

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Automatic Phased Mission System
Reliability Model Generation

by

Kathryn Sarah Stockwell

Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy

of

Loughborough University

September 2013

c©by Kathryn Sarah Stockwell 2013

Dedicated to my parents Marie and John

and to Tom

Abstract

There are many methods for modelling the reliability of systems based on component failure

data. This task becomes more complex as systems increase in size, or undertake missions

that comprise multiple discrete modes of operation, or phases. Existing techniques require

certain levels of expertise in the model generation and calculation processes, meaning that

risk and reliability assessments of systems can often be expensive and time-consuming.

This is exacerbated as system complexity increases.

This thesis presents a novel method which generates reliability models for phased-

mission systems, based on Petri nets, from simple input files. The process has been

automated with a piece of software designed for engineers with little or no experience

in the field of risk and reliability. The software can generate models for both repairable

and non-repairable systems, allowing redundant components and maintenance cycles to be

included in the model.

Further, the software includes a simulator for the generated models. This allows a user

with simple input files to perform automatic model generation and simulation with a single

piece of software, yielding detailed failure data on components, phases, missions and the

overall system. A system can also be simulated across multiple consecutive missions. To

assess performance, the software is compared with an analytical approach and found to

match within ±5% in both the repairable and non-repairable cases.

The software documented in this thesis could serve as an aid to engineers designing

new systems to validate the reliability of the system. This would not require specialist

consultants or additional software, ensuring that the analysis provides results in a timely

and cost-effective manner.

Keywords: Phased-Mission Systems, Automated, Model Generation, Simulation, Petri

nets, Non-Repairable, Repairable, Operational Mode Tables and Decision Tables.

Acknowledgment

I would like to thank my supervisor, Sarah Dunnett, for her support throughout my

Ph.D. I would also like to thank Chris, Liz and Tom, particularly for their friendship and

office shenanigans.

I would also like to thank Lockheed Martin who have given me time to complete this

Ph.D. and those particularly at Lockheed Martin who took the time to ensure I could

achieve this goal.

I would lastly like to thank both the Stockwell and Offer families for their love, support

and unending encouragement throughout the last 4 years. My parents who have always

been there for me and Tom, for everything.

Contents

List of Figures xiii

List of Tables xix

Principal Notation xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Background . 1

1.2 Research Objectives . 2

1.3 Basic Definitions . 3

1.3.1 Hazard Rate . 3

1.3.2 Reliability and Unreliability . 3

1.3.3 Availability and Unavailability . 4

1.3.4 Maintenance Policies . 4

1.3.5 Cut Sets and Minimal Cut Sets . 6

1.3.6 Implicants and Prime Implicants . 6

1.4 Reliability Techniques . 6

1.4.1 Combinatorial . 6

1.4.2 State-Space . 19

1.4.3 Simulation . 24

1.5 Summary . 38

2 Phased-Mission Systems 39

2.1 Introduction . 39

2.1.1 Types of phased-mission systems . 40

2.1.2 Analytical Modelling Techniques . 41

2.2 Non-Repairable Systems . 41

2.2.1 Phase Fault Trees . 41

2.2.2 Phase Modular Approach . 54

2.2.3 Binary Decision Diagrams for Phased-Mission Systems 57

2.3 Repairable Systems . 62

2.3.1 Markov applications in Phased-Mission Systems 62

2.3.2 System and Phase Petri Nets . 69

2.4 Summary . 71

viii Contents

3 Automated Techniques 73

3.1 Introduction . 73

3.2 Methods for Automation of Reliability Models 73

3.2.1 Decision Table Methods . 73

3.2.2 Digraph Method . 77

3.2.3 Modified Decision Table method . 77

3.2.4 Cause-Consequence Diagrams . 79

3.2.5 Mini fault trees . 79

3.2.6 Faultfinder . 79

3.3 Summary . 85

4 Modelling of Non-Repairable Systems 87

4.1 Introduction . 87

4.2 Model Inputs . 88

4.2.1 Component Description . 88

4.2.2 System Description . 91

4.2.3 Circuit Description . 92

4.2.4 Phase Description . 92

4.2.5 Initial Conditions . 92

4.3 Petri Net Models . 93

4.3.1 Component Petri Nets . 93

4.3.2 Circuit Petri Nets . 102

4.3.3 System Petri Nets . 104

4.3.4 Phase Petri Nets . 109

4.4 Algorithm . 115

4.5 Summary . 120

5 Application of the Procedure to Pressure Tank System 123

5.1 Introduction . 123

5.1.1 The Pressure Tank System . 124

5.2 System and Mission Description . 125

5.2.1 Components . 125

5.2.2 System Structure . 130

5.2.3 Circuits . 130

5.2.4 Mission Profile . 131

5.3 Pressure Tank System Model Construction 131

5.3.1 Component and System Petri Nets 132

5.3.2 Circuit Petri Nets . 132

5.3.3 Phase Petri Net . 134

Contents ix

5.3.4 The Completed Model . 142

5.4 Summary . 142

6 Automated Reliability Modelling 147

6.1 Introduction . 147

6.1.1 Object-Oriented Programming in C++ 148

6.1.2 Key Definitions . 148

6.2 Software Files . 149

6.2.1 Component Description Files . 150

6.2.2 System Topology Description . 152

6.2.3 Mission Description . 153

6.2.4 Simulation File . 155

6.2.5 Setup File . 157

6.3 Software Structure . 158

6.3.1 Storage of System and Mission Description 158

6.3.2 Building the Petri Net Model . 171

6.3.3 Simulating the Petri Net Model . 178

6.4 Testing and Validation . 187

6.4.1 Validation using Phase Fault Trees 188

6.5 Summary . 196

7 Modelling of Repairable Systems 199

7.1 Introduction . 200

7.2 Preventative Maintenance . 201

7.2.1 File Input . 201

7.2.2 System Storage . 202

7.2.3 Construction Procedure . 203

7.3 Corrective Maintenance . 206

7.3.1 File Input . 207

7.3.2 System Storage . 207

7.3.3 Construction Procedure . 208

7.4 Standby Systems . 212

7.4.1 File Input . 212

7.4.2 System Storage . 215

7.4.3 Construction Procedure . 217

7.4.4 Cold Standby . 218

7.4.5 Warm Standby . 219

7.4.6 Hot Standby . 219

7.5 Voting Systems . 221

x Contents

7.5.1 File Input . 221

7.5.2 System Storage . 222

7.5.3 Construction Procedure . 222

7.6 Mission Abort . 225

7.6.1 File Input . 225

7.6.2 System Storage . 225

7.6.3 Construction Procedure . 225

7.7 Simulating a Repairable System . 229

7.7.1 Simulation Algorithm . 229

7.7.2 Simulation of the model . 230

7.7.3 Simulating Transitions . 230

7.8 Repairable Bulb System . 230

7.8.1 Introduction . 230

7.8.2 System Description . 231

7.8.3 Mission Description . 234

7.8.4 Maintenance Plan . 234

7.8.5 Petri Net Models . 234

7.8.6 Validation . 237

7.9 Summary . 242

8 Conclusion and Further Work 243

8.1 Conclusion . 243

8.2 Further Work . 246

8.2.1 Optimisation Study . 246

8.2.2 Minimal Cut Sets . 246

8.2.3 Automatic Generation of the System Structure File 247

8.2.4 Multiple Interacting Systems . 247

References 249

A User Interaction 255

A.1 Menu Interaction . 255

B Pressure Tank System 259

B.1 Input Files . 259

B.1.1 Project File . 259

B.1.2 Component Files . 260

B.1.3 System Structure File . 267

B.1.4 Phase Transition Table File . 270

Contents xi

B.1.5 Simulation File . 271

B.1.6 Setup File . 273

B.2 Analytical Results . 273

B.2.1 Single Mission . 273

B.3 Simulation Results . 273

B.3.1 Single Mission . 273

B.3.2 Multiple Missions . 273

C Bulb System 279

C.1 Input Files . 279

C.1.1 Project File . 279

C.1.2 Component Files . 280

C.1.3 System Structure File . 282

C.1.4 Phase Transition Table File . 283

C.1.5 Simulation File . 284

C.1.6 Setup File . 285

List of Figures

1.1 The bath-tub curve . 3

1.2 Example fault tree . 10

1.3 Example reliability block diagram . 12

1.4 Reliability block diagram including series, parallel and voting systems . . . 15

1.5 Reliability block diagram analysis steps . 15

1.6 Example binary decision diagram . 16

1.7 Binary decision diagram illustrating ite(X1, f1, f2) 17

1.8 Simple fault tree structure for conversion to a binary decision diagram . . . 18

1.9 Markov model depicting a working, failed state system 20

1.10 Two-component system . 25

1.11 Representation of direct sampling . 26

1.12 Working and failed state system . 29

1.13 Petri net with multiple transitions and multiple tokens in one place 30

1.14 Petri net . 31

1.15 Petri net transition process . 32

1.16 Petri net example and dual of the Petri net 34

1.17 Petri nets illustrating absorption . 36

1.18 Petri net and the equivalent reachability graph 38

2.1 Phased mission of an aircraft flight . 40

2.2 Process for a two phase mission to find the exact solution 43

2.3 Generalised phase fault tree (La Band 2005) 47

2.4 Three phased-mission system . 47

2.5 Phase fault tree construction of phase 2 . 48

2.6 Phase fault tree construction of phase 3 . 49

2.7 Extraction method for fault trees . 49

2.8 Modularised fault tree . 55

2.9 System configuration for a three phase mission 62

3.1 Operator-driven valve . 76

3.2 FAULTFINDER Structure (Hunt et al. 1993) 80

4.1 Power Supply component . 88

4.2 Switch component . 89

4.3 Example of a simple system with one circuit 91

xiv List of Figures

4.4 Example of a topology diagram . 91

4.5 Procedure steps for the construction of a Petri net representing a power supply 96

4.6 Procedure steps for the construction of a Petri net representing a toggle

switch using the Operational Mode Transition (OMT) 97

4.7 Procedure steps for the construction of a Petri net representing a toggle

switch using the Decision Table (DT) . 99

4.8 Example of using failure rates in Petri net models 101

4.9 Example of a component with multiple failure states and one operating mode101

4.10 Example of a system with multiple circuits 103

4.11 Procedure steps for the construction of a Petri net representing circuit 1 . . 105

4.12 Petri net for current and no current in circuit 2 106

4.13 Petri net for the monitoring of the state of circuit 2 and the connection to

the System Petri Net (SPN) . 106

4.14 Procedure steps for the construction of the system Petri net 108

4.15 System diagram and topology for a heater and fan system 113

4.16 Steps 1-5 of the construction procedure applied to the heater, fan system . . 116

4.17 Steps 6-8 of the construction procedure applied to the heater, fan system . . 117

4.18 Steps 9-10 of the construction procedure applied to the heater, fan system . 118

4.19 Flow chart of the algorithm . 121

5.1 Pressure Tank System . 124

5.2 Schematic of Pressure Tank System . 130

5.3 Component Petri Net (CPN) construction and integration of the component

tables for the component push-switch (S1) 133

5.4 Component Petri net of the failure rate for components S1, CR, CT and V . 134

5.5 Pressure Gauge , PG, transitions between the working state and the different

failure states . 134

5.6 Petri nets for components with multiple modes of operation 135

5.7 Petri nets for components within circuits . 136

5.8 Component Petri nets for non-circuit components 137

5.9 Part one of the system PN . 138

5.10 Part two of the system PN . 139

5.11 Part three of the system PN . 140

5.12 Part four of the system PN . 141

5.13 Circuit Petri Nets for Circuits 1 to 4 of the Pressure Tank System 143

5.14 Circuit Petri Net for Circuit 5 of the Pressure Tank System 144

5.15 Circuit Petri net linkage Petri nets . 145

5.16 Phase Petri net for the Pressure Tank System 146

List of Figures xv

6.1 Decision table file input format for single mode components 151

6.2 Examples of the file format required for multiple mode components 152

6.3 Example topology file format . 154

6.4 Example mission file format . 155

6.5 Example simulation file format . 156

6.6 Class view of topSystem, fileHandler and compLib 159

6.7 Class representation of the component class and its sub-classes 160

6.8 First section of the algorithm for parsing and storing information within a

.dt or .omt file . 162

6.9 Second section of the algorithm for parsing and storing information within

a .dt or .omt file . 163

6.10 First section of the algorithm for parsing and storing information within a

.ss file . 164

6.11 Second section of the algorithm for parsing and storing information within

a .ss file . 165

6.12 Third section of the algorithm for parsing and storing information within a

.ss file . 166

6.13 First section of the algorithm for parsing and storing information within a

.ptt file . 168

6.14 Second section of the algorithm for parsing and storing information within

a .ptt file . 169

6.15 Third section of the algorithm for parsing and storing information within a

.ptt file . 170

6.16 Process for the generation of the circuit lists 172

6.17 Circuit detection method used for the circuit system in the pressure tank

system . 173

6.18 Flow chart of the process of the simulation of a transition 184

6.19 Flow chart of the process of the simulation of the model, part 1 185

6.20 Flow chart section of the process of the simulation of the model, part 2 . . . 186

6.21 Pressure tank system phase 1 fault tree . 189

6.22 Pressure tank system phase 2 fault tree . 189

6.23 Pressure tank system phase 3 fault tree . 190

6.24 Pressure tank system phase 4 fault tree . 190

6.25 Phase 2 simulation convergence results . 192

6.26 Phase 3 simulation convergence results . 193

6.27 Phase 4 simulation convergence results . 193

6.28 Mission simulation convergence results . 194

xvi List of Figures

6.29 Section of the mission unreliability graph for a non-repairable pressure tank

system . 195

6.30 Individual phase unavailability over time . 196

6.31 Mission unavailability over time . 197

7.1 Petri net showing the transition between working, failed and under repair

states of a component . 200

7.2 General preventative Petri net . 201

7.3 File Input expressions within the simulation file 202

7.4 planDetails class view . 202

7.5 preventative class view . 202

7.6 maintenance class view . 203

7.7 Flow chart showing the steps to taking the file input and storing the

preventative maintenance information . 204

7.8 Flow chart showing the steps to taking the file input and storing the

preventative maintenance information . 207

7.9 corrective class view . 208

7.10 Flow chart for the process of taking in the file and interpreting the corrective

maintenance plan . 209

7.11 Petri net for a single mode component under a corrective maintenance plan 212

7.12 Petri net for multiple components maintained by a single maintenance engineer213

7.13 Petri net for a system-wide corrective maintenance plan with two mainte-

nance engineers . 214

7.14 Declarations used within the STANDBY header within the simulation file . 214

7.15 The standby class . 215

7.16 Flow chart for the storing of the standby components 216

7.17 Example of power supplies in cold standby 219

7.18 Example of work to fail to repair relationship for a single mode component

in warm standby . 220

7.19 Example of power supplies in warm standby 220

7.20 Example of power supplies in hot standby 221

7.21 Example of a VOTING declaration . 222

7.22 The voting class . 222

7.23 Flow chart for the storing of the voting information 223

7.24 An example of a 2-out-of-3 voting system Petri net 224

7.25 File format for the ABORT header within the simulation file 225

7.26 The abortMission class . 226

List of Figures xvii

7.27 The first part of the software algorithm to populate the system with abort

conditions . 227

7.28 The second part of the software algorithm to populate the system with abort

conditions . 228

7.29 Example representation of the abort process within a Phase Petri Net (PPN)228

7.30 Schematic of the bulb system . 231

7.31 System topology diagram for the bulb system 232

7.32 CPNs for the components of the bulb system 235

7.33 SPN of the bulb system . 236

7.34 PPN of the bulb system . 237

7.35 Markov Model of the Bulb System . 239

7.36 Simulation results for the repairable bulb system for 5,000 simulations . . . 242

A.1 Main Menu Screen . 256

A.2 Main Menu Option 1 . 256

A.3 Main Menu Option 3 . 257

List of Tables

1.1 Gate symbols (Andrews & Moss 2002) . 8

1.2 Event symbols (Andrews & Moss 2002) . 9

1.3 Key to Petri nets . 29

1.4 Fault tree symbols and Petri net equivalent 33

2.1 Algebraic law for phased-mission systems for i < j 51

2.2 Phase algebra used by Zang et al. (1999) (i < j) 57

2.3 States of component combinations for the example system 63

3.1 Complete decision table for component fuse 74

3.2 Reduced decision table for component fuse 74

3.3 Operator-driven valve state transition table 76

3.4 Operator-driven valve function table . 76

3.5 Original decision table format for component Contact (Henry & Andrews

1997) . 78

3.6 Modified decision table format for component Contact (Henry & Andrews

1997) . 78

3.7 Example Decision Table for system description 82

4.1 Decision Table for a power supply . 88

4.2 Decision Table for toggle switch . 89

4.3 Operating mode table for toggle switch . 89

4.4 Timer Relay Decision Table . 91

4.5 Decision table for a pressure gauge . 102

4.6 Phase Transition Table for heater fan system 112

4.7 Decision Table for Timer Relay TIM1 . 114

4.8 Decision Table for Timer Relays TIM2, TIM3 114

5.1 Operational mode table for push switch S1 126

5.2 Decision table for switches S1 and S2, and contacts TC and RC 126

5.3 Operational mode table for toggle switch S2 and Valve V 126

5.4 Decision table for power supplies PS1 and PS2, and fuse FS 126

5.5 Decision table for relay R . 127

5.6 Decision table for timer relay TIM . 127

5.7 Operational mode table for timer relay contact TC and relay contact RC . 127

5.8 Decision table for junctions J1 and J3 . 127

xx List of Tables

5.9 Decision table for junctions J2 and J4 . 127

5.10 Decision table for motor M . 128

5.11 Decision table for pump P . 128

5.12 Decision table for tank T . 128

5.13 Decision table for pressure gauge PG . 128

5.14 Decision table for operator OP . 129

5.15 Decision table for valve V . 129

5.16 Pressure tank system component failure data 129

5.17 Phase transition table . 132

6.1 Software arc type definitions . 174

6.2 Pressure tank system component failure data 188

6.3 Pressure tank system simulation results from 10,000 simulations 192

7.1 Decision table for the component Bulb . 232

7.2 Decision table for the Operator . 233

7.3 Decision table for the component power supply 233

7.4 Decision table for the component Toggle Switch 233

7.5 Operational Mode Transition Table for the component toggle Switch 233

7.6 Failure and repair data for the components of the bulb system 234

7.7 Phase transition table for the bulb system 235

7.8 Markov model states for repairable bulb system 238

7.9 Bulb system simulation results for 5,000 simulations 241

7.10 Second set of simulation results for the bulb system for 5,000 simulations . . 241

B.1 Anaytical values for the Unreliability and Reliability of each phase and each

phase range . 274

B.2 Simulation Results for the single mission condition for the Pressure Tank

System (Simulations 0-4000) . 275

B.3 Simulation Results for the single mission condition for the Pressure Tank

System (Simulations 4050-8000) . 276

B.4 Simulation Results for the single mission condition for the Pressure Tank

System: (Simulations 8050-10000) . 277

B.5 Analytical Results for the multiple mission condition for the Pressure Tank

System . 278

Principal Notation

Ai failure of component A in phase i

Āi success of component A in phase i

Aij failure of component A between

phase i and phase j

Āij success of component A between

phase i and phase j

A(t) availability function

[A] state transition matrix

C consequence

Ci exisistance of cut set i

D vector of switching delays of

transitions

Dti transition number i, with a time to

the transition D

E set of arcs (edges) in a Petri net

F (t) unreliability function

Gi(t) Birnbaum’s measure of importance

Gij Birnbaum’s measure of importance

for component i in phase j

GPN set of generalised Petri net data

h(t) hazard rate (conditional failure rate)

I input(s)

ICRi criticality measure of importance

IPij phase importance of component i in

phase j

ITij transition importance of component

i in phase j

M(0) initial marking

NC total number of cut sets

O output(s)

p(ri) probability of the ith disjoint path

to a terminal 1 node

P probability

P (Ci) probability of cut set i occuring

Pi place number i

qi unavilability of component i

qij unavailability of component i in

phase j

Q(t) unavailability function

Qj unavilability of phase j

ri reliability of component i

rij reliability of component i in phase j

R risk

R(t) reliability function

Rj reliability of phase j

S(T) probability of occuping state S

t time

ti transition number i

Vp set of places in a Petri net

xxii Principal Notation

Vt set of transitions in a Petri net

W weight of edges

Greek

θ test interval

λ failure rate

µ mean time to failure

ν repair rate

τ mean repair time

Subscripts

AV average

E exact

LB lower bound

MCSUB minimal cut set upper bound

MISS mission

RE rare event

SYS system

List of Acronyms

ACS Alternative Cause Stack

AFTC Automated Fault Tree

Construction

AFTCC Automatic Fault Tree

Construction Code

BDD Binary Decision Diagram

CAD Computer Aided Design

CAT Computer Automated Tree

CCD Cause-Consequence Diagram

CCF Common Cause Failure

CiPN Circuit Petri Net

CPN Component Petri Net

CSP Cold Spare

DAG Directed Acyclic Graph

DSPN Deterministic and Stochastic Petri

Net

DT Decision Table

FEHM Fault/Error Handling Model

FORM Fault-Occurence/Repair Model

FTA Fault Tree Analysis

GPN Generalised Petri Net

GSPN Generalised Stochastic Petri Net

GUI Graphics User Interface

HSP Hot Spare

ite If-Then-Else

IN-EX Inclusion-Exclusion

LB Lower Bound

MBE Module Basic Event

MCS Minimal Cut Set

MCSUB Minimal Cut Set Upper Bound

MPCT Mission-Phase Change Times

MPN Master Petri Net

MRP Maintenance Rcovery Period

MTBCF Mean Time Between Critical

Failures

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NASA National Aeronautics and Space

Administration

NFB Negative Feedback

NFF Negative Feedforward

OMT Operational Mode Transition

PAND Priority AND

PDO Phased-Dependent Operation

PhN Phase Net

PID Piping and Instrumentation

Diagram

PM Phased-Mission

PMS Phased-Mission System

xxiv Principal Notation

PN Petri Net

PPN Phase Petri Net

RBD Reliability Block Diagram

SDP Sum of Disjoint Products

SPN System Petri Net

SN System Net

TPM Transition Probability Matrix

UAV Unmanned Aerial Vehicle

UML Unified Modelling Language

WSP Warm Spare

Chapter 1

Introduction

Contents
1.1 Background . 1

1.2 Research Objectives . 2

1.3 Basic Definitions . 3

1.3.1 Hazard Rate . 3

1.3.2 Reliability and Unreliability . 3

1.3.3 Availability and Unavailability . 4

1.3.4 Maintenance Policies . 4

1.3.5 Cut Sets and Minimal Cut Sets . 6

1.3.6 Implicants and Prime Implicants . 6

1.4 Reliability Techniques . 6

1.4.1 Combinatorial . 6

1.4.2 State-Space . 19

1.4.3 Simulation . 24

1.5 Summary . 38

1.1 Background

Risk and reliability has played a significant role in the design of major systems in a range

of industries in recent decades. Assessing the reliability of systems has aided in improving

the safety over the years. Major disasters such as the Chernobyl nuclear power plant in

1986 illustrate the necessity of robust risk and reliability analysis. System assessments

applied at the design phase can reduce the chance of undesirable incidents occurring when

a system is in operation. This can be achieved by identifying components or combinations

of components within a system that could lead to an undesirable event; this information

can then show design engineers the weaknesses in a design. The reliability of the design

can then be enhanced, typically by introducing maintenance cycles or redundancy within

the system.

2 Chapter 1. Introduction

Many methods have advanced since the Second World War to assess the probability

(or frequency) of an undesirable, or hazardous, event occurring. The risk, R, or expected

loss can be defined as the product of the consequence, C, and the probability, P , of the

undesirable event occurring. This is represented in equation 1.1.1.

R = C · P (1.1.1)

If the risk is too high then the system is not suited to handle the undesirable event. By

reducing one or both of the values that evaluate to the expected loss, an acceptable level

of risk may be found. Consequence, for example, could be reduced by finding a way to

reduce the number of people that work with the system. To reduce the probability of the

undesirable event occurring, the system itself would need to change. This could be achieved

through either a significant overhaul of the design or the introduction of redundancies and

fail-safes. The reduction of this probability is the main focus of the work presented in this

thesis; it introduces a more efficient means of acquiring the probability of the undesirable

event occurring.

System reliability models are a way of representing the undesirable events and from

them calculating the system reliability. They have been used over the years to determine

whether a system is reliable to use for its intended purpose. These models can be used

within the design phase to aid the designer in investigating implementation options.

A reliability assessment of the design is generally required to prove it can perform to

applicable standards. Usually a specialist team is required to complete this assessment,

as the designers to do not have the necessary skills to complete this task. It can take a

significant amount of time to generate the reliability models for the system; this can limit

the scope for the analysis to influence the design.

1.2 Research Objectives

The work presented in this thesis provides a method by which to assess a system at the

design phase allowing the reliability analysis of the system to influence the design in a timely

fashion. The method uses information about the system and the mission the system is to

undertake. This information is translated into a reliability model to assess the mission

success/failure. The system information can be entered by a member of the design team

rather than requiring specialist knowledge. The program then builds the model and gives

the user the relevant data about the mission. This information can then be used to improve

the system reliability.

1.3. Basic Definitions 3

H
az

a
rd

 R
at

e

Time

Burn-in Useful Life Wearout

Figure 1.1: The bath-tub curve

1.3 Basic Definitions

This section gives a description of some of the commonly used terms in the thesis. The

following information is based on Andrews and Moss (2002) which also contains further

reading on these topics.

1.3.1 Hazard Rate

The hazard rate, or conditional failure rate, is a measure of the rate at which a component

or system fails. By plotting the hazard rate against time, the curve of the graph usually

follows that of the bath-tub curve. Figure 1.1 shows a generalised view of the bath-tub

curve.

Figure 1.1 shows three distinct phases of a component or system’s life-cycle. The first,

burn-in, shows a decreasing hazard rate as component manufacturing defects are most

likely to present themselves early in the component’s life-cycle. The second phase, useful

life, shows a constant failure rate as a result of random failures. The final phase, wearout,

shows an increasing failure rate as the component/system deteriorates with age.

1.3.2 Reliability and Unreliability

The reliability, R(t), of a component or system is the probability that an item (component,

equipment, or system) will operate without failure for a stated period of time under

specified conditions. This is a measure that the item under consideration is successful

over a given period of time. Equation 1.3.1 represents the reliability of a system with a

constant hazard rate, λ. Constant hazard rate is also referred to as the failure rate.

4 Chapter 1. Introduction

R(t) = e−λt (1.3.1)

The unreliability, F (t), of a component or system is the probability that a com-

ponent/system fails to work continuously over a specified time period, under specified

conditions. The relationship between reliability and unreliability is given as follows:

F (t) = 1−R(t) (1.3.2)

1.3.3 Availability and Unavailability

The availability, A(t), of a component or system is defined as the probability that the

component or system is working at a particular instant. Alternatively, it is the fraction

of the total time the component or system is able to undertake its required function. The

availability of a system is an important measure of the performance of the system. This

value is calculated when a system failure can be tolerated and repair can be initiated.

Equation 1.3.3 represents the availability of a system.

A =
MTTF

MTTF +MTTR
(1.3.3)

Where the Mean Time to Failure (MTTF) is defined as the reciprocal of the failure rate�
1
λ

�
and the Mean Time to Repair (MTTR) is defined as the average time taken from the

failure of a system to its start-up, τ . The MTTR is also defined as the reciprocal of the

repair rate
�

1
ν

�
.

The unavailability, Q(t), of a component or system is the counterpart to availability

and is the probability that a component or system does not perform its required function

for time t. Unavailability has the following relationship:

Q(t) = 1−A(t) (1.3.4)

1.3.4 Maintenance Policies

There are three types of maintenance policies for systems or components: no repair,

scheduled maintenance and unscheduled maintenance. Each of these is given in detail

below.

1.3.4.1 No Repair

For this type of policy there is no maintenance once a system fails. If a system is said to

be working at a given time t, then the system must have been working continuously up

1.3. Basic Definitions 5

to time t. Therefore the reliability and availability are equal. Equation 1.3.1 would be

applicable for analysing a system with this policy.

1.3.4.2 Scheduled Maintenance

Faults in systems do not always become apparent the moment they have failed. This can

occur when a system is dormant and can only be detected when there is a demand on the

system, or is discovered during a scheduled maintenance. This can be quantified by finding

the probability of the system being in a failed state at any time by equation 1.3.5.

QAV = λ

�
θ

2
+ τ

�
(1.3.5)

Where λ is the unrevealed failure rate of the system and θ is the test interval.

Equation 1.3.5 can be approximated to equation 1.3.6 when the mean repair time, τ ,

is much shorter than the test interval, θ.

QAV =
λθ

2
(1.3.6)

For the scheduled maintenance policy an inspection is carried out after a fixed time

interval. When a failure is discovered during this inspection, repair is initiated. As this

maintenance is based on the time between inspections, θ, the unavailability is a function

of this time. Therefore, equation 1.3.5 is used for the average unavailability of the system.

Another form of the average unavailability can be found from integrating between the

interval times as shown below. This is more accurate than the simplified equation given

in equation 1.3.6. Equation 1.3.7 shows the integral between t = 0 and t = θ, the first

inspection period. This equation represents the unavailability of a system (or component).

Between these inspection intervals the system (or component) is non-repairable.

QAV =
1

θ

Z θ

0
1− e−λtdt (1.3.7)

By integrating, equation 1.3.7 this gives equation 1.3.8.

QAV = 1− 1

λθ

�
1− e−λθ

�
(1.3.8)

1.3.4.3 Unscheduled Maintenance

This policy initiates any repairs when a failure occurs. For this type of maintenance policy

the analysis is only dependent on the failure and repair rate of the system (or component),

as the fault is known as soon as it occurs; therefore there is no detection time. By the use

of Laplace transforms it can be shown that the unavailability of a system (or component)

is given by equation 1.3.9.

6 Chapter 1. Introduction

Q(t) =
λ

λ+ ν

�
1− e−(λ+ν)t

�
(1.3.9)

For components that have settled down into their steady state, taking t → ∞ in

equation 1.3.9 gives the steady state equation, equation 1.3.10.

Q =
λ

λ+ ν
(1.3.10)

This can be simplified further, given that the MTTF will be significantly larger than

the MTTR, therefore reducing equation 1.3.10 to equation 1.3.11.

Q = λτ (1.3.11)

1.3.5 Cut Sets and Minimal Cut Sets

A failure mode, or system failure mode, is the failure of a system that can occur through the

failure of a single component or a combination of components in that system. These failure

modes can be defined by cut sets. Cut sets are a list of basic components or combinations

of basic components that, should they fail, would cause a system failure event. Minimal

cut sets are an extension of this concept that expresses the minimal set of components

that is sufficient to cause each failure event.

1.3.6 Implicants and Prime Implicants

Implicants and Prime Implicants are similar to cut sets and minimal cut sets, in that they

show what components, or combination of components, cause a system failure event. The

difference is that implicants are combinations of working and failed components that cause

a system failure event. Prime implicants are the minimal, but sufficient combinations of

working and failed components required to cause a failure event.

1.4 Reliability Techniques

As the work focuses on the automatic building of a reliability model, the chosen modelling

technique should cater for all types of systems and missions. The following section discusses

the different modelling techniques available.

1.4.1 Combinatorial

The following techniques look at the combinations of failure, usually of components, and

the effects they have on the overall system state.

1.4. Reliability Techniques 7

1.4.1.1 Fault Tree Analysis

H. A. Watson of Bell Laboratories in 1961 whilst connected to the US Air Force contract to

study the Minuteman Launch control system first conceived the idea of Fault Tree Analysis

(FTA). D. Haasl of Boeing Company saw the merits and the value of this technique, and

with a team, used this method for the whole Minuteman study. From this point onwards

the Boeing Company used FTA for the design of commercial aircraft. Boeing Company in

conjunction with the University of Washington in 1965 sponsored the first System Safety

Conference where FTA papers were first presented. The interest of FTA soon spread

beyond the Aerospace industry, with particular interest shown in the Nuclear industry

(Ericson II 1999).

Fault tree analysis is a method of graphically displaying how an undesirable event could

occur. This is accomplished using different symbols to demonstrate how components are

linked to other components in the event of an undesirable event. From this structure the

probability of system failure can be calculated.

When constructing a fault tree, the top event must first be described. The top event is

the resulting failure of a system or process, i.e. a specific system failure mode. For example

a top event could be “Landing gear failure”. From the top event branches are constructed

which are used to show how such an event could occur. To construct the branches of the

fault tree a number of gates and events are used to link them. These are listed in Table

1.1 and Table 1.2 respectively. For the full list of gate and event symbols see Andrews and

Moss (2002), which also provides background information on this section.

Qualitative Analysis

Qualitative analysis of a fault tree is used to identify the failure modes of a system. These

failure modes are used to quantify the potential failure of a system. These failure modes

are defined as cut sets. These are discussed in Section 1.3.5.

To find the cut sets of a fault tree, there are two main approaches that can be taken.

The top-down and the bottom-up approach. Logic expressions are used in conjunction

with three laws in order to obtain the cut sets. In these expressions; ‘AND’ is represented

by ‘.’ and ‘OR’ by ‘+’. The following are the three laws used in the process;

1. Distributive Law: This is used to expand out any brackets, e.g. (A+B)(C+D) =

A.C +A.D +B.C +B.D

2. Idempotent Law: This is used to remove repeated cut sets, e.g. A+ A = A, and

is used to remove repeated failure events, e.g. A.A = A

3. Absorption Law: This is used to remove unnecessary non-minimal combinations,

e.g. A+A.C = A

8 Chapter 1. Introduction

Table 1.1: Gate symbols (Andrews & Moss 2002)

Symbol Name Description

AND gate Output event occurs if all input events occur
simultaneously.

OR gate Output event occurs if at least one of the input
events occur.

k-of-n

k n1

k-out-of-n gate Output event occurs if at least k events out of
n events occur. E.g. 2-out-of-3.

NOT gate Output event occurs if the input events DO
NOT occur.

To demonstrate each of these methods an example of a fault tree was constructed for

a system with six basic events A, B, C, D and E which is given in Figure 1.2.

The top-down approach begins with the top event and is expanded in terms of the next

level gate. In the case of the fault tree in Figure 1.2 this would be the AND gate. The first

expansion would therefore be the inputs into this gate, G1 ·G2. From there the next level

gate would be considered for both G1 and G2, continuously expanding the next level gate

until the top event is presented in terms of only the basic events. Equation 1.4.1 shows

the top event for the fault tree in Figure 1.2.

T = A.C.D +A.C.E +A.B.C.F +B.D +B.D.E +B.D.F +D.E + E +B.E.F (1.4.1)

Hence the minimal cut sets are:

T = A.C.D +A.B.C.F +B.D + E (1.4.2)

The bottom-up approach is similar to the top-down approach, but instead of starting

from the top event, this approach moves from the basic events up through the fault tree. By

using the three laws given above, the top event in terms of the minimal cuts are obtained.

This leads to the same expression as equation 1.4.2.

Any of these methods can be used to obtain the top event; the choice of which one to

1.4. Reliability Techniques 9

Table 1.2: Event symbols (Andrews & Moss 2002)

Symbol Name Description

Top or intermediate event

Describes the event occurring such as the
top event or the intermediate steps after
the top event. These are connected to logic
gates.

Basic event
These are found at the end of the branches
of a fault tree. These usually represent the
basic components of a system.

Transfer symbol Represents a part of the fault tree that is
repeated elsewhere.

use is entirely up to the individual as each method provides the same result. Once the

minimal cut sets are obtained the fault tree can then be analysed quantitatively.

Quantitative Analysis

Quantitative analysis of fault trees can determine the performance of the overall system, as

it can be used to determine the probability, or frequency, of the particular system failure

mode under consideration. Two aspects are discussed here: the top event probability and

importance measures.

Top Event Failure Probability

The top event failure probability is dependent on what the top event is and is calculated by

combining the failure probability of each minimal cut set. This can be achieved using the

inclusion-exclusion principle. The probability of a minimal cut set occurring is the product

of the probability of each component in the cut set occurring. The top event occurs if any

one of the minimal cut sets occurs, so the unavailability of the system can be represented

by equation 1.4.3.

QE =
NCX
i=1

P (Ci)−
NCX
i=2

i−1X
j=1

P (Ci ∩ Cj) · · · · · ·+ (−1)NC+1P (C1 ∩ C2 · · · ∩ CNC) (1.4.3)

Where QE is the exact probability of the top event, NC is the total number of cut sets

and Ci and Cj are the ith and the jth minimal cut set.

For large systems, many minimal cut sets will exist that could cause a top event failure,

10 Chapter 1. Introduction

Top Event

Gate 1

EGate 3

Gate 2

Gate 4 Gate 5

A C B D

D

Gate 6E

B F

Figure 1.2: Example fault tree

hence using the inclusion-exclusion principle can be time consuming and computationally

expensive. Approximations are therefore considered to quantify the top event probability.

The first of the approximations is the rare event approximation or upper bound. This

approximation takes only the first term of the inclusion-exclusion equation, as shown in

equation 1.4.4.

QUB =
NCX
i=1

P (Ci) (1.4.4)

The next approximation is the lower bound, which takes the first and second term of

equation 1.4.3 as shown in equation 1.4.5.

QLB =
NCX
i=1

P (Ci)−
NCX
i=2

i−1X
j=1

P (Ci ∩ Cj) (1.4.5)

The final approximation considered here is the Minimal Cut Set Upper Bound

(MCSUB), which is described using equation 1.4.6.

QMCSUB = 1−
NCY
i=1

(1− P (Ci)) (1.4.6)

The relationship between these approximations is given in equation 1.4.7.

QLB ≤ QE ≤ QMCSUB ≤ QUB (1.4.7)

1.4. Reliability Techniques 11

Importance Measures

In system reliability analysis, importance measures can be calculated for each component

or minimal cut set and are used to identify weak areas of a system that could lead to,

or be a contributing factor leading to, a top event. The measures assign a numerical

value to each basic event or minimal cut set which allows them to be ranked in order

of their contribution to the occurrence to the top event. There are many importance

measures available for system reliability (see Andrews and Moss ((2002))). Two of the most

common are Birnbaum’s measure of importance and the criticality measure of importance

(Birnbaum (1969)). These measures are both based on a critical system state. The critical

system state of component i is the case in which a failure in component i causes a failure of

the entire system. Birnbaum’s measure of importance, Gi is defined as the probability that

the system is in a critical state for component i. Equation 1.4.8 is Birnbaum’s measure of

importance.

Gi(t) =
∂QSY S(t)

∂qi(t)
(1.4.8)

Where qi(t) is the probability of failure of component i and QSY S(t) is the probability

of failure of the system.

Birnbaum’s importance measure was built on to include the contribution from

component i to the system failure; this is the criticality measure of importance. Equation

1.4.9 gives the criticality measure as the proportion that component i failures could cause

the system to fail.

ICRi =
Gi(t)qi(t)

QSY S(t)
(1.4.9)

1.4.1.2 Reliability Block Diagram

Reliability Block Diagrams (RBDs) or Reliability Networks are a method of determining

system reliability using block diagrams to show system structure. Unlike fault trees, RBDs

are success orientated and so the dependencies between the components represent how the

system will function. (Andrews & Moss 2002).

RBDs consist of the following five features; a start node, an end node, a set of nodes, V ,

a set of edges, E, and an incidence function, φ. The incidence function is used to associate

each edge with a set of ordered nodes. The edges are used to represent the components

within a given system. The nodes are used to show the structure of the system, in that

they are the points at which components are joined. An example RBD is given in Figure

1.3 constructed from four components, with four links between them. Each of the features

given above can be defined as following for the example system:

12 Chapter 1. Introduction

B

C

A
1 2 3

D
4

Figure 1.3: Example reliability block diagram

E = {A,B,C,D} (1.4.10)

V = {1, 2, 3, 4} (1.4.11)

φ = A→ (1, 2)

B → (2, 3)

C → (2, 3)

D → (3, 4) (1.4.12)

To show that a component is working in the system the edges X → (i, j) represent that

there is a path from node i to node j if component X is working normally. The path is

broken if component X fails. Using the RBD in Figure 1.3 there are two paths that can be

taken from the start node, 1 to the end node 4. If a path exists between these two nodes

then the system is in a working state.

Series Reliability Block Diagrams

When a system is non-redundant i.e. it will not tolerate failures, then the components are

placed in series, dictating that if any component in the system fails then the system fails.

The general solution for n components for the unreliability and reliability of a series RBD

are given in equations 1.4.13 and 1.4.14, respectively. When evaluating the reliability of a

system, the greater the number of components, the less reliable the system is.

QSY S = 1−
nY
i=1

(1− qi) (1.4.13)

1.4. Reliability Techniques 13

RSY S =
nY
i=1

ri (1.4.14)

Parallel Reliability Block Diagrams

In comparison to series block diagrams where all components must be working for a system

to work, parallel RBDs require only one path from the start node to the end node to exist

for the system to work. The general form for n components for the unreliability and

reliability of a system with parallel components are given in equations 1.4.15 and 1.4.16,

respectively. The greater the number of components the lower the probability of failure.

QSY S =
nY
i=1

qi (1.4.15)

RSY S = 1−
nY
i=1

(1− ri) (1.4.16)

RBDs can also be made from both series and parallel connections, such as Figure 1.3.

If within a branch of a parallel section exists a series of components, then the series of

components are assessed first using equations 1.4.13 and 1.4.14. These series components

can then be considered as a single component, as the parallel components are assessed

using equations 1.4.15 and 1.4.16. If there were two sets of parallel components in series,

then each set of parallel components would be assessed first and each set treated as a single

component and then these two single components would be assessed in series.

Voting Systems in Reliability Block Diagrams

Voting systems are used when a system requires a combination of k-out-of-n components to

be in a working state, where n represents the number of components in the voting system,

of which k must work for the system to function. Sometimes the components within a

voting system are identical and therefore are used in a redundant capacity. For analysis

purposes to begin with, this will be assumed. The value of k and n are given at the side

of the voting system in the form of a fraction, for example, where k is 2 and n is 3, the

voting system would be represented by 2/3 at the side of the parallel RBD. The general

form for the calculation of the reliability for each combination of working components is

given in equation 1.4.17.

