (2013) are aiming to disseminate 
the shortcomings of current practices. As a result, clients are becoming increasingly aware of 
the so called ‘performance gap’.   
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In order to address client speculation into predictions of operational energy use, designers 
must account for all energy uses within the building, yet many of these are out of their 
control. The energy consumption and associated internal heat gains due to small power 
equipment are particularly complex as they can vary significantly, being heavily influenced 
by the building occupants. Data regarding in-use energy consumption of small power 
equipment within the context of buildings is often out-of date and incomplete to fully 
calculate its impact.  As such, there is scope to investigate the use of small power equipment 
in operational office buildings.  Moreover, the development of a model to estimate building 
specific small power energy consumption would be of great use to designers within the 
sponsor company and the wider industry.   

 
 

 THESIS STRUCTURE 1.5

The remainder of this thesis is organised into four chapters. An overview of each chapter is 
provided below. 
 
Chapter Two - Literature Review 

Chapter two summarises the findings of a literature review acknowledging previous and 
parallel research efforts. Topics covered include current practices for regulating energy use in 
England and Wales; operational and predictive elements contributing to the gap in 
performance; and a detailed review of publications regarding the energy use of small power 
equipment, and more specifically computers, in office buildings. 
 
Chapter Three - Research Methodology 

Chapter three presents the research methodology adopted and specific methods applied. 
Methodological considerations are discussed and an overview of the chosen approach is 
reviewed, including a research map of the key processes undertaken throughout the project. 
Data gathering techniques include walkthrough audits, meter readings and power demand 
monitoring at sub-circuit and equipment level, as well as a bespoke behavioural survey. Data 
analysis of energy consumption and power demand data includes time-series profiles, 
calculations of mean power demand at different operational modes, as well as estimates of 
prediction limits and uncertainty.   
 
Chapter Four - Research Undertaken 

Chapter four describes the research undertaken to meet the aim and objectives of the project.  
It is divided into six distinctive sub-chapters relating to six individual studies, and refers to the 
publications produced during the EngD (included in the appendices). The first study 
investigates the electricity consumption of small power equipment in two multi-tenanted 
office buildings, addressing Objective 2 and revealing significant variation in energy use. The 
second study highlights the potential for using knowledge acquired from existing buildings to 
inform better predictions of small power energy use, demonstrating that reliable estimates can 
be obtained by using realistic assumptions. The third study addresses Objective 3, reviewing 
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existing benchmarks for small power consumption in buildings.  The fourth study assesses the 
impact of occupant behaviour on the variations in small power consumption, partially 
addressing Objective 4.  The fifth study provides a detailed evaluation of the contributing 
factors to variation in energy consumption and usage profiles of computers, further addressing 
Objective 4.  Finally, the sixth sub-chapter details the development and validation of two 
models for estimating power demand and energy consumption of small power equipment, 
addressing the final research objective. 
 
Chapter Five - Findings and Implications 

The final chapter summarises the main findings from the research, including the impact of the 
research within the sponsor company and the implications for the wider industry, including 
the publication of an industry guidance document on design stage evaulations of operational 
energy use. Three contributions to theory and practice are claimed as a result of this EngD.  
These cover (i) detailed monitored data of small power equipment in-use, (ii) a cross-
disciplinary investigation into the factors influencing variations in small power consumption; 
and (iii) two validated models for estimating small power demand and consumption at the 
design stage. Supporting these contributions, additional recommendations for industry and 
further work are made and a critical evaluation of the research project is drawn.  
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2 LITERATURE REVIEW 

This chapter addresses Objective 1 of this thesis and provides an overview of the existing 
literature in three relevant subject areas: (i) regulating energy use in buildings; (ii) the 
performance gap; and (iii) energy consumption of small power equipment.  The chapter starts 
by reviewing the regulatory practices concerning the energy performance of buildings, 
portraying the context in which this research project was undertaken. This leads to a review of 
the causal factors contributing to the discrepancies between predictions and operational 
performance of buildings.  This section addresses the drivers and barriers to design stage 
predictions and post-occupancy monitoring of energy use, also discussing the role of 
occupants in the energy performance of buildings. Finally, a review of existing research into 
the use of small power equipment, and more specifically computers, in office buildings is 
presented.   
 
 

 REGULATING ENERGY USE IN BUILDINGS 2.1

The energy performance of buildings in England and Wales is regulated by Part L of the 
Building Regulations - Conservation of Fuel and Power. Since its introduction in 1965, Part L 
has been revised several times, incrementally tightening the requirements for improved 
energy efficiency levels.  
 

 NATIONAL CALCULATION METHOD 2.1.1

Following the implementation of the European Energy Performance of Buildings Directive 
(EPBD), the 2006 revision of Part L established a National Calculation Methodology (NCM), 
providing a single simulation-based calculation route for compliance (DCLG, 2006). For non-
domestic buildings, the NCM is implemented through the use of a Simplified Building Energy 
Model (SBEM). Calculations can be carried either through a non-graphical interface (iSBEM) 
or through accredited third-party simulation software, aiming to address the functional and 
volumetric complexities of non-domestic buildings (DCLG, 2008). 
 
As a compliance tool, SBEM relies on standard profiles for occupancy patterns and deals 
solely with regulated loads (i.e. the energy loads controlled by Building Regulations).  These 
include fixed systems for internal lighting, heating, hot water services, air conditioning and 
mechanical ventilation (DCLG, 2010a). Unregulated loads such as external lighting, vertical 
transportation, server rooms and small power (including office and local catering equipment) 
are not included as sources of energy use in SBEM. The NCM includes a set default values 
for internal gains resulting from small power equipment and these are used to calculate the 
heating and cooling demands, yet are not reflected in the electricity use calculations (DCLG, 
2010b).  
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 UNREGULATED LOADS 2.1.2

Although unregulated loads fall outside of the remit of Building Regulations, their impact on 
the operational energy performance of buildings has become of increasing interest. In 2009, 
DCLG undertook a consultation on policy options to enforce zero-carbon new non-domestic 
buildings by 2019 (DCLG, 2009). The consultation proposed that an element of unregulated 
energy should be included in the zero carbon standard, highlighting that unregulated 
emissions for different building types can vary from 5% to 67% (as a percentage of regulated 
emissions). According to the consultation document, there is a considerable variation in the 
use of unregulated energy even within the same building types, suggesting the need for 
specific unregulated energy allowances for different building uses (within the broader 
building types). This would require extensive research whilst also resulting in a complex 
system to implement and enforce (DCLG, 2009). 
 
Although DCLG is not inclined to pursue an approach for including unregulated energy 
allowances in zero-carbon legislation, a number of local authorities are doing so.  The 2011 
London Plan (Greater London Authority’s planning guidance document) requires the 
inclusion of unregulated emissions in energy statements for planning applications alongside 
the identification of measures to minimise unregulated emissions (GLA, 2011).  
 

 BUILDING LOG BOOKS AND SUB-METERING 2.1.3

From 2002, Building Regulations included two new requirements relating to the operational 
energy performance of new buildings and major refurbishments: the production of a Building 
Log Book; and sub-metering of at least 90% of all fuel types (DCLG, 2002).  
 
The building log book should include details of the installed building services and controls, 
their method of operation and maintenance as well as the metering, monitoring and targeting 
strategy, including up-to-date records of annual energy use in the building (DCLG, 2002). 
The Chartered Institution of Building Services Engineer (CIBSE) provides guidance on how 
to produce a log book in its Technical Memorandum (TM) 31, highlighting the log book’s 
role as a key source of information regarding building energy use (CIBSE, 2006b). According 
to Jones and Davies (2003), the log book has the potential to promote the efficient operation 
of buildings whilst also allowing for valuable information to be fed-back to the designers. 
Yet, according to results from a survey by Liddiard et al. (2008) only 52% of facilities 
managers and operators are actually using building log books and less than 25% of their 
clients are stipulating their provision.  
 
The implementation of sub-metering requirements has demonstrated similar shortcomings 
with poor compliance levels and extensive evidence that many installed sub-metering and 
monitoring systems have failed to meet expectations (Jones, 2012). Although guidance is 
widely available on how to develop and implement sub-metering strategies (Carbon Trust, 
2007; CIBSE, 2009; BBP, 2011), examples of poor implementation are abundant (Jones, 
2012). Key issues include the specification of appropriately sized sub-meters, accurate 
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installation and commissioning, adequate labelling, and identifying a strategy that will 
provide useful information to improve energy performance.  Jones (2008) also highlights the 
difficulties in sub-metering individual end-uses, emphasising that there are often practical 
limitations in separately measuring lighting and small power.  
 

 ENERGY CERTIFICATION 2.1.4

The implementation of the EPBD resulted in two additional regulatory requirements: Energy 
Performance Certificates (EPCs) and Display Energy Certificates (DECs). 
 
An EPC must be produced for all new buildings as well as those let or sold.  It is based on the 
calculated CO2 emissions (in kgCO2/m2 per year) for the building compared to a notional 
design to produce an Asset Rating.  Similarly to compliance calculations for Building 
Regulations, EPCs are produced using SBEM and account only for the regulated loads whilst 
also relying on standard profiles for occupancy hours and patterns. The resultant certificate 
displays the rating on a scale from A (very efficient) to G (very inefficient) providing a record 
of the building’s asset (not an estimate of their expected energy consumption or carbon 
emissions). 
 
A DEC must be produced for all non-domestic buildings with a useful floor area greater than 
1,000m2 occupied by a public authority or an institution providing a public service, being 
frequently visited by members of the public.  Unlike an EPC, the DEC displays the 
operational rating of the building, being based on the actual energy consumption over the 
preceding year.  DECs must be renewed every year, and the previous three ratings must also 
be displayed on the certificate (where applicable).  The operational rating is displayed on a 
scale from A to G calculated based on comparison against statutory energy benchmarks for 
the given building type. A DEC must also be clearly displayed in a public area of the building 
and accompanied by an advisory report listing cost-effective measures to improve its rating. 
 
Despite sharing the same rating scale, EPCs and DECs bear no correlation and are not 
comparable.  Nonetheless, such comparisons are commonly drawn and typically raise the 
concern that a favourable asset rating does not always materialised in practice.  Burman et al. 
(2012) provide a clear example of this by analysing the performance shortfalls of an academy 
in North-west England with an asset rating of B and an operational rating of G. Such 
disparities can cause misaligned expectations to clients and occupiers who are often unable to 
understand the distinction between both certification schemes.  In an analysis of 126 
commercial buildings in London, Hogg and Botten (2012) demonstrated that there is little or 
no correlation between EPC ratings and actual energy performance. Results from the study 
are illustrated in Figure 2-1 and highlight that the average energy consumption per m2 of the 
monitored buildings are remarkably similar regardless of whether the building has an EPC 
rating of C, D or E. The study also demonstrated significant variability in energy intensity 
within each EPC rating band.   
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Figure 2-1: Actual energy use of 126 office buildings grouped by their EPC rating 

 BENCHMARKS  2.1.5

The implementation of DECs resulted in the need for statutory building energy benchmarks, 
published in CIBSE TM46 (CIBSE, 2008). These are divided into 29 categories representing 
major building types and provide benchmarks for electricity and fossil thermal energy 
separately (in kWh/m2). In 2011, CIBSE commissioned a review of TM46 benchmarks based 
on DECs lodged since 2008 (Bruhns et al., 2011). Results suggested a good correlation 
between the benchmarks and actual operational ratings for most categories. The study also 
revealed that most categories use more electricity and less fossil fuel than the benchmark 
values, yet these variations can often nullify the differences.  According to Bruhns et al. 
(2011), this reflects the growth in electrical equipment usage in most buildings over recent 
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years, coupled with the internal heat gains these create, as well as improvements in insulation, 
boilers and heating controls, all of which have combined to reduce heating demand. 
 
CIBSE Guide F includes a compilation of building energy benchmarks and is updated 
periodically reflecting the best available data at the time of publication (CIBSE, 2012). 
Similarly to TM46, Guide F includes overall building consumption benchmarks, but it also 
provides additional sub-categories of buildings differentiating between ‘good practice’ and 
‘typical’ benchmarks. In addition, detailed benchmarks by component and end-use are also 
provided for a few building types.  Many of these were originally published in Energy 
Consumption Guides (ECGs) including the widely referenced ECG19  (BRECSU, 2000).  
First published in 1997, this guide provides benchmarks for individual end-uses for four types 
of office buildings: cellular naturally ventilated (Type 1); open-plan naturally ventilated (Type 
2); standard air-conditioned (Type 3); and prestige air-conditioned (Type 4).  
 

 REGULATORY LIMITATIONS  2.1.6

Despite the increasing efforts to enforce higher levels of energy performance, the Building 
Regulations have been heavily criticised, as many question whether they are stringent enough 
to meet the Government’s CO2 reduction targets (Bell and Lowe, 2000; Olivier, 2001; 
Adeyeye et al., 2007; Waddell, 2008).  Others fear that the Part L focuses too heavily on 
energy modelling, which is deeply reliant upon assumptions rather than measurements of 
actual performance (Dabee, 2009, Cooper, 2013).  In a review of compliance verification 
tools, Raslan et al. (2009) raised serious concerns regarding the credibility of the compliance 
methodology, demonstrating significant variability in the results obtained through the use of 
different compliance tools. Meanwhile, studies such as Hogg and Botten (2012) demonstrate 
that asset ratings do not reflect operational performance, highlighting the need for regulations 
to focus on actual energy consumption rather than just ‘design intent’.  
 
In March 2010, DCLG consulted on a proposal for extending DECs to all commercial 
buildings (DCLG, 2010c). In support of this, the UK Green Building Council (UKGBC) 
established a task group calling for wider roll-out of DECs. Consultation responses 
demonstrated great support from the property sector (UKGBC, 2011). Policy makers are 
currently consulting on the recast of the EPBD, with a proposal to extend the requirement of 
DECs to public buildings above 500m2 (DCLG, 2013).  
 
Recent governmental efforts have been greatly steered by the Energy Act (2011), which 
includes the provision for establishment of the Green Deal. This privately financed funding 
scheme applies to all domestic and commercial buildings, allowing the bill payers to obtain 
energy efficient improvements without having to pay for the upfront cost of the retrofit works 
(DECC, 2010). The programme relies on an overarching ‘golden rule’ principle that is based 
on estimates of energy savings, and many fear that operational savings might not materialise 
(Quartermaine, 2011; Dowson et al., 2012). The Energy Act also stipulates a minimum 
standard of energy efficiency making it unlawful for private landlords to lease properties with 
an EPC rating of less than E, after April 2018. 
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 THE PERFORMANCE GAP 2.2

The PROBE (Post-occupancy Review of Buildings and their Engineering) studies 
investigated the performance of 23 buildings between 1997 and 2002. The study aimed to 
expose the industry to the idea of feedback, permitting professionals to admit and openly 
discuss shortcomings in systems and in-use performance (Cohen et al., 1999).  Results 
highlighted that the measured energy consumption of the buildings were typically 
significantly higher than predicted in the preliminary design stages (often more than twice as 
much). Such discrepancies between calculated and measured energy use are often referred to 
as the performance gap. Several studies reveal that shortcomings often transcend energy 
performance, affecting additional performance indicators such as air quality, acoustics, and 
thermal comfort (Leaman and Bordass, 2001; Pegg, 2007; Mumovic et al., 2009; Dasgupta et 
al., 2012).  
 
Fuelled by increasing evidence surrounding the performance gap, the Royal Institute of 
British Architects (RIBA) and CIBSE launched CarbonBuzz, a free online platform allowing 
practices to share building energy consumption data anonymously (CarbonBuzz, 2013). 
Figure 2-2 illustrates the calculated and measured electricity consumption value for offices 
and educational buildings that contain both sources of data in the platform, highlighting that 
measured consumption is often significantly higher than calculated (Ruyssevelt and 
Robertson, 2013). 
 

 
Figure 2-2: CarbonBuzz calculated and measured energy use per sector (adapted from Ruyssevelt and 
Robertson, 2013) 

 
When comparing calculated performance to measured energy use, it is import to determine 
the source of calculations.  Data contained in the CarbonBuzz platform is often based on 
results from compliance models, which are often the only calculation performed by designers 
at the design stage (Kimpian and Chisholm, 2011).  Aiming to provide a fairer evaluation, 
Carbon Trust (2011) compared results from compliance calculations to measured 
consumption for regulated loads alone. Results from five buildings suggest that regulated 
consumption can be five times higher than calculated (Carbon Trust, 2011).  
 
According to Bordass et al. (2001) the performance gap is often attributed to a combination of 
to poor assumptions during design and persistent problems with operation of building services 
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equipment. In other words, current predictions tend to be unrealistically low whilst actual 
energy performance is usually unnecessarily high. However, the overall problem could be 
interpreted as an inability of current modelling practices to represent realistic use and 
operation of buildings in addition to a lack of feedback regarding actual performance. 
 

 PREDICTING ENERGY USE 2.2.1

Modelling tools such as SBEM were not developed to calculate operational energy 
consumption, instead detailed Dynamic Simulation Models (DSMs) can be used to predict the 
in-use energy performance of a building. DSMs are more suited to the functional and 
volumetric complexities of non-domestic buildings as they allow for more detailed input 
options whilst also containing extensive databases for materials and systems (Raslan et al., 
2009). Despite these and many other added capabilities, designers often fail to adequately 
predict energy consumption in buildings (Bordass et al., 2004).  
 
Focusing on the accuracy of energy predictions, there are often two types of errors: internal 
(problems inherent to the simulation code) and external (introduced by inaccurate 
assumptions and inputs). Extensive research has been carried out into internal errors, 
including Judkoff and Neymark (1994), Jensen (1994), Lomas (1996) and DeWit (1997). 
Although uncertainties are still present, stringent procedures are being implemented to ensure 
the validity of modelling programs (De Wit, 1995). CIBSE TM33 provides a framework for 
assessing the validity of commercial software calculation tools, aiming to ensure that dynamic 
simulation algorithms are technically robust (CIBSE, 2006c).  Meanwhile, external errors are 
more difficult to control and can be heavily influenced by varying user capabilities (Raslan et 
al., 2009). As DSMs become more complex and flexible, the role of the user becomes 
increasingly important, yet Bordass et al. (2001) found that designers consistently make poor 
assumptions when predicting energy use, especially regarding internal heat gains.   
 
According to Bordass et al. (2001), most energy modelling takes little account of true plant 
and control performance or of occupant and management behaviour. In additional, several 
end-uses such as control systems, kitchens and computer rooms are often excluded from the 
models (Bordass et al., 2004). In an investigation of the performance of five academies, Pegg 
(2007) highlighted that the assumptions used in DSMs were often overly optimistic resulting 
in significant underestimation of energy consumption. Results from a survey focusing on 
attitudes, opinions and experiences of UK design engineers revealed that there seems to be 
little or no consequence for inaccurately predicting building loads and energy consumption 
(Pegg, 2007).  
 
Initiatives such as the National Australian Built Environment Rating System (NABERS) are 
encouraging the estimation of operational energy (NABERS, 2011). The methodology 
emphasises that the building should be modelled as it is expected to operate, and requires that 
numerous scenarios be considered as part of a risk assessment. Similarly, several US states 
have adopted the ASHRAE 90.1 standard as their energy code, which includes a building 
performance rating method accounting for the energy consumption of all end-uses as well as a 
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detailed representation of the HVAC system (ASHRAE, 2004).  In the UK however, detailed 
energy simulations are rare amongst practitioners, with many designers not providing 
estimations for their buildings (Pegg, 2007). CIBSE is aiming to address this issue by 
providing guidance to designers on how to evaluate operational energy performance at the 
design stage (CIBSE, 2013). This Technical Memorandum (TM) was developed by the 
sponsor company and co-authored by the researcher following the preliminary findings of this 
EngD.  The guide emphasizes the importance of accounting for all end-uses in the building 
and includes a section dedicated to small power loads.  The development of this document 
highlights the relevance of the research detailed in this thesis and forms part of the 
contribution of this EngD in a contextual manner. 
 

 OPERATIONAL ENERGY PERFORMANCE  2.2.2

In the influential report ‘Rethinking Construction’, Egan (1998) highlighted that ambitious 
targets alone are not enough to deliver improvement, and that effective measurement of 
operational performance is essential.  This can be achieved through Post-Occupancy 
Evaluation (POE). In the first RIBA handbook, the final stage of the ‘Plan of Work’ (Stage 
M) was dedicated to ‘feedback’ and this process was regarded by the institute as the most cost 
effective way of improving services to future clients (RIBA, 1967). However, in 1972, Stage 
M was withdrawn from the Architect’s Appointment and POE was no longer regarded as part 
of an architect’s ‘normal services’ to their clients. According to Cooper (2001), this is likely 
to have occurred because architects did not receive the appropriate fees for reviewing their 
projects post-occupancy. Focusing on the issue of cost, Bordass (2003) highlights that the 
benefits of POE are often spread around numerous stakeholders, so no one party sees 
themselves as reaping enough benefits to bear the costs incurred.  In May 2013, RIBA 
unveiled its new Plan of Work in which the final Stage (7) in entitled ‘In-use’, with POE 
being a suggested key support task (RIBA, 2013). 
 
According to Lowe and Oreszczyn (2008), there is a significant lack of information 
concerning the actual energy performance of our existing building stock (Lowe and 
Oreszczyn, 2008). A continued absence of such data is likely to lead to a progressive 
widening of the gap between theory and practice and a failure to achieve strategic goals 
(Oreszczyn and Lowe, 2010). Aiming to address this issue, the Technology Strategy Board 
(TSB) has launched the largest POE study since PROBE, investing £8m on performance 
evaluation studies of recently constructed domestic and non-domestic buildings across the UK 
(TSB, 2013).  The key differential of this project is that applicants will be undertaking the 
evaluations themselves enabling those who participate in the study to train their own staff and 
to embed both evaluation practices and the learning process of POE into their organisations. 
The TSB is taking measures to ensure that all POE data acquired as part of the project be 
made publicly available via the CarbonBuzz platform. 
 
In 2012, the Government Construction Board launched a Government Soft Landings (GSL) 
policy (Cabinet Office, 2012). This initiative follows the principles of the BSRIA Soft 
Landings Framework (BSRIA, 2009), designed to ensure a smooth transition from early 



 Literature Review  

 15 

design stages to occupations. One of the key elements of both frameworks is the requirement 
for clear measurements of building performance during the first 3 years post completion. 
Guidance documents for GSL will be published in 2013 and all Central Government 
Department projects will have to adhere to the framework by 2016 (Cabinet Office, 2012).  
 

 OCCUPANT BEHAVIOUR 2.2.3

According to (Derijcke & Uitzinger, 2006), designing a building in a sustainable manner does 
not guarantee it will be energy efficient, as consumption is heavily influenced by the 
behaviour of its occupants. This rationale is one of great significance when investigating both 
the estimated and operational performances of buildings. In a recent study, Gill et al. (2010) 
investigated the impact of occupant behaviour on the energy and water consumption of a low-
energy housing scheme in East Anglia. The study aimed to quantify the impact of occupant 
behaviour in the variation of building performance. Results indicated that energy efficient 
behaviour accounted for 51%, 31% and 11% of the variance in heat, electricity and water 
consumption, respectively, between dwellings. 
 
Focusing on commercial buildings, Masoso and Grobler (2010) highlighted the impact of 
poor occupant behaviour during non-occupied hours in office buildings. The work was based 
on energy audits of 6 buildings and demonstrated that 56% of the energy consumed was used 
outside working hours. This is largely due to bad occupant behaviour whereby lights and 
equipment were left on at the end of the day, as well as poor zoning and controls. A further 
key finding was that 19–28% of the buildings’ energy was consumed during the unoccupied 
part of the weekend.  
 
Despite the substantial evidence that occupant behaviour can significantly impact energy 
consumption in buildings, there are few studies aimed at quantifying the impact of occupant 
behaviour on the overall energy consumption of buildings. Gill et al. (2010) attempted such a 
task through the use of a questionnaire based on the Theory of Planned Behaviour (TPB), 
highlighting the potential to apply a similar methodology to commercial buildings. The TPB 
was originally developed by Ajzen (1991) and is arguably the most widely researched 
behavioural model (Armitage and Conner, 2001). It proposes a model about how human 
action is guided by attitude, subjective norm and perceived behavioural control.  Provided that 
the behaviour is intentional, TPB predicts the occurrence of a specific behaviour based on the 
following (Francis et al., 2004): 

• whether the person is in favour of doing it (‘attitude’); 
• how much the person feels social pressure to do it (‘subjective norm’); and 
• whether the person feels in control of the action in question (‘perceived behavioural 

control’). 

By changing these three ‘predictors’, the chance that the person will intend to do a desired 
action can be increased. This concept is illustrated in Figure 2-3. 
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Figure 2-3: Theory of Planned Behaviour (Ajzen, 1991) 

According to Azjen (1991), intentions are precursors to behaviours and although there is no 
perfect relationship between behavioural intention and actual behaviour, TBP relies on the 
assumption that intention can be used to appropriately represent a behaviour. This observation 
was one of the most important contributors of the TBP model when compared to previous 
models of attitude-behaviour relationship, allowing for the variables in this model to be used 
to determine the effectiveness of interventions even if there is no readily available measure of 
actual behaviour. This can be considered to be both a strength and a limitation of the TBP.  
According to Martiskainen (2007) the model is more applicable to measuring the relationships 
between behavioural constructs rather than measurement of actual behaviour. Yet, in a review 
of the TBP, Armitage and Conner (2001) concluded that the TBP accounts for considerable 
proportions of variance in actual behaviour, supporting the TBP as a predictive theory of 
intentions and behaviours. 
 
 
 

 ENERGY CONSUMPTION OF SMALL POWER EQUIPMENT 2.3

According to ECG19, electricity consumption for small power equipment will usually 
represent between 13% and 44% of the total electricity consumption in an office building 
(CIBSE, 2000). These percentages are likely to increase as buildings become more energy 
efficient (NBI, 2012). Looking into future climatic scenarios, office buildings are likely to 
have higher cooling demands due to climate change, emphasizing the need to better 
understand (and reduce) the impact of internal gains from ICT equipment (Jenkins et al., 
2008).  Predicting internal heat gains accurately is of great importance in order to ensure that 
building systems are designed and operated as efficiently as possible. The use of nameplate 
ratings will significantly overestimate the casual gains, resulting in the specification of 
cooling systems with a higher capacity than needed (Komor, 1997). This can result in 
increased capital cost as well as higher operating costs through part loading (Dunn and 
Knight, 2005).  
 
Computers are commonly the single biggest source of energy use amongst small power 
equipment in offices (Carbon Trust, 2006; Moorefield et al., 2011; Wilkins and Hosni, 2011; 
Lanzisera et al., 2013).  Moorefield et al. (2011) conducted a monitoring study of small power 
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use in 25 offices in California over a 2-week period.  Power demand data for 470 plug load 
devices was collected at 1-minute intervals through the use of plug monitors and the data were 
extrapolated based on an inventory of nearly 7,000 devices. Results revealed that computers 
and screens were responsible for 66% of small power consumption in offices. 
 

 COMPUTER ENERGY REQUIREMENTS  2.3.1

Significant improvements in the energy efficiencies of computers have been observed in the 
last few decades, resulting in reduced energy requirements (Bray, 2006).  This can be 
attributed in part to initiatives such as Energy Star, an international certification scheme for 
consumer products that defines performance criteria including maximum power demand 
levels at different operating modes (EPA, 2012). Published data suggests that newer 
computers require less energy in ‘low power’ modes than older computers; meanwhile the 
demand for computers with increased processing power has resulted in higher power demands 
when the computers are active (Roberson et al., 2002; Kawamoto et al., 2001).  Table 2-1 
provides a summary of key published data regarding energy requirement of both laptops and 
desktops, highlighting these trends. Note that figures for laptop computers exclude the power 
demand for the in-built screens. 
 

Table 2-1: Published energy requirements figures for desktop and laptop computers  

 

 
Laptop computers consume only a fraction of the energy of desktop computers, presenting a 
big opportunity for energy savings in office buildings (Bray, 2006).  Energy efficiency is a 
critical issue for laptops as it determines the length of time the machine will be able to run 
from its battery.  As a result, laptops generally have lower power demands whilst also going 
into low power modes more quickly in order to preserve battery power.  The recent 
proliferation of laptop computers will have a large impact on the overall energy consumption 
of office buildings: laptop shipment figures are projected to be triple that of desktops in the 
next few years (Meeker et al., 2010).  Technological advancements such as the evolution of 
thin client computers and tablets are likely to drive power demand down even further, with 
thin clients being widely used in schools already (BECTA, 2006). This technology reduces 
power demand and resultant heats gains locally by shifting these to centralised processors 
with higher efficiencies (DEFRA, 2011). 
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 USAGE PATTERNS 2.3.2

Power demand is only one factor affecting the total energy consumption of computers. 
According to Bray (2006) the way in which a computer is used is arguably a more significant 
factor in determining the total energy consumption of computers. Nonetheless, there is little 
research into usage patterns and behavioural factors with most of the existing work focusing 
solely on the split between energy consumed during working hours and out-of hours. A study 
into the after-hours power status of office equipment highlighted a significant variation 
amongst the number of computers switched off at the end of the day, ranging from 5% to 67% 
(Webber et al., 2006).  Amongst the monitored computers, the rate of after-hours turn off was 
larger for laptops than desktops.  
 
Focusing on daytime usage, Kawamoto et al., (2004) suggested that on average, the 
monitored computers were powered on for 6.9 hours a day, being in active mode for 3 hours 
per day).  Studies dating back to the 90’s suggest that on average, computers are active for 
approximately 9% of the year (Mungwititkul and Mohanty, 1997). In a detailed monitoring 
study of 3 desktop computers, Nordman et al. (1996) calculated that computers were active 
between 17-31% of the time during workdays, falling to 9-16% when all days were 
considered. More recently, Moorefield et al. (2011) monitored 61 desktops and 20 laptop 
computers in-use in 25 offices in California over a two-week period. Results demonstrated 
that desktops spend on average 30% of the time on active mode, compared to 10% for 
laptops. Mean monitored time spent off highlights further energy savings potential with 
laptops spending 26% of the time off compared to 7.2% for desktops. 
 

 POWER MANAGEMENT  2.3.3

Power management settings can also have a significant impact on the energy consumption of 
computers, influencing the amount of time a computer spends on different operating modes 
(NBI, 2012). Power managed computers are programmed to enter a low power mode after a 
specified time of inactivity. A study carried out in 2004 revealed that if power management 
settings were applied to switch a computer to low power mode after 5 minutes of inactivity, 
76% of the idle time would be spent on low power mode (Kawamoto et al., 2004).  
Alternatively, setting the time delay to 60 minutes resulted in the computer only spending 
20% of its idle time in low power mode.  A study carried out by the Australian National 
Appliance and Equipment Energy Efficiency Program (NAEEEP) revealed that aggressive 
power management (powering down computers after 5 minutes of inactivity) resulted in a 
reduction of annual energy consumption by approximately 75% compared to a scenario when 
no power management settings were applied (NAEEEP, 2003).  
 

 USAGE DIVERSITY  2.3.4

When estimating the peak demand and energy consumption of computers, usage diversity 
should also be considered (Parsloe and Hebab, 1992). Actual peak demand for computers (and 
subsequent energy consumption) in a given area of a building will be less than the sum of 
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power demand for each computer due to usage diversity (Wilkins and Hosni, 2000). Diversity 
factors need to be applied to load calculations in order to limit oversizing of cooling plants 
(Komor, 1997). The diversity factor of computers (or any given equipment) is defined as the 
ratio of measured heat gains to the sum of the peak gain from all equipment (Wilkins and 
McGaffin, 1994).  A study conducted in 1994 measured the diversity factor of 23 areas within 
5 office buildings, highlighting a significant variation in diversity, ranging form 37 to 78% 
(Wilkins and McGaffin, 1994).  More recently, Wilkins and Hosni (2011) proposed diversity 
factors for individual office equipment, recommending that factors of 75% and 60% should be 
applied to computers and screens (respectively) in load calculations.  Measured diversity 
during weekends were observed to be 10% and 30% for computers and screens, respectively 
(Wilkins and Hosni, 2011). 
 

 CHANGES TO THE WORKPLACE  2.3.5

The past decade has seen a major shift towards flexible working practices in both private and 
public sectors fueled by tougher markets and technological advances (Myerson and Ross, 
2006). The recent proliferation of hot-desking is largely driven by a desire to reduce the cost 
of physical office space, and is particularly attractive to organisations where employees are 
regularly at meetings, ‘on the road’ or working remotely (Fleming, 2011).  It effectively 
increases building utilisation also increasing usage diversity, which is likely to have a 
significant impact on internal heat gains due to ICT equipment.  Research into the 
development of workplaces also suggest that further reliance on ICT is likely to occur 
regardless of the adoption of flexible working practices (Worthington, 2005).  
 
A recent study by Johnston et al. (2011) modelled the impact of two possible future scenarios 
for computer use in office buildings: (i) an energy conscious scenario where ICT acquisition 
policy is driven by an effort to minimize energy consumption and carbon emissions; and (ii) a 
‘techno explosion’ scenario where maximisation of productivity gives users freedom to select 
the level of ICT they need.  Results suggest that for a building with best practice fabric 
design, a techno-explosion scenario would result in cooling demands almost double that of the 
energy conscious scenario, highlighting the potential impact that small power equipment can 
have on the energy performance of the building and suggesting the need for greater 
understanding of the likely trends and factors influencing small power consumption. 
 
 
 

 SUMMARY 2.4

This literature review has assessed the role and shortcomings of Building Regulations in 
England and Wales, highlighting that the reliance on simplified energy models often results in 
unrealistic expectations of building performance. Compliance calculations exclude numerous 
sources of energy use such as small power equipment, contributing to significant 
discrepancies between design stage calculations and operational performance. The lack of 
data pertaining to the energy performance of buildings in-use is also likely to be a major 
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contributor to this gap in performance. Recent initiatives have raised the awareness of such 
issues highlighting that predictions of operational energy use can only be made if the building 
is modelled as it is expected to operate.  This is a great challenge to the industry as the 
efficient operation of buildings falls beyond the responsibility and control of the designer. 
 
Occupant behaviour was highlighted as an important variable influencing the operational 
energy performance of buildings.  Research into the domestic sector successfully quantified 
the extent of this impact using a survey based on the Theory of Planned Behaviour (TPB).  A 
review of this method and underlying principles was conducted highlighting the potential to 
apply a similar methodology in the assessment of variation in energy performance of office 
buildings. 
 
A review of existing literature on the impact of small power equipment on the energy 
performance of office buildings was undertaken focusing mainly on computers.  This revealed 
fast-paced changes to ICT equipment, illustrating a trend towards higher energy requirements 
in active modes of operation and lower requirements at ‘low power’ modes.  The review also 
highlighted the importance of considering usage patterns, power management settings and 
diversity of use when establishing energy consumption levels.  Recent changes to the 
workplace have resulted in greater reliance on computers, and further changes to the working 
practices are anticipated. There is scope to investigate the factors influencing the energy 
consumption of computers in more detail, especially with regards to user behaviour. 
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3 RESEARCH METHODOLOGY 

This chapter summarises the development and application of a suitable research methodology 
for addressing the research objectives outlined in Section 1.3, providing a systematic route for 
conducting the research.  The EngD programme requires that the project demonstrates 
innovation in the application of knowledge to the engineering business environment, resulting 
in the need for an applied approach to research.  Some of the most commonly used 
methodologies include: ethnographic, case study, experimental, survey and action research 
(Robson, 2011). A case study approach was deemed to be the most appropriate choice, as it 
allows for an empirical investigation of a contemporary phenomenon within its real-life 
context (Yin, 2008).  
 
Robson (2011) discusses the differences between applied research and experimental research 
design, highlighting that the manipulation of a single variable in laboratory conditions is 
impractical in the ‘real world’ due to the large number of complex variables.  According to 
Robson (2011), a case study approach is particularly beneficial when a phenomenon needs to 
be investigated in context, especially where the boundary between phenomenon and its 
context are not clear. This is of particular benefit when considering the dynamic and 
commercial nature of the business environment in which an EngD is set, as it recognises the 
need for an exploratory approach, enabling a flexible research design. According to Yin 
(2008), case studies are one of the most common methods of conducting research in business, 
allowing for complex multivariate conditions to be investigated.  Brown (2008) claims that 
the scope of a case study is bounded and the findings can rarely be generalised; yet as a 
method, it can provide rich and significant insights into events and behaviours, increasing the 
understanding of a particular phenomenon. 
 
 

 OVERVIEW OF THE METHODOLOGICAL APPROACH 3.1

A key element of the EngD programme is that the project must allow for ‘thinking stages’ 
whereby the researcher is expected to critically analyse the work undertaken and define an 
action plan for continual progression (CICE, 2012).  This approach is aligned with O’Leary’s 
cycles of research, illustrated in Figure 3-1 (Koshy et al., 2010). 
 