P (k components work) = nCkr
kqn−k (1.4.17)

The unreliability of the voting system can also be calculated in a similar way with r

and q reversed in equation 1.4.17. Using the example of 2-out-of-3 must work for the voting

14 Chapter 1. Introduction

system to be successful, equation 1.4.18 shows the unreliability of the voting system. This

shows the number of components that, should they fail, would cause the system to fail.

QSY S = P (Two components fail) + P (Three components fail)

= 3q2r + q3 (1.4.18)

When a voting system has non-identical components, then the analysis reflects this by

producing each combination of working and failed components required to fail the system.

So in the case of 2-out-of-3, there would be 3 combinations which consisted of 2 components

failed and 1 working and 1 combination where all 3 components have failed.

Combined series, parallel and voting Reliability Block Diagrams

There are many ways in which series, parallel and voting systems can be incorporated into

a RBD. To analyse such systems the RBD would be broken down into stages. Voting

systems would first be assessed and this would then be followed by any components in

series and then in parallel. For example the RBD given in Figure 1.4, the voting system

would be analysed first. In this system the components within the voting system are

identical components, therefore the reliability and unreliability of each component is r and

q, respectively. The analysis of the voting system can be seen in equations 1.4.19 and

1.4.20.

q1 = 3q2r + q3 (1.4.19)

r1 = 3r2q + r3 (1.4.20)

With the analysis of the voting system complete, this can become a single component

within the RBD as seen in Figure 1.5a denoted 1. With no other voting systems present,

the analysis of the system moves on to the two components in series, A and B. The analysis

of the series components is given in equations 1.4.21 and 1.4.22.

q2 = 1− (1− qA)(1− qB) (1.4.21)

r2 = rArB (1.4.22)

The series components, A and B, are now represented by component 2, as seen in

Figure 1.5b. The parallel components, C and 2 can now be analysed. The analysis of the

parallel components can be seen in equations 1.4.23 and 1.4.24.

1.4. Reliability Techniques 15

A

C

B

E

D

F

2/3

Figure 1.4: Reliability block diagram including series, parallel and voting systems

A

C

B

1

(a) Voting system components represented
by block component 1

2

C

1

(b) Series components, A and B, repre-
sented by block component 2

3 1

(c) Parallel components, 1 and C, repre-
sented by block component 3

SYS

(d) Series components, 1 and 3, represented
by block component SY S

Figure 1.5: Reliability block diagram analysis steps

q3 = q2qC (1.4.23)

r3 = 1− (1− r2)(1− rC) (1.4.24)

The parallel components are now represented by component 3, as seen in Figure 1.5c.

With the system now consisting of two components in series, components 3 and 1, these

can be analysed to find the reliability and unreliability of the system. The result of which

can be seen in equation 1.4.25 and 1.4.26.

QSY S = q3 + q1 − q3q1 (1.4.25)

RSY S = r3r1 (1.4.26)

16 Chapter 1. Introduction

A

B

C

1

1

0

0

Root node

Non-Terminal Terminal node

Branch

Terminal node

Figure 1.6: Example binary decision diagram

1.4.1.3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were first introduced within the field of reliability by

Rauzy (1993). The method was introduced to aid in industrial scale fault tree analysis. The

task of generating the minimal cut sets can be computationally heavy when handling large

industrial systems. The algorithm proposed in this paper was to increase the efficiency of

handling the minimal cut sets. This will be discussed in detail later in this section. First,

this section covers the basic structure of a BDD.

A BDD has root, terminal and non-terminal nodes (also known as vertices) that are

connected by branches. These Directed Acyclic Graphs (DAGs) only follow one direction

and therefore do not loop back at any point. A root node is the start of the BDD and

represents a basic event of a fault tree, it always has two branches connected underneath

it. The left branch is the failure or occurrence of the basic event, denoted ‘1’. The right

branch is the success of the basic event, component working, and denoted ‘0’. Each of

these branches either becomes a terminal node or is connected to another basic event.

The terminal nodes of a BDD represent the final state of the system, denoted by a ‘0’

representing a working system state and a ‘1’ representing a failed system state. The non-

terminal nodes represent the basic events, these too always have two branches connected

underneath it. An example of a BDD is given in Figure 1.6. The terminal and non-

terminal nodes are labelled on the diagram. The BDD size is expressed as the number of

non-terminal terms.

The paths of the BDD always begin with the root node. Each path moves through

non-terminal nodes, until a terminal node is found. If a ‘1’ terminal node is found then

this signifies a cut set. For example taking the BDD in Figure 1.6, this has two ‘1’ terminal

node paths; A and Ā, B,C. Ignoring the success of basic event A in the second path, the

cut sets are found as {A}, {B,C}.
As the ordering is very important in a BDD, the basic events need to be considered in

1.4. Reliability Techniques 17

X1

f1 f2

01

Figure 1.7: Binary decision diagram illustrating ite(X1, f1, f2)

an order so that the system BDD can be constructed in an efficient manner; otherwise the

BDD would become very large and computationally inefficient.

If-Then-Else Structure

Rauzy (1993) describes a method in which to form a BDD from a fault tree using a

technique referred to as If-Then-Else (ite). The idea was to represent the gates of a fault

tree using ite. Taking the top event to be expressed as the Boolean function, f(X) and

pivoting about Boolean variable X1, Shannon’s expansion is expressed as equation 1.4.27.

In equation 1.4.27 f1 and f2 are functions f(X) with X1 = 1 and X1 = 0, respectively.

f(x) = X1 · f1 +X1 · f2 (1.4.27)

ite(X1, f1, f2) represents the structure given in equation 1.4.27. This states that if

X1 fails, then consider f1, else consider f2. The BDD for this is shown in Figure 1.7.

To construct a BDD from a fault tree each basic event x is given the structure

ite(x, 1, 0), this forms the basis of the full BDD. The tree is then considered from the

bottom up and rules that are applied to connect basic and intermediate events are given

below (where X and Y are variables):

If X < Y (i.e. X is considered before Y)

J ⊕H = ite(X, f1⊕H, f2⊕H) (1.4.28)

If X = Y

J ⊕H = ite(X, f1⊕ g1, f2⊕ g2) (1.4.29)

Where equations 1.4.30 and 1.4.31 are the gate inputs.

J = ite(X, f1, f2) (1.4.30)

18 Chapter 1. Introduction

Top Event
Failure

A

CB

Figure 1.8: Simple fault tree structure for conversion to a binary decision diagram

H = ite(Y, g1, g2) (1.4.31)

Using this ite technique the repetition of nodes is avoided. An example of this technique

in use is shown for the fault tree given in Figure 1.8.

With the ordering A < B < C;

G1 = B.C

= ite(B, 1, 0).ite(C, 1, 0)

= ite(B, 1.ite(C, 1, 0), 0.ite(C, 1, 0))

= ite(B, ite(C, 1, 0), 0) (1.4.32)

T = A+B.C

= ite(A, 1, 0) + ite(B, ite(C, 1, 0), 0)

= ite(A, 1 + ite(B, ite(C, 1, 0), 0), 0 + ite(B, ite(C, 1, 0), 0))

= ite(A, 1, ite(B, ite(C, 1, 0), 0)) (1.4.33)

This produces the BDD shown in Figure 1.6.

Rauzy (1993) also describes an algorithm for fault tree analysis which uses BDDs for

the purpose of fault tree management. The purpose of the algorithm was to increase the

efficiency at which the fault tree minimal cut sets and probability of failures could be found.

The idea was to obtain one BDD from a fault tree and then apply a minimisation process

1.4. Reliability Techniques 19

to it to obtain a minimal BDD which represents the minimal cut sets of the fault tree. The

minimal cut sets are found using the paths of the minimal BDD. The probability of the

root event is found using Shannon’s decomposition and the terminal events of the BDD.

Reay and Andrews (2002) describe an efficient method to convert fault trees to BDDs.

To simplify the fault tree before conversion, the FAUNET reduction (discussed later in

section 2.2.1.2) covers the techniques of contraction, factorisation and extraction. Once

these techniques have been employed, common structures (i.e. arrangements of gates and

branches) are identified as modules within the fault tree. These modules contain no basic

events that occur elsewhere in the fault tree. This makes analysing the whole fault tree

easier by analysing each of the modules first and then substituting these into the higher-

level fault tree. Once all the modules are identified these can be converted into BDDs.

As the modules all have different properties, a different ordering system is chosen for each

module, in order to take into account each modules’ individual properties.

Quantification of Binary Decision Diagrams

As each path of a BDD to a terminal node ‘1’ is disjoint, the top event probability, Q is

given in equation 1.4.34.

Q =
nX
i=1

p(ri) (1.4.34)

Where p(ri) is the probability of the ith disjoint path to a terminal 1 node.

1.4.2 State-Space

1.4.2.1 Markov Analysis

The first published work on Markov chains was by Andrei A. Markov in 1906, this was the

start of much study of stochastic processes with many applications (Ching & Ng 2006).

Markov models are used when dependencies exist between basic events and when failure

rates do not vary with time. Fault trees cannot be used in this case as they cannot model

statistical dependencies between components, i.e. the failure of one component cannot

affect the failure of another.

There are two different types of Markov models to consider; the first is Discrete Markov

chains and the second is Continuous Markov processes. These can both be defined in terms

of time and space. Discrete systems move from one state to another at set points in time,

whereas continuous systems move from one state to another at any point in time. Discrete

systems have a set of non-overlapping exhaustive states identified, where the system must

be in one of these at any given time. Continuous system states can degrade continuously

between working and failed.

20 Chapter 1. Introduction

State
Working

1

Failed
State

2

λ

ν

1-ν1-λ dt

dt

dt

dt

Figure 1.9: Markov model depicting a working, failed state system

Markov models consist of two basic components; states and transitions. States are

representative of the state in which the component resides, for example, working, failed or

standby. Transitions show either a failure or a repair event between the states. Figure 1.9

gives an example of a simple working, failed state system.

• States:

– State 1: Working

– State 2: Failed

• Transitions:

– P(Failure Transition): from state 1 to state 2 denoted λ dt

– P(Repair Transition): from state 2 to state 1 denoted ν dt

Where λ and ν are the failure rate and the repair rate, respectively.

Using these models the probability of being in any of the states of a system can be

calculated. These calculations will be given in detail later.

The events that are considered dependent in reliability modelling can include standby

redundancy, common-cause and failure/repair processes. Standby redundancy incorporates

a standby component that is brought into effect should the primary component fail, or

be under-repair. Depending on the type of standby component the failure rate of the

component can change when it is brought into operation. A common-cause event can

cause more than one component failure in the system, meaning that component failure is

not independent. For example, failure/repair processes can become dependent when there

is a single maintenance engineer employed to handle the maintenance of many components

of a system. This can result in a queue of components in need of repairs.

Discrete Markov Chains

Transition Probability Matrix

The Transition Probability Matrix (TPM) is used to determine the probability of being in

a particular state after a certain number of time intervals. The matrix has elements Pij ,

1.4. Reliability Techniques 21

which denotes the probability of making a transition to state j after a given time interval

from state i at the beginning of the interval. The TPM for the two-state system shown in

Figure 1.9 is given in equation 1.4.35. The size of the matrix is N × N , where N is the

total number of states.

[P] =

2
4 P11 P12

P21 P22

3
5 (1.4.35)

When evaluating time dependent systems, the TPM is multiplied by itself n times,

where n is the number of time intervals. The elements of [P]n are Pnij , the probability of

being in state j after n time intervals given that it began in state i. This form is given in

equation 1.4.36.

P (n) = P (0) · [P]n (1.4.36)

Where P (0) is the initial probability vector and is a row vector containing the

probability of starting in each state.

When considering steady-state probabilities, P (∞) these would not change with further

multiplication, therefore equation 1.4.37 would be used for these types of systems.

P (∞)[P] = P (∞) (1.4.37)

Continuous Markov Processes

When considering systems that are discrete in space and continuous in time, these can

be modelled using continuous Markov processes. For the approach to be valid the system

must be stationary, the process must lack memory and the states of the systems must be

identifiable.

State Equations

There are two ways in which the state equations can be acquired; one way is by using the

state diagrams. Taking the state diagram in Figure 1.9, the state equations are found by

the following method:

dPstate
dt

= (rate of entering state)− (rate of leaving state) (1.4.38)

Where PSTATE is the probability of being in a state.

From this statement equation 1.4.39 and 1.4.40 are formed.

22 Chapter 1. Introduction

dPw(t)

dt
= −λPw(t) + νPf (t) (1.4.39)

dPf (t)

dt
= λPw(t)− νPf (t) (1.4.40)

Where Pw(t) and Pf (t) are the probability that the component is working or failed at

time t, respectively.

In matrix form equations 1.4.39 and 1.4.40 become:

[Ṗw(t), Ṗf (t)] = [Pw(t), Pf (t)]

2
4 −λ λ

ν −ν

3
5 (1.4.41)

Generalised, this equation becomes:

[Ṗ] = [P][A] (1.4.42)

Where [A] is the transition rate matrix.

[A] =

8><>:
aij Transition rate from i→ j

aii −
pX

j=1, j 6=i
aij

(1.4.43)

Where p is the maximum number of states.

The transition rate matrix has certain properties that make it easy to develop:

• The number of states in the diagram equals the number of rows and columns in the

matrix.

• The sum of each row of the matrix equals zero.

• Every non-diagonal elements in row i and column j represents the transition from

state i to state j

• Diagonal elements i, i is the transition rate out of state i. This is always negative.

The sum of any system state probabilities, at any time, must be equal to one, as shown

in equation 1.4.44.

NsX
i=1

Pi(t) = 1 (1.4.44)

Where Ns is the total number of states.

1.4. Reliability Techniques 23

Another method for finding the state equations is by denoting the state of the

component at time t by:

x(t) =

8<: 1 Failed

0 Working
(1.4.45)

Finding the probability that a component is in a failed state after dt, requires knowledge

of only the state of the component at the present time. Equation 1.4.46 defines that for

P [x(t+ dt) = 1] that, either the component was working at time t and failed in time dt or

that the component had failed in time t and remained so during time dt.

P [x(t+ dt) = 1] = P [x(t) = 0]λ dt+ P [x(t) = 1](1− ν dt) (1.4.46)

Equation 1.4.46 can be written as

Pf (t+ dt) = Pw(t)λ dt+ Pf (t)(1− ν dt) (1.4.47)

Rearranging the above gives equation 1.4.48.

Pf (t+ dt)− Pf (t)

dt
= Pw(t)λ− Pf (t)ν (1.4.48)

As t→ 0, equation 1.4.48 becomes equation 1.4.40. Using the statement Pw(t)+Pf (t) =

1 and using the initial conditions Pf (0) = 0, equation 1.4.49 gives the unavailability.

Pf (t) =
λ

λ+ ν
(1− e−(λ+ν)t) (1.4.49)

Using the same process, but starting with P [x(t + dt) = 0] leads to equation 1.4.39

which can be solved to give the availability of a component.

Pw(t) =
λ

λ+ ν
+
λe−(λ+ν)t

λ+ ν
(1.4.50)

In general equation 1.4.42 gives a set of NS first order differential equations to solve. In

some cases it may be possible to solve these using Laplace Transforms but in most situations

numerical methods are adopted. Equation 1.4.42 can be expanded to give equation 1.4.51.

h
Ṗ1 Ṗ2 · · · ṖNs

i
=
h
P1 P2 · · · PNs

i
[A] (1.4.51)

Approximating

Ṗi(t) =
Pi(t+ dt)− Pi(t)

dt
(1.4.52)

Equation 1.4.51 can be written as equation 1.4.53.

24 Chapter 1. Introduction

h
P1(t+ dt) P2(t+ dt) · · · PNs(t+ dt)

i
=
h
P1(t) P2(t) · · · PNs(t)

i
[I + [A]dt]

(1.4.53)

This can be written generally as equation 1.4.54.

[P(t+ dt)] = [P(t)][K] (1.4.54)

Where [K]=[I+[A]dt].

1.4.3 Simulation

1.4.3.1 Monte Carlo

Monte Carlo methods can be used when methods such as Markov and fault tree analysis

are not applicable. For example, if the components or sub systems are dependent then

fault trees cannot be used and if components do not have constant failure and repair rates,

then Markov methods cannot be used. The use of Monte Carlo simulation requires no

assumptions to be made regarding system behaviour. The following information is based

on Andrews and Moss (2002) which also contains further reading on this topic.

Uniform Random Numbers

The Monte Carlo simulation method is dependent on the generation of random numbers

which form a uniform distribution. A number of methods can be used to generate these

numbers. One method by Von Neumann, the mid-square method, takes a random number,

squares the value and then takes the middle numbers. These middle numbers form the

new random number. For example squaring a starting number of 7989 gives 63,824,121.

Taking the four middle numbers, the new value is 8241. A disadvantage of this method

is that if zero is encountered then the sequence ends. Another disadvantage is that these

values are not truly random, but pseudo-random; although they are uniform, the sequence

is not random. Another method is random number tables. These tables are a sequence of

random digits where entry can be from any point in the table and any subsequent values

can be obtained by reading across or down the table.

Real engineering simulations require the generation of large quantities of random

numbers and the only way to achieve this is to use a computer. Computers can generate

pseudo-random number sequences.

The recursion formulae most commonly used are linear congruential generators. These

have the form:

xn+1 = (axn + b)(mod m) (1.4.55)

1.4. Reliability Techniques 25

A

B

Figure 1.10: Two-component system

Where a, b and m are positive integers.

Following an arbitrary number of iterations, i, of equation 1.4.55, the resulting random

number is found as follows:

Ri =
xi
m

(1.4.56)

Where Ri is the random number produced in the range [0, 1], xi is the ith number

produced and x0 is the seed.

The seed is a number that is specified initially to generate a sequence of pseudo-random

numbers. As the same seed would produce the same sequence if repeated, a, b and m are

chosen so that a large sequence of numbers are produced before the sequence produces the

seed value again and it is repeated.

Direct Simulation

This method of modelling uses direct statistical simulation. For this type of system

reliability simulation, two inputs are required: first is the statistical distributions for time to

failure and time to repair for each component. The second input is the system logic, which

includes how the components are connected and what the effects each component failure

has on the system performance. The system is simulated by using random samples from

the statistical distributions and tracking how the system functions when the component

states change.

This method can be demonstrated by considering the two-component system given in

Figure 1.10. Components A and B both have a probability of failure of 0.15. For there to

be system failure both components A and B are required to fail.

The simulation is carried out by generating for each component in the system a random

number that will be used to say if the component is working or failed. If the random

number is less than the probability of failure, then the component is assumed to be failed.

If the random number is larger than the probability of failure, then the component remains

26 Chapter 1. Introduction

Random

No.

Component

Failure

0 0.15 1.0

(a) Component failure when random number falls
between 0 and 0.1

Random

No.

Component

Works

0 0.15 1.0

(b) Component working when random number falls
between 0.1 and 1

Figure 1.11: Representation of direct sampling

working. This can be seen in Figure 1.11. The state of the system can then be determined.

Distributions for generating event times

Exponential distribution

The exponential distribution is the first of three distributions considered here. This

distribution uses the density function presented in equation 1.4.57.

f(t) =
1

µ
e−t/µ (1.4.57)

Where µ is the mean.

To obtain the random samples, a number of steps are followed: the first is to integrate

the density function to obtain the cumulative failure distribution, F (t), as seen in equation

1.4.58.

F (t) =
Z t

0
f(u)du

= 1− e−t/µ (1.4.58)

As the cumulative failure distribution has the same range and properties as the random

number distributions, the next step is to generate random numbers, X, and equate to F (t)

(0 ≤ F (t) ≤ 1) giving equation 1.4.59.

X = 1− e−t/µ (1.4.59)

1.4. Reliability Techniques 27

To find the distribution to represent time to failure, the equation is rearranged for t.

t = −µ ln(1−X) (1.4.60)

If X is assumed uniform over [0, 1] then 1−X must also be. This simplifies equation

1.4.60 to equation 1.4.61.

t = −µ lnX (1.4.61)

Weibull distribution

Like the exponential distribution, the Weibull distribution can also obtain the random

samples directly. The density function that represents this distribution can be seen in

equation 1.4.62.

f(t) = β
tβ−1

ηβ
e−(t/η)β (1.4.62)

Where η is the Weibull scale parameter or characteristic life and β is the Weibull shape

parameter. Where β < 1 represents a reducing hazard rate, β = 1 is constant hazard rate

and β > 1 is increasing hazard rate.

As with the exponential distribution, the density function is integrated to give the

cumulative distribution, F (t), as seen in equation 1.4.63.

F (t) = 1− e−(t/η)β (1.4.63)

Once again the cumulative distribution has the same range and properties as the

random number distribution and so from the generated random numbers, X, equation

1.4.64 is used.

X = 1− e−(t/η)β (1.4.64)

By rearranging the equation above for time, t, to represent the time to failure (or

repair), equation 1.4.65 is obtained.

t = η[− ln(X)]1/β (1.4.65)

Normal distribution

The normal distribution is the only distribution considered here for which the density

function cannot be integrated to obtain the cumulative distribution. This is due to the

density function as seen in equation 1.4.66.

28 Chapter 1. Introduction

f(t) =
1

σ
√

(2π)
e−

1
2

[(t−µ)/σ]2 (1.4.66)

Where σ is the standard deviation and µ is the mean.

Instead, a method using the central limit theorem is introduced. The central limit

theorem states that if X1, X2, ..., Xn are n independent random variables which are

identically distributed and have mean, µ and variance, σ2 and then Sn is the sum of all

these variables then the random variable (Sn − nµ)/(σ
√
n) is asymptotically normally

distributed with a mean of 0 and a standard deviation of 1. Sn can use random numbers

U(0, 1) to represent it as these are identically distributed, however it should be noted that

Sn will only ever be approximately normal for a finite value of n. Therefore to find this

value of n, values are tested to see what kind of distribution is obtained. Starting with

n = 2, the distribution is a triangular distribution which is unsuitable. For n = 3, a

bell-shaped distribution is obtained. This is closer to what is required, therefore n ≥ 3

is suitable. A number that is mathematically suitable is n = 12, as Xi has µ = 0.5 and

σ2 = 1/12, therefore Sn is N(6, 1). Therefore to obtain a random sample from the normal

distribution, twelve random numbers are required. X is the summation of these numbers,

as given in equation 1.4.67.

X =
12X
i=1

Xi (1.4.67)

The central limit theorem states X is normally distributed with mean 6 and standard

deviation 1. Hence t, given by applying this equation 1.4.68, is normally distributed with

mean µ and standard deviation σ.

t = (X − 6)σ + µ (1.4.68)

1.4.3.2 Petri Nets

Carl Adam Petri, in his 1962 Ph.D. Thesis entitled Kommunikation mit Automaten

(Communication with automata), presented a new graphical representation of systems.

The idea presented in the thesis was to show the theory of communication between non-

simultaneous components of a computer system. Petri focused on the description of the

relationships between events. Anatol Holt et al (1968) produced the translation to Petri’s

dissertation and added to the work considerably; this was given in the final report of the

Information System Theory Project. Holt and Commoner (1970) wrote a paper entitled

Events and Conditions. This paper was concerned with the part-by-part performance of

a system, and was chiefly concerned by concurrent operations. This paper was also an

important part of the early research of Petri nets.

1.4. Reliability Techniques 29

Petri nets are useful when simulating large systems when the computational time to

analyse a system becomes too significant to ignore. They are incredibly versatile in terms

of the system features that they are capable of modelling. This section discusses the basic

definitions of Petri nets, and with given examples, how Petri nets are applicable to this

work.

There are four basic components that constitute a Petri net; places, transitions, arcs

(also referred to as edges) and tokens. A graphical representation of each is given in

Table 1.3. Places can represent states of a system, such as the Petri net in Figure 1.12 that

shows a system in one of two states; working (P1) or failed (P2). This is one of the simplest

examples of a Petri net, but these can be expanded considerably to include other system

states such as under repair, system down, repaired and system standby. Places are not

limited to just representing states; they can also represent components within a system, or

a member of the workforce carrying out maintenance. This makes Petri nets very versatile

and so can accommodate the needs of many different problems.

Table 1.3: Key to Petri nets

Symbol Name

Place

ti

Transitions (delayed and instant)

Arc

Token

tFP1 P2

Figure 1.12: Working and failed state system

Tokens, represented as a small dot, are located inside places and used as locators. For

30 Chapter 1. Introduction

T1P1 P2
5

Figure 1.13: Petri net with multiple transitions and multiple tokens in one place

example, in Figure 1.12 a token can be seen inside place, P1. This indicates that the system

is in a working state. If there were a token in place P2, this would indicate that the system

is in a failed state. As tokens can be treated as a finite resource, they can also be used

to signify the number of components available or the number of maintenance engineers

available to repair a system. It should also be noted that places can hold more than one

token.

Arcs, sometimes referred to as edges, are used to show the link between places and

transitions. If there is more than one arc connecting a place to a transition then this is

represented on a Petri net as a slash through the arc with a number by it indicating the

number of arcs. An example of this can be seen in Figure 1.13.

Transitions dictate at which “time” a system “moves” from one state to another. In

Figure 1.12, the transition tF would represent the ‘time to failure’ of the system. The rules

that govern when a transition can fire and tokens are moved, are described in detail later.

Formal definition of a Petri net

The formal definition for a Petri net is given in Schneeweiss (1999):

GPN = (Vp, Vt, E;M(0), D,W) (1.4.69)

Where GPN is the Petri net graph, Vp is the set of places, Vt is the set of transitions,

M(0) is the initial marking vector, D is the vector of switching delays (transition times)

and W is the vector of weights of edges i.e. the number of arcs making a given connection,

E is the set of edges (ordered pairs of nodes), where E ⊆ (Vp × Vt) × (Vt × Vp). The

initial marking vector, M(0), lists the number of tokens in each place when the system is

initialised.

For example, for the Petri net shown in Figure 1.14:

GPN = (Vp, Vt, E;M(0), D,W)

Vp = {1, 2, 3, 4, 5, 6}
Vt = {1, 2, 3, 4, 5, 6}
E = {(p1, t1), (p1, t2), (t1, p3), (t2, p2), (p2, t3), (t3, p4), (p4, t4), (t4, p3), (p5, t5),

1.4. Reliability Techniques 31

(t5, p4), (p3, t6), (p4, t6), (t6, p6)}
M(0) = (1, 0, 0, 0, 1, 0)

D = (D1, D2, D3, D4, D5, D6)

W = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

P2

D1

D2 D4

D6

D3

D5

P1 P3

P4

P5

P6

Figure 1.14: Petri net

The Rules of Execution

The movement of tokens between places within a Petri net represents its dynamic

behaviour. In reliability modelling the position of tokens in the Petri net at a given instant

in time, known as its marking, represents a particular system state.

A set of rules for the movement of tokens are given as follows:

• A Petri net executes by firing transitions.

• A transition fires by removing tokens from its input places and creating new tokens

which are distributed to its output places.

• A transition may fire if it is enabled.

– A transition is enabled if each of its input places has at least as many tokens

in it as arcs from the place to the transition.

– Transitions can have a time delay associated within them; such transitions are

known as timed transitions. The time for the delay only passes while tokens are

present, as described above.

• A transition fires by removing enabling tokens from its input places. One token is

removed from each input place for each arc connecting the place to the transition.

32 Chapter 1. Introduction

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(a) Initial Petri net

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(b) Transition t1 enabled and fired

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(c) Transitions t2 and t3 enabled, t2 fired, as t2 < t3

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(d) Transitions t3, t4 and t5 enabled, t5 fired as
t5 < t4 < t3

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(e) Transitions t3 and t4 enabled, t4 fired, as t4 < t3

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(f) Transition t3 enabled and fired

P1

P2

P3

t1 t2

P4

t4

t3

P6

t5 P5

t6 P7

(g) Transition t6 enabled and fired

Figure 1.15: Petri net transition process

• After a transition has fired, tokens are deposited into all places connected as outputs

from the transition. One token is deposited for each arc connecting the transition and

the output place. Note that output arcs can be connected to input places, meaning

that tokens are deposited back into the input place.

In the example Petri net shown in Figure 1.15a, ti terms denote the times at which the

transitions fire. The transition sequence can be expressed in the following form, showing

the order in which these transitions fire: t1 → t2 → t5 → t4 → t3 → t6. The movement of

the tokens in the system as each transition fires can be seen in Figure 1.15. Another way

in which this sequence can be written would be as follows: t1 < t2 < t5 < t4 < t3 < t6.

This expresses, using an inequality, the relative time values used in the transitions.

Fault Trees to Petri Nets

Fault tree gates can be represented by Petri nets such as those shown in Table 1.4 (For a

full list see Liu and Chiou (1997)), hence enabling fault trees to be converted into Petri

1.4. Reliability Techniques 33

Table 1.4: Fault tree symbols and Petri net equivalent

Gate name Fault tree symbol Petri net equivalent

AND gate

P1 P2

P3

T1

OR gate

P1 P2

P3

T2T1

nets. Other aspects of the system can be incorporated into Petri nets, such as maintenance

policies for each component. The dependencies within the system can also be shown by

changing a fault tree to a Petri net.

Table 1.4 gives an example of two of the main gates that are commonly converted from

fault trees to Petri nets, the AND gate and the OR gate. The AND gate requires that

both P1 and P2 have a token to enable the immediate transition labelled T1 so it can fire.

The OR gate requires either place P1 or P2 to have a token to enable transition T1.

Minimal Cut Sets and Path Sets

Minimal cut sets and path sets are usually associated with fault trees, but can be applied

in the same way with Petri nets. Path sets are the opposite of cut sets in that they show

the minimal, but sufficient components in order for the system to be successful. There are

multiple methods by which this can be achieved. Liu and Chiou (1997) show that minimal

cut sets and path sets can be determined by the following procedure:

1. If a place representing a basic event is connected via arcs and transitions to the

place representing the top event, where the only input place to the transitions is

this basic event, then this basic event is a minimal cut set.

2. If a path between a basic event and the top event places includes transitions that

involve further places, then identify these further places.

3. If the places identified in the previous step do not represent basic events, then apply

steps 1 and 2 again to each place to identify the basic events.

34 Chapter 1. Introduction

P1 P2

P4

T2T1

P3

P5

T3

P6

P7

T4

(a) Example Petri net

P1 P2

P4

T5T4

P3

P5

T1

P6

P7

T3T2

(b) Dual Petri net

Figure 1.16: Petri net example and dual of the Petri net

4. Further basic events identified in step 3 form cut sets. Transitions which involve

more than one basic event give rise to cuts sets of multiple basic events. Once a full

list of cut sets is obtained these can be reduced to minimal cut sets by removing

any cut sets which comprise solely of smaller cut sets.

The procedure for obtaining the minimal cut sets and path sets for a fault tree have a

total of eight steps, as opposed to the four given above. This makes Petri nets much more

efficient.

Dual Petri Nets

To find the path sets of a Petri net, the above procedure would be used, but on a dual

Petri net. The dual Petri net switches the transitions with multiple inputs to a single input

and vice versa. The equivalent fault tree is changing AND to OR gates and vice versa. As

an example Figure 1.16b shows a representation of the dual Petri net presented in Figure

1.16a.

Matrix Method

Another way to obtain minimal cut sets and path sets is by use of a matrix method. This

matrix method begins with the place that represents the top event and moves down to the

basic events. Liu and Chiou (1997) describe the procedure:

1.4. Reliability Techniques 35

1. If there are multiple arcs connected to an output place from multiple transitions

then write the input place identifiers in a horizontal list.

2. If a single arc is connected to an output place then write the input place identifiers

in a vertical list.

3. Once all lists are represented as basic events then the matrix is established. If there

is common basic event located between rows or columns, it is the basic event shared

for each row or column. The column vectors of the matrix represent cut sets while

row vectors path sets.

4. Taking the full list of cut sets and path sets these can be reduced to minimal cut

sets and path sets by removing any cut sets or path sets which comprise solely of

smaller cut sets or path sets.

This is an efficient method of identifying the minimal cut sets and the path sets without

needing to change the Petri net to the dual Petri net.

Absorption

Absorption can occur in Petri nets when the firing time is not required, i.e. when there is no

time between input and output. Absorption removes any non-required intermediate steps.

Examples of this can be seen in Figure 1.17a and Figure 1.17b. Figure 1.17a shows that

the input can go directly to the output. As soon as the transitions are enabled they fire the

tokens from the current place to the recipient of the transition. The figure shows that there

is a chain of one place followed by one transition followed by a place and so on. As there is

no delay time associated with the transitions the token would move instantaneously from

the first place to the last. As there are no other places connected to the transitions, it

means that there is only one outcome from such a situation: the token would always go

from P1 to P3, therefore it can be shown as a single place.

Figure 1.17b shows a Petri net with hierarchical transitions which consists of multiple

inputs can be combined to one transition. This Petri net shows that the places P1 and P2

require a token in order to enable the transition that would place a token in P4. Then,

should there be a token in P5, transition 2 would fire to deposit a token into P5. To obtain

a token in P5, the minimal number of tokens in other places that have no transitions to

them is 3. One token would be required in P1, P2 and P3; P4 is an intermediate place and

would not require a token. Therefore P4 can be absorbed.

Marking Transformation

Another way to represent a Petri net is by using marking, as explained in Liu and Chiou

(1997). Marking is a way to represent a Petri net as a vector, M , representing the number

36 Chapter 1. Introduction

T1

P1

P2

P3

T2

P3

(a) Absorption for Petri
nets with input to output
places

P5

P1 P2

P4

T1

P3

T2

P5

P2P3

T2

P1

(b) Absorption for Petri nets showing hierarchical
transitions

Figure 1.17: Petri nets illustrating absorption

of tokens in each place. The vector therefore describes completely the state of the Petri net

at a given time. When transitions in the Petri net fire, this vector is transformed using the

incidence matrix, AT . Rows of AT are associated with places in the Petri net (in the same

order as they appear in M), while columns represent the transitions. Each column of AT

shows the net change to the number of tokens in each place when a given transition fires.

Equation 1.4.70 shows the relationship between the incidence matrix and the next state,

given that it is in the kth state. S represents the firing times, Ti, of the ith transition.

Mk+1 = Mk +ATS (1.4.70)

To combine all the marking transformations to the final marking Mn to the initial

marking, M(0), equation 1.4.70 is rewritten to give equation 1.4.71.

Mn = M0 +AT
X

(1.4.71)

Rearranging the above gives:

AT
X

= ∆M = Mn −M0 (1.4.72)

Where
P

denotes the firing counter. This is a vector with an element for each transition

in the Petri net; transitions which are enabled are denoted by 1. This vector, therefore,

selects which transitions from matrix AT are fired during the transformation of matrix M .

To demonstrate this, the Petri net in Figure 1.16a was used. The incidence matrix for

this Petri net is given in equation 1.4.73. With an initial marking of equation 1.4.74, and a

1.4. Reliability Techniques 37

transition sequence of t1, t3, t4, i.e. the firing counter given in equation 1.4.75, Mn would

be as that given in equation 1.4.76, through application of equation 1.4.71. Different firing

counters will produce different final markings, Mn.

AT =

2666666666666664

T1 T2 T3 T4

P1 −1 0 0 0

P2 0 −1 0 0

P3 0 0 −1 0

P4 1 1 −1 0

P5 0 0 1 −1

P6 0 0 0 −1

P7 0 0 0 1

3777777777777775
(1.4.73)

M(0) =
h

1 1 1 0 0 1 0
iT

(1.4.74)

X
1

=
h

1 0 1 1
iT

(1.4.75)

Mn =
h

0 1 0 0 0 0 1
iT

(1.4.76)

Reachability Graphs

Reachability graphs are used when multiple transitions in a Petri net can fire simultane-

ously. In such situations it is not possible to determine which transition fires first; if two

transitions rely on the same input tokens then only one can fire. Reachability graphs show

the current state of the Petri net and branch out to different possible states when such

situations arise. In Figure 1.18a an example of a simple Petri net is given, and in Figure

1.18b is the equivalent reachability graph.

Figure 1.17a shows a simple Petri net with transition T1 enabled. As seen in Figure

1.17b, the starting point at the top of the graph is the initial markings of the Petri net,

and below this is an arrow to represent the transition firing, leading to the next marking

data. This marking data shows that there are now three transitions enabled of which only

one can fire. This means that three branches are produced to signify the outcomes of each

of the three transitions firing. This process is continued down each of the branches until

there is no more transitions left enabled. The final reachability graph is given in Figure

1.17b.

Although for this example the process reached a finite set of markings, sometimes

this process can be infinite. This can be reduced to a more manageable size by using

the symbol ω, which can be taken as the symbol for infinity. This can also be used for

38 Chapter 1. Introduction

T1P1 P2
T2

P3

P4

P5

T3

T4

(a) Initial Petri net

T1

(1,0,0,0,0)

(0,1,1,1,0)

(0,1,0,0,1)

T4

(0,1,0,2,0)

T3

(0,0,2,0,0)

T3

(0,0,1,1,0)

(0,0,0,0,1)

T4

T2

(0,0,1,1,0)

(0,0,0,2,0) (0,0,0,0,1)

T4T3

(b) Reachability Graph

Figure 1.18: Petri net and the equivalent reachability graph

any large number of tokens. This symbol is located in the marking(s), which create this

infinite process. More information on this and an algorithm that can automate this process

of creating a reachability graph is given by Peterson (1981).

1.5 Summary

This Chapter has introduced the possible reliability methods available that could be used

in the process considered here. From the research, only a few of the methods available

are suitable for a variety of systems. Although Fault Tree Analysis is the most widely

used method, this would be inappropriate for the work presented here as fault trees cannot

handle dependencies. From the research, Markov methods and Petri nets would be the

most suitable. However as Markov models, more so than Petri nets, are susceptible to

state explosion, this would make the work more inefficient. Petri nets are very powerful

and flexible and seem well suited to the application discussed in this thesis. However, before

a method can be chosen the methods presented in this chapter need to be considered for

their usability within the scope of Phased Mission Systems, which is discussed in the next

chapter.

Chapter 2

Phased-Mission Systems

Contents
2.1 Introduction . 39

2.1.1 Types of phased-mission systems . 40

2.1.2 Analytical Modelling Techniques . 41

2.2 Non-Repairable Systems . 41

2.2.1 Phase Fault Trees . 41

2.2.2 Phase Modular Approach . 54

2.2.3 Binary Decision Diagrams for Phased-Mission Systems 57

2.3 Repairable Systems . 62

2.3.1 Markov applications in Phased-Mission Systems 62

2.3.2 System and Phase Petri Nets . 69

2.4 Summary . 71

2.1 Introduction

There are many applications where missions are required, such as in the Aerospace and

Nuclear Industries. Missions consist of phases which can be considered as different tasks

that a system must undertake and accomplish for the mission to be successful. Within

these phases the system can have a different configuration as the success criteria for each

phase can be different. The components within that system can also have different failure

behaviours from phase-to-phase (Xing & Dugan 2002).

A good example of a phased-mission is an aircraft flight. The mission would be to take

passengers from one airport to another. This mission could consist of seven phases; taxiing

to the runway, take-off, climb, descent, landing and taxiing to the terminal. A graphical

representation of such a flight is given in Figure 2.1. Each phase of the mission requires a

different configuration of the aircraft and therefore the probability of system failure must

be calculated for each phase in order to obtain the mission failure probability. A model

therefore is required for each phase.

40 Chapter 2. Phased-Mission Systems

Altitude

TimePHASE 1 PHASE 7PHASE 5PHASE 4PHASE 3PHASE 2 PHASE 6

Taxiing Taxiing

Climb

Take-off

Descent

Cruise

Landing

Figure 2.1: Phased mission of an aircraft flight

2.1.1 Types of phased-mission systems

2.1.1.1 Static and Dynamic Phased-Mission Systems

A system is said to be static if the failure of the mission, in any phase, is dependent on

combinations of the component failure events, i.e. if the structure of the reliability model

in any phase is combinatorial. A system is said to be dynamic if the failure of the mission

in any phase is dependent on the combinations of component failure events and the order

in which input events occur, i.e. if the order in which component failure events occurs

affects the outcome (Xing & Amari 2008).

2.1.1.2 Repairable and non-repairable Phased-Mission Systems

In non-repairable Phased-Mission Systems (PMSs), once a component has failed in a phase,

it has failed for every other succeeding phase. For a repairable PMS there are two things

to consider; the failure characteristics of a component and the maintenance plan in place.

Meshkat (2000) investigated the following:

• Time-driven maintenance (Scheduled maintenance): Maintenance is initiated on

a predetermined schedule.

• Failure-driven maintenance (Unscheduled maintenance): Maintenance is initi-

ated when a component failure occurs.

• Condition-driven failure: Maintenance is initiated when a component fails, but

the system does not. However if the system fails there can be no repair on the system;

this is the difference between failure- and condition-driven maintenance.

2.1.1.3 Coherent and non-coherent Phased-Mission System

A PMS is coherent when each component of a system contributes to the state of said

system. For every component that fails the system state cannot improve, it can only

2.2. Non-Repairable Systems 41

worsen or remain the same (Andrews & Beeson 2003). A non-coherent PMS, however,

can worsen or improve with the functioning or failure of a component, respectively. Non-

coherent PMSs can be represented using non-coherent fault trees which are distinguished

by the use of inverse gates (a NOT gate) as well as the usual logic gates (e.g. AND gate).

2.1.2 Analytical Modelling Techniques

There are multiple ways in which a phased-mission system can be evaluated. There are two

areas into which these fall; analytical modelling and simulation. Simulation is often found

to cost more in terms of computational requirement, but does give a better generality in

system representation (Smotherman & Zemoudeh 1989). Analytical modelling provides a

direct solution, however it can be very difficult to generate analytical models of complex

systems. Analytical models can be broken down into three groups (Xing & Amari 2008):

• State-space orientated models: Examples of state-space approaches are Markov

chains and Petri nets. Each is flexible and can model complex dependencies in system

components. State space models can be used for both dynamic and static phases.

• Combinatorial models: These methods assume that all the components in a

system, in each phase, fail statistically(s)-independently, so should they fail it would

have no bearing on whether another component in the system fails or not. This

s-independence is dealt with across the phases for a given component. Examples

of combinatorial approaches are fault trees (mini-component systems and Boolean

algebraic method) and BDDs. Combinatorial models can only be used when phases

are static, as discussed above in section 2.1.1.1.

• Phase modular solution: This takes advantage of both of the above methods by

addressing their limitations. Combinatorial models are computationally efficient,

but can only be used when the phases are static. State-space models such as

Markov chains have to be used if any phase in a mission is dynamic. A problem

with Markov chains is that state explosion can occur, making the Markov approach

computationally intensive. Therefore the phase modular solution uses both BDD

and Markov chain solution when appropriate.

2.2 Non-Repairable Systems

2.2.1 Phase Fault Trees

2.2.1.1 Quantitative Analysis

A technique for an exact unreliability solution for a phased-mission system is given by

Esary and Ziehms (1975). The method is based around components that, once failed,

42 Chapter 2. Phased-Mission Systems

cannot be repaired or replaced. Also the system can only be either functioning or failed.

The method given reduces a multi-phased system into a single equivalent phase system.

Each phase of a mission can be expressed as either a RBD or a fault tree, as it is assumed

that each phase configuration is coherent. Presented in Burdick et al. (1977) is Esary and

Ziehms technique given in five steps:

1. Mission cut-set cancellation: Any minimal cut set of a phase is removed if it contains

a minimal cut set for a later phase. An example of this is if there is a two phase

system as shown in Figure 2.2a, where the dotted OR gate represents the input into

a phased mission top event. The minimal cut sets for the fault tree are as follows:

• Phase one: {A.C} and {B.C}

• Phase two: {D}, {B.C} and {E}

From these there is a common minimal cut set between the two phases, {B.C}. From
the rule above {B.C} is removed from phase one as it occurs in the second phase.

Therefore phase two remains the same, however phase one can now be represented

as the fault tree in Figure 2.2b.

2. Basic-event transformation: For a j-phase mission, the series logic with basic events

Ck1, · · · , Ckj , which perform statistically independently with the failure probability

replace basic event Ck. Where Ck1 is the basic event k occurring in phase 1. Taking

the example from above, each side of the fault tree in Figure 2.2b can now be

represented as the fault tree in Figure 2.2c. In the first phase, a subscript of one

denotes that the basic event in that phase. In phase two an extra OR gate exists

for each basic event so that one branch represents the basic event in phase one and

another represents the basic event in phase two.

3. The configuration of the phases can now be considered as a new system with sub-

systems operating in series logic and can also be considered, as a single phase mission.

An example of this can be seen in Figure 2.2d.

4. As with any other fault tree, the minimal cut sets can now be found for the new

logic model. For the example considered, all cut sets are minimal.

5. Normal quantitative analysis techniques are used to find the unreliability for the

system.

Esary and Ziehms (1975) also presented new unreliability equations for phased mission

systems (reviewed in Burdick et al. (1977)). These particular approximations are designed

for non-repairable systems and can be used for larger systems as they reduce the cost of

calculating the exact unreliability.

2.2. Non-Repairable Systems 43

B

Phase 1

A E

Phase 2

C

Mission
Failure

B

D

C

(a) Initial two-phase mission fault tree

Phase 1

A E

Phase 2

C

Mission
Failure

B

D

C

(b) Mission cut-set cancellation applied to the
fault tree

Phase 1

A1 E2

Phase 2

C1

Mission
Failure

B2

D2

C2

(c) Basic-event transformation applied to the
fault tree

Phase 1

A1 E1

Phase 2

C1

Mission
Failure

B1

D1

C1

E2D2

B2 C2

(d) Mission fault tree considered with sub-systems

Figure 2.2: Process for a two phase mission to find the exact solution

44 Chapter 2. Phased-Mission Systems

1. IN-EX method: The IN-EX method first identifies the minimal cut sets for each

phase of a mission. These are then used to calculate the unreliability of phase i,

Qi, by using the inclusion-exclusion expansion given earlier in equation 1.4.3. Then

either equation 2.2.1 or equation 2.2.2 can be used to calculate the reliability of a

mission with m phases or the unreliability of the mission, respectively.

RIN−EX =
mY
i=1

Ri (2.2.1)

QIN−EX ≤
mX
i=1

Qi (2.2.2)

2. IN-EX-CC method: This is similar to the IN-EX method, the difference is with

the mission cut set cancellation. The cancellation, in step 1 from above, is done

before Qj is calculated for each phase. For this bound the value of Qj will be

generally less than the Qj found in the IN-EX method (fewer cut sets).

3. MCB method: This method requires four steps; the first is to obtain the minimal

cut sets for each phase, using the appropriate model. The second step is to calculate

qij for a minimal cut set i in phase j using equation 2.2.3

qij =

kijY
l=1

Pr{Cl} (2.2.3)

Where Cl, l = 1, · · · , kij are basic events in cut set i in phase j.

The third step is to estimate Rj using the minimal cut bound as given in equation

2.2.4.

Rj =

njY
i=1

rij (2.2.4)

The fourth and final step is to calculate ¯RMCB, which is the same as that given in

equation 2.2.1.

4. MCB-CC method: This method has the same steps as that given for the MCB

method, but with an additional step between the first and the second step that

carries out the mission cut-set cancellation as discussed earlier.

The relationship between these methods can be seen in equation 2.2.5.

2.2. Non-Repairable Systems 45

Q ≤ QIN−EX−CC ≤

8<: QMCB−CC

QIN−EX

9=; ≤ QMCB (2.2.5)

Dazhi and Xiaozhong (1989) discuss a new set of Boolean algebra specifically for phased

mission systems, taking into account initial conditions at the start of the phase. This

method uses generalised intersection and union concepts in order to do this. Assuming

that the system contains non-repairable events, that the model is coherent, the basic events

are statistically independent in failure and that the transition time between two phases is

instantaneous, equation 2.2.6. If 1 ≤ k ≤ j, where j and k are phase numbers:

A(j) = A1 ∪A2 ∪ · · · ∪Aj

=
k[
i=1

Ai ∪
j[

i=k+1

Ai

= A(k) ∪
j[

i=k+1

Ai (2.2.6)

Where A(j) denotes that the basic event A exists in phase j, given that it occurred

between the first and j phase inclusive.

A(k) ∩A(j) = A(k) ∩

�
A(k) ∪

j[
i=k+1

Ai

�

= A(k) ∪
j[

i=k+1

�
A(k)Ai

�
= A(k) (2.2.7)

A(k) ∪A(j) = A(k) ∪

�
A(k) ∪

j[
i=k+1

Ai

�

= A(k) ∪
j[

i=k+1

Ai

= A(j) (2.2.8)

To calculate mission unreliability the following is true: it can be said that if there is

system failure in phase n, then the system has failed in phase n or in any of the previous

n− 1 phases. This can be demonstrated mathematically using equation 2.2.9.

46 Chapter 2. Phased-Mission Systems

X(n) = X1 ∪X2 ∪X3 ∪ · · · ∪Xn (2.2.9)

Where X(n) represents system failure in phase n, Xi represents the first failure in phase

i.

From this the mission unreliability is found using equation 2.2.10.

QMISS = P
�
X(n)

�
= P

n[
i=1

Xi

!

= P

2
4 n[
i=1

�
mi[
j=1

C(i)j

�3
5 (2.2.10)

Where,

Xi =
mi[
j=1

C(i)j (2.2.11)

Where, C(i)j represents a minimal cut set for Xi, mi represents the number of minimal

cut sets in phase i, n represents the number of phases.

La Band (2005) describes an analytical technique for the efficient representation and

solution of phased-mission systems. Methods for representing the phase unreliability and

the mission unreliability were considered for non-repairable systems.

The method introduced was to use fault trees to represent a failure event and in the

case of phased-mission systems, multiple fault trees were drawn to represent each phase

failure in a single mission. These fault trees show what components, or combination of

components could cause that phase failure, as this can be different for each phase of the

mission. La Band takes into account that a component can fail in any phase and although

it may not cause a phase failure in that phase, it could cause a later phase to fail. A new

way of using fault trees to show this was developed.

Each component in the fault tree is shown with a subscript of the phase that it resides

in, e.g. in the second phase a subscript of 1 or 2 would be seen to signify that the component

has failed in either phase 1 or phase 2, these would be connected through an OR gate. As

this is a non-repairable system the OR gate signifies that once that component has failed

in one phase it is failed for the rest of the mission.

To show the mission unavailability, the above representation was used for each of the i

phases of the mission. For every phase, any and all previous phases are taken into account

as the mission would fail if any of the phases failed. To take into account the success of the

previous phases, the phase failure fault trees are used with a NOT gate to show that the

2.2. Non-Repairable Systems 47

Failure during
Phase i

Failure
condition met
during phase i

Success in
previous phases

Phase 1 failure Phase i-1
failure

Phase i fault tree with
each basic event replaced
with an OR combination
of component failure in

any previous phase.

Figure 2.3: Generalised phase fault tree (La Band 2005)

previous phases did not fail. Each of these successful phases and the current phase failure

are all connected to an AND gate. A generalised phase failure fault tree is given in Figure

2.3.

2.2.1.2 Qualitative Analysis

To find the failure modes of a system, defined earlier, the same process as for single phase

fault trees is used. The NOT logic gate represents the non-coherence of the tree due to

the requirement of noting the success of the previous phases. An example of a three-phase

mission is given in Figure 2.4.

B

Failure in
Phase 1

A DC

Failure in
Phase 2

DB

Failure in
Phase 3

Figure 2.4: Three phased-mission system

The phase failure fault tree for phase 1 remains unchanged for the analysis, as there

are no previous phases to account success for. The phase 2 failure fault tree incorporates

the success of the previous phase, and so the phase fault tree is represented by Figure

2.5. Finally phase 3 would incorporate the previous two phase successes to find the failure

48 Chapter 2. Phased-Mission Systems

probability in phase 3. This is represented by Figure 2.6.

B1

Failure in
Phase 1

A1 D2

Failure in
Phase 2

C1

Failure in
Phase 2

C2 D1

Figure 2.5: Phase fault tree construction of phase 2

Modularisation a useful technique to simplify the phase failure fault trees to decrease

computational time. The modularisation technique by Reay and Andrews (2002), referred

to as FAUNET reduction, is employed here. There are three mechanisms of modularisation

and these are described as follows:

• Contraction: Gates of the same type connected in subsequent fashion are contracted

to produce a single gate, so there is an alternating sequence of OR and AND gates

within the tree structure.

• Factorisation: Events that occur in pairs under the same gate type are recognised

and combined to form a single complex event. These complex events are given a

numerical label starting from 2000 with increments of 1. The NOT logic gate requires

De Morgans’ laws to be followed in that basic events occurring together in one gate

type, e.g. AND (OR), must have complements that occur in the opposite gate type,

e.g. OR (AND).

• Extraction: When there is a common basic event under a structure, like those shown

in Figure 2.7, this is isolated and the other basic events brought together under the

same gate.

2.2. Non-Repairable Systems 49

B1

Failure in
Phase 1

A1

Failure in
Phase 3

D2

Failure in
Phase 2

C1 C2 D1

Failure in
Phase 3

D2D1 D3B1 B3B2

Figure 2.6: Phase fault tree construction of phase 3

B C

A

CA B A

(a)

B C

A

CA B A

(b)

Figure 2.7: Extraction method for fault trees

These steps are designed to be repeated in order until no further changes to the structure

of the fault tree can be made. Such modules can be taken from the structure of the tree to

create a sub-tree. These become completely independent to the rest of the tree and analysed

separately to put the results into the higher-level fault tree (Reay & Andrews 2002).

For the example considered in Figure 2.4 the extraction method cannot be used. The

reason is that there are no common basic events in the same branch of the tree that

considers the failure of the individual phases. In Figure 2.6 there are no common basic

events in the each of the three phases’ failure branches. Although basic event D exists in

both phase 2 and phase 3 failure branches, these cannot be merged as they are individually

linked to each phase. In phase 2 failure, only phase 1 and phase 2 failure of basic event D is

50 Chapter 2. Phased-Mission Systems

considered, whereas in phase 3 it is considered in all three phases. Also all previous phases

are considered in a working condition, and the current phase in a failed state. Functioning

and failed basic events cannot be merged.

2.2.1.3 Prime Implicants

Prime implicants are used to show the combination of basic events that lead to phase or

mission failure. The notation used for failure and success of component, A, in phase i is

given as:

1. Ai – Failure of component A in phase i

2. Āi – Success of component A in phase i

To show the failure, or success, of a component between the beginning of phase i and

the end of phase j, component A would be expressed as:

1. Aij – Failure of component A between phase i and phase j

2. Āij – Success of component A from phase i through to the end of phase j

New algebra laws developed by La Band (2005) are shown in Table 2.1.

Using the three phase mission example given earlier in Figure 2.4, and the subsequent

individual phase failure fault trees in Figure 2.5 and Figure 2.6, the prime implicants for

the three phases can be found as follows, where Ti is the top event for phase i:

Phase 1 Failure:

T1 = A1 ·B1 (2.2.12)

Prime implicants = {A1 ·B1}

Phase 2 Failure:

T2 = (Ā1 + B̄1) · ((C1 + C2) · (D1 +D2))

= Ā1 · C12 ·D12 + B̄1 · C12 ·D12 (2.2.13)

Prime implicants = {Ā1 · C12 ·D12}, {B̄1 · C12 ·D12}

Phase 3 Failure:

2.2. Non-Repairable Systems 51

Table 2.1: Algebraic law for phased-mission systems for i < j

Law Number Algebraic Law Description

1 Ai ·Ai = Ai
Component A fails in phase i AND phase i. This is a
repeated event.

2 Ai ·Aj = 0
Component A fails in phase i AND phase j. As these
are mutually exclusive events they cannot both occur.

3 Ai ·Aij = Ai

Component A fails in phase i AND between phase
i and phase j. As mutually exclusive events cannot
occur together, i.e. component A failure in phase i
AND any other phase between phase i+ 1 and phase
j, the common event, failure of component A in phase
i, is the result.

4 Āi ·Ai = 0
Component A is functioning in phase i AND fails in
phase i. The event and its complement cannot occur
at the same time.

5 Āi ·Aj = Aj

Component A is functioning in phase i AND fails
in phase j. Failure in phase j assumes that the
component is successful in any previous phase, in this
case phase i. Therefore the statement of component
A is working in phase i is not required.

6 Āi ·Aij = Ai+1,j

Component A works in phase i AND fails between
phase i and phase j. The success and the failure of
A in phase i cannot be combined as given by law 4,
therefore the combination is the failure of component
A between phase i+ 1 and phase j.

7 Āi · Āi+1 · · · Āj = Āij
Component A works from phase i up to and inclusive
of phase j.

8 Ai ·Ai+1 · · ·Aj = Aij
Component A has failed from phase i up to and
inclusive of phase j.

52 Chapter 2. Phased-Mission Systems

T3 = (Ā1 + B̄1) · (C̄1 · C̄2 + D̄1 · D̄2) · (B1 +B2 +B3) · (D1 +D2 +D3)

= Ā1 · C̄12 ·B1 ·D13 + Ā1 · C̄12 ·B23 ·D12 +B2 ·D3 +B3 ·D3 (2.2.14)

Prime implicants = {Ā1 · C̄12 ·B1 ·D13}, {Ā1 · C̄12 ·B23 ·D12}, {B2 ·D3}, {B3 ·D3}

With each phase failure prime implicants established, the probability of phase and

mission failure can now be quantified. The probability density function is given in equation

2.2.15 by the negative exponential distribution for a component, A, with a constant failure

rate in a non-repairable single phase mission.

f(t) = λAe
−λAt (2.2.15)

It is assumed that component A has a constant failure rate for all phases of a mission.

This is regardless of whether it is required for a certain phase or not. To model the

unreliability of component A, qA(t), over a duration [0, t) a cumulative probability function

FA(t) is used, as seen in equation 2.2.16.

qA(t) = FA(t)

=
Z t

0
fA(t)dt

= [−e−λAt]t0
= 1− e−λAt (2.2.16)

The unreliability of the component over a phase i is derived in a similar way as equation

2.2.16, as seen in equation 2.2.17. This equation calculates the probability density function

for the time of phase i’s, i.e. phase i duration is between t = ti−1 and t = ti.

qAi(t) =
Z ti

ti−1

fA(t)dt

= [−e−λAt]titi−1

= e−λAti−1 − e−λAti (2.2.17)

For each phase i, the unreliability, Qi, is found using the inclusion-exclusion expansion

for the existence of prime implicants, Kli , in phase i.

2.2. Non-Repairable Systems 53

Qi =

NpiiX
l=1

P (Kli)−
NpiiX
l=2

l−1X
n=1

P (Kli∩Kni) · · · · · ·+(−1)Npii−1P (K1i∩K2i · · ·∩KNpii
) (2.2.18)

Where Npii is the number of prime implicant sets in phase i.

Using the three-phase mission example in Figures 2.4-2.6, the inclusion-exclusion

expansion can be applied to each phase, yielding equations 2.2.19, 2.2.20 and 2.2.21 (phase

1, 2 and 3 respectively).

Q1 = qA1qB1 (2.2.19)

Q2 = (1− qA1)qC12qD12 + (1− qB1)qC12qD12 (2.2.20)

Q3 = (1− qA1)(1− qC12)qB1qD13 + (1− qA1)(1− qC12)qB23qD12 + qB2qD3 + qB3qD3 (2.2.21)

To calculate the mission unreliability, QMISS , equation 2.2.22 can be used as each

phase failure is mutually exclusive and therefore can be expressed as the sum of all the

individual phase failures.

QMISS =
mX
i=1

Qi (2.2.22)

Where, m is the total number of phases.

2.2.1.4 Importance Measures for Phased-Mission Systems

Andrews (2008) gives a detailed description of the importance measures of component

contribution to the failure of phased-missions. The first to consider is the in-phase

criticality function, which is an extension on the Birnbaum’s measure of importance, Gi.

Equation 2.2.23 gives this equivalent measure where Gij is the probability that the system

resides in a critical condition such that if component i fails during phase j, the system

would fail. Qi is the value that is calculated from the minimal cut sets using the method

discussed earlier by La Band. By using that method of obtaining the failure probability

of each phase, the success of previous phases is accounted for, i.e. successful transition to

the current phase.

Gij =
∂Qj
∂qij

(2.2.23)

54 Chapter 2. Phased-Mission Systems

There are two criticality importance measures that need to be considered for phased-

mission systems; Phase Importance and Transition Importance. These can both lead to

phase failure and therefore mission failure. Each is given in detail below:

• Phase Importance: Within any phase, a system can be in a critical condition

for component i in phase j, and phase failure can occur due to component i failing.

Equation 2.2.24 is the fraction of phase failures that occur due to component i failing.

IPij =
Gijqij
Qj

(2.2.24)

• Transition Importance: If the failure conditions of phase j are met before entering

this phase, given that all previous phases are successful, phase failure will occur on

transition to phase j. Equation 2.2.25 is the proportion of the total phase failure

probability that component i contributes to cause the transition failure into phase j.

ITij =

�
j−1X
k=1

GTij,kqik

�

Qj
(2.2.25)

The total importance contribution of component i failure in phase j is found by

summing the contribution from transition importance and the phase importance as shown

in equation 2.2.26.

Iij = IPij + ITij (2.2.26)

The total contribution by component i to the mission failure can be calculated using

equation 2.2.27, which is the proportion of mission failures that triggers component i to

fail, given that the system was in a critical state for component i.

Ii =

X
allj

8<:
�
∂Qj
∂qij

�
qij +

�
j−1X
k=1

∂QTj
∂qik

!
qik

�9=;
QMISS

(2.2.27)

2.2.2 Phase Modular Approach

The initial properties of modules and their use in fault trees are described in Chatterjee

(1975) and Birnbaum and Esary (1965). Chatterjee describes two properties of modules

in fault trees as the following:

2.2. Non-Repairable Systems 55

C

EA B B

Mission
Failure

B C

Phase Fault
Tree 1

Phase Fault
Tree 2

Phase Fault
Tree 3

B C
M1

M2 M3

Figure 2.8: Modularised fault tree

1. All branches of the fault tree are independent.

2. The logic function associated with each gate, is one of the following:

• A prime. In this representation a prime function is any gate other than those

with a AND or OR function.

• An AND with no other inputs immediately below it that are also AND gates.

• An OR with no other inputs immediately below it that are also OR gates.

Birnbaum and Esary give a definition of a module in coherent systems. A module of

a system is a subset of basic components of the system which are then organised in to

their own substructure. When organised in to these substructures they can be treated as a

component of the system. Components only affect the system through the performance of

their substructure. These lead to Locks (1981) expanding this idea for non-coherent fault

trees and showed how it could be used to find the cut sets.

Meshkat et al. (2003) discuss a method for modularising fault trees to represent phased-

mission systems using combinatorial and Markov-chain based methods. Within each phase

there are interdependencies between the components, which are brought together. The

phase modular approach identifies modules within the fault trees of the phased mission

that remain independent throughout. An example of this can be seen in Figure 2.8 where

the modules of the tree have been identified. These modules do not exist anywhere else in

the tree, therefore are independent.

The reliability of each of these modules is found and then these modules are combined

in a system level BDD. This is used to find the system reliability measures. The process

56 Chapter 2. Phased-Mission Systems

involves finding independent modules within a fault tree and then solving each, depending

on whether the phase is static or dynamic and then integrating the two methods to obtain

the reliability of the system. This process is referred to as modularisation.

One type of combinatorial method for a phase modular approach is the Binary Decision

Diagram (BDD) approach, which is computationally efficient. However to use this, every

phase of the mission would be required to be a static phase. For any dynamic phases the

Markov chain models can take care of any dependencies between the components and the

order in which they can fail. Both methods discussed here do have a common limitation

in that they assume statistical independence among the failures of the components.

The phase modular approach starts by using fault trees to represent each of the phases

of the mission. Sub-trees are created to identify the independent components in the

phase. Each of these sub-tree is identified as either static or dynamic. The system-level

independent modules, are those that overlap in at least one component. For example one

module could contain {A,B,D,E}, another {A,B,D} and another {D,E}. The system-

level independent module would be {A,B,D,E}. The modules would then be stated as

either static or dynamic. Static modules would include all AND, OR and/or K-out-of-

n gates. Dynamic modules would include at least one of the following; priority AND

(PAND), cold spare (CSP), warm spare (WSP) or hot spare (HSP) gates. Once this has

been established each of the modules is identified as being bottom-level or upper-level.

Bottom-level means that the module has no child modules and the top-level means that

the module does have child modules. An example of a bottom-level module can be seen

in Figure 2.8 is module M1, and an example of a top level module is M3 as it has child

modules {A,B} and {B,E} which are each linked to a gate.

Once all bottom-level modules have been identified, the BDD approach is used to

find the joint phase module probabilities if the modules are static, and if the modules

have dynamic properties then the Markov approach is implemented. As the reliability

measures were found, each of the modules were treated as a basic event of a static fault

tree. Through the reliability measures found earlier, the system reliability equation can be

found by solving the BDD from that static fault tree.

An algorithm to detect modules within fault trees is described by Dutuit and Rauzy

(1996). The algorithm is based on Tarjan’s (1972) algorithm, which describes a method for

depth-first search and linear graphs. Dutuit and Rauzy describe an algorithm that finds

strongly related components of a graph. The algorithm presented was designed for large

fault trees with several hundred gates and events.

Another phase modular approach from Ou and Dugan (2004) is for dynamic multi-phase

systems. Two concepts were introduced; the first is the phase module and the second is

module joint probability. A module joint probability is defined by Ou and Dugan as ‘the

probability of a module with the specified statuses, either operational or failed, in different

2.2. Non-Repairable Systems 57

Table 2.2: Phase algebra used by Zang et al. (1999) (i < j)

Algebraic Law

Āi · Āj → Āj
Ai ·Aj → Ai
Ai · Āj → 0
Ai +Aj → Aj
Āi + Āj → Āi
Āi +Aj → 1

phases’. For example the module joint probability of P{M11M12}, where M1j is module

one in phase j, this is the probability that module M1 is operational in phase 1 and failed

in phase 2. From this method the reliability of the multi-phase system, i.e. that it is

operational throughout the mission, can be calculated by doing a special joint probability

of all the phases in the mission. There are two ways in which this is found; the first is based

on basic events only, i.e. the module has no child sub-modules. The second depends on

one or more Module Basic Event (MBE), i.e. the module is not at the bottom-level of the

system, and has child sub-modules. The only disadvantage in using the joint probability

method is that it can increase the computational time, and decrease efficiency.

2.2.3 Binary Decision Diagrams for Phased-Mission Systems

Zang et al. (1999) designed an algorithm that would use BDDs to analyse phased-mission

systems. Phase algebra is used to cover the dependencies across the phases, with a new

operation for a BDD to incorporate this phase algebra. The phase algebra used for this

technique can be seen in Table 2.2.

The failure function of a component in a specific phase is given by equation 2.2.28.

This takes care of the statistical-independencies across the phases. Equation 2.2.28 is the

failure function for component CA in phase j, with the time period, 0 ≤ t ≤ Tj .

FA,j(t) =

2
41−

j−1Y
i=1

(1− pA,i(Ti))

3
5+

2
4j−1Y
i=1

(1− pA,i(Ti))

3
5 . pA,j(t) (2.2.28)

Where pA,i(ti) is the failure function of cAi . This has been defined below:

pA,i(ti) =

8<: Pr{A(t) = 0} i = 1

Pr{A(t+ Ti−1) = 0|A(Ti−1 = 1))} 1 < i ≤ j; t ≤ Ti

Where, A(t) is the state indicator variable for CA and Ti is the duration of phase i.

The first term in equation 2.2.28 represents the probability that a component has failed

in the previous phase (1, 2, ..., j−1) and the second term represents the lifetime probability

distribution of the component in phase j.

58 Chapter 2. Phased-Mission Systems

The BDD algorithm uses the phase algebra stated in Table 2.2 to create a new BDD

operation, Phased-Dependent Operation (PDO). PDOs come in two forms; forward and

backward PDO. This is due to the dependence of BDD structures on ordering.

• Forward PDO: The order of the variables is the same as the phase order,

A1, A2, . . . , An

• Backward PDO: The order of the variables is in reverse to the phase order,

An, An−1, . . . , A1

Where Ai is the state indicator variable of component A in phase i.

Using the ite structure technique, Ei and Ej , representing the failure combinations for

phase i and phase j respectively, can be represented as follows:

Ei = ite(Ai, G1, G2) (2.2.29)

Ej = ite(Aj , H1, H2) (2.2.30)

Where H1, H2, G1 and G2 are the ite structure off the branches.

For a forward PDO,

ite(Ai, G1, G2)⊕ ite(Aj , H1, H2) = ite(Ai, G1 ⊕H1, G2 ⊕ Ej) (2.2.31)

If A has failed in phase i then A must be in a failed state in phase j.

For a backward PDO,

ite(Ai, G1, G2)⊕ ite(Aj , H1, H2) = ite(Aj , Ei ⊕H1, G2 ⊕H2) (2.2.32)

If A is working in phase j then it must have been working in phase i.

The ordering strategy for ordering variables is based on a heuristic. Using this

information the components can be ordered. The heuristic is where each basic event of

the fault tree is given the value of weight 1, and therefore the weights of the gates can be

found by adding the weights of all inputs. When the whole tree has been assigned weights,

a depth-first traversal of the tree is made. At each level the sons of a gate are chosen

by order of increasing weight. During this process of traversal, as soon as variables are

encountered they are put in an ordered list.

Once ordered, each component indicator variable was then replaced with a set of

variables representing the component in each phase by using one of the above two PDOs

2.2. Non-Repairable Systems 59

(Forward or Backward), where each has its own ordering of the variables that belong with

the same component.

The process of the BDD algorithm using backward PDO can be seen below:

1. The failure function for each variable is calculated using equation 2.2.28.

2. The components and their corresponding variables are ordered using the heuristic

described earlier.

3. For each phase a BDD is generated using ordinary logical operations, as seen in

§1.4.1.3.

4. Using the phase algebra stated in Table 2.2 and the corresponding backward PDO

the final BDD can be found by combining these.

5. The unreliability of the PMS is calculated from the final BDD. This is accomplished

using an evaluation algorithm.

The results of the algorithm found that the backward PDO created a smaller BDD. The

reason for generating a smaller BDD was that the backward PDO provides the advantage

of cancelling common components automatically.

Xing and Dugan (2004) commented on the algorithm by Zang et al. (1999), and

provided areas of improvement to the algorithm. Two new rules were suggested by Xing and

Dugan to overcome an unstated restriction on the variable ordering. The PDO presented by

Zang et al. (1999) was used to combine single-phase BDDs to obtain the PMS BDD. When

the same component root node occurs in different phases, the PDO would be applied to

the combination rather than the usual BDD operation which would address the statistical-

dependency that exists between the variables of the same component in different phases

when combining them. The two rules state;

• Rule 1: Orderings adopted in the generation of each phase BDD are consistent or

the same for all the phases.

• Rule 2: Orderings of variables that belong to the same component, but to different

phases, stay together. This is achieved by replacing each component indicator

variable with a set of variables which represent this component in each phase after

the ordering of components is completed using the heuristic stated earlier.

If the rules are not followed correctly would lead to inaccurate single-phase BDDs that

are used to generate the final PMS BDD.

La Band and Andrews (2004) discuss a method of using BDDs to represent phase fault

trees. In Section 2.2.1 details of using just fault trees were given. This is extended to

60 Chapter 2. Phased-Mission Systems

convert the fault trees into BDDs in order to increase the efficiency of the mathematical

manipulation. Although BDDs are very difficult to generate directly from a system

description, fault trees are not; but when a system is large it is more efficient to convert it.

Each phase of the mission is represented by a phase fault tree and then converted into

a BDD. Each component occurs in the BDD corresponding to the phase being evaluated.

These BDDs are evaluated in the usual way, by finding the paths to the ‘1’ terminal nodes.

To account for the phase dependencies, the laws given in Table 2.1 are used. This is a

simple and effective method of evaluating a phased-mission system. The advantage of using

BDDs over the fault tree method come when completing the mathematical analysis. It is

more advantageous to convert fault trees into BDD form, particularly for larger systems

as they can produce large and complex fault trees. This is also true for non-coherent fault

trees such as phase failure fault trees.

Dunnett and Andrews (2006) discuss a method that uses BDDs for non-repairable

phased-mission systems. As before, the phase fault trees are converted into their equivalent

BDD form which is expanded to include all components that appear in subsequent phases.

This method uses these BDDs to create the mission BDD. To minimise the size of the

mission BDD the following rules are used:

• Rule 1: Ai ·Aj = 0 Non-repairable component A cannot fail in phase i and j.

• Rule 2: Ai · Āj = 0 for i < j, Component A cannot be repaired once failed.

• Rule 3: If C1 is a minimal cut set for phase j and that cut set occurs prior to

entering phase j, then the system will fail when it enters phase j.

These rules are applied to produce a reduced mission BDD. The phase and mission

failure probability can be calculated by first identifying the paths that lead to a phase

failure. Using phase algebra these paths can be minimised and evaluated. The phase failure

probability is found by summing the probabilities of all the paths. A general algorithm for

the construction of a mission BDD is given below:

1. Using the constructs for AND and OR gates to produce a BDD for each phase of the

mission from the phase fault trees. These are expanded to incorporate all possible

states of components required in later stages.

2. Considering the mission failure as an OR combination of the phase failures, the

mission BDD is constructed. Terminal mission BDD nodes represent the phase in

which the mission fails or succeeds. As there are more than two possible outcomes,

this BDD differs from conventional BDDs.

3. Each phase failure BDD is incorporated one at a time into the mission BDD to yield

a structure that is defined by the performance of each component in each phase.

2.2. Non-Repairable Systems 61

4. The mission BDD is minimised by removing paths which represent impossible

component conditions.

The general algorithm for mission BDD quantification is given below:

1. Failure modes for each phase of the mission are obtained by considering the

component conditions represented by each path of the BDD leading to the specified

phase failure.

2. Failure modes are simplified by using the phase algebra.

3. Component phase failure probabilities are evaluated.

4. Phase failure likelihoods are calculated using the disjoint phase failure modes and

the component failure probabilities.

5. Phase failure probabilities can be combined with the consequences of phase failure

in order to perform a mission risk analysis, or summed to find the mission failure

probability.

Prescott et al. (2009) discuss a method where BDDs can be used for phased-mission

planning. This work was based around phased-mission planning of autonomous systems,

which require quick analysis in order to enhance the capabilities of the autonomous system

decision-making. There are four stages to the methodology. The first is the phase failure

logic BDD construction denoted Fi. The phase failure for every possible phase during a

mission is represented by fault trees, which are then converted to BDDs. The BDDs are

independently structured to allow for an ordering scheme to be chosen, which will minimise

the size of the BDD. Once constructed the BDDs can be saved in a library for later use.

The second stage is the mission definition. The profile of the mission, the order of the

tasks and time taken for each phase are decided in this step. The appropriate BDDs are

then chosen from the library. These BDDs represent Fi which would be used to make up

the mission failure of every phase, denoted, Phi. In the third step of this technique, the

quantitative analysis begins. For the construction of the BDDs that represent Phi, a simple

connection process is used. This process does not require variable ordering and allows

efficient connection of the Fi BDDs. These have their own variable ordering. This helps to

minimise the size of the BDD. This process uses the success of the mission, which switches

the terminal nodes 0 and 1 of the BDD. This gives the dual BDD representing the success

of a phase. When the Phi BDDs are built, the AND connection of two BDDs is achieved

by connecting all terminal 1 nodes of one BDD to the root node of the other BDD to be

connected. As different BDDs might have identical components usually these would have

to follow a specific ordering scheme which would cover both BDDs. This method, however,

62 Chapter 2. Phased-Mission Systems

A

C

B

(a) Phase 1 system config-
uration

B

C

A

(b) Phase 2 system configuration

B CA

(c) Phase 3 system configuration

Figure 2.9: System configuration for a three phase mission

does not have to as when the variables are connected they are treated independently, with

the times associated with the variables are used to take care of the dependencies between

them during quantification. By using this method the time to construct a mission phase

failure BDD is reduced. The fourth, and final step entails the quantification of the Phi
BDDs. The failure probabilities are calculated and then processed for their viability.

2.3 Repairable Systems

2.3.1 Markov applications in Phased-Mission Systems

For repairable systems the assumption of independence is no longer valid, in this case the

Markov approach is valid. There has been some work in using various Markov models

to represent phased-mission systems. Clarotti et al (1980) discusses a method that uses

the Markov approach to represent a repairable system undergoing a phased mission. This

method takes in a reliability model, such as a reliability block diagram and phase state

description. To demonstrate the method presented, an example system will be used. In

Figure 2.9, the RBDs for each phase are given, and in Table 2.3 the phase state description

is given. This table consists of all possible states the system can exist in, listing each

component as either in a functioning state (0) or failed state (1). The phase time periods

(start time, end time) are as follows:

• Phase 1: (0, t1)

• Phase 2: (t1, t2)

• Phase 3: (t2, t3)

Starting with phase 1, a probability vector, P (0), is used to state what the probability

is of the system existing in each of the eight states at time 0. It is assumed at the beginning

2.3. Repairable Systems 63

Table 2.3: States of component combinations for the example system

State A B C

S1 0 0 0
S2 1 0 0
S3 0 1 0
S4 1 1 0
S5 0 0 1
S6 1 0 1
S7 0 1 1
S8 1 1 1

of the mission that all components are functioning, therefore the probability of the system

existing in state 1 at time 0 is 1, as shown in equation 2.3.1 .

P (0) =
h

1 0 0 0 0 0 0 0
iT

(2.3.1)

From the system configuration shown in Figure 2.9a, either A or B or C must be

functioning for phase 1 to be successful; therefore the system cannot exist in state S8. The

progression through phase 1 can be represented in matrix form as seen in equation 2.3.2,

which comes from the matrix equation 1.4.42.

2666666666666666664

ṗ1(t)

ṗ2(t)

ṗ3(t)

ṗ4(t)

ṗ5(t)

ṗ6(t)

ṗ7(t)

ṗ8(t)

3777777777777777775

=

2666666666666666664

−
P

1 νA νB 0 νC 0 0 0

λA −
P

2 0 νB 0 νC 0 0

λB 0 −
P

3 νA 0 0 νC 0

0 λB λA −
P

4 0 0 0 −
λC 0 0 0 −

P
5 νA νB 0

0 λC 0 0 λA −
P

6 0 −
0 0 λC 0 λB 0 −

P
7 −

0 0 0 λC 0 λB λA −

3777777777777777775

2666666666666666664

p1(t)

p2(t)

p3(t)

p4(t)

p5(t)

p6(t)

p7(t)

p8(t)

3777777777777777775
(2.3.2)

Where,
P
i is the sum of the ith column, 0 represents impossible state transitions and

‘−’ represents absorbing states.

To move from phase 1 to phase 2 at time t1, the system must exist in states that allow

success for both phase 1 and phase 2. To be successful in phase 2, A must be functioning

with either B or C functioning. Therefore, the system can exist in S1, S3 or S5. The

probability that the system will exist in one of these states at time = t1 (moving from

phase 1 to phase 2) is the sum of the probability of being in each state as shown by

equation 2.3.3.

R(t1) = PS1(t1) + PS3(t1) + PS5(t1) (2.3.3)

64 Chapter 2. Phased-Mission Systems

Where R(t1) denotes the reliability of the system at time t1.

For phase 2 (t1, t2), the system must start this phase in either S1, S3 or S5 as discussed

above. At this point all other states are said to be absorbing, as entering any of the other

states will cause mission failure. Therefore the initial probability vector is given as follows:

P (t1) =
h
PS1(t1) 0 PS3(t1) 0 PS5(t1) 0 0 0

iT
(2.3.4)

The matrix equations for phase 2 are given in equation 2.3.5.

2666666666666666664

ṗ1(t)

ṗ2(t)

ṗ3(t)

ṗ4(t)

ṗ5(t)

ṗ6(t)

ṗ7(t)

ṗ8(t)

3777777777777777775

=

2666666666666666664

−
P

1 − νB 0 νC 0 0 0

λA −
P

2 0 − 0 − 0 0

λB 0 −
P

3 − 0 0 − 0

0 λB λA −
P

4 0 0 0 −
λC 0 0 0 −

P
5 − − 0

0 λC 0 0 λA −
P

6 0 −
0 0 λC 0 λB 0 −

P
7 −

0 0 0 λC 0 λB λA −

3777777777777777775

2666666666666666664

p1(t)

p2(t)

p3(t)

p4(t)

p5(t)

p6(t)

p7(t)

p8(t)

3777777777777777775
(2.3.5)

For phase 2 to be successful the system must exist in a state that is successful for both

phase 2 and 3. For success in phase 3 as shown in Figure 2.9c A, B and C must all be

working for success in phase 3. Therefore the system must exist in state, S1 at time t2.

The probability that phase 2 is successful is therefore given as equation 2.3.6.

R(t2) = PS1(t2) (2.3.6)

For the third and final phase of the mission, the system must be in state S1 at time

t3 in order for the phase to be successful. The probability vector at time t2 is given in

equation 2.3.7.

P (t2) =
h
PS1(t2) 0 0 0 0 0 0 0

iT
(2.3.7)

The matrix equation for phase 3 is given in equation 2.3.8.

2.3. Repairable Systems 65

2666666666666666664

ṗ1(t)

ṗ2(t)

ṗ3(t)

ṗ4(t)

ṗ5(t)

ṗ6(t)

ṗ7(t)

ṗ8(t)

3777777777777777775

=

2666666666666666664

−
P

1 − − 0 − 0 0 0

λA −
P

2 0 − 0 − 0 0

λB 0 −
P

3 − 0 0 − 0

0 λB λA −
P

4 0 0 0 −
λC 0 0 0 −

P
5 − − 0

0 λC 0 0 λA −
P

6 0 −
0 0 λC 0 λB 0 −

P
7 −

0 0 0 λC 0 λB λA −

3777777777777777775

2666666666666666664

p1(t)

p2(t)

p3(t)

p4(t)

p5(t)

p6(t)

p7(t)

p8(t)

3777777777777777775
(2.3.8)

The probability that phase 3, and therefore the mission is successful is the probability

that the system remains in state S1 until time t3, the end of the mission. This is given in

equation 2.3.9.

RMISSION = PS1(t3) (2.3.9)

This method moves from one phase to another accounting for the requirements to move

between phases. The phase reliabilities are based on what possible states the system can

exist in to make a phase successful, and the final phase provides the overall reliability of

the mission.

Alam and Al-Saggaf (1986) discuss the reliability of repairable phased-mission systems.

The analytic Markov model presented by Alam and Al-Saggaf solves for systems where the

Mission-Phase Change Times (MPCT) are deterministic, and further to stochastic (only

the deterministic MPCT method is covered here). There are two methods presented,

the difference between the two is in determining the sequence of initial conditions for

subsequent phases. This means that the phases would be assessed individually as soon as

the initial conditions are set by the previous phase. For random MPCTs, the marginal

distribution of the duration of each phase has to be determined as well, in order to find

the initial conditions for the next phase. Five assumptions were given that apply to this

work as follows:

1. A system has both good and bad elements. A mission (phase) requires several such

elements.

2. Failure and repair times are statistically independently exponentially distributed.

3. Repaired items are always returned to a state of as-good-as-new.

4. If the system fails during a particular phase the process ends.

5. Transition time is instantaneous between any consecutive phases in the mission.

66 Chapter 2. Phased-Mission Systems

For deterministic MPCTs, each phase can be evaluated by identifying all possible states

the system can be in, e.g. for a system with components A, B, C, there are eight possible

states. Three components with two possible states each leads to 23 = 8 possible states.

This failed state would be an absorbing state. The state transition matrix [A], can be found

by the information given above. If a component fails then the repair on that component

starts immediately.

Using equation 1.4.42 with the initial condition that all components are working as

P(0), given in equation 2.3.1, The probability of being in each state at the end of the

phase is determined.

In each phase a number of components are required to be working for a phase to

be successful. This method considers the state of components in the current phase and

the subsequent phase. The reason it considers subsequent phases is that one (or more)

component(s) may need to be working in both the current and the subsequent phase in

order to move from the current phase to the subsequent phase. From the initial conditions

set in equation 2.3.1 and the state transition matrix discussed earlier, the reliability of the

system can be found. This is the probability of being in one of the states that has all the

required components in a working condition. For all subsequent phases after the first the

same approach is taken, but the initial conditions are set by the reliability equation. The

success of the mission is dependent on the reliability found at the end of the last phase.

This says what states must be occupied in order for the mission to be a success.

Smotherman and Zemoudeh (1989) use non-homogeneous Markov models for reliability

analysis of phased-mission systems. Three assumptions that hindered previous work, in

that they restrict the flexibility and applicability of the work, were considered:

• Phase changes and phase-change times do not depend upon individual states, but

rather only upon the current phase. It is therefore not possible to represent a

degraded system which requires longer completing a phase than a fully working

system.