 
Figure 3-1: O’Leary’s cycles of research (adapted from Koshy et al., 2010) 
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Figure 3-2 illustrates the key stages in the research process for this EngD, highlighting the 
cyclic nature of the methodology focused on observations, reflections, planning and actions 
(feeding back into observations and so forth). This process allowed for six focused projects to 
be carried out after which critical decisions were made regarding the direction of the research 
based on the key outcomes.  By rationalising the research project in this way, the researcher 
was also able to provide a consistent turnaround of deliverables to the sponsor company as 
well as timely publication of research outcomes.  Each study (numbered 1-6 in the diagram) is 
discussed in detail in Section 4. Studies 1-4 have been published either as a conference or 
journal paper. Study 5 was used to inform the work undertaken in Study 6, which has recently 
been submitted to the journal Energy and Buildings. 

 
Figure 3-2: Research map detailing the processes undertaken during the research project 

 

 METHODS USED 3.2

Numerous methods were implemented in this research project and these are discussed below. 
Each individual method addresses a different requirement for data collection and/or analysis. 
Table 3-1 summarises which methods were used in each of the studies illustrated and 
numbered in Figure 3-2.  
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Table 3-1: Summary of methods/tools used in each study 

 
 

 LITERATURE REVIEW 3.2.1

A literature review is a fundamental method in any research project, highlighting previous and 
parallel research efforts related to the research topic, providing a foundation for the work to 
be carried out. The main objectives of a literature review include (Robson, 2011): 

• exposing gaps in knowledge and identifying principal areas of dispute and uncertainty; 
• identifying general patterns to findings from multiple examples of research in the area; 
• defining appropriate research methodologies and methods. 
 

An extensive literature review was carried out at the beginning of the project, being 
supplemented by further reviews throughout the duration of the research.  These addressed the 
specific needs of the individual studies whilst also ensuring that parallel publications were 
considered as they became available.  Chapter 0 provided an overview of the key outcomes of 
the literature review conducted as part of the research project. Further literature review can 
also be found within each of the publications included in the Appendices. 
 

 ENERGY SURVEYS 3.2.2

CIBSE TM22 sets out a methodology for assessing the energy and systems performance of a 
building (CIBSE, 2006a).  The procedure is based on work carried out by Field et al. (1997) 
and was implemented throughout the PROBE studies (discussed in Section 2.2.2), allowing 
energy consumption to be broken down into a number of end-use categories. These include 
two categories of particular interest to this EngD: (i) office equipment; and (ii) local kitchens 
and vending. From a sub-metering perspective; it is often not possible to disaggregate both 
these end-uses as they are commonly included in the same electricity sub-circuit.  Hence, the 
commonly used term ‘small power’ is used as an end-use category throughout this thesis, 
accounting for office equipment and local catering equipment, as well as miscellaneous plug 
loads. 
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The methods implemented in this research project are based on CIBSE TM22 and its 
underlying bottom up tree-diagram approach illustrated in Figure 3-3.  The level of sub-
metering in a building will dictate the amount of ‘high-level’ information that can be used to 
initially assess the energy performance of the building.  The information shown in Figure 3-3, 
labelled A and B can typically be obtained from a combination of readings from individual 
electricity meters and sub-meters. The methodology then provides a framework for estimating 
the expected energy consumption of individual end-uses through a bottom-up approach based 
on the information in boxes C through H.  These are generally obtained from design 
documentation and an in-depth understanding of how the building is used and managed 
including operating hours and management characteristics.  Regular reviews of bottom-up 
calculations must be carried out to ensure reconciliation with metered data.   

 
Figure 3-3: CIBSE TM22 approach for analysing energy consumption in buildings 

 
When dealing with individual items of equipment, the TM22 methodology relies on a 
combination of nameplate ratings and electrical load factors to estimate the actual load of the 
equipment.  Nameplate ratings refer to the maximum load of a device and an electrical load 
factor is often used to convert the rated load into a more usable ‘typical’ power demand value. 
Although this is an appropriate method for major pieces of equipment such as chillers and 
fans, nameplate ratings are notoriously unrepresentative of the actual power demand of small 
power equipment (as discussed in Section 2.3). Moreover, electrical load factors can be 
difficult to accurately estimate without a detailed understanding of the installed equipment 
specification. As such, an alternative method was employed when assessing the power 
demand and electricity consumption of small power equipment (see Section 3.2.2.4). 
 
It is worth noting, CIBSE TM22 provides a flexible framework that can be tailored to suit the 
specific objectives of the assessment.  As such, a number of additional and harmonising 
methods were used throughout the research project to complement the underlying principles 
of CIBSE TM22. These are detailed below. 
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3.2.2.1 Walkthrough Audit 

A walk-through survey is typically the first step in any energy audit, consisting of an 
exploratory site visit to visually inspect each of the energy using systems (Thumann et al., 
2009). Focusing on small power equipment, walkthrough surveys were used throughout this 
EngD to provide an assessment of the installed equipment throughout the building, allowing 
for detailed inventories to be produced regarding the types and quantities of installed 
appliances in individual building zones.   
 

3.2.2.2 Meter Readings 

Meter readings provide valuable information regarding the consumption of electricity over a 
given period of time.  Depending on the sub-metering of a building, meter readings can 
provide further insight to the energy consumption of specific end-uses and/or individual 
zones.  Sub-metering by zone is a common feature in most multi-tenanted office buildings 
allowing for individual tenants to be billed for their electricity consumption. This is usually 
based on monthly meter readings obtained by facilities managers. Buildings with Automatic 
Meter Reading (AMR) systems allow for electricity demand to be monitored in shorter 
intervals (typically half-hourly or 15-minutely).  This can be particularly useful in order to 
analyse the variation in electricity consumption over a given day. 
 

3.2.2.3 Power Demand Monitoring at Sub-circuit Level 

When appropriate sub-metering is not available, electricity consumption can be measured at a 
sub-circuit level using a portable electrical energy profile logger such as ‘El Component SP 
Max’ (used in this research project).  This piece of equipment monitors power using current 
and voltage transducers, and has a published accuracy of 0.25% on primary parameters.  It 
can be used to monitor most sub-circuits by connecting current transformers to a low voltage 
panel or distribution board.  However, there are practical limitations to the use of this 
monitoring technique as it is not possible to disaggregate separate end-uses that have 
electricity supplied through the same sub-circuit, and electricity is often supplied for lighting 
and small power through a single sub-circuit in office buildings (Lanzisera et al., 2013).  
 

3.2.2.4 Power Demand Monitoring at Equipment Level 

Electricity consumption and power demand can be measured and monitored at individual 
equipment level through the use of plug monitors with logging capabilities. According to 
Lanzisera et al. (2013), this novel type of monitoring is considered the best method for 
collecting energy data of small power equipment, providing high quality data at the device 
level, which can be extrapolated through the use of inventories of installed equipment to 
achieve higher level data.  Class-1 accuracy ‘Telegesis ZigBee Plogg-ZGB’ plug monitors 
were used throughout this research project and have a published measurement uncertainty of 
<0.5%.  These monitoring devices can measure and record power demand in time intervals of 
1-minute, yet they have limited internal memory capabilities.  In order to increase the capacity 
for data storage, monitored data can be wirelessly transmitted and downloaded to a computer, 
yet this must be located within approximately 10 metres of the ‘Ploggs’ in order to ensure 
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successful data transfer. Data acquired through equipment level monitoring can also be used 
to estimate electricity consumption for small power as an end-use by extrapolating the results 
using detailed inventories of the installed appliances. 
 

 BEHAVIOURAL SURVEY 3.2.3

Gill et al. (2010) implemented a novel methodology for quantifying the impact of occupant 
behaviour on the energy performance of residential buildings based on the Theory of Planned 
Behaviour (TPB).  As discussed in Section 2.2.3, the methodology characterises each 
contributing behavioural construct (behavioural attitudes, subjective norms and perceived 
behavioural control) and was used to develop a survey aimed at quantifying the impact of 
occupant behaviour on the electricity consumption levels in a multi-tenanted office building. 
Figure 3-4 illustrates this methodology, highlighting key actions taken during the 
development and implementation of the questionnaire.   
 
Prior to the development of the questionnaire, an elicitation survey was conducted with 30 
people outside of the population to be surveyed (i.e. not working in the building under 
investigation). This consisted of six open-ended questions relating to each of the three 
predictors to establish the dominant factors that contribute to decisions regarding the target 
behaviour (as described in Figure 3-4). Respondents were asked to provide three responses to 
each question and caution was taken to ensure a wide range of backgrounds and age groups 
were included. The results for the survey were analysed and trivial responses were rejected, 
ensuring that at least 75% of all beliefs were accounted for. These were then used to develop a 
multiple choice questionnaire whereby each significant belief was transformed into a question 
couplet, in line with guidance from Francis et al. (2004). This resulted in a questionnaire with 
six groups of six questions (i.e. two sections for each predictor of behaviour, with every 
question having an equivalent couplet). A copy of the questionnaire and further details on the 
development process can be found in Appendix F. 
 
Scoring scales were established for each group of questions using a 5-point Likert scale as 
standard. The direction of the scale (i.e. bipolar or unipolar) was determined to suit each set of 
question groups appropriately.  This ensured that each predictor had a unipolar and bipolar 
group of questions allowing for consistency in the scoring for each predictor. 
 
For the specific study (detailed in Section 4.4), the population of interest was: occupants in a 
multi-tenanted office building. The next step was to define the behaviour under investigation 
accounting for the fact that occupants are able to affect electricity consumption in multiple 
and diverse ways. The key behaviour for investigation was defined as: ‘switching off lighting 
and appliances when not in use’. This behaviour was deemed appropriately representative of 
the key interactions between occupant and energy consuming devices in the workplace. 
 



 Research Methodology  

 27 

 
Figure 3-4: Methodology implemented for occupant behaviour study 
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 ANALYSIS OF MONITORED DATA 3.2.4

3.2.4.1  Variation in Energy Consumption  

Annual, monthly and daily energy consumption figures (in kWh or Wh) were utilised in this 
research project. These were acquired via periodical meter readings, AMR or by aggregating 
power demand monitored data over the given period of time.  Annual and monthly 
consumption figures were used to assess the variability in energy use by different buildings or 
sub-metered areas of a building. Daily consumption data was used to assess the variation in 
energy consumption of individual small power equipment. Data analysis took the form of 
basic summary statistics, including measures of mean, maximum and minimum energy 
consumption in the sample data. Energy consumption data was also used to illustrate the 
breakdown of energy use by individual end-uses or equipment types. 
 

3.2.4.2 Time Series Profiles 

Time series profiles were used illustrate the variation in power demand (in W or kW) over a 
24-hour period.  These were plotted in 1-minute, 15-minute, half-hourly or hourly intervals 
depending on the sample rate of the data. Power demand was normalised by floor area where 
applicable (in W/m2 or kW/m2), allowing for comparison against different buildings/zones as 
well as benchmarks.  Time-series profiles were used to illustrate equipment-level and sub-
circuit level power demand data as well as results from predictive modelling. 
 

3.2.4.3 Mean Power Demand 

The mean power demand of individual small power equipment was calculated for specific 
operational modes.  Histograms were used to visualise and establish the different modes of 
operation, as illustrated in Figure 3-5.   

 
Figure 3-5: Example of histograms used to establish the different operating modes 

 
Moorefield et al. (2011) implemented a similar methodology, determining the modes of 
operation by statistical grouping of the measured data rather than on characteristics of the in-
ternal operation of the equipment. In Study 3, the monitored data was split into two 
operational modes: ‘stand-by’ and ‘on’ as these were the modes of operation provided in 
published benchmarks. Study 5 focused solely on computers and up to five operational modes 
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were established: ‘off’, ‘low’, ‘medium’, ‘high’ and ‘highest’.  This approach was taken to 
purposefully steer away from formal operational modes such as ‘idle’, ‘low active’, ‘sleep’, as 
these are applicable mainly to laboratory testing where the relevant protocols to achieve each 
mode can be performed and monitored accordingly (EPA, 2009).  Considering that this study 
aimed to assess the performance of computers in use, such formal operational mode 
definitions would not be applicable. Nonetheless, it is anticipated the ’low’ mode is 
equivalent to ‘sleep’, being the second lowest recorded mode.  

 

3.2.4.4 Time spent 

Once the monitored data was split into individual operational modes, it was possible to 
calculate the time each computer spent on each mode.   The mean time spent ‘on’ and ‘off’ for 
each machine was also calculated for comparison against published data. In Study 5, the data 
was then filtered to exclude days in which the computers were not used, as this would skew 
the results for the mean time spent ‘off’ or on ‘low’ operational modes.  The remaining data 
was also split into typical and atypical days as follows: 

• Typical days = full working days (approximately 9am – 6pm) 
• Atypical days = either partial days (when the computer was used for less than 5 hours) 

or over an extended period of time (e.g. when the computer was operational 
overnight).  

This approach provided an additional layer of analysis, allowing for the assessment of 
variability on working days of similar duration.  
 

3.2.4.5 Uncertainty analysis 

The uncertainty in mean power demand and time spent on each mode was calculated using 
Student’s t distribution, illustrating the 95% prediction intervals as follows (Coleman, 2009):  
  

 𝑢 = 𝑡. 𝑆 1+ !
!
 

 
Where: u is the uncertainty, t is the Student’s t distribution using n-1 degrees of freedom, n is 
the number of samples and S is the standard deviation. 
 
Prediction intervals were calculated instead of confidence limits, as the ultimate aim of the 
study was to inform better predictions, requiring an estimate of the outcome of future 
samples. 
 

3.2.4.6 ‘Window-plots’ 

In order to evaluate the energy consumption and usage patterns of computers, a novel method 
was developed to aid in the visualisation of the key factors influencing variation. The term 
‘window-plot’ is used to describe the outcome of this analysis and is illustrated in Figure 3-6.  
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As seen, the plot illustrates the mean power demand and time spent on a given mode 
alongside their calculated uncertainties (as described above). 
 

 
Figure 3-6: Example of window-plot illustrating mean power demand and time spent on each mode as well 
as uncertainties in each value 
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4 RESEARCH UNDERTAKEN 

This chapter presents the research undertaken to meet the aim and objectives of this thesis.  
The research was conducted in line with the research methodology presented in Section 3 and 
refers to the specific research methods detailed in Section 3.2. The chapter is divided into six 
sub-chapters relating to the six studies undertaken, cross-referencing to the publications 
produced throughout the EngD.  The key publications are included in in the Appendices for 
further detail.   
 
 

 STUDY 1: MONITORING ELECTRICITY CONSUMPTION OF 4.1
SMALL POWER EQUIPMENT  

The first study undertaken as part of this EngD addresses Objective 2 of this thesis: “Explore 
the impact and variability of small power equipment on the operational energy performance of 
office buildings through post-occupancy studies of multiple tenants”.  It provides a foundation 
for addressing the thesis’ overarching aim and consists of an initial investigation into the 
factors that generate variability in small power consumption in commercial buildings.   
 

 SCOPE AND AIMS 4.1.1

This study was presented at the CIBSE Technical Symposium 2011 (refer to Appendix A) and 
provides an analysis of monitored data for electricity consumption by different tenants in two 
multi-tenanted office buildings. The main aims of the study were to: 

• illustrate the extent to which small power equipment contribute towards total 
electricity consumption; 

• assess the variations in electricity consumption by different tenants;  
• acquire monitored data for annual small power electricity consumption and daily 

demand profiles;  
• evaluate the impact of different equipment types on small power energy use.  

The study focuses on the electricity consumption of small power equipment, yet limitations in 
the sub-metering strategy of one of the buildings required that lighting electricity 
consumption be considered in addition to small power demand.  
 

 OVERVIEW OF THE STUDY 4.1.2

Two multi-tenanted office buildings were investigated as part of this study, each housing four 
different tenants, having one tenant in common across both buildings (i.e. seven different 
tenants in total).  Table 4-1 summarises key information about each office building and Table 
4-2 provides a summary of the different tenants. 
 
The metering strategy for both buildings is illustrated in Figure 4-1. Both buildings rely on 
extensive sub-metering to provide adequate breakdown of electricity consumption for billing 
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purposes.  In each building, the landlord is responsible for the electricity consumed by all air 
conditioning equipment and controls, as well as common area lighting and lifts.  These end-
uses are metered together through a single main incoming meter. The electricity supplied to 
the tenants is sub-metered by individual floors and/or zones. Each floor is split into 4 zones 
providing a total of 32 and 16 sub-metered zones in Buildings 1 and 2 respectively. 
Additional sub-metering in Building 2 allows for further breakdown of electricity 
consumption into (i) lighting (ii) small power, resulting in a total of 32 tenant sub-meters.   
 

Table 4-1: Key information about the monitored multi-tenanted office buildings 

 

Table 4-2: Summary of the different tenants occupying the monitored office buildings 

 
 

 
Figure 4-1: Sub-metering strategy for Building 1 and Building 2 
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Note that the energy consumption of server rooms was excluded from this study (with the 
exception of Figure 4-2).  Most server rooms in the buildings were sub-metered, allowing for 
their energy use to be subtracted from each tenant’s consumption data.  Where this was not 
the case, portable energy profile loggers were used to monitor their electricity consumption 
over a given week, allowing for annual consumption to be estimated.  
 
The following steps were taken as part of the monitoring process: 

1. An assessment of the breakdown of electricity consumption by end-use was conducted 
in Building 1 in order to provide a contextual basis.  This analysis was undertaken in 
line with the methodology published in CIBSE TM22 (CIBSE, 1999) excluding the 
fossil fuel consumption (please refer to Section 3.2.2).  

2. Monthly meter readings were taken and recorded for each electricity sub-meter in both 
buildings. Monthly and annual electricity consumption data was then compiled and 
normalised by floor area, for each zone and tenant.  

3. Half hourly demand profiles were obtained for an individual zone in each building 
(both occupied by Tenant A) using portable energy profile loggers (as described in 
Section 3.2.2.3) aiming to illustrate potential variations in consumption patterns. 

4. Combined plug monitor/loggers were connected to individual items of small power 
equipment (as described in Section 3.2.2.4) and the monitored energy consumption 
data was extrapolated for an entire zone based on an inventory of installed equipment. 

 

 KEY OUTCOMES 4.1.3

Figure 4-2 displays the breakdown of electricity consumption in Building 1 by end-use.  The 
chart also illustrates split between landlord and tenant consumption, demonstrating that the 
tenants are responsible for 70% of the building’s electricity consumption.  Tenant 
consumption is split into three end-uses: (i) server rooms, (ii) small power and (iii) lighting.  
Server rooms (including local air conditioning) are the largest consumers at 28%, followed by 
lighting at 24% and small power at 18%. Although small power is the smallest tenant end-use, 
it consumed more electricity than the chillers (13%) and fans, pumps and controls (16%). 
Compared to data published in BRECSU (2000) and Carbon Trust (2010), the breakdown of 
electricity use in Building 1 is observed to be fairly typical with the exception of servers and 
fans, pumps and controls; the former being higher and the latter being lower than the 
benchmark office buildings. 

 
Figure 4-2: Breakdown of electricity consumption by end-use 
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Figure 4-3 illustrates the annual electricity consumed by each tenant for lighting and small 
power (broken down into the individual end-uses where possible) alongside existing typical 
(TYP) and best-practice (BP) benchmarks published in ECG19 (BRECSU, 2000).  Significant 
variations in electricity consumption are observed with the highest consuming tenant (B) 
using 72% more electricity per year than the lowest consuming tenant (F). Focusing on small 
power consumption, Tenant A2 consumes 73% more electricity than the lowest consuming 
tenant (G). Generally, the tenants occupying Building 2 are in the lower consuming half of the 
graph and this could be attributed to the building’s more comprehensive lighting controls 
(relying both on daylight dimming and occupancy presence detectors).  This assumption can 
be substantiated by the fact that all Building 2 tenants have an annual lighting consumption 
below the typical benchmark. Yet, significant variations in lighting consumption are 
observed, being attributed to two elements: (i) hours of occupancy; and (ii) location of 
occupied zones.  The tenant with the lowest annual consumption for lighting (F) only 
occupies zones in the perimeter of the building and also has strict hours of operation limited 
from 9am to 6pm. Walkthrough surveys and further analysis of the variation in energy 
consumption in individual zones revealed that the areas with lowest electricity consumption 
for small power were more sparsely occupied and generally included meeting rooms and/or 
reception areas with low densities of ICT equipment. 
 

 
Figure 4-3: Annual electricity consumption by different tenants compared to benchmarks 

Informal interviews with the building occupants revealed a number of behavioural elements 
that are likely to contribute towards the variation in electricity consumption for small power 
equipment.  Notable observations included: 

• the highest consuming tenant (B) operates an IT upgrade and maintenance policy 
whereby all computers must be kept on overnight; 

• the business nature of Tenant C (the second highest consuming tenant) results in 
employees often leaving their computers running overnight in order to run high quality 
graphical rendering; 

• the lowest consuming tenants in Building 1 (A and D) and the tenant with the lowest 
small power consumption in Building 2 (G) encourage their employees to switch off 
office equipment at the end of each day. 
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Focusing on the tenant that occupies zones in both building (A), their electricity consumption 
is fairly consistent in both buildings, yet they are the highest consumer in Building 2 and the 
lowest consumer in Building 1.  
 
Figure 4-4 illustrates half-hourly power demand profiles (for lighting and small power) for 
two zones occupied by Tenant A (one in each building) normalised by floor area over a 
typical week. Similar profiles are observed in both buildings with demand escalating from 
around 6am, peaking between 9-10am at around 25 W/m2 during weekdays. Towards the end 
of the day, discrepancies are observed whereby demand decreases from 5pm in Building 1, 
followed by a short peak at around 9pm.  This ‘late peak’ is associated with the cleaning 
schedule of the building during which period lights are switched back on, multiple vacuum 
cleaners are used and dishwashers are switched on.  No such ‘late peak’ is observed in 
Building 2 where cleaning takes place between 6-7pm, extending the power demand which 
gradually decreases after 7pm.  Short periods of occupancy are observed during the weekends 
in both buildings.   Regarding base loads, Building 2 has a lower demand at approximately 
3W/m2 compared to 6W/m2 in Building 1. 

 
Figure 4-4: Half-hourly electricity demand profile for lighting and small power 

Figure 4-5 illustrates the annual electricity consumption by different types of small power 
equipment in all zones occupied by Tenant A in Building 1.  As seen, computers are 
responsible for the largest proportion of electricity consumption at 17.5 kWh/m2 followed by 
computer screens at 14.6 kWh/m2, cumulatively accounting for more than 60% of the annual 
electricity consumption.  Photocopiers are estimated to consume 6.2 kWh/m2 per year, with 
the remaining types of equipment accounting for less than 2 kWh/m2 each. 
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Figure 4-5: Estimated annual electricity consumption per different types of equipment 

 

 SUMMARY 4.1.4

This study has highlighted that variations up to 72% occur in annual electricity consumption 
for lighting and small power amongst different tenants occupying two multi-tenanted office 
buildings. Small power consumption by tenants occupying the same building varied by up to 
73%. Variations in space layout, density of IT equipment, lighting controls and the 
availability of daylight are likely to be the key physical influencing factors.  Behavioural and 
management factors such as occupancy hours and the decisions surrounding the operation of 
computers outside of working hours were also observed to have an influence on electricity 
consumption. Analysis of a tenant occupying zones in both buildings suggest that the working 
practices, attitudes and behaviours of a company might transcend the immediate surroundings 
of the building being occupied, demonstrating similar annual consumptions and power 
demand profiles.  
 
Overall the study has demonstrated not only that small power is a significant energy end-use 
in office buildings but also that it can vary substantially amongst different tenants.  This 
finding substantiates the need for representative, building specific estimates of small power 
consumption. The study also suggests a need for better understanding of occupancy patterns 
and behaviour in office buildings, as these were observed to be contributing factors to 
variations in energy consumption. 
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 STUDY 2: ESTIMATING ELECTRICITY CONSUMPTION FOR 4.2
SMALL POWER AND LIGHTING IN A MULTI-TENANTED 
OFFICE BUILDING 

The second study undertaken as part of this EngD builds on from Study 1 and assesses the 
potential for using Post-Occupancy Evaluation (POE) data to inform better estimates of small 
power energy use. The study addresses the overarching aim of this thesis by demonstrating 
different ways in which small power can be accounted for in estimates of energy-use, whilst 
also providing further insight into the factors that generate variability in small power 
consumption. Data acquired in Study 1 was complemented by additional monitored data 
focused mainly on the installed equipment and occupancy patterns of two zones occupied by 
different tenants. Five models were developed for each zone with increasing levels of POE 
data being used to estimate small power and lighting consumption.  
 

 SCOPE AND AIMS 4.2.1

This study was presented at the Third International Conference on Applied Energy (in 2011), 
being subsequently selected for inclusion in a special edition of the Applied Energy Journal 
(refer to Appendix B).  The study builds on the analysis of lighting and small power energy 
consumption for Building 1 detailed in Section 4.1 and aims to: 

• provide further insight into the impact of occupancy patterns on energy consumption; 
• attempt to estimate the energy consumption for lighting and small power by different 

tenants occupying the same building based on increasing levels of monitored data. 
 

 OVERVIEW OF THE STUDY 4.2.2

Building on from Study 1 (detailed in Section 4.1), further data regarding occupancy patterns, 
installed equipment and design stage specifications in the two zones were undertaken as 
follows: 

1. Occupancy patterns were monitored in a given zone occupied by Tenant A by 
manually recording the number of occupants present in the zone in half-hour intervals. 

2. A detailed walkthrough survey was undertaken in two zones in the building occupied 
by Tenants A and B to record the number and types of office and catering equipment 
installed as well as lighting fixtures (refer to Section 3.2.2.1). 

3. Plug monitors were used to monitor the power demand of a representative sample of 
equipment installed in the zone occupied by Tenant B in 5-minute intervals to 
complement the data acquired for Tenant A in the previous study. 

4. Lighting specifications were obtained to estimate the expected energy consumption at 
design stage. 

 
The acquired information was used to produce a set of predictive models for annual electricity 
consumption in both zones. An increasing level of detail was used in each subsequent model, 
replacing typical assumptions with monitored data as described in Table 4-3.  
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Table 4-3: The five predictive models developed 

 
 
Table 4-4: Input parameters used in each model  

 



 Research Undertaken  

 39 

Table 4-4 provides a summary of the key input parameters for each predictive model. These 
include inputs for lighting, office equipment and catering (where applicable) and deals with 
high level power demand values (per m2), equipment quantities (used in combination with 
monitored power demand at equipment level) and hours of operation (per year). 
 
A ‘bottom-up’ approach was used to produce the predictive models in line with the 
methodology detailed in CIBSE TM22 (CIBSE, 1999). This methodology has previously 
been used to predict electricity consumption (Bordass et al., 2004; Cohen et al., 2006), relying 
on the use of nameplate ratings to estimate the energy consumption of equipment.  In this 
study however, nameplate ratings were replaced with monitored power data for the individual 
appliances in order to estimate the annual energy consumption of office and catering 
equipment.  
 

 KEY OUTCOMES 4.2.3

Figure 4-6 illustrates the relationship between monitored electricity demand and occupancy 
levels for a zone occupied by Tenant A on a typical day. As shown, electricity demand 
generally follows the monitored occupancy with two exceptions: 

• A significant reduction in occupancy levels is observed around lunchtime yet 
electricity demand reduces only slightly.  This is consistent with the fact that lighting 
levels remain constant and most office equipment is kept on during lunch breaks.  Due 
to power management settings, most computer screens will switch off after 15-minutes 
of inactivity and this is likely to result in the slight drop in electricity demand. 

• A spike in electricity around 9pm is observed due to the cleaning schedule of the 
building (as described in Section 4.1.3). Occupancy levels are minimal at this point as 
only 2 cleaners are present in the zone. 

 

 
Figure 4-6: Relationship between monitored electricity demand and occupancy profiles. 
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Figure 4-6 also illustrates the standard occupancy profile for offices used in Simplified 
Building Energy Models (SBEM) for compliance with Part L of the Building Regulations.  
Despite its simplistic nature for compliance purposes, standard profiles such as this are 
normally used in Dynamic Simulation Models (DSMs), yet there is little correlation between 
the SBEM profile and the monitored electricity consumption.   
 
Figure 4-7 illustrates the results for each of the 5 models as well as the actual electricity 
consumption in both zones. Model 1 relies on assumptions for a typical compliance model 
providing the same results for both zones, accounting only for lighting energy use, being 
equivalent to less than 30% of the actual electricity consumption in both cases. Results for 
Model 2 rely on rules of thumb for estimating small power consumption, increasing the 
estimates to 58% and 47% of the actual electricity consumption for Tenants A and B 
respectively.  Models 3 and 4 rely on increased levels of monitored data to inform estimates 
for lighting, office and catering equipment, gradually increasing the estimated annual 
consumption figures.  Model 5 relies on the same input parameters as Model 4 yet assumes 
realistic occupancy hours based on monitored data rather than using SBEM occupancy 
profiles.  Arguably, the final model is an estimate based on the extrapolation of monitored 
data rather than a predictive model, yet the final results account for 97% and 94% of the 
actual electricity consumption for Tenants A and B, respectively. 
 

 

Figure 4-7: Predictive model results and actual electricity consumption in the zones investigated. 

 

 SUMMARY 4.2.4

This study has highlighted the potential for using knowledge acquired from Post-Occupancy 
Evaluations (POE) to inform better predictions of energy use.  Results revealed that by using 
POE data, electricity consumption of lighting and small power can be estimated to within 6% 
of actual consumption (in the case study building). Despite the limited applicability of this 
methodology to non-speculative buildings, the results are encouraging and demonstrate that 
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reliable predictions can be obtained for lighting and small power loads by replacing 
assumptions in the modelling process with realistic inputs based on POE data. In addition, a 
clear correlation was observed between monitored occupancy profiles and tenant electricity 
consumption, highlighting the importance of using realistic occupancy hours when predicting 
electricity consumption.   
 
Overall the study has demonstrated the limitations of current compliance modelling 
techniques.  The use of high-level benchmarks in W/m2 presents an improvement over basic 
compliance calculations, yet this approach fails to account for the variability of small power 
use by different tenants. When coupled with NCM occupancy hours, the high-level 
benchmark underestimates energy consumption in both zones investigated. These findings 
further substantiate the need for representative, building specific estimates of small power 
consumption that take into account the types and quantities of installed equipment as well as 
realistic hours of operation. 
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 STUDY 3: COMPARING MONITORED DATA TO INDUSTRY 4.3
BENCHMARKS FOR SMALL POWER EQUIPMENT 

The third study undertaken as part of this EngD addresses research Objective 3: “Assess 
whether industry benchmarks are representative of small power equipment currently being 
used in office buildings”. It provides a critical evaluation of benchmarks published in CIBSE 
Guide F, which are widely used by designers in the UK.  These include high-level 
benchmarks (in W/m2) as well as equipment level power demand benchmarks (in W) at 
different operational modes.  The focus of the study is on the latter, as they can be used to 
generate building specific estimates of small power demand and consumption using a 
‘bottom-up’ approach. 
 

 SCOPE AND AIMS 4.3.1

This study was presented at the CIBSE ASHRAE Technical Symposium 2012 and provides a 
comparison of detailed monitored data for small power equipment use in office buildings 
against industry benchmarks, focusing on the widely used CIBSE Guide F.  The paper was 
selected for inclusion in a special edition of the Journal of Building Services Engineering 
Research & Technology (refer to 0) by which time a new version of CIBSE Guide F had been 
published (CIBSE, 2012). As such, the scope of the study covers key benchmarks published 
in the 2nd edition of Guide F (CIBSE, 2004), which have been widely used by designers over 
the last 8 years, as well as the updates published its 3rd edition.  Data from other sources such 
as academic papers and reports were also reviewed in order to provide additional context. 
 
The main aims of the study were to: 

• review existing benchmarks for small power consumption in office buildings;  
• compare benchmarks against monitored data for small power loads in a UK office;  
• assess the impact of recent updates to CIBSE Guide F benchmarks; 
• provide load profiles for monitored equipment to supplement the published data. 

 

 OVERVIEW OF THE STUDY 4.3.2

Table 4-5 displays a set of high-level benchmarks (in W/m2) originally published in ECG19 
(BRECSU, 2000) included in both editions of Guide F. Values for typical (TYP) and Good 
Practice (GP) demand are provided for the four types of office buildings (previously 
described in Section 2.1.5).  Such benchmarks are useful for addressing installed capacity but 
fail to account for a number of factors that can influence power demand such as space 
utilisation, power management and usage diversity (Parsloe and Hebab, 1992).  Aiming to 
address this issue, CIBSE Guide F (both in its 2nd and 3rd editions) provides an alternative 
methodology for calculating installed loads based on a ‘bottom-up’ approach.  This method 
was adapted from Energy Consumption Guide 35 (BRECSU, 1993), providing a more robust 
method for predicting power demand and energy consumption, relying on numerous sources 
of information, including: 
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• a list of expected types of equipment; 
• typical power consumption figures; 
• estimated number of devices; 
• proportion of equipment with ‘sleep mode’ enabled; 
• usage diversity; and, 
• typical hours of usage for each equipment type. 

 

Table 4-5: High-level benchmarks for office equipment  

 
 
Table 4-6 provides a summary of the typical power consumption figures provided in both 
versions of Guide F. Information regarding typical hours of usage were included in the 2nd 
edition yet these have been removed from the 3rd edition as they were based on a study carried 
out in the early 90s and were deemed out of date (Parsloe and Hebab, 1992).   
 

Table 4-6: Typical levels of energy used by office equipment published in CIBSE Guide F 

 
 
Despite the recent update to Guide F, additional information to help designers generate 
realistic predictions of small power consumption is still lacking in the following areas: 

• typical hours of usage for each equipment type; 
• levels of use/stand-by; and 
• typical number of equipment per m2 or staff. 

 
This study addresses the first two issues listed above and presents a series of small power load 
profiles for different types of appliances commonly found in office buildings.  The monitored 
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data was also used for comparison against the published benchmarks for typical levels of 
energy use (summarised in Table 4-6). 
 
A minimum of two appliances were monitored for each equipment type, with the exception of 
desktop inkjet printers. Power demand was monitored at 5-minute intervals over a 2-week 
period and aggregated energy consumption was logged every 30 minutes (refer to Section 
3.2.2.4). Table 4-7 details the scope of appliances monitored and the representation in both 
publications of Guide F. 
 

Table 4-7: Description of data included in the study as well as both editions of Guide F  

 
 

 KEY OUTCOMES 4.3.3

Figure 4-8 displays the results from the monitoring study compiled into graphs illustrating the 
typical weekday load profiles for different equipment. Table 4-8 highlights key power 
demand values for stand-by mode, maximum demand and average in-use demand.   It is worth 
noting the ‘maximum demand’ values relate to the half hourly averages and peaks within this 
interval are likely to have been higher. 
 
Figure 4-9 provides a graphical representation of the monitored data alongside the 
benchmarks published in both editions of Guide F. Power demand figures are illustrated as 
single data points or ranges in line with the available information. 
 
Note that benchmarks for fridges and microwave ovens are not covered in either edition of 
Guide F so have not been included. Benchmark data for maximum demand is no longer 
available in the 3rd edition of Guide F, having been replaced by nameplate ratings and so 
comparisons for maximum demand have been made against the 2nd edition of Guide F only. 
Benchmarks for vending machines have also been removed in the 3rd edition of Guide F.  
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Figure 4-8: Monitored power demand profiles for each appliance 
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Table 4-8: Key power demand values for each monitored appliance 

 
 
Results from this study suggest that the benchmarks published in the 2nd edition of Guide F 
were broadly unrepresentative of small power equipment currently being used in office 
buildings.  Key findings were:  

• the monitored desktop computers have higher maximum and average demands than 
the CIBSE Guide F 2nd edition benchmarks; 

• laptop computers were observed to have lower maximum demands than the 2nd edition 
benchmarks, although average consumption values were reasonable; 

• stand-by power demand for both laptop and desktop computers were observed to be 
only a fraction of the 2nd edition benchmarks; 

• 2nd edition benchmarks for computer monitors relate to CRT monitors, being 
unrepresentative of energy consumption by LCD monitors which are widely used in 
contemporary office buildings; 

• benchmarks for printers and photocopiers were fairly representative, accepting that the 
machine workload is not accounted for in the benchmarks, or in the study; 

• refrigerating vending machines were fairly well represented, however machines that 
supply heating on demand can consume significantly more energy and are heavily 
workload dependant, something that is not addressed in the Guide. 
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Figure 4-9: Comparison of benchmarks and monitored power demand for small power equipment  

A review of the recently published 3rd edition of CIBSE Guide F demonstrated that the 
updated benchmarks were generally more representative of the monitored equipment, 
however there were some notable observations:  

• the average demand for high specification desktop computers can be significantly 
larger than the benchmarks suggest and hence an understanding of this equipment is 
critical when estimating operational energy consumption; 

• photocopiers required a measure of expected load if reasonable estimates are to be 
derived from the benchmarks;  

• in all cases it would appear that the standby loads are over estimated in the new Guide, 
accepting that the limitations of this study may bias the results presented. 
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 SUMMARY 4.3.4

The revised Guide F is a significant step forward, offering more appropriate guidance on 
expected appliance consumption. However there is still work to be done to inform designers 
on how to better predict small power loads in-use, through the development of metrics that 
give an indication of typical hours of use or appliance workload. A stronger dialogue between 
designers and clients is also of utmost importance so that equipment specifications and 
operational characteristics can be accurately established, allowing designers to make better 
estimates of small power energy consumption in-use. 
 