• The number of phases of random duration must be restricted, or the time-in-phase of

each phase of random duration must obey an exponential or locally-time-dependent

distribution.

• Failure and repair rates must be constant within phases. Constant failure and repair

rates have been used to model the useful life period of components, which does not

take into account the burn-in phase of electric components and the wear-out effects

of mechanical components.

Smotherman and Zemoudeh (1989) took each of these and produced a model that

can have phase-change times that are dependent and phases that have random durations

2.3. Repairable Systems 67

represented by globally-time-dependent distributions of phase-change times. The model

also states that the failure and repair rates are globally-time-dependent. This model

assumes that the system can be represented by a continuous-parameter finite-state Markov

model, with non-overlapping uniform distributions for phase-change times and failure and

repair rates globally-time dependent, where the repairs are modelled as “continuous wear”.

A set of sub-states represent each phase of a mission and the transitions are generalised to

handle phase changes. Also the transitions are given in terms of random variables which

satisfies the above hindrances. The only disadvantage to this technique is that the Markov

model generated can be very large. This is computationally inefficient, and can have an

effect on the type of systems that could be modelled.

Dugan (1991) gives a method to automate the analysis of phased-mission systems. The

method is based on Markov models created from fault trees that represent the phases of

a defined mission. In this model the phase change times are fixed; random phase changes

were not considered at this point. The model is similar to Smotherman and Zemoudeh in

that a single model is created to represent all the phases of the system.

Some of the methods for analysing phase-mission systems, including some of the above

are computationally inefficient. Somani et al. (1992) describes a technique to increase the

efficiency with which phased-mission systems can be analysed. This technique takes into

account systems with variable configurations, spares within the systems either for a single

component (dedicated spare), or for an array of components (pooled spare). These spares

can be brought into service to aid in balancing reliability and costs depending on the

requirements for the given phase. The technique incorporates redundancy management

in the system into the Markov model. This is done by generating a Markov model for

every phase, rather than a single Markov model. These Markov models are then solved

independently. Mean Time Between Critical Failures (MTBCF) is presented for a mission,

M , of time, T , seen in equation 2.3.10. The MTTF for a mission is given in equation

2.3.11.

M(T) =
Z T

0

R(t)dt

1−R(T)
(2.3.10)

µ = M(∞) (2.3.11)

An equivalent probability of occupation for a virtual state S for a time t is given as

equation 2.3.12. The transitions are also virtual and the transition rate from all of the

operating states to this new state is 1.

S(T) =
Z T

0
R(t) dt (2.3.12)

68 Chapter 2. Phased-Mission Systems

After some manipulation the MTBCF can be calculated using equation 2.3.13. At the

end of the mission both S̄(T) and Q(T) are known and S̄(T) is calculated using the virtual

state.

MTBCF =
S̄(T)

1−Q(T)
(2.3.13)

Kim and Park (1994) describe a technique that uses Markov-based applications to

assess the reliability of a multi-phase mission systems where the configuration of the

system changes during consecutive time periods. This assumes that the failure and repair

rates of the components in a system are exponentially distributed, and that components

of a redundant nature are repairable, given that the system is operational. Kim and

Park discuss three cases in which to apply their Markov model; phase durations that are

deterministic, and random variables with either a set maximum mission time or no set

mission time. This technique uses system eigenvalues to solve the differential equations

created from the Markov model. These eigenvalues are found in the reduced TRM, [B]k,

for the kth phase. For each of the cases, the TRM with all input and outputs are stated

and from this the reduced TRM is given for each of the phases. The eigenvalues are then

calculated for each of the phases, which is used to find the mission reliability.

Alam et al. (2006) discuss an approach that uses both Markov discrete and continuous

models, by changing the phased-mission system into separate non-phased-mission systems.

The Markov model uses a standard Markov chain resulting in the union of 2n possible

states encountered during the mission. The Markov model can then be used to calculate

probability of mission success and the MTTF. Some of the advantages of this method is

that once the models are created any decisions made before or during a mission can be

done without having to re-calculate the models. Another advantage is that every phase

is calculated independently, which makes it quick and simple to input into a program. A

major advantage is that as all the phases are self-contained this allows the user to change

the number of phases and duration for a particular mission. Also, should the sub-mission

requirements change, the reliability of the mission can be calculated easily.

As there is an issue with state explosion with Markov models for real-world applications,

this method bypasses this problem by remembering that the overall state space of the

mission is the union of all the states encountered in all the phases. The procedure for this

technique is given as the following:

1. Calculate the reliability of the m phases from t0 to tf , covering all anticipated

durations for each phase.

2. The reliability for the phased-mission system is found by selecting one of the

applicable m phase durations. Initial and final probabilities for phase i for a specific

2.3. Repairable Systems 69

duration are maintained at time ti−1 and tj , respectively.

3. The worst-case estimate (or conservative estimate) is calculated when the individual

reliability values for the m phases are multiplied together.

2.3.2 System and Phase Petri Nets

Mura and Bondavalli (2001) describe a method of modelling Phased-mission systems as

a combination of two separate models. These models are called System Net (SN) and

Phase Net (PhN). A System Net is used to represent an overview of all the components in

the system, taking into account their interactions and their failure and repair behaviour.

The Phase Net is used to describe the changes between phases throughout the mission.

Chew et al (2008) extends this method by using three different nets, as opposed to the

two proposed by Mura and Bondavalli. These three nets are; Phase Petri Net (PPN),

Component Petri Net (CPN) and Master Petri Net (MPN). The PPN describes the phase

failure of the system in terms of the components or basic event failures. The CPN describes

the failure/repair characteristics for each component. In this model the components can

be repaired at the end of each mission, which is made up of a number of phases. The

MPN controls the systems progress through the phases, whether it has failed in a phase

and hence cannot progress or it is allowed to progress through the phases. In this study by

Chew et al. it also controls the maintenance of the components. The Petri nets described

above interact through arcs and transitions. Together the PPN, CPN and MPN create one

large Petri net.

The Phase Petri net shows the system failure in terms of the basic components. It is a

Petri net representation of the phase fault tree.

The Component Petri net shows the basic event failure, this includes the time for

Maintenance. Each component is graphically represented by two places in the Petri net;

one to show it is in a working state, the other shows the failed state of the component. The

number of places are not limited to show just working and failed, there are other states

in which the component can reside. These are then linked to the Phase Petri net from

the failed state place and to the Master Petri net if enough of the components could cause

mission failure. Each of the components are also linked to an area of the CPN that denotes

the repair place for the components.

The Master Petri net consists of three main sections. The first is the area for control of

the sequence of phases, and the failure/success of the mission. In terms of the control of the

phases, this section of the Master Petri net indicates with a token which phase is currently

in operation. Should a Phase failure occur it would be indicated on the Phase Petri net

as the top event and indicated in the Master Petri net that it is a failed phase. If that

phase is also the current operational phase then the mission would fail. This type of phase

70 Chapter 2. Phased-Mission Systems

modelling was adapted from the work by Volovoi (2004). The second is the ending of each

mission or maintenance free operating period (MFOP). Should a mission be accomplished,

then one of two actions occur next; another mission is initiated before any maintenance

occurs or the system enters a maintenance recovery period (MRP). This is where any

repairs needed are taken into account. The last is the section that takes into account the

abandonment of the mission should a component or system fail. This is indicated on the

Master Petri net with a place indicated as the Mission abandoned. Should a component

or system fail that causes a mission abandonment, all missions cease and the maintenance

free operating period is considered failed and the system enters a maintenance recovery

period.

Chew et al. (2008) developed simulation software to find the overall system reliability

of a system. As input the software takes the phase fault trees and component failure data

in a text-file format. The software then takes this information to produce the three Petri

nets; MPN, PPN and CPN. The output for this software is again in the format of a text-file

that can then be used for analysis. The simulation itself takes the component failure data

and phase lengths and uses these to give the transition times required. These times and

the component failure data and the phase lengths can all be sampled using distribution

types such as normal and exponential. The algorithm used for this simulation is given

below:

1. Randomly sample switching times for each newly enabled timed transition in each

net from the switching time distribution assigned to it.

2. Find the transition with the earliest switching time and fire it.

3. Search through each of the immediate transitions and if any are enabled, switch

them.

4. Repeat step 3 until no more immediate transitions are enabled.

5. Test for any of the following conditions and log them:

(a) If a system has failed, begin next simulation

(b) If system has been abandoned, begin next MFOP

(c) If a mission has completed begin next mission

(d) If MFOP has completed, begin MRP

(e) If MRP has completed, begin next MFOP

(f) If simulation has completed, begin next simulation

6. If simulation completed < ns, go to step 1, else end.

2.4. Summary 71

2.4 Summary

The reliability modelling for Phase Mission Systems showed a variety of ways to model

with the methods discussed in Chapter 1. The methods discussed there were applied to

non-repairable and repairable systems. Ideally the method to be taken forward would have

to cater for both repairable and non-repairable systems, without the need of combining

with another method. From the research, the method from Chew et al. (2008) which

was the development of a piece of software to find system reliability using Petri nets as

the modelling method had the most potential. The method in which the Petri nets are

arranged provides the foundation of the work presented here.

Chapter 3

Automated Techniques

Contents
3.1 Introduction . 73

3.2 Methods for Automation of Reliability Models 73

3.2.1 Decision Table Methods . 73

3.2.2 Digraph Method . 77

3.2.3 Modified Decision Table method . 77

3.2.4 Cause-Consequence Diagrams . 79

3.2.5 Mini fault trees . 79

3.2.6 Faultfinder . 79

3.3 Summary . 85

3.1 Introduction

The ability to automate a reliability method is not a new concept. Most effort has

been in the development of the automated construction of fault trees. Manual fault tree

construction is inefficient and prone to error. Although a specialist would be able to

complete this task themselves, there are two reasons that this is inefficient. The first

is the number of man hours required to complete such a task particularly if the system

is large. The second is fault tree construction can be subjective, meaning that different

specialists might adopt inconsistent approaches. To reduce the amount of time that is

needed to construct a fault tree and ensure that the tree is accurate, automated methods

were needed to complete the task. This is the same for any reliability model.

3.2 Methods for Automation of Reliability Models

3.2.1 Decision Table Methods

Decision tables are a method of defining the behaviour of a component within a system.

They can represent the different states, working or failed, of the component and how

the component behaves as a result of different inputs from other components within the

74 Chapter 3. Automated Techniques

Table 3.1: Complete decision table for component fuse

Row No. Input State Internal Mode Output State

1 0 0 0
2 0 1 0
3 0 2 0
4 1 0 1
5 1 1 0
6 1 2 1
7 2 0 0
8 2 1 0
9 2 2 2

Input/Output states: 0 - No Signal, 1 - Normal, 2 - High/Overload
Internal mode: 0 - Good, 1 - Failed Open (without an overload input),

2 - Failed shorted (fails to open in the event of an overload)

Table 3.2: Reduced decision table for component fuse

Row No. Input State Internal Mode Output State

1 0 – 0
2 – 1 0
3 1 0 1
4 1 2 1
5 2 0 0
6 2 2 2

Input/Output states: 0 - No Signal, 1 - Normal, 2 - High/Overload
Internal mode: 0 - Good, 1 - Failed Open (without an overload input),

2 - Failed shorted (fails to open in the event of an overload)

system. They have been commonly used as a method of describing components for use in

constructing fault trees. This section describes decision tables in more detail and how they

have been applied.

Salem et al (1977) discussed a method using decision tables to model the system

behaviour. The decision tables represent the components in the system. For example

the decision table for the component fuse has been given in Table 3.1. Decision tables are

first created to account for every possible combination of inputs and state and showing

the output as a result of the combinations. In the example given in Table 3.1 the inputs,

outputs and the internal modes are represented by three values as described in the table.

From this full version of the decision table, modifications can be made in order to

reduce its size. This is done by identifying which rows have the same output based on

either inputs or states. This allows the rows to merge and therefore reduce the size of the

table. An example of this reduction can be seen in rows 1, 2 and 3 where regardless of the

internal mode of the fuse if the input state is 0 then the output is 0. By bringing these

rows together and introducing ‘–’, which refers to a‘don’t care’ entry, the table is reduced

to that seen in Table 3.2. It should be noted that only the input and internal states can

be reduced to a ‘don’t care’ state.

3.2. Methods for Automation of Reliability Models 75

A method of using decision tables to once again model components within a system is

demonstrated by Salem et al. (1977). This method discusses how decision tables have been

used in aiding the construction of fault trees. A piece of software, Computer Automated

Tree (CAT), was developed as a result. The software was designed for the analyst to use

as part of there work. The method discussed describes a way of producing an accurate

fault tree to describe a system’s behaviour. The software was designed to cater for multiple

fault trees at any one time, which could include the success of a system. The CAT allows

an analyst to edit the produced fault tree including the gates and events of the fault tree.

Another method for fault tree construction is presented by Han et al (1989) which

describes a different piece of software, Automated Fault Tree Construction (AFTC). The

AFTC code was designed as an improvement on the CAT software. This method combines

the use of decision tables and flow diagrams to ensure that the system and its components

can be modelled effectively. This method uses the concept of super component models,

which are similar to flow diagrams, together with decision tables and flow diagrams in order

to generate a fault tree. Common Cause Failures (CCFs) models, which show how a root

cause can create multiple component failures, are then merged into the fault tree. Then

the fault tree is modularised. The software holds within a library the decision tables and

the flow diagram is a required input from the user. The flow diagram would incorporate

the basic decision table of the components. The main feature of this software was the use

of these super components and the ability to use CCF modelling and modularising fault

trees.

A new method of describing a component’s behaviour was introduced by Majdara

and Wakabayashi (2009). They introduce a new table, the state transition table, which

describes the operational states of a component. An example of a component with

operational states is a switch. This has the operational states of open and closed. Together

with the function table is similar to the normal decision tables that have previously been

discussed. The function table describes the input-output relationships. An example of

both the functional and operational state tables can be seen in Tables 3.3 and 3.4. Figure

3.1 shows the visual relationship of the tables. Majdara and Wakabayashi introduced a

new algorithm to generate a fault tree based on an occurrence of an undesirable event being

defined. The algorithm uses the input and output connections between the components

of a system in order to trace the cause of the undesirable event. The algorithm traces

back from the occurrence and identifying component states or outputs that could cause

the event. These would then be used to generate the fault tree.

When constructed the fault tree is checked for consistency. Where consistency means that

two mutually exclusive events cannot occur at the same time. The algorithm would then

remove these.

76 Chapter 3. Automated Techniques

Operator

Valve

Command input

Command output

Flow input Flow output

Figure 3.1: Operator-driven valve

Table 3.3: Operator-driven valve state transition table

First State Command Functionality Condition Next State

Open 2 OK Close
Open 2 Fail-to-close Open
Open 1 – Open
Close 1 OK Open
Close 1 Fail-to-open Close
Close 2 – Close
Open 0 – Open
Close 0 – Close

Table 3.4: Operator-driven valve function table

Flow input State Flow Output

0 – 0
– Close 0
1 Open 1

3.2. Methods for Automation of Reliability Models 77

3.2.2 Digraph Method

Another method for constructing fault trees is presented by Lapp and Powers (1977) by

using digraphs or directed graphs. This method details how taking a constructed digraph

can be transformed into a fault tree.

A digraph consists of two components; nodes and directed edges. These nodes are used to

represent process variables, and also some types of failures. Relationships between these

nodes are through edges that connect between them. If a deviation occurs in one variable

and has an effect on another variable in the system, then there is an edge connecting these

variables. These deviations can either be positive or negative; “+” and “-” respectively.

Depending on the severity of these deviations the values 0, 1 and 10 are used to represent

none, moderate and a very large deviation, respectively. For example in a system that

deals with mass flow rates, should there be a large decrease in that flow then there would

be a (-10) associated with that connection.

The digraph is used to detect control loops to identify ‘disturbances’ which could result

in the top event. By following the disturbances through the digraph the fault tree can be

constructed by allowing the disturbances to propagate.

3.2.3 Modified Decision Table method

A new method of combining both decision tables and digraphs to automatically construct

fault trees was introduced by Henry and Andrews (1997). Decision tables brought forward

the advantages of the ability to identify the normal state of a system and digraphs the

ability to detect and classify control loops.

This method is demonstrated in a program that uses AutoCAD schematic diagrams

and decision tables to model the system and its components. The AutoCAD diagram is

used as a method of showing how the components of a system link to one another. This

allows this sort of analysis to be completed during the design phase of a new or modified

system. The decision tables are used as a method of modelling the components and are

stored within a library of decision tables. These decision tables can be edited by the user

to suit their needs using a component editor. To generate the fault tree a top event is

entered as input from the user into the program. The program then traces the undesirable

event and generates a fault tree based on the trace. This program does not complete the

analysis of the fault tree, but does provide a file version of the fault tree that can be read

by commercial packages.

The method for automating the construction requires the system description, which is

given in the form of an AutoCAD schematic diagram. From the schematic diagram a file is

created that stores the topology information for the system. This information includes how

the components connect together in the system. A library of component decision tables

78 Chapter 3. Automated Techniques

Table 3.5: Original decision table format for component Contact (Henry & Andrews 1997)

IN1 IN2 STATE OUT1 OUT2

C EN W - C
C DE W - C
NC - - NC NC
- DE - NC -
- - F NC NC
- EN W - NC

Table 3.6: Modified decision table format for component Contact (Henry & Andrews 1997)

CONTACTS
NORMAL
2,2,1
+,+,+,+
IN1, IN2, STATE, OUT1, OUT2
C, EN, W, -, C
C, DE, W, -, C
NC, -, -, NC, NC
-, DE, -, NC, -
-, -, F, NC, NC
-, EN, W, -, NC
EXCLUSIVE
W, F

exists and these can be amended or new decision tables generated. This is accomplished

using a generic component editor. A top event is entered into the fault tree construction

program so that the causes of such an event can be traced. The program then generates

the fault tree structure for the top event. This fault tree structure is written to an output

file, which is capable of being read by other commercial analysis packages. These packages

can then be used to carry out the qualitative and quantitative analysis of the fault tree

and therefore obtain the top event probabilitys. As this method makes use of a Computer

Aided Design (CAD) interface, this can allow the reliability assessment of a system at the

design stage.

Henry and Andrews created a modified decision table method to overcome the main

weakness of decision tables: the inability to detect, classify and analyse control loops and

circuits. This was overcome by modifying the tables to incorporate a gain that is used to

show the connection between the inputs and the outputs of a component. An example of

a modified decision table is given in Table 3.6.

This new decision table element, to add gains, allows for the identification of circuits

within a system. By using the component decision tables and the system topology Henry

(1996) generates a digraph. The nodes of the digraphs represent the outputs of a component

and the edges link these nodes together. By defining a top event and using the digraph a

new item is created, a topology graph. The fault is traced and the nodes that are ‘passed’

3.2. Methods for Automation of Reliability Models 79

are identified. This process identifies any circuits within the system.

3.2.4 Cause-Consequence Diagrams

Cause-Consequence Diagrams (CCDs) are another method of showing the failure logic

of a system in a similar fashion to fault trees. However, CCDs identify a complete set,

rather than a sub-set, of consequences as a result of an initiating event. CCDs can become

very large particularly if applied to industrial scale systems and is a subjective process.

To remove human error from the construction of such diagrams Valaityte et al. (2010)

discusses a method of automatically constructing a CCDs based on a system description in

the form of a system topology diagram and decision tables describing component behaviour.

The construction algorithm detailed within Valaityte et al. (2010) is based on whether the

system contains electrical circuits. This changes the way in which the system is handled.

Circuits are identified in this method by locating loops using the system topology diagram.

This method uses the initiating event to follow/trace the path of the knock-on effects within

the system and identifying these within the CCD.

3.2.5 Mini fault trees

Taylor (1982) developed an algorithm for fault tree construction using mini fault trees. The

initial information given was the description of the system, which describes each component

and the set of connections between these components. Each component type stores in a

library a standard function and a failure model. These functions and models are made up

of mini fault trees. The mini fault trees consist of the following:

• Input event

• Set of component conditions

• Set of output and state change events

This is a method of describing the component’s behaviour in fault tree form rather

than decision tables as seen in previous methods. This method uses the undesirable event

as the starting point and identifies the event and the associated component. The method

then moves through the connections of the component to other components in the system

that also have the event listed. The process continues to follow associated components

and events and further following new events as a result of a previous event. Using the

associations the fault tree is constructed.

3.2.6 Faultfinder

The FAULTFINDER program was developed at Loughborough University in the Depart-

ment of Chemical Engineering and written in Fortran 77. The programme has been

80 Chapter 3. Automated Techniques

Figure 3.2: FAULTFINDER Structure (Hunt et al. 1993)

Input new model

Model Generation
Program

Input new event

Event Generation
Program

Model Library Event Library

Input plant
configuration

Fault tree
drawing program

Fault tree
analysis program

Fault tree Cut sets

Configuration
input program
(MASTER)

Fault tree
synthesis
program

described in detail in 4 papers by Kelly and Lees ((1986a) – (1986d)). These papers are

split into the following four categories; the modelling method (Kelly & Lees 1986a), the

fault tree synthesis method (Kelly & Lees 1986b), the interactive facility by implementing

these (Kelly & Lees 1986c) and illustrative examples (Kelly & Lees 1986d).

The third paper (Kelly & Lees 1986c) gives a detailed description of the main sub-

programs that comprise of the suite of programs within FAULTFINDER. These are listed

below:

1. Master Program (MASTER)

2. Unit Model and Event Model Programs (MODGEN and EVTGEN)

3. Fault Tree Generation Program (FLTGEN)

4. Fault Tree Analysis Program (FLTANL)

5. Fault Tree Display and Evaluation Program

An example of the structure of the FAULTFINDER programme is given in Figure 3.2.

The sub-programs of FAULTFINDER are described in detail below; the uses of each sub-

program and their relevance to the other sub-programs are considered.

3.2.6.1 Master Program

The master program or MASTER is the framework program which handles the data inputs

and outputs. In MASTER there are two options; the first is to call a fault tree synthesis

3.2. Methods for Automation of Reliability Models 81

program and the second is to transfer input data straight into a process control computer.

For the first option a top event is selected and a fault tree is generated using FLTGEN.

This creates a fault tree encoded as an array. Using other facilities within FAULTFINDER

the fault tree can be viewed, modified, plotted (using GINO graph plotting facility) and

analysed using FLTANL. The second option, at the time of the publication of the paper,

was not developed, but was available in principle. The structure of the control program

can be split into six parts:

• Input the configuration data.

• Input unit model data from MODLIB and EVTLIB.

• Attachment of FLTGEN: In this part the options for the fault tree generation and

drawing are selected. The top event data is also input here.

• Generation of the cut sets.

• Configuration editor for modifing the configuration.

• Input of the sequence abort conditions. The configuration is also modified at this

part for the next stage sequence.

3.2.6.2 Unit Model and Event Model Programs

A unit model contains the necessary data for a particular component within a system.

The collection of unit models should make up the system as a whole. These unit models

are created in MODGEN and then stored in the unit model library, MODLIB. The unit

model program, MODGEN, is an interactive program where the necessary data for each

unit model is entered.

The model data that is required for each has a specified format. The information first

given is the model name which can be an alphanumeric description and the model number

which lies between 1-100. The information required next is the engineering description

which defines the equipment and engineering assumptions (these relate primarily to the

propagation equations explained shortly). These are both given in plain text format. The

next group of information is the system information including propagation equations, event

statements, and decision tables if applicable to the system. This information provides the

initial behaviour of the unit, each is described below:

• Propagation Equations: Propagation equations describe how a fault moves

through units in the system by describing the relationship between an output variable

of a unit and the input and other output variables of the unit.

• Event Statements: There are three types of event statements that are considered;

82 Chapter 3. Automated Techniques

Table 3.7: Example Decision Table for system description

A B C D Output

T T – – Z
– – T T Z

– Initial event statements: These statements are used to represent the affect of a

fault initiating a sequence of disturbances or an operator action as an initiating

event. These statements are also used in place of a propagation equation when

variable deviation cannot be derived.

– Intermediate event statements: These statements are used to include logical

relations such as AND gates and can also be used to represent generic faults.

Intermediate events can have either faults or variable deviations as their causes.

– Terminal event statements: These statements are used to represent a variable

deviation that can cause a terminal fault. This approach is not always used

within a unit model as this can cause the size of the model to increase with a

full list of terminal events. Therefore these are usually given in a separate event

model.

• Decision Tables: Decision tables can be used instead of initial event statements

when the logical relations become complex. For example, equation 3.2.1 can be

represented as Table 3.7, where T represents True and – represents Don’t care.

Z = (A AND B) OR (C AND D) (3.2.1)

Information about the components normal, failure states/modes is also included in the

system information. The format for the output data is in the form of mini-trees; a list of

mini-tree top events and a list of the individual mini-trees.

Event statements and decision tables are the most flexible out of the three input data

and therefore widely used. However if decision tables are the primary model, then they

are generated manually. This takes time and storage on the system. Therefore the use of

decision tables was kept for complex models.

The method chosen for the output information was in the form of mini-fault trees.

These are well adapted for the automatic generation of models and fault trees. Mini-fault

trees can be created manually, but it is more desirable to automatically create them. A

unit model should only be created when there is a need for one. This ensures that the

model has been tested before it is stored to the library.

3.2. Methods for Automation of Reliability Models 83

Mini-fault trees are generated from the propagation equations and the event statements

or decision tables. The propagation equations can be converted into the mini-fault trees,

as top event, or output is variable deviation given on the left hand side of the equation,

with the basic events, or inputs to the tree are the variable deviations on the right hand

side of the equation. Mini-fault trees generated from these equations can be incomplete

and can require information from initial event statements and decision tables. If only a

propagation equation is required to form the mini fault tree then an OR gate is used, but

if an initial event statement or a decision table is required then an AND gate is required.

In some cases it is more useful to model as an event rather than a unit. The types of

events that this would be applicable to are:

1. Undesired events

2. Physical and phase changes

3. Materials

Undesired events are those events that are terminal events, as discussed earlier. These can

either be modelled with unit models, but are more often modelled with event models due

to the problems of the size of the model with unit models. Event models are generated

by inputting the data into the event model program, EVTGEN. The event model is then

automatically stored in the event model library, EVTLIB.

The input information for EVTGEN is similar to that for the input information for

MODLIB, the first piece of information to create an event model is the event type, such as

those mentioned above; undesirable event, phase or physical change, or materials failure.

Event name and number, where the name is an alphanumeric description and event number

that is in the range of 1-20. Then a description of the event; event statements and decision

tables (when applicable). The output from the program is mini-fault trees.

3.2.6.3 Fault Tree Generation Program

The fault tree generation program, FLTGEN, is a sub-program designed for fault tree

generation, plotting and manipulation. The program generates a fault tree as an array of

data before creating a drawing of the tree. To create the data, an undesirable event is

specified as the top event, and from there information of how the system would reach such

an event is compiled. To do this individual branches would be created from the appropriate

mini-trees. Starting with the top event, this would be the top event of a mini-fault tree

within an event model. This tree would be placed directly below the top event and the

input events would be mini-top events of other mini-fault trees that are either within the

same event model or a unit model connected to it. This creates the next level of mini-trees.

This process is continued until only basic or diamond events are left.

84 Chapter 3. Automated Techniques

Consistency checking is completed on the final tree to check that none of the boundary

conditions have been broken and faults that are not allowed to occur, haven’t. Series and

parallel consistency checks are required. Series consistency check each branch individually

for event consistency and this can be done whilst the tree is generated . Whereas parallel

consistency checks all branches against the others under an AND gate for event consistency,

but can only be done once the synthesis is complete.

Due to the number of unit models used to generate a fault tree a number of minor

or repeated faults can exist. The fault tree can also contain looped events or variable

deviations that exist else where in the tree. These are removed or suppressed to unclutter

the tree with unnecessary information. When a looped event is identified this is suppressed

and a diamond event is put in its place. By doing this the stored fault tree is affected as

the looped events are not created, but instead point to the one and only occurrence in

the tree. When a repeated fault is identified then these were removed by either full or

partial suppression. Full suppression removes the types of basic events from the stored and

drawn tree, whereas partial suppression only removes them from the drawn tree and not

the stored tree.

The fault tree is plotted and can be generated on screen. The tree is plotted using

GINO graph plotting facility. GINO generates the tree; producing its structure and a

graphical output. The tree generation has two parts; the first is the initial synthesis and

the second is the rationalisation process. This yields the fault tree.

3.2.6.4 Fault Tree Analysis Program

The sub-program fault tree analysis, FLTANL, has only two features; the first is executed

in MASTER, where the cut sets of the tree can be determined. The second is with the use

of other software packages specifically designed for fault tree analysis. One such package is

PREP and KITT (Vesely & Narum 1970). This is separate from the MASTER program.

This consists of three programs:

• TRIAD: Analyses and rearranges

• CUTSET: Calculates minimal cut sets

• KITT: Calculates top event frequency

The first two are part of the PREP, or preparation of the data before the top event

frequency can be found. Then KITT calculates the top event frequency.

3.2.6.5 Fault Tree Display and Evaluation Program

As mentioned earlier the tree produced in FLTGEN can be plotted and manipulated. The

Fault Tree Display and Evaluation Program extends this manipulation to editing the tree

3.3. Summary 85

itself in terms of its structure to create a clearer structure and the descriptive text of the

events to a comprehensible form.

The editor can also be used for general fault tree creation which can be useful for simple

structures.

3.3 Summary

The methods presented here were very focused on the automatic generation of fault trees.

None of the methods researched constructed automatically a system undergoing a phased

mission, which implies that there is room for the work presented here. One of the methods

discussed in this section by Majdara and Wakabayashi (2009) was a method to trace a fault

using decision tables. This method provided a starting point as to how the components of

systems in this work would be described in order to generate a reliability model.

Chapter 4

Modelling of Non-Repairable

Systems

Contents
4.1 Introduction . 87

4.2 Model Inputs . 88

4.2.1 Component Description . 88

4.2.2 System Description . 91

4.2.3 Circuit Description . 92

4.2.4 Phase Description . 92

4.2.5 Initial Conditions . 92

4.3 Petri Net Models . 93

4.3.1 Component Petri Nets . 93

4.3.2 Circuit Petri Nets . 102

4.3.3 System Petri Nets . 104

4.3.4 Phase Petri Nets . 109

4.4 Algorithm . 115

4.5 Summary . 120

4.1 Introduction

By automating the process of building the reliability model, the process of assessing a

system’s reliability becomes more efficient and reliable. To achieve this, the reliability

model generated must be versatile and easy to simulate once constructed. For these

reasons, Petri nets have been chosen as the modelling method. To construct the Petri

nets, the system and mission that the system is undertaking must be described sufficiently.

To achieve this, two techniques have been employed to describe the components within

a system; decision tables as discussed in Chapter 3 and the method by Majdara and

Wakabayashi (2009).

88 Chapter 4. Modelling of Non-Repairable Systems

Power

Supply

(In) (Out)

(State)

Figure 4.1: Power Supply component

Table 4.1: Decision Table for a power supply

In State Out

1 C W C
2 – F NC
3 NC – NC

4.2 Model Inputs

The information required from the user includes a description of each component within

a given system, which includes the component’s failure and, when applicable, repair rates,

and the number of input and output connections the component has. This information can

then be used to create a system map that shows how each of the component’s connections

link to other components in the system. The mission of the system is also required from

the user; this details how a system can suceed or fail within each stage, or phase, of the

mission.

4.2.1 Component Description

Each component in the system is described using a decision table. If a component has

more than one operational mode, another table is also required: the operational mode

table, which describes how each mode affects the component’s behaviour. Operational

Mode tables are similar to state transition tables introduced by Majdara and Wakabayashi

(2009) and described in Section 3.2.1. A decision table is still required alongside the

operational mode table as the operational mode table describes the internal conditions of

a component, whereas the decision table is used to describe how the component interacts

within the system scope. An example of a component with a single operating mode is a

power supply, shown in Figure 4.1. The decision table for the power supply is given in

Table 4.1, where C and NC represent current and no current, respectively.

For components with a single operational mode, the headings in the decision table are

in, state and out. These correspond to the inputs and outputs to and from the component

and the state of the component, where the state is the working, failed or repair state of

the component. Depending on the system structure there may be multiple inputs and

outputs, as shown in Section 3.2.1. If a component is time dependent, then a time column

4.2. Model Inputs 89

Figure 4.2: Switch component

is necessary to capture this information.This can be particularly relevant to the time of a

phase within a given mission.

For components that have more than one operating mode, both tables are necessary.

A link is therefore required between the two tables. This is used to show how the internal

mode of the component affects the system. To show this connection the decision table has

a heading mode in place of the state heading in a normal decision table. The state of the

component is dealt with within the operational mode table. An example of a component

that requires an operational mode table and a decision table is a toggle switch. A toggle

switch requires an input from another component (usually an operator) and the input can

change the operating mode of the toggle switch. The decision table and the operational

mode table for the toggle switch can be seen in Table 4.2 and Table 4.3, respectively. Where

the command values CL, OP and NA represent closed, open and no action, respectively

and the state values W , FCL and FOP represent working, failed closed and failed open,

respectively. The table headings relate to the inputs and output shown in Figure 4.2.

Table 4.2: Decision Table for toggle switch

In 2 Mode Out

1 – Open NC
2 NC – NC
3 C Closed C

Table 4.3: Operating mode table for toggle switch

Mode 1 Command (In1) State Mode 2

1 Closed – FCL Closed
2 Closed CL – Closed
3 Closed OP W Open
4 Closed NA – Closed
5 Open – FOP Open
6 Open OP – Open
7 Open CL W Closed
8 Open NA – Open

90 Chapter 4. Modelling of Non-Repairable Systems

An operational mode table has four headings. Two relate to the mode of the component:

Mode 1 relates to the initial mode, or starting mode and Mode 2 relates to the resultant

mode. The other headings within the operational mode table are command and state, where

command relates to the input that can cause a change in the mode of the component. State

is the same as the state discussed in decision tables, representing the component’s working

or failed state. Mode 2 in the operational mode table is the mode value related to the

decision table heading Mode.

The principle idea is for the software to contain a list of common component decision

and, where applicable, operating mode tables. The user would then only be required to

create component tables for those components that are not commonly used. A number of

component tables have been generated for the example systems seen throughout the next

few chapters and are re-useable for other users.

The above information describes how the component behaves, but does not describe

how it fails. This is covered by the failure rate of the component, which can be constant or

follow a distribution. This information must also come from the user as it is not within the

scope of the software to hold failure rates of components, which can be variable depending

on manufacturer and version. The repair rate of a component will be covered in later

chapters.

4.2.1.1 Time Dependencies

A component’s behaviour within a system can sometimes be dictated by time, i.e. during

different time periods the component can behave in different ways. These times would

relate to the phases of the mission undertaken by the system, in which this component

resides. A good example of a component that acts in this way is a timer relay. A timer relay

initially energises when current is applied and, once a specified time has elapsed the relay

de-energises. This type of information is required in the decision table of the component, to

define what period of time, or specific time, the component changes, and how that change

affects the component’s outputs. The timer relay decision table is given in Table 4.4 and

this shows that the timer relay has one input of an electrical connection and two outputs.

The first output is to another component, such as a contact (EN and DE, energise and

de-energise, respectively), and the second output is another electrical connection. In the

table another column heading is included, t, representing time. The rows that include a

time element can only occur at the time or time frame stated. In the example the first

row can only occur between the time zero (inclusive) and some predefined time, t1, but

not at t1. This row states that the outputs would be EN and C during this time period,

as long as the pre-requisites from the input and state columns are met. The second row

states that this row can occur at time t1 and any time greater for a given mission. The

outputs for the row are different from the previous row, with DE and NC. Although both

4.2. Model Inputs 91

M

Figure 4.3: Example of a simple system with one circuit

PS

FS M
IN

IN

IN OUT

OUT

OUT

Figure 4.4: Example of a topology diagram

rows have the same input and component state they produce different outputs depending

on the time/time frame stated.

Table 4.4: Timer Relay Decision Table

t In State Out 1 Out 2

1 0 ≤ t < t1 C W EN C
2 t ≥ t1 C W DE NC
3 – – F DE NC
4 – NC – DE NC

4.2.2 System Description

The system description describes how the components link together. This information is

presented in the form of a system topology diagram. This infomation must come from

the user, but the labels of IN and OUT may be pre-defined if the user uses a library

component decision and operational mode tables. An example of a simple system is given

in Figure 4.3 and the topology diagram for this system is given in Figure 4.4. This system

has three components with unique identifiers, PS, M and FS, which represent a power

supply, motor and fuse, respectively. If there were more than one component of the same

type, then the identifiers would be numbered, for example PS1, PS2 for multiple power

supplies. Within the system topology diagram the outputs of each component, OUT are

linked to the input, IN , of the next component in the system structure. These IN and

OUT labels map to the decision and operational mode table In and Out columns.

92 Chapter 4. Modelling of Non-Repairable Systems

4.2.3 Circuit Description

Circuit descriptions are only required when the system contains electrical components. The

circuit description is in the form of a list containing the unique identities of components

in an electrical system. Circuits within a system need to be identified so as to determine

whether or not current flows in the system. This is completed by using the system and

component information described earlier in Sections 4.2.2 and 4.2.1, respectively.

The circuit models contain the critical states or modes of the components within the

circuit. If a component has more than one operating mode, then the mode can change

the circuit’s state. If a component does not have more than one operating mode then the

state of the component, working or failed, will affect the circuit. For the creation of the

circuit model the components within the circuit need to be identified along with the mode

or state that can create current or no current in the circuit. The decision tables of the

components hold this information and the software identifies this automatically.

It should be noted that within the software there is a location for the pre-determined

values used for C, NC (current and no current), which is used as part of the circuit list

generation. These values can be altered if necessary by the user.

4.2.4 Phase Description

The phase description specifies the mission that the system is to undertake. This

information will be given in the form of a table: the phase transition table. The phase

transition table describes the phases that the system undertakes, assuming the system

works from the beginning to the end of the mission. This details the length of the phase

and the condition that causes the phase to transition to the next phase. As the system

may not always work from the beginning to the end of a mission, other phases are required

to show system failure. The number of these phases depends on the system. All of this

information is included in the phase transition table.

It should be noted that each row of the phase transition table does not always have

time associated with it. In some cases a component’s output can be the trigger of a phase

transition.

The model generated from the phase transition table provides a method of monitoring

the time during a mission and will be covered in a later section.

4.2.5 Initial Conditions

The initial conditions required before a simulation can begin include the following

information:

• The starting mode of any components with more than one operating mode.

4.3. Petri Net Models 93

• The initiating component that starts the system, and the input/output condition

of the component is required. For example a switch closing could be the initiating

condition, therefore it would be the switch with an input to close, CL.

• It is assumed that all components are in a working condition at the beginning of a

simulation.

4.3 Petri Net Models

In this section the Petri net models, CPNs, SPN, Circuit Petri Net (CiPN) and PPN are

described. In the previous section the input information required to create each of these

models was discussed. This section shows how the input information is translated into

these models by the software.

4.3.1 Component Petri Nets

The component description given in Section 4.2.1 is now used to generate the CPN. The

decision and operating mode tables described in section 3.2.1 are used in the construction

of the Petri net for the component.

4.3.1.1 Component Petri Net Construction

To create the CPN, each row of the decision and operational mode tables is taken as a single

transition. For decision tables, the values from the input and state/mode columns form

the input places to the transition and the output column values form the output places.

For operational mode transition tables, the values from the starting mode, command and

state columns form the input places to the transition and the resulting mode column values

form the output places.

If there is a time column associated with a decision table, this will be dealt with through

the PPN to be discussed later.

Construction Procedure

The procedure for constructing the CPNs is as follows:

1. Except for the time, t, column, identify types in each column, e.g. C and NC.

Ignore “–” entries.

2. Take each column and

(a) If column is mode1, mode2 or mode, then create one place for each type that

exists in all of these columns.

94 Chapter 4. Modelling of Non-Repairable Systems

(b) Else, create a place for each type.

3. Create an immediate transition for each row of the table.

4. Input places for a transition for an OMT table are mode1, in and state. Input places

for a DT are in and either state or mode. Taking each row of the table at a time,

create an arc from the row’s input place to the transition for that row (created in

step 3) as follows:

(a) If in column type, create single headed arc.

(b) If state column type, create double headed arc.

(c) If mode column type, create double headed arc.

(d) If mode1 column type, create single headed arc.

5. An output place(s) from a transition for an OMT table is mode2 and for a DT is

out. Taking each row of the table at a time. Create an arc from the transition to

the place representing column type depending on the column:

(a) If out column type:

i. If the only input arc to the transition is a double headed arc then a single

headed inhibit arc is used.

ii. Else, use a single headed arc.

(b) If mode2 column type:

i. If the only input arc to the transition is a double headed arc then a single

headed inhibit arc is used.

ii. Else, use a single headed arc.

4.3.1.2 Decision Table Example

To demonstrate the procedure, an example is shown in Figure 4.5 for a power supply. For

step one, Figure 4.5a, the types in the table are identified; {C, NC} in column in, {W ,

F} in column state and {C, NC} in column out. Step two moves through each column,

creating a place for each type identified in step one, as seen in Figure 4.5b. For step three,

the number of rows in the table is counted and an immediate transition is created for each

row (three in this case). This can be seen in Figure 4.5c. Step four moves through each

row of the table and generates arcs between the types in the in/state columns and the

transition representing that row. For example, on row one of the table, the in column type

C and the state column type W are the inputs to the first transition. The type of arc is

dependent on the column heading. For in column types a single-headed arc is required.

State column types require a double headed arc as the component can only change state

4.3. Petri Net Models 95

when the time to failure is reached and is not dependent on whether current flows or not

through the component. This is demonstrated in Figure 4.5d. The fifth and final step is

to create the arcs from the transitions to the output type places. The type of arc required

is dependent upon the arcs that are connected to the transition from step four. If the

only input arc connected to the transition is a double headed arc then an inhibit, single

headed arc is required. This stops the possibility of continuous firing of tokens from the

state places. Otherwise a single headed arc is required from the transition to the output

place. An example of each type of arc can be seen in Figure 4.5e. This is the final part

of the Petri net to be added at this stage. The next to consider is the component failure

times, discussed in the next section.

To demonstrate the procedure for a component with multiple operating modes, the

toggle switch is used. Applying the steps to this component can be seen in Figure 4.6 and

Figure 4.7. Figure 4.6 is the construction process for the operational mode table and Figure

4.7 is the construction process for the decision table. It is not necessary for the operational

mode table to be assessed first, but for the purposes of demonstrating the procedure this

was considered first.

4.3.1.3 Operational Mode Transition Table Example

Starting with the operational mode table the first step is to identify the types in each

of the columns of the table. This can be seen in Figure 4.6a. The types identified in the

mode 1 column and themode 2 column should be identical. The next step in the procedure

creates a place for each type under all columns except for the mode 1 and mode 2 columns.

Places for the types in these columns are created once for both columns. The purpose of

the places for modes is to show the current mode of the component; this cannot be done

if there are multiple places representing the same information. This can be seen in Figure

4.6b. The next step is to create a transition for each row of the table, as seen in Figure 4.6c.

In step four the arcs used as input to the transition are generated, depending on the input

place and the row of the table the transition relates to. If the place is from the mode 1 or

in 1 column then a single-headed arc is used. If the place is from the state column then

a double-headed arc is used. The final step of the procedure is to create the output arcs

from the transition. As the only output is mode 2, the arcs are single-headed. The final

Petri net from the operating mode table of the toggle switch can be seen in Figure 4.6e.

As the toggle switch has multiple operating modes the procedure is applied to the

second table, the decision table. To begin step one is completed by identifying the types

in the columns of the decision table, as seen in Figure 4.7a. As the types identified in the

mode column were already identified during the process for the operational mode table,

these types do not need to be generated as places in step 2. The remaining columns,

however, do need to have a place created for each type, this can be seen in Figure 4.7b.

96 Chapter 4. Modelling of Non-Repairable Systems

In State Out

C

-

NC

W

F

-

C

NC

NC

(a) Identifying the types in each
of the columns

IN=C

IN=NC

W

F

OUT=NC

OUT=C

(b) Creating a place for each
column type

IN=C

IN=NC

W

F

OUT=NC

OUT=C

(c) Creating a transition for each
row of the table

IN=C

IN=NC

W

F

OUT=NC

OUT=C

(d) Creating an arc from each
input place for each transition

IN=C

IN=NC

W

F

OUT=NC

OUT=C

(e) Creating an arc from each
transition to the output places

Figure 4.5: Procedure steps for the construction of a Petri net representing a power supply

4.3. Petri Net Models 97

Mode 2State

-

CL

OP

closed

closed

open

FCL

Mode 1 In 1

closed

NA

-

OP

CL

NA

closed

open

open

open

closed

-

W

-

FOP

W

-

-

closed

closed

closed

open

open

open

open

(a) Identifying the types in each of the
columns

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(b) Creating a place for each column
type

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(c) Creating a transition for each row of
the table

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(d) Creating an arc from each input
place for each transition

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(e) Creating an arc from each transition
to the output places

Figure 4.6: Procedure steps for the construction of a Petri net representing a toggle switch
using the OMT

98 Chapter 4. Modelling of Non-Repairable Systems

For step three the number of rows in the table is counted and an immediate transition is

created for each row, as shown in Figure 4.7c. Step four moves through each row of the

decision table and creates an arc between the place representing in 2 column types and

the mode column types. Arcs are added according to the column types, as before. This

can be seen in Figure 4.7d. The last stage of the procedure creates arcs from each of the

transitions. These arcs go from the transition of the row to the out column type associated

with the row. As before if the only input into the transition is a double-headed arc then

the output arc is a inhibit single headed arc. The result of the procedure applied to the

decision table and the operating mode table is seen in Figure 4.7e.

4.3.1.4 Component Failure

To account for the failure of a component, transitions are required between the working

and each possible failure state. For components with only one mode and one failure state,

there is only one working and one failed state, therefore a single transition is required

between the working and failed state. This transition is dictated by the failure rate or

failure distribution of the component, and therefore the transition is a delayed transition

where the delay is the time to failure. An example of how this is represented in Petri net

form is given in Figure 4.8a, where W represents the working state and F represents the

failed state of the component.

For components with more than one mode, this becomes slightly more complex. The

mode the component currently exists in must be accounted for in order to show which

failure mode has occurred. To demonstrate this an example is given in Figure 4.8b of a

component with two operating modes,M1 andM2, where both modes have the same time

to failure, tF . Whether multiple failure modes for a component have the same failure time

depends on the component and the operational mode. This information will need to be

provided as the input to the model. Another example of this can be seen in Figure 4.8c;

this figure shows that sometimes the component can have a different failure rate for each

time of failure. In this figure there are two failure modes, FM1 and FM2, and each failure

mode has a different time to failure, tFM1 and tFM2. The Petri net works in the same way

as Figure 4.8b.

There are also components that have multiple failure states but do not have muliple

operational modes. An example of such a component is a pressure gauge. If the main

failure of a pressure gauge is to fail stuck, then there is a possibility of the pressure gauge

failing at different levels on the gauge. Depending on the system, the values on the gauge

could be classified into different groups, for example, LOW , HIGH and V HIGH (low,

high and very high pressure). To transition from the working state to one of these failure

states the system must first transition to a dedicated failure place. This requires the normal

transition as seen in Figure 4.8a. To transition to the relevant failure state the information

4.3. Petri Net Models 99

In Mode Out

C

-

NC

closed

open

-

C

NC

NC

(a) Identifying the types in each of the columns

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(b) Creating a place for each column type

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(c) Creating a transition for each row of the table

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(d) Creating an arc from each input place for each
transition

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(e) Creating an arc from each transition to the
output places

Figure 4.7: Procedure steps for the construction of a Petri net representing a toggle switch
using the DT

100 Chapter 4. Modelling of Non-Repairable Systems

from the component’s decision table is used. Within the decision table the different failure

states should be listed with their appropriate outcome in the output, OUT , column. The

decision table should have full coverage of the mission so the failure state can be determined

at any point during the mission. The failure state can then be determined using the other

rows of the decision table. The other rows of the table have an output that relates to

one of the outputs linked to a failure state. By using this information a transition to

represent each row of the decision table not related to a failure state is generated to show

the transitions into the failure states. An example of a pressure gauge decision table can

be seen in Table 4.5, where t1 is a period time in which the input, In can change, and the

corresponding work to failure state transitions can be seen in Figure 4.9. The construction

procedure to generate the transitions is described below:

1. This component has been identified as having multiple failure states and does not

have multiple operational modes. Create a place to represent that the component

has failed.

2. Create a timed transition and set the time to failure as the value generated using

the distribution identified for this component.

3. Create a single headed arc between the working place of the component and the

timed transition created in 2.

4. Create a single headed arc between the timed transition and the failed place created

in 1.

5. Moving through each row of the table: If the next row in the table is not associated

with a failure state then complete the following:

(a) Get the output types associated with this row of the table.

(b) Create an immediate transition.

(c) Create a single headed arc between the failed place created in 1. and the

immediate transition created in 5b.

(d) Using the output types identified in 5a identify the failure state would cause

the same output types.

(e) Create a single headed arc between the immediate transition and the failure

state identified in 5d.

(f) Get the input column types from the row and create a double-headed arc

between the place representing the input type and the immediate transition.

This representation of the component’s state is incorporated into the CPNs by linking

to the places that represent the working and failed states of the component.

4.3. Petri Net Models 101

W

F

tF

(a) Example Petri net of the failure
rate for a single mode component

tFW

FM1

FM2

mode = M2

mode = M1

(b) Example Petri net of the failure rates for a multiple
mode component where the failure rates are the same

(c) Example Petri net of the failure rates
for a multiple mode component where
the failure rates are different

Figure 4.8: Example of using failure rates in Petri net models

W

IN=CONST

IN=DEC

IN=INC

F

F_LOW

F_HIGH

tF

Figure 4.9: Example of a component with multiple failure states and one operating mode

102 Chapter 4. Modelling of Non-Repairable Systems

Table 4.5: Decision table for a pressure gauge

t In State Out 1

1 t < t1 CONST W LPR
2 t < t1 INC W LPR
3 t1 CONST W LPR
4 t1 INC W HPR
5 – DEC W LPR
6 – – F_LOW LPR
7 – – F_HIGH HPR

4.3.2 Circuit Petri Nets

4.3.2.1 Circuit Petri Net Construction

CiPNs are necessary to track the flow of current in electrical systems or subsystems.

A CiPN is required for every electrical ciruit identified in a given system. Once the

components have been identified in a given circuit the decision tables of those components

can be searched. Moving through each row of the decision tables, the component

states/modes that can cause current/no current within a circuit are identified.

From this information the Petri nets for ‘current in circuit n’ and ‘no current in circuit

n’ are developed. For the Petri net ‘current in circuit n’, all components in circuit n need

to pass current. For ‘no current in circuit n’, it only takes one component in circuit n to

not pass current.

Construction Procedure

1. Take circuit list n and create a place representing “Current in circuit n” and a place

representing “No Current in circuit n”.

2. For “Current in circuit n” and “No Current in circuit n” identify the rows in the

decision tables of the components in circuit list n that have an out column that

represents this circuit having current and no current.

3. For each row identified:

(a) If “–” exists in either state or mode column then ignore that row.

(b) Else, identify type in state or mode column.

4. For “Current in circuit n”, create a single immediate transition and for “No Current

in circuit n” create an immediate transition for each row identified in step 2.

5. Create a single headed inhibit arc from the transition(s) to the places representing

“Current in circuit n” and “No Current in circuit n”.

4.3. Petri Net Models 103

M
FS

PS1

PS2

OUT

OUT

OUT

OUT 1

OUT

IN

IN
IN

ININ

OUT 1
OUT 2

OUT 2IN

J1 J2

Figure 4.10: Example of a system with multiple circuits

6. For each state or mode type identified for “Current in circuit n”, create a double

headed arc from the place representing this state or mode in the CPN to the

transition.

7. For each state or mode type identified for “No Current in circuit n” create a double

headed arc from the place representing this state or mode in the CPN to the

transition representing that row.

Each CiPN connects to a component within the circuit list through the transitions created

from the decision tables. The component that is identified is determined by the software

by using the system topology information and the circuit list.

To demonstrate the procedure the example given in Figure 4.3 is extended to include

another circuit as shown in Figure 4.10. In this new system there are two power supplies,

PS1 and PS2, a fuse F a motor, M and two junctions, J1 and J2 as labelled in the

diagram. From the diagram there are two circuits that exist in this system and are listed

below:

1. { PS1, J1, FS, M, J2 }

2. { PS2, J1, FS, M, J2 }

The procedure begins with step one using the circuit lists given above. Taking circuit

1 first, a place is created to represent ‘current in circuit 1’ and another to represent ‘no

current in circuit 1’. Each row of each component decision table is considered, to find any

rows that result with an output (out) with C or NC. As seen in Figure 4.11b, all rows

of each of the tables have a C or NC output and therefore all must be considered for the

next step. Step three moves through each of the rows identified in step two and identifies

which state (or mode when applicable) of the component leads to either current or no

current. Figure 4.11c shows the states identified for each of the three components. Figure

4.11d shows the Petri net representation of the information found in this step. These

104 Chapter 4. Modelling of Non-Repairable Systems

places representing the components’ states are linked to the places within the individual

CPNs, similar to those found in Section 4.3.1.1. The next step, step four, generates a

single transition which links to the ‘current in circuit 1’ place. Step four also generates

a transition for every component state that can contribute to ‘no current in circuit 1’.

Figure 4.11e shows these transitions. Step five adds the arcs between the transition and

the places for ‘current in circuit 1’ and ‘no current in circuit 1’. A single, single-headed

inhibit arc is required between the transition and the places. An inhibit arc is required

to ensure that firing of the transition will not occur constantly. Steps 6 and 7 generate

double-headed arcs from the component state places and the transition. All arcs from the

places representing component states that lead to current connect to the same transition,

as seen in Figure 4.11g. Each component state that leads to no current have an individual

arc to connect to, as seen in Figure 4.11h.

This same procedure was also applied to the circuit 2 list producing the Petri net in

Figure 4.12.

If a component with multiple operational modes was included in the circuit, such as

the toggle switch then the method would be the same, except instead of the state identified

in step three it would be the component’s mode.

The CiPNs indicate the current state of the circuit at a given time, therefore a Petri net

extension is required to track the changes within the circuit. An example of this extension

can be found in Figure 4.13. Another purpose of this extension is to ensure that there is not

a constant flow of tokens from the CiPN. The first iteration of the connection of the CiPN

to the SPN proved that a simple link between them would cause a significant increase in

the number of tokens moving around the SPN. This would cause multiple tokens to exist

in a single place at any given time. The method demonstrated here reduced the likelihood

of too many tokens moving through the SPN.

Where the connection between the CiPN and the SPN occurs is an automated decision

made by the software. From the initiating component a flow of connections is explored.

When the first component in the circuit is found, this becomes the connecting component.

The software establishes the connection between the CiPN and the SPN on this component.

4.3.3 System Petri Nets

4.3.3.1 System Petri Net Construction

The SPN is formed from the individual CPNs (described in Section 4.2.1) to create a single

model of the overall system. The CPNs are connected together according to the system

topology.

4.3. Petri Net Models 105

Current in
Circuit 1

No Current
in Circuit 1

(a) Create places representing the current and no
current for circuit 1

In State Out

C

-

NC

W

F

-

C

NC

NC

In State Out

C

-

NC

W

F

-

C

NC

NC

In State Out

C

-

NC

W

F

-

C

NC

NC

Decision Table

for PS1

Decision Table

for FS

Decision Table

for M

(b) Moving through the component decision tables
and identifying the rows containing an output with
C and NC

In State Out

C

-

NC

W

F

-

C

NC

NC

In State Out

C

-

NC

W

F

-

C

NC

NC

In State Out

C

-

NC

W

F

-

C

NC

NC

Decision Table

for PS1

Decision Table

for FS

Decision Table

for M

(c) Within the rows identified in the decision table,
identify the state/mode of the component that can
cause the resultant output of C or NC

Current in
Circuit 1

PS1
W

M
W

FS
W

No Current
in Circuit 1

FS
F

PS1
F

M
F

(d) Diagram representation of the states identified
which have an output of C and NC

Current in
Circuit 1

PS1
W

M
W

FS
W

No Current
in Circuit 1

FS
F

PS1
F

M
F

(e) Transitions generated for both conditions, one
for current in circuit 1 and one per component state
identified for no current in circuit 1

Current in
Circuit 1

PS1
W

M
W

FS
W

No Current
in Circuit 1

FS
F

PS1
F

M
F

(f) Single-headed inhibit arcs generated between
the transitions and the places representing current
and no current in circuit 1

Current in
Circuit 1

PS1
W

M
W

FS
W

No Current
in Circuit 1

FS
F

PS1
F

M
F

(g) Double-headed arcs generated between the
component state/mode place and the transition

Current in
Circuit 1

PS1
W

M
W

FS
W

No Current
in Circuit 1

FS
F

PS1
F

M
F

(h) Double-headed arcs generated between the
component state/mode place and the transition
associated with the state

Figure 4.11: Procedure steps for the construction of a Petri net representing circuit 1

106 Chapter 4. Modelling of Non-Repairable Systems

Current in
Circuit 2

PS2
W

M
W

FS
W

No Current
in Circuit 2

FS
F

PS2
F

M
F

Figure 4.12: Petri net for current and no current in circuit 2

Current in
Circuit 2

PS2
W

M
W

FS
W

No Current
in Circuit 2

FS
F

PS2
F

M
F

Control

Place: NC

Control

Place: C

Component

Connection: C

Component

Connection: NC

Figure 4.13: Petri net for the monitoring of the state of circuit 2 and the connection to
the SPN

4.3. Petri Net Models 107

Construction Procedure

The procedure moves through the components in the order that they are given by the user.

The procedure for the completion of the SPN is given as follows:

1. Check: Does component A connect to another component/entity in the system

structure?

(a) Yes: continue to step 2.

(b) No: This is going to the boundary out of the system structure. Create single

headed arc from output place to a boundary line. Return to step 1 for next

component.

2. Taking CPN of component A, identify output linked to an input of a component,

B, using the topology information. Are the output/input types the same?

(a) Yes: Continue to step 3.

(b) No: This connection is labelled incorrectly or there is an error in the decision

table for this component.

3. In the CPNs there will be an output place of component A that can be linked to an

input place of component B, e.g. “OUT = C” and “IN = C”. Merge the places in

the Petri nets into a single place.

4. Are there any other outputs associated with component A?

(a) Yes: Repeat steps 1-3 for new output connection.

(b) No: Go back to step 1 for new component.

To demonstrate this procedure, the system in Figure 4.3 was used. Starting with the power

supply, PS1, as seen in Figure 4.14a, step one looks at the topology and identifies whether

component PS1 is connected to any other component in the system. PS1 is identified

to be connected to the component FS (Figure 4.14b). Step two identifies which output

place of the component PS1 is connected to which component FS input place. The values

within the input and output places are checked to ensure that they have the same values,

e.g. C and NC. Step 3 merges the place output and input places as seen in Figure 4.14c.

Step four looks to identify any other PS1 outputs, as there are none the procedure moves

on to the next component, FS. The procedure is repeated for each component in the

system. These can be seen in Figures 4.14d-4.14f.

108 Chapter 4. Modelling of Non-Repairable Systems

IN=C

IN=NC

W

F

OUT=NC

OUT=C

PS

tF

(a) Starting with the first component, the power
supply PS1

IN=C

IN=NC

W

F

OUT=NC

OUT=C

PS

IN=C

IN=NC

W

F

OUT=NC

OUT=C

FS

tFtF

(b) Identifying the link between the power supply’s
out and the next component in the system topology,
the fuse FS

FF

(c) Creating the arc between components PS1 and
FS

FF

(d) Identifying the link between the fuse’s out and
the next component in the system topology, the
motor M

FF

(e) The arc between components FS and M is
created

FF

(f) As the system topology identifies PS1 as the
component connected to M and arc is created
between M component out and PS1 component in

Figure 4.14: Procedure steps for the construction of the system Petri net

4.3. Petri Net Models 109

4.3.4 Phase Petri Nets

The main property of the phase Model is that this monitors the time of the simulation.

Any components that are governed by a specified time are controlled by the Phase

model. Although the phase transition table may not have all associated time frames where

components change, the Phase model must still account for all possible combinations.

4.3.4.1 Phase Petri Net Construction

The PPN is constructed principally from the phase transition table. However, as the Phase

Petri net controls components, when the component decision table contains a time heading,

these need to be accounted for. Therefore, the second set of information comes from the

component decision tables.

Construction Procedure

The procedure for generating the Petri nets to show the phases of the mission is detailed

below:

1. Going through the phase transition table, identify the main phases using the time

column. The times will exist in rows where a main phase is in the fromphase

column. The times listed represent the phase length by taking the value in the time

column minus any previous phase lengths identified. The symbol δ, which represents

a small amount of time, is ignored in this step. For each of the phases identified and

times listed in the table a place is created.

2. Between places representing the phase names/numbers and places representing a

phase length, t, create a timed transition with a delay of time t.

3. Create a single headed arc between the place representing the phase name/number

and the transition. Also create a single headed arc between the transition and the

place representing the phase length, t.

4. Between the places representing the phase length t and the next phase name/number

in the list, create an immediate transition.

5. Create a single headed arc between the place representing the phase length, t and

the immediate transition and create a single headed arc between the immediate

transition and the place representing the next phase name/number.

6. Using the phase transition table, identify all types (phase names/numbers) in the

From Phase and To Phase columns.

110 Chapter 4. Modelling of Non-Repairable Systems

7. Apart from the phase names/numbers, found in step 1, create a place representing

each phase name/number.

8. Moving through each row of the phase transition table:

(a) Create an immediate transition if;

i. There is a time associated with the row i.e. not ‘-’ apart from δ.

The transition is placed between the place representing the phase length

(associated with the row) and the To Phase place.

ii. Either the From Phase or To Phase is not one of the main phases identified

in step 1. The immediate transition is placed between the FromPhase

place and the ToPhase place.

(b) For any rows that contain δ a timed transition is created with a delay of δ and

placed between the FromPhase place and the ToPhase place.

(c) Create a single-headed arc:

i. Between the phase that either represents the phase length or the From

Phase, depending on step 8(a).

ii. Between the transition generated in step 8(a) and the To Phase place.

(d) The condition column states which component and either the mode or output

that can instigate the change in phase. Therefore a link is created between the

CPN holding the place representing the component mode or output type and

the transition representing the row. A double headed arc is used.

9. Finally, time columns in component decision tables are considered if there are any

in the system.

(a) A list of the different times, or time frames, that exist in the component decision

tables are generated.

(b) Create a place if the following are true:

i. The time does not already exist as a place created in step 1.

ii. If there are any component decision tables that include a time frame that

the main phases effectively represent, e.g. 0<t<1.5. If the main phase is

length 1.5.

(c) When all places are created, an immediate transition is generated for each time

frame in the list. An arc is created between the newly created transition and

the place representing the time frame.

(d) Input places into the transition depends on the following:

4.3. Petri Net Models 111

i. If the time frame stated has a ≤ sign associated with the first half of the

time frame, then the input arc comes from the place that represents that

instant in time.

ii. Else, the input place comes from the main phase that begins at the same

time as the time frame.

(e) The arc from the place representing the time frame depends on the second half

of the time frame:

i. If the second half of the time frame stated has a ≤, then the arc connects

to the same transition as the place that represents that specific moment in

time, created in step 1.

ii. Else, the arc connects to the same transition as the one of the main phases

that also has the same end of the time frame. This transition will be one

that was created in step 3.

10. A connection is then made between the time frame places generated in step 9 and

the component transition that has a time element associated with it. A double

headed arc is used here.

To demonstrate the procedure the system in Figure 4.15 is used. This system has three

phases; the first is a discrete phase which is the closing of the switch, the second phase the

heater, H, for a time, t1 is on and the third phase the heater is off and the fan is turned

on, for a length of t2. The phase transition table for this system can be seen in Table 4.6.

The nine phases listed in the table are as follows:

1. Start-up Phase

2. Heating Phase

3. Cooling Phase

4. System failed to start

5. System failed to heat for correct amount of time

6. System failed to cool for correct amount of time

7. System overheated due to heater on for too long

8. System overcooled due to fan on for too long

9. Mission Completed

112 Chapter 4. Modelling of Non-Repairable Systems

All components are assumed to be in a working condition at the start of the mission and

the heater, H, and the fan, F are OFF . Timer relay, TIM1, should last for a length of

time, t1 + t2 and timer relays, TIM2 and TIM3, should last for a length of time, t1.

The initial modes of the components are as follows:

• Toggle switch, TS, mode = OP

• Normally-open contact, C1, mode = OP

• Normally-open contact, C2, mode = OP

• Normally-closed contact, C3, mode = CL

• Normally-open contact, C4, mode = OP

The system is started by pressing the switch, TS, closed. This initiates the timer relay,

TIM1, which closes the contact C1. By closing C1 this completes the inner circuit, and

starts timers TIM2 and TIM3. By starting timer relays TIM2 and TIM3 these close

and open normally-open contact, C2, and normally-closed contact, C3, respectively. At

this point the heater, H, is ON . Relay, R, is also energised and closes contact C4. After

a time t1, the timer relay TIM2 de-energises and opens normally-open contact C2. This

breaks the circuit to the heater, and turns the heater OFF . Also at time t1, the timer relay

TIM3 de-energises and normally-closed contact, C3, closes. This completes the circuit and

the fan turns ON . After a time t1 + t2, the timer relay TIM1 de-energises and opens the

normally-open contact, C1. As no current is flowing through the relay, R, this de-energises

and opens contact C4. Therefore there is no longer any current in the circuit with the

fan, therefore turning the fan OFF . S1 and S2 are sensors for the components H and F ,

respectively.

Table 4.6: Phase Transition Table for heater fan system

t From Phase To Phase Condition

1 0 1 2 C1 MODE=CL
2 δ 1 4 C1 MODE=OP
3 - 2 5 S1 OUT=OFF
4 t1 2 3 S1 OUT=OFF
5 t1 2 7 S1 OUT=ON
6 - 3 6 S2 OUT=OFF
7 t1 + t2 3 8 S2 OUT=ON
8 t1 + t2 3 9 S2 OUT=OFF

4.3. Petri Net Models 113

(a) Schematic of the heater, fan system

PS2

TS

TIM1 TIM2

H F

C2C1

IN

IN1

PS1

TIM3 C3

IN1

IN

IN

IN2

IN

IN1

IN2

IN

IN

IN1

IN2

IN

IN2

IN

OUT

OUT1

OUT

OUT

OUT

OUT2

OUT

OUT1

OUT2
OUT1

OUT2

OUT2 OUT

OUT1

OUT2

IN

OUT

OUT

IN2

OUT1OUT1

IN1

OUT1

IN1

S1 S2

OP

IN

OUT2

IN

OUT2
OUT OUT

IN1
IN2OUT

IN2

C4

IN2

OUT

R

OUT2

IN

OUT1

IN1

OUT1IN

OUT2

IN OUT1

OUT2

J1 J2

J3J4
IN1

IN2

OUT
J8

J5 J6

J7
IN1OUT

IN2

(b) System topology diagram

Figure 4.15: System diagram and topology for a heater and fan system

114 Chapter 4. Modelling of Non-Repairable Systems

Table 4.7: Decision Table for Timer Relay TIM1

t In State Out 1 Out 2

1 0 < t < t1 + t2 C W EN C
2 t1 + t2 C W DE NC
3 – – F DE NC
4 – NC – DE NC

Table 4.8: Decision Table for Timer Relays TIM2, TIM3

t In State Out 1 Out 2

1 0 < t < t1 C W EN C
2 t ≥ t1 C W DE NC
3 – – F DE NC
4 – NC – DE NC

Following the steps listed the PPN for this system was generated using the phase transition

table in Table 4.6 and the component decision tables. The component decision tables which

incorporate time (the timer relays) are given in Tables 4.7 and 4.8. This procedure was

split into three sections; identifying and creating the main phase places and connections,

the phase transition table and the component decision tables. Figure 4.16 represents the

main phases, steps 1-5. Figure 4.17 represents the phase transition table, steps 6-8. Figure

4.18 represents the component decision tables, steps 9-10.

Starting from the phase transition table, the main phases were identified as phase 1,

2 and 3, as these have a time associated with the row. The phase lengths were identified

as t = 0, t = t1 and t = t2. This step can be seen in Figure 4.16a. Step two created

a timed transition with a delay of the phase length for each of the phase lengths given.

This can be seen in Figure 4.16b. Step three created single headed arcs between the

places representing the phases and the transitions. A single-headed arc was also connected

between the transition and the time place. This can be seen in Figure 4.16c. The next step

created an immediate transition between the places representing the phase lengths and the

next phase. This can be seen in Figure 4.16d. The final step in the first stage generated

a single-headed arc between the places representing the phase lengths and the immediate

transitions generated in the previous step. Finally, single-headed arcs were created between

the immediate transitions and the next phase places.

The second stage used the phase transition table to first identify all phase names/numbers

{1, 2, 3, 4, 5, 6, 7, 8, 9}. Once all were identified, as seen in Figure 4.17a, a place was

created for each, except those that were already created in the first step, which can be

seen in Figure 4.17b. Step eight moves through each row of the table, if a time exists in

4.4. Algorithm 115

the row then the arc is created from the place representing that time, to an immediate

transition. This can be seen in row 5 where the time is t1 and the phase moves from 2 to 7.

Otherwise it comes from the place representing the From Phase. An arc is created between

this place and the transition, and another arc is created between the transition and the

phase listed in the To Phase column. The condition column states the component and

then either the mode or the output that initiates the transition. Therefore a connection

was made between this place in the CPN and the transition associated with the row using

a double-headed arc. For example in row 1 the condition is that the component C1 is in

an operating mode of CL for the phase to transition. There is then an arc from the CPN

place for mode = CL to the transition. The result of this step can be seen in Figure 4.17c.

The third stage moved through each of the component decision tables, to find any with

a time associated row. In this example there were three timer relays, TIM1, TIM2 and

TIM3, which had rows associated with time. If any of the times had been the exact same

as the length of one of the main phases these would have been ignored. In this system

there are four time frames; (0 < t < t1), (0 < t < t1 + t2) and (t ≥ t1). The first

time was represented by phase 2 and therefore ignored. The second spans two phases and

therefore a place was created to represent this time frame and an immediate transition was

generated. A single headed arc was created between the transition and the new place. As

phase 1 shared the same start time as this time frame a double-headed arc was generated

between this place and the transition created. As the second half of the time frame was

linked to the phase lengths, then the value given minus any previous phase lengths (i.e.

t = t1 + t2− (t1 +0)) was the transition that the place must link to. The other time frames

were generated in a similar fashion. This can be seen in Figure 4.18a. The final step was

to create a link between these time frames and the transitions in the CPNs associated

with these time frames. These are given as double headed arcs. Figure 4.18b shows the

completed PPN.

4.4 Algorithm

The generation of the Petri nets discussed in Sections 4.3.1-4.3.4 are performed by the

software. An overview of the design flow in the context of the program is presented below.

The algorithm is presented in the flow chart in Figure 4.19.

1. The information required from the user is the following:

(a) Information about the components in the system; how they work, fail and what

type of connections each component has.

(b) A system topology diagram of how the components link together.

116 Chapter 4. Modelling of Non-Repairable Systems

Phase 1
t=0

Phase 3
t1<t<t1+t2t=t1

Phase 2
0<t<t1

t=t1+t2t=0

(a) Create a place for each phase and each phase length

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2t=00

(b) Create a timed transition with a delay of the phase length

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2t=00

(c) Create an arc between the phase places and the timed transition and an arc between the
timed transition and the place representing the length of the phase

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2t=00

(d) Immediate transitions are created between the places representing the length of the phase
and the next phase

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2t=00

(e) Create an arc between the places representing the length of the phase and the immediate
transition and an arc between the transition and the next phase

Figure 4.16: Steps 1-5 of the construction procedure applied to the heater, fan system

4.4. Algorithm 117

t From Phase To Phase Condition
1 0 1 2 C1 MODE=CL
2 1 4 C1 MODE=OP
3 - 2 5 S1 OUT=OFF
4 t1 2 3 S1 OUT=OFF
5 t1 2 7 S1 OUT=ON
6 - 3 6 S2 OUT=OFF
7 t1+t2 3 8 S2 OUT=ON
8 t1+t2 3 9 S2 OUT=OFF

(a) Identifying all phase names/numbers in the phase transition table

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2

Phase 5

Phase 7

Phase 9

Phase 6

Phase 4 Phase 8

t=00

(b) Generating a place for each of the phase names/numbers identified in step 6

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2

Phase 5

Phase 7

Phase 9

Phase 6

S1
OUT=OFF

C1
MODE=CL

S1
OUT=ON

Phase 4

C1
MODE=OP

S2
OUT=OFF

S2
OUT=ON

Phase 8

t=00

(c) Creating the transitions, arcs using the rows of the phase transition table

Figure 4.17: Steps 6-8 of the construction procedure applied to the heater, fan system

118 Chapter 4. Modelling of Non-Repairable Systems

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2

Phase 5

Phase 7

Phase 9

Phase 6

S1
OUT=OFF

C1
MODE=CL

S1
OUT=ON

Phase 4

C1
MODE=OP

S2
OUT=OFF

S2
OUT=ON

Phase 8

0<t<t1+t21

11

t=00

t≥t1

13

3

(a) Time frames identified in the component decision tables have a place generated

Phase 1
t=0

Phase 3
t1<t<t1+t2t1 t=t1

Phase 2
0<t<t1 t2 t=t1+t2

Phase 5

Phase 7

Phase 9

Phase 6

S1
OUT=OFF

C1
MODE=CL

S1
OUT=ON

Phase 4

C1
MODE=OP

S2
OUT=OFF

S2
OUT=ON

Phase 8

0<t<t1+t21

11

2

t=00

t≥t1

13

4

3

(b) Links to the component Petri nets is established

Figure 4.18: Steps 9-10 of the construction procedure applied to the heater, fan system

4.4. Algorithm 119

(c) A phase transition table of the mission. The user is required to know how

many phases the system can reside in and how the system can change from one

phase to another.

(d) Component failure rates, or failure distributions.

(e) Initial component modes for components that have multiple modes of operation.

(f) Initiating component information.

2. This information is presented in five types of files:

(a) Text-based decision tables for components that don’t already exist in the

component library.

(b) Text-based operational mode tables for components that don’t already exist in

the component library.

(c) A text-based description of the system topology, listing instances of components

and their connections.

(d) A text file containing the phase transition table for the system.

(e) A text file containing the simulation information including the failure data,

initial operating modes and the initiating component.

3. The component decision tables and operational mode tables are added to the

component library in the system. This library is persistent and allows re-use of

components in the future.

4. The circuit lists are automatically generated by the software using the information

in the component tables within the library and the system topology.

5. The following Petri nets are now automatically generated by the software:

(a) CPNs: Generated for every type of component in the system found in the

component library. These are stored in a CPN library.

(b) CiPNs: Generated for every list found by the software.

(c) SPN: For every instance of a component listed in the system topology file,

there is a copy of the CPN made from the CPN library. With the information

in the system topology file, the CPNs are connected together. The CiPNs and

the CPNs make up the SPN. As the CPN library holds the generic CPNs, the

component failure data is only added within the SPN. The component failure

data is given by the user in the form of a text file.

(d) PPN: This is generated from the phase transition table and the component

decision tables found in the component library.

120 Chapter 4. Modelling of Non-Repairable Systems

6. The reliability model is the SPN and the PPN connected together. The last piece

of information required from the user is the initial conditions which contains the

following:

(a) Initial modes of components that have operational mode tables.

(b) The initiating component with the output/input and the value.

7. Once the initiating condition is set then the simulation can begin.

8. After the software has run information about the reliability/unreliability of the

system undertaking the mission specified will be given to the user.

4.5 Summary

The procedures demonstrated here form the basis of the algorithms for the software created.

These procedures could also be used by individuals to generate the reliability models

by hand as they are simple and efficient. They show a reliable method of taking the

information held within the text-based files and generating the reliability models from

them.

4.5. Summary 121

Component
Decision Table

files

Component
Operational Mode Table

files

System Topology
files

Mission Profile
file

Component
Petri Nets

System
Petri Net

Circuit
Petri Nets Phase

Petri Net

Simulation

Reliability Model

Component
failure Data

Simulation
Results

Component
Library

Circuit Lists

Components in the
system

System Topology
diagram

Phase Transition
Table

Initial
Conditions

Component
Petri Net Library

Figure 4.19: Flow chart of the algorithm

Chapter 5

Application of the Procedure to

Pressure Tank System

Contents
5.1 Introduction . 123

5.1.1 The Pressure Tank System . 124

5.2 System and Mission Description . 125

5.2.1 Components . 125

5.2.2 System Structure . 130

5.2.3 Circuits . 130

5.2.4 Mission Profile . 131

5.3 Pressure Tank System Model Construction 131

5.3.1 Component and System Petri Nets . 132

5.3.2 Circuit Petri Nets . 132

5.3.3 Phase Petri Net . 134

5.3.4 The Completed Model . 142

5.4 Summary . 142

5.1 Introduction

The procedures discussed in Chapter 4 are brought forward to be demonstrated using a

pressure tank system. This pressure tank system is a simple system with few phases,

making it an ideal system to demonstrate the procedure. This chapter discusses the

pressure tank system in terms of the process the system undertakes, for the purposes

of understanding how the system can move from one phase to another. There are two

distinct sections of this chapter. The first section describes each element of the system:

the components, the circuits and the structure. This section also describes each of the

phases the system can reside in through the mission. The second section takes these

descriptions and, using the procedure outlined in Chapter 4, shows the final Petri nets:

124 Chapter 5. Application of the Procedure to Pressure Tank System

S1

V

P

FS

M

R
PG T

TIM

OP

S2

S1 – Push Switch

S2 –Toggle Switch

TIM – Timer Relay

R – Relay

TC – Timer (TIM) Contact

RC

TC

RC – Relay (R) Contact

PS1, PS2 – Power Supplies

FS – Fuse

M – Motor

P – Pump

T – Tank

V - Valve

PG – Pressure Gauge

OP - Operator

PS1

PS2

KEY

Figure 5.1: Pressure Tank System

the component Petri nets, the circuit Petri nets, the system Petri net and the Phase Petri

net.

5.1.1 The Pressure Tank System

The pressure tank system as a schematic can be seen in Figure 5.1. This shows all the

individual components in the system and how they connect to each other.

5.1.1.1 System Process

The system is initially started by depressing switch S1, momentarily applying power to the

timer relay, TIM , whose contacts close and start the timer. Note that switch S2 is closed

at system startup. Switch S1’s contacts open. Power is applied to relay R whose contacts

close and start the pump motor. The tank starts to fill. After a time t1 the timer relay

contacts open, relay R de-energises and its contacts open, thus removing power from the

pump motor. When TIM is de-energised, the timer clock resets. The operator will notice

the tank pressure by the pressure gauge and will open the valve to empty the tank. After

a time t2, the tank will have emptied sufficiently for filling to start again by the operator

closing the valve and depressing switch S1. Switch S2 is a safety mechanism built into the

system so that, in the event that a failure occurs and the tank overfills, the operator, who

will be alerted by the pressure gauge, can stop the pump by opening that switch, cutting

5.2. System and Mission Description 125

power to R.

5.1.1.2 Initial Conditions of the System

All components are assumed to be in a working condition and that the following

components exist in these initial modes:

• Switch S1 is open.

• Switch S2 is closed.

• Tank is empty.

• Relay contact, RC is open.

• Timer relay contact, TC is open.

• Valve V is closed.

5.2 System and Mission Description

This section discusses the components within the pressure tank system and how each of

these components behaves through the decision tables and, when applicable, operational

mode tables. Electrical circuits present within the system are listed. The system itself is

described in terms of its structure and the mission is desribed through a phase transition

table representing the process described in Section 5.1.1.1.

5.2.1 Components

The components of a non-repairable system are described by the following information:

• Decision Tables

• Operational Mode Tables

• Failure Data

Each component in the pressure tank system is discussed in detail below.

5.2.1.1 Decision and Operating Mode Tables

The component tables describing the pressure tank system can be seen in Tables 5.1-5.15.

Tables 4.1-4.3, which showed the component tables for a power supply and toggle switch,

126 Chapter 5. Application of the Procedure to Pressure Tank System

are re-used here to represent PS1, PS2 (power supplies) and S2 (toggle switch). As push-

switch S1 behaves differently to S2, this component requires a different set of component

tables.

Table 5.1: Operational mode table for push switch S1

Mode 1 Command (In1) State Mode 2

1 Closed – FCL Closed
2 Closed CL – Closed
3 Closed NA W Open
4 Open – FOP Open
5 Open CL W Closed
6 Open NA – Open

Table 5.2: Decision table for switches S1 and S2, and contacts TC and RC

In 2 Mode Out

1 C Closed C
2 NC – NC
3 – Open NC

Table 5.3: Operational mode table for toggle switch S2 and Valve V

Mode 1 Command (In1) State Mode 2

1 Closed – FCL Closed
2 Closed CL – Closed
3 Closed OP W Open
4 Closed NA – Closed
5 Open – FOP Open
6 Open OP – Open
7 Open CL W Closed
8 Open NA – Open

Table 5.4: Decision table for power supplies PS1 and PS2, and fuse FS

In State Out

1 C W C
2 – F NC
3 NC – NC

5.2. System and Mission Description 127

Table 5.5: Decision table for relay R

In State Out 1 Out 2

1 C W EN C
2 – F DE NC
3 NC – DE NC

Table 5.6: Decision table for timer relay TIM

t In State Out 1 Out 2

1 t < t1 C W EN C
2 t ≥ t1 C W DE NC
3 – – F DE NC
4 – NC – DE NC

Table 5.7: Operational mode table for timer relay contact TC and relay contact RC

Mode 1 Command (In1) State Mode 2

1 Closed – FCL Closed
2 Closed EN – Closed
3 Closed DE W Open
4 Open – FOP Open
5 Open DE – Open
6 Open EN W Closed

Table 5.8: Decision table for junctions J1 and J3

In 1 In 2 Out 1

1 C – C
2 – C C
3 NC NC NC

Table 5.9: Decision table for junctions J2 and J4

In 1 Out 1 Out 2

1 C C C
2 NC NC NC

128 Chapter 5. Application of the Procedure to Pressure Tank System

Table 5.10: Decision table for motor M

In State Out 1 Out 2

1 C W C ON
2 – F NC OFF
3 NC – NC OFF

Table 5.11: Decision table for pump P

In State Out 1

1 ON W FL
2 – F NFL
3 OFF – NFL

Table 5.12: Decision table for tank T

t In 1 In 2 State Out 1 Out 2

1 – FL Open W CONST FL
2 – FL Closed W INC NFL
3 – NFL Closed W CONST NFL
4 t ≤ t1 NFL Open W CONST NFL
5 t1 < t ≤ t1 + t2 NFL Open W DEC FL
6 t ≤ t1 – – F CONST NFL
7 t1 < t ≤ t1 + t2 – – F DEC NFL

Table 5.13: Decision table for pressure gauge PG

t In State Out 1

1 t < t1 CONST W LPR
2 t < t1 INC W LPR
3 t1 CONST W LPR
4 t1 INC W HPR
5 – DEC W LPR
6 t1 < t ≤ t1 + t2 CONST W HPR
7 t1 < t ≤ t1 + t2 INC W VHPR
8 – – F_LOW LPR
9 – – F_HIGH HPR
10 – – F_VHIGH VHPR

5.2. System and Mission Description 129

Table 5.14: Decision table for operator OP

t In 1 State Out 1 Out 2 Out 3

1 0 LPR W CL CL CL
2 0 < t < t1 + t2 LPR W NA NA NA
3 – HPR W OP NA NA
4 – VHPR W NA OP NA
5 – – F NA NA NA

Table 5.15: Decision table for valve V

In 2 Mode Out

1 – Closed NFL
2 NFL – NFL
3 FL Open FL

5.2.1.2 Component Failure Data

The failure data for each component in the pressure tank system is listed within Table

5.16.