Overall this study has emphasised the need for up-to-date benchmarks so that small power 
equipment can be appropriately accounted for in predictions of energy consumption as well as 
power demand (and subsequent heat gains).  The study has also demonstrated that power 
demand can vary significantly amongst the different equipment classed under the same 
benchmark category (such as desktop computers). It has also highlighted the importance of 
considering the different operational modes of each equipment type, providing typical usage 
profiles to illustrate likely operational patterns. There is scope however, to investigate the 
variability of usage profiles and operational patterns, as these are likely to vary with different 
users.  
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 STUDY 4: ASSESSING THE IMPACT OF OCCUPANT 4.4
BEHAVIOUR ON MONITORED ELECTRICITY CONSUMPTION  

The fourth study undertaken as part of this EngD addresses Objective 4 of this thesis: 
“Investigate the contributing factors to variations in small power energy consumption”.  
Preliminary findings of the research suggested that occupant behaviour was a key contributing 
factor to small power energy consumption.  This study provides an initial investigation into 
the impact of occupant behaviour on variations of energy use by different tenants occupying 
the same building.  
 

 SCOPE AND AIMS 4.4.1

This study was presented at the Seventh International Conference on Innovation in 
Architecture, Engineering and Construction (refer to 0) and focuses on the impact of occupant 
behaviour on the electricity consumption for lighting and small power in a multi-tenanted 
office building.  The study is based on the principles of the Theory of Planned Behaviour 
(refer to Section 2.2.3) and was conducted in collaboration with a fellow EngD candidate 
sponsored by AECOM (R. Tetlow). The main aims of the study were to: 

• develop a methodology for quantifying the impact of occupant behaviour on variations 
in electricity consumption for lighting and small power; 

• assess the impact of different precursors to behaviour on the variation of electricity 
consumption in different zones of the building. 

 
The development and implementation of the study was lead by the researcher with support 
from R. Tetlow (and his supervisors).  The analysis of the data including linear and multiple 
regression analysis was undertaken by R. Tetlow. 
 

 OVERVIEW OF THE STUDY 4.4.2

This study was undertaken in an 8-storey multi-tenanted office building located in Central 
London (refer to Building 1 in Section 4.1.2 for more details). Two distinctive sets of data 
were acquired for each of the 32 sub-metered zones in the building: one pertaining to the use 
of electricity for lighting and small power; the other regarding occupant behaviour. 
 
Monthly electricity consumption data for lighting and small power was acquired through the 
existing metering configuration of the building.  Out of the 32 data points (i.e. sub-metered 
zones) only 27 of them were deemed appropriate for inclusion in the study, as 2 zones were 
unoccupied and 3 zones were reception areas consisting mainly of transitional spaces. 

A questionnaire was developed in line with guidance by Francis et al. (2004) aiming to assess 
occupant behaviour in each building zone (as detailed in Section 3.2.3).  The questionnaires 
were distributed to all occupants in the building (approximately 800 people) between 8am and 
10am on 1st November 2011.  Respondents were informed that the questionnaires would be 
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collected after 3pm on the same day.  Care was taken to annotate each questionnaire with the 
zone in which the respondent was seated. A total of 432 completed questionnaires were 
collected, representing a response rate of approximately 50%.  Scores for each of the three 
predictors were calculated for each respondent as follows: 
 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙  𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒  𝑠𝑐𝑜𝑟𝑒 =    (𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙  𝑏𝑒𝑙𝑖𝑒𝑓  !  ×  𝑜𝑢𝑡𝑐𝑜𝑚𝑒  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  !  )
!!!

!!!

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝑛𝑜𝑟𝑚  𝑠𝑐𝑜𝑟𝑒 =    (𝑛𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒  𝑏𝑒𝑙𝑖𝑒𝑓  !  ×  𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  𝑡𝑜  𝑐𝑜𝑚𝑝𝑙𝑦  !  )
!!!

!!!

 

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑  𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙  𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑠𝑐𝑜𝑟𝑒 =    (𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ  !  ×  𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑝𝑜𝑤𝑒𝑟  !  )
!!!

!!!

 

 

A median score for each predictor was then calculated for all 27 building zones included in 
the study.   
 

 KEY OUTCOMES 4.4.3

Figure 4-10 illustrates the correlation between monitored monthly electricity consumption and 
the median scores of the occupants of each zone on each of the three predictors of the Theory 
of Planned Behaviour.  
 

 
Figure 4-10: Scatter plots of electricity consumption vs. median scores 

 
A multiple regression analysis was undertaken (by R. Tetlow), revealing that perceived 
behavioural control is the only predictor that has a statistically significant impact on 
electricity consumption. This implies that, in the building under investigation, lower 
electricity consumption could be expected in zones where occupants perceive themselves to 
have a high level of control over lighting and appliances.  No correlation was found between 
either behavioural attitude or subjective norms, and monitored electricity consumption for the 
zones. Using a linear regression analysis with perceived behavioural control as the sole 
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predictor of monthly electricity consumption revealed that it accounts for approximately 17% 
of the variation in monthly electricity consumption. 
 
The structure of the TPB goes some way towards explaining these findings as it proposes a 
direct link between perceived behavioural control and behaviour, whereas the other predictors 
are linked only to intention.  It is important to emphasise that TPB only considers planned 
behaviour, so for the purposes of this study it can only be used to explain the variation in 
electricity consumption caused by the conscious operation of lighting and appliances.  The 
intangible nature of electricity use renders it likely that a certain proportion of electricity 
consumption in buildings is a result of unplanned or instinctive behaviour which will not be 
accounted for by TPB, as well as other important factors out of the occupants’ control (such 
as workstation density, occupancy hours, procurement of appliances and light fittings, etc).     
 

 SUMMARY 4.4.4

Results from the study demonstrated a statistically significant, negative association between 
scores for perceived behavioural control and electricity consumption, suggesting that 
perceived lack of behavioural control can account for variations of up to 17% in electricity 
consumption in each of the building zones.  According to the TPB, perceived behavioural 
control can often be used as a substitute for a measure of actual control and is of greater 
psychological interest, following the premise that people’s behaviour is strongly influenced 
by their confidence in their ability to perform it (Azjen, 1991).  The findings from this study 
substantiate this claim, illustrating that the more control people perceive to have over their 
surroundings, the less energy they consume. This premise goes against the current design 
trend for more automated buildings.  
 
Although the results from this study provide an insight into the impact of occupant behaviour, 
it did not provide a usable outcome for modelling the impact of occupants on small power 
electricity consumption. The fact that individual behavioural scores had to be averaged out to 
represent an entire building zone may have been a significant limiting factor in this approach. 
Restrictions in acquiring separate lighting and small power energy consumption data might 
also be a key contributor to the study’s shortcoming. Further application of this methodology 
would require sub-metered data for small power alone as well as a significantly larger sample 
of different tenants.  These factors prevented further investigations to be carried out using the 
TPB. Consequently, alternative methods for investigating the impact of occupant behaviour 
on small power consumption should be considered and applied in subsequent studies.  These 
should allow for energy use metrics at the equipment level to better account for the variations 
in the behaviour of individual users rather than an entire building zone.  
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 STUDY 5: EVALUATING THE ELECTRICITY CONSUMPTION 4.5
AND USAGE PATTERNS OF LAPTOP AND DESKTOP 
COMPUTERS  

The fifth study undertaken as part of this EngD further addresses Objective 4 of this thesis: 
“Investigate the contributing factors to variations in small power energy consumption”.  
Findings from Study 4 suggested that one aspect of occupant behaviour had a statistically 
significant impact on variations of electricity consumption in different zones in a multi-
tenanted office building.  This study further investigates the impact of occupants on variations 
 of energy use at the equipment level (rather than at high level, sub-metered electricity 
consumption). This was undertaken through detailed power demand monitoring of different 
combinations of computers and users.  
 

 SCOPE AND AIMS 4.5.1

This study provides an analysis of small power energy consumption and usage patterns of 
computers in two UK office buildings. The main aims of the study were to: 

• provide insight into the use of computers in contemporary offices; 
• investigate the key factors influencing energy consumption of computers;  
• inform the development of a tool for estimating electricity consumption and power 

demand of small power equipment. 
 

 OVERVIEW OF THE STUDY 4.5.2

Energy consumption is a product of power demand and time. Broadly, power demand in each 
operational mode is dictated by the specifications of the equipment and the time spent on each 
mode is mainly influenced by the user.  However there are deeper and more complex 
relationships between both of these factors.  The user will establish what activities are to be 
performed by the equipment, impacting on the operational mode of the machine and in turn 
influencing power demand.  Meanwhile, the equipment’s specification will determine how 
much time it takes to perform a given task, influencing the time spent on different operational 
modes. Results detailed in Section 4.1 suggest that the organisational practices and working 
policies can have a significant impact on energy consumption. Moreover, the organisation is 
usually responsible for procuring office equipment, influencing the specification and range of 
power demand by the equipment, also establishing the job requirements and working 
practices to which the user must comply. These relationships are illustrated in Figure 4-11.  
 
A total of 8 laptop computers and 5 desktop computers were monitored over a two-month 
period at a sample rate of one minute using plug monitors (refer to Section 3.2.2.4).  Table 
4-9 contains a summary of the computers monitored as part of the study.  The sample of users 
represents a variety of job roles yet they are all employed by the same company. The 
computers were categorised into high-end, medium and low-end based on the range of laptops 
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and desktops procured by the company. A series of ‘window-plots’ were developed for each 
monitored computer (as described in Section 3.2.4).  

 
Figure 4-11: Influencing factors on small power energy consumption 

 
Table 4-9: Details of the computers monitored as part of the study  

 

 KEY OUTCOMES 4.5.3

Figure 4-12 illustrates the proportion of typical to atypical days for each computer/user, 
highlighting significant variations. Users with the highest percentage of atypical days were 
generally in senior roles, such as L1 and L3, often being out of the office, as well as users 
who left their machines running overnight, such as D1 and D2. Most desktop users left their 
computers on to perform time-consuming tasks such as energy models and renders, yet D4’s 
job role did not include such tasks. Discussions with D4 revealed that they did so to save time 
starting up the following day. 
 
Figure 4-13 illustrates the mean, maximum and minimum daily energy consumption for each 
computer.  The plots on the left illustrate the values calculated for typical days whilst the plots 
on the right illustrate the values for all monitored days.  
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Figure 4-12: Proportion of typical and atypical days monitored for each computer 

 
For laptops, the ranges of daily consumptions were observed to be lower on atypical days than 
typical days.  The opposite occurred for desktop users, where higher daily consumptions are 
recorded on atypical days, highlighting the previously discussed usage patterns. The newer, 
high-end laptops were observed to have generally lower daily consumptions values than the 
medium and low-end laptops, emphasising the premise that laptop computers are getting more 
efficient. Daily consumption ranges for desktops suggest that higher processing power results 
in significantly higher energy consumption.  
 

 
Figure 4-13: Mean, maximum and minimum daily consumption monitored for each computer on typical 
and atypical days 
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Figure 4-14 and Figure 4-15 illustrate the window-plots depicting the mean power demand 
and time spent on each operational mode (alongside their respective uncertainties) for each 
monitored desktop and laptop computer (respectively). These plots provide a practical 
approach for visualising and comparing the relationships depicted in Figure 4-11 whilst also 
highlighting the differences in operational patterns.   
 

 
Figure 4-14: ‘Window-plots’ illustrating the mean power demand and time spent on each operational 
mode for the monitored desktop computers. 



Improving Predictions of Operational Energy Performance Through Better Estimates of Small 
Power Consumption  

56 

 
Figure 4-15: ‘Window-plots’ illustrating the mean power demand and time spent on each operational 
mode for the monitored laptop computers. 
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Focusing on the higher operating modes (medium, high and highest) the window-plots 
suggest that the higher the mode, the less time is likely to be spent on it. Exceptions include 
L5 and D3, whose highest operating modes are predominantly the one in which most time is 
spent.  This would suggest that both L5 and D3 users are performing tasks that consistently 
demand the most out of their machines. Comparing the window-plots for L5 and L6 to their 
respective daily consumptions (Figure 4-13) reveals that although L5 has a significantly lower 
maximum demand than L6, it has higher maximum and mean daily consumption values.  This 
would suggest that energy savings could be made by replacing L5 with a higher specification 
computer (given the same user and job requirements).  
 
Power demand values for ‘off’ and ‘low’ modes are very similar for laptop computers 
suggesting that ‘low’ represents the formal ‘sleep’ mode whilst also highlighting the power 
demand trends discussed in the literature review.  The mean time spent on ‘low’ and ‘off’ 
modes are observed to vary significantly resulting in wide prediction intervals for most 
laptops. Time spent ‘off’ represents the operational mode where the greatest number of hours 
is spent for all laptops except L4 who often leaves his/her computer operational overnight. 
 
Focusing on desktop computers, the highest operating modes only occur on the atypical days 
and significant uncertainties are recorded for the high operating mode on both high-end 
desktop computers. The medium desktop (D3) presented similar operational patterns to L5 
whereby most of the operational time was spent on the on the highest mode of operation. 
Meanwhile, the window-plots for the low-end desktops clearly illustrate the impact of the 
users’ attitudes: although both users have the same job role, D4 is consistently left on 
overnight, whereas D5 is diligently switched off at the end of each working day. 
 
Table 4-10 and Table 4-11 provide a summary of the mean time each computer spent ‘on’ and 
‘off’ per day as well as an overall mean for all the monitored laptops and desktops.  As seen, 
the monitored laptop computers have a mean ‘on’ time of 10.9 hours, whilst desktops have an 
even higher mean at 14.1 hours.  Data published by Kawamoto et al. (2004) suggests that PCs 
(laptops and desktops) are on for an average of 6.9 hours per day, based on the monitoring of 
7 computers in conjunction with a survey of 145 office workers.  Comparing both sets of 
results would suggest that computers are currently used for longer periods of time.  This could 
be a result of different working practices amongst the office buildings investigated in each 
study but could also be a reflection of more general changes to the working environment over 
the last decade.  
 
Results from Moorefield (2011) suggest that desktops and laptops are switched off for only 
1.7 hours and 6.2 hours a day on average (respectively), highlighting even longer usage 
periods. Overall, both data sets illustrate that desktop computers are likely to be operated for 
longer periods of time than laptop computers.  Results also emphasize that significant 
variations occur on the operational patterns of computers, even amongst studies undertaken in 
recent years.  This is likely to be influenced not only by working practices but also by user 
behaviours. 
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Table 4-10: Mean time spent on and off by laptops 

     

Table 4-11: Mean time spent on and off by desktops 

 
Figure 4-16 illustrates the probability of each individual laptop and desktop computer being 
switched on throughout all monitored days. The darkest line illustrates the mean probability 
for all desktop and laptops demonstrating that in general, desktops have a larger probability of 
being on overnight, approximately 0.3 compared 0.1 for laptop computers. The mean plots 
also demonstrate a probability of 1 for most of the typical working hours for desktops, 
compared to more fluctuating probabilities for laptops, generally below 0.8 throughout typical 
working hours. Probability plots for individual laptops also demonstrate a significant variation 
in turning on / turning off times, unlike very consistent operating hours for the monitored 
desktops.   

 
Figure 4-16: Probability of computers being ‘on’ at different times of the day 
 
These results highlight the previous discussion surrounding higher out-of-hours use of 
desktop computers when compared to laptops.  It also suggested more unpredictable usage 
patterns for laptop users, which can be attributed to greater flexibility in working practices 
provided by laptop computers alongside more stringent power management capabilities.   
 
 

 SUMMARY 4.5.4

Figure 4-17 summarises the conclusions drawn regarding the relationships between the users, 
equipment and the organisation. Although the organisation was consistent amongst all 
monitored computers and users, it was observed to influence two key aspects: the job 
requirements and computer specification.  Results from the study suggest that specifying a 
computer that can adequately cope with the job requirements can result in energy savings 
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(even if these have a higher peak demand). Equipment specification was seen to influence 
more than just power levels, influencing the probability that the computer will be switched off 
at the end of the day.  However, that decision is ultimately down to the user, and attitudes 
were observed to play a larger part in such decisions than job requirements alone.  Users in 
the same job role using the same equipment were observed to have different energy 
consumption levels and usage profiles. 
 

 
Figure 4-17: Key findings regarding the relationship between the user, equipment and organization in 
relation to the energy consumption of computers. 

 

Monitored data demonstrates a significant level of variability in power demand, usage profiles 
and resultant energy consumption.  Calculated uncertainties based on the measured values 
highlight the challenge in accurately predicting power demand, as well as the resultant 
internal heat gains.  Results suggest that in order to realistically predict the power demand and 
energy consumption of computers, detailed information regarding the specification of the 
equipment would be required as well as information about the users. More broadly, results 
also suggest that desktop users are more likely to leave computers operational outside typical 
working hours than laptop users, and desktops also have a higher probability of being on 
during the working day. 
 
Although this study has investigated only a small sample of computers, findings reflect real 
operation and usage patterns, providing insightful information on the complex factors 
influencing the energy consumption of computers.  With the fast paced changes to the work 
environment, the results and discussions presented in this study provide a better current 
understanding of computer usage in offices.  This in turn will allow for better-informed 
predictions to be made regarding the likely energy consumption and internal heat gains 
associated with computers. 
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 STUDY 6: ESTIMATING POWER DEMAND AND ELECTRICITY 4.6
CONSUMPTION OF SMALL POWER EQUIPMENT 

The sixth and final study undertaken as part of this EngD addresses Objective 5 of this thesis: 
“Develop a model to estimate energy consumption of small power equipment, providing 
associated predictions of power demand profiles”. This section fulfils the thesis’ overarching 
aim by demonstrating how the factors that generate variability in small power consumption 
can be accounted for in representative, building specific estimates of energy use. Power 
demand predictions are also included as part of this study and ultimately inform the estimates 
of energy consumption.  The overarching aim of the study however, lies on the small power 
consumption estimates, being the main focus of the work undertaken. 
 

 SCOPE AND AIMS 4.6.1

This final study consolidates the key findings from the previous studies and details the 
development and validation of two models for estimating energy consumption of small power 
equipment.  The main aims of the study were to: 

• use monitored data to inform better predictions; 
• allow for the key relationships and contributing factors to be accounted for; 
• provide a useable tool for designers. 
 

The final aim presents a big challenge in that the model would require minimal inputs and 
timely outputs to ensure its usability amongst designers. As such, two separate models were 
developed: (i) a model based entirely on random sampling of detailed monitored data; and (ii) 
a simpler bottom-up model informed by key research findings. 
 
A zone in one of the buildings investigated in the previous study (Section 4.5) was used to 
illustrate the processes behind each of the models as a worked example (below). Both models 
were then subjected to a blind validation by testing each methodology in a different building 
occupied by the same organisation. The development of both models and key results from the 
validation exercise are included in a paper recently submitted to Energy and Buildings Journal 
(Appendix E). 
 
It is worth noting that the building zones used to inform the development of models were not 
used in the testing or validation of the models.  Model development was based on data 
acquired for Study 5, consisting of two office zones occupied by the sponsor company: one in 
St Albans and one in London.  The model testing (also referred to as worked example) was 
based on a separate office zone/floor in the sponsor company’s London offices. The model 
validation was carried out for a zone in the sponsor company’s Bristol offices. 
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 MODEL 1: RANDOM SAMPLING OF MONITORED DATA 4.6.2

The first model developed in this study relies on the random sampling of detailed monitored 
data to represent an office space with a defined quantity of different types of small power 
equipment. Daily power demand profiles (in 1-minute intervals) were randomly selected from 
a database of monitored data and aggregated to represent the number of installed equipment.  
This process was repeated 30 times to assess the variance of the outcomes, providing 
prediction limits within which estimated power demand is expected to fall.  An inherent 
strength of this approach is that it avoids the need for assumptions regarding the expected 
usage profiles of individual equipment, relying on the monitored data to account for such 
variations.  
 
Table 4-12 provides a summary of the monitored equipment included in the database used to 
predict power demand profiles and energy consumption.  It also includes the number of daily 
profiles available for each equipment type, as well as their respective quantities within the 
office space under investigation.  The selection of devices included in the monitoring study 
was based on the installed quantities and expected energy use, also attempting to capture 
information regarding the expected variability of usage. With the exception of LCD computer 
screens, at least 8% of the installed equipment (per type) was monitored. Previous research by 
the authors suggests low variability of power demand by computer screens resulting in fewer 
screens being monitored as part of this study.  
 

Table 4-12: Equipment included in the database and installed quantities for the worked example 

 
 
Monitoring took place over 3 months at 1-minute sample rates and equipment with similar 
specifications were grouped together to increase the sample size (within the given monitoring 
period length).  According to Lanzisera et al. (2013) sampling faster than 1-minute does not 
provide significant benefit and that monitoring periods longer than a few months provide little 
improvement in estimating annual energy use.  By grouping similar equipment used by 
different users, the sample also provides a wide variety of equipment-user combinations, 
helping to account for elements of user behaviour in the predictions. The monitored data was 
split into weekdays and weekends allowing for two sets of profiles to be calculated 
respectively. No filtering was done to exclude days in which the equipment was not used as 
the ratio of operational/non-operational days was used to account for usage diversity.  
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4.6.2.1 Calculation methodology 

A daily profile for each equipment type was calculated by randomly selecting profiles from 
the database (for weekdays and weekends separately). For example, a summed profile for the 
19 high-end desktop computers was calculated by adding up 19 randomly selected weekday 
profiles out of the 180 available in the database.  This process was repeated 30 times in order 
to assess the variability of the data, allowing for prediction limits to be calculated (as 
described in Section 3.2.4.5).  
Daily profiles were calculated in this manner for each equipment type, resulting in a total 
power demand profile for weekdays and weekends alongside their prediction limits.  Daily 
energy consumption predictions were calculated based on the daily profiles for weekdays and 
weekends, also including upper and lower prediction limits.  The data was then extrapolated 
to monthly consumption by assuming 20 weekdays and 8 weekend days per month, whilst 
annual consumption was based on 52 weeks (each with 5 weekdays and 2 weekend days).   
 

4.6.2.2 Comparison Against Monitored Data 

Figure 4-18 illustrates the low-end and high-end predictions alongside metered power demand 
profiles for the office space under investigation over five different weekdays. Although the 
predicted profiles are in 1-minute intervals, metered data is illustrated in 15-minute intervals, 
as that is the highest resolution available with the AMR system. The metered profiles fall 
within the predicted range before 8am and after 8pm (i.e.: base load), often being at the higher 
end of the prediction range. During the working hours the metered demand is observed to be 
constantly around the high-end prediction, which is observed to underestimate the demand on 
occasion, especially around lunchtime. It is likely that the discrepancy in the data resolution 
(1-minute vs. 15-minute intervals) could be partly to blame for some of the instances when 
the metered profiles fall below the high end prediction, as higher averages over a 15-minute 
period can be expected as a result of the frequent oscillation in the predicted power demand.  
The presence of plug loads not included in the model (such as mobile phone chargers, desk 
fans and task lighting, etc) may also be to blame for the underestimation of power demand. 
The predicted profiles correlate well to the metered data during the transition between the 
base load and peak demand (and vice-versa), including a dip around lunchtime which is also 
observed in the metered data. The graph also includes the profile used in cooling demand 
calculations for compliance with Building Regulations in England and Wales in line with the 
National Calculation Methodology (NCM). In this case, the NCM profile would slightly 
overestimate the operational demand when the office is occupied, especially around the 
beginning and end of the working day, whilst significantly underestimating overnight heat 
gains. 
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Figure 4-18: Predictions and metered weekday power demand profiles for the worked example using 
Model 1 

 
Figure 4-19 compares the predicted range of monthly energy consumption against metered 
data for 9 months in 2012 (metering failures prevented further months from being included). 
Metered monthly data was normalised by accounting for 28 days (on a pro-rata basis).  
Results illustrate that metered consumption falls within the predicted range for all months.  
Similarly to the power demand analysis, most of the metered data falls in the higher end of 
prediction range (with the exception of December).   

 
Figure 4-19: Predictions and metered monthly energy consumption for the worked example using Model 1 

 

 MODEL 2: BOTTOM-UP MODEL 4.6.3

The second model addresses the needs of industry more closely, taking a simple bottom-up 
approach inspired by the methodology set out in CIBSE Guide F.  It is informed by findings 
from the previous studies but does not rely directly on detailed monitored data.  The model 
also allows designers to assess the impact of different variables on the outputs, encouraging 
informed discussions with the prospective occupier.  
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4.6.3.1 Equipment Inputs 

The first set of inputs relate to the types and quantities of equipment procured or installed in 
the area under investigation. The power demand of each equipment type is characterised into 
three operational modes: ‘off’, ‘low’ and ‘on’.   

• Poff is the lowest power draw whilst the equipment is connected to the mains.   
• Plow is defined as a low power mode that the computer is capable of entering automatically 

after a period of inactive.  
• Pon represents the average power demand for all the different operational modes whilst the 

machine is active.   
 
According to Wilkins and Hosni (2011), two modes of operation (active and low) are 
appropriate for the purpose of load calculations. The addition of the ‘off’ mode allows for 
further insight into the impact of out-of-hours usage. Although power demand can vary 
significantly whilst the machine is active, the widely established Energy Star framework 
proposes that computers spend the greater proportion of time on idle whilst operational (EPA, 
2012).  As such, idle demand values can be used to adequately represent the ‘on’ mode input.  
 
Power demand values can be obtained from published benchmarks or if the machines being 
specified are Energy Star rated, these can be obtained from their database available online 
(Energy Star, 2013). In the case of refurbishments or when the appliances being installed are 
readily available, these can be monitored for short periods of time to inform better inputs.  
Plug-in devices with an internal display such as the ‘Efergy energy monitoring socket’ (with 
accuracy within 2%) are widely available and can provide live readings of power demand 
(Efergy, 2013). 
 
The model provides four usage profiles to be assigned to each type of computer and screen 
controlled by individual users (as a percentage of the total number of equipment installed):  

• transient - users who are often out of the office or away from the their desks; 

• strict hours - users who work strictly during the company’s standard working hours 
and who are at their desks for the majority of the working day; 

• extended hours - users who often arrive earlier or leave later than the company’s 
standard working hours and who are at their desks for the majority of the working day; 

• always on - users who are required to leave their machine on all the time. 
 

The profiles were established based on findings from Study 5 (Section 4.5). Usage profiles 
must also be assigned to ‘communal’ equipment such as printers and photocopiers as well as 
catering appliances. If the four profiles are deemed to be an inappropriate representation of 
the usage of these appliances, more representative profiles can be developed manually and 
applied instead. Table 4-13 details the equipment inputs used for the worked example based 
on a walkthrough audit of the installed equipment alongside findings from the study in 
Section 4.5. 
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Table 4-13: Equipment inputs for Model 2 

 
 

4.6.3.2 Operational & Benchmarking Inputs 

Inputs regarding the operational characteristics of the office include: 

• Tarr (norm) = standard arrival time;  
• Tdep (norm) = standard departure times 
• Tarr (ext) = extended arrival time;  
• Tdep (ext) = extended departure times. 

 
The model also requires an estimate of the proportion of equipment switched off at the end of 
the day (excluding those who are assigned an ‘always on’ profile) and expected usage 
diversity (on weekdays and weekends).  A prompt also enquires whether reduced occupancy 
is expected during lunchtime and if so, when this is likely to occur. Table 4-14 illustrates the 
operational and benchmarking inputs used to characterise the office space under investigation.  
 

Table 4-14: Operational inputs for Model 2  
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Wilkins and Hosni (2011) suggest that a diversity factor of 75% should be applied to 
computers in load calculations, with weekend usage diversity ranging from 10% to 30%. A 
usage diversity factor of 75% was applied, with a weekend diversity of 15% accounting for 
occasional weekend workers. 
 
Daily profiles of computer diversity published in Wilkins and Hosni (2011) demonstrate that 
peak diversity can vary on a daily basis, ranging by up to 20%.  In order to account for such 
variations, the model generates two sets of power demand profiles (and subsequent energy 
consumption figures) by utilising a low-end and high-end usage diversity factor.  These are 
assumed to be 10% lower and higher (respectively) than the diversity factor established in the 
model inputs, accounting for a total variation of 20% in line with data published by Wilkins 
and Hosni (2011). 

 

4.6.3.3 Usage Profiles 

The operational inputs are used to adjust the usage profiles as illustrated in Figure 4-20 and 
Figure 4-21. Pbase represents the base-load and is calculated based on the proportion of 
equipment switched off, representing a ratio between Poff and Plow accordingly.  If lower 
occupancy levels are expected over lunch, the usage profiles for screens is modified to include 
a dip between the specified times. Results from Model 1 (Section 4.6.2) suggest that the 
cumulative power demand of screens is likely to reduce by approximately 25% at lunchtime, 
hence, Plunch is estimated to be = Pon x 0.75. No such drop in power demand was observed in 
the monitored profiles for computers, hence these are modelled as a constant over lunchtime. 
 

 
Figure 4-20: Usage profiles applied to computers in the worked example 
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Figure 4-21: Usage profiles applied to computer screens in the worked example 

 

4.6.3.4 Outputs 

The model calculates power demand profiles in kW for a typical weekday by multiplying the 
power demand of each item of equipment at different operational modes to the selected usage 
profiles. The low-end and high-end usage diversity factors (+/- 10% of the diversity factor 
specified) are applied to the cumulative power demand profile, accounting for daily variations 
in usage diversity.  This approach also accounts for the inherent difficulty in establishing an 
accurate estimate of diversity factor, especially at the design stage. As such, the model’s 
outputs are presented as a range (between the high-end and low-end scenarios). Weekend 
power demand profiles are calculated in a similar way, yet rely on the specified usage 
diversity factor for weekends.  If the office is unoccupied during weekends, the base-load is 
applied throughout.  
 
Figure 4-22 illustrates the power demand profiles calculated by the model for the worked 
example.  This is includes  low-end and high-end outputs for weekdays and weekends. Energy 
consumption values are calculated based on the summed energy consumption of typical 
weekday and weekend power demand profiles. Monthly consumption is based on 20 
weekdays and 8 weekends, whilst annual consumption is based on 52 weeks.   
 

 
Figure 4-22: Weekday and weekend profiles for the worked example 



Improving Predictions of Operational Energy Performance Through Better Estimates of Small 
Power Consumption  

68 

4.6.3.5 Comparison Against Metered Data 

Figure 4-23 illustrates the low-end and high-end predictions for the worked example 
alongside metered power demand profiles for the office space under investigation over five 
different weekdays. A good correlation is observed for peak demand and base-loads, with 
most of the metered data falling within the predicted range.  The model predicts a steeper and 
slightly earlier rise between the base-load and peak demand in the morning, yet one of the 
metered profiles falls very close the predicted range.  The decrease in power demand at the 
end of the working day is represented fairly well by the prediction range, which only slightly 
overestimates the time it takes for power levels to descend to the base-load. It is worth noting 
that predictions are made in 1-hour intervals whereas the metered data has a frequency of 15 
minutes. This discrepancy in granularity between both sets of data inherently presents a 
challenge to the prediction tool, yet results are still reasonable. 
 

 
Figure 4-23: Predictions and metered weekday power demand profiles for the worked example using 
Model 2 

 
Figure 4-24 compares the predicted range of monthly energy consumption against metered 
data.  Results illustrate that metered consumption falls within the predicted range for all 
months except for December.  This is likely due to fewer working days during the holiday 
season. In light of these findings, the ‘low’ prediction has been amended to represent a typical 
December month, including 15 working days as opposed to 20 working days. 
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Figure 4-24: Predictions and metered monthly energy consumption for the worked example using Model 2 

 

 VALIDATION 4.6.4

In order to assess the validity of the outputs from both models, a blind validation was 
performed in a different office building occupied by the same company. Monthly electricity 
consumption data fell entirely within the prediction range for both models. Power demand 
profiles were generally representative of metered data, slightly underestimating peak demand 
on occasion. By comparison, the NCM profile would significantly overestimate peak demand 
(by more than 50%) yet still underestimating overnight heat gains.  A detailed description of 
the validation process can be found in Appendix E and key results are discussed below. 

 DISCUSSION 4.6.5

Both models were observed to provide representative predictions of power demand, yet 
Model 1 provides estimates with greater granularity, better accounting for the variability in 
peaks throughout the day.  This can be of particular use if the profile generated is to be used 
in a DSM to predict cooling demands in buildings that are very sensitive to changes in 
internal heat gains. Meanwhile, estimates of daily profiles using Model 2 (in 1-hour intervals) 
were still observed to be representative of metered data in intervals as small as 15-minutes.  
Although the model based on random sampling of monitored data (Model 1) minimises the 
need for assumptions regarding the usage patterns of equipment, it also requires significantly 
more data than the bottom-up model, much of which is not available at the design stage. 
Moreover, its ability to predict power demand profiles is directly related the quantity and 
quality of the monitored data: equipment, behaviours and operational characteristics that have 
not been monitored will not be accounted for in the predictions. Alternatively, the bottom-up 
approach (Model 2) provides a more usable tool with no detriment to the quality of 
predictions for energy consumption. It is worth noting however, that such a model would be 
used in conjunction with published benchmarks, and these must be representative of the 
specific equipment in-use if reliable predictions are to be made. 

 



Improving Predictions of Operational Energy Performance Through Better Estimates of Small 
Power Consumption  

70 

Figure 4-25 provides a comparison between the results from both models, metered data and 
benchmarks published in ECG19 (for annual energy consumption and peak power demand). 
The estimates are presented as ranges, in line with the low-end and high-end predictions. 
Metered data for energy consumption was extrapolated from monthly consumption figures, 
and power demand ranges represent variations in peak demand throughout the five daily 
profiles used previously in this study.  The benchmark ranges relate to typical and good 
practice values for Type 3 office buildings, as both offices modelled as part of this study 
would fall under this category.  For contextual reference, a wider range including benchmarks 
for all office types included in ECG 19 are also illustrated in the graph.  Model results and 
metered data are presented for both offices investigated in this study: the worked example and 
the validation model. 
 

 

Figure 4-25: Comparison of model results against ECG19 benchmarks  

 
The ECG 19 range for Type 3 offices would underestimate the annual energy use for the 
example building and overestimate the consumption in the office used for the validation 
exercise. Results from both models presented here provide more representative estimates than 
the benchmarks. When considering the wider range of benchmarks (for all building types), 
both modelled offices are observed to fall within the given range. When considering peak 
power demand, the benchmarks are observed to be too high for both modelled offices, with 
the validation office falling below even the wider benchmark range.   
 
These results highlight the risks associated with the use of high-level benchmarks. Even 
though the wider range of energy consumption benchmarks encompasses the predicted and 
measured consumption in both offices, the use of such an extensive range would present a 
large uncertainty. There is clearly a variation in energy consumption and power demand 
amongst buildings that would fall under the same benchmark category, suggesting a need for 
more appropriate, small power specific benchmark categories or the use of a model such as 
proposed here.  The use of benchmarks for peak demand would have significant implications 
on the systems design, potentially resulting in oversized cooling systems. It is worth 
considering however, that systems are expected to last for the specified life span of the 
building, and allowances should be made for future developments. Both models proposed 
here can be used to predict the impact of operational changes to the small power loads, 
ensuring more resilient designs. 
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 SUMMARY 4.6.6

Both models have demonstrated a good correlation between metered data and monthly 
predictions of energy consumption. Prediction ranges for power demand profiles were also 
observed to be representative of metered data with minor exceptions. Model 1 provides a 
more robust methodology for predicting the variability in power demand throughout a given 
day, being of particular use to building services design that are very sensitive to changes in 
internal heat gains.  However, appropriate monitored data for individual appliances must be 
acquired to suitably represent the office space under investigation, and these might not be 
available at the design stage.  
 
Model 2 provides representative predictions through a bottom-up approach, relying on data 
that is commonly available to designers coupled with assumptions regarding the likely usage 
patters of the office space.  This approach emphasizes the need for a strong dialogue between 
designers and clients/occupiers, allowing for equipment specifications and operational 
characteristics to be accurately represented in the model. The modelling tool also facilitates 
this dialogue, enabling a clear visualisation of the impact of changing certain variables on the 
overall energy consumption and power demand. 
 