Table 5.16: Pressure tank system component failure data

Component identifier Failure Mode Failure Rate

S1 F_closed 0.1
S1 F_open 0.1
S2 F_closed 0.8698
S2 F_open 0.001
PS1 F 0.001
PS2 F 0.001
CT F_closed 0.1
CT F_open 0.1
CR F_closed 0.00023
CR F_open 0.00023
TIM F 0.001
R F 0.1
M F 0.001
FS F 0.01
P F 0.1
T F 0.0001
V F_closed 0.03
V F_open 0.03
PG F_LOW 0.01
PG F_HIGH 0.01
PG F_VHIGH 0.01
OP F 0.1

130 Chapter 5. Application of the Procedure to Pressure Tank System

S2

S1

V

P

FS

M

R
PG T

TIMTC

PS1

RC

OP

PS2

J1

J2

J3J4

Out

InIn

In

In 1

In 2

InIn 1

In 2

In 2

In

In 1

In

In2
In1

In

In

In

In 2
In 1

In

In

In 1
In 2

In 2
In 1

In

In

Out 1
Out 2Out 1

Out 2

Out 2

Out 1

Out

Out
Out

OutOut

Out

Out 1
Out 2

Out 1
Out 2Out

Out

Out 1
Out 2 Mode

Out

Out

Out 1Out 2
Out 3

Figure 5.2: Schematic of Pressure Tank System

5.2.2 System Structure

The system description requires the following elements:

• Component Descriptions: Using the component decision tables to identify the number

of input and outputs.

• Schematic of the system: How the components link together showing the relationship

between one component’s output and another component’s input.

The system topology diagram (or schematic) of the pressure tank system can be seen in

Figure 5.2.

5.2.3 Circuits

If a system contains electrical components then there will be circuits within that system.

These must be identified as current flowing in a circuit depends on all its components

simultaneously; identifying circuits simplifies the analysis of these components. Within

the pressure tank system five circuits were identified as seen below:

1. {PS1, S2, J2, TIM, J3, J4, S1, J1, PS1}

2. {PS1, S2, J2, TIM, J3, J4, CT , J1, PS1}

3. {PS1, S2, J2, R, J3, J4, CT , J1, PS1}

4. {PS1, S2, J2, R, J3, J4, S1, J1, PS1}

5.3. Pressure Tank System Model Construction 131

5. {PS2, FS, CR, M, PS2}

The above list of circuits begin and end with the same component, in this case the power

supply, to show that a continuous loop must be present for it to be a circuit. This list of

circuits would be used to generate the CiPNs as discussed in 4.3.2.

5.2.4 Mission Profile

The mission profile is represented through a phase transition table, but before it can be

constructed all phases that a system can enter must be identified. The pressure tank

system has four phases and are listed as follows:

• Phase 1: Start up, a discrete phase, only occurring momentarily when switch S1 is

pressed at t=0

• Phase 2: Filling of the tank, T , with duration t1

• Phase 3: Opening the valve, V , a discrete phase at t=t1.

• Phase 4: Emptying the tank, T, with duration t2

These four phases would be the normal mission for the pressure tank system as long as

no component or combination of components cause the system to fail. Additional phases,

representing different failures, must also be identified. The phases representing a failure of

the pressure tank system are shown below:

• Phase 5: System failure due to overfill

• Phase 6: System overfill with system shutdown (aborted by operator using switch

S2)

• Phase 7: System overfill with failure to shutdown system (abort failed)

• Phase 8: System failure not from overfil (unrelated component failure)

Finally, a phase is designated as mission success and in this case this was assigned to

Phase 9.

5.3 Pressure Tank System Model Construction

This section shows how the information captured in the previous section is represented as

the Petri Nets described in Chapter 4: CPNs, CiPNs, SPN and PPN.

132 Chapter 5. Application of the Procedure to Pressure Tank System

Table 5.17: Phase transition table

Row Number t From Phase To Phase Condition

1 0 1 2 TC Mode=Closed
2 δ 1 8 TC Mode=Open
3 t1 2 3 T Out1=CONST
4 – 2 8 T Out1=CONST
5 – 3 4 V Mode=Open
6 δ 3 5 V Mode=Closed
7 t1 + t2 4 9 T Out1=DEC
8 – 4 8 T Out1=CONST
9 δ 5 6 RC Mode=Open
10 δ 5 7 RC Mode=Closed

5.3.1 Component and System Petri Nets

Using the procedure in Section 4.3.1.1 and the component tables listed in Section 5.2.1.1,

the CPNs were constructed for each component type. Figure 5.3b and Figures 5.6-5.8

show the constructed CPNs for the pressure tank system. The dashed lines connecting

to the transitions of the Petri nets seen in Figures 5.5, 5.7a, 5.8b, 5.8c and 5.8d are the

connections that link to the PPN.

Figure 5.4 shows an example of a Petri net for a component with multiple modes of

failure, but only a single failure rate which is common to all failure modes. Examples of

such components are S1, S2, TC, RC and V.

The pressure gauge, PG, has multiple failure states and only one operational mode.

This component requires a different set of working-to-failed transitions. This is shown in

Figure 5.5.

The operational mode table and decision table equivalents of each of the components

in the pressure tank system can be seen in Figures 5.6 - 5.8.

The system Petri net is created by using the system schematic/topology diagram. For

every instance of a component type found within the diagram, an instance of the equivalent

Component Petri net is used. Identifying the relationships between one component’s output

and another component’s input connects the component instance places together. The

system Petri net for the pressure tank system can be seen in Figures 5.9-5.12.

5.3.2 Circuit Petri Nets

The circuit Petri nets are created directly from the circuit lists and within the pressure

tank system five circuits were identified as listed in Section 5.2.3. Each of the lists is used to

create an individual circuit Petri net. The equivalent circuit Petri nets for the listed circuits

can be seen in Figures 5.13 and 5.14. The place that represents each of the components

in the list is dependent on whether the component has a single or multiple mode(s) of

operation. If the component has a single mode of operation, then the component’s state,

5.3. Pressure Tank System Model Construction 133

mode=closed

mode=open

W

FCL

FOP

IN1=NA

IN1=CL

(a) Petri net of Switch S1 from the operational
mode transition table

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=NA

IN1=CL

(b) Petri net of S1 with the addition of the decision table
information

Figure 5.3: CPN construction and integration of the component tables for the component
push-switch (S1)

i.e. working or failed, is used to represent the component as this dictates if the component

can allow current or no current to pass through it. If the component has multiple modes

of operation then the component’s mode is used to represent the component as this will

dictate the potential current condition or no current condition.

The circuit Petri nets link, via a specific component in each circuit, to the system Petri

net. The component in each circuit that makes this link is identified by an algorithm that

follows component inputs and outputs of type (C, NC) from the initiating component. The

first component encountered that has more than one operational mode is selected. If no

such components are found then the first circuit component encountered by the algorithm is

selected instead. The preference for components with multiple modes of operation reduces

the propagation time of changes between modes in circuit components. The circuits seen

in Figure 5.13a and Figure 5.13d are connected through component S1, circuits in Figure

134 Chapter 5. Application of the Procedure to Pressure Tank System

Figure 5.4: Component Petri net of the failure rate for components S1, CR, CT and V

W

IN=CONST

IN=DEC

IN=INC

F

F_LOW

F_HIGH

F_VHIGH

tF

Figure 5.5: Pressure Gauge , PG, transitions between the working state and the different
failure states

5.13b and Figure 5.13c are connected through TC, and circuit in Figure 5.14 is connected

through component RC. The method of connection can be seen in Figure 5.15.

5.3.3 Phase Petri Net

The PPN is created in a similar fashion to the decision tables and operational mode

tables in that each row of the table is represented by a unique transition within the PPN.

However, due to the time element of the PPN, the overall construction process is a little

more complex. As the PPN effectively manages the time element of the mission, there are

a number of connections to components within the pressure tank system from the PPN.

These connections enable phase-based transitions within components to fire.

The phase transition table that is detailed in Table 5.17 can be mapped to the the

PPN in Figure 5.16.

5.3. Pressure Tank System Model Construction 135

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

(a) Switch S2 Petri net

IN1=EN

IN1=DE

FOP

FCL

W mode=closed

mode=open

IN2=NC

IN2=C

OUT=C

OUT=NC

(b) Contacts CR and CT Petri net

mode=closed

mode=open

IN2=NFL

IN2=FL

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

OUT1=FL

OUT1=NFL

(c) Valve V Petri net

Figure 5.6: Petri nets for components with multiple modes of operation

136 Chapter 5. Application of the Procedure to Pressure Tank System

IN=C

IN=NC

W

F

tF

OUT2=NC

OUT2=C

OUT1=EN

OUT1=DE

(a) Timer Relay TIM Petri net

IN=C

IN=NC

W

F

tF

OUT2=NC

OUT2=C

OUT1=EN

OUT1=DE

(b) Relay R Petri net

IN=C

IN=NC

W

F

tF

OUT=NC

OUT=C

(c) Petri net for Power Supplies,
PS1 and PS2, and Fuse FS

IN=C

IN=NC

W

F
tF

OUT1=NC

OUT1=C

OUT2=OFF

OUT2=ON

(d) Motor M Petri net

(e) Junctions J1 and J3 Petri net

IN=C

OUT1=C

OUT2=C

OUT1=NC

OUT2=NC

IN=NC

(f) Junctions J2 and J4 Petri net

Figure 5.7: Petri nets for components within circuits

5.3. Pressure Tank System Model Construction 137

IN=ON

IN=OFF

W

F

tF

OUT=FL

OUT=NFL

(a) Pump P Petri net

OUT2=NFL

OUT2=FL

OUT1=INC

OUT1=DEC

OUT1=CONST
IN2=Open

IN2=Closed

W

F

IN1=NFL

IN1=FL

tF

(b) Tank T Petri net

IN=CONST

IN=DEC

IN=INC

W

OUT=LPR

OUT=HPR

OUT=VHPR

F_LOW

F_HIGH

F_VHIGH

(c) Pressure Gauge PG Petri net

IN=LPR

IN=HPR

IN=VHPR

W

F

OUT1=OP

OUT2=OP

OUT1=CL

OUT2=NA

OUT1=NA

OUT3=CL

OUT3=NA

tF
OUT2=CL

(d) Operator OP Petri net

Figure 5.8: Component Petri nets for non-circuit components

138 Chapter 5. Application of the Procedure to Pressure Tank System

O
U

T
=
C

O
U

T
=
C

O
U

T
=
N

C

IN
=
C

IN
=
N

C

W F
t F

O
U

T
=
N

C

O
U

T
=
C

O
U

T
=
C

O
U

T
=
N

C

IN
1
=
C

IN
2
=
C

O
U

T
=
N

C

IN
1
=
N

C

IN
2
=
N

C

IN
2
=
N

C

IN
2
=
C

m
o
de

=
cl

os
ed

m
o
de

=
o
p
en

W

F
C

L

F
O

P

IN
1
=
C

L

IN
1
=
N

A
IN

2
=
N

C

IN
2
=
C

m
o
de

=
cl

os
ed

m
o
de

=
op

en

W

F
C

L

F
O

P

IN
1
=
C

L

IN
1
=
N

A

IN
1
=
O

P

S
1

J1
P
S
1

S
2

1 2

3 4

5 6

7 8 9

1
0

1
1

2
7

2
6

2322

24 25

F
ig
ur
e
5.
9:

P
ar
t
on

e
of

th
e
sy
st
em

P
N

5.3. Pressure Tank System Model Construction 139

IN
=
C

IN
=
N

C

W Ft F

O
U

T
2
=
N

C

O
U

T
2
=
C

IN
=
C

IN
=
N

C

W F

t F

O
U

T
2
=
N

C

54

O
U

T
1
=
E

N

O
U

T
1
=
D

E

O
U

T
2
=
C

O
U

T
1
=
E

N

O
U

T
1
=
D

E

IN
=
C

IN
=
N

C

O
U

T
1
=
C

O
U

T
2
=
CO

U
T

1
=
N

C

O
U

T
2
=
N

C

IN
1
=
C

O
U

T
=
C

IN
2
=
C

O
U

T
=
N

C

IN
1
=
N

C

IN
2
=
N

C

T
IM

T
C

R
J3

J4

IN
1
=
E

N

IN
1
=
D

E

F
O

P

F
C

LW
m

o
de

=
cl

os
ed

m
o
de

=
op

en

IN
2
=
N

C

IN
2
=
C

IN
=
C

O
U

T
1
=
C

O
U

T
2
=
C

O
U

T
1
=
N

C

O
U

T
2
=
N

C

IN
=
N

C

J2

12 13

12 13

14 1
5

3 4

5
7

O
U

T
=
C

O
U

T
=
N

C5 6

10 11

32 33

2
8 29

3
130

90
9
1

F
ig
ur
e
5.
10

:
P
ar
t
tw

o
of

th
e
sy
st
em

P
N

140 Chapter 5. Application of the Procedure to Pressure Tank System

O
U

T
=
C

IN
=
C IN

=
N

C

W

F

t F

O
U

T
1
=
N

C

O
U

T
1
=
C

O
U

T
2
=
O

F
F

O
U

T
2
=
O

N
IN

=
C IN

=
N

C

W F

t F

O
U

T
=
N

C

O
U

T
=
C

IN
=
C

IN
=
N

C

W F

t F

O
U

T
=
N

C

O
U

T
=
C

O
U

T
=
N

C

IN
2
=
N

C

IN
2
=
C

R
C

M
P
S
2

F
S

IN
=
O

N

IN
=
O

F
FW F

t F

O
U

T
=
F
L

O
U

T
=
N

F
L

P

IN
1
=
E

N

IN
1
=
D

E

F
O

P

F
C

LW

m
o
d
e=

cl
os

ed

m
o
de

=
op

en

1
4

1
5

16 17

40 41

38 39

36 37

34

35

9
2

93

F
ig
ur
e
5.
11

:
P
ar
t
th
re
e
of

th
e
sy
st
em

P
N

5.3. Pressure Tank System Model Construction 141

O
U

T
2
=
N

F
L

O
U

T
2
=
F
L

O
U

T
1
=
D

E
C

O
U

T
1
=
C

O
N

ST
IN

=
C

O
N

ST

O
U

T
=
L

PR

O
U

T
=
H

P
R

O
U

T
=
V

H
P
R

IN
=
L

PR

IN
=
H

P
R

IN
=
V

H
P
R

W F

O
U

T
1
=
O

P

O
U

T
2
=
O

P

O
U

T
1
=
C

L

O
U

T
2
=
N

A

m
o
d
e=

cl
os

ed

m
o
d
e=

op
en

V

IN
2
=
O

p
en

IN
2
=
C

lo
se

d

W F

IN
1
=
N

F
L

IN
1
=
F
L

O
U

T
1
=
N

A

O
U

T
3
=
C

L

O
U

T
3
=
N

A

P
G

O
P

T

IN
2
=
N

F
L

IN
2
=
F
L

W

F
C

L

F
O

P

IN
1
=
C

L

IN
1
=
N

A

IN
1
=
O

P

t F
t F

18 19

21 20

7 9 1 2

20 21 1
819

O
U

T
2
=
C

L

8

1
6 17

5
6

O
U

T
1
=
F
L

O
U

T
1
=
N

F
L

49 53 49 53

57 57 48 48 5
3 5
3

46 5
1

IN
=
D

E
C

IN
=
IN

C

W

F
_
L

O
W

F
_
H

IG
H

F
_
V

H
IG

H

5
5

F
ig
ur
e
5.
12

:
P
ar
t
fo
ur

of
th
e
sy
st
em

P
N

142 Chapter 5. Application of the Procedure to Pressure Tank System

5.3.4 The Completed Model

Petri nets have now been generated for each component and assembled into the system

Petri net, following the system structure. Circuit Petri nets, representing electrical circuits

in the system, have been generated and connect to the system Petri net. Finally, a phase

Petri net, dealing with the discrete stages of the mission, has been generated and connected.

This forms a single large Petri net to model the overall phased mission system.

5.4 Summary

This chapter demonstrates how each of the construction procedures described in Chapter

4 were applied to a defined system and mission. Each of the different Petri nets shown

here was generated using these procedures. Although these were generated manually, it

will be shown in the following chapter how this process can be automated using software

that reads text-based input files. In the next chapter this system and the Petri nets shown

here are used to validate the software’s capabilities.

5.4. Summary 143

Current in
Circuit 1

No Current in
Circuit 1

PS1
State =W

S2
mode=Closed

S1
mode=Closed

TIM
State=W

PS1
State=F

S2
mode=Open

S1
mode=Open

TIM
State=F

TIM
State=W

22 28 24 26

23 29

28

25 27

47

48

62

63
63 63 63 63

60

61

(a) Circuit Petri Net for Circuit 1

No Current in
Circuit 2

PS1
State=W

S2
mode=Closed

TIM
State=W

S2
mode=Open

TC
mode=Open

TC
mode=Closed

Current in
Circuit 2

PS1
State=F

TIM
State=F

TIM
State=W

30 28 24 26

31 29 25 27

28 48

47

68

66

69 69 69 69 69

67

(b) Circuit Petri Net for Circuit 2

Current in
Circuit 3

No current in
Circuit 3

PS1
State=W

S2
mode=Closed

TC
mode=Closed

R
State=W

PS1
State=F

S2
mode=Open

TC
mode=Open

R
State=F

24 26 30 32

25 27 31 33

75 75 75
75

74

72

(c) Circuit Petri Net for Circuit 3

Current in
Circuit 4

No Current in
Circuit 4

PS1
State=W

S2
mode=Closed

S1
mode=Closed

R
State=W

PS1
State=F

S2
mode=Open

S1
mode=Open

R
State=F

24 26 22 32

25 27 23 33

80

78

81 81 81
81

79

(d) Circuit Petri Net for Circuit 4

Figure 5.13: Circuit Petri Nets for Circuits 1 to 4 of the Pressure Tank System

144 Chapter 5. Application of the Procedure to Pressure Tank System

Current in
Circuit 5

No Current in
Circuit 5

PS2
State=W

FS
State=W

RC
mode=Closed

M
State=W

PS2
State=F

FS
State=F

RC
mode=Open

M
State=F

38 40 34 36

39 41 35 37

86

84

87 87 87
87

85

Figure 5.14: Circuit Petri Net for Circuit 5 of the Pressure Tank System

5.4. Summary 145

Current in
Circuit 1

No Current
in Circuit 1

Control

Place: NC

Control

Place: C

Component

Connection: C

60

61

62

63

3

4

Current in
Circuit 4

No Current
in Circuit 4

Control

Place: NC

Control

Place: C

Component

Connection: NC

78

79

80

81

(a) Circuit Petri net 1 and 4 linkage

Current in
Circuit 2

No Current
in Circuit 2

Control

Place: NC

Control

Place: C

66

67

68

69

70

71

Current in
Circuit 3

No Current
in Circuit 3

Control

Place: NC

Control

Place: C

Component

Connection: C

Component

Connection: NC

72

73

74

75

90

91

(b) Circuit Petri net 2 and 3 linkage

Current in
Circuit 5

No Current
in Circuit 5

Control

Place: NC

Control

Place: C

Component

Connection: C

Component

Connection: NC84

85

86

87

92

93

(c) Circuit Petri net 5 linkage

Figure 5.15: Circuit Petri net linkage Petri nets

146 Chapter 5. Application of the Procedure to Pressure Tank System

t=
0

T
C

m
o
d
e
=

C
lo

se
d

T

O
U

T
1
=

C
O

N
S

T

P
h

a
se

 8

P
h

a
se

 3

T

O
U

T
1
=

C
O

N
S

T

P
h

a
se

 5

t 1
t=

t 1
P

h
a
se

 2

0
<

t<
t 1

T
C

m
o

d
e
=

o
p

en

R
C

m
o
d
e
=

C
lo

se
d

R
C

m
o
d
e
=

O
p
en

P
h

a
se

 7
P

h
a
se

 6

t 2
t=

t 1
+
t 2

T

O
U

T
1
=

D
E

C

P
h

a
se

 9

V

m
o
d
e
=

C
lo

se
d

4
8

4
7

4
6

5
4

5
0

T

O
U

T
1
=

C
O

N
S

T

4
6

4
8

4
7

0
<

t<
t 1

+
t 2

5
1

4
9

5
3

5
0

5
6

1
9

5
5

5
6

5
6

3
1

3
0

3
5

3
4

P
h

a
se

 1
0

P
h

a
se

 4

t 1
<

t<
t 1

+
t 2

4
6

5
7

0
≤

t≤
 t

1

0
≤

t<
 t

1

t 1
≤

t≤
 t

1
+

t 2

t 1
<

t≤
 t

1
+

t 2

F
ig
ur
e
5.
16

:
P
ha

se
P
et
ri
ne

t
fo
r
th
e
P
re
ss
ur
e
T
an

k
Sy

st
em

Chapter 6

Automated Reliability Modelling

Contents
6.1 Introduction . 147

6.1.1 Object-Oriented Programming in C++ 148

6.1.2 Key Definitions . 148

6.2 Software Files . 149

6.2.1 Component Description Files . 150

6.2.2 System Topology Description . 152

6.2.3 Mission Description . 153

6.2.4 Simulation File . 155

6.2.5 Setup File . 157

6.3 Software Structure . 158

6.3.1 Storage of System and Mission Description 158

6.3.2 Building the Petri Net Model . 171

6.3.3 Simulating the Petri Net Model . 178

6.4 Testing and Validation . 187

6.4.1 Validation using Phase Fault Trees . 188

6.5 Summary . 196

6.1 Introduction

This chapter concerns the automation of the process discussed in chapters 4 and 5. The

chapter begins with the files used to describe the system and the mission to be undertaken.

Discussion is made relating to how the software extracts the different pieces of information

from each of the file types entered. The chapter then moves on to the construction of the

Petri net: how the information given in the input files is translated into the model used to

simulate the system and mission. The next section gives details of the simulation process,

from the initial conditions to any changes made to the model through the simulation process

and then the results obtained at the end. The way in which the results are represented

is also discussed at the end for completeness. The final section of the chapter details the

148 Chapter 6. Automated Reliability Modelling

testing of the software and provides validation of the model through the testing of the

pressure tank system described in Chapter 5.

6.1.1 Object-Oriented Programming in C++

The programming language chosen, C++, is an object-oriented programming language.

Object-oriented programming uses the concept of a class to describe an object. A class is

a module of code that contains functions and data in the form of variables. Other parts of

the code interact with the class to access its data and perform its functions. This abstracts

the complexity of the functions and data within, a concept known as encapsulation. For

instance if a library were modelled as a class, some of the variables could be the name of

the library, a list of books held by the library and the membership details of those that use

the library. A function of the library could be to lend a book, or to enrol a new member.

Books and members contained within the library could also be classes. Using classes as

part of an object-oriented programming language aids in structuring large software projects

such as the one discussed here and references will be made to this concept throughout the

chapter.

6.1.2 Key Definitions

There are a number of phrases that will be used continually throughout this chapter and

have been listed here for convenience.

• port - A component port is an input or output of a component.

• link type - This refers to the type of connection between components, e.g. circuit

connection C, NC.

• link name - This is the name given to refer to a link between two connected

components in the system topology.

• class - A module of code that encapsulates a set of related functions and data.

• function - Performs a defined process which operates on input data to provide output

data.

• variable - Stores data of a certain type.

• object - An instance of a class.

• string - A collection of characters (letters, numbers and symbols).

• vector - A container for a series of variables of the same type. Vectors can be nested

within one another to form multi-dimensional series of variables.

6.2. Software Files 149

6.2 Software Files

The description of the system and mission are written in text files which are processed by

the software. A single file is provided to the software, the project file, which contains a list

of all files required to describe the system and the mission to be undertaken. This project

file has a file extension of .prj to identify it as such. Within the project file the other files

must be listed in a given order, as seen below:

1. Component Decision and Operational Mode Tables (file extensions .dt and .omt,

respectively)

2. System Topology (file extension .ss)

3. Phase Transition Table (file extension .ptt)

4. Simulation Information (file extension .sim)

Each file type has a unique file extension in order to differentiate between them.

The project file is designed to contain only one system and one mission, and therefore

should never contain another project file. The files contained within the project file

are given in the order above due to numerous checks carried out by the software. The

component files are listed first to identify the components to be used in the current

system. The system topology file includes the list of connections between instances of

the components, therefore if a component is listed in the system topology file that was

not included in the component files an error would be issued to the user. The same would

occur if a component was listed in the phase transition table file and was not included in

the list of component files. The software cannot continue until all necessary files are added.

Each file contains a single entity (i.e. one component) to aid clarity.

The fourth file type, simulation information, includes the following:

1. Initial component modes

2. Failure data

3. Initiating component

The initial component modes are listed in terms of the modes listed within the table files

(DT and OMT). The name for the initial mode must match exactly with a mode contained

in the DT or OMT. The failure information is given by using one of the following:

1. Exponential distribution (parameter: mean time to failure)

2. Weibull distribution (parameters: characteristic life and shape parameter)

150 Chapter 6. Automated Reliability Modelling

3. Normal distribution (parameters: standard deviation and mean time to failure)

4. Time to failure

The first three points are the distributions that can be used to describe how a

component fails and the fourth gives the user the ability to let a component fail at a

specific time.

The last item included within the simulation file is the initiating component which, as

it states, initiates the simulation process.

The following sections look at each of the file types: component tables, system topology,

phase transition table and simulation information, discussing in detail the contents of each

file.

6.2.1 Component Description Files

The component description files include the decision and operational mode tables discussed

in Section 4.2.1.

6.2.1.1 Decision Table Files

For each type of component that exists within the system structure, a DT is required. A

table is not required for each instance of the component as each instance of a component

identified within the system topology file uses the same DT.

File Layout

The DT file includes the file identifier, component type and the associated DT. An example

of a single mode component, a power supply, can be seen in Figure 6.1. A general line-by-

line breakdown of the decision table file is given below:

• Line 1: File identifier, ‘DT ”, followed by the component type, which must be unique

• Line 2: Open curly brace, ‘{’, to signify the beginning of the decision table.

• Line 3: The headings of the decision table:

– Input headings: in : in1, in : in2, ... , in : inM , where M is the total number

of inputs into the component.

– State heading or mode heading: state : state1 or mode : mode3

– Output headings: out : out1, out : out2, ... , out : outN , where N is the total

number of outputs from the component. Once all outputs have been identified,

a semi-colon is used to signify the end of the headings.

6.2. Software Files 151

DT power_supply

{

in:in1, state:state1, out:out1;

C, W, C;

-, F, NC;

NC, -, NC;

}

Figure 6.1: Decision table file input format for single mode components

• Lines 4-P: (P is dependent on the number of rows in the decision table.) This

contains the decision table, using commas to signify the next column and a semi-

colon to signify the end of the row.

• Line P+1: Closing curly brace, ‘}’, to signify the end of the decision table.

The format described above must be adhered to otherwise the software will not allow

the entry of the file and halt any further processing of the files.

6.2.1.2 Operational Mode Table Files

When a component has multiple modes of operation, an OMT file must be created in

addition to the DT file. Similar to the decision table file, an identifier is used to show what

type the file is, followed by the component type and the OMT.

File Layout

The OMTs are presented in the format seen in Figure 6.2, and described below:

• Line 1: File identifier, ‘OMT ’, followed by the component type. The component

type field acts as a unique identifier to relate an OMT to its corresponding DT.

• Line 2: Open curly brace, ‘{’, to signify the beginning of the component information.

• Line 3: the headings of the operational mode table:

– Starting mode: mode : mode1

– Command: This will be the input from an outside influence, such as an operator.

Instead of the word command it is written as in : inS, where S is the input

connection number.

– State heading: state : state1

– Final mode: mode : mode2. After this mode a semi-colon is used to signify the

end of the headings.

152 Chapter 6. Automated Reliability Modelling

DT contact

{

in:in2, mode:mode3, out:out1;

-, open, NC;

NC, -, NC;

C, closed, C;

}

(a) Decision table file input format for
multiple mode components

OMT contact

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, FC, closed;

closed, EN, -, closed;

closed, DE, W, open;

open, -, FO, open;

open, DE, -, open;

open, EN, W, closed;

}

(b) Operational mode table file input format for multiple
mode components

Figure 6.2: Examples of the file format required for multiple mode components

• Lines 4-P: (P is dependent on the number of rows in the OMT.) This contains the

OMT itself, using commas to signify the next column and a semi-colon to signify the

end of a row.

• Line P+1: Closing curly brace ‘}’ to signify the end of the OMT.

6.2.2 System Topology Description

The system topology file lists the connections between each component in the system.

Component instances are listed, with each instance including a list of that component’s

ports. Each port is assigned a link name; these names are arbitrary and are used to connect

the ports of different components together. There should only be one file for the system

topology and this should include every component within the system.

6.2.2.1 File Layout

The system topology file follows the following format:

• Line 1: File identifier, SS, followed by the name of the topology/system.

• Line 2: The word ‘begin’ should appear on the next line to signify the beginning of

the topology.

• Line 3: Following the word begin is the first of the components in the topology. Each

of the components is structured in the following way:

– The first line of the new component takes the following format: ‘compo-

nent_identifier : component_type’, for example PS1 : power_supply. The

component identifier is arbitrary and unique to that component.

6.2. Software Files 153

– The next line denotes the beginning of the port list, in which ports are mapped

to links: port map(

– The next lines show the connections to each of the components ports (in, out).

For each port the following syntax is used: in1 => link_one; and out1 =>

link_two; This is completed for each of the component’s ports. link_one and

link_two are examples of arbitrary link names. These same names are then

used to connect these ports to the ports of another component.

– When all the ports have been considered, the next line ends with ‘)’to signify

the end of the component’s ports.

• Last line: Once all the components have been considered the file ends with the word

‘end’ to signify the end of the topology for the system.

Each link between component ports requires a unique name. In the example given in

Figure 6.3, the link names use a naming convention related to the component instance

identifiers. The identifiers can be whatever the user chooses, as long as the link name is

repeated only once with the connected component. For example in Figure 6.3 component

S1, port Out1 shares the same link name (S1_J1) with the component J1, port In2 as

these components are connected through these ports. Note that to connect one output to

multiple component inputs, a junction component is required.

6.2.3 Mission Description

File Format

The description of the mission, the phase transition table as discussed in Section 4.2.4, is

described in the phase transition table file (.ptt). An example of such a file can be seen

in Figure 6.4. A line-by-line breakdown of the general format of this file type can be seen

below:

• Line 1: File identifier, ‘PTT ’, followed by the name of the mission.

• Line 2: Open curly braces ‘{’ to signify the beginning of the phase transition table.

• Line 3: Table headings time, from_phase, to_phase, condition;

• Lines 4-P: (P is dependent on the number of rows in the phase transition table).

These lines contain the phase transition table itself. Each row of the transition table

is formatted as follows:

– The ‘time’ at which the transition can occur, which can be presented in three

forms:

154 Chapter 6. Automated Reliability Modelling

SS pressure_tank_system

begin

 S1 : switch

port map(

in1 => OP_S1;

in2 => J4_S1;

out1 => S1_J1;

)

J1 : junction_two_in

port map(

in1 => CT_J1;

in2 => S1_J1;

out => J1_PS1;

)

…

…

…

OP : operator

port map(

in1 => PG_OP;

out1 => OP_V;

out2 => OP_S2;

)

end

Figure 6.3: Example topology file format

6.2. Software Files 155

PTT mission_1

{

time, from_phase, to_phase, condition;

t_0, 1, 2, CT.mode3=closed;

t_0, 1, 5, CT.mode3=open;

t_1, 2, 3, PG.out1=HPR;

…

…

…

-, 4, 6, CR.mode=closed;

}

Figure 6.4: Example mission file format

∗ A literal time, such as 0.

∗ An inequality in terms of t, specifying a range of times. This must be

written in brackets; for example (3 <= t < 5)

∗ No time value, signified by ‘–’. This means the phase transition is not

time-dependent.

– The ‘from_phase’ is a number or word that signifies which phase this transition

is moving from.

– The ‘to_phase’ is a number or word that signifies which phase this transition

is moving to.

– The ‘condition’ information is comprised of three elements: the component

identifier, the component port and the value in the port. This is represented by

the following format: ‘component_identifier.port_name = port_value;’, for

example ‘PS1.out1 = C;’. The component identifier states which instance of

the component can cause the transition, followed by a full stop. This full stop

signifies the port of this component will follow. The equals sign shows which

value within that port will cause the transition. The semi colon signifies the

end of the row.

• Line P+1: When the table is complete a closing curly brace ‘}’ is used.

6.2.4 Simulation File

The simulation file holds information related to each of the components in the system.

This information includes the following information:

1. Initial operational modes for multiple operational mode components

156 Chapter 6. Automated Reliability Modelling

SIM

COMPONENT MODES

{

S1 mode = open;

}

FAILURE

{

S1 F_closed exponential(10);

S1 F_open exponential(10);

PS1 F exponential(1000.000);

R F exponential(10.000);

}

INITIAL

{

S1 in1 = CL;

}

Figure 6.5: Example simulation file format

2. Failure distribution data for each component

3. Initiating component

In order to simulate the system, initial operational modes must be stated for any

components with multiple modes of operation. There should be failure data for each

component, but if it is desired to test one part of the system assuming one or more

components never fail, then this is catered for. When detailing the failure data of each

component, if a component has multiple failure modes then each failure mode must be

considered and listed. If the failure of a component is not affected by the mode that the

component is in, then if each failure mode listing is the same the software will handle

this. The initiating component is the component, port and port value that can start the

simulation. An example of this file can be seen in Figure 6.5.

File Format

The simulation file has the following structure:

• The file identifier of ‘SIM’ is found at the top of the file.

• The initial component modes are listed as follows:

1. Starting with the opening line COMPONENT MODES {

2. List each component with multiple modes in the following format: ‘compo-

nent_identifier mode = mode_value;’.

6.2. Software Files 157

3. This list is completed by including ‘}’ to signify that all component modes have

been identified.

• The failure distributions for each component (or each component mode) are then

listed in the following format:

1. Starting with the opening line FAILURE {

2. For each component listed, the following format is used: ‘component_identifier

failure_value(or mode) failure_distribution(parameter(s));’.

3. This section finishes with ‘}’.

• The last information held within the file is the initiating component. The following

format is used:

1. This starts with the opening line INITIAL {

2. There is only one component listed as the initiating component as follows:

‘component_identifier port_name = port_value;’.

3. This section is completed with ‘}’.

6.2.5 Setup File

The setup file includes configuration variables for the software. It is always included in

projects and does not need to be listed in the .prj file. The setup file specifies the values

used in electrical wires for current/no current and the value used to denote the working

case within all decision and operational mode tables. This information defaults to the

following:

• Current: C

• No Current: NC

• Working State: W

This setup file can be altered by the user if variations are required, but this is not

recommended.

File Format

The file takes the following structure:

• The file identifier INI at the top of the file

• The working state value used in the tables is given next by the line ‘working state ::

W; ’

158 Chapter 6. Automated Reliability Modelling

• The current, no current values used in the tables are given in the line ‘wire type :: C,

NC;’. The values are listed specifically in the order of current and then no current.

When all files are created and the name of each file is included in the project file, the user

is ready to add their system to the software. Section 6.3 introduces the structure and how

the information from all file types described above are dealt with and how this information

is turned into a working model for the purpose of simulation.

6.3 Software Structure

The structure of the software can be split into three sections:

1. File parsing

2. Model creation

3. Simulation

The first step interprets the files discussed in the previous section and stores their contents

in memory. The next section discusses this interpretation process. The second step takes

the information from the files and generates a working model. The process of model

construction concerns the following Petri nets, as discussed in chapter 4: component Petri

nets (Section 4.3.1), circuit Petri nets (Section 4.3.2), system Petri net (Section 4.3.3), and

phase Petri net (Section 4.3.4). The third step uses the model to simulate the system over

a specified time for a given mission.

6.3.1 Storage of System and Mission Description

This section describes how the files created in the previous section are interpreted by the

software and then stored to be used to build the model in the software.

Within the software there are a number of classes used to store the information held

within the different files discussed above. For parsing the files and storing the information

the primary classes used are fileHandler, topSystem and compLib. Each has a specific

role within the software. The first, fileHandler, manages access to files and performs file

parsing operations. Functions within this class are used to collect the information from

the files listed within the project file. Depending on each file type (extension), the class

executes a different set of functions. The topSystem class holds all the information that

the fileHandler class extracts from the files. The fileHandler class dictates where in the

topSystem class the information is held. The compLib class is the component library which

holds all the individual component types found in the component decision and operational

6.3. Software Structure 159

class topSystem

-compLib componentLibrary;

-compPNLib componentPNLibrary;

-vector<topology> systemTopologies;

-vector<phaseTable> missionProfiles;

-string defaultWorking;

-linkType defaultWire;

-initial initialComp;

-masterPetriNet theMasterPN;

-unsigned int idCounter;

-idGenerator newGeneration;

class compLib

-vector<component> compList;

class fileHandler

-string filePath;

-string fileExtension;

-string strToLower(string);

-fstream theFile;

-vector<string> theFiles;

Figure 6.6: Class view of topSystem, fileHandler and compLib

mode tables. The information held within the component library is later used to generate

instances of the components.

A class representation of each of the above can be seen in Figure 6.6.

6.3.1.1 Storage of Component Descriptions

This section describes how the information in the component files is extracted by the

software and stored as useful information in preparation for the model generation. Both

the decision table and operational mode table files are considered here.

Figure 6.7 shows each class used when a component object is created. The figure shows

how the other classes relate to the component class. At this point in the software process,

the only class that would not be directly called on is the failRepair class. This is dealt

with at a later time.

The component class contains two strings; the component type, name and the

component identifier, id. There are two vectors of ports relating to the decision table and

operational mode table columns. Each port of the component (In, Out) contains values

and these are captured within the port class. Lastly, the component class also includes the

full decision table and, where applicable, an operational mode table as it is found within

the file (excluding the port names).

Each port class object created holds the name of the port, for example, In1, and the

direction of the port, for example In. This is the only information that is captured from

the decision and operational mode table files. Other information held within the port class

is added at a later time.

160 Chapter 6. Automated Reliability Modelling

class port

-string name;

class component

-string id;

-vector<port> dtPorts;

-string name;

-vector<port> omtPorts;

-table decisionTable;

-table OMTable;

-failRepair theRepair;

-port* findPort(string);

-int findConstPort(string) const;

-linkType type;

-string theLink;

-string direction;

-string initialMode;

-vector<failRepair> theFailures;

class table

-string informationType;

-vector< vector<string> > tableContents;

class linkType

-void cleanValues();

-vector<string> values;

class failRepair

-string compId;

-string frType;

-string failureType;

-string distribution;

-double para1;

-double para2;

-double randomNumber;

-double timeToFailure;

-bool warmStandby;

Figure 6.7: Class representation of the component class and its sub-classes

6.3. Software Structure 161

Decision and Operational Mode Tables

Each file with a file extension, .dt or .omt, would be identified as a component decision

table or operational mode table, respectively. Each file would be subject to the algorithm

seen in Figures 6.8 and 6.9. This algorithm is used to create a new component class object

and then store the port information and the table details. Once this is complete, the new

component class is added to the component library class, compLib.

6.3.1.2 Storage of the system structure

The information contained within the system topology file (file extension .ss), gives the

overall structure of the system. The information describes links between one component’s

input port and another component’s output port. It is important that all component

decision and operational mode table files are listed before the system structure file within

the project files, as the component decision and operational mode table files describe the

component type. The system structure then relies on knowledge of these components and

their ports when describing instances of these components. Therefore if a component type

is listed within the system structure file that was not previously listed in the component

decision and operational mode files then the software identifies that the file is missing and

issues an error to the user.

If a component is dependent on the operational mode of another component, then this

is presented in the decision tables and the system structure files. Within the decision

tables, the component that is dependent has a specific input port that represents the

other component’s mode of operation. There is a link for this input port in the system

structure file. For the component that has multiple modes of operation, a mode output

must be provided to link to the dependent component. An example of this is seen within

the pressure tank system from Chapter 5. The component tank, T , is dependent on the

operational mode of the component valve, V . Therefore the input port, in2 of the tank

component is linked to the mode, mode3, of the valve component.

The process for abstracting and storing the information held within the system

structure file can be seen in Figures 6.10 - 6.12.

6.3.1.3 Storage of Mission Description

Within the .ptt file there should be only one phase transition table describing the mission.

As the information held within this file is parsed, the information is stored in a new

phaseTable class object. There are only two variables within the phaseTable class: the

name of the mission and the phase transition table contents. The phaseRow class holds

a row of the table: time (if present), from phase, to phase and condition. The condition

variable is the pttContents class which holds the component information; a link (referred

162 Chapter 6. Automated Reliability Modelling

Is the string the
identifier DT/

OMT?

Obtain the next
string in the file

The DT/OMT
identifier is not

present within the
.dt file. Issue error

to the user.

Obtain the next
string, the

component type

Add the component
type to the new

component class
object

Is the next string
‘{’

The indicator ‘{’
was not present in
the file. Issue error

to user.

START

Is the string ‘;’?

Create port class
object

Add the port
direction ‘in’, ‘out’,

‘mode’ or ‘state’

Is the next string
‘:’?

Issue Error:
Indicator ‘:’ not

found

Obtain the next
string the port name
(e.g. in1) and add

this to the port class
object

Is the next string
‘,’?

Issue Error: There
are no headings to

the table

END1 END END END

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Figure 6.8: First section of the algorithm for parsing and storing information within a .dt
or .omt file

6.3. Software Structure 163

Add the next string
to the correct port as

a port value

Is ‘,’ the next
string?

Is ‘;’ the next
string?

Add the current row
to the decision table

held within the
component class

Is ‘}’ the next
string?

Add the information
to the component
class and add the
class object to the
component library

END

Is the string ‘;’?

1

Is there already a
component of
this type in the
compLib class

object?

Merge the
component class

objects

Add the new
component

END

Issue Error: There is
no ‘;’ to end the

headings of the table

END

Issue Error: There is
no ‘,’ or ‘;’ to

signify next column
or the end of the line

END

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

Figure 6.9: Second section of the algorithm for parsing and storing information within a
.dt or .omt file

164 Chapter 6. Automated Reliability Modelling

START

Is the next string

“SS”?

Obtain the next

string, the name of

the topology, and

store the name

within a new

topology instance

Is the next string

“begin”?

Is the next string

“end”?

Obtain the next

string, component

identifier, and store

it in a local variable

Is the next

string, the

component type,

an existing type

within the

compLib

variable?

Issue error to the

user: Missing

identifier “SS” in

the file

Issue error to the

user: Missing

“begin” from the file

END

Yes

No

Is the next string

“:”?

Issue error to the

user: Missing ‘:’

between component

identifier and the

component type

Issue error to user:

Component type is

not recognised

END END ENDEND

Create an instance

of that component

type from the

compLib variable

Assign the

component

identifier to the new

copy of the

component

Add the component

to the topology

instance

1

No

No

No

No

Yes

Yes

Yes

Yes

Figure 6.10: First section of the algorithm for parsing and storing information within a .ss
file

6.3. Software Structure 165

1

Is the next set of

strings “port”

“map” “(”?