Currently, small power consumption and demand are often estimated based on the use of 
benchmarks.  This approach has its limitations, mostly due to the variability of small power as 
an end-use, which might not be directly related to current benchmark classifications (i.e. 
office types).  Both models could benefit from additional monitoring data to inform 
predictions with wider applicability, yet results were observed to provide significantly better 
estimates than ECG 19 benchmarks. If designers were to utilise either of the models proposed 
in this study, more representative estimates of small power consumption and demand could be 
established at the design stage. This would present a significant improvement to predictions of 
building performance, not only from an energy consumption perspective but also from a 
thermal comfort standpoint, by ensuring that internal heat gains due to small power equipment 
are accurately accounted for in the design of building systems.   
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5 FINDINGS AND IMPLICATIONS 

This chapter presents the main findings and implications of the work undertaken, 
summarising how the overarching aim and specific objectives were addressed and ultimately 
achieved.  The contributions of the work to existing theory and practice are discussed, as well 
as the implications on the sponsor company and the wider industry. 
 
 

 KEY FINDINGS OF THE RESEARCH 5.1

The overarching aim of this EngD was to understand the factors that generate variability in 
small power consumption in commercial office buildings and to demonstrate how these 
factors should be accounted for in order to generate more representative, building specific 
estimates of energy consumption. This aim was achieved by undertaking six interconnected 
studies addressing five specific research objectives. Key findings relating to each of these 
objectives are summarised below. 
 
Objective 1: Reviewing discrepancies between predicted and operational performance 

A literature review was conducted to investigate the key factors contributing to the 
discrepancies between predicted and operational energy performance. This revealed that 
regulatory standards are heavily focused on simplified calculations undertaken at the design 
stage and these do not aim to predict operational energy use. The absence of numerous 
‘unregulated’ energy end-uses from the calculations was deemed to be a key factor 
contributing towards the performance gap. Existing literature also highlighted the significance 
of a lack of information concerning the impact of occupant behaviour on energy performance 
of buildings. Further review of literature concerning small power equipment revealed that the 
fast-paced changes to the work environment are likely to influence energy consumption 
levels.  This emphasised the need to for up-to-date benchmarks and methodologies to 
adequately account for small power in predictions of building operational energy 
performance. 
 
Objective 2: Assessing the impact and variability of small power consumption 

A monitoring study was conducted to assess the impact and variability of small power 
consumption on the operational energy performance of two multi-tenanted office buildings. 
Results demonstrated that there are variations in small power consumption of up to 73% 
amongst different tenants occupying the same building. When assessing lighting and small 
power consumption of the same company in two office buildings, normalised energy use was 
observed to be consistent, suggesting that the working practices, attitudes and behaviours of a 
company might transcend the immediate surroundings of the building being occupied.  The 
study also demonstrated that computers were the single biggest energy consumer amongst 
small power equipment in the monitored offices.   
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Objective 3: Reviewing existing small power benchmarks  

Investigations into current practices revealed that designers rely heavily on published 
benchmarks to account for small power consumption and loads at the design stage.  As such, a 
study was undertaken to assess whether industry benchmarks are representative of equipment 
currently being used in office buildings.  The scope of the study included benchmarks 
published in the 2nd edition of CIBSE Guide F, widely used by designers over the last decade, 
as well as recent updates published in its 3rd edition.  Comparison against monitored data 
suggested that the benchmarks published in the 2nd edition of Guide F were broadly 
unrepresentative of small power equipment currently in use. The 2012 updates provided a 
significant improvement, offering more appropriate guidance on expected appliance 
consumption. However there is scope for further improvement by providing information 
regarding the typical hours of use and appliance workload.  
 
Objective 4: Key contributing factors to variation in small power 

The contributing factors to variations in small power energy consumption were preliminarily 
investigated whilst addressing Objective 2. Behavioural and management factors such as 
occupancy hours and the decisions surrounding the operation of computers outside of working 
hours were observed to have a likely influence on electricity consumption. Further evidence 
of the impact of hours of operation was highlighted through an investigation of the potential 
of using POE data to improve predictions of small power energy use.  Five models were 
developed starting with the use of basic benchmarks and rules of thumb, progressing towards 
increasingly detailed estimates based on monitored data of an operational office building. 
Results revealed that reliable estimates can be obtained for lighting and small power loads by 
using realistic assumptions for installed equipment and operating hours.  
 
The impact of occupant behaviour was analysed through two studies.  The first consisted of a 
survey based on the Theory of Planned Behaviour and aimed to quantify the impact of 
individual precursors to behaviour on the variations in electricity consumption by different 
tenants.  Limitations in sub-metering resulted in the need to assess the cumulative 
consumption of lighting and small power, rather than the latter alone. Results revealed that 
scores for perceived behavioural control had a statistically significant correlation to electricity 
consumption data for lighting and small power, accounting for variations of up to 17% in 
electricity consumption. Although these results provide an insight into the impact of occupant 
behaviour, it does not provide a usable methodology for modelling the impact of occupants on 
small power electricity consumption. Hence, a second study was conducted to investigate the 
relationship between users, computers and the overarching role of the organisation through 
detailed monitoring of 8 laptops and 5 desktop computers over a 2-month period. Results 
suggest that equipment specification can influence more than just power levels, influencing 
the time spent on different operating modes and the probability that the computer will be 
switched off at the end of the day.  Users in the same job role using the same equipment were 
observed to have divergent energy consumption levels and usage profiles, suggesting that 
attitudes can have a greater impact on energy consumption than job requirements alone.   
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Objective 5: Development of predictive models of small power 

Two models were developed to estimate energy consumption of small power equipment. The 
decision for developing two separate models arose from the contrasting requirements for 
academic rigour and usability.  Model 1 is based entirely on the random sampling of detailed 
monitored data, and addresses the first requirement. However, it fails to provide a usable 
framework for designers due to the need for detailed data that is not generally available at the 
design stage.  Model 2 relies on a bottom-up approach and is informed by key research 
findings, providing a tool that is of greater use to the sponsor company and the wider industry. 
Both models demonstrated a good correlation between metered data and prediction ranges for 
monthly energy consumption as well as power demand profiles. Whilst the model based on 
monitored data provides estimates with greater granularity, bottom-up predictions were also 
observed to be representative of metered data, also providing a more usable tool for designers.  
 
 

 CONTRIBUTION TO EXISTING THEORY AND PRACTICE 5.2

The findings from this research project provide three contributions to existing theory and 
practice.  These fall under the following definitions of original contribution: ‘bringing new 
evidence to bear on an old issue’; ‘taking a particular technique and applying it to a new area’; 
‘being cross disciplinary and using different methodologies’ and ‘adding to knowledge in a 
way that hasn’t been done before’ (Phillips, 1993). 
 
Contribution 1 

The first contribution consists of new monitored data for energy consumption and 
power demand profiles of individual small power equipment in use in contemporary 
office buildings. Data regarding the mean power demand and daily profiles for 17 small 
power devices was published in the Building Services Engineering Research & Technology 
journal. The findings were used to assess the validity of existing UK benchmarks.  A 
subsequent study included detailed power demand profiles for 13 computers at 1-minute 
intervals. These we used to assess the variability of usage patterns amongst different types of 
computers and users.  Annual energy consumption of small power equipment and lighting 
was also published in the Applied Energy journal and highlight variations of up to 75% 
amongst 4 different tenants in a multi-tenanted office building. Further data presented at the 
CIBSE Technical Symposium demonstrate variations in small power consumption as high as 
73% by tenants occupying the same building.  A paper recently submitted to Energy and 
Buildings includes daily power demand profiles and monthly energy consumption data for 
two offices occupied by the same company. 
 
Contribution 2 

The second contribution consists of a cross-disciplinary investigation into the factors 
influencing small power demand and consumption in office buildings.  A study based on 
the Theory of Planned Behaviour demonstrated a statistically significant correlation between 
perceived behavioural control and electricity use for lighting and small power, accounting for 
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17% of the variation in electricity use by different tenants. Findings were presented at the 
International Conference on Innovation in Architecture, Engineering and Construction. A 
subsequent monitoring study at the equipment level identified that a user’s attitudes may have 
a greater impact on variations in energy consumption than their job requirements alone. A 
novel method for evaluating energy consumption of computers using ‘window-plots’ was also 
developed and implemented, illustrating the uncertainty in power demand and time spent on 
individual operational modes.  Findings also suggest that desktop computers have a higher 
probability of being switched on during and outside working hours than laptop computers. 
 
Contribution 3 

The third contribution consists of two validated models for estimating power demand 
profiles and energy consumption of small power equipment in offices. The first model is 
based on random sampling of detailed monitored data. Outputs can be used to predict energy 
consumption, power demand profiles and resultant internal heat gains, contributing to better 
predictions of cooling demand. The second model takes a bottom-up approach, relying on a 
combination of benchmark data and user inputs to characterise small power demand and 
consumption. A comparison of strengths and limitations of both tools was carried out, 
highlighting that although the model based on monitored data provides a methodology that is 
less reliant on assumptions, it also requires extensive monitored data, much of which is not 
available at the design stage. Meanwhile, the bottom-up approach provides a more usable tool 
with wider applicability to industry. Outputs from both tools were verified through a blind 
validation exercise, demonstrating a good correlation between predictions and metered data. 
 
 
 

 IMPLICATIONS/IMPACT ON THE SPONSOR 5.3

As the construction industry is becoming more aware of the shortfalls in energy performance 
of buildings, designers are facing increased drivers to predict operational energy use, going 
beyond simplified compliance calculations.  Insight into the factors that influence variations 
in small power energy consumption and power demands, coupled with a usable prediction 
model, will allow the sponsor company to address requests for predictions of operational 
performance. This is of particular importance when designing high efficiency/low carbon 
buildings, as small power is likely to become a greater proportion of energy use, whilst also 
affecting cooling demands. The modelling tool also facilitates the dialogue between designers 
and clients, enabling a clear visualisation of the impact of certain variables (such as the 
equipment specification and hours of operation) on the resultant energy consumption and 
power demand.  
 
This research project has also led to the development and publication of CIBSE Technical 
Memorandum (TM) 54, which provides guidance to designers on how to estimate operational 
energy use at the design stage.  This publication has several positive implications for the 
sponsor company, placing it at the forefront of this service offering whilst also increasing its 
visibility amongst the industry as a research-focused and forward thinking organisation. 
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 IMPLICATIONS/IMPACT ON WIDER INDUSTRY 5.4

Published data regarding the in-use energy performance of small power equipment, alongside 
the factors that influence variation in energy consumption, can be used widely by the industry 
to account for small power consumption in a more representative manner when predicting 
operational energy use. This data could also be used to inform better systems design based on 
realistic internal gains. The publication of a journal article providing a critical review of 
existing benchmarks highlighted the need for up-to-date benchmarks and will hopefully 
encourage more frequent reviews of published data. 
 
Improved predictions of operational energy use can also be of benefit in a number of service 
offerings such as energy performance contracting, whereby energy conservation measures are 
implemented without up-front capital costs to the end-users.  In such initiatives, the cost of 
the measures are covered by future energy savings, requiring increasingly accurate models for 
predicting operational energy use.  Similarly, contractual obligations for achieving a certain 
level of energy efficiency such as a target DEC rating would also benefit from improved 
operational energy use predictions based on better estimates of small power consumption.   
 
It is envisioned that key findings from the research can also be used to encourage informed 
discussions between designers, clients and occupiers regarding the impact of small power 
equipment on operational energy use.  These can be used to steer company policies towards 
energy conscious ICT procurement practices and/or behaviour change initiatives.  
 
Research findings were disseminated broadly through industry-based conferences (such as the 
CIBSE Technical Symposia) and publications (such as the journal of Building Services 
Engineering Research & Technology and the CIBSE Journal). The researcher was also invited 
to present at prestigious events such as Ecobuild 2013 and seminars hosted by RIBA and 
CIBSE.  
 
The development and publication of CIBSE TM54 is likely to have a significant impact on 
the wider industry as it sets a methodology for evaluating operational energy use at the design 
stage. This is likely to promote further understanding into shortcomings of current practices as 
well as more informed predictions of energy use. 
 
 
 

 RECOMMENDATIONS FOR INDUSTRY/FURTHER RESEARCH 5.5

It is imperative that benchmarks be updated on a regular basis to account for the fast-paced 
developments in computer technology. Further research into the energy consumption of state 
of the art equipment should be undertaken and published frequently. Recent adoption of ‘thin 
client’ technology in educational buildings is likely to expand to other building types, and 
data regarding their energy performance would be highly beneficial. Insight into the impact of 
adopting said methodology would be beneficial both from an energy consumption perspective 
and as a strategy to mitigate internal heat gains.  
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Further research into small power consumption aimed at updating benchmarks could take a 
simpler approach than the one undertaken as part of this research project, focusing solely on 
measurement of power demand at different operational modes (irrespective of user behaviour 
as the latter can be characterised through detailed through detailed usage profiles).  
Meanwhile, a thorough investigation into variability of diversity factors in office building 
would be of great benefit to the industry, allowing for more robust estimates to be made for a 
wide variety of office buildings.   
 
There is scope to develop a ‘hybrid’ version of the two models presented in this thesis 
whereby detailed monitoring data is used to directly characterise the usage profiles of 
individual equipment in a bottom-up tool.  This could be achieved by disaggregating the 
specific power demand values from the profiles, resulting in profiles that refer to operational 
modes instead.  This would require extensive detailed monitoring of different users but less so 
of different machines, as mean values for each operational mode could be entered 
manually.  A key barrier to this approach however, is that if a machine is being used to the 
limits of its capability, it is likely to operate in higher operational modes (as discussed in 
Section 4.5). As such, applying the same profile to a machine with different specification 
would not be representative of the likely usage patterns. Further monitoring data of catering 
equipment would also be beneficial to inform more representative usage profiles in the 
bottom-up tool.  
 
There is also scope to further implement the occupant behaviour questionnaire developed as 
part of this research project (detailed in Section 4.4).  The same questionnaire can be used to 
assess the impact of occupant behaviour on variations of lighting and small power 
consumption on a wider range of buildings (with appropriately sub-metered zones).  
Information regarding the development of the questionnaire (found in Appendix F) can also 
be used to develop bespoke surveys focused on different behavioural characteristics. 
 
Further validation of both models as well as the TM54 methodology would be beneficial to 
assess their applicability to diverse building types and uses. CIBSE is encouraging their 
members test out the TM methodology and feedback their results to inform future updates to 
the guidance document. It is envisioned that future iterations of the TM would refer to the 
bottom-up tool developed in this research project, aiming to encourage users to assess small 
power consumption and loads in a thorough, yet straightforward manner. 
 
 

 LIMITATIONS OF THE RESEARCH 5.6

At the onset of this EngD, the research covered a very broad scope, aiming to address the 
discrepancies between predicted and in-use energy performance of buildings as a whole.  This 
resulted in a significant proportion of the research time being spent on the decision of an 
appropriate direction to pursue allowing for a smaller and more tangible scope to be 
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covered.  A clearer and more defined scope at the onset could have resulted in a greater 
volume of practical research being undertaken.  
 
The research project was heavily reliant on monitoring data resulting in numerous 
barriers.  The first one was gaining access and permission to buildings in which to undertake a 
monitoring study.  Although the sponsor company’s involvement in building design should 
support these efforts, clients were generally very protective about building performance data, 
often declining access to their buildings for post occupancy monitoring studies. The second 
biggest barrier was obtaining sub-metering data for small power consumption as is this end-
use was often included in the same sub-meter as lighting. This resulted in extensive efforts to 
monitor individual sub-circuits through the use of portable energy profilers, also presenting a 
further barrier as clients and facilities managers were often reluctant to grant access to 
distribution boards. 
 
Obtaining access to small power monitoring data at the equipment-level also presented 
numerous challenges, going beyond issues pertaining to the accessibility to buildings and 
tenant zones. Limited availability of monitoring equipment (i.e. ploggs) coupled by their short 
communication range to data logging computers limited the number of equipment that could 
be monitored simultaneously. In addition, only a small number of different computer models 
were procured by the company investigated in the research project, also limiting the possible 
scope of the monitored sample.  These factors resulted in a small sample size, which was 
investigated however, in a multi-disciplinary and thorough manner.  Findings, although based 
on a small sample of computers, reflect real operation and usage patterns, providing insightful 
information on the complex factors influencing the energy consumption of computers.  
Results are not exhaustive and will not cover every possible user-computer combination, yet 
they can be used to inform better estimates of small power consumption by highlighting the 
underlying complexities between occupant behavior and small power energy consumption.    
 

Despite these limitations, this research project has successfully achieved its overarching aim 
by providing a better understanding of the factors that generate variability in small power 
consumption in commercial buildings, demonstrating how these can be accounted for in 
representative, building specific estimates of operational energy use. Five specific objectives 
were fulfilled, generating key outcomes that contributed to the achievement of the thesis’ aim. 
The research has culminated in two models for estimating energy consumption of small 
power equipment addressing both the academic and industrial requirements. Both models are 
also capable of estimating power demand profiles of small power equipment, allowing for 
better estimates of internal heat gains to be generated. Furthermore, the research has 
supported the development of a guidance document on how to evaluate operational energy 
performance of non-domestic buildings at the design stage. Cumulatively, the outcomes of 
this project have great scope to improve current practices for predictions of energy 
consumption in buildings. 
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Abstract 
 
There is significant evidence to suggest that buildings do not perform as well as expected, and 
this is commonly referred to as the ‘performance gap’. Energy compliance calculations for 
Building Regulations in England and Wales do not include sources of energy consumption in 
buildings such as small power, catering, external lighting and vertical transportation (i.e. lifts 
and escalators). These so called ‘unregulated’ loads are therefore rarely included in building 
energy models, and the lack of feedback regarding the in-use performance of buildings makes 
it harder for designers to quantify their impact on the overall energy consumption of a 
building. Aiming to address these issues, this paper provides an analysis of monitored 
electricity consumption in two multi-tenanted office buildings, with one tenant in common in 
both buildings.  
 
This paper focuses on tenant electricity consumption, including lighting and small power. 
Detailed analysis of the monitored data demonstrates significant variation between the 
electricity consumption of different tenants occupying the same building whilst performing 
similar activities. Elements such as lighting controls, hours of occupancy and management 
decisions are observed to have a significant impact on such variations. Further analysis of 
half-hourly energy consumption data is also provided, in addition to a detailed breakdown of 
small power energy consumption due to individual office equipment.  
 
Future work will build on this study and aim to develop evidence based benchmarks for 
energy consumption in office buildings. It will include a ‘tailoring’ component allowing the 
benchmarks to be adjusted according to profiles of occupancy and management behaviour, as 
well as workstation density and the specification of energy consuming equipment. It is 
expected that such benchmarks will inform designers about the impact of each of these 
parameters on the measured energy consumption of buildings. 
 
Keywords – Performance gap, energy performance, offices, lighting, small power 
 
Paper type – Conference Paper 
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1 INTRODUCTION 

With the increasing demand for more energy efficient buildings, the construction industry is 
faced with the challenge to ensure that energy efficiency is implemented beyond design 
predictions.  However, there is extensive evidence to suggest that buildings are not 
performing as well as predicted.  The PROBE studies (Post-occupancy Review of Buildings 
and their Engineering) investigated the performance of 23 non-domestic buildings previously 
featured as ‘exemplar designs’ in the Building Services Journal (Bordass et al., 2001). The 
research project ran from 1995 to 2002, highlighting the lack of feedback regarding the actual 
performance of buildings.  It also brought to light the so called ‘performance gap’, suggesting 
that the actual energy consumption in buildings will usually be twice as much as predicted .   
 
More recently, in 2008, the Royal Institute of British Architects (RIBA) and the Chartered 
Institution of Building Services Engineers (CIBSE) launched CarbonBuzz, a free online 
platform allowing practices to share and publish building energy consumption data 
anonymously (CarbonBuzz, 2011). It enables designers to compare predicted and actual 
energy use for their projects, whilst also allowing for comparison against benchmarks and 
data supplied by other participating practices.  Figure 1 illustrates the gap between predicted 
and actual electricity consumption in three building types: general offices, schools and 
university campus.  The graph depicts the median predicted and median actual electricity 
consumption for the buildings within the database, which are assumed to be broadly 
representative of each sector. As shown, the measured electricity demands are approximately 
60% to 70% higher than predicted in both the schools and general offices, and over 85% 
higher than predicted in university campuses. 

 
Figure 1: CarbonBuzz median energy use per sector - Predicted vs. Actual  

 
Previous work by the authors has highlighted that the causal factors for such discrepancies 
relate to both predictive and in-use performance, implying that current predictions tend to be 
unrealistically low, whilst actual energy performance is usually unnecessarily high (Menezes 
et al., 2011). However, the overall problem could be interpreted as an inability of both current 
modelling techniques and modellers to represent realistic operation of buildings through the 
use of inputs and parameters that are representative of occupied buildings in-use.  This in turn 
can be associated with the lack of feedback regarding the use and operation of buildings as 
well as the resulting energy consumption.  Currently, there is a significant lack of information 
concerning the energy performance of our existing building stock (Lowe and Oreszczyn, 
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2008).  A continued absence of such data is likely to lead to a progressive widening of the gap 
between theory and practice and a failure to achieve strategic goals (Oreszczyn and Lowe, 
2010).   
 
In order to bridge this ‘Performance Gap’, further understanding on the impact of small power 
and other unregulated energy loads is crucial. Emphasis on these end-uses allows for 
investigation of the impact of occupants and management behaviour and the resulting impact 
on the electricity consumption of different tenants. Variation in small power consumption is 
of particular interest to this study as small power is not currently included in the Building 
Regulations for England and Wales, and as such is not within the compliance modelling 
calculations. Aiming to address this issue, this paper provides an analysis of monitored data 
for electricity consumption due to lighting and small power in two office buildings in 
England. 
 
 

2 METHODOLOGY 

Taking a case study approach, this paper focuses on the energy performance of two multi-
tenanted office buildings located in London and Bristol. The assessment concentrates on 
electricity consumption due to lighting, small power equipment and catering equipment, in 
line with the Energy Assessment and Reporting Methodology (EARM).  This widely 
recognised methodology was originally developed for the PROBE studies and was later 
published by CIBSE as a technical memorandum (CIBSE TM22). This document describes a 
method for assessing the energy performance of an occupied building based on metered 
energy use, and includes a software implementation of the method.  It can be used to identify 
underperforming buildings and systems, indicating the causes of poor performance and 
benchmarking procedures (CIBSE, 2006).  Figure 2 illustrates the underlying structure of the 
TM22 methodology, depicting the breakdown of energy consumption by end-uses (such as 
lighting, small power and ventilation) whilst highlighting the impact of low-level factors such 
as hours of use and equipment efficiency.  
 
Considering the focus of the study was on lighting and small power, it was not necessary to 
undertake a full TM22 assessment of each building.  However, in order to set the context for 
further in depth investigations, one of the buildings was assessed in full, highlighting the 
impact of lighting and small power on the overall electricity consumption of the building.  
Considering the building contains 32 zones occupied by 4 different tenants, assumptions were 
made with regards to the installed equipment and lighting in the tenant areas in order to 
facilitate this initial TM22 assessment.  This was deemed appropriate as the purpose of this 
initial assessment was to provide context with regards to the energy use breakdown of 
different end-uses. In the second building, electricity consumption due to building services 
was not considered and the assessment considered only the tenant electricity consumption 
(including lighting and small power due to office and catering equipment).  In both buildings, 
the detailed TM22 assessment of lighting and small power in the tenant zones relied on 
studies of ‘sample’ zones occupied by different tenants.  
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Figure 2: TM22 ‘Tree Diagram’ illustrating the breakdown of energy use  

 
2.1 Building Description 

Building 1 is located in central London and accommodates the offices of four different 
companies throughout its seven floors and basement. It includes an atrium that reaches all 
floors (except the basement). Each floor comprises mainly of open-plan office spaces with a 
treated floor area of approximately 2,000m2.  The ground floor houses a large reception and 
the basement houses meeting rooms and cellular offices. The building is fully air-conditioned, 
three rooftop air-handling units (AHUs) provide heating/cooling as well as fresh air to all 
floors and the atrium. A separate system provides heating for the basement, whilst fan coil 
units (FCUs) provide cooling to the meeting rooms and small individual offices 
 
Figure 3 illustrates the metering strategy for the supply of electricity to Building 1. As shown, 
the landlord is responsible for the electricity consumed by all air conditioning equipment 
including the AHUs, FCUs, chillers, pumps and fans as well as the BMS and other control 
equipment.  The lighting throughout the common areas of the building as well as the toilets is 
also supplied and maintained by the landlord. As such, the energy supplied for the landlord 
services is metered together, with no sub-metering for individual end-uses. Meanwhile, the 
electricity supplied to the tenants for lighting, small power equipment and catering in each of 
the floors is metered separately.  A total of 32 sub-meters provide a further breakdown for 
each of the 4 zones in each floor: North-East (NE), Northwest (NW), Southeast (SE) and 
Southwest (SW). 
 
Building 2 is located in Bristol city centre and accommodates offices of four different tenants 
over four floors.  Each floor comprises mainly of open-plan office spaces with a treated floor 
area of approximately 3,500m2.  The ground floor houses a large reception and a cafe (for 
which the electricity and gas usage is metered separately from the rest of the building). The 
building is fully air-conditioned via FCUs, and has two atria with full height glazing 
providing natural lighting throughout the building.   
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Figure 3: Metering strategy for the supply of electricity to Building 1 

 
Figure 4 illustrates the metering strategy for the supply of electricity to Building 2. Similarly 
to Building 1, the landlord is responsible for the electricity consumed by all air conditioning 
equipment as well as the BMS and lighting throughout the common areas of the building. 
Once again, the electricity supplied for the landlord services is metered together, with no sub-
metering for individual end-uses. Meanwhile, the electricity supplied to the tenants is not only 
sub-metered by zone, but also by end-use, with lighting and small power having separate sub-
meters in each individual zone. As such a total of 32 sub-meters provide a breakdown for 
lighting and small power in each of the 4 zones in each floor: Core 2.1, Core 2.2, Core 3 and 
Core 5. 

 
Figure 4: Metering strategy for the supply of electricity to Building 2 



Improving Predictions of Operational Energy Performance Through Better Estimates of Small 
Power Consumption 
  

96 

2.2 Monitoring Process 

Monthly meter readings were taken and recorded over a one-year period for each of the 
electricity sub-meters in both buildings.  In Building 1 this consisted of a single reading per 
zone (including lighting and small power) whereas in Building 2, two readings per zone were 
acquired due to the separate sub-metering for lighting and small power.  Monthly and annual 
consumption data was then compiled for each of the tenants and normalised by floor area 
occupied.  
 
Portable 3-phase energy profilers (SP Max, 2011) were connected to the electricity supply in 
individual tenant zones in each of the buildings in order to monitor half hourly consumption.  
Focus was given to areas occupied by the same tenant in both buildings to establish any 
variation in the electricity demand profile in different offices.  In Building 2, interval data for 
lighting and small power were obtained simultaneously for fair comparison.  Monitoring of 
sub-metered electricity was undertaken for approximately 1 month in each of the zones, and 
results were cross-checked against meter readings for verification.  
 
Combined plug monitor / loggers (ZigBee Plogg, 2011) were connected to individual small 
power office equipment such as laptops, computer screens and docking stations.  These were 
also used to monitor the electricity consumption of catering equipment such as fridges, 
microwave ovens and coffee machines, and logged 5-minute interval electricity consumption 
data over a 1 week period.  Averages during ‘in-use’, ‘stand-by’ and ‘off’ modes were 
calculated using the monitored data for each of the equipment.  These values were then used 
to replace typical nameplate-rating inputs necessary for the successful completion of the 
TM22 assessment. 
 
 

3 RESULTS AND DISCUSSION 

Figure 5 illustrates the electricity consumption breakdown by end-use for Building 1, 
providing context for further analysis of lighting and small power.  It also illustrates the split 
between landlord and tenant consumption, demonstrating that the landlord is only responsible 
for 30% of the electricity used in the building, with the tenants being responsible for the 
remaining 70%.  As seen, lighting accounts for 24% of the annual electricity consumption, 
followed closely by small power, which accounts for 18% of the total.  Server rooms are the 
single largest consumers of electricity in the building, almost equating to the combined 
consumption by fixed building services (i.e. chillers plus fans, pumps and controls).  Note that 
the sub-metering of the server rooms in Building 1 include the electricity demand for running 
the servers themselves as well as the local cooling demands (usually met by split-system air 
conditioning units).   
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Figure 5: Electricity consumption breakdown by end-use in Building 1 

 
3.1 Annual Electricity Consumption per Tenant 

Figure 6 illustrates the annual electricity consumption by each of the tenants in Building 1 
(normalised by the floor area they occupy).  This includes lighting and small power but 
excludes server rooms. It is worth noting that the lighting specification and controls are 
consistent throughout the entire building.  This consists of a ‘DALI’ (Digital Addressable 
Lighting Interface) system whereby the installed fixtures have the capability of being 
controlled by a variety of factors such as daylight and/or motion sensors, to suit the need of 
the specific tenants.  However, it is up to the individual tenants to adopt such control 
strategies by installing and commissioning the necessary sensors, otherwise the lighting 
strategy is limited to manual controls of the individual zones in the building.  To date no 
tenants have taken advantage of the DALI system and thus they rely on manual switches to 
control their lighting levels.   

 
 Figure 6: Annual electricity consumption per tenant in Building 1  
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With regards to catering facilities, all floors have provisions of similar size and nature 
(consisting mainly of an instant hot water heater, a microwave, a dishwasher and a full size 
fridge).  Some floors have additional coffee machines and/or vending machines, and tenant C 
has a large bar with multiple fridges on the ground floor.  It is worth noting however, that 
variations in catering energy consumption can be largely due to hours of usage rather than 
intensity of installed equipment.  Tenant A for example have 2 microwave ovens in a single 
kitchen yet monitored data has revealed that one of them is rarely used, hence having a second 
microwave oven has virtually no impact on their catering energy consumption. 
 
In regards to small power, a fairly consistent volume of office equipment is present 
throughout the building.  Despite their different nature of work, all 4 tenant companies have 
similar occupation densities and office equipment specifications.  Most workstations consist 
of a computer screen, laptop and docking station as well as phone.  Some workstations have 
individual desk lamps, personal fans and/or desktop printers.  In addition, all floors have large 
printer/copiers (typically 6-8 per floor) as well as projectors and/or flat screen displays in 
meeting rooms. 
 
As seen, the highest consumer (Tenant B) uses approximately 40% more electricity per year 
than the lowest consumer (Tenant A).  Informal interviews with the building occupants 
uncovered a number of behavioural elements that could contribute to this significant variation. 
For example, employees of Tenant B are instructed to leave their computers on overnight for 
IT upgrades.  As such, a large quantity of electricity is used outside the normal operating 
hours of the building, accounting for a significant portion of their overall consumption.  
Similarly, some employees of Tenant C often leave their computers on at the end of the day 
so that time-consuming tasks, such as high quality rendering, can be performed overnight. On 
the other hand, employees of Tenants A and D are encouraged to save energy by turning off 
their computers and screens at the end of the day.  Tenant A has also trained their facilities co-
ordinators to switch off printer/copiers and non-essential catering equipment such as coffee 
machines at the end of each day. 
 
Figure 7 illustrates the electricity consumption in each of the sub-metered zones within 
Building 1 (normalised by floor area).  The dark grey bars represent the zones occupied by 
Tenant A. Here, the highest consuming zones (3-03 and 4-03) are occupied in a very similar 
manner, both being located on the South-East corner of the building, containing high density 
of workstations as well as substantial printing facilities.  Meanwhile, some of Tenant A’s least 
consuming zones (3-01 and 4-01) are also very similar in layout, this time with lower 
workstation density due to the existence of a catering kitchen and small reception area on each 
of the floors.  Despite the fact that both catering kitchens contain equipment with high power 
demand (such as dishwashers, instant water heaters and microwave ovens) these are only used 
sparingly.  In addition, the seating areas in the catering kitchens occupy a significant 
proportion of the floor area in each of the zones and virtually no small power electricity in 
consumed in those areas.  Zone 3-02 has surprisingly low electricity consumption considering 
it has no large areas of seating such as in zones 3-01 and 4-01. However, the zone has no 
printing facilities and it also contains a small meeting room, which reduces the overall 
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workstation density of the zone.  Meanwhile, zone LG-02 consists mainly of meeting rooms, 
most of which are heavily equipped with multimedia equipment for presentations and 
conference calls.  These meeting rooms are usually fully booked and fairly high electricity 
consumption would suggest that the use of small power is fairly high in this zone (which 
might otherwise be expected to be a low consuming zone). 

 
Figure 7: Electricity consumption in individual zones of Building 1  

 
Figure 8 illustrates the annual electricity consumption by each of the tenants in Building 2 
(normalised by the floor area they occupy).  Once again it includes lighting and small power 
but excludes server rooms. Similarly to Building 1, the lighting specification and controls are 
consistent throughout the entire building and installed equipment is of a similar nature and 
quantity.  It is worth mentioning however, that the lighting controls for Building 2 are of 
higher specification than in Building 1, relying both on daylight and occupancy sensors to 
switch lights on and off in different zones.  This allows for the lighting fixtures in the 
perimeter of the building to be dimmed down when daylighting levels are sufficient to 
provide adequate lighting to the working areas near windows. In addition, the passive infra-
red (PIR) sensors prevent lights from staying on when the zone is unoccupied. This might be 
one of the main contributors to the fact that tenant electricity consumption in Building 2 is 
generally lower than in Building 1.  With regards to catering facilities, each floor has a 
kitchen of a similar size and nature (consisting mainly of an instant hot water heater, a 
microwave, a dishwasher and a large fridge).   
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Figure 8: Annual electricity consumption per tenant in Building 2 

 
As seen, the highest consumer (Tenant A) consumes approximately 30% more electricity than 
the lowest consumer (Tenant F).  Further investigation into the causes of such variation 
revealed that the zone occupied by Tenant F houses a call centre that operates only during 
fixed hours.  This means that that unlike most of the other tenants, employees of Tenant F do 
not generally work beyond regular working hours, resulting in lower electricity consumption 
both due to lighting and small power.  It is also worth noting that Tenant F occupies a single 
zone that is mostly located in the perimeter of the building which is likely to result in lower 
lighting energy use.  Meanwhile, Tenants E and G undertake similar tasks, having similar 
equipment specification and office space layout.  Together they occupy approximately 75% of 
the building’s floor area and their numerous zones vary from open plan office spaces, to 
meeting rooms and seating areas.   
 
Figure 9 illustrates the electricity consumption in each of the sub-metered zones within 
Building 2 (normalised by floor area).  Once again the dark grey bars represent the zones 
occupied by Tenant A. Differently to Building 1, Tenant A’s zones in Building 2 seem to 
consume almost exactly the same amount of electricity with virtually no variation between 
them. This is somewhat surprising considering that both zones are occupied and used in fairly 
different ways.  Zone 3-5 houses a small kitchen, meeting rooms and a seating area, as well as 
open plan office spaces, whereas zone 3-2.2 is fully occupied by open plan office spaces.  
Considering the virtually identical electricity consumption in both zones, it is possible to 
assume that the increased use of electricity due to catering equipment is somewhat cancelled 
out by the additional seating area and the meeting rooms, where less electricity consumption 
is usually observed when compared to open plan office spaces.  Another surprising 
observation from Figure 9 is that Tenant A’s zones are not within the worst consuming zones, 
which might have been expected considering they were the highest consumers according to 
Figure 8.  This would suggest that there is significant variation in electricity consumption on 
the zones occupied by the other tenants.  It is worth mentioning that zone 3-2.1 is omitted 
from Figure 9 as it has been unoccupied for several months, and would not provide a fair 
comparison against the other zones. 
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Figure 9: Electricity consumption in individual zones of Building 2 

 
Figure 10 illustrates the electricity consumption by all tenants in Building 1 and Building 2.  
It also displays typical (TYP) and best-practice (BP) benchmarks for both lighting and small 
power in UK office buildings according to the Energy Consumption Guide 19.  Note that in 
Building 1 the lighting and small power are metered separately, but this is not the case in 
Building 2, which explains the different breakdown of information provided in the figure. As 
seen, Tenant A is the highest consumer in Building 2 and the lowest consumer in Building 1, 
but their electricity consumption is also fairly consistent in both buildings. With the exception 
of Tenant A, all Building 2 tenants are in the lower consuming half of the graph and similarly 
all Building 1 tenants are in the higher consuming half of the graph.  This could be related to 
the fact that Building 2 has better lighting controls than Building 1, as previously discussed, 
which is further substantiated by the fact that all Building 2 tenants have lighting consumption 
levels below the typical benchmark.  

 
Figure 10: Annual electricity consumption by all tenants in both buildings  
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Looking further into the consumption for Building 2 tenants, it is possible to see that there is 
significant variation in lighting consumption amongst the different tenants.  Considering that 
the lighting specifications and controls are consistent throughout the entire building, this 
variation could be attributed to two elements: 1) hours of occupancy and 2) location of the 
zones (which determines the amount of daylighting available).  Tenant F, the lowest 
consuming tenant with regards to lighting, has a combination of both well day lit zones and 
low hours of occupancy.  They occupy a single zone in the building that is mostly located on 
the perimeter, and as previously discussed, Tenant F employees work for a smaller number of 
hours when compared to other tenants.  They do however consume a significant amount of 
electricity for small power, comparable to that of the highest consumer in Building 2 (Tenant 
A).  Meanwhile, the tenant with highest lighting consumption (Tenant G) also has the lowest 
small power consumption, suggesting that many of their zones are indeed occupied by 
meeting rooms and seating areas with low installed equipment densities. 
 