Is the next string

“)”?

Issue error to user:

One of the

following is missing

“port”, “map”, “(”

Is the next string

“=”?

Is the next string

“>”?

Is the next string

“;”?

Set the local

variable parseState

to ‘p’

Set the local

variable parseState

to ‘l’

Set a local variable

parseState to ‘p’

Is the local

variable

parseState

currently ‘p’?

Set the string, the

link name, to a local

variable

Add the link name

to a new link class

object

Add the link name

to the variable

theTopology

Call a function to

create a connection

ENDEND

Issue error to user:

Missing “>” from

the file

END
2

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes

Set the string, the

port name, to a local

variable

No

Yes

Figure 6.11: Second section of the algorithm for parsing and storing information within a
.ss file

166 Chapter 6. Automated Reliability Modelling

2

Obtain a link

(pointer) to the

component class

instance

Obtain a link

(pointer) to the port

class instance

Is the link class

instance already

connected?

Set the link type (the

port values)

Are the link

types (port

values) the

same?

Obtain a link

(pointer) to the link

class instance

Issue error to user:

The link types are

not the same

Are the number

of links

associated to the

link class

instance 3+?

Issue error to user:

The link to this

component cannot

be made as the link

has too many

connections to

create a new link

Increase the number

of connections to

the link class

instance

Add the link name

to the port class

instance

END END END

Yes

No
Yes

No

Yes

No

Figure 6.12: Third section of the algorithm for parsing and storing information within a
.ss file

6.3. Software Structure 167

to as pointer) to the component, the component’s port and value of the port.

The process for abstracting and storing this information can be seen in Figures 6.13 -

6.15.

6.3.1.4 Storage of Simulation Information

The simulation file contains the information regarding component failure data and initial

component mode for those with multiple modes. It also contains the initiating component:

the component identifier, the port name and the value of that port. For example OP out1

= CL.

Component failure data

As each set of component failure data in the list is parsed into the software, the following

steps are completed:

1. The component instance is located within the systemTopologies variable of the

topSystem class.

2. The state or mode used in the failure data is checked against the component instance

to ensure the state or mode is present in the component.

3. A new instance of the class failRepair is created. The failRepair class stores

information about the component’s failure data.

4. The failure distribution information is then assigned to the class.

5. The class calls a function to calculate the first time to failure, based on the failure

data provided.

6. This failRepair class instance is added to the component instance held within the

variable systemTopologies.

Initial component modes

The initial component modes in the file are parsed and the system handles them in the

following manner:

1. The component instance is located in the systemTopologies variable of the

topSystem class.

2. The mode used in the initial mode data is checked against the component instance

to ensure the mode is present in the component.

3. The port class object in the component that represents the component mode is

updated with the specified value.

168 Chapter 6. Automated Reliability Modelling

START

(2) Create a new

phaseTable instance

(3) Retrieve the

mission name and

store it in the

phaseTable instance

created in (2)

(1) Is the next

string “PTT”

(4) Is the next

string “{”?

(5) Is the next

string “time”?

(6) Is the next

string

“from_phase”?

(7) Is the next

string

“to_phase”?

(8) Is the next

string “,”?

(9) Is the next

string “;”?

(1a) Issue error to

the user: “PTT”

missing from file

STOP

(4a) Issue error to

the user: “{”

missing from the

file

STOP

(5a) Assign the

column number to a

variable associated

with the string

(8a) Increase the

column number by 1

(10) This is the end

of the row. Column

number returns to 0

and row number is

increased by 1

(9a) Issue error to

the user: This is an

unrecognised string

STOP
1

Yes

No

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

Figure 6.13: First section of the algorithm for parsing and storing information within a
.ptt file

6.3. Software Structure 169

1

(1
1

)
Is

 t
he

 n
ex

t
st

ri
n

g
“}

”?

(1
2

)
Is

 t
he

 n
ex

t
st

ri
n

g
“(

”?

(1
3

)
Is

 t
he

 n
ex

t
st

ri
n

g
“,

”?

(1
4

)
Is

 t
he

 n
ex

t
st

ri
n

g
“;

”?

(1
1

a)
 T

h
is

 is
 t

h
e

en
d

o
f t

he
 p

ha
se

tr

an
si

ti
on

 t
ab

le
. A

d
d

th
e

ta
bl

e
to

 t
he

to
p
Sy
st
em

 c
la

ss

in
st

an
ce

ST
O

P

(1
2

a)
 I

s
th

e
 n

ex
t

st
ri

n
g

“)
”?

(1
2

ai
)

A
ss

oc
ia

te
 t

h
e

fu
ll

st
ri

n
g

w
it

hi
n

th
e

b
ra

ck
et

s
to

 a

va
ri

ab
le

(1
2

b
)

A
p

pe
nd

 t
he

st

ri
n

g
to

 a

te
m

p
o

ra
ry

 s
tr

in
g

va
ri

ab
le

(1
3

a)
 I

nc
re

as
e

th
e

co
lu

m
n

nu
m

b
er

(1
4

a)
 I

nc
re

as
e

ro
w

n

um
be

r.
 R

es
e

t
co

lu
m

n
nu

m
b

er
 t

o
 0

(1
5

a)
 A

ss
ig

n
 t

he

st
ri

n
g

to
 a

 v
ar

ia
b

le

d
ep

en
d

in
g

on
 t

he

co
lu

m
n

nu
m

b
er

(1
5

)
Is

 t
hi

s
th

e
co

n
di

ti
on

co

lu
m

n?N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
s

N
o

N
o

Ye
s

2 F
ig
ur
e
6.
14

:
Se
co
nd

se
ct
io
n
of

th
e
al
go

ri
th
m

fo
r
pa

rs
in
g
an

d
st
or
in
g
in
fo
rm

at
io
n
w
it
hi
n
a
.p
tt

fil
e

170 Chapter 6. Automated Reliability Modelling

2

(16) Does the

component exist

in the topology

class

(17) Create a new

pttCondition class

instance

(18) Add the

component

identifier to the

pttCondition class

(19) Is the next

string in the file

“.”

(20) Does the

next string, the

port name exist

in the

component?

(21) Add the port

name to the

pttCondition

instance

(22) Is the next

string in the file

“=”?

(23) Does the

next string, the

value of the port

exist in the port

in the

component?

(24) Add the value

to the pttCondition

instance

(25) Create a new

phaseRow instance

and add the time,

from_phase,

to_phase values and

the pttCondition

instance

(26) Add the

phaseRow to the

phaseTable instance

1

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

(16a) Issue error to

user: The

component within

the phase row

condition is

unrecognised

STOP

(19a) Issue error to

the user: ‘.’ is

missing from the

phase row condition

statement

STOP

(20a) Issue error to

the user: The port

name given does not

match a port

associated to the

component

STOP

(22a) Issue error to

the user: The string

‘=’ is missing from

the condition

declaration

STOP

(23a) Issue error to

user: The value

associated with the

port does not exist

STOP

Figure 6.15: Third section of the algorithm for parsing and storing information within a
.ptt file

6.3. Software Structure 171

Initial component

The initial component information is stored directly into a variable held within the

topSystem class, ‘initial initialComp’, where ‘initial’ is a class with three string variables

which store the component identifier, the port name and the port value.

When parsing the file, the software checks the topology class instance to ensure that a

component with that identifier, port name and port value exists.

6.3.1.5 Circuit List Generation

After all the files have been entered into the software, a list of circuits in the system is

generated. This section describes the recursive function that is used to generate the list of

circuits for any given system, as seen in Figure 6.16.

The software identifies the first component within the topology that has wire types, as

discussed in 6.2.5, for one of its output ports. Once identified, the software searches for the

components that are connected to each of the component’s ports that have a wire link type.

Wherever a circuit branches (e.g. at a junction), the same function is called recursively

on each branch. At the end of a branch (having returned to the first component in the

top-level circuit), a completed circuit is returned. Figure 6.17 demonstrates the building

of the circuit lists using the pressure tank system from the previous chapter. The figure

shows how, starting from a single component (in this case the power supply PS1), circuits

are discovered via a number of branches. Only when the software reaches the original

component is a circuit complete and stored by the software.

Calling this small function recursively is an elegant and effective method of mapping

all the electrical circuits in a system topology.

6.3.2 Building the Petri Net Model

6.3.2.1 Introduction

Once the system, phase and simulation information has been added, the model can be

generated. The model building section of the software uses the component tables and

phase table to construct the Petri net model. The model can be split into four distinct

parts:

1. Component Petri Net

2. System Petri Net

3. Circuit Petri Net

4. Phase Petri Net

172 Chapter 6. Automated Reliability Modelling

START

Does the
component have
outputs of type

wire?

Yes

No

No

Yes

STOP

Add the component
to the circuit list

Find the next
component on the
other end of a wire

output.

Is there another
output to consider?

Is the next
component

already in the
circuit list?

Is it the first
component in

the list?

The current circuit is
complete.

Yes

Yes

No

Recursive call
to the current

diagram, based
on the next
component.

No

For each returned
circuit, create of

copy of the current
circuit and join the

two.

Store the circuit(s)
in temporary

memory

Return all circuits in
temporary memory.

Figure 6.16: Process for the generation of the circuit lists

6.3. Software Structure 173

PS1 S2

TIM

R J3

J4

TC

S1

J3

J4

TC

S1

J2

PS1J1

PS1J1

PS1J1

PS1J1

Out

In2

Out

In

Out2

In1

Out

In

Out2

In2

Out

In2

Out

In1

Out

In

Out

In2

Out

In

Out

In

Out

In

Out

In1

Out

In2

Out1

In

Out2

In

Out1 In2

Out2 In2

Out1 In2

Out2 In2

Figure 6.17: Circuit detection method used for the circuit system in the pressure tank
system

Each of these are built individually and in the order given above. They are built in this

order due to the connections that exist between the different Petri net sections. Each of

the following sections discusses the construction of each of the above Petri net types and

how each connects to the previous Petri net type.

This section of the software introduces a number of new classes that relate directly

to Petri nets. Petri nets comprise of place, transition and arc classes. All Petri nets

generated in the software are stored within a single masterPetriNet class instance within

the topSystem class.

6.3.2.2 Component Petri Net

The component Petri nets are the first to be built as these are the building blocks for

all other Petri nets. All component information was added to the software via the .dt,

.omt and .sim files. The .dt and .omt files contain the information relating to how the

component works under different conditions, and the .sim file contains the information

relating to the failure data and initial modes (for components with multiple modes).

This process follows the construction procedure established in section 4.3.1.1. Starting

with the information contained within the component class objects, the software moves

through each port of the component. In each port, a port name, direction and link type

exist. For each link type value, a new place class object is created. For each of the places

created, an identifier is created in the following format:

component.componentType.componentID.portName.value

For example, a place representing a value of C in an input port in1 of a power supply

with unique identifier PS1 would be written as component.power_supply.PS1.in1.C. This

174 Chapter 6. Automated Reliability Modelling

unique identifier is necessary when making connections between places and transitions

within the component Petri net or between other Petri nets.

Each transition created for the component Petri net is based on a row of either a

decision table or operational mode table. This distinction is reflected in the identifier used

for each of the transitions created:

component.componentType.componentID.tableType.rowNumber

For a transition representing the second row of a DT for a power supply with the unique

identifier PS1, the transition identifier would be component.power_supply.PS1.dt.2.

Using the information stored about the DT and OMT (if applicable) for each

component, arcs are created for each link. The arc class includes a place identifier, a

transition identifier and the arc type. Possible arc types are shown in Table 6.1. The

software determines the arc type to use according to the procedure discussed in section

4.3.1.1, items 4 and 5.

Table 6.1: Software arc type definitions

Software Arc Type Description Arc Diagram

0 Single-headed arc

1 Double-headed arc

2 Single-headed inhibit arc

3 Inhibit arc

6.3.2.3 System Petri Net

The system begins by generating a component instance for every component in the system.

The name/type of the component and the component identifier are added to the component

Petri net object. If the component has multiple modes of operation then the starting mode

is represented by a token in that mode’s place in the component Petri net object instance.

There is one last part of the component Petri net that is not built initially with the rest

of the Petri net: the working-to-failed relationship. The information stored in the port

representing the state of the component is located and passed to the component Petri net

to build this information into the Petri net. The process for this can be seen below:

1. Locate the place representing the working state in the component Petri net.

6.3. Software Structure 175

2. If the state port was located within the decision table ports, then for each failRepair

object associated with the port, create the following:

(a) Create a transition object instance.

(b) Set the time to transition equal to that listed within the failRepair object

instance.

(c) Create the identifier of the transition which follows;

component.componentName.componentID.timed.failTime

(d) Set the identifier to the transition.

(e) Add the transition to the component Petri net.

(f) Create an arc object instance to show the connection between the working place

and the newly created transition.

(g) Locate the failed place of the component

(h) Create a new arc object to represent the connection from the timed transition

to the failed place.

3. If the state port was located within the operational mode table them the following

steps should be taken:

(a) If the component’s modes fail at the same rate complete the following:

i. Create a transition object instance.

ii. Set the time to transition equal to that listed within the failRepair object

instance.

iii. Create the identifier of the transition as follows;

component.componentName.componentID.timed.failTime

iv. Set the identifier to the transition.

v. Add the transition to the component Petri net.

vi. Create a new place instance to represent the failure of the component.

vii. Add this new place to the component Petri net.

viii. Create an arc object instance to show the connection between the working

place and the newly created transition.

ix. Create an arc object instance to show the connection between the timed

transition and the newly created transition.

x. Create a new immediate transition object for each failure mode place.

xi. Create an arc instance to represent the connection between the failure place

and the new transition.

176 Chapter 6. Automated Reliability Modelling

xii. Create an arc instance to represent the connection between the component

mode place and the transition.

xiii. Create an arc instance to represent the connection between the transition

and the failure mode place.

(b) If the component’s modes do not fail at the same rate then complete the

following:

i. Create a transition object instance for each failure mode.

ii. Set the time to transition equal to that listed within the failRepair object

instance for each failure mode.

iii. Create an arc instance for each failure mode to represent the connection

between the working place and the timed transition.

iv. Create an arc instance for each mode to represent the connection between

the component mode place and the transition.

v. Create an arc instance for each mode to represent the connection between

the timed transition and the failure mode place.

The rest of the SPN is created using the system topology information provided by

the user to generate the connections between the components. This consists of locating

the output place of one component and an input place of the connected component and

merging these places so that only one place remains. The algorithm of the software follows

the construction procedure seen in section 4.3.3.1.

6.3.2.4 Circuit Petri Net

After the circuits are detected as described in section 6.3.1.5, the CiPNs can be generated.

Once created, each CiPN is stored within an instance of a circuitPN class. This contains

a vector that holds all CiPN instances within the masterPetriNet class. The algorithm for

generating these Petri nets follows the construction procedure outlined in section 4.3.2.1.

The software generates a number of places to represent current and no current within

a given circuit. These use the following place identifier format:

circuit.curcuit_number.wireType

The places the are defined as the circuit control places have the following format:

controlPlace.circuit.curcuit_number.wireType

The transition identifiers created as part of the CiPN show the relationship between the

wire type and the component. For example, the transition that would link a component’s

mode to a circuit’s no current place would have the following transition identifier:

circuit.circuit_number.component.componentID.transition.mode

6.3. Software Structure 177

6.3.2.5 Phase Petri Net

The algorithm of the software for generating the PPN follows the construction procedure

seen in section 4.3.4.1.

The main phase places are the places that the system should move through if the

mission completes successfully without any failures. The main phase places are identified

within the software by the place identifier:

phase.phase_Number.start_time->end_time

If the place is used to represent a specific moment in time then the place identifier uses

the following format:

phase.time.time_value

Other phase places, such as failure places, generated from the phase transition table

are identified by the following format:

phase.phase_Number

There are a number of different types of transitions created. The timed transitions

created as part of the model creation from the phase transition file (.ptt file extension) are

given the following identifier:

phase.timed.time_value

If the transition has a delay of δ then the transition is given the following identifier:

phase.timed.delta.row_number

Where row_number relates to the row number within the phase transition table. Other

transitions created from the phase transition table use the following format:

phase.table.row_number

Time Dependent Components

During this stage of construction the software moves through each decision table searching

for any component that is dependent on time. If a component is located then the software

assess whether there is already a suitable PPN place that represents this specific moment

in time or a given time frame. If there is no place suitable then the software creates a new

place to represent this time frame. The time frame is checked to see that it can be related

to a PPN place first. Components should only change behaviour according to times related

to a phase within the mission. If a new place is required the place identifier follows the

following format:

178 Chapter 6. Automated Reliability Modelling

phase.dt.start_time->end_time

If a new place is required then a new transition is also necessary. The transition

connects between the place that represents the start time of the time frame and the new

place created above. The new place then connects to the transition that would then enter a

place representing the end time. This place would then connect to the relevant immediate

transition created during the CPN model creation. The transition generated here would

have the following identifier format:

phase.transition.start_time->end_time

If the inequality expressing the time frame is inclusive (i.e. greater than or equal to,

less than or equal to) then this is also demonstrated within the identifier by use of an

equals sign between start_time and − > or between − > and end_time.

When the PPN is generated it is stored within the phasePN class instance that is held

within the masterPetriNet class instance. All final Petri nets are stored here until they are

required for the simulation which is described in the next section.

6.3.3 Simulating the Petri Net Model

The Petri net simulator created as part of the software is the most complex part of the

entire software. The simulator was designed to handle the type of model discussed in

section 4.3. The simulator has one particular feature that has not been identified within

any other Petri net simulator: the ability to wipe clean specific tokens within a Petri net

model. It is very important that this can occur when handling the model generated. The

details of this feature and its purpose are described within this section.

This section discusses the main class associated with the simulation of the model,

simulation. This class is described in detail from the initial preliminary simulation of the

model to the main simulation and the main functions used to simulate each transition in

the Petri net. The main algorithm used to simulate the whole model is also discussed.

This algorithm assesses the system at different stages to find the moment at which the

simulation has run its course.

Before the simulation functions are executed, the Petri nets that are stored within the

masterPetriNet class instance are transfered to the simulation class instance. The Petri

nets are transferred as separate vectors of places, transitions and arcs. Each of the places

and transitions are assigned integer identifiers as string identifiers take considerably longer

to validate during a simulation run. These identifiers are then also stored within the arcs

for reference. At this point the Petri nets are no longer identifiable as discrete from one

another, but form a single, large Petri net. The matrices required to simulate the transitions

firing during a simulation are then created. The method of marking transformation is

6.3. Software Structure 179

described in section 1.4.3.2. The software generates the incidence matrix, AT , using the

places and the arcs to determine the values. This is done automatically the user has no

further input at this point. Once each of these matrices are created the simulation process

can commence.

6.3.3.1 Simulation Algorithm

The user can initiate a simulation from the main menu of the software. The user specifies

the number of simulations to run and the duration of each simulation, which are the only

two arguments to the simulation command. This section describes the different algorithms

used when a simulation is run. These algorithms are as follows:

1. Before the actual simulation can begin, the input data is processed automatically

to locate key elements of the model, separated as follows:

(a) All simulation end places including the mission success place and failure phases

that terminate the mission

(b) All places that represent component states

(c) All places that represent component modes

(d) All places related to the circuit Petri net with IDs containing the key words

controlPlace and state

(e) All the phase timed transitions

(f) All places that represent phases including main phases that the system moves

through during a mission with no failures

(g) All other phase places

(h) All timed transitions (phase timed transitions and component failure timed

transitions)

(i) Times to failure and phase times

2. A preliminary simulation is performed in which all component times to failure are

set a large value, i.e. they will not fail. The purpose of this simulation is to validate

the model, ensuring that mission success is feasible. The preliminary simulation

also analyses components with multiple modes and times to failure. The simulator

measures the time spent in each mode to determine which failure mode will occur

first. This informs how and when the component fails during the full simulation.

3. All the information required to run the full simulation is now available, including

component failure times generated during model construction. The mission involving

the first component failure is now simulated. The preliminary simulation has

180 Chapter 6. Automated Reliability Modelling

established that the mission is successful when no components fail; therefore the

simulator identifies in which mission the first component fails. For example, with

a mission length of 20 hours and a component failing no earlier than 65 hours, the

simulator would begin at 60 hours, having assumed three successful missions.

4. After a single mission has been simulated, the function returns a value: the number

of tokens located in the mission success place (0 or 1). If the value is 1 then the

simulation was successful despite one or more component failures. If the mission

end time is still less than the total simulation period, the simulation is set to run

again, taking into account the failed components.

5. If the simulation comes back again as a mission success, then this shows that the

component that failed is not a component that can cause a mission failure on its

own. Further missions are simulated. If no new components fail in a mission, the

simulator will skip ahead to the next mission in which a component fails, as it did

in the first mission.

6. The simulator continues to run missions until the simulation time (specified by the

user) elapses. If at any point a mission is unsuccessful, then the simulation ends

early and the data is collected and written to file.

7. When a simulation ends, either in success or failure, new component failure times

are generated and inserted into the model for the next simulation.

8. This process is repeated for the number of simulations stipulated by the user.

9. The simulation is complete and the results are written to two files.

6.3.3.2 Simulation of the Model

This section describes the process for executing the timed transitions in the model. To

begin, all timed transitions are identified within the model and their positions are stored

locally within the simulation class. These times are then sorted in preference of earliest

first.

The function that completes this specific set of tasks is the simulateModel function.

This manages when different transitions fire.

There are a set activities that must be completed before the main section of the function.

These are covered below:

Mission Length

The user is not required to provide a definitive mission length as this information is

abstracted from places created as a result of the phase transition table. The main phase

6.3. Software Structure 181

places (not mission failure or success places) created as part of the modelling process

described in section 6.3.2.5 are identified. As the identifier for the places includes the time

frame that the phase represents, this value is taken and temporarily stored. When all time

frames are identified these are sorted, earliest first. From this list, the largest time value

can be determined and set as the length of an individual mission.

Active Time

A concept of active time is used within the software as a method of tracking the age of a

transition. This is particularly important for components with multiple modes of operation

with different failure rates. This active time is determined using a preliminary run of the

system and mission entered by the user, as described in section 6.3.3.1, step 2. The active

time is used to calculate the true overall time to failure of the component in the specific

mode.

Enabled Timed Transitions

This is a list of all timed transitions that have been determined as enabled. To identify

which timed transitions are enabled, each time value is tested to see if it would be possible

to fire this transition. If it is possible then the transition is added to the list of enabled

timed transitions. The identifiers of the transitions are stored for reference for when the

enabled value is fired.

Mission Start and End Time

Before a mission is run, it is necessary to determine the earliest enabled time. This process

was discussed briefly in 6.3.3.1, step 3. The phase times are not considered during this

process as this is to determine the earliest time to failure. The earliest time to failure is

then used to work out when the mission should commence. The preliminary run of the

system and mission ensures that the model created is viable. If the system and mission

are not viable then the simulation of the preliminary run would return a failure of the

mission without a component failing. It is assumed that the mission would be successful

if all components are working. By assuming this the software locates the earliest time to

failure of a component and re-works the new mission start time. The value is reworked by

completing the following:

1. Take the earliest time to failure and divide it by the mission length.

2. Remove any remainder from the value calculated in 1.

3. The start time is then calculated by multiplying the value calculated in 2. by the

mission length.

182 Chapter 6. Automated Reliability Modelling

4. The end time is the addition of the start time and the mission length.

After the start time and end time are calculated, these values are tested against the

user defined simulation length. If the start or end time is beyond the simulation time then

this simulation is determined to be completed successfully. If the start and end times are

within the limits then the simulation can begin.

Unchanging Place Tokens

During a simulation the system is wiped of tokens, with some exceptions. These unchanging

places are the component working and failed places, circuit control places and all places

representing phases of the mission. Before the simulation commences, the number of tokens

in each is stored within the simulation class. This is to track the tokens within these places.

6.3.3.3 Simulating Transitions

To simulate the transitions firing, the method of marking transformation as discussed

in section 1.4.3.2 is used. This is implemented in the software using a matrix class

written specifically for the software. An instance of this class contains the matrix elements

themselves and functions to perform matrix operations including addition, multiplication

and transposition.

There are two functions that manage the simulation of the transitions: simulateTran-

sitions and createFiringValues. The process used by the function simulateTransitions can

be seen in Figure 6.18. Blocks (4) and (9a) mention an intermediate step matrix: this

holds the matrix that results from the multiplication of the AT and
P

matrices.

The function createFiringValues determines which transitions are enabled based on the

places and arcs connected to each transition. The function completes the following tasks:

1. Identify the places that are inputs to the transition

2. For single- and double-headed arcs: do all the places contain a token?

a. Yes: Move on to 3.

b. No: This transition is not enabled. If there are any more transitions to assess

return to 1.

3. For inhibit arcs: do any of the places contain a token?

a. Yes: This transition is not enabled as it is inhibited. If there are any more

transitions to assess return to 1.

b. No: Move on to 4.

4. Identify the places that are outputs from the transition

6.3. Software Structure 183

5. For single-headed inhibit arcs: do any of the places contain a token?

a. Yes: This transition is not enabled as it is inhibited. Return to 1. for the next

transition.

b. No: Move on to 6.

6. The transition is enabled. Set the value within the
P

matrix to 1. If there are any

more transitions to assess return to 1.

6.3.3.4 Model Simulation Algorithm

Figures 6.19 and 6.20 show the process that works through the simulation of the model.

Within Figure 6.19 there is a key which shows a set of blocks. These blocks show the order

in which the timed transitions are considered. Each block contains a variable StartLocation

which is used within the software as an identifier to keep track of where the simulation is

in relation to each block. It is especially important when (6a) occurs as this breaks out of

the loop shown in the key to assess the enabled time transitions.

Blocks (3bi) to (3biv) in Figure 6.20 are required when a phase delta transition is

dependent on a component’s output value to move between phases. As tokens flow around

the model, it cannot be guaranteed that the output place contains a token at the correct

time. To aid this, these blocks continuously move through time = delta and time = 0

transitions until the token is present.

Blocks (6ci) and (6d) in Figure 6.19 set the begin time of a newly enabled time

transition. When moving through the blocks seen in the key in Figure 6.19, the simulation

could break out of the loop before or after the next enabled time transition has fired. If a

transition has become enabled before the next enabled time transition has fired then the

start time for this component is the last enabled time transition to have fired (Block(6ci)).

If there has been no previously fired time transitions then the value is set to the start of

the mission. If the transition has become enabled after the next enabled time transition

has fired then the start time is set to this value (Block (6d)).

6.3.3.5 Simulation Results

The results from each simulation are logged to file and held in memory. This is so that if

the simulation were to be stopped part way through by design or accident the results of

the simulation are not lost. There are three files generated as part of the results and are

listed below:

• Simulation_results.txt

• Supplementary_details.txt

184 Chapter 6. Automated Reliability Modelling

START

(1)Is this a delta
transition and is
this not the first

iteration?

No

(1a) Call the
simulateTransition

for time = 0

Yes

(2) Set M0 matrix to
the Mn

(3)Update the
tokens in the places
from the Mn matrix

(4) Clear the
contents of the

intermediate step,
Mn and ∑ matrices

(5) Create the ∑
matrix

(6) Are there any
enabled timed
transitions and
is the time not

delta?

(7) Set Mn to M0

STOP

(6a) Populate the
intermediate step

matrix with the
multiplication of AT

and ∑

(6b) Populate the
Mn matrix with the

addition of the
intermediate step

matrix and M0

No

Yes

(6c) Has there
been a change in
the unchanging

places?

(6d)Has the
mission moved

into a new
phase?

(6ci) Restart the
matrix by wiping the

tokens of non-
unchanging places

(6e) Has the
software
finished

assessing this
time?

STOP

Yes

No

No

Yes

No

Yes

Figure 6.18: Flow chart of the process of the simulation of a transition

6.3. Software Structure 185

START

(1) Retrieve the next

enabled timed

transition

No

Yes

(2) Is this the

first enabled

timed transition

in the list?

(4) Simulate the

transition at time

associated to the

block

(5) Set the token

values of the

unchanging places

(2a) Has the

previous enabled

timed transition

fired?

(2b) Return to the

previous enabled

timed transition

Yes

NoYes

No

[A] StartLocation=0

Time = 0

[B] StartLocation=1

Time = delta

[C] StartLocation=2

Time = 0

[D]StartLocation=3

Time=enabled

transition time

[E] StartLocation=4

Time=0

KEY:

(6) Has the

simulation come

to an end?

(7) Locate enabled

timed transitions

(10) Are there

any new enabled

timed

transitions?

(8) Set the enabled

timed transitions

(9) Register the next

startLocation

(6b) Is this a

break due to

simulation end?

(6a) Break out of the

loop

No

Yes

(6c) Is this

before a timed

transition has

fired in this

loop?

No

Yes

(6ci) Set the start

time as the previous

timed transition

value for the new

enabled timed

transitions

(6bi) Did any

time to failure

transitions fire?

(6bii) Sort the

failure times

(6biii) Identify the

last failure time

(6biv) Create a new

simulation record

(6bv) Return the

number of tokens

within the mission

success place

STOP

No

Yes

(3) Is this block

[D]?

No

1

2

3

(6d) Set the start

time as the recently

fired timed

transition value for

the new enabled

timed transitions

(6e) Remove any

previously fired

timed transition

values

(6f) Recreate the

enabled timed

transition values

Yes

No

Yes

(11) Move onto the

next block

Figure 6.19: Flow chart of the process of the simulation of the model, part 1

186 Chapter 6. Automated Reliability Modelling

(3d) Simulate the

transition at time

associated to the

block

(3f) Set the token

values of the

unchanging places

1

(3a) Is the

mission Length

less than the

enabled timed

transition?

(3ai) Set the

identifier

StartLocation to 4

(3b) Is the

enabled timed

transition greater

than the

simulation

length?

(3c) Is the

enabled timed

transition greater

than the end

time of the

current mission?

(3e) Add the

enabled timed

transition value to

the fired transition

list

(3g) Was the

timed transition

a phase

transition?

(3bi) Simulate

time = 0

(3bii) Has the

simulation come

to an end?

(3biii) Simulate

time = delta

(3biv) Has the

simulation come

to an end?

2

(3gi) Add the timed

transition identifier

to a list of failed

components

3

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

Figure 6.20: Flow chart section of the process of the simulation of the model, part 2

6.4. Testing and Validation 187

• ExcelFileSimResults.txt

The first file has the unreliability data for each set of 50 simulations and the final

unreliability data at simulation end. The second file details each simulation run including

the phase sequence and the component failures that have occurred during the mission. The

third file is a tab-delimited file of the results that can be opened with excel to generate

graphs and other data. A time-stamp of when each of the files is created (at the start of

the simulation process) is included.

6.3.3.6 Summary

The simulator created as part of this software is complex but necessary to prove the validity

of the models generated using the software. This section has covered the main aspects and

processes used to generate reliability data for the model completing a mission or multiple

consecutive missions. In order to prove whether the results obtained from the simulation

are within acceptable tolerances, an analytical solution must be calculated. The following

section discusses the modelling method used to generate the analytical values.

6.4 Testing and Validation

In order to validate the modelling method, the system described in Chapter 5 was used.

Files representing the decision and operational mode tables, seen in Tables 5.1 - 5.15,

were created. The topology diagram seen in Figure 5.2 was converted into the system

structure file format as discussed in Section 6.2.2. The simulation file was populated with

the information displayed in Table 6.2 and the following initial conditions were used:

• Push switch, S1 : mode = open

• Toggle switch, S2 : mode = closed

• Relay contact, CR : mode = open

• Timer relay contact, CT : mode = open

• Valve, V : mode = closed

Each component follows an exponential distribution. To validate the simulation results,

a set of analytical values were calculated to compare against those generated from the

software. To calculate the unreliability of the system over the mission, the reliability

modelling method of phased fault trees as discussed in section 2.2.1 was used.

188 Chapter 6. Automated Reliability Modelling

Table 6.2: Pressure tank system component failure data

Component identifier Failure Mode Failure Rate

S1 F_closed 0.1
S1 F_open 0.1
S2 F_closed 0.8698
S2 F_open 0.001
PS1 F 0.001
PS2 F 0.001
CT F_closed 0.1
CT F_open 0.1
CR F_closed 0.00023
CR F_open 0.00023
TIM F 0.001
R F 0.1
M F 0.001
FS F 0.01
P F 0.1
T F 0.0001
V F_closed 0.03
V F_open 0.03
PG F_LOW 0.01
PG F_HIGH 0.01
PG F_VHIGH 0.01
OP F 0.1

6.4.1 Validation using Phase Fault Trees

To validate that the software provides results accurate to within a tolerance of ± 5%, the

software was set to run for a single mission. Using the relationship between failure rate

and mean time to failure (µ = 1/λ), the failure rates in Table 6.2 were converted into their

equivalent mean times to failure. These were entered into the .sim file.

The phase fault trees for this mission can be seen in Figures 6.21 - 6.24. Each phase

fault tree was evaluated using the data given in Table 6.2 and using the procedure seen

in section 2.2.1.3 by La Band (2005). The subscript numbers within the basic events

demonstrate when these basic events can occur i.e. in which phases these basic events can

occur which would contribute to the failure in the current phase. This generally affects

components with multiple modes of operation, as the time in which the component fails

dictates the mode in which the component fails.

The phase unreliability was calculated using the minimal cut set upper bound

approximation described in Section 1.4.1.1. This was applied to each of the phase fault

trees and can be seen in equations 6.4.1, 6.4.2, 6.4.4 and 6.4.6 to represent the unreliability

of phase 1, 2, 3 and 4, respectively.

6.4. Testing and Validation 189

Phase 1

Failure

S1 Fails

Open

PS1

Fails

Timer contact

does not close

TIM

Fails

TC Fails

Open

S1OP PS11

TCOPTIM1 1

1

Figure 6.21: Pressure tank system phase 1 fault tree

Phase 2

Failure

Tank does not

Fill

T

Fails

P

Fails

P12T12

Relay, R,

De-energised

R

Fails

R12

PS1

Fails

PS112

TIM

Fails

TIM12

No Power to

Pump

M

Fails

M12

PS2

Fails

PS212

FS

Fails

FS12

RC Fails

Open

RCOP1

Figure 6.22: Pressure tank system phase 2 fault tree

190 Chapter 6. Automated Reliability Modelling

Phase 3

Failure

V Fails

Closed

Valve is not

Opened

OP

Fails

PG

Fails Low

VCL

PGLOP13

13

13

Figure 6.23: Pressure tank system phase 3 fault tree

Phase 4

Failure

Motor circuit

still energised

Relay still

energised

S1 Fails

Closed

TC Fails

Closed

RCCL

TCCLS1FC

12

1 12

Figure 6.24: Pressure tank system phase 4 fault tree

6.4. Testing and Validation 191

Q(Phase1) = 1− (1− P (S1OP1)(1− P (PS11))(1− P (TCOP1))(1− P (TIM1)) (6.4.1)

Q(Phase2) =1− (1− P (X ·R12))(1− P (X ·RCOP1))(1− P (X ·M12))

(1− P (X · FS12))(1− P (X · PS212))(1− P (X · T12))(1− P (X · P12))

(1− P (S1OP1 · PS11 · TCOP1 · TIM2))

(1− P (S1OP1 · TCOP1 · TIM1 · PS12)) (6.4.2)

Where X is defined by the equation 6.4.3.

X = S1OP1 · PS11 · TCOP1 · TIM1 (6.4.3)

Q(Phase3) = 1− (1− P (Y · VCL13)(1− P (Y ·OP13))(1− P (Y · PGL13)) (6.4.4)

Where Y is defined by the equation 6.4.5.

Y =S1OP1 · PS112 · TCOP1 · TIM12 ·R12.M12 · FS12 · P12 · T12 ·RCOP1 · PS212 (6.4.5)

Q(Phase4) = 1− (1− P (Z ·RCCL12)(1− P (Z · S1CL1))(1− P (Z · TCCL12)) (6.4.6)

Where Z is defined by the equation 6.4.7.

Z =S1OP1 · PS112 · TCOP1 · TIM12 ·R12 ·M12 · FS12 · P12 · T12 ·RCOP1 ·

PS212 · VCL13 ·OP13 · PGL13 (6.4.7)

Each of the above equations were calculated and the results obtained can be seen in

Table 6.3. The next section details the results obtained from the software with a comparison

to the values obtained using the above equations.

6.4.1.1 Single Mission Simulation Results

The software completed 10,000 simulations of a single mission of the pressure tank system.

The final simulation results obtained can be seen in Table 6.3. Figures 6.25, 6.26 and

192 Chapter 6. Automated Reliability Modelling

Table 6.3: Pressure tank system simulation results from 10,000 simulations

Phase Number

1 2 3 4 Mission

Analytical 0 0.1927 0.1061 0.0670 0.3658
Simulation 0 0.1990 0.1080 0.0645 0.3715

Difference(%) 0 3.25 1.80 3.74 1.56

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000

U
n

re
lil

ab
ili

ty

Number of Simulations

Analytical Simulation

Figure 6.25: Phase 2 simulation convergence results

6.27 show the phase unreliability for phases 2, 3 and 4 respectively. These show how the

simulation results begin to converge on the analytical values calculated in section 6.4.1.

6.4.1.2 Analysis

Convergence Study

To validate the results a convergence study was carried out for each individual phase of

the mission and the overall unreliability of the mission. The first phase of the mission, a

discrete phase, was completed successfully during each mission run during the simulation.

The further three phases of the mission (2, 3 and 4) began to converge at approximately

2,100 simulations. This is a convergence within a ± 5% tolerance. The mission unreliability

can be seen to converge at approximately 1,250 simulations within a ± 5% tolerance.

To show this convergence the values between 2,000 simulations and 10,000 simulations

6.4. Testing and Validation 193

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2000 4000 6000 8000 10000

U
n

re
lia

b
ili

ty

Number of Simulations

Analytical Simulation

Figure 6.26: Phase 3 simulation convergence results

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2000 4000 6000 8000 10000

U
n

re
lia

b
ili

ty

Number of Simulations

Analytical Simulation

Figure 6.27: Phase 4 simulation convergence results

194 Chapter 6. Automated Reliability Modelling

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000

U
n

re
lia

b
ili

ty

Number of Simulations

Analytical Simulation

Figure 6.28: Mission simulation convergence results

were taken and displayed in Figure 6.29. This shows the values staying within the tolerances

of ±5%.

The simulation results shown for the convergence study and the simulation of multiple

missions, discussed in the next section, were published in Stockwell and Dunnett (2013).

6.4.1.3 Simulation of Multiple Missions

The previous sections discussed using the software for calculating single mission unreliabil-

ity. This section takes this one step further and discusses using the software for calculating

the unreliability of multiple continuous missions. For this type of simulation it is assumed

that the system does not shutdown, but as one mission ends the next begins. For this

study the failure data in Table 6.2 was divided by 103. This was to enable components

to last multiple missions. As the reliability and the availability of a non-repairable system

are equal as discussed in section 1.3.4.1. Figure 6.30 shows the unavailability of each phase

of the system over 5,000 consecutive missions. Figure 6.31 shows the unavailability of the

system over 5,000 consecutive missions. As expected, Figure 6.31 shows that increasing

the demand on the system reduces the probability of mission success. At approximately

3,000 missions the unavailability of the system is very close to zero. The curve of the data

follows that of an exponential function. This is unsurprising given that this system is a

6.4. Testing and Validation 195

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

2000 4000 6000 8000 10000

U
n

re
li

a
b

il
it

y

Number of Simulations

Simulation Results 5% -5% Analytical

Figure 6.29: Section of the mission unreliability graph for a non-repairable pressure tank
system

196 Chapter 6. Automated Reliability Modelling

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000 5000

U
n

a
v

a
il

a
b

il
it

y

Number of Missions

phase 1 phase 2 phase 3 phase 4

Figure 6.30: Individual phase unavailability over time

non-repairable system and that each component within the system follows an exponential

failure distribution.

6.5 Summary

This chapter has detailed the three main aspects of the software created: file input, model

creation and simulation. Each of these has been discussed in detail to show the complexity

of the software generated. It has described a number of the major classes and functions

that make up the software. Flow charts of the procedures that the software completes in

order to achieve specific goals have been shown.

The files that the user must create are simple and require no specialist knowledge of

risk and reliability techniques. The tables that describe the system topology, mission and

component behaviours are intuitive for design engineers and are created as simple plain

text files. There are defined instructions for the user to generate each file type and how

to change any predefined values and libraries of components can be generated and stored

for future use. To generate the model and perform a simulation, simple commands with

minimal arguments are entered into the main menu of the software.

The model building section detailed how the software uses the novel techniques

discussed in chapter 4 to generate each of the four Petri net models: CPN, SPN, CiPN

6.5. Summary 197

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1000 2000 3000 4000 5000

U
n

a
v

a
il

a
b

il
it

y

Number of Missions

Figure 6.31: Mission unavailability over time

and PPN from the user input files. The different Petri nets are assembled by the software

to form a single model of the overall system.

The software handles items such as automatically generating circuit lists without any

further aid from the user. This means the model construction process is repeatable between

different systems and different users. As long as the user defines the system correctly within

the component tables and the system topology the software will identify each circuit within

a system.

The implementation of a new simulator, written specifically for the generated models,

was discussed in detail. The simulator can perform a number of simulations specified by the

user to calculate the unreliability of the system across a single mission or multiple successive

missions, making the software suitable for a wider range of systems. The simulator outputs

unreliability data as well as more detailed data on phase failures and component failures.

The results validate the novel model generation technique and show great potential for

the software developed. The software proved that it can calculate mission unreliability

that agrees with an analytical solution to within a tolerance of ±5% for individual phases

and for the overall mission.