3.2 Half Hourly Electricity Consumption 

Figure 11 illustrates the half hourly electricity consumption in one of zones occupied by 
Tenant A in Building 1.  The electricity consumption data is normalised by the floor area 
covered by the sub-meter being monitored and represents the instantaneous electricity demand 
in Watts per m2.   

 
Figure 11: Half hourly electricity use by Tenant A in Building 1 

As seen the base load is approximately 6 W/m2 outside working hours. The electricity demand 
starts to escalate around 06:00 peaking at approximately 26 W/m2 by 10:00.  This can be 
associated with the arrival of employees, turning on the lights.  This will usually be followed 
by office/catering equipment being used. From 10:00 to 17:00 the demand remains fairly 
high, varying between 22-28 W/m2, eventually decreasing to approximately 16 W/m2 by 
19:30.  This can be associated with equipment being turned off as employees leave the office.  
A steep rise in the demand is then observed at approximately 20:30, followed by a fairly 
quick decrease, bringing the demand down to the base load at around 22:00.  This late peak 
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can be associated with the cleaning schedule of the building.  It is assumed that the rise in 
demand is due to the use of vacuum cleaners as well as the dishwasher being turned on.  The 
electricity demand during the weekend is fairly constant at a similar base load to the evenings.  
The only deviation occurs on Saturday between 9:00 and 15:00 when the electricity demand 
rises to approximately 10 W/m2.  This can be associated to a small number of employees 
going into the office to work.  
 
For comparison, Figure 12 illustrates the half hourly electricity consumption profile for a zone 
occupied by Tenant A in Building 2. Similarly to Building 1, the electricity demand starts to 
escalate around 06:00, but it peaks slightly earlier, by 09:00.  The peak demand is very similar 
to Building 1 at approximately 26 W/m2, and variations throughout the day are of very similar 
nature and size.  A steep decrease in demand is observed around 19:00 and unlike Building 1 
there is no cleaning peak following the departure of the employees.  This is due to earlier 
cleaning schedule in building 2 in combination with employees leaving between 17:30 and 
19:30.  This results in a fairly smooth decrease in demand at the end of each working day.  
Similarly to Building 1, there is also a small peak in demand on Saturday due to some 
employees coming into the office. 

 
 

Figure 12: Combined half hourly electricity use by Tenant A in Building 2 

 

3.3 Electricity Consumption by Different Equipment 

The TM22 assessment carried out in Building 1 allowed for a detailed analysis of the 
electricity consumption by different small power equipment used throughout the building.  
This was further enhanced by the use of plug monitors connected to individual piece of 
equipment, monitoring their instantaneous electricity demand, allowing for assumptions on 
nameplate-ratings to be eliminated from the TM22 methodology.   Figure 13 illustrates the 
annual electricity consumption by each of the small power equipment monitored as part of the 
study.  It covers the installed equipment in the zones occupied by Tenant A in Building 1, and 
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is normalised by floor area. As seen, desktops and laptops are responsible for the largest share 
of the electricity consumption at 17.5 kWh/m2/year, followed closely by computer screens at 
14.6 kWh/m2/year. Photocopiers are also responsible for a significant portion of the electricity 
consumption, at 6.2 kWh/m2/year, but their impact is only about 30% of that of computers.  
Coffee machines and fridges consume a similar amount at approximately 2 kWh/m2/year.  
Desk lamps, microwave ovens and dishwashers all consume less than 1 kWh/m2/year.  These 
results demonstrates that power management functions for computers and screens, as well as 
behaviour change campaigns aimed at getting employees to switch off their computers at the 
end of the day could have a significant impact on electricity consumption. 
 

 
Figure 13: Annual electricity use per equipment by Tenant A in Building 1 

 
 

4 CONCLUSION 

This paper has discussed the existence of a gap between predicted and measured energy 
consumption in non-domestic buildings.  It highlighted that a significant lack of information 
regarding actual energy consumption in buildings might be a leading cause in this 
performance gap. Aiming to address this issue, two case studies were presented whereby 
electricity consumption data for lighting and small power in office buildings were analysed 
and compared.   
 
Key findings from the study highlighted a significant variation in electricity consumption by 
different tenants in both buildings.  Tenants in Building 2 generally consumed less electricity 
than those occupying Building 1 and that can be partially attributed to better lighting controls 
in the former.  In addition, variations in workstation density and office space layout were also 
seen to contribute to the variations in electricity consumption. Management decisions, such as 
the running of IT updates outside of occupancy hours, were seen to have a significant impact 
on electricity use, having been observed in the highest consuming tenant.  Meanwhile, tenants 
with fixed working hours were seen to have significantly lower consumption of electricity due 
to lighting. The analysis of data for Tenant A, which occupied zones in both buildings, 
demonstrated that the attitudes and behaviour of a company might transcend the immediate 
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surroundings of the building being occupied.  Similar electricity consumption profiles suggest 
that management protocols and behaviours might have more impact on energy consumption 
than previously anticipated. 
 
Overall the study has highlighted the need for better understanding of occupancy patterns and 
behaviour in office buildings. Variations in the electricity consumption of different tenants 
occupying the same building have demonstrated that modelling software would need to 
account for different occupancy patterns and behaviours if realistic predictions are to be 
achieved.   
 
 

5 FUTURE WORK 

This paper has identified a need for further understanding of the impact of occupant and 
management behaviour on electricity consumption in buildings.  As such, future work will 
include further monitoring of different office buildings occupied by diverse types of tenants.  
It is envisaged that a survey will be developed for both occupants and facilities managers to 
be distributed in buildings being monitored as part of this research.  These will be aimed at 
understanding the impact of varying attitudes and behaviours regarding energy use in 
buildings, with the ultimate aim of determining the impact of these behaviours on the overall 
energy consumption of buildings.  Information gathered from the surveys will be used to 
develop evidence based benchmarks for energy consumption in office buildings. These will 
include a ‘tailoring’ component allowing the benchmarks to be adjusted according to profiles 
of occupancy and management behaviour, as well as workstation density and the specification 
of energy consuming equipment. It is expected that these benchmarks will inform designers 
about the impact of each of these parameters on the measured energy consumption of 
buildings, and support efforts to reduce energy use. 
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APPENDIX B PREDICTED VS. ACTUAL ENERGY 
PERFORMANCE OF NON-DOMESTIC BUILDINGS: 
USING POST-OCCUPANCY EVALUATION DATA TO 
REDUCE THE PERFORMANCE GAP  (PAPER 2) 

 
Full Reference 
 
Menezes, A., Cripps, A., Bouchlaghem, D., Buswell, R., 2012. Predicted vs. actual energy 
performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the 
performance gap. Applied Energy, Vol. 97, pp. 355–364. 
 
Abstract 
 
With the increasing demand for more energy efficient buildings, the construction industry is 
faced with the challenge to ensure that the energy performance predicted at the design stage is 
achieved once a building is in use. There is, however, significant evidence to suggest that 
buildings are not performing as well as expected and initiatives such as PROBE and 
CarbonBuzz aim to illustrate the extent of this so called ‘performance gap’. This paper 
discusses the underlying causes of discrepancies between energy modelling predictions and 
in-use performance of occupied buildings (after the twelve month liability period). Many of 
the causal factors relate to the use of unrealistic input parameters regarding occupancy 
behaviour and facilities management in building energy models. In turn, this is associated 
with the lack of feedback to designers once a building has been constructed and occupied. 
 
The paper aims to demonstrate how knowledge acquired from Post-Occupancy Evaluation 
(POE) can be used to produce more accurate energy performance models. A case study 
focused specifically on lighting, small power and catering equipment in a high density office 
building is analysed and presented. Results show that by combining monitoring data with 
predictive energy modelling, it was possible to increase the accuracy of the estimate to within 
3% of actual electricity consumption values. Future work will seek to use detailed POE data 
to develop a set of evidence based benchmarks for energy consumption in office buildings. It 
is envisioned that these benchmarks will inform designers on the impact of occupancy and 
management on the actual energy consumption of buildings. Moreover, it should enable the 
use of more realistic input parameters in energy models, bringing the predicted figures closer 
to reality. 
 
Key words - Building energy modelling, energy benchmarks, energy performance, 
performance gap, post-occupancy evaluation 
 
Paper type – Journal Paper 
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1 INTRODUCTION 

There is extensive evidence to suggest that buildings usually do not perform as well as 
predicted (Bordass et al., 2001; Bordass et al., 2004; Demanuele, 2010; PROBE, 2011). This 
is often attributed to the lack of feedback to designers after handover, inhibiting 
improvements both to existing buildings and future designs. The practice of Post-Occupancy 
Evaluation (POE) aims to address this issue by evaluating the performance of a building after 
it has been built and occupied to provide designers with valuable feedback on its actual 
performance in-use. This paper aims to demonstrate how knowledge acquired from POE can 
be used to produce more accurate energy performance models. The study focuses on 
electricity consumption due to lighting, small power and catering equipment, rather than 
thermal loads.  
 
In recent years, Building Regulations in England and Wales have become increasingly 
stringent, demanding higher standards of energy performance. This can be linked to the 
implementation of the European Energy Performance of Buildings Directive (EBPD) as well 
as the Government’s legally binding commitment to reduce UK carbon dioxide emissions by 
80% by 2050 in relation to the 1990 baseline (Climate Change Act, 2008). As a result, all new 
buildings must achieve a Building Energy Rating (BER) lower than the prescribed Target 
Energy Rating (TER) for the specific building type, calculated using a Simplified Building 
Energy Model (SBEM).  However, this methodology does not aim to predict the actual energy 
consumption of a building, as its purpose is solely to ensure compliance with Building 
Regulations. Instead, detailed Dynamic Simulation Models (DSMs) can be used to obtain 
predictions of in-use energy performance. DSMs are more suited to the functional and 
volumetric complexities of non-domestic buildings as they allow for more detailed input 
options whilst also containing extensive databases for materials and systems (Raslan et al., 
2009). Despite these and many other added capabilities, there is still a significant gap between 
predicted and actual energy consumption in non-domestic buildings (Bordass et al., 2004). 
This discrepancy is commonly referred to as the ‘performance gap’. 
 
1.1 Performance Gap 

The PROBE studies (Post-occupancy Review of Buildings and their Engineering) 
investigated the performance of 23 buildings previously featured as ‘exemplar designs’ in the 
Building Services Journal (PROBE, 2011; Bordass et al., 2001). The research project ran 
from 1995 to 2002, highlighting the lack in feedback regarding the actual performance of 
buildings.  It also brought to light the so called ‘performance gap’, suggesting that actual 
energy consumption in buildings will usually be twice as much as predicted (Bordass et al., 
2001).  More recently, initiatives such as the Low Carbon Buildings Accelerator and the Low 
Carbon Buildings Programme, have aimed to provide feedback regarding the performance of 
buildings in-use (Carbon Trust, 2011a).  Findings from both these studies have been 
published by the Carbon Trust in a series of reports, with one dedicated solely to the 
performance gap (Carbon Trust, 2011b). The report entitled ‘Closing the Gap’ introduces the 
underlying causes of the performance gap, highlighting that design predictions for regulatory 
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compliance do not account for all energy uses in buildings. Data from five case study 
buildings is used to illustrate the discrepancies between actual regulated energy consumption 
and modelling output used for compliance with Building Regulations.  Results demonstrate 
that the actual regulated consumption can be five times higher than predicted (Carbon Trust, 
2011b). 
 
In 2008, the Royal Institute of British Architects (RIBA) and the Chartered Institution of 
Building Services Engineers (CIBSE) launched CarbonBuzz, a free online platform allowing 
practices to share and publish building energy consumption data anonymously (CarbonBuzz 
2011). It enables designers to compare predicted and actual energy use for their projects, 
whilst also allowing for comparison against benchmarks and data supplied by other 
participating practices. Figure 1 illustrates the predicted and actual electricity consumption in 
three building sectors: schools, general offices and university buildings (Hamilton et al., 
2011).  The graph depicts the median predicted and median consumption for the buildings 
within the database, which are assumed to be broadly representative of each sector. As shown, 
the measured electricity demands are approximately 60% to 70% higher than predicted in 
both schools and general offices, and over 85% higher than predicted in university campuses. 

 
Figure 1: CarbonBuzz median energy use per sector - Predicted vs. Actual  

 
1.2 Sources of discrepancies 

Results from the PROBE studies suggest that such discrepancies transcend the expected 
shortcomings of current modelling programs; being a result of poor assumptions, as well as a 
lack of monitoring following construction (PROBE, 2011; Bordass et al., 2004).  Table 1 
summarises the main causes of discrepancies between predicted and actual energy 
performance in buildings.  
 
As shown, the causal factors relate to both predictive and in-use performance, implying that 
current predictions tend to be unrealistically low whilst actual energy performance is usually 
unnecessarily high. However, the overall problem could be interpreted as an inability of 
current modelling methods to represent realistic use and operation of buildings.  This in turn 
can be associated with the lack of feedback regarding actual use and operation of buildings as 
well as the resulting energy consumption.  Currently, there is a significant lack of information 
concerning the actual energy performance of our existing building stock (Lowe, 2010).  A 
continued absence of such data is likely to lead to a progressive widening of the gap between 
theory and practice and a failure to achieve strategic goals (Oreszczyn et al., 2010). 
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Recent developments in the field of thermal modelling have resulted in increasingly complex 
simulation software based on calculations of dynamic heat transfer.  In addition, stringent 
procedures are being implemented to ensure the validity of a range of modelling programs 
(De Wit, 1995).  As a result, the impact of modelling tools on the overall discrepancy between 
predicted and actual performance is consistently being diminished.  Meanwhile, some issues 
with built quality are slowly being tackled by the construction industry, encouraging more 
airtight buildings and better construction techniques.  Extensive research on the actual 
performance of built elements is also being conducted, whilst most modelling software now 
allow for assumptions regarding the built quality of specific building elements. 
 

Table 1: Causes of discrepancies between predicted and actual energy performance. 

 Causal factors 

Predicted 
Performance 

Design Assumptions 
The input of data into a building energy model relies significantly on assumptions, which often go 
unchallenged. These are usually made at design stage when many aspects of the building’s function and use 
are unknown or uncertain. This can result in oversimplified and/or unrealistic inputs regarding the built 
quality and fabric performance, occupancy patterns and behaviour as well as the management and control of 
the building and its services (De Wit, 1995).  
Modelling Tools 
Building energy modelling software can contain fundamental errors embedded in the equations used by the 
program, leading to inaccuracies in the predictions. This should be avoided by choosing modelling tools that 
have been appropriately validated according to the procedures defined by CIBSE TM33 (CIBSE, 2006b). The 
choice of software should also consider the specific type of building being modelled and should allow for 
adequate representation of the building itself as well as its use and operation. Restrictive or oversimplified 
tools can result in models that are unrepresentative of reality (De Wit, 1995). 

Actual 
Performance 

Management and Controls 
Facilities managers have control over central plant equipment, accounting for a great portion of the energy 
consumption in a building (especially in highly automated buildings).  Good management and controls can 
result in an efficient operation of the building services whilst inappropriate strategies can result in 
unnecessary waste of energy (Bordass et al., 2001).  Frequent energy audits as well as re-commissioning 
exercises can help maximise the efficiency of building services, avoiding unnecessary energy waste (Way and 
Bordass, 2005).  
Occupancy Behaviour 
Building occupants do not always have direct control over building services such as heating and cooling, yet 
even in highly automated buildings, occupants can affect their energy consumption by influencing the internal 
conditions (e.g. opening windows, blocking air inlets/outlets, etc) (Demanuelle et al., 2010). Moreover, 
occupants have control over various energy consuming equipment and appliances, commonly referred to as 
‘unregulated loads’ (i.e. not controlled by Building Regulations).  
Built Quality 
The in-use energy performance of a building is affected by the quality of its construction.  Issues such as gaps 
in the insulation and thermal bridging are common, but are rarely considered in the predictions of energy 
consumption.  Moreover, changing requests from clients and/or value engineering exercises can result in 
significant deviations from what was originally specified (Bordass et al., 2004).  Yet these alterations are 
rarely fed back into the energy model. 

 
Despite these improvements, current simulation tools do not accurately model the impact of 
occupants and management on the energy performance of buildings.  This is usually attributed 
to the use of inadequate assumptions at design stage, more so than an inability of the 
modelling tools themselves. As such, there is scope for further investigation into the actual 
use of buildings, focusing on occupancy and management behaviour, as well as their impact 
on unregulated energy consumption.  This can be achieved through the practice of Post-
Occupancy Evaluation (POE).   
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1.3 Post-occupancy evaluation 

Post-Occupancy Evaluation (POE) is a structured process of evaluating the performance of a 
building after it has been built and occupied. This is achieved through systematic data 
collection, analysis and comparison with explicitly stated performance criteria, providing 
designers with valuable information regarding the in-use performance of their designs (Preiser 
et al., 1987). The scope of POE can be divided into three strands (Cooper, 2001): 

• Feedback: a management aid mechanism aimed at measuring building performance 
mostly as an indicator of business productivity and organisational efficiency. 

• Feed-forward: aims at improving building procurement through the use of acquired 
data as feedback to the design team and future briefings. 

• Benchmarking: aims at measuring progress striving towards increasingly sustainable 
construction and stricter targets of energy consumption. 

 
POE can take several approaches, varying from highly technological methodologies involving 
hard data, to socio-psychological interests where more subjective parameters are used to 
evaluate the performance of a building. Hence, the method to be undertaken in a POE is 
usually defined by the objectives being pursued and the areas of interest to the stakeholder. 
Seeing as POE concerns the analysis of individual buildings, the methods vary in scale, type, 
level of interactivity and suitability for specific projects (Turpin-Brooks and Viccars, 2006).  
As a consequence, a vast number of POE methods and techniques are available worldwide, 
allowing for an array of different evaluations to be performed in numerous types of buildings.   
 
One of the most widely recognised tools for evaluating the energy performance of buildings 
in the UK is the Energy Assessment and Reporting Methodology (EARM).  Originally 
developed for the PROBE studies, it was later published by CIBSE as a technical 
memorandum (CIBSE TM22). The document describes a method for assessing the energy 
performance of an occupied building based on metered energy use, and includes a software 
implementation of the method.  It can be used to identify poorly performing buildings and 
systems, indicating the causes of poor performance and benchmarking procedures (CIBSE, 
1999).  Figure 2 illustrates the underlying structure of the TM22 methodology, depicting the 
breakdown of energy consumption by end-uses (such as lighting and ventilation) whilst 
highlighting the impact of low-level factors such as hours of use and equipment efficiency.  
 
The first edition of TM22, published in 1999, consisted of 3 stages: 

• Stage 1: A quick assessment of the energy consumption, breaking it down into use per 
unit floor area and can be carried out by in-house resources.  Information required 
includes description of the building, floor area and annual consumption records.  

• Stage 2: A more detailed assessment of the energy consumption including special 
energy uses or occupancy and can usually be carried out in-house.  Information 
required includes details of building occupancy and usage as well as any special or 
unusual uses. 
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• Stage 3: A full understanding of the performance of the building and its systems, and 
will usually require a specialist to carry out the assessment.  Required information 
includes building operation and maintenance manuals as well as details of building 
occupancy, use and cleaning, plant operation procedures and schedules.  

 
Figure 2: TM22 ‘Energy Tree Diagram’ illustrating the breakdown of energy use. 
 
In 2006, a second edition of the TM22 was published, updating the previous edition by 
describing procedures for compliance with emerging energy performance legislation (CIBSE, 
2006a). It also included treatment of on-site energy generation and renewable energy sources. 
Overall, it provided a simpler and more effective method for energy assessment and reporting, 
whilst keeping up to date with current developments in the construction industry.  An updated 
version of TM22 is currently being developed and will be used as a guidance framework for 
the Technology Strategy Board’s Building Performance Evaluation programme (TSB, 2011).  
This government-funded programme is anticipated to be the largest POE study ever to be 
conducted in the UK, evaluating the in-use performance of both domestic and non-domestic 
buildings.  One of the key objectives of the programme is to assemble a substantial body of 
data for a variety of building types, aiming to draw conclusions on the in-use performance of 
various design strategies.  These will be disseminated across the industry to enable 
improvements in the performance of new and refurbished buildings through better design, 
delivery and operation. 
 
 

2 METHODOLOGY 

Taking a case study approach, this paper analyses the energy performance of an office 
building in central London. The assessment was guided by the TM22 methodology, followed 
by in-depth monitoring of the electricity consumption for lighting, small power and catering 
equipment. Monitoring of occupancy patterns were also conducted via half-hourly 
walkthrough inspections. Results from the monitoring exercise were then fed into energy 
models, aiming to produce more accurate predictions of energy consumption. These focused 
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solely on tenant electricity consumption, excluding all gas usage as well as electricity 
consumption for air conditioning, ventilation, lifts, water heating and circulation, as well as 
lighting in communal areas. 
 

2.1 Building Description 

The selected building accommodates the offices of four different companies throughout its 
seven floors and basement. It includes an atrium that extends to all floors (except the 
basement). Each floor comprises a main open-plan office space with a treated floor area of 
approximately 2,000m2.  The ground floor houses a large reception area and the basement 
houses meeting rooms and cellular offices. The building is fully air-conditioned, three rooftop 
air-handling units (AHUs) provide heating/cooling as well as fresh air to all floors and atrium. 
A separate system provides heating for the basement, whilst fan coil units (FCUs) provide 
cooling to the meeting rooms and small individual offices. Two gas-fired boilers provide hot 
water to all toilets and kitchens throughout the building. 
 
Figure 3 illustrates the metering strategy for the supply of electricity and gas to the building. 
As shown, the landlord is responsible for the electricity consumed by all air conditioning 
equipment including the AHUs, FCUs, chillers, pumps and fans as well as the Building 
Management System (BMS) and other control equipments.  The lighting throughout the 
common areas of the building as well as the toilets is also supplied and maintained by the 
landlord. As such, the energy supplied for the landlord services is metered together, with no 
sub-metering for individual end-uses. Meanwhile, the electricity supplied to the tenants for 
lighting, small power equipment and catering in each of the floors is metered separately.  A 
total of 32 sub-meters provide a further breakdown for each of the 4 zones in each floor: 
North-East (NE), Northwest (NW), Southeast (SE) and Southwest (SW).  

 
Figure 3: Metering strategy for the supply of gas and electricity to the building. 
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2.2 Monitoring Process 

Following a full TM22 assessment of the building, whereby the total energy consumption for 
both gas and electricity was analysed and broken down by individual end-use, a further 
analysis of the tenants’ consumption was undertaken.  This in-depth study focused on the 
electricity consumption for lighting, small power and catering within each of the tenant zones, 
relying on monthly meter readings for each of the sub-meters as well as half hourly profiles 
acquired through the use of 3-phase portable data loggers connected to the individual sub-
circuits.  Further data was acquired using combined plug monitor / loggers connected to 
individual small power office equipment such as laptops, computer screens and printers.  
These were also used to monitor the electricity consumption of catering equipment such as 
fridges, microwave ovens and coffee machines.  Half hourly profiles for each of the pieces of 
equipment being monitored were reviewed in order to obtain an average daily consumption 
value.  Where different usage modes were present (such as stand-by mode), these were 
recorded separately and accounted for when calculating the average daily consumption for 
each equipment. Occupancy patterns were also monitored by manually recording the number 
of occupants within the office in half-hour intervals. 
 
 

3 MONITORING RESULTS 

Figure 4 illustrates the annual tenant electricity consumption per floor (normalised by m2).  
This includes lighting, small power and catering equipment loads. It is worth noting that the 
lighting specification and controls are consistent throughout the entire building and the 
catering facilities in each floor are of a similar size and nature (consisting mainly of an instant 
hot water heater, a microwave, a dishwasher and a full size fridge).  Some floors have 
additional coffee machines and/or vending machines, and the tenants on the ground floor have 
a large bar with multiple fridges.  In regards to small power, a fairly consistent volume of 
office equipment is present throughout the building.  Despite their different nature of work, all 
4 tenant companies have similar occupation densities and office equipment specifications.  
Most workstations consist of a computer screen, laptop or desktop as well as a phone.  Some 
workstations have individual desk lamps, personal fans and/or desktop printers.  In addition, 
all floors have large printer/copiers (typically 6-8 per floor) as well as projectors and/or flat 
screen displays in meeting rooms.  
 
As seen, the 2nd floor consumes approximately 60% more electricity per m2 than the lowest 
consumer (5th floor).  This is quite a significant variation considering the consistency in 
lighting specification and controls as well as the similarities in installed equipment and 
occupation density.  However, when relating the electricity consumption to the tenants 
occupying each of the floors, a clearer pattern can be observed. Figure 5 illustrates how the 
different tenant companies are located throughout the building.  As shown, the lowest 
consuming floors (5th and 6th) are wholly occupied by Tenant C.  Similarly, the 3rd and 4th 
floors are mainly occupied by Tenant B, presenting similar annual consumption values. 
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Figure 4: Annual tenant electricity consumption per floor area. 
 

 
Figure 5: Location of tenant companies throughout the building. 

 
Figure 6 illustrates the annual electricity consumption of each tenant per m2 of office space 
they occupy.  Not surprisingly, Tenant C has the lowest electricity consumption at 90 
kWh/m2.  Tenant A has the highest annual consumption at 155 kWh/m2, followed closely by 
Tenant D at 139 kWh/m2.  This might explain why the 2nd floor has the highest consumption 
seeing as it is occupied by both Tenants A and D.   

 

 
Figure 6: Annual electricity consumption per tenant (normalised by floor area). 
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An informal interview was conducted with the facilities co-ordinator of each tenant to 
investigate the causes of such variations.  This revealed that the employees of Tenant A are 
instructed to leave their computers on overnight for IT upgrades.  As such, a large quantity of 
electricity is used outside the normal operating hours of the building, accounting for a 
significant portion of their overall consumption.  Similarly, employees of Tenant D often 
leave their computers on at the end of the day so that time-consuming tasks, such as high 
quality rendering, can be performed overnight.  On the other hand, employees of Tenants B 
and C are heavily encouraged to save energy through internal communications to turn off 
their computers and screens at the end of the day.  Tenant B has also instructed their facilities 
co-ordinator to switch off printer/copiers and non-essential catering equipment such as coffee 
machines at the end of each day. 

 

3.1 Detailed Analysis of Electricity Demand 

Following the analysis of annual electricity consumption data, an in-depth study was 
undertaken to examine the variation in electricity demand throughout a typical week. Figure 7 
illustrates the half hourly electricity consumption for a single zone in the 4th floor of the 
building (occupied by Tenant B).    
 

 
Figure 7: Monitored electricity consumption for 4th floor – Northeast zone. 

 
As shown, the base load is approximately 3 kW outside working hours. The electricity 
demand starts to escalate around 06:00 peaking at approximately 13 kW by 10:00.  This can 
be associated with the arrival of employees who trigger the motion sensors, turning on the 
lights.  This will usually be followed by office/catering equipment being turned on. From 
10:00 to 17:00 the demand remains fairly high, varying between 11-14 kW, eventually 
decreasing to approximately 8 kW by 19:30.  This can be associated with equipment being 
turned off as employees leave the office.  A steep rise in the demand is then observed at 
approximately 20:30, followed by a fairly quick decrease, bringing the demand down to the 
base load at around 22:00.  This late peak can be associated with the cleaning schedule of the 
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building.  It is assumed that the rise in demand is due to the use of vacuum cleaners as well as 
the dishwasher being turned on.  The electricity demand during the weekend is fairly constant 
at a similar base load to the evenings.  The only deviation occurs on Saturday between 9:00 
and 15:00 when the electricity demand rises to approximately 5 kW.  This can be associated 
to individual employees going into the office to work extra hours.   
 
The analysis of half hourly electricity consumption has suggested a correlation between 
occupancy hours and electricity consumption.  In order to determine the extent of this 
correlation, real occupancy levels were monitored and plotted against the half hourly 
electricity consumption.  Figure 8 illustrates the results of this monitoring showing occupancy 
patterns on a typical working day.  As shown, the electricity demand follows the monitored 
occupancy profile quite closely. The initial peak in demand is observed around 08:00 when 
occupancy numbers start to increase rapidly.  Similarly, a steep decrease in electricity demand 
is observed after 17:30 when occupancy starts to decrease. However during lunchtime, the 
quick decrease in occupancy is not reflected in the electricity demand.  This is because most 
computers are kept on and lighting levels remain constant.  As previously mentioned, the 
sharp peak around 20:00 is associated with cleaning.  
 
Figure 8 also illustrates the standard occupancy profile for offices used by SBEM for 
compliance predictions.  Despite its simplistic nature, standard profiles such as this are 
normally used in DSMs.  As shown, there is little correlation between the SBEM profile and 
the monitored electricity consumption.  The impact of using a standard occupancy profile in 
predictive models is discussed in further detail below. 
 
 

 
Figure 8: Relationship between monitored electricity consumption and occupancy profiles. 
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4 PREDICTIVE MODELS 

Following the detailed analysis of electricity consumption in the 4th floor NE zone, the 
acquired data was used to produce 5 predictive models of electricity consumption. These 
predictions refer to the annual electricity consumption for lighting, small power and catering 
for this specific zone, occupied by Tenant B.  An increasing level of detail was used in each 
subsequent model, replacing typical assumptions with monitored data.  The parameters used 
for each of the electricity demands are detailed in Table 2.  It is worth mentioning that due to 
increasing complexities in the input parameters of small power and catering equipment, a 
spreadsheet approach was taken to predict annual electricity consumption.  Although most 
DSMs will allow such detailed parameters to be used, the process of doing so can be quite 
onerous.  In addition, most DSMs rely on a ‘black box’ approach, meaning that the user has 
no control over how the calculations are carried out (White and Holmes, 2009), making it 
difficult to visualise the impact of such detailed inputs in the overall electricity consumption 
of the building.  As such, a bottom-up approach to CIBSE TM22 was used to produce the 
predictive models.  This methodology (illustrated earlier in Figure 2) has previously been 
used to predict electricity consumption (Bordass et al., 2004; Cohen and Bordass, 2006), 
allowing for detailed parameters such as load and usage factors to be used.  This approach 
was used in predictive models 1 and 2.  Alternatively, metered data can be used to replace 
assumptions, increasing the accuracy of the model.  This approach was used in models 3, 4 
and 5, where increasing amounts of data acquired from the monitoring study (mostly through 
the use of plug monitors) was used to replace standard assumptions regarding energy 
consumption of specific equipment.  Information gathered through the monitoring of 
occupancy patterns was also used to substitute standard occupancy hours in model 5.  
 
It is worth mentioning that the actual electricity consumption value displayed in Figure 9 was 
unknown at the time these predictive models were developed.  The author was aware of the 
average consumption per m2 for Tenant B but did not have access to the actual consumption 
value for the specific zone being modelled.  
 
Results from the predictive models are illustrated in Figure 9.  The predictions are labelled 1-
5 accordingly and reflect the inputs specified in Table 2.  As seen, the predictions are 
compared against the actual electricity consumption, which is not subdivided into the specific 
end-uses due to the limitations of the sub-metering strategy of the building.  Two benchmark 
values are also illustrated in the graph for further comparison.  These were acquired from 
‘Energy Consumption Guide 19’ (commonly referred to as ECG19) and illustrate industry 
benchmarks for Typical (TYP) and Best Practice (BP) energy consumption for lighting, small 
power and catering in standard air conditioned office buildings with floor areas between 
2000m2 and 8000m2 (i.e. Type 3) (BRECSU, 2000). 
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Table 2: Input parameters used in each predictive model. 

 Brief description Lighting  Small Power  Catering 
1 Typical compliance model using lighting specification from the 

design brief, using SBEM standard occupancy hours and 
overlooking small power and catering equipment. 

11 W/m2  
2600 hrs/year  

Not considered Not considered 

2 ‘Enhanced’ compliance model using industry rules of thumb to 
account for small power loads (BSRIA, 2003), but overlooking 
catering equipment. 

11 W/m2  
2600 hrs/year 

15W/m2  
2080 hrs/year 
(due to 80% 
usage factor) 

Not considered 

3 Initial bespoke model using monitored data regarding the 
installed lighting load as well as measured electricity demand for 
basic small power and catering equipment. SBEM standard 
occupancy hours were used accounting for an 80% usage factor 
of small power equipment.   

13 W/m2  
2600 hrs/year  

170 laptops                
170 screens                
5 printers 
= 11 W/m2  
2080 hrs/year 

1 water heater                    
1 fridge 
= 0.3 W/m2 

2600 hrs/year 

4 Intermediate bespoke model using monitored data for lighting as 
well as measured electricity demand for all small power and 
catering equipment installed. SBEM standard occupancy hours 
were used once again with allowances for usage factor of small 
power equipment. 

13 W/m2  
2600 hrs/year  

170 laptops               
170 screens                   
5 printers                            
8 desk lamps                      
6 desk fans     
= 11.5 W/m2  
2080 hrs/year 

1 water heater                
1 fridge                          
1 microwave                    
1 dishwasher                  
2 coffee machines  
= 1 W/m2 

2600 hrs/year 
5 Advanced bespoke model using monitored data for lighting as 

well as measured electricity demand for all small power and 
catering equipment installed. Monitored hours of use were used 
for all lighting, small power and catering equipment. 

13 W/m2  
3640 hrs/year 

170 laptops                
170 screens                    
5 printers                            
8 desk lamps                       
6 desk fans     
= 11.5 W/m2  
[monitored 
hours of use per 
individual 
equipment] 

1 water heater                 
1 fridge                      
1 microwave                     
1 dishwasher                    
2 coffee machines  
= 1 W/m2 

[monitored hours 
of use per 
individual 
equipment] 

 
 

 
Figure 9:  Comparison of benchmarks, predicted and actual electricity consumption. 

 
As shown in Figure 9, the increased detail in the input parameters of models 1-5 have resulted 
in incremental increases of the predicted annual electricity consumption.  By using a typical 
compliance model in prediction model 1, the calculated electricity consumption was shown to 
be less than 1/3 of the actual in-use consumption.  The predicted value was then increased 
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significantly in prediction model 2 when ‘rules of thumb’ published by the Building Services 
Research and Information Association (BSRIA) for small power consumption were used to 
account for the electricity demand of office equipment (BSRIA, 2003).  It is worth 
mentioning that such rules of thumb are commonly used in DSMs when trying to predict 
energy consumption of buildings in-use (Dunn and Knight, 2005).  In prediction model 3, 
design specifications and rules of thumb were replaced by monitoring data of installed 
lighting and equipment. At this point however, only basic equipment were considered and 
SBEM standard occupancy hours were assumed.  This resulted in a similar total prediction of 
electricity consumption, yet this total consisted of higher lighting loads and lower small 
power loads.  This demonstrates that actual installed lighting loads were higher than specified 
at design stage. Meanwhile the small power prediction seems to have been fairly conservative 
by having considered only basic office and catering equipment.  In prediction model 4, all 
installed equipment were included, resulting in an increase of approximately 15% in the total 
electricity consumption. Finally, in prediction model 5, the SBEM standard occupancy hours 
were replaced by monitored occupancy hours.  By doing so, the predicted electricity 
consumption came within 3% of the actual consumption of the building in-use. This small 
discrepancy could be associated with the fact that the predictions were based on 
measurements from a single day.  As such, the model assumes a typical operation throughout 
the entire year, disregarding variations in both occupancy and energy use profiles that are 
bound to occur.   
 
When comparing the results from the predictive modelling against the ECG19 benchmarks, it 
is possible to conclude that the final prediction is only slightly higher than the typical 
benchmark for a Type 3 office building.  However, when considering that Tenant B had the 
second lowest consumption per m2 in the building, one would expect it to be lower than the 
typical benchmark and perhaps closer to best practice.  Considering that the ECG19 
benchmarks were compiled over 10 years ago, they might not be representative of current 
office buildings.  With the fast advancements in the design of low energy ICT equipment, 
energy consumption due to small power would be expected to have decreased in the last 
decade.  However, current offices are now run for longer hours and tend to contain more 
items of small power equipment.  The same would be expected for lighting and catering, 
resulting in similar proportions of electricity being consumed by each end-use.  The lack of 
more up-to-date benchmarks makes it hard for further conclusions to be drawn. 
 
4.1 Methodology Validation 

In order to validate the methodology used to generate the predictive models, the same 
approach was used to model another zone in the building occupied by a different tenant (i.e. 
2nd floor South-West zone occupied by Tenant D).  Once again a walk through inspection 
was undertaken to determine the quantities of installed equipment throughout the zone.  Plug 
monitors were then used to log the energy consumption of different small power and catering 
equipment, and variations in occupancy density were also monitored via half-hour inspections 
throughout the day.  Acquired data was incrementally used to inform the input parameters for 
the predictive models, as detailed in Table 3. 
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Table 3: Input parameters used in predictive models for methodology validation  

 Lighting  Small Power  Catering 
1 11 W/m2  

2600 hrs/year  
Not 
considered. 

Not considered. 

2 11 W/m2  
2600 hrs/year 

15 W/m2  
2080 hrs/year 
(due to 80% 
usage factor) 

Not considered. 

3 Fixed lighting 
=12.8 W/m2  
2600 hrs/year  

40 laptops          
70 desktops     
110 screens         
4 printers 
= 11.6 W/m2  
2080 hrs/year 

1 water heater        
1 fridge 
= 0.3 W/m2 

2600 hrs/year 

4 Fixed lighting 
plus decorative  
and task lighting 
= 17.3 W/m2  
2600 hrs/year  

40 laptops          
70 desktops      
110 screens         
4 printers              
2 desktop 
printers             
3 plasma TVs 
= 12.6 W/m2  
2080 hrs/year 

1 water heater        
1 fridge                   
3 glass front 
fridges                  
2 microwave           
1 dishwasher          
2 coffee machines  
2 vending 
machines   
= 2.3 W/m2 

2600 hrs/year 
5 Fixed lighting 

plus decorative  
and task lighting 
= 17.3 W/m2  
3120 hrs/year 

40 laptops          
70 desktops     
110 screens         
4 printers              
2 desktop 
printers             
3 plasma TVs 
= 12.6 W/m2  
[monitored 
hours of use 
per individual 
equipment] 

1 water heater        
1 fridge                   
3 glass front 
fridges                  
2 microwave           
1 dishwasher          
2 coffee machines  
2 vending 
machines   
= 2.3 W/m2 

 [monitored hours 
of use per 
individual 
equipment] 

 
The previous investigation into the energy use of Tenant D had revealed that a significant 
proportion of employees routinely left their computer on overnight in order to run time 
consuming tasks. In order to account for this behaviour into the predictive models, an 
assumption was made that 20% of computers were constantly left on.  This assumption was 
made based on rough estimated provided by Tenant D’s IT technicians.  Figure 10 compares 
the results of the predictive models with the actual electricity use for the zone being analysed.  
It also illustrates the results from the previous predictive models for the zone occupied by 
Tenant B. 
 
As seen in Figure 10, the first two models are identical for both zones.  This is due to the fact 
that they are compliance models, which do not account for actual installed loads or any 
specific characteristics of the individual zones. Models 3 – 5 provide increasing levels of 
detail into the installed equipment within each of the zones, progressively increasing the 
accuracy of the models.  Once again it is the final step of adjusting the occupancy hours that 
seems to have the highest impact towards achieving an increasingly accurate prediction.    
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Figure 10: Predictive model results and actual electricity consumption in both zones investigated. 

During this validation exercise, the final model achieved a prediction within 6% of the actual 
electricity consumption of the zone, being slightly less accurate than the initial set of 
predictive models.  This could be related to the assumptions made regarding the proportion of 
employees who leave their computer on overnight, suggesting that more than 20% of 
computers are constantly left on overnight.  This emphasises the importance of minimising 
the use of assumptions in order to achieve realistic predictions.  
 

5 CONCLUSION 

This paper has discussed the existence of a gap between predicted and actual energy 
consumption in non-domestic buildings.  It has highlighted the main causes of such 
discrepancies, identifying POE as a key tool for understanding this issue further.  It also 
identified the potential for using POE results to inform predictions, enabling better 
assumptions to be used in detailed energy modelling.  A case study revealed that by 
conducting basic monitoring exercises it is possible to feed results into energy models and 
gain a more accurate prediction of a building’s actual performance (within 3% of actual 
consumption for this specific study).  A validation exercise demonstrated that replicating the 
methodology within a different zone in the building produced results within 6% of the actual 
energy use for the zone.  Despite the limited applicability of this methodology to non-
speculative buildings, the results are encouraging and demonstrate that reliable predictions 
can be obtained for lighting and small power loads by using realistic assumptions in the 
modelling process. It is also worth mentioning that improved predictions for electricity 
consumption due to lighting and equipment can also inform better assumptions regarding 
internal loads, which can in turn improve the prediction of cooling and heating demand in a 
building. 



 Predicted vs. Actual Energy Performance of Non-domestic Buildings: Using Post-
occupancy Evaluation Data to Reduce the Performance Gap  (Paper 2)  

 

 123 

Key findings from this study highlight the need for better understanding of occupancy 
patterns and behaviour in office buildings. Variations in the electricity consumption of 
different tenants occupying the same building have demonstrated that modelling software 
should account for different occupancy patterns and behaviours if realistic predictions are to 
be achieved.  In addition, a clear correlation was observed between monitored occupancy 
profiles and tenant electricity consumption. It should be noted however, that energy demand 
can vary largely with tenant behaviour throughout the day (not only when they arrive or 
leave).   The impact of management was not analysed in this study due to its focus on tenant 
consumption.  It is important to highlight, however, that management decisions, such as the 
running of ICT updates outside of occupancy hours, were observed to have a significant 
impact on the tenant consumption.  Inconsistencies between design specification and installed 
lighting loads were also observed to have a considerable impact on the discrepancy between 
predicted and actual electricity use. 
 
If the UK is to experience real reductions in its CO2 emissions, it is imperative that we start 
achieving energy efficiency in practice.  With Building Regulations relying heavily on 
predictive indicators of performance, it is vital that we understand the limitations of the 
current compliance modelling and aim to predict realistic energy consumption levels by using 
detailed DSMs that account for realistic occupancy and management behaviours.  The 
widespread practice of POE can help us understand how occupants and facilities managers 
interact with the built environment.  It can also provide valuable information regarding the 
performance of the current building stock.   
 
 

6 FUTURE WORK 

Future work will seek to use detailed POE data to develop a set of evidence based 
benchmarks for energy consumption in office buildings. It is envisioned that these 
benchmarks will inform designers regarding the impact of occupancy and management on the 
actual energy consumption of offices.  Moreover, it should enable the use of more realistic 
input parameters in energy models, bringing the predicted figures closer to reality.   
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Abstract 
 
CIBSE’s Guide F is a widely recognised guidance document on energy efficiency in 
buildings, which includes energy consumption benchmarks for small power equipment in 
offices. In its recently published 3rd edition, existing power demand benchmarks for office 
equipment were revised to better represent appliances found in contemporary office buildings. 
Other key sources of data such as typical operating hours for equipment, however, have been 
omitted. This paper compares the benchmarks published in both the 2nd and 3rd editions of 
Guide F against a set of measurements of small power loads in a real UK office building. 
Load profiles for the monitored equipment are also presented to supplement the information 
included in the new Guide F. 
 
 
Practical Application 
 
With the increasing demand for more realistic predictions of operational energy use in 
buildings, small power should not be disregarded since it typically accounts for more than 
20% of total energy used in offices. Furthermore, small power loads can have a significant 
impact on the cooling loads of a building.  This paper reviews existing benchmarks, focusing 
on the new update to CIBSE Guide F, comparing available benchmarks against newly 
gathered monitored data.  Detailed load profiles for individual office equipment are also 
provided, which can be used by designers to inform better predictions of small power 
consumption in office buildings. 
 
Keywords – Small power, appliances, offices, energy performance, performance gap 
 
Paper type – Journal Paper 
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1 INTRODUCTION 

There is significant pressure to continue to improve the energy performance of buildings. A 
critical part of the design process is to be able to make realistic predictions of the energy 
performance in-use, however studies have demonstrated that buildings typically consume 
significantly more energy than anticipated (Bordass et al., 2004; Bordass et al., 2011; 
Menezes et al., 2012).  This so-called ‘performance gap’ can be attributed to numerous factors 
relating to model based predictions as well as building operation.  A key factor in the UK is 
the exclusion of several sources of energy use from the compliance calculations for Part L of 
the Building Regulations.  These include all small power equipment, as well as external 
lighting, vertical transportation and ICT servers. In an office building, small power loads will 
typically represent a large proportion of the total energy consumption, with office equipment 
alone accounting for more than 20% of the total energy use (BRECSU, 1997).  Data from 
Energy Consumption Guide (ECG) 19 provides typical and good practice values for office 
equipment and catering electricity conusmption, depicted in Figure 1, labelled ‘TYP’ and 
‘GP’ respectively (BRECSU, 2000). Values for four different types of office buildings are 
given: Type 1, naturally ventilated cellular office; Type 2, naturally ventilated open plan 
office; Type 3, air-conditioned standard office; and Type 4, air-conditioned prestige office 
(typically including large catering kitchen and/or regional server rooms).   

 
Figure 1: Typical and best practice electricity consumption for office equipment and catering equipment 
in office buildings (BRECSU, 2000) 

 
According to ECG19, electricity consumption for office equipment ranges from 12 kWh/m2 
per year for good practice Type 1 offices, to 32 kWh/m2 per year in typical Type 4 offices 
(BRECSU, 2000).  These values respectively represent 36% and 9% of the total electricity 
consumption in each office type.  The annual electricity consumption for catering equipment 
typically ranges from 2 kWh/m2 per year to 15 kWh/m2 per year, accounting for 6% to 4% of 
the total electricity consumption, respectively. Combined, office equipment and catering will 
usually represent between 13% and 44% of the total electricity consumption in an office 
building. These are significant proportions of the total building electricity load and should be 
given more attention if realistic predictions are to be achieved. 
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According to the British Council for Offices (BCO), there is significant difference between 
actual small power loads observed in occupied buildings and those assumed for design 
purposes (BCO, 2009).  The BCO also claims that current benchmarks fail to account for 
diversity of use, highlighting a need for more detailed benchmarks that reflect current and 
realistic usage of small power equipment in office buildings.  Aiming to address these issues, 
this paper reviews and assesses the validity of existing benchmarks for small power 
consumption in office buildings using monitored data acquired as part of a case study.  The 
scope of this review focuses mainly on the widely recognised CIBSE Guide F including its 
recent update published in May 2012 as well as the widely referenced previous (2nd) edition.  
 
 

2 EXISTING BENCHMARKS AND CIBSE GUIDE F 

One of the most widely recognised guidance documents on energy efficiency in buildings is 
CIBSE’s Guide F (CIBSE, 2004; CIBSE, 2012).  Section 12 of the publication deals 
exclusively with electrical power systems and office equipment, providing a compilation of 
data regarding power demand and energy consumption for small power equipment.  Since the 
publication of its 2nd edition in 2004, Guide F has provided engineers with a wide range of 
benchmarks for an array of energy end-uses and building types, compiling information from 
numerous sources. The scope of this review will cover the key benchmarks published in the 
2nd edition of Guide F, which have widely been used by designers over the last 8 years. It will 
also include a review of updates in the recently published, 3rd edition of Guide F.  Data from 
other sources such as academic papers and reports will also be discussed, providing additional 
context.  
 
Table 1 displays high-level benchmarks for office equipment, originally published in ECG19 
(BRECSU, 2000).  The data relates to the 4 office types from ECG19 and provides typical 
(TYP) and good practice (GP) figures for installed capacity (in W/m2), annual running hours 
and percentage ICT area in relation to the treated floor area.  In combination these values are 
used to calculate typical annual energy consumption data for office equipment (in kWh/m2 per 
year). 
 
Table 1: Benchmarks for office equipment originally published in ECG19  

 Type 1 Type 2 Type 3 Type 4 
 GP TYP GP TYP GP TYP GP TYP 
Installed capacity: floor area with ICT (W/m2) 10 12 12 14 14 16 15 18 
Annual running hours (1000 of hours) 2 2.5 2.5 3 2.75 3.25 3.0 3.5 
ICT area as % of treated floor area (%) 60 60 65 65 60 60 50 50 
Consumption: office equipment (kWh/m2) 12 18 19.5 27.3 23.1 31.2 22.5 31.5 

 
 
According to the 2nd edition of CIBSE Guide F, allowances of 15 W/m2 for installed loads are 
adequate for all but the most intensive users (CIBSE, 2004).  The same value of 15 W/m2 is 
also published by the Building Services Research and Information Association (BSRIA) in 
their ‘Rules of Thumb’ guide as a typical small power load in general offices (BSRIA, 2003). 
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Actual energy consumption data published by the BCO in 2009 suggests that higher installed 
loads can be found in typical office buildings, with one third of the offices monitored having 
installed loads higher than 15 W/m2 (BCO, 2009).  With these findings in mind, the 3rd edition 
of Guide F suggests that a guide figure for building loads of 25 W/m2 is adequate for most 
office buildings (with 15 W/m2 when diversity is taken into account). A previous study by 
Wilkins and McGaffin (1994) also highlighted the importance of diversity, reporting on 
monitored energy consumption for small power in five office buildings in the US.  Power 
densities of 18.8 W/m2 were reported without diversity, decreasing to 8.6 W/m2 once diversity 
had been accounted for.    
 
BSRIA’s Technical Note 8/92 highlights the risks associated with high level benchmarks for 
power demand reported in W/m2.  According to the document such values must be considered 
carefully as there are a number of factors which can influence power demand such as 
workstation density and space utilisation.  This issue is raised in the updated Guide F with a 
suggestion that designers use a loading of approximately 140–150 W/desk when occupancy 
details are known. 
 
Numerous other parameters such as power management settings on ICT devices are also not 
captured by high level benchmarks, yet can have a significant impact on the instantaneous 
power demand as well as overall energy consumption.  In 2003, the Australian National 
Appliance and Equipment Energy Efficiency Program (NAEEEP) published a report on the 
operational energy use of office equipment, investigating the impact of different power 
management settings on the overall energy consumption of desktop and laptop computers as 
well as monitors (NAEEEP, 2003). The results demonstrated that significant variations in 
energy consumption occur when different power management settings are applied to the same 
device.  When aggressive power management was implemented (powering down the 
computer to sleep mode after 5 minutes of inactivity) all machines used approximately 75% 
less energy than they would have consumed if no power management settings were applied.  
 
Aiming to address such variations, as well as other parameters influencing energy 
consumption, CIBSE Guide F (both in its 2nd and 3rd editions) provides an alternative 
methodology for calculating installed loads based on a ‘bottom-up’ approach.  This method 
was adapted from Energy Consumption Guide 35 (BRECSU, 1993), providing a more robust 
prediction of energy consumption as opposed to high level benchmarks and relies on 
numerous sources of information, including: 

• list of expected types of equipment; 
• typical power consumption figures; 
• estimated number of devices; 
• proportion of equipment with ‘sleep mode’ enabled; 
• usage diversity; and, 
• typical hours of usage for each equipment type. 
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Table 2 provides values for the typical maximum, average and stand-by power demands for 
individual office equipment, including data published in both the 2nd and 3rd editions of 
CIBSE Guide F (CIBSE, 2004; CIBSE, 2012). Most of the benchmarks included in the 2nd 
edition were originally published in the Building Research Energy Conservation Support 
Unit’s  (BRECSU) Good Practice Guide 118 (BRECSU, 1997). Data included in the 3rd 
edition are based on a combination of five sources including research projects conducted by 
ASHRAE and the Market Transformation Programme (Hosni and Beck, 2010; DEFRA, 
2009). 
 

Table 2: Typical levels of energy used by office equipment published in CIBSE Guide F  

Item  Max. rating 
(W) 

Average consumption 
(W) 

Stand-by consumption 
(W) 

 2nd ed. 2nd ed. 3rd ed. 2nd ed. 3rd ed. 
PC and monitor 300 120-175 n/a 30-100 n/a 
Personal computer 100 40 65 20-30 6.6 
Laptop computer 100 20 15-40 05-10 1.4-4 
Monitors  200 80 30 10-15 0.52-1.54 
Laser Printer 1000 90-130 110 20-30 10-20 
Ink Jet Printer 800 40-80 n/a 20-30 n/a 
Printer/scanner/copier 50 20 135 08-10 20-80 
Photocopiers 1600 120-1000 550-1100 30-250 15-300 
Fax machines 130 30-40 20-90 10 10-15 
Vending machines 3000 350-700 n/a 300 n/a 

 

Table 3 details information from the 2nd edition of Guide F regarding typical daily use of 
office equipment by users as well as the minimum likely staff numbers per machine in large 
offices, accounting for intermittent usage. This data, however, is excluded from the 3rd edition 
of Guide F because it has not been updated since its original publication in 1992 in a BSRIA 
technical note which has now been removed from circulation (Parsloe and Hejab, 2003). 
Instead, the new Guide suggests that designers acquire the necessary information about the 
future office functions through discussions with clients and prospective occupiers, rather than 
relying on rules of thumb. 
 

Table 3: Typical daily use of office equipment and minimum likely staff numbers per machine  

Item Typical daily hours of use Persons per machine 

Personal Computers 4 hours 1 
Printers 1-2 hours 3 
Photocopiers 1-2 hours 20 
Fax Machines 20-30 minutes 20 
Vending Machines 8-10 hours n/a 
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3 RESEARCH GAP AND PROPOSED INVESTIGATION 

Despite the recent update to Guide F, additional information to help designers generate 
realistic predictions of small power consumption is still lacking in the following areas: 

• details of typical hours of use; 
• typical number of equipment per m2 or staff (i.e. installed density); and, 
• levels of diversity of use/stand-by;  

 

The availability of data to support the estimation for these parameters is improving. A recent 
study by Acker et al. (2007) compiled data for small power consumption and load profiles for 
typical weekday and weekend usage based upon a two year study of 6 different office types 
from 2010-2012. The study provided useful results for evaluating the typical energy 
consumption and hours of usage for 'total' small power loads (i.e: at the distribution panel 
level), also highlighting a wide variance in installed plug load densities. However, the study 
did not provide load information on an individual appliance basis and so presented in this 
paper are some results from a monitoring study that includes small power load profiles for 
individual appliances. Table 4 details the scope of appliances monitored and the 
representation in both publications of Guide F.  

Table 4: Description of data included in the study as well as both editions of Guide F  

Item   2nd 
ed 

3rd 
ed 

Monitoring 
Study Comments 

Laptop Computers ü ü ü Monitoring included machines with distinctive processing 
powers Personal Computers ü ü ü 

Monitors ü ü ü Monitoring included a variety of screen dimensions 

Printer Laser ü ü û Not available in the case study office building 
Ink jet ü ü ü Only one desktop inkjet printer was available for monitoring 

Printer/scanner/copier ü ü û Not available in the case study office building 
Photocopiers ü ü ü Monitoring included 2 machines but of similar specifications 
Fax machine ü ü û Not available in the case study office building 
Vending machines ü û ü Monitoring included hot and cold drinks units 
Microwave oven û û ü Commonly found in office buildings but not included in 

benchmarks – worthwhile investigating Fridge û û ü 
 
A minimum of two appliances were monitored for each equipment type, with the exception of 
desktop inkjet printers. Class 1 accuracy Telegesis ‘ZigBee Plogg-ZGB’ plug monitors were 
used and have a published measurement uncertainty of <0.5%. The power consumption was 
monitored at 5-minute intervals and aggregated energy consumption was logged every 30 
minutes. The findings from the study are compared to the old and new Guide F benchmarks. 
 

4 RESULTS 

Figure 2 displays the results from the monitoring study compiled into graphs illustrating the 
typical weekday load profiles for different equipment. Table 5 highlights key power demand 
values for stand-by mode, maximum demand and average in-use demand.   It is worth noting 
the ‘maximum demand’ values relate to the half hourly averages and peaks within this 
interval are likely to have been higher. 
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Figure 2. Monitored power demand profiles for each appliance. 
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Table 5: Key power demand values for each monitored appliance 

Equipment Appliance 1 Appliance 2 Appliance 3 

a Laptops 1.3 GHz Intel Centrino 
processor 

2.3 GHz Intel Core 
Duo processors 

2.6 GHz Intel Core i5 
processors 

 Stand-by mode  1.1 0.3 0.5 
 Maximum demand 22.9 45.8 27.6 
 Average in-use 20.3 30.9 17.9 

b Desktops 2.3 GHz Intel Core Duo 
processors 

3.4 GHz Intel Xeon 
processors - 

 Stand-by mode  1.9 2.0 - 
 Maximum demand 69.1 233.7 - 
 Average in-use 64.1 168.6 - 
c Monitors 19” LCD flat screen 19” LCD flat screen 21” LCD flat screen 
 Stand-by mode  0.7 0.4 0.8 
 Maximum demand 26.7 26.3 47.7 
 Average in-use 23.2 22.4 35.7 

d Printers Large network 
printer/photocopier 

Large network 
printer/photocopier 

Desktop ink-jet 
printer 

 Stand-by mode  37.2 29.9 15.6 
 Maximum demand 765.1 771.6 103.0 
 Average in-use 223.2 235.1 49.1 
e Vending Machines Snacks (food) Cold drinks Hot drinks 
 Stand-by mode  89.0 88.9 23.4 
 Maximum demand 623.3 392.6 2663.9 
 Average in-use 158.8 262.1 337.8 
f Microwave Ovens 800W power rating 900W power rating - 
 Stand-by mode  2.1 1.9 - 
 Maximum demand 1299.7 1578.9 - 
 Average in-use 115.8 210.4 - 
g Fridges Full size fridge (375 L) Small fridge (150 L) - 
 Stand-by mode  18.0 0.0 - 
 Maximum demand 237.8 98.8 - 
 Average in-use 133.6 26.4 - 

 
 
4.1 Laptop computers 

Three laptop computers with differing processing powers were monitored as part of this 
study. Note that values for laptop power demand were obtained while external monitors were 
being used, i.e. excluding the power demand for the in-built laptop screens. External monitors 
have been treated separately in the study. The newest laptop (Laptop 3), with an average in-
use demand of 17.9W, had the lowest overall power demand, despite its occasional peaks 
throughout the day. Laptop 1 had an average in-use demand of 20.3W, and a less peaky power 
consumption throughout the day which was attributed in part to its single processor.  Laptop 2 
had the highest power demand in-use, averaging 30.9W and reaching a maximum value of 
45.8W over 30-minute intervals, more than twice the maximum value recorded for Laptop 1.  
With regards to stand-by power demand, Laptop 1 consumed the most energy when not in use 
at 1.1W, compared to Laptops 2 and 3 at 0.3W and 0.5W respectively.   
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4.2 Desktop computers 

Desktop 1 was a 3-year old computer with a 2.3 GHz processor, typically used to run 
programs such as word processors and spreadsheets. Desktop 2 was a higher performance 
computer with a 3.4 Ghz multi-core processor used to run 3D modelling software and 
Computational Fluid Dynamic (CFD) programs.  It is worth noting that there were only 6 of 
these desktops in the monitored office amongst more than 200 computers.  Desktop 1 
consumed significantly less energy than Desktop 2 with an average in-use demand of 64.1W 
compared to 168.6W.  The power demand from Desktop 1 was fairly constant throughout the 
working day. The power for Desktop 2, however, fluctuated between 140W - 230W, which 
might be expected as computationally intensive modelling processes tend to be executed and 
completed over a certain period. When considering stand-by mode, both desktops consumed 
similar amounts at approximately 1.9W.  
 
4.3 Computer monitors 

All three computer monitors investigated in this study were LCD screens.  Monitors 1 and 2 
had 19-inch screens and Monitor 3 had a 21-inch screen.  All three monitors had power 
management settings activated: Monitors 1 and 3 switched to stand-by mode after 30 minutes 
of inactivity; and Monitor 2 had a shorter ‘power-down’ time of 15 minutes.  As seen in 
Figure 2, the larger monitor consumed almost twice as much energy as the two smaller ones, 
with a maximum half-hourly demand of 47.7W compared to 26.3W - 26.7W for the 19-inch 
screens. In stand-by mode, Monitor 2 had the lowest consumption at 0.4W, Monitors 1 and 3 
had 0.7W and 0.9W respectively.  Monitor 2’s shorter ‘power-down’ time resulted in more 
frequent drops in energy consumption (to stand-by level) throughout the day resulting in a 
marginally lower average consumption than Monitor 1, despite their equal screen dimensions 
and almost identical peak power demand. The significant point here is that if both screens are 
permanently powered on because of the workload and are off for the same time (i.e. lunch 
break and overnight) then the power management strategy will have little impact, yet this 
could be more significant with intermittent use. 
 
4.4 Printers 

Three printers were monitored as part of this study: Printer 3 was a desktop ink-jet printer and 
Printers 1 and 2 were large-scale digital laser printers.  The desktop ink-jet printer (Printer 3) 
had a significantly lower power demand than both large-scale digital 
printer/scanner/photocopiers, averaging at 49.1W with maximum half-hourly demands of 
103W. Printers 1 and 2 had average demands around 230W and maximum recorded demands 
of approximately 770W. These values reflect the operational characteristics of the desktop 
and office scale devices in terms of print speed and volume. What is interesting, however, is 
the relatively high stand-by power demand of Printer 3 at 15.6W when compared to the large 
machines at 29.9W and 37.2W.   
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4.5 Vending Machines 

Vending Machine 1 sold snacks (such as crisps and sweets) and Vending Machine 2 sold cold 
drinks, both being refrigerated. Vending Machine 3 sold hot drinks and so contained a water 
heating device. Vending Machine 3 consumed significantly more energy than Vending 
Machines 1 and 2 due to its heating element, with an average demand of 337.8W compared to 
demands of 158.8W and 262.1W, respectively.  When considering monitored maximum 
demands, Vending Machine 3 operated at up to 2,663W, with a maximum half-hourly power 
demand approximately four times higher than Vending Machine 1 and almost seven times 
more energy intensive than Vending Machine 2. The load profiles for Vending Machine 3 
clearly illustrate peak demands around lunchtime and late afternoon due to increased usage by 
employees purchasing hot drinks. When considering minimum power demands, the roles 
were reversed, with Vending Machines 1 and 2 having somewhat higher demands to cope 
with their cooling functions, demanding at least 57W compared to Vending Machine 1’s 
minimum demand of only 23.4W.  
 
4.6 Microwave Ovens 

Both monitored microwave ovens had stand-by consumptions of approximately 2W and 
similar maximum half-hourly demands of 1,299.7W to 1,578.9W when in use.  Microwave 
2’s higher maximum demands can be associated with its higher power rating at 900W 
compared to Microwave 1’s 800W rating.  Such ratings refer to the each oven’s capacity to 
produce microwave radiation and typical energy demand is usually higher due to waste heat 
production and other inefficiencies.  When considering each microwave oven’s average 
energy demand, Microwave 2 demonstrated significantly higher values than Microwave 1, 
with 210.4W compared to 115.8W, respectively.  This can be associated both with the 
increased power rating and with the fact that Microwave 2 seems to have been used more 
frequently throughout a typical day than Microwave 1.   
 
4.7 Fridges 

Fridge 1 is a large upright unit with a 375litre capacity and Fridge 2 a small upright unit with 
a 150 litre capacity. Fridge 1 had a consistently higher power demand than Fridge 2, with 
average and maximum demands of approximately 140W and 240W, compared to 27W and 
100W for Fridge 2. When considering the minimum demand, Fridge 2 had a negligible 
demand, typically 0W, whereas Fridge 1 had a minimum demand of 18W due to the unit 
having a small freezer.   
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5 COMPARISON OF MONITORED DATA AGAINST 
BENCHMARKS 

Tables 6-8 display the benchmarks for small power equipment published in the 2nd and 3rd 
editions of CIBSE Guide F as well as monitoring data discussed above.  Figure 3 provides a 
graphical representation of the data illustrating the values as single data points or ranges in 
line with the available information. It is worth noting that benchmarks for fridges and 
microwave ovens are not covered in either edition of Guide F so have not been included here. 

Table 6: Benchmarks and monitored maximum 
energy demand for small power equipment  

Item 
Maximum demand (W) 
Guide F Monitored 

 2nd ed. 
Laptop Computers 100 23-46 
Desktop Computers 100 69-234 
Computer Monitors 200 26-47 
Desktop printers 800 103 
Photocopiers 1600 765-772 
Vending Machines 3000 513-2664 

Table 7: Benchmarks and monitored average 
energy demand for small power equipment  

Item 
Average demand (W) 
Guide F 

Monitored 
 2nd ed. 3rd ed. 
Laptop Computers 20 15-40 18-31 
Desktop Computers 40 65 64-169 
Computer Monitors 80 30 22-36 
Desktop printers 40-80 135 49 
Photocopiers 120-1000 550-1100 223-235 
Vending Machines 350-700 n/a 183-338 

 

Table 8: Benchmarks and monitored stand-by energy demand for small power equipment in offices 

Item 
Stand-by demand (W) 

Guide F 
Monitored 

 2nd ed. 3rd ed. 
Laptop Computers 5-10 1.4-4 0.3-1.1 
Desktop Computers 20-30 6.6 1.9-2 
Computer Monitors 10-15 0.52-1.54 0.4-0.8 
Desktop printers 20-30 20-80 15.6 
Photocopiers 30-250 15-300 30-37 
Vending Machines 300 n/a 23-89 

 
Benchmark data for maximum demand is longer available in the 3rd edition of Guide F, 
having been replaced by nameplate ratings and so comparisons for maximum demand have 
been made against the 2nd edition of Guide F only. Benchmarks for vending machines have 
also been removed in the 3rd edition of Guide F. 
 
5.1 Laptop computers 

Maximum monitored demands for laptop computers were observed to be significantly lower 
than the equivalent benchmarks from the 2nd edition of Guide F, with the highest consuming 
laptop having a maximum demand of approximately 50% of the benchmark value.  The 
average demand of all monitored laptops, however, had a consumption range that 
incorporated the old benchmark value and fell within the range of the updated benchmarks 
published in the 3rd edition of Guide F. Meanwhile, the stand-by loads monitored were 
significantly lower than the old and new benchmarks, despite the fact that the benchmarks 
provided in the 3rd edition have been significantly reduced compared to those in the 2nd 
edition.  
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Figure 3. Comparison of benchmarks and monitored power demand for small power equipment in offices 
 
5.2 Desktop computers 

A maximum monitoring demand of 234W was observed as part of this study (for Desktop 2), 
being significantly higher than the maximum rating benchmark of 100W published in the 2nd 
edition of Guide F.  This could present significant problems if high specification desktop 
computers such as Desktop 2 were to be specified in an office building, resulting in 
significantly higher internal heat gains than anticipated if these benchmarks were to be used. 
Both monitored desktop computers consumed more energy than the benchmark published in 
the 2nd edition of Guide F on average, with the higher specification desktop consuming over 
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four times the benchmark demand (of 40W).  Similar findings were reported by Duska et al. 
(2007) relating to ASHRAE benchmarks for energy consumption of desktop computers, 
where a trend towards increasing energy consumption levels from PCs was demonstrated. The 
work suggested updating benchmarks for peak demand between 110-200W (compared to 
published benchmarks of 55-75W). 
 
The updated benchmark of 65W published in the 3rd edition of Guide F aligns well with the 
monitored average demand of the basic specification laptop (within 2%). However, average 
demand for the high specification desktop was observed to be three times higher than the 
updated benchmark. In this instance, the computer was used for numerically intensive 
computations using engineering software such as CFD. Although this would be common in 
engineering practices, it might be less typical in an office of administrators, for example.  This 
highlights the importance of using appropriate benchmarks when specifying ‘atypical’ office 
equipment and a clear understanding of the intended use of a building space is needed to 
make reasonable estimations, which is emphasised in the new Guide F.  As for the stand-by 
mode, both monitored computers had demands significantly lower than the benchmark 
published in the 2nd edition of Guide F, at approximately 10% of the benchmark values.  
Updated benchmarks published in the 3rd edition have been reduced significantly (from 20-
30W to 6.6W) yet these are still observed to be significantly higher than monitored stand-by 
demand, with the highest recorder stand-by demand being less than 30% of the updated 
benchmark. 
 
5.3 Computer monitors 

The benchmarks for maximum, average and stand-by demands in the 2nd edition of the CIBSE 
Guide were observed to be significantly higher than the monitored cases.  When these 
benchmarks were originally published in the BRECSU (1997) guide, CRT screens were the 
predominant technology for computer screens. The observed differences are likely to be 
because of the more recent proliferation of LCD screens, which consume much less energy. 
This issue has been addressed in the 3rd edition of Guide F and the updated benchmarks for 
average and stand-by demand provide a much better correlation with monitored loads.  
Focusing on average demand, measured data fluctuates by approximately 20% above and 
below the updated benchmark, demonstrating its suitability for a range of different LCD 
screens with dimensions between 19-21 inches.  Updated benchmarks for stand-by power also 
demonstrate improved applicability, with monitored data falling almost completely within the 
range provided in the 3rd edition of Guide F. 
 
5.4 Desktop Printers 

Monitoring data for the single desktop printer included in this study demonstrated a 
significantly lower maximum demand than the benchmark published in the 2nd edition of 
Guide F (at 103W compared to an 800W benchmark).  The monitored average consumption 
was observed to be significantly lower than the updated benchmark value, despite having 
previously fallen within the benchmark range in the 2nd edition.  Meanwhile, the monitored 
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stand-by consumption figure of 15.6W was observed to be somewhat lower than the 
benchmark ranges provided in both editions of Guide F (i.e. 20-30W).  This highlights that 
the range of operation of devices can vary, although the revised benchmarks appear to be 
reasonable.  
 
5.5 Photocopiers 

The maximum monitored demands for photocopiers (765-772W) were observed to be 
approximately 50% of the benchmark published in the 2nd edition of Guide F.  The average 
consumption of the monitored units was in the range 120-1,000W published in the 2nd edition 
of Guide F. In the 3rd edition of Guide F, the benchmark range for average demand by 
photocopiers has been increased to 550-1,100W.  Monitored values now fall outside this 
range, being approximately 50% of the lowest margin.  However, it is difficult to judge the 
appropriateness of the updated benchmark without taking into consideration the usage 
patterns of the photocopiers because electricity demand is heavily dependant on the 
printing/copying capacities and duties.  With regards to stand-by demand, monitored loads 
fall within the ranges provided in both editions of Guide F, but are the lower end of the 
published ranges.  
 
5.6 Vending Machines 

Maximum monitored demands for the vending machines demonstrated that the benchmark 
value of 3000W published in the 2nd edition of Guide F was applicable mainly to units selling 
hot drinks. The refrigerated vending machines only reached maximum demands of 500-
630W. The average consumption demands for the monitored vending machines were below 
the benchmark range of 350-700W. When idle, the monitored machines had significantly 
lower consumptions than the benchmark (300W), with the highest consuming machine having 
a demand of only 89W when in ‘standby’. Vending machine benchmarks have been excluded 
in the 3rd edition.  
 
 

6 CONCLUSION 

This study reviewed existing and recently updated benchmarks for small power consumption 
in UK office buildings. A case study building was used to obtain monitored consumption data 
from typical equipment and appliances providing a comparison against the old and revised 
benchmarks given in the 3rd edition of CIBSE Guide F. 
 
Results from this study suggest that the benchmarks published in the 2nd edition of Guide F 
were broadly unrepresentative of small power equipment currently being used in office 
buildings.  Key findings were:  

• Typical desktop computers can have higher maximum demands and average energy 
consumption than the old benchmarks; 
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• Laptop computers were observed to have lower maximum demands than the old 
benchmarks, although average consumption values were reasonable; 

• Stand-by power demand for both laptop and desktop computers were observed to be 
only a fraction of the old benchmarks; 

• Old benchmarks for computer monitors relate to CRT monitors being unrepresentative 
of energy consumption by LCD monitors which are widely used in contemporary 
office buildings; 

• Benchmarks for printers and photocopiers were fairly representative, excepting that 
the machine workload is not accounted for in the benchmarks, or in the study; 

• Refrigerating vending machines were fairly well represented, however machines that 
supply heating on demand can consume significantly more energy and are heavily 
workload dependant, something that is not addressed in the  guide.  

 
A review of the recently published 3rd edition of CIBSE Guide F demonstrated that the 
updated benchmarks were generally more representative of the monitored equipment, 
however there were some notable observations:  

• The average demand for high specification desktop computers can be significantly 
larger than the benchmarks suggest and hence an understanding of this equipment is 
critical when estimating in-use performance; 

• Photocopiers required a measure of expected load if reasonable estimates are to be 
derived from the benchmarks;  

• In all cases it would appear that the standby loads are over estimated in the new Guide, 
excepting that the limitations of this study may bias the results presented. 

 
The revised Guide F is a significant step forward, offering more appropriate guidance on 
expected appliance consumption. However there is still work to be done to inform designers 
on how to better predict small power loads in-use, through the development of metrics that 
give an indication of typical hours of use or appliance workload. A stronger dialogue between 
designers and clients is also of utmost importance so that equipment specifications and 
operational characteristics can be accurately established, allowing designers to make better 
estimates on the small power energy consumption in-use. 
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APPENDIX D ASSESSING THE IMPACT OF OCCUPANT 
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Abstract 
 
Lighting and small power will typically account for more than half of the total electricity 
consumption in an office building. Significant variations in electricity used by different 
tenants suggest that occupants can have an impact on the electricity demand for these end-
uses. Yet current modelling techniques fail to represent the interaction between occupant and 
the building environment in a realistic manner. Understanding the impact of such behaviours 
is crucial to improve current energy modelling techniques, aiming to minimise the significant 
gap between predicted and in-use performance of buildings. A better understanding of the 
impact of occupant behaviour on electricity consumption can also inform appropriate energy 
saving strategies focused on behavioural change.  
 
This paper reports on a study aiming to assess the intent of occupants to switch off lighting 
and appliances when not in use in office buildings. Based on the Theory of Planned 
Behaviour, the assessment takes the form of a questionnaire and investigates three predictors 
to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived 
behavioural control.  
 
The paper details the development of the assessment procedure and discusses findings from 
the study. The questionnaire results are compared against electricity consumption data for 
individual zones within a multi-tenanted office building. Results demonstrate a statistically 
significant correlation between perceived behavioural control and energy consumption for 
lighting and small power 
 
Keywords - Electricity consumption; occupant behaviour, offices, lighting, small power. 
 
Paper type - Conference Paper 
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1 INTRODUCTION 

Designing a building in a sustainable manner does not guarantee it will be energy efficient, as 
consumption is heavily influenced by the behaviour of its occupants (Derijcke and Uitzinger, 
2006).  This rationale carries great significance when investigating energy efficiency in 
buildings, and has been widely recognised in the building industry for many decades 
(Socolow, 1978).  Post-occupancy data relating to energy use in office buildings has 
demonstrated significant variation in electricity consumption by different tenants occupying 
the same building (Menezes et al., 2011).  Such variations are largely influenced by the 
behaviour of occupants, yet current modelling techniques fail to account for the impact of 
behavioural elements on energy consumption of buildings.  According to Haldi and Robinson 
(2011), building simulation programmes are now considered relatively mature, yet their 
ability to characterize reality is undermined by a poor representation of factors relating to 
occupants’ presence and their interaction with environmental controls.    If we are to 
ultimately achieve more realistic prediction of energy consumption in buildings, occupant-
related factors must be better understood and represented in predictive models.  
 
This paper investigates the impact of occupant behaviour on the electricity consumption of an 
8-storey multi-tenanted office building located in Central London, UK. The building is split 
into 32 zones (4 per floor) allowing for the behaviour of the occupants in each of the zones to 
be correlated with their sub-metered electricity consumption.  This covers electricity used for 
lighting and small power only, as these are the end-uses occupants have direct control over.  
Energy used for heating, ventilation and air conditioning, as well as server rooms are not 
included in the study.  The assessment of occupant behaviour is undertaken through a survey 
based on the Theory of Planned Behaviour and the methodology for developing the 
implemented questionnaire is explained in detail.   The three precursors to behaviour are 
assessed individually allowing for conclusions to be drawn regarding their respective impact 
on energy consumption.   
 
 

2 BACKGROUND 

2.1 Occupant Behaviour in Buildings 

Occupant behaviour plays a significant role in determining actual energy consumption in 
buildings, alongside physical building characteristics, local environment and systems 
servicing and commissioning (Steemers and Yun, 2009).  According to Hoes et al. (2009), 
user behaviour can have a larger influence on the energy performance of a building than the 
thermal processes within the building facade. Numerous studies have aimed to assess the 
impact of occupant behaviour and activities on energy consumption through the use of 
simulations.  Yet such an approach can be complex because of the diversity and complexity of 
user behaviour.  In order to obtain the full effects of user behaviour it is necessary to extract 
corresponding useful information from real measured data (Yu et al., 2011). 
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Several research studies have aimed to utilise monitored energy data to quantify the impact of 
occupant behaviour.  In 2009, Ouyang and Hokao investigated the potential for energy 
savings in 124 households in China by improving user behaviour.  Results demonstrated that, 
on average, effective promotion of energy conscious behaviour could reduce energy 
consumption by more than 10%.  More recently, Gill et al. (2010) investigated the impact of 
occupant behaviour on the consumption of energy and water in a low-energy housing scheme 
in East Anglia, UK. The key intention was to enable quantification and apportionment of 
building performance to occupant behaviour, aiming to explain some of the variation often 
detected. Results indicated that energy efficient behaviours accounted for 51%, 31% and 11% 
of the variance in heat, electricity and water consumption, respectively, between the 26 
dwellings in the housing scheme (Gill et al. 2010). 
 
Focusing on commercial buildings, Masoso and Grobler (2010) highlighted the impact of 
poor occupant behaviour on electricity consumption during non-occupied hours in office 
buildings.  The work was based on energy audits of 6 buildings in Botswana and 
demonstrated that 56% of the energy consumed by the building was used outside working 
hours because of poor occupant behaviour whereby lights and equipment are left on at the end 
of the day, as well as poor zoning and controls. More recently, Haldi and Robinson (2011) 
developed a bespoke model following extensive field survey data allowing for occupant 
behaviour to be considered at design stage.  This novel modelling tool accounted for occupant 
presence, opening and closing of windows, as well as raising and lowering of blinds.  A 
number of other research projects (Liao and Barooh, 2010; Smarakoon and Soberato, 2011) 
have investigated the impact of occupancy on energy consumption, proposing novel models 
for predicting occupancy patterns. However, the impact of holistic occupant behaviour on 
energy use in non-domestic buildings is still to be investigated in depth.   
 
2.2 Theory of Planned Behaviour 

Gill et al. (2010) successfully implemented a novel methodology for quantifying the impact of 
occupant behaviour on the energy performance of residential buildings based on the Theory of 
Planned Behaviour (TPB).  Originally developed by Ajzen (1991), the TPB is one of the most 
widely applied behavioural models (Armitage and Conner, 2001).   It proposes that human 
action is guided by behavioural attitude, subjective norms and perceived behavioural control, 
and can be predicted provided that the behaviour is intentional (Francis et al., 2004).  In 
essence, TPB claims that, in order to predict whether a person intends to do something, it 
necessary to know (Azjen, 1991):  

• Whether the person is in favour of doing it (‘behavioural attitude’) 
• How much the person feels the social pressure to do it (‘subjective norm’) 
• Whether the person feels in control of the action in question (‘perceived behavioural 

control’) 

By adjusting these three ‘predictors’, the likelihood that the person will intend to carry out a 
desired action can be increased, thus increasing the chance of the person actually doing it. 
This concept is illustrated in Figure 1.  
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As shown, the three predictors are jointly responsible for shaping an individual’s intention to 
perform a given behaviour.  The TPB also suggests a direct link between perceived 
behavioural control and the achievement of a specific behaviour.  This should not be confused 
with actual control (i.e. the availability of vital opportunities and resources such as time, 
money, skills, etc).  Although the importance of actual control is indisputable, perceived 
behaviour control is of greater psychological interest, following the premise that people’s 
behaviour is strongly influenced by their confidence in their ability to perform it (Azjen, 
1991).  Actual control is, strictly, irrelevant since if an individual does not also feel in control 
of an action they will not form an intention to do so. According to the TPB, perceived 
behaviour control can often be used as a substitute for a measure of actual control, providing a 
direct link to behavioural achievement. 

 
Figure 1: Theory of Planned Behaviour (adapted from Ajzen, 1991) 

 

It is worth noting that intentions are precursors to behaviours and although there is no perfect 
relationship between behavioural intention and actual behaviour, TPB relies on the 
assumption that intention can be used as a proximal measure of behaviour (Francis et al., 
2004).  This observation was one of the most important contributors of the TPB model when 
compared to previous models of attitude-behaviour relationship, allowing for the variables in 
this model to be used to determine the effectiveness of interventions even if there is no readily 
available measure of actual behaviour.  This is both a strength and a limitation of the TPB, 
being a source of criticism by Martiskainen (2007) who suggests that the model is more 
applicable to measuring the relationships between behavioural constructs than the 
measurement of actual behaviour.  However, a review of the TPB (Armitage and Conner, 
2001) concluded that the TPB accounts for a considerable proportion of variance in actual 
behaviour, supporting the TPB as a predictive theory of intention and behaviours. 
 
 
 

3 METHODOLOGY 

This study was undertaken in an 8-storey multi-tenanted office building located in Central 
London, consisting mainly of open-plan office spaces.  Each floor has a treated floor area of 
approximately 2,000m2, and is divided into 4 sectors, providing 32 individual zones that can 
be let to different tenants.  In order to assess the impact of occupant behaviour on electricity 
consumption, each of the 32 zones were regarded as individual data collection points.  Two 
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distinctive sets of data were acquired for each of the zones: one pertaining to the use of 
electricity for lighting and small power, and the other regarding the occupant behaviour, as 
described below. 
 
3.1 Electricity Consumption Data 

Electricity consumption data was acquired through the existing metering configuration of the 
building.  This consists of two incoming meters: one for the landlord supply and one for the 
tenants supply.  The landlord consumption includes all HVAC equipment and controls, as 
well as lighting throughout the common areas of the building, with no further sub-metering.  
Meanwhile, tenant consumption includes all the electricity supplied for lighting, small power 
equipment and server rooms throughout the building.  A total of 36 sub-meters provide a 
further breakdown of the tenant electricity supply:  one for each of the 32 zones in the 
building plus 4 separately metered server rooms (not considered in this study).  Monthly 
electricity consumption data was recorded for each of the 32 sub-metered zones, yet only 27 
of them were deemed appropriate for inclusion in the study.  This was because 2 zones were 
unoccupied and 3 zones were reception areas consisting mainly of transitional spaces. 
 
3.2 Assessing Occupant Behaviour 

Francis et al. (2004) provides a thorough framework for survey development using the TPB. 
The methodology characterises each contributing behavioural construct (behavioural attitudes, 
subjective norms and perceived behavioural control) and was used to develop the 
questionnaire used in this study.  Figure 2 illustrates this methodology, highlighting key 
actions taken during the development and implementation of the questionnaire.  
 
The first step was to define the population of interest, this being: occupants in a multi-
tenanted office building.  Defining the exact behaviour under investigation was not quite as 
straight forward, because occupants are able to affect electricity consumption in multiple and 
diverse ways. Considering the focus of the study involved electricity use only for lighting and 
small power, the key behaviour for investigation was defined as: switching off lighting and 
appliances when not in use. This behaviour was deemed appropriately representative of the 
key interactions between occupant and energy consuming devices in the workplace.   
 
Prior to the development of the questionnaire, an elicitation survey was conducted with 30 
people outside of the population to be surveyed (i.e. not working in the building under 
investigation).  This consisted of six open-ended questions relating to each of the three 
predictors to establish the dominant factors that contribute to decisions regarding the target 
behaviour (as described in Figure 2).  Respondents were asked to provide three responses to 
each question and caution was taken to ensure a wide range of backgrounds and age groups 
were included.  The results for the survey were analysed and trivial responses were rejected, 
ensuring that at least 75% of all beliefs were accounted for.  These were then used to develop 
a multiple choice questionnaire whereby each significant belief was transformed into a 
question couplet, in line with guidance from Francis et al. (2004).  Once again, this process is 
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illustrated in Figure 2, resulting in a questionnaire with six groups of six questions (i.e. two 
sections for each predictor of behaviour, with every question having an equivalent couplet).   
 
 

 
Figure 2: Methodology flow chart for developing survey based on the TBP  

 



 Assessing the Impact of Occupant Behaviour on the Electricity Consumption for 
Lighting and Small Power in Office Buildings (Paper 4)  

 151 

Scoring scales were established for each group of questions using a 5-point Likert scale as 
standard.  The direction of the scale (i.e. bipolar or unipolar) was determined to suit each set 
of question groups appropriately, ensuring that each predictor had a unipolar and bipolar 
group of questions. This is to ensure consistency in the scoring for each predictor, as follows: 

• Behavioural attitude score:  

• Subjective norm score:  

• Perceived behavioural control score:  
 
The questionnaire was complied and piloted on five people (outside the population to be 
surveyed) to ensure clarity and ease of completion.  Minor revisions were made in line with 
the feedback received.  Additional questions were also added to capture social demographic 
data as well as typical time of arrival and departure from the office.  
 
3.3 Implementation of Survey 

The questionnaires were distributed to all occupants in the building (approximately 800 
people) between 08:00 and 10:00 hours on 1st November 2011.  Respondents were informed 
that the questionnaires would be collected after 3pm on the same day.  Care was taken to 
annotate each questionnaire with the zone in which the respondent was seated.  This was 
crucial to allow for comparison against the electricity consumption data for each building 
zone.  A total of 432 completed questionnaires were collected, representing a response rate of 
approximately 50%.  Scores for each of the three predictors were calculated for each 
respondent and the median score for each predictor was determined for all 27 building zones 
included in the study.   

 

 

4 RESULTS 

Figure 3 illustrates the correlation between monitored monthly electricity consumption and 
the median scores of the occupants of each zone on each of the three predictors of the Theory 
of Planned Behaviour.  Each individual has limited control over the electricity consumption 
within his or her zone, relative to the influence they may have on the average TPB predictor 
scores for their zone (particularly in more sparsely occupied zones). Therefore median values 
were used to represent the behavioural scores in each of the 27 zones in order to reduce the 
possibility of results being distorted by individuals with extreme scores for one or more of 
these measures.   
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Figure 3: Scatter plots of electricity consumption vs. median scores  

 

A multiple regression analysis was conducted to predict the monthly electricity consumption 
based upon the three components of the TPB. The predictors were entered into the regression 
analysis in the order: behavioural attitude, perceived behavioural control and subjective 
norms. This revealed that behavioural attitude alone did not account for a significant 
proportion of the variation in electricity consumption across the building, with R2 = 0.013, 
F(1, 25) = 0.330, p = 0.571, where the F-statistic will tend to be smaller when the predictor 
does not account for variation in electricity consumption.  Meanwhile, p indicates the 
calculated probability of observing these results, by chance alone, given no effect of the 
predictor on electricity consumption. By convention, p < 0.05 represents a statistically 
significant result.  As seen, there is no statistically significant correlation between behavioural 
attitude scores and monthly electricity consumption. However, when perceived behavioural 
control was added to the model, this accounted for a significant proportion of the monthly 
electricity variance, with R2 change = 0.168, F(1, 24)= 4.94, p = 0.036.   Finally, when 
subjective norms were added as a predictor, these did not significantly add to the predictive 
value, with R2 change = 0.01, F(1, 23)= 0.289, p = 0.596.  
 
It is important to note that any variation that could be predicted either by perceived 
behavioural control or by subjective norms would, in this analysis, be ascribed solely credited 
to perceived behavioural control because this predictor was entered into the analysis first. 
Hence, to ensure that the already established effects of perceived behavioural control were not 
masking the effects of subjective norms, a second regression analyses was undertaken 
reversing the order in which the predictors were entered into the model. Results demonstrated 
that subjective norms alone did not account for a significant proportion of the variation in 
monthly electricity consumption, with R2 = 0.029, F(1, 25) = 0.743, p = 0.397.  However, 
when perceived behavioural control is added as a predictor, approximately 16% of the 
variation in monthly electricity consumption is now accounted for, with R2 change = 0.156, 
F(1, 24) = 4.61, p = 0.042. Finally, as expected, adding behavioural attitude scores as the last 
predictor did not account for significantly more variation in electricity consumption than 
subjective norms and perceived behavioural control combined, with R2 change = 0.006, F(1, 
23) = 0.181, p = 0.675.  
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Based on the results from the multiple regression analysis, perceived behavioural control is 
the only predictor that has a statistically significant impact on electricity consumption.  Using 
a linear regression analysis with perceived behavioural control as the sole predictor of 
monthly electricity consumption, it accounts for approximately 17% of the variation in 
monthly electricity consumption, with R2 = 0.169, F(1, 25) = 5.09, p = 0.033. 
 
 

5 DISCUSSION 

Results from this study have demonstrated that, of the three predictors in the Theory of 
Planned behaviour, perceived behavioural control is the only one with a significant correlation 
to monitored electricity consumption.  In the building under investigation, this implies that 
lower energy consumption can be expected in zones where occupants perceive themselves to 
have a high level of control over lighting and appliances.  No correlation was found between 
either behavioural attitude or subjective norms, and monitored electricity consumption for the 
zones.  
 
The structure of the TPB goes some way towards explaining these findings.  As previously 
discussed, the TPB proposes a direct link between perceived behavioural control and 
behaviour, whereas the other predictors are linked only to intention.  In this particular study, 
results suggest that perceived behavioural control could be used as a substitute for a measure 
of actual control, providing a direct link to behavioural achievement.  This is understandable, 
as it is likely that occupants in the same zone would have a similar ability to adjust the 
physical controls that turn lighting and appliances off.  While the scores for behavioural 
attitude and subjective norm would vary greatly between different individuals, the scores for 
perceived behavioural control would not vary as much, as this is heavily linked to actual 
measures of control. 
 
Traditional attempts to reduce the influence of occupants on energy consumption revolve 
around the assumption that people’s behaviour can be altered by providing them with 
information about their undesirable actions. However, there is evidence to suggest that while 
this approach may serve to influence attitudes, it often has a negligible effect on actual 
behaviour (McKenzie-Mohr, 2000). The results of this study support these findings by 
suggesting that the attitudes and subjective norms of the occupants have little discernable 
influence on their zone’s electricity consumption. Instead it is their perceived level of control 
over lighting and small power that has a significant impact on their electricity use.  This 
finding highlights the importance of considering how building users can control their 
environmental conditions during the design process, arguing against efforts to reduce the level 
of control users have over appliances and lighting. This would suggest a clear benefit in 
implementing usable and well located controls rather than technologies such as PIR (passive 
infra-red) detection and other automated services.    
 
It is important to emphasise that TPB only considers planned behaviour, so for the purposes 
of this study it can only be used to explain the variation in electricity consumption caused by 
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the conscious operation of lighting and appliances.  The intangible nature of electricity use 
renders it likely that a certain proportion of electricity consumption in buildings is a result of 
unplanned or instinctive behaviour which will not be accounted for by TPB.   
 
Following the completion of the survey some occupants highlighted that, in a number of 
questions, they might have given two different answers if lighting and small power had been 
dealt with individually.  A subsequent survey will be undertaken to separately account for 
variations in behaviour for both end-uses individually.  This will be carried out in a building 
where lighting and small power are sub-metered separately, allowing for a more detailed 
analysis of the impact of occupant behaviour on electricity consumption for each end-use.   
 
 

6 CONCLUSION 

This study has investigated the impact of occupant behaviour on the electricity consumption 
for lighting and small power in a multi-tenanted office building in London, UK.   The 
methodology used to undertake this assessment was based on the Theory of Planned 
Behaviour, dealing with each predictor to behaviour individually.  Results demonstrated a 
statistically significant negative association between scores for perceived behavioural control 
and electricity consumption, suggesting that perceived lack of behavioural control can 
account for variations of up to 17% in electricity consumption in each of the building zones.  
The impact of behavioural attitude and subjective norms on electricity use were non-
significant and may be deemed negligible in the specific building under investigation. 
 
Findings from the study suggest that the more control people perceive to have over their 
surroundings, the less energy they consume. This premise goes against the current design 
trend for more automated buildings and will be investigated in further detail in a subsequent 
study to be carried out in a different multi-tenanted building.  It is envisioned that further 
findings will be used to inform better predictions of energy consumption in office buildings 
allowing for occupant behaviour to be more adequately accounted for.  Occupant behaviour is 
significantly more complex than is allowed for in current energy modelling techniques and 
this must be tackled if realistic predictions of energy performance are to be achieved. 
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Abstract 
 
Small power is a substantial energy end-use in office buildings in its own right, but also 
significantly contributes to internal heat gains.  Technological advancements have allowed for 
higher efficiency computers, yet current working practices are demanding more out of them, 
relying on an increasing use of digital equipment. Designers often rely on benchmarks to 
inform predictions of small power consumption, power demand and internal gains.  These are 
often out of date and fail to account for the variability in equipment speciation and usage 
patterns in different offices.  With the fast paced changes to the workplace, there is scope to 
investigate the use of small power equipment in office buildings to inform better prediction of 
small power energy use. This paper details two models for estimating small power 
consumption in office buildings, alongside typical power demand profiles. The first model 
relies solely on the random sampling of monitored data to estimate small power consumption, 
and the second relies on a ‘bottom-up’ approach to establish likely power demand and 
operational energy use. Both models were tested through a blind validation demonstrating a 
good correlation between metered data and monthly predictions of energy consumption. 
Prediction ranges for power demand profiles were also observed to be representative of 
metered data with minor exceptions. When compared to current practices, which often rely 
solely on the use of benchmarks, both proposed methods provide an improved approach to 
predicting the operational performance of small power equipment in offices. 
 
Keywords - Small power, plug loads, offices, predictions, estimates, computers, energy 
consumption, power demand, operational performance 
 
Paper type - Journal Paper (under review) 
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1 INTRODUCTION 

As buildings become more energy efficient, small power equipment such as computers are 
becoming increasingly significant as an energy end-use (Kaneda et al., 2010).  A study 
published by the New Buildings Institute suggest that plugs loads can represent up to 50% of 
the electricity use in a building with high efficiency lighting, heating and cooling (NBI, 
2012). Office buildings are likely to have higher cooling demands in the future due to climate 
change, emphasising the need to better understand (and reduce) the impact of internal gains 
from IT equipment (Jenkins, et al., 2008). 
 
Predicting internal heat gains accurately is of great importance in order to ensure that building 
systems are designed and operated as efficiently as possible. The use of nameplate ratings will 
significantly overestimate the casual gains resulting in the specification of chillers with a 
higher capacity than needed (Komor, 1997).  This can result in increased capital cost as well 
as higher operating costs through greater part load operation (Dunn & Knight, 2005).  
Designers often rely on published benchmarks in order to account for small power demand in 
office buildings (BCO, 2009) yet these are sparse and often out of date (Menezes et al., 2013).  
 
This paper presents two methods for estimating building specific small power energy 
consumption.  The study also aims to evaluate the associated power demand profiles, which 
can be used to inform predictions of internal heat gains.  Focus is mainly on the use of 
computers as these are often observed to be the single biggest source of energy use amongst 
small power equipment (Menezes et al., 2013; Carbon Trust, 2006). Both models also account 
for the energy consumption of other small power equipment commonly found in offices such 
as screens, printers, photocopiers and local catering equipment. The first model relies solely 
on the random sampling of detailed monitored data, minimising the need for assumptions 
regarding the operational characteristics of small power equipment. A second model was 
developed using a bottom-up approach, allowing for the expected power demand and usage 
profiles for different equipment types to be characterised.  
 
 
 

2 LITERATURE REVIEW 

The widely referenced Energy Consumption Guide (ECG) 19 provides typical and good 
practice benchmarks for office and catering equipment electricity consumption, depicted in 
Table 1 (BRECSU, 2000). Values are provided for four different types of office buildings: 
Type 1, naturally ventilated cellular office; Type 2, naturally ventilated open plan office; Type 
3, air-conditioned standard office; and Type 4, air-conditioned prestige office (typically 
including large catering kitchen and/or regional server rooms). Given the broader scope of the 
guide, which deals with all end-uses in office buildings, the four building types provided 
relate mainly to the way in the building is conditioned.  From a small power perspective 
however, such classifications aren’t necessarily adequate, as the energy consumption and 
power demand of small power equipment is not directly related to the way in which the 
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building is conditioned.  Nonetheless, these benchmarks highlight the variability in energy 
consumption for small power equipment amongst office buildings 
 

Table 1: ECG19 benchmarks for small power consumption (i.e. office and catering equipment) 

 
Electricity Consumption 

(kWh/m2) 
Power Load Density  

(W/m2) 

 
Good 

Practice 
Typical Good 

Practice 
Typical 

Type 1: Naturally ventilated cellular 14 21 10 12 
Type 2: Naturally ventilated open plan 23 32 12 14 
Type 3: Air conditioned standard 28 37 14 16 
Type 4: Air conditioned prestige 36 47 15 18 

 
 
ECG19 also provides benchmarks for power load density, varying from 10 to 18 W/m2.  
These values can be used to estimate the electricity consumption when coupled with the 
number of run hours (daily, monthly, annually, etc). More commonly, however, power load 
density is used to assess expected peak power demand, commonly being used to calculate 
internal heat gains, affecting the design of cooling systems. According to the Building 
Services Research and Information Association (BSRIA), a figure of 15W/m2 can be used to 
represent typical small power load in general offices (BSRIA, 2011). Conversely, a study 
conducted by the British Council for Offices (BCO) demonstrated that higher loads are found 
in typical office buildings, with one third of the offices monitored having installed loads 
higher than 15 W/m2 (BCO, 2009).  The recently updated CIBSE Guide F (CIBSE, 2012) 
suggests that a benchmark figure for building loads of 25 W/m2 is adequate for most office 
buildings (with 15 W/m2 when diversity is taken into account) .  The updated Guide F also 
suggests that when occupancy details are known, using a loading of approximately 140–150 
W/desk might be a more appropriate approach.   
 
High-level benchmarks are informative, but they need to be used with caution and in the right 
context as they fail to account for variations in diversity of use, workstation density, power 
management settings on ICT devices and the type of activity carried out in an office building.  
Aiming to address such variations CIBSE Guide F provides an alternative methodology for 
calculating installed loads based on a ‘bottom-up’ approach (CIBSE, 2012).  This method was 
adapted from Energy Consumption Guide 35, and enables a more robust prediction of power 
demand and energy consumption (BRECSU, 1993).  It relies on detailed information 
regarding the expected types and quantities of small power equipment, typical power 
consumption figures, power management settings, usage diversity and typical hours of 
operation for each equipment type. As a manual calculation however, this methodology is 
quite laborious and designers often resort to high level benchmarks instead.  The new CIBSE 
TM54 proposes a simpler calculation based on the expected power demand and usage patterns 
of individual desks/workstations, accounting for communal appliances separately (CIBSE, 
2013).   
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Computers are commonly the single biggest source of energy use, also contributing 
significantly to internal heat gains (Menezes et al., 2013; Carbon Trust, 2006).  Moorefield et 
al. (2011) conducted a monitoring study of small power use in 25 offices in California over a 
2-week period.  Power demand data for 470 plug load devices was collected at 1-minute 
intervals through the use of plug monitors and the data were extrapolated based on an 
inventory of nearly 7,000 devices. Results revealed that computers and screens were 
responsible for 66% of small power consumption in offices.  
 
Significant improvements in the energy efficiencies of computers have been observed in the 
last few decades, resulting in reduced energy requirements (Bray, 2006).  This can be 
attributed in part to initiatives such as Energy Star, an international certification scheme for 
consumer products that defines performance criteria including maximum power demand 
levels at different operating modes (EPA, 2012). Published data suggests that newer 
computers require less energy in ‘low power’ modes than older computers (Roberson et al., 
2002; Kawamoto et al., 2001), however, the demand for computers with increased processing 
power has resulted in higher power demands when the computers are active, as illustrated in 
Figure 1 (adapted from Roberson et al., 2002; Kawamoto et al., 2001).  
 

 
Figure1: Energy requirements of desktop computers manufactured before and after 2000 

More recently, a review of UK benchmarks for small power consumption against monitoring 
data for a small sample of in use office equipment revealed similar results, highlighting an 
increase in power demand in active modes and a further reduction in demand for low power 
modes (Menezes et al., 2013).  The same study also revealed the challenge of keeping 
benchmarks up to date with fast paced development of computer technologies. Table 2 
provides a summary of key published data regarding energy requirement of both laptops and 
desktops, highlighting the trends discussed above. Note that figures for laptop computers 
exclude the power demand for the in-built screens. 
 
As observed in Table 2, laptop computers consume only a fraction of the energy of desktop 
computers, presenting a big opportunity for energy savings in office buildings (Bray, 2006).  
Energy efficiency is a critical issue for laptops as it determines the length of time the machine 
will be able to run from its battery.  As a result, laptops generally have lower power demands 
whilst also going into low power modes more quickly in order to preserve battery power.  The 
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recent proliferation of laptop computers will have a large impact on the overall energy 
consumption of office buildings: laptop shipment figures are projected to be triple that of 
desktops in the next few years (Meeker et al., 2010).  Technological advancements such as the 
evolution of thin client computers and tablets are likely to drive power demand down even 
further, with thin clients being widely used in schools already (BECTA, 2006). This 
technology reduces power demand and resultant heats gains locally by shifting these to 
centralised processors with higher efficiencies (DEFRA, 2011). 
 
Table 2: Published energy requirements figures for desktop and laptop computers  

Source 
Power Demand (W) 

Desktop computers Laptop Computers 
 Active Low Power Off Active Low Power Off 
Wilkins & McGaffin (1994)  56 56 - - - - 
Nordman et al. (1996)  36-55 32-49 0-2 - - - 
Mungwititkul & Mohanty (1997)  36-48 27 - - - - 
Kawamoto et al. (2001)  30-60 25 1-3 12-22 1.5-6 1.5-2 
Roberson et al. (2002)  70 9 3 19 3 - 
Hosni and Beck (2010)  50-100 - - 15-40 - - 
Moorefield et al. (2011)  79 3.2 - 74.7 1.6 - 
Menezes et al. (2013)  64-169 - 1.9-2 18-41 - 0.3-1 
 
However, power demand is only one factor affecting the total energy consumption of 
computers. Arguably, the way in which a computer is used is a more significant factor in 
determining the total energy consumption of computers (Bray, 2006). Nonetheless, there is 
little research into usage patterns and behavioural factors with most of the existing work 
focusing solely on the split between energy consumed during working hours and out-of hours.  
 
A monitoring study of 5 office buildings by Masoso and Grobler (2010) revealed that more 
energy was being used out-of-hours (56%) than during working hours (44%), largely due to 
occupants leaving lighting and equipment on at the end of the day. A study into the after-
hours power status of office equipment highlighted a significant variation amongst the 
number of computers switched off after hours, ranging from 5% to 67% (Webber et al., 
2006).  Amongst the monitored computers, the rate of after-hours turn off was larger for 
laptops than desktops. Focusing on daytime usage, a study looking into the energy savings 
potential of office equipment power management suggested that on average, the monitored 
computers were powered on for 6.9 hours a day, being in active mode for 3 hours per day 
(Kawamoto et al., 2004).   
 
Studies dating back to the 90’s suggest that on average, computers are active for 
approximately 9% of the year (Mungwititkul and Mohanty, 1997). In a detailed monitoring 
study of 3 desktop computers, Nordman et al. (1996) calculated that computers were active 
between 17-31% of the time during workdays, falling to 9-16% when all days were 
considered . More recently, Moorefield et al. (2011) monitored 61 desktops and 20 laptop 
computers in-use in 25 offices in California over a two-week period. Results demonstrated 
that desktops spend on average 30% of the time on active mode, compared to 10% for 
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laptops. Mean monitored time spent off highlights further energy savings potential with 
laptops spending 26% of the time off compared to 7.2% for desktops. 
 
In addition to usage patterns, power management settings can have a significant impact on the 
energy consumption of computers; influencing the amount of time a computer spends in 
different operating modes (NBI, 2012). Power managed computers are programmed to enter a 
low power mode after a specified time of inactivity. A study carried out in 2004 revealed that 
if power management settings were applied to switch a computer to low power mode after 5 
minutes of inactivity, 76% of the idle time would be spent on low power mode (Kawamoto et 
al., 2005).  Alternatively, setting the time delay to 60 minutes resulted in the computer only 
spending 20% of its idle time in low power mode.  A separate study carried out by the 
Australian National Appliance and Equipment Energy Efficiency Program (NAEEEP, 2003) 
demonstrated that aggressive power management (powering down computers after 5 minutes 
of inactivity) resulted in a reduction of annual energy consumption by approximately 75% 
compared to a scenario when no power management settings were applied.  
 
When estimating the peak demand and energy consumption of computers, it is also vital to 
consider usage diversity (Parsloe and Hebab, 1992). Actual peak demand for computers (and 
subsequent energy consumption) in a given area of a building will always be less than the sum 
of power demand for each computer due to usage diversity (Wilkins and Hosni, 2000). 
Diversity factors need to be applied to load calculations in order to limit oversizing of cooling 
plant  (Komor, 1997). The diversity factor of computers (or any given equipment) is defined 
as the ratio of measured heat gains to the sum of the peak gain from all equipment 
(Moorefield, 2011).  A study conducted in 1994 measured the diversity factor of 23 areas 
within 5 office buildings, highlighting a significant variation in diversity, ranging form 37 to 
78% (Mungwititkul and Mohanty, 1997). More recently, Wilkins and Hosni (2011) proposed 
diversity factors for individual office equipment, recommending that factors of 75% and 60% 
should be applied to computers and screens (respectively) in load calculations.  Measured 
diversity during weekends were observed to be 10% and 30% for computers and screens, 
respectively. 
	
  
The past decade has seen a major shift towards flexible working practices in both private and 
public sectors fuelled by tougher markets and technological advances (Myerson and Ross, 
2006). The recent proliferation of hot-desking is largely driven by a desire to reduce the cost 
of physical office space, and is particularly attractive to organisations where employees are 
regularly ‘on the road’ or working remotely (Fleming, 2011).  It effectively increases building 
utilisation also increasing usage diversity, which is likely to have a significant impact on 
internal heat gains due to ICT equipment.  Research into the development of workplaces also 
suggest that further reliance on ICT is likely to occur regardless of the adoption of flexible 
working practices (Worthington, 2005).  
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A recent study modelled the impact of two possible future scenarios for computer use in 
office buildings (Johnston et al., 2011):  

• Energy conscious scenario: ICT acquisition policy is driven by an effort to minimise 
energy consumption and carbon emissions 

• Techno explosion: Maximisation of productivity gives users freedom to select the 
level of ICT demand they need 

 
Results suggest that for a building with best practice fabric design, a techno-explosion 
scenario would result in cooling demands almost double that of the energy conscious 
scenario, highlighting the potential impact that small power equipment can have on the energy 
performance of the building and suggesting the need for greater understanding of the likely 
trends and factors influencing small power consumption. 
 
 
 

3 METHODOLOGY 

3.1 Model 1: Random Sampling of Monitored Data 

The first model developed in this study relies on the random sampling of detailed monitored 
data to represent an office space with a defined quantity of different types of small power 
equipment. Daily power demand profiles (in 1-minute intervals) were randomly selected from 
a database of monitored data and aggregated to represent the number of installed equipment.  
This process was repeated 30 times to assess the variance of the outcomes, providing 
prediction limits within which estimated power demand is expected to fall.  An inherent 
strength of this approach is that it avoids the need for assumptions regarding the expected 
usage profiles of individual equipment, relying on the monitored data to account for such 
variations.  
 
Table 3 provides a summary of the monitored equipment included in the database used to 
predict power demand profiles and energy consumption.  It also includes the number of daily 
profiles available for each equipment type, as well as their respective quantities within the 
office space under investigation.  The selection of devices included in the monitoring study 
was based on the installed quantities and expected energy use, also attempting to capture 
information regarding the expected variability of usage. With the exception of LCD computer 
screens, at least 8% of the installed equipment (per type) was monitored. Previous research by 
the authors suggests low variability of power demand by computer screens resulting in fewer 
screens being monitored as part of this study.  
 
Monitoring took place over 3 months at 1-minute sample rates and equipment with similar 
specifications were grouped together to increase the sample size (within the given monitoring 
period length). Class 1 accuracy Telegesis ‘ZigBee Plogg-ZGB’ plug monitors with a 
published measurement uncertainty of <0.5% were used. According to Lanzisera et al. (2013) 
sampling faster than at 1-minute intervals does not provide significant benefit and that 
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monitoring periods longer than a few months provides little improvement in estimating annual 
energy use.  By grouping similar equipment used by different users, the sample also provides 
a wide variety of equipment-user combinations, helping to account for elements of user 
behaviour in the predictions. The monitored data was split into weekdays and weekends 
allowing for two sets of profiles to be calculated respectively. No filtering was done to 
exclude days in which the equipment was not used as the ratio of operational/non-operational 
days was used to account for usage diversity.  
 

Table 3: Equipment in the database and installed quantities in the office space under investigation 

Equipment type Database 
Quantity of 

installed 
equipment        

Percentage of 
installed 

equipment 
monitored 

Quantity of 
monitored 
equipment 

Weekday 
profiles 

Weekend 
profiles 

Laptop computer 8 512 240 99 8.1% 
High-end desktop computer 3 180 78 19 15.8% 
Low-end desktop computer 2 120 52 22 9.1% 
19” LCD screen 2 120 52 128 1.4% 
21” LCD screen 1 60 26 22 4.5% 
Large photocopier 1 60 26 4 25% 
Plotter 1 60 26 1 100% 
Coffee machine 2 40 16 2 100% 
Fridge 1 20 8 2 50% 

 
 
A daily profile for each equipment type was calculated by randomly selecting profiles from 
the database (for weekdays and weekends separately).  For example, a summed profile for the 
19 high-end desktop computers was calculated by adding up 19 randomly selected weekday 
profiles out of the 78 available in the database.  This process was repeated 30 times in order to 
assess the variability of the data, allowing for 95% prediction limits to be calculated as 
follows:  
 

 𝑢 = 𝑡. 𝑆 1+ !
!
 

 
Where: u is the uncertainty, t is the Student’s t distribution using n-1 degrees of freedom, n is 
the number of samples and S is the standard deviation. 
 
 
Daily profiles were calculated in this manner for each equipment type, resulting in a total 
power demand profile for weekdays and weekends alongside their prediction limits.  Daily 
energy consumption predictions were calculated based on the daily profiles for weekdays and 
weekends, also including upper and lower prediction limits.  The data was then extrapolated 
to monthly consumption by assuming 20 weekdays and 8 weekend days per month, whilst 
annual consumption was based on 52 weeks (each with 5 weekdays and 2 weekend days).   
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3.2 Model 2: Bottom-up Model 

The second model takes the form of a simple bottom-up approach, inspired by the 
methodology set out in CIBSE Guide F and TM54, addressing the needs of designers and the 
wider industry more closely. It is informed by findings from the development of Model 1 but 
does not rely directly on detailed monitored data.  The model also allows designers to assess 
the impact of different variables on the outputs, encouraging informed discussions with the 
prospective occupier.  
 
Equipment Inputs 
 
The first set of inputs relate to the types of equipment procured or installed in the area under 
investigation. These are split under the following categories: computers, screens, 
printers/copiers, catering and other.  Quantities for each equipment type are provided as 
absolute values and the model calculates the percentage each equipment type represents for 
each category.   
 
The power demand of each piece of equipment is characterised into three operational modes: 
‘off’, ‘low’ and ‘on’.   

• Poff is the lowest power draw whilst the equipment is connected to the mains.   

• Plow is defined as a low power mode that the computer is capable of entering 
automatically after a period of inactive.  

• Pon represents the average power demand for all the difference operational modes 
whilst the machine is active.   

 
According to Wilkins and Hosni (2011), two modes of operation (active and low) are 
appropriate for the purpose of load calculations. The addition of the ‘off’ mode allows for 
further insight into the impact of out-of-hours usage. Although power demand can vary 
significantly whilst the machine is active, the widely established Energy Star framework 
proposes that computers spend the greater proportion of time on idle whilst operational (EPA, 
2012).  As such, idle demand values can be used to adequately represent the ‘on’ mode input.  
 
Power demand values can be obtained from published benchmarks or if the machines being 
specified are Energy Star rated, these can be obtained from their database available online 
(Energy Star, 2013). In the case of refurbishments or when the appliances being installed are 
readily available, these can be monitored for short periods of time to inform better inputs.  
Plug-in devices with an internal display such as the ‘Efergy energy monitoring socket’ (with 
accuracy within 2%) are widely available and can provide live readings of power demand 
(Efergy, 2013). 
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The model provides four usage profiles to be assigned to each type of computer and screen 
controlled by individual users (as a percentage of the total number of equipment installed):  

• transient - users who are often out of the office or away from the their desks; 

• strict hours - users who work strictly during the company’s standard working hours 
and who are at their desks for the majority of the working day; 

• extended hours - users who often arrive earlier or leave later than the company’s 
standard working hours and who are at their desks for the majority of the working day; 

• always on - users who are required to leave their machine on all the time. 
 
These profiles were established based on an analysis of the detailed monitoring data for 
different users and allows for different usage patterns to be accounted for.  This is of 
particular relevance when considering different workplaces, for example: a call centre is 
likely to have a high percentage of strict hour users whereas a law firm might have a higher 
percentage of transient users. An analysis of the time-series demand profiles by different users 
demonstrated varying hours of operation by different computers, yet these were observed to 
be fairly consistent for individual users.  It is anticipated that the proportion of usage profiles 
can be established based on detailed discussions with the client and/or prospective occupier. 
 
Usage profiles must also be assigned to ‘communal’ equipment such as printers and 
photocopiers as well as catering appliances. If the four profiles are deemed to be an 
inappropriate representation of the usage of these appliances, more representative profiles can 
be developed manually and applied instead. 
 
Table 4 details the equipment inputs used to characterise the office space under investigation 
based on a walkthrough audit of the installed equipment alongside findings from the 
monitoring study used to develop Model 1. 
 
Table 4: Equipment inputs for Model 2 

Equipment type Quantities Power Draw (W) Usage Profiles (% time) 
 Absolute (%) Off Low 

active 
On 

(average) 
Transient Strict 

Hours 
Extended 

Hours 
Always 

On 
Computers           
High-end desktops 19 (14%) 1 80 150 15% 30% 30% 25% 
Low-end desktops 22 (16%) 1 30 40 10% 70% 10% 10% 
Laptops 99 (71%) 1 20 30 30% 30% 40% 0% 
Screens          
19” LCD screen 128 (85%) 0 1 25 20% 50% 30% 0% 
21” LCD screen 22 (15%) 0 1 45 20% 50% 30% 0% 
Printers & copiers          
Photocopier 4 (80%) 30 30 220 0% 0% 100% 0% 
Plotter  1 (20%) 120 120 170 0% 0% 100% 0% 
Catering          
Fridge 2 (50%) 0 100 120 0% 0% 0% 100% 
Coffee Machine 2 (50%) 25 25 350 0% 0% 0% 100% 
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Operational Inputs 
 
Inputs regarding the operational characteristics of the office include: 

• Tarr (norm) = standard arrival time;  

• Tdep (norm) = standard departure times 

• Tarr (ext) = extended arrival time;  

• Tdep (ext) = extended departure times. 
 

The model also requires an estimate of the proportion of equipment switched off at the end of 
the day (excluding those who are assigned an ‘always on’ profile) and expected usage 
diversity (on weekdays and weekends).  A prompt also enquires whether reduced occupancy 
is expected during lunchtime and if so, when this is likely to occur. Table 5 illustrates the 
operational and benchmarking inputs used to characterise the office space under investigation.  
 

Table 5: Operational inputs for Model 2 

Usage diversity (weekday) 75% 
Usage diversity (weekend) 15% 
Tarr (norm) 09:00 
Tdep (norm) 17:00 
Tarr (ext) 08:00 
Tdep (ext) 19:00 
% of computers switched off 
at the end of the day  60% 

Reduced occupancy at 
lunchtime?  yes 

Start time 12:00 
End time 13:00 

 
Wilkins and Hosni (2011) suggest that a diversity factor of 75% should be applied to 
computers in load calculations, with weekend usage diversity ranging from 10% to 30%. A 
usage diversity factor of 75% was applied, with a weekend diversity of 15% accounting for 
occasional weekend workers. 
 
Daily profiles of computer diversity published in Wilkins and Hosni (2011) demonstrate that 
peak diversity can vary on a daily basis, ranging by up to 20%.  In order to account for such 
variations, the model generates two sets of power demand profiles (and subsequent energy 
consumption figures) by utilising a low-end and high-end usage diversity factor.  These are 
assumed to be 10% lower and higher (respectively) than the diversity factor established in the 
model inputs, accounting for a total variation of 20% in line with data published by Wilkins 
and Hosni (2011). 
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Usage Profiles 
 
The operational inputs are used to adjust the usage profiles as illustrated in Figure 2 and 
Figure 3.  Pbase represents the base-load and is calculated based on the proportion of 
equipment switched off, representing a ratio between Poff and Plow accordingly.  If lower 
occupancy levels are expected over lunch, the usage profiles for screens are modified to 
include a dip between the specified times. Results from Model 1 suggest that the cumulative 
power demand of screens is likely to reduce by approximately 25% at lunchtime, hence, Plunch 
is estimated to be = Pon x 0.75. No such drop in power demand was observed in the monitored 
profiles for computers, hence these are modelled as a constant over lunchtime. 
 

 
Figure 2: Usage profiles applied to computers in Model 2 

 

 
Figure 3: Usage profiles applied to computer screens in Model 2 
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Outputs 
 
The model calculates power demand profiles in kW (and W/m2) for a typical weekday by 
multiplying the power demand of each item of equipment at different operational modes to 
the selected usage profiles. The low-end and high-end usage diversity factors (+/- 10% of the 
diversity factor specified in order to account for daily variability in usage diversity) are 
applied to the cumulative power demand profile, accounting for daily variations in usage 
diversity.  This approach also accounts for the inherent difficulty in establishing an accurate 
estimate of diversity factor, especially at the design stage. As such, the model’s outputs are 
presented as a range (between the high-end and low-end scenarios). Weekend power demand 
profiles are calculated in a similar way, yet rely on the specified usage diversity factor for 
weekends.  If the office is unoccupied during weekends, the base-load is applied throughout.  
 
Figure 4 illustrates the power demand profiles calculated by the model.  This includes low-
end and high-end outputs for weekdays and weekends. Energy consumption values are 
calculated based on the summed energy consumption of typical weekday and weekend power 
demand profiles. Monthly consumption is based on 20 weekdays and 8 weekends, whilst 
annual consumption is based on 52 weeks (each with 5 weekdays and 2 weekends).   

 
Figure 4: Weekday and weekend profiles generated by Model 2 

 

4 RESULTS 

4.1 Model 1: Comparison against metered data 

Figure 5 illustrates the low-end and high-end predictions alongside metered power demand 
profiles for the office space under investigation over five different weekdays. Although the 
predicted profiles are in 1-minute intervals, metered data is illustrated in 15-minute intervals, 
as that is the highest resolution available with the AMR system. The metered profiles fall 
within the predicted range before 8am and after 8pm (i.e.: base load), often being at the higher 
end of the prediction range. During the working hours the metered demand is observed to be 
constantly around the high-end prediction, which is observed to underestimate the demand on 
occasion, especially around lunchtime. It is likely that the discrepancy in the data resolution 
(1-minute vs. 15-minute intervals) could be partly to blame for some of the instances when 
the metered profiles fall below the high end prediction, as higher averages over a 15-minute 
period can be expected as a result of the frequent oscillation in the predicted power demand.  
The presence of plug loads not included in the model (such as mobile phone chargers, desk 
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fans and task lighting, etc) may also be to blame for the underestimation of power demand. 
The predicted profiles correlate well to the metered data during the transition between the 
base load and peak demand (and vice-versa), including a dip around lunchtime which is also 
observed in the metered data. The graph also includes the profile used in cooling demand 
calculations for compliance with Building Regulations in England and Wales in line with the 
National Calculation Methodology (NCM). In this case, the NCM profile would slightly 
overestimate the operational demand when the office is occupied, especially around the 
beginning and end of the working day, whilst significantly underestimating overnight heat 
gains. 

 
Figure 5: Predictions and metered weekday power demand profiles using Model 1 

Figure 6 compares the predicted range of monthly energy consumption against metered data 
for 9 months in 2012 (metering failures prevented further months from being included). 
Metered monthly data was normalised by accounting for 28 days (on a pro-rata basis).  
Results illustrate that metered consumption falls within the predicted range for all months.  
Similarly to the power demand analysis, most of the metered data fall in the higher end of 
prediction range (with the exception of December).   

 
Figure 6: Predictions and metered monthly energy consumption using Model 1 
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Although the results demonstrate a good correlation between predictions and metered energy 
data, this approach is heavily reliant on detailed monitored data, which is not widely 
available. Moreover, its ability to predict power demand profiles is directly related the 
quantity and quality of the monitored data. Equipment, behaviours and operational 
characteristics that have not been monitored will not be accounted in the predictions.  This 
limits the applicability of the tool to assess the impact of different variables on the power 
demand and energy consumption.  
  
 
4.2 Model 2: Comparison against metered data 

Figure 7 illustrates the low-end and high-end predictions alongside metered power demand 
profiles for the office space under investigation over five different weekdays. A good 
correlation is observed for peak demand and base-loads, with most of the metered data falling 
within the predicted range.  The model predicts a steeper and slightly earlier rise between the 
base-load and peak demand in the morning, yet one of the metered profiles falls very close the 
predicted range.  The decrease in power demand at the end of the working day is represented 
fairly well by the prediction range which only slightly overestimates the time it takes for 
power levels to descend to the base-load. It is worth noting that predictions are made in 1-
hour intervals whereas the metered data has a frequency of 15 minutes. This discrepancy in 
granularity between both sets of data inherently presents a challenge to the prediction tool, yet 
results are still reasonable. 

 
Figure 7: Predictions and metered weekday power demand profiles using Model 2 

Figure 8 compares the predicted range of monthly energy consumption against metered data.  
Results illustrate that metered consumption falls within the predicted range for all months 
except for December.  This is likely due to fewer working days during the holiday season. In 
light of these findings, the model has been adjusted so that the ‘low’ prediction represents a 
typical December month, including 15 working days as opposed to 20 working days. 
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Figure 8: Predictions and metered monthly energy consumption using Model 2 

Although the bottom-up model provides greater flexibility to estimate the power demand and 
energy consumption of different office buildings, it relies on assumptions of the likely 
operation of the small power equipment in the office space being modelled, and this may not 
be known at the design stage.  It is likely that such a model would be used in conjunction with 
published benchmarks, which might not be representative of the specific equipment in-use.  
The model’s reliance on hourly profiles might also result in the underestimation of peaks 
(which can have implications in subsequent predictions of cooling demands).   

 
 

5 VALIDATION 

In order to assess the validity of the outputs from both models, a blind validation was 
performed in a different office building occupied by the same company. This approach 
ensured a level of consistency in the types of equipment used and organisational practices, 
whilst introducing uncertainties regarding the operational characteristics of the office space.  
At the time at which the models were produced, no metered energy data was available to the 
researcher. Predictions relied on an inventory of installed equipment and informal 
conversations with a few of the occupants. 
 
5.1 Validation of Model 1  

The validation model relied on the same database of monitoring equipment, yet the quantity 
of installed equipment was adjusted to represent the area under investigation. Some of the 
equipment installed in the office used for the validation were not included in the monitoring 
database (namely desktop printers, microwaves and a ‘hydroboil’).  Out of these, the water 
heater was deemed to be a significant contributor consisting of a 3 kW heating element which 
was constantly on between 7am to 7pm daily. As such, a stable load of 3 kW was added to the 
calculated profile between 7am and 7pm.  Considering the more unstable operation of desktop 
printers and microwaves (as well as smaller expected power demands), no assumptions were 
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made to include these in the model. This highlights the limitations of the approach discussed 
earlier, whereby an extensive database of monitored data would be required for the wide 
applicability of the model. 
 
Figure 9 illustrates the low-end and high-end predictions for the blind validation alongside 
metered power demand profiles for the office space over five different weekdays. Similarly to 
the original example, the metered profiles fall within the predicted range outside working 
hours and daytime power demand is often at the highest end of the predicted range. In this 
office space however, metered power demand increases at lunchtime, probably due to the 
presence of a small kitchen within the office space. The absence of monitored data for 
microwave ovens is likely to have limited the model’s ability to predict such peaks, 
contributing further to the underestimation of power demand during the working day. The 
transition between the base-load and peak (and vice-versa) is represented very well in the 
prediction ranges. When compared to the NCM profile, the model results provide a much 
better prediction of power demand throughout the day. In this particular office space, the 
NCM profile would significantly overestimate peak demand (by more than 50%) yet still 
underestimating overnight heat gains. 
 

 
Figure 9: Predictions and metered weekday power demand profiles for the validation of Model 1  

 

Figure 10 compares the predicted range of monthly energy consumption against monthly 
metered data for 8 months leading up to the validation exercise (normalised for 28 days).  
Results illustrate that metered consumption falls within the predicted range for all months.   
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Figure 10: Predictions and metered monthly energy consumption for the validation of Model 1 

 

5.2 Validation of Model 2 

For the validation model, power draw values and usage profiles were consistent with those 
used in the original example, following the assumption that similar operational characteristics 
would be observed in offices occupied by the same organisation.  A usage diversity factor of 
70% was applied as lower usage was expected in the validation office compared to the 
original worked example (which was the organisation’s headquarters). 
 
Figure 11 illustrates the low-end and high-end predictions for the blind validation alongside 
metered power demand profiles for the office space over five different weekdays. A good 
correlation is observed for peak demand and base-loads, with few instances where metered 
peak demand exceeds the prediction range. Once again lunchtime demand is underestimated 
and this could be addressed by establishing catering-specific usage profiles. The transition 
between the base-load and peak (and vice-versa) are represented well in the prediction range, 
except for a slower decrease in power demand late at night (after 8pm).  

 
Figure 11: Predictions and metered weekday power demand profiles for the validation of Model 2 
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Figure 12 compares the predicted range of monthly energy consumption against metered data.  
Results illustrate that metered consumption falls within the estimated range for all months. 
Note that the low-end prediction now accounts for a typical December month by including 
only 3 working weeks (i.e. 15 working days and 13 ‘weekends’). 
 

 
Figure 12: Predictions and metered monthly energy consumption for the validation of Model 2 

 
 

6 DISCUSSION 

Both models were observed to provide representative predictions of power demand, yet 
Model 1 provides estimates with greater granularity, better accounting for the variability in 
peaks throughout the day.  This can be of particular use if the profile generated is used in a 
DSM to predict cooling demands in buildings that are very sensitive to changes in internal 
heat gains. Meanwhile, estimates of daily profiles using Model 2 (in 1-hour intervals) were 
still observed to be representative of metered data in intervals as small as 15-minutes.  
Although the model based on random sampling of monitored data (Model 1) minimises the 
need for assumptions regarding the usage patterns of equipment, it also requires significantly 
more data than the bottom-up model, much of which is not available at the design stage. 
Alternatively, the bottom-up approach (Model 2) provides a more usable tool with no 
detriment to the quality of predictions for energy consumption. 
 
Figure 13 provides a comparison between the results from both models, metered data and 
benchmarks published in ECG19 (for annual energy consumption and peak power demand). 
The estimates are presented as ranges, in line with the low-end and high-end predictions. 
Metered data for energy consumption was extrapolated from monthly consumption figures, 
and power demand ranges represent variations in peak demand throughout the five daily 
profiles used previously in this study.  The benchmark ranges relate to typical and good 
practice values for Type 3 office buildings, as both offices modelled as part of this study 
would fall under this category.  For contextual reference, a wider range including benchmarks 
for all office types included in ECG19 are also illustrated in the graph.  Model results and 
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metered data are presented for both offices investigated in this study: the original worked 
example and the validation model. 
 
The ECG19 range for Type 3 offices would underestimate the annual energy use for the 
example building and overestimate the consumption in the office used for the validation 
exercise. Results from both models presented here provide more representative estimates than 
the benchmarks. When considering the wider range of benchmarks (for all building types), 
both modelled offices are observed to fall within the given range. When considering peak 
power demand, the benchmarks are observed to be too high for both modelled offices, with 
the validation office falling below even the wider benchmark range.   
 

 

Figure 13: Comparison of model results against ECG19 benchmarks  

 

These results highlight the risks associated with the use of high-level benchmarks. Even 
though the wider range of energy consumption benchmarks encompasses the predicted and 
measured   consumption in both offices, the use of such an extensive range would present a 
large uncertainty. There is clearly a variation in energy consumption and power demand 
amongst buildings that would fall under the same benchmark category, suggesting a need for 
more appropriate, small power specific benchmarks categories or the use of a model such as 
proposed here.  The use of benchmarks for peak demand would have significant implications 
on the systems design, potentially resulting in oversized cooling systems.  
 
 
 

7 CONCLUSION 

This paper has detailed the development and validation of two models for predicting 
electricity consumption and power demand profiles for small power equipment.  Both models 
have demonstrated a good correlation between metered data and monthly predictions of 
energy consumption. Prediction ranges for power demand profiles were also observed to be 
representative of metered data with minor exceptions. Model 1 provides a more robust 
methodology for predicting the variability in power demand throughout a given day, being of 
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particular use to building services design that are very sensitive to changes in internal heat 
gains.  However, appropriate monitored data for individual appliances must be acquired to 
suitably represent the office space under investigation, and these might not be available at the 
design stage.  
 
Model 2 provides representative predictions through a bottom-up approach, relying on data 
that is commonly available to designers coupled with assumptions regarding the likely usage 
patters of the office space.  This approach emphasizes the need for a strong dialogue between 
designers and clients/occupiers, allowing for equipment specifications and operational 
characteristics to be accurately represented in the model. The modelling tool also facilitates 
this dialogue, enabling a clear visualisation of the impact of changing certain variables on the 
overall energy consumption and power demand. 
 
Currently, small power consumption and demand are often estimated based on the use of 
benchmarks.  This approach has its limitations, mostly due to the variability of small power as 
an end-use, which might not be directly related to current benchmark classifications (i.e. 
office types).  Both models were observed to provide significantly better estimates than 
ECG19 benchmarks, which are widely used in the UK.  If designers were to utilise either of 
the models proposed in this study, more representative estimates of small power consumption 
and demand could be established at the design stage. This would present a significant 
improvement to predictions of building performance, not only from an energy consumption 
perspective but also from a thermal comfort standpoint, by ensuring that internal heat gains 
due to small power equipment are accurately accounted for in the design of building systems.   
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APPENDIX F OCCUPANT BEHAVIOUR QUESTIONNAIRE 
DEVELOPMENT 

The occupant behaviour questionnaire utilised in this research project was developed in line 
with guidance by Francis et al. (2004).  This widely referenced document provides a thorough 
framework for survey development based on the Theory of Planned Behaviour (TPB) and is 
aimed at researchers in the health sector.  The guidance is however applicable to research in 
the field of built environment as the underlying theory is consistent no matter the setting.  
 
Francis et al. (2004) proposes three methods for measuring behavioural intention: (i) intention 
performance; (ii) generalised intention; and (iii) intention simulation.  Francis et al. (2004) 
suggests that the ‘generalised intention’ method be used unless either of the other methods 
would present particular benefit to the study.  This was not deemed to be the case so method 
2: ‘generalised intention’ was implemented.  The guidance also provides two alternatives for 
measuring attitudes, subjective norms and perceived behavioural control: (i) direct and (ii) 
indirect.  The indirect approach was undertaken based on precedent set by Gill et al. (2010).  
The indirect method also provides a more robust framework for questionnaire development. 
 
The first two steps in developing a questionnaire were to define the population of interest and 
the behaviour under investigation. The population of interest was defined as: occupants in a 
multi-tenanted office building. The behaviour under investigation was defined as: ‘switching 
off lighting and appliances when not in use’. The next step was to undertake an elicitation 
study with 30 people outside the population to be surveyed (i.e. not working in the building 
under investigation) but still within the population of interest (i.e. office workers). This 
consisted of six open-ended questions relating to each of the three predictors to establish the 
dominant factors that contribute to decisions regarding the target behaviour, as detailed in 
Table 1 below.   
 
Table 1: Questions included in the elicitation survey 

Q1. What do you believe are the advantages of switching off appliances and lighting 
when they are not in use at your workplace? 

Q2. What do you believe are the disadvantages of switching off appliances and lighting 
when they are not in use at your workplace? 

Q3. Do you feel that there are any individuals or groups who would approve of you 
switching off appliances and lighting when they are not in use at your workplace?  

Q4. Do you feel that there are any individuals or groups who would disapprove of you 
switching off appliances and lighting when they are not in use at your workplace?   

Q5. What factors or circumstances do you feel make it easy for you to switch off 
appliances and lighting when they are not in use at your workplace? 

Q6. What factors or circumstances do you think make it difficult or impossible for you to 
switch off appliances and lighting when they are not in use at your workplace? 
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Respondents were asked to reflect on their own experiences and to be as honest as possible, 
providing up to 3 responses per question.  Additional information regarding the aims and 
scope of the study were also provided, alongside a description of which specific appliances 
and lighting fixtures should be considered. Care was taken to ensure a wide range of 
backgrounds (e.g. work sectors, job titles, etc) and age groups were included in the study. 

 
Table 2: Summary of responses for the elicitation survey 
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Table 2 summarises the answers provided in the elicitation study.  Answers for each question 
couplet were grouped to form a single set of answers (reversing the answers where applicable) 
and similar answers were grouped where appropriate. Each respondent is numbered from 1-30 
illustrated by a single column.  As observed, there is a large variation in the number of 
answers provided for each question by each respondent. 

 
In order to account for 75% of all the beliefs stated, the answers were ranked in order of most 
often cited.  The number of responses for a specific belief was summed and the percentage of 
the total number of responses was then calculated.  This was done for each belief, in 
descending order, with the percentage value being calculated as a cumulative percentage so 
that the 75% target could be easily spotted. Once the cumulative percentage was reached, no 
further beliefs would need to be considered in the questionnaire development.  For all three 
predictors of behaviour (attitude, social norm and perceived behavioural control), six beliefs 
were sufficient to account for 75% of the beliefs and are highlighted in grey in Figure 1. 
 

Once the most significant beliefs were established, each of these was transformed into a 
question couplet, in line with guidance from Francis et al. (2004) as follows: 

 
Attitude couplet: behavioural belief x outcome evaluation 
e.g.: It is easy for me to switch off lighting and appliances when they are not in use: 
strongly disagree – strongly agree (behavioural belief) x Being able to conveniently turn 
off lighting and appliances is: very undesirable – very desirable (outcome evaluation).  

 
Subjective norm couplet: normative belief x motivation to comply 

e.g.:  Doing what my employer thinks I should do is important to me: not at all – 
very much (normative belief) x My employer would approve of me turning off lighting and 
appliances when not in use: strongly disagree – strongly agree (motivation to comply). 
 

Perceived behavioural control couple: control belief strength x control belief power 
e.g.: The controls for switching off lighting and appliances are easily accessible: strongly 
disagree – strongly agree (control belief strength) x Accessible controls would make it 
easier for me to switch off lighting and appliances: unlikely – likely (control belief power)   

 
Once each significant belief was transformed into a question couplet, the questionnaire was 
then developed, containing six groups of six questions (i.e. two sections for each predictor of 
behaviour, with every question having an equivalent couplet). The final questionnaire is 
illustrated in Figure 1. 
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Figure 1: Occupant behaviour questionnaire 
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if
e
s
p
a
n
.	
�
    

I	
�
    
h
a
v
e
	
�
    i
n
d
iv
id
u
a
l	
�
    
c
o
n
t
r
o
l	
�
    
o
v
e
r
	
�
    t
h
e
	
�
    l
ig
h
t
s
	
�
    a
r
o
u
n
d
	
�
    m

y
	
�
    w
o
r
k
s
ta
Ɵ
o
n
.

I	
�
    
c
a
n
	
�
    e
a
s
il
y
	
�
    fi
n
d
	
�
    t
h
e
	
�
    c
o
n
t
r
o
ls
	
�
    n
e
c
e
s
s
a
r
y
	
�
    t
o
	
�
    s
w
it
c
h
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    i
n
	
�
    m

y
	
�
    o
ffi
c
e
.

T
h
e
	
�
    c
o
n
t
r
o
ls
	
�
    f
o
r
	
�
    s
w
it
c
h
in
g
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    a
r
e
	
�
    e
a
s
il
y
	
�
    a
c
c
e
s
s
ib
le
.

I	
�
    
c
a
n
	
�
    t
u
r
n
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    w
h
e
n
	
�
    n
o
t
	
�
    i
n
	
�
    u
s
e
	
�
    w
it
h
o
u
t
	
�
    d
is
r
u
p
Ɵ
n
g
	
�
    o
t
h
e
r
	
�
    c
o
ll
e
a
g
u
e
s
.

I	
�
    
c
a
n
	
�
    s
w
it
c
h
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    t
h
r
o
u
g
h
	
�
    a
	
�
    c
e
n
t
ra
li
s
e
d
	
�
    c
o
n
t
r
o
l	
�
    
s
y
s
te
m
.

R
e
s
p
o
n
s
ib
il
it
y
	
�
    f
o
r
	
�
    s
w
it
c
h
in
g
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    w
h
e
n
	
�
    n
o
t
	
�
    i
n
	
�
    u
s
e
	
�
    h
a
s
	
�
    b
e
e
n
	
�
    c
le
a
r
ly
	
�
    

d
e
le
g
a
te
d
	
�
    t
o
	
�
    o
n
e
	
�
    o
r
	
�
    m

o
r
e
	
�
    i
n
d
iv
id
u
a
ls
.

H
a
v
in
g
	
�
    i
n
d
iv
id
u
a
l	
�
    
c
o
n
t
r
o
l	
�
    
o
v
e
r
	
�
    t
h
e
	
�
    l
ig
h
t
s
	
�
    a
r
o
u
n
d
	
�
    m

y
	
�
    w
o
r
k
s
t
a
Ɵ
o
n
	
�
    w
o
u
ld
	
�
    m

a
k
e
	
�
    i
t
	
�
    e
a
s
ie
r
	
�
    f
o
r
	
�
    

m
e
	
�
    t
o
	
�
    s
w
it
c
h
	
�
    t
h
e
m
	
�
    o
ff
.

It
	
�
    w
o
u
ld
	
�
    b
e
	
�
    s
im

p
le
r
	
�
    t
o
	
�
    s
w
it
c
h
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    i
f	
�
    
I	
�
    
k
n
e
w
	
�
    w
h
e
r
e
	
�
    t
h
e
	
�
    c
o
n
t
r
o
ls
	
�
    

w
e
r
e
	
�
    l
o
c
a
t
e
d
.

A
c
c
e
s
s
ib
le
	
�
    c
o
n
t
r
o
ls
	
�
    w
o
u
ld
	
�
    m

a
k
e
	
�
    i
t
	
�
    e
a
s
ie
r
	
�
    f
o
r
	
�
    m

e
	
�
    t
o
	
�
    s
w
it
c
h
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
.

I	
�
    
w
o
u
ld
	
�
    t
u
r
n
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    m

o
r
e
	
�
    r
e
g
u
la
r
ly
	
�
    i
f	
�
    
I	
�
    
k
n
e
w
	
�
    I
	
�
    w
a
s
n
’t
	
�
    d
is
r
u
p
Ɵ
n
g
	
�
    m

y
	
�
    

c
o
ll
e
a
g
u
e
s
.	
�
    

A
	
�
    c
e
n
t
r
a
li
s
e
d
	
�
    c
o
n
t
r
o
l	
�
    
w
o
u
ld
	
�
    m

a
k
e
	
�
    i
t
	
�
    e
a
s
ie
r
	
�
    f
o
r
	
�
    m

e
	
�
    t
o
	
�
    t
u
r
n
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    

w
h
e
n
	
�
    n
o
t
	
�
    i
n
	
�
    u
s
e
.

C
le
a
r
	
�
    d
e
le
g
a
Ɵ
o
n
	
�
    o
f	
�
    
r
e
s
p
o
n
s
ib
il
it
y
	
�
    f
o
r
	
�
    s
w
it
c
h
in
g
	
�
    o
ff
	
�
    l
ig
h
Ɵ
n
g
	
�
    a
n
d
	
�
    a
p
p
li
a
n
c
e
s
	
�
    w
o
u
ld
	
�
    

in
c
r
e
a
s
e
	
�
    t
h
e
	
�
    c
h
a
n
c
e
s
	
�
    o
f	
�
    
t
h
e
m
	
�
    b
e
in
g
	
�
    s
w
it
c
h
e
d
	
�
    o
ff
.

W
e
	
�
    a
r
e
	
�
    c
o
n
d
u
c
Ɵ
n
g
	
�
    a
	
�
    s
u
r
v
e
y
	
�
    r
e
g
a
r
d
in
g
	
�
    e
le
c
t
r
ic
it
y
	
�
    u
s
e
	
�
    i
n
	
�
    o
ffi
c
e
	
�
    b
u
il
d
in
g
s
	
�
    a
n
d
	
�
    w
o
u
ld
	
�
    b
e
	
�
    v
e
r
y
	
�
    g
ra
te
fu
l	
�
    
if
	
�
    y
o
u
	
�
    c
o
u
ld
	
�
    t
a
k
e
	
�
    a
	
�
    f
e
w
	
�
    m

in
u
te
s
	
�
    t
o
	
�
    a
n
s
w
e
r
	
�
    t
h
is
	
�
    q
u
e
s
Ɵ
o
n
n
a
ir
e
.	
�
    
	
�
    P
le
a
s
e
	
�
    r
e
fl
e
c
t
	
�
    o
n
	
�
    y
o
u
r
	
�
    o
w
n
	
�
    

e
x
p
e
r
ie
n
c
e
s
	
�
    i
n
	
�
    t
h
e
	
�
    o
ffi
c
e
	
�
    a
n
d
	
�
    m

a
r
k
	
�
    (
o
n
ly
)	
�
    
o
n
e
	
�
    a
n
s
w
e
r
	
�
    p
e
r
	
�
    q
u
e
s
Ɵ
o
n
.	
�
    
	
�
    T
h
e
r
e
	
�
    a
r
e
	
�
    n
o
	
�
    r
ig
h
t
	
�
    o
r
	
�
    w
r
o
n
g
	
�
    a
n
s
w
e
r
s
,	
�
    
s
o
	
�
    p
le
a
s
e
	
�
    t
e
ll
	
�
    u
s
	
�
    w
h
a
t
	
�
    y
o
u
	
�
    r
e
a
ll
y
	
�
    t
h
in
k
.	
�
    
	
�
    I
n
	
�
    d
o
in
g
	
�
    s
o
	
�
    p
le
a
s
e
	
�
    n
o
te
	
�
    t
h
a
t
:	
�
    

- 
A
pp

lia
nc
es

 i
n
c
lu
d
e
	
�
    p
e
r
s
o
n
a
l	
�
    
	
�
    c
o
m
p
u
te
r
s
,	
�
    
m
o
n
it
o
r
s
,	
�
    
p
r
in
te
r
s
	
�
    (
a
t
	
�
    y
o
u
r
	
�
    w
o
r
k
s
ta
Ɵ
o
n
	
�
    a
n
d
	
�
    c
o
m
m
u
n
a
l	
�
    
a
r
e
a
s
),
	
�
    p
e
r
s
o
n
a
l	
�
    
h
e
a
te
r
s
/
fa
n
s
,	
�
    
c
a
te
r
in
g
	
�
    e
q
u
ip
m
e
n
t
	
�
    e
.g
.	
�
    
k
e
Ʃ
le
s
,	
�
    
m
ic
r
o
w
a
v
e
s
,	
�
    
d
is
h
w
a
s
h
e
r
s
	
�
    e
tc
.	
�
    

 

- 
Li
gh

Ɵ
ng

 c
o
v
e
r
s
	
�
    c
o
m
m
u
n
a
l	
�
    
li
g
h
Ɵ
n
g
	
�
    i
n
	
�
    o
p
e
n
	
�
    p
la
n
	
�
    a
r
e
a
s
	
�
    a
s
	
�
    w
e
ll
	
�
    a
s
	
�
    c
e
ll
u
la
r
	
�
    o
ffi
c
e
s
	
�
    a
n
d
	
�
    m

e
e
Ɵ
n
g
	
�
    r
o
o
m
s
.	
�
    
D
e
s
k
	
�
    l
a
m
p
s
	
�
    s
h
o
u
ld
	
�
    a
ls
o
	
�
    b
e
	
�
    c
o
n
s
id
e
r
e
d
	
�
    w
h
e
r
e
	
�
    a
p
p
li
c
a
b
le
.	
�
    
	
�
    	
�
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A
g

e
: 

  
  

  
  

  
  

  
  

  
  

 M
a

le
  

  
  

  
  

  
F
e

m
a

le
  

H
o

w
 m

u
c
h

 e
n

e
r
g

y
 d

o
 y

o
u

 t
h

in
k
 y

o
u

 u
s
e

 c
o

m
p

a
r
e

d
 t

o
 t

h
e

 a
v
e

ra
g

e
 p

e
r
s
o

n
 in
	
�
    th

is
	
�
    o
ffi
ce

?

H
o

w
 m

u
c
h

 e
n

e
r
g

y
 d

o
 y

o
u

 t
h

in
k
 y

o
u

 u
s
e

 c
o

m
p

a
r
e

d
 t

o
 a

 p
e

r
s
o

n
 i
n

 a
n

 a
ve
ra
ge
	
�
    o
ffi
ce

?

W
h
a
t	
�
    
Ɵ
m
e
	
�
    d
o
	
�
    y
o
u
	
�
    u
s
u
a
ll
y
	
�
    a
r
r
iv
e
	
�
    a
t	
�
    
th
e
	
�
    o
ffi
c
e
?

W
h
a
t	
�
    
Ɵ
m
e
	
�
    d
o
	
�
    y
o
u
	
�
    u
s
u
a
ll
y
	
�
    l
e
a
v
e
	
�
    t
h
e
	
�
    o
ffi
c
e
?

Th
an

k	
�
    
yo

u	
�
    
fo
r	
�
    y

ou
r	
�
    Ɵ

m
e!

T
h
is
	
�
    q
u
e
s
Ɵ
o
n
n
a
ir
e
	
�
    w
il
l	
�
    
b
e
	
�
    c
o
ll
e
c
te
d
	
�
    f
ro
m
	
�
    y
o
u
r
	
�
    d
e
s
k
.

If
	
�
    y
o
u
	
�
    h
a
v
e
	
�
    a
n
y
	
�
    a
d
d
iƟ
o
n
a
l	
�
    
c
o
m
m
e
n
t
s
,	
�
    
p
le
a
s
e
	
�
    f
e
e
l

fr
e
e
	
�
    t
o
	
�
    w
r
it
e
	
�
    t
h
e
m
	
�
    o
n
	
�
    t
h
e
	
�
    b
a
c
k
	
�
    o
f	
�
    
t
h
is
	
�
    s
h
e
e
t
.