Chapter 7

Modelling of Repairable Systems

Contents
7.1 Introduction . 200

7.2 Preventative Maintenance . 201

7.2.1 File Input . 201

7.2.2 System Storage . 202

7.2.3 Construction Procedure . 203

7.3 Corrective Maintenance . 206

7.3.1 File Input . 207

7.3.2 System Storage . 207

7.3.3 Construction Procedure . 208

7.4 Standby Systems . 212

7.4.1 File Input . 212

7.4.2 System Storage . 215

7.4.3 Construction Procedure . 217

7.4.4 Cold Standby . 218

7.4.5 Warm Standby . 219

7.4.6 Hot Standby . 219

7.5 Voting Systems . 221

7.5.1 File Input . 221

7.5.2 System Storage . 222

7.5.3 Construction Procedure . 222

7.6 Mission Abort . 225

7.6.1 File Input . 225

7.6.2 System Storage . 225

7.6.3 Construction Procedure . 225

7.7 Simulating a Repairable System . 229

7.7.1 Simulation Algorithm . 229

7.7.2 Simulation of the model . 230

7.7.3 Simulating Transitions . 230

200 Chapter 7. Modelling of Repairable Systems

7.8 Repairable Bulb System . 230

7.8.1 Introduction . 230

7.8.2 System Description . 231

7.8.3 Mission Description . 234

7.8.4 Maintenance Plan . 234

7.8.5 Petri Net Models . 234

7.8.6 Validation . 237

7.9 Summary . 242

7.1 Introduction

The procedure given in Chapter 4 is built upon in this chapter to cater for systems that can

be repaired during a mission. The software has been designed so that any system can have

both repairable and non-repairable components. For the purposes of demonstrating the

repairable capabilities, all components within this chapter are assumed to be repairable.

The standard Petri net to represent failed to repair can be seen in Schneeweiss (1999), an

example of which can be seen in Figure 7.1. Figure 7.1 shows the original working to failed

states, seen previously in Figure 4.8a, with the addition of a new place to represent the

under repair status of a component. An immediate transition is placed between the failed

state place and the under repair state place. This shows that once the component enters a

failed state it is automatically assumed to be under repair. Between the under repair state

place and the working state place a timed transition, tR, is created. This represents the

time the component requires to be repaired to bring it back to a fully working state.

W

UR

FtF

tR

Figure 7.1: Petri net showing the transition between working, failed and under repair states
of a component

This chapter focuses on the repairable nature of systems by looking at different

methods of maintenance and the use of standby systems and voting systems as methods

of redundancy. The maintenance methods covered in this work include preventative and

corrective maintenance. Redundancy has been investigated through standby systems: cold,

7.2. Preventative Maintenance 201

W

UR

F
tF

tR

tPUp Down

Figure 7.2: General preventative Petri net

warm and hot standby. Voting systems have also been considered for their redundancy

applications.

As part of the new work presented here, a new variable defaultRepair was added to

the topSystem class to ensure, in a similar way to the working state value, that there is

consistency of use of the value.

7.2 Preventative Maintenance

Preventative maintenance or scheduled maintenance as discussed in section 1.3.4.2 has

been considered in the software. It has been considered both on a system-wide level

and component-by-component basis. The Petri net that represents the preventative

maintenance for any given component can be seen in Figure 7.2. This is based on a version

of the Petri net found in Schneeweiss (1999). The Up and Down places represent that the

component is under a preventative maintenance cycle and not, respectively. Additional

inhibit arcs between the failed place, under repair place and the transition representing the

maintenance cycle coming to an end were created. This is to ensure that the preventative

maintenance cycle completes the repair before returning to the Down place.

This section describes the user expressions required within the input files and the

manner in which the information is stored and used to build the Petri net model seen in

Figure 7.2.

7.2.1 File Input

All maintenance plans are expressed within the simulation file (.sim). This includes

system-wide and component-based maintenance plans. These are written within a

MAINTENANCE header in the file. The preventative maintenance cycle has been

modelled for individual components by the user stipulating the following:

preventative componentID (time_between_maintenance_cycles);

or it can be stipulated for the system by using the following expression:

202 Chapter 7. Modelling of Repairable Systems

MAINTENANCE

{

preventative compA(20);

system preventative (20);

}

Figure 7.3: File Input expressions within the simulation file

class planDetails

-bool systemStatus;

-string componentId;

Figure 7.4: planDetails class view

system preventative (time_between_maintenance_cycles);

An example of the entry for a preventative maintenance cycle for both a system-wide

event and a component-specific plan can be seen in Figure 7.3.

The time between cycles is assumed to be divisible by the mission length as it is assumed

that preventative maintenance cycles are not completed within a running mission, but at

the end of a mission.

7.2.2 System Storage

There are two classes that are used when storing this information from the simulation file:

planDetails and preventative. The planDetails class can be seen in Figure 7.4. This class

forms the basic information for each maintenance plan. This is used to stipulate whether

the plan is component based, in which case the variable componentId would be populated.

If the plan is system wide then the systemStatus variable would be set to true. The

preventative class inherits the attributes within the planDetails class. This is also true of

the corrective class to be discussed in the next section. The preventative class can be seen

in Figure 7.5; this class has one variable duration which is the time between maintenance

cycles.

class preventative : public planDetails

-double duration;

Figure 7.5: preventative class view

7.2. Preventative Maintenance 203

class maintenance

-vector<corrective> corPlans;

-vector<preventative> prePlans;

-vector<standby> standPlans;

-vector<voting> votPlans;

Figure 7.6: maintenance class view

All maintenance plans are stored within a maintenance class instance which holds a

vector of each maintenance item and any standby and voting system plans as seen in Figure

7.6. The maintenance class instance is a variable added to the topSystem class as part of

the repairable work shown here.

The procedure for taking the file and storing the information for preventative

maintenance cycles has been detailed in Figure 7.7.

The Petri net construction process based on this information is considered in the next

section.

7.2.3 Construction Procedure

The construction procedure detailed here takes the information stored within the preven-

tative class instances held within the maintenance class instance to generate the Petri net

model.

1. Create a new place to represent the simulation is under maintenance: simula-

tion.maintenance

2. Consider each preventative plan: Is this a system wide plan?

(a) Yes

i. Create a place to represent the system undertaking preventative mainte-

nance: component.system.wide.preventative.up

ii. Create a place to represent the system not undertaking preventative

maintenance: component.system.wide.preventative.down. Set the place to

have a single token.

iii. Create a timed transition to represent the time between maintenance

cycles. This transition has the following identifier:

component.system.wide.timed_p.time_between_cycles

iv. Create the following arcs:

A. Create a single-headed arc between the place created in 2(a)ii and the

transition to represent time between cycles created in 2(a)iii.

204 Chapter 7. Modelling of Repairable Systems

START

(1) Is the next
string “system”?

(2) Is the next
string

“preventative”?

(1a) Is the next
string

“preventative”?

Yes

No

No

Yes (1ai) This is another
maintenance type or

a unknown
maintenance type

Yes

No

(4) The next
string is the
component

identifier. Does
the component
exist within the
current system?

(3) Create a
preventative class

instance

(5) Add the
component

Identifier to the
preventative class
instance created in

(3)

(6) Is the next
string “(”?

(7) The next string is
the time between

cycles. Set this value
within the

preventative class
instance created in

(3)

(8) Is the next
string “)”?

(9) Is the next
string “;”?

STOP

(4a) Issue error to
the user: The

component does
not exist in the
current system

(6a) Issue error to
the user: The
declaration is

missing ‘(‘

(8a) Issue error to
the user: The
declaration is

missing ‘)’

(9a) Issue error to
the user: The
declaration is

missing ‘;’

(1b) Create a
preventative class

instance

(1c) Set the
preventative class
instance to system

wide event

STOP STOP STOP STOP STOP

No

Yes

No

Yes

No

Yes

No

Yes

Figure 7.7: Flow chart showing the steps to taking the file input and storing the
preventative maintenance information

7.2. Preventative Maintenance 205

B. Create a single-headed arc between the timed transition created in

2(a)iii and the place representing the undertaking of maintenance

created in 2(a)i.

v. Create an immediate transition. This immediate transition allows the

transition between the maintenance up place to the maintenance down

place. The identifier for the transition is as follows:

component.system.wide.immediate_p.upToDown.

vi. Create the following arcs:

A. Create a single-headed arc from the under maintenance place created

in 2(a)i to the immediate transition created in 2(a)v.

B. Create a single-headed arc from the immediate transition created in

2(a)v to the not under maintenance place created in 2(a)ii.

C. Create an inhibit arc from each component failed places to the

immediate transition created in 2(a)v.

vii. Identify each component in the system that is repairable and not already

maintained through a corrective maintenance plan and complete the

following:

A. Create an inhibit arc from each component failed place to the

immediate transition created in 2(a)v.

B. Create an inhibit arc from the component’s under repair place to the

immediate transition created in 2(a)v.

C. A double-headed arc from the under maintenance place created in 2(a)i

to each of the immediate transitions that link a component’s failed

place and under repair place.

(b) No

i. Retrieve the component associated to the plan.

ii. Create a place to represent that the component is undertaking mainte-

nance: component.componentType.componentID.preventative.up

iii. Create a place to represent that the component is not undertaking

maintenance: component.componentType.componentID.preventative.down.

This place is set to have one token, as all components are assumed to be

working from time zero.

iv. Create a timed transition to represent the time between maintenance

cycles. The identifier for this transition is

component.componentType.componentID.timed_p.time_between_cycles

v. Create the following arcs:

206 Chapter 7. Modelling of Repairable Systems

A. Create a single-headed arc between the place created in 2(b)iii and the

transition to represent time between cycles created in 2(b)iv.

B. Create a single-headed arc between the timed transition created in

2(b)iv and the place representing the undertaking of maintenance

created in 2(b)ii.

vi. Create an immediate transition. This immediate transition allows the

transition between the maintenance up place to the maintenance down

place. The identifier for the transition is as follows:

component.componentType.componentID.immediate_p.upToDown.

vii. Create the following arcs:

A. Create a single-headed arc from the under maintenance place created

in 2(b)ii to the immediate transition created in 2(b)vi.

B. Create a single-headed arc from the immediate transition created in

2(b)vi to the not under maintenance place created in 2(b)iii.

C. Create an inhibit arc from each component failed places to the

immediate transition created in 2(b)vi.

D. Create an inhibit arc from the component’s under repair place to the

immediate transition created in 2(b)vi.

E. A double-headed arc from the under maintenance place created in

2(b)ii to each of the immediate transitions that link a component’s

failed place and under repair place.

An example of a single component has been given in Figure 7.2. An example of a

system wide preventative maintenance plan has been given in Figure 7.8. This shows

three components within a system that are all repairable and are not covered by another

maintenance plan.

The next maintenance plan type to consider is corrective maintenance which is covered

in the next section.

7.3 Corrective Maintenance

Corrective maintenance or unscheduled maintenance as discussed in section 1.3.4.2 has also

been considered in the software. As with preventative maintenance, corrective maintenance

can be considered on a component-by-component basis or as a system-wide event. Both will

be discussed here. The Petri net structures used in this section are based on Schneeweiss

(1999).

7.3. Corrective Maintenance 207

W

UR

F
tF

tR
tPUp Down

W

UR

F
tF

tR

W

UR

F
tF

tR

CompA CompC

CompB

Figure 7.8: Flow chart showing the steps to taking the file input and storing the
preventative maintenance information

7.3.1 File Input

The declarations for each type of corrective maintenance plan is given within the

MAINTENANCE heading within the simulation file. The declaration for a component

is as follows:

corrective componentID(maintenance_engineer_identifier);

and the declaration for a system wide corrective maintenance plan is as follows:

system corrective (number_of_personnel);

The component corrective maintenance declaration requires an identifier to show which

maintenance engineer completes maintenance for the component identified. This is to

cater for the possibility that a single maintenance engineer would cover the maintenance

for multiple components within a system. The system-wide corrective maintenance

plan requires the number of maintenance personnel that are available to carry out the

maintenance of the system.

7.3.2 System Storage

Each individual corrective maintenance plan is stored within a corrective class instance.

The class view can be seen in Figure 7.9. The corrective class inherits the attributes of

the planDetails class. The component that the plan applies to (or the system-wide event

indicator) is stored within the attributes of the planDetails class. Within the corrective

208 Chapter 7. Modelling of Repairable Systems

class corrective : public planDetails

-vector<string> personnel;

-unsigned int noOfPersonnel;

Figure 7.9: corrective class view

class, a list of maintenance engineer identifiers (as discussed in 7.3.1) is stored, relating

to individual component corrective maintenance. Also stored within the corrective class is

the number of maintenance personnel available for system-wide maintenance. The set of

corrective classes are stored within the maintenance class instance as seen in Figure 7.6.

The process for storing this information can be seen in Figure 7.10.

7.3.3 Construction Procedure

The construction procedure for a corrective maintenance plan has been described below:

1. Identify all engineer identifiers from each corrective maintenance plan

2. For each identified in 1 create a place to represent that engineer is available to

complete maintenance. The identifier would use the following format: compo-

nent.corr.eng.engID.up

3. For each place identified in 1, create a place to represent that the engineer

has completed maintenance. The identifier would follow the following format:

component.corr.eng.engID.down

4. Is this a system-wide event?

(a) Yes:

i. Create a place to represent the engineers available. The place identifier

would follow the following format:

system.corr.eng.plan_number.number_of_engineers

ii. Set the number of tokens in the place created in 4(a)i to the number of

engineers stated in the file (‘number_of_engineers’)

iii. Identify the repairable components in the system (components with an

under repair place) and complete the following:

A. Retrieve the transitions that are linked between the failed places and

under repair place

B. Create a single-headed arc between the place created in 4(a)i and the

transitions identified in 4(a)iiiA

7.3. Corrective Maintenance 209

START

(1) Is the next
string “system”?

(2) Is the string
“corrective”?

(1a) Is the next
string

“corrective”

(1b) This is another
maintenance type
or unknown string

(3) Create a new
corrective class

instance

(1b) Create a new
corrective class

instance

(1c) Set the system
status of the

corrective class
instance to true

(4) The next
string is the
component

identifier. Does
the component
exist within the
current system?

(5) Add the
component

Identifier to the
corrective class

instance created in
(3)

(4a) Issue error to
the user: The

component does
not exist in the
current system

(6a) Issue error to
the user: The
declaration is

missing ‘(‘

(10a) Issue error to
the user: The
declaration is

missing ‘;’

STOP STOP STOP STOP

(6) Is the next
string “(”?

(9) Is the next
string “,”?

(8) Add the next
string, the engineer

identifier, to the
corrective class

instance

(7) Is the next
string “)”?

No

Yes

Yes

No

No

Yes

(10) Is the next
string “;”?

(11) Add the
corrective class
instance to the

maintenance class
instance

STOP

(1d) Is the next
string “(”?

(1e) Add the next
string, the number
of engineers, to the

corrective class
instance

(1f) Is the next
string “)”?

(1fi) Issue error to
the user: The
declaration is

missing ‘)‘

STOP

Yes

No Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Figure 7.10: Flow chart for the process of taking in the file and interpreting the corrective
maintenance plan

210 Chapter 7. Modelling of Repairable Systems

C. Retrieve the time to repair transition of the component

D. Create a single-headed arc between the time to repair transition and

the place created in 4(a)i

E. Retrieve the failed places for the current component

F. For every other repairable component in the topology listed after the

current component complete the following:

• Locate the immediate transitions connected between the failed places

and the repair place for the components identified

• Create an inhibit arc between the failed places of the current

component and the immediate transitions identified in the previous

step

(b) No:

i. Retrieve the engineer identifiers from the corrective class instance

ii. Create a place to represent that there is an engineer available for the

component. This place follows the following format:

component.componentType.componentID.maint.a

iii. Create a place to represent that maintenance has completed on the

component. This place follows the following format:

component.componentType.componentID.maint.c

iv. Set the token to value to 1 in the engineer available place created in 4(b)ii.

v. Retrieve the immediate transitions linked between failed places and the

repairable place of the component

vi. Create a single-headed arc between the engineer available place created in

4(b)ii and each immediate transition

vii. Retrieve the time to repair transitions

viii. Create a single-headed arc between the time to repair transitions and the

maintenance complete place created in 4(b)iii

ix. For every engineer assigned to this component complete the following:

A. Create a place to represent that the engineer is carrying out main-

tenance. This place identifier has the following format: compo-

nent.maint.corr.engID.up

B. Create a place to represent that the engineer is not currently carrying

out maintenance. The place identifier has the following format:

component.maint.corr.engID.down

C. Set the place token value to 1 for the place created in previous step

7.3. Corrective Maintenance 211

D. Create an immediate transition that will transition between the

engineer carrying out maintenance place and the engineer not carrying

out maintenance. The transition identifier follows the following format:

component.transition.corr.engID.upToDown

E. Create an immediate transition that will transition between the

engineer not carrying out maintenance place and the engineer carrying

out maintenance place. The transition identifier follows the following

format: component.transition.corr.engID.DownToUp

F. Create a single-headed arc between the maintenance complete place

and the transition created in 4(b)ixD

G. Create a single-headed arc between the engineer completing mainte-

nance place and the transition created in 4(b)ixD

H. Create a single-headed arc between the transition created in 4(b)ixD

and the engineer not completing maintenance place

I. Retrieve the failed places of the component

J. For each of the failed places complete the following:

• Create an immediate transition will connect the place representing

the engineer not completing maintenance and the engineer complet-

ing maintenance. The transition identifier follows the following for-

mat: component.transition.corr.engID.componentID_FailureValue

• Create an inhibit arc between any places already created for other

maintenance engineers as created in 4(b)ixB

• Create a double-headed arc between the failed place and the

transition created in 4(b)ixE

• Create a single-headed arc between the transition created in 4(b)ixE

and the maintenance available place created in 4(b)ii

• Create a single-headed arc between the engineer not carrying out

maintenance place created in 4(b)ixB and the transition created in

4(b)ixE

• Create a single-headed arc between the transition created in 4(b)ixE

and the engineer completing maintenance place created in 4(b)ixA

K. For each corrective plan left that has a common maintenance engineer

complete the following:

• Retrieve the immediate transitions linked between failed places and

the repairable place of the component

212 Chapter 7. Modelling of Repairable Systems

Available Complete
W

UR

FtF

tR Up DownEngineer

Figure 7.11: Petri net for a single mode component under a corrective maintenance plan

• For each failed place of the original component create an inhibit arc

between the failed place and each transition identified in the previous

step

If there is more than one component that uses the same engineer then only a single

place representing this engineer would be created. The appropriate links would then be

created for each of the components maintained by the engineer.

Using the construction procedure above, three examples have been generated. The first,

Figure 7.11, shows a single operational mode component under a corrective maintenance.

The second, Figure 7.12, shows the construction of two components; one with a single

operational mode and another with multiple operational modes. This is an example of

two components sharing a single maintenance engineer. The third example, Figure 7.13,

shows three repairable components within a system that are maintained by a system wide

corrective maintenance cycle with two maintenance engineers.

7.4 Standby Systems

Standby systems are used as a method of redundancy within a system structure. There

are three types of standby systems: cold, warm and hot. Each of these will be discussed

in detail with examples of their Petri net equivalent. The procedures for the construction

of each type will also be discussed.

7.4.1 File Input

Any standby components that exist within a system must be described as part of the

system description to input into the software. This is dealt with within the simulation file

(.sim) under the header STANDBY. An example of this can be seen in Figure 7.14. The

first two declarations within the STANDBY header show that compB is in standby for

compA and vice versa where compB is the first component in standby.

7.4. Standby Systems 213

A
va
il
ab
le

C
o
m
pl
e
te

W

U
R

F
t F t R

U
p

D
o
w
n

E
ng

in
ee

r

W

F
M

1

F
M

2
m

o
d

e
 =

 M
2

m
o
d

e
 =

 M
1

t F
M

2

U
R

t R

t F
M

1

A
va
il
ab
le

C
o
m
pl
e
te

A
B

F
ig
ur
e
7.
12

:
P
et
ri

ne
t
fo
r
m
ul
ti
pl
e
co
m
po

ne
nt
s
m
ai
nt
ai
ne

d
by

a
si
ng

le
m
ai
nt
en

an
ce

en
gi
ne

er

214 Chapter 7. Modelling of Repairable Systems

W

UR

F
tF

tR

Engineers

Available

W

UR

F

tFtR

W

UR

F
tF

tR

A

B

C

Figure 7.13: Petri net for a system-wide corrective maintenance plan with two maintenance
engineers

STANDBY

{

compA * COLD(compB);

compB COLD(compA);

compC WARM(compD);

compE HOT(compF);

}

Figure 7.14: Declarations used within the STANDBY header within the simulation file

7.4. Standby Systems 215

class standby

-string componentId;

-bool primary;

-string type;

-vector<string> standbyIds;

Figure 7.15: The standby class

Figure 7.14 shows the header STANDBY, which is used to signify the next set of

information to the software. The curly braces signify the beginning and the end of the

standby information. Each line uses the following syntax:

compID *type(compID1, compID2, · · ·, compIDN);

Where a * is required if components can be in standby for one another. This identifies

which component is in standby at the beginning of a simulation.

The syntax states that should component compID fail, component compID1 takes

over; should compID1 fail then compID2 takes over and so on until no other components

are available. If the system is designed such that, upon failure, the original component

compID is repaired and placed into standby for the other components then another line

would be required to show this in this section of the system description, e.g. compID1

type(compID, compID2, · · ·, compIDN).

The Petri net is constructed according to the standby type (keywords: COLD, WARM

and HOT). Each of the following sections shows an example of the construction procedure

needed to generate the correct Petri net directly from the information above. At the point

the standby section of the component/system is generated, the overall component Petri

net has already been generated including the working to failed Petri net. The integration

performed here simply connects the component to the standby components or systems.

7.4.2 System Storage

Each standby declaration as those seen in Figure 7.14 are held within a standby class

instance. When each class instance is created it is held within the maintenance class

instance. The standby class can be seen in Figure 7.15. The variable type would be COLD,

WARM or HOT. The procedure for taking the information from the file and storing it

within each standby class instance can be see in Figure 7.16.

216 Chapter 7. Modelling of Repairable Systems

START

(1) The software has

identified the header

STANDBY within

the simulation file

(2) Is the next

string in the file

“{”?

(3) Is the next

string in the file

“}”?

(2a) Issue error to

the user: Missing ‘{’

from the declaration

(3a) The

STANDBY

declaration is

complete

(4) Create a new

standby class

instance

(5) Get the next

string, the

component ID.

Does the

component exist

in this system?

(5a) Issue error to

the user: The

component does not

exist

(6) Add the

component

identifier to the

standby class

instance created in

4.

(8) Is the next

string “(”?

(8a) Issue error to

the user: Missing ‘(’

from the declaration

(12) Is the next

string “,”?

(11) Add the

component to the

standby class

instance

(9) Is the next

string “)”?

(10) Get the next

string, the

standby

component ID

Does the

component exist

in the system?

(9b) Issue error to

the user: Missing ‘;’

from the declaration

STOP STOP STOP STOPNo

Yes

2

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

(7) Is the next

string “*”?

Yes (7a) This is the

primary component.

Set primary to true

No

(9a) Is the next

string ‘;’

STOP

No

Yes

Figure 7.16: Flow chart for the storing of the standby components

7.4. Standby Systems 217

7.4.3 Construction Procedure

The construction procedure for a standby system is given below:

1. Retrieve the component identifiers of those components in standby.

2. Retrieve the primary component’s CPN.

3. Retrieve the standby components’ CPNs.

4. For each standby component complete the following:

(a) Create the place identifier (not the place) to represent the component

within a standby state. The place identifier follows the following format:

component.componentType.componentID.state.standby

(b) Retrieve the time to failure transitions of the standby components.

(c) If the standby component is of type COLD : Create an inhibit arc between the

standby state place in 4a and each time to failure transition.

(d) If the standby component is of type WARM : Create an inhibit arc between the

standby state place in 4a and every other time to failure transition that is not

the standby time to failure transition.

(e) Create a new place to represent that the standby component is no longer in

standby. The place identifier has the following format:

component.componentType.componentID.state.up.

(f) If the standby component is of type WARM : Create an inhibit arc between the

place created in the previous step and every other time to failure transition

that is not the standby time to failure transition.

(g) Does this component already have a standby place (a place with an identifier

of the format seen in 4a)?

i. Yes: Move on to the next step

ii. No:

A. Create the standby state place for the standby component. If this is

not the primary component, set the token value for the place to 1.

B. Create a standby ‘up’ place. The format for the identifier is as follows:

component.componentType.componentID.state.up. If this is not the

primary component then set the place to have a token value of 1.

C. Create a standby ‘down’ place. The format for the identifier is as

follows: component.componentType.componentID.state.down.

218 Chapter 7. Modelling of Repairable Systems

(h) Retrieve the working state place identifier and the failed state place identifiers

of the standby component

(i) For each failed place identifier complete the following tasks:

i. Create a new immediate transition within the following transition identi-

fier: component.componentType.componentID.standbyTransition.

original_componentID.original_failValue

ii. Create a single-headed arc between the standby state place and the

transition created in 4(i)i.

iii. Create a double-headed arc between the failed place identifier and the

transition created in 4(i)i.

iv. Create a single-headed arc between the transition created in 4(i)i and the

up place created in 4(g)iiB.

(j) Retrieve the working state place identifier and the failed state place identifiers

of the original component

(k) For each failed place identifier complete the following tasks:

i. Create a new immediate transition within the following transition identi-

fier:

component.componentType.componentID.standbyTransition.downToStandby

ii. Create a single-headed arc between the down place created in 4(g)iiC and

the transition created in 4(k)i.

iii. Create a single-headed arc between the transition created in 4(k)i and the

standby state place.

iv. Create a double-headed arc between the working state place of the

component and the transition created in 4(k)i.

(l) Retrieve the DT transitions for the standby component.

(m) For each transition create a inhibit arc between the standby state place and

each transition.

7.4.4 Cold Standby

During the construction process cold standby components simply add inhibit arcs to stop

the time to failure transitions from aging. When a cold standby component becomes

operational then the time to failure transition begins to age. An example of a cold standby

connection can be seen in Figure 7.17. Figure 7.17 shows two power supplies in cold

standby. PS1 is the primary component and PS2 is the initial standby component.

7.4. Standby Systems 219

Standby

UpDown

IN=C

IN=NC

W

F

OUT=NC

OUT=C

UR

tF

Standby

UpDown

IN=C

IN=NC

W

F

OUT=N

C

OUT=C

UR

tF

PS1 PS2

Figure 7.17: Example of power supplies in cold standby

7.4.5 Warm Standby

When work to fail Petri nets are created another time to failure transition is created that

this is the rate of failure of the component whilst in warm standby. The relationship

between working and standby failure rate can be seen in Figure 7.18. When entering this

within the simulation file the following format is used:

componentID failure_value(or mode) standby failure_distribution(parameter(s));

An inhibit arc is used on the operational time to failure transition to ensure this does

not age. Once operational the operational time to failure transition becomes enabled. An

example of a warm standby connection is seen in Figure 7.19.

7.4.6 Hot Standby

As hot standby components fail at the same rate as if they were in operation no further

transitions or inhibit arcs are required on the time to failure transitions. An example of a

hot standby component can be seen in Figure 7.20.

220 Chapter 7. Modelling of Repairable Systems

W

UR

FtF

tR

tF(S)

Figure 7.18: Example of work to fail to repair relationship for a single mode component in
warm standby

Standby

UpDown

IN=C

IN=NC

W

F

OUT=NC

OUT=C

UR

tF

Standby

UpDown

IN=C

IN=NC

W

F

OUT=NC

OUT=C

UR

tF

PS1 PS2

tF(s) tF(s)

Figure 7.19: Example of power supplies in warm standby

7.5. Voting Systems 221

Standby

UpDown

IN=C

IN=NC

W

F

OUT=NC

OUT=C

UR

tF

Standby

UpDown

IN=C

IN=NC

W

F

OUT=N

C

OUT=C

UR

tF

PS1 PS2

Figure 7.20: Example of power supplies in hot standby

7.5 Voting Systems

Voting systems can also be used as a method of redundancy and therefore have been

included in the software. This section describes how the user defines a voting system and

how the software takes this information, stores it and generates the appropriate model

from it.

7.5.1 File Input

The user defines a voting system within the simulation file (.sim). The header VOTING

is used to identify the following declarations. To declare a voting system the following

syntax is used:

Number_Working (CompID1, CompID2, · · ·, CompIDN);

The Nth component has a limit of five components. The reason for this is the model

becomes very large and would slow the software. It has been defined in the software to

limit this value for performance considerations only. An example of this written within the

simulation file has been given in Figure 7.21.

222 Chapter 7. Modelling of Repairable Systems

VOTING

{

2(compA, compB, compC);

}

Figure 7.21: Example of a VOTING declaration

class voting

-int number;

-vector<string> componentIds;

Figure 7.22: The voting class

7.5.2 System Storage

Each voting system defined in the simulation file is created in an instance of the voting

class. The voting class can be seen in Figure 7.22. The procedure for storing information

on the voting plans is shown in the flow chart in Figure 7.23.

7.5.3 Construction Procedure

The construction procedure for generating the Petri net for voting systems is listed below:

1. Retrieve the list of components associated with the voting plan

2. Retrieve the CPN for each of the components associated to the voting plan

3. Retrieve the working state place for each component

4. For each working state value (this is applicable to failed state values) for all

components create a new place with the identifier of the format:

component.compID1_compID2_···_compIDN .componentType.portName.value.

5. Create a list of combinations of components working/failed.

6. For each place created in 4 complete the following:

(a) For every combination found in 5 create an immediate transition with the

following identifier:

component.V OTING.compID1_compID2_ · · ·_compIDN .portV alue.

combinationListNumber.

7.5. Voting Systems 223

START

(1) The software has

identified the header

VOTING within the

simulation file

(2) Is the next

string in the file

“{”?

(3) Is the next

string in the file

“}”?

(4) Create a new

voting class instance

Yes

No

No

Yes

(5) Is the next
string a numeric

value?

(6) Add the value to
the voting class

instance

(7) Is the next
string “(”?

(9) The next
string is a

component
identifier. Does
the component
exist within the

system?

Add the component
to the voting class

instance

(8) Is the next
string “)”?

(11) Is the next

string “,”?

(2a) Issue error to

the user: Missing ‘{’

from the declaration

(3a) The VOTING

declaration is

complete

(5a) Issue error to

the user: This is not

a numeric value

(7a) Issue error to

the user: Missing ‘(’

from the declaration

(9a) Issue error to

the user: The state

for this component

does not exist

STOP STOP STOP STOP STOP

(8a) Issue error to

the user: Missing ‘;’

from the declaration

(8a) Is the next
string “;”?

STOP

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

Figure 7.23: Flow chart for the storing of the voting information

224 Chapter 7. Modelling of Repairable Systems

A

State=W

B

State=W

C

State=W

A_B_C

State=W

A

State=F

B

State=F

C

State=F

A_B_C

State=F

A_B_C

DT transitions

IN1=type1

IN1=type2

OUT1=type1

OUT1=type2

Figure 7.24: An example of a 2-out-of-3 voting system Petri net

(b) For each voting component entered in the file, in the order listed, consider

every combination created in 5. Create an inhibit arc between the component’s

working place and any combination, represented by a transition, that includes

only components further down in the voting list. This is only applicable to

working places.

(c) Create a single-headed inhibit arc between the immediate transition created in

6a and the place created in 4.

(d) For each combination, represented by a transition, create a double-headed arc

between the component places identified in 3, where the component is part of

the combination.

7. Repeat from step 3 for failed identifiers.

8. During a later part of the model creation only one decision table is used between the

voting components. The arcs between the one of the component’s working/failed

states are transfered to the voting component’s working/failed states created in 4.

Due to the nature in which the Petri net has been created there is a need to control

certain aspects of the Petri net to ensure multiple firing of tokens does not occur across

the Petri net. Step 6b is used to limit the firing of the voting Petri net by creating inhibit

arcs to the later transitions. An example of a two-out-of-three voting system can be seen

in Figure 7.24.

7.6. Mission Abort 225

ABORT

{

S1 (F_open) : (1);

A (F) : (3,4);

}

Figure 7.25: File format for the ABORT header within the simulation file

7.6 Mission Abort

Within phased-mission systems there is scope to include the aborting of a mission based on

a component failing within a given phase. An example of such an occurrence is an aircraft

with 4 engines and one fails during flight, if this were to happen, then the likelihood is

that the plane would be diverted to the nearest airport, particularly if there is a fear of

further engine failure. The software caters for this eventuality.

7.6.1 File Input

There is a section defined in the simulation file (.sim) that covers mission abort due to

a specific component failure within a given phase. This can be found under the ABORT

header. The user can stipulate the information as follows:

componentID(component_failure_mode) : (Phase_number);

When mission abort is considered there is additional information within the final results

file output from the simulation showing the number of aborted missions (as well as the

number of failed missions). An example of the representation can be seen in Figure 7.25.

The example given states that should component S1 be in the state F_open at any

point in phase 1 then the mission is aborted. Similarly if the component A is in the state

F at any point during phase 3 or phase 4 the mission is aborted.

7.6.2 System Storage

The information obtained from the simulation file is stored within a separate class instance

called abortMission. The abortMission class can be seen in Figure 7.26. The process for

parsing this section of the simulation file can be seen in Figures 7.27 and 7.28.

7.6.3 Construction Procedure

To construct the Petri net that represents the aborting of a mission is completed during

the procedure to create the PPN. The construction of the Petri net to account for an

226 Chapter 7. Modelling of Repairable Systems

class abortMission

-string componentId;

-vector<string> compStates;

-vector<string> phaseNumbers;

Figure 7.26: The abortMission class

aborted mission is described below:

1. Create a place representing mission abort. This would be given the place identifier

phase.abort.

2. Locate all phase transitions that are not related to mission abort.

3. For each transition identified in 2 create an inhibit arc from the place created in 1

to each transition.

4. For each abort condition found from the simulation file complete the following:

(a) Retrieve the phases that are associated with the abort condition

(b) Retrieve the phase places that are associated to the phase numbers retrieved

in 4a.

(c) Create an immediate transition with the identifier

component.abort.componentID.component_fail_value.phase_number

(d) Create an arc for the following:

i. A single-headed arc between the phase place identified in 4b and the new

transition created in 4c.

ii. A single-headed inhibit arc between the transition created in 4c and the

abort place created in 1.

(e) Retrieve the place that represents the component fail place value

(f) Create an arc between the place located in 4e and the transition created in 4c.

Using the example in Figure 7.26, an example of the presentation of the abort conditions

can be seen in Figure 7.29. In step 4(d)ii inhibit arcs are created between the abort phase

place and the other transitions. The reason for this is to halt any other movement within

the PPN once the mission has entered an abort phase.

7.6. Mission Abort 227

START

(1) The software has

identified the header

ABORT within the

simulation file

(2) Is the next

string in the file

“{”?

(3) Is the next

string in the file

“}”?

(2a) Issue error to

the user: Missing ‘{’

from the declaration

(3a) The ABORT

declaration is

complete

(4) Create a new

abortMission class

instance

(5) Get the next

string, the

component ID.

Does the

component exist

in this system?

(5a) Issue error to

the user: The

component does not

exist

(6) Add the

component

identifier to the

abortMission class

instance created in

4.

(7) Is the next

string “(”?

(7a) Issue error to

the user: Missing ‘(’

from the declaration

(11) Is the next

string “,”?

(10) Add the

component state to

the abortMission

class instance

(8) Is the next

string “)”?

(9) Get the next

string, the

component state.

Does the state

exist for this

component in

the system?

(9a) Issue error to

the user: The state

for this component

does not exist

1

STOP STOP STOP STOP STOP
No

Yes

2

Yes

No

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Figure 7.27: The first part of the software algorithm to populate the system with abort
conditions

228 Chapter 7. Modelling of Repairable Systems

1

(8a) Is the next

string “:”?

(8c) Is the next

string “)”?

(8e) Add the phase

number to the

abortMission class

instance

(8d) The next

string is the

phase number.

Does the phase

number exist

within the given

mission?

(8f) Is the next

string “,”?

(8ai) Issue error to

the user: The

declaration is

missing ‘:’

(8b) Is the next

string “(”?

(8bi) Issue error to

the user: The

declaration is

missing ‘(’

(8ci) Is the next

string “;”?

2

(8di) Issue error to

the user: The phase

number entered does

not exist

STOPSTOPSTOP

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

(8ciA) Issue error to

the user: The

declaration is

missing ‘;’

STOP

Yes

No

Figure 7.28: The second part of the software algorithm to populate the system with abort
conditions

Phase 1
Phase 2

t1<t<t2
Phase 3

t2<t<t3time = t1 time=t2
t1

A

State=F

S1

State = F_open

t2 Phase 4time=t3
t3

ABORT

Figure 7.29: Example representation of the abort process within a PPN

7.7. Simulating a Repairable System 229

7.7 Simulating a Repairable System

The previous sections have dealt with the repairable aspects of the system in terms of how

these are given in files to the software and how the software interprets the files in order

to construct each model. This section describes how these repairable elements affect the

way the software simulates a given repairable system and mission. The general simulation

process as discussed in section 6.3.3.1 still applies to systems that are repairable. There are

a number of new additional steps used in order to process some of the repairable aspects of a

system. This is particularly important for preventative maintenance plans as these require

a simulation of just the maintenance rather than the whole system. This section discusses

the additional steps needed in order to simulate a repairable system. During the writing

of the code to incorporate the repairable system aspects, much of the simulation code was

altered and as a result became more efficient. These changes were already incorporated

into the algorithms and procedures seen in Chapter 6.

7.7.1 Simulation Algorithm

The simulation algorithm for a repairable system builds on the algorithm described in

section 6.3.3.1. In step 1 within the algorithm in section 6.3.3.1 there are a number of

places and transitions that are located and their positions stored. For the repairable case

the following places and transition positions must also be stored:

• Locate standby place positions

• Locate repair place positions

• Locate the positions of the time to repair transitions and the time between

maintenance cycle transitions.

• If there are any preventative maintenance plans then the location of the simula-

tion.maintenance place created as part of the preventative maintenance Petri net

should also be stored.

All these place and transition locations are necessary in order to make the software

more efficient. This is particularly useful when identifying the simulation end and the

change in the system state.

Step 8 in the algorithm described in section 6.3.3.1 describes what occurs when a

simulation of the mission has occurred. For a repairable mission this changes to the

following:

1. Find the earliest time to failure and run a single simulation of the mission

230 Chapter 7. Modelling of Repairable Systems

2. If the mission was successful and the simulation end time has not been reached

complete the following:

(a) Test if there is a preventative maintenance cycle due at the end of the mission.

(b) Yes: The software simulates the maintenance process. Go to step 1.

(c) No: Re-run the mission to test if the component would cause a failure in the

next mission. If this is again successful return to 1, otherwise go to step 3.

3. If the mission was not successful complete one of the following:

• If there are no further simulations to run, end the simulation

• If there are further simulations change the timed transitions and restart the

process from step 1.

4. After maintenance has occurred simulate the model again. Return to step 1.

7.7.2 Simulation of the model

Every item completed as part of the simulation of the model seen in section 6.3.3.2 is still

applicable for the repairable case. There a few additions to this part of the process which

have been included below:

• To test for simulation end when considering the earliest time the down time created

as part of the preventative maintenance cycle is accounted for.

• During the process shown in Figure 6.19 there is a further step after (3g) where

the timed transitions, namely the time to failure and time to repair transitions are

re-initialised.

7.7.3 Simulating Transitions

There is a single difference within this process and that is in the creation of the
P

matrix.

This is split depending on whether a maintenance cycle is in progress or the normal

operational mission. For the creation of the
P

matrix during the maintenance cycle the

only transitions that are considered during the process is the time to repair transitions and

the preventative time between cycle transitions.

7.8 Repairable Bulb System

7.8.1 Introduction

To demonstrate the capabilities of the software for the processing of a repairable system,

a bulb system was used. The bulb system consists of four major components: a bulb, a

7.8. Repairable Bulb System 231

PS1

PS2

B

S

OP

Figure 7.30: Schematic of the bulb system

toggle switch and two power supplies, one of which is in standby for the other. An operator

is also used as part of the system, but is assumed not to be capable of failure. Figure 7.30

demonstrates the system considered.

7.8.1.1 System Process

The system is initiated by switching the toggle switch from an open operational mode to

a closed operational mode. The bulb, B, turns ON. After a time of 20 hours the operator

opens the toggle switch, S, and the bulb, B, turns OFF.

7.8.1.2 Initial Conditions of the System

All the components within the bulb system are assumed to be working from time =0. The

component toggle switch, S, has a starting mode of open.

7.8.2 System Description

7.8.2.1 System Topology

The bulb system schematic in Figure 7.30 was transformed into the topology diagram seen

in Figure 7.31. The power supply, PS2, is in standby for the power supply, PS1. Even

when components are in standby the connections to these components must still be stated

in the system topology.

Circuit Lists

There are two circuits that are present within this system:

232 Chapter 7. Modelling of Repairable Systems

J1 J2

B

S

PS1

PS2

OP
IN1

IN2

OUT1

IN1

OUT2

OUT1 IN1

OUT1

IN1
OUT1

OUT2

IN1 OUT1

IN1 OUT1

IN1

IN2

OUT1

Figure 7.31: System topology diagram for the bulb system

1. {PS1, J2, S, B, J1, PS1}

2. {PS2, J2, S, B, J1, PS2}

7.8.2.2 Component Decision and Operational Mode Tables

Each of the components were described using DTs and where applicable, OMTs. The DTs

and OMTs for the bulb system can be found in Tables 7.1-7.5. The under repair state, UR,

has been included within the DTs and OMTs. This should be included to show how the

component behaves when the component is under repair. This is particularly important

for components under a corrective maintenance plan.

Table 7.1: Decision table for the component Bulb

In 1 state Out 1 Out 2

1 C W C ON
2 NC – NC OFF
3 – F NC OFF
4 – UR NC OFF

7.8. Repairable Bulb System 233

Table 7.2: Decision table for the Operator

Time In 1 state Out 1

1 0 OFF W CL
2 0 < t ≤ 20 OFF W NA
3 0 < t < 20 ON W NA
4 20 ON W OP
5 – – F NA

Table 7.3: Decision table for the component power supply

In 1 State Out 1

1 C W C
2 – F NC
3 NC – NC
4 – UR NC

Table 7.4: Decision table for the component Toggle Switch

in 1 Mode Out 1

1 C Closed C
2 – Open NC
3 NC – NC

Table 7.5: Operational Mode Transition Table for the component toggle Switch

Mode 1 Command (In1) State Mode 2

1 Closed – FCL Closed
2 Closed CL – Closed
3 Closed OP W Open
4 Closed NA – Closed
5 Closed – UR Open
6 Open – FOP Open
7 Open OP – Open
8 Open CL W Closed
9 Open NA – Open
10 Open – UR Open

7.8.2.3 Component Failure and repair data

Each of the components apart from the operator are repairable components. The failure

and repair data for the bulb system can be seen in Table 7.6. Each of the components fails

by an exponential distribution.

234 Chapter 7. Modelling of Repairable Systems

7.8.3 Mission Description

The system process described in section 7.8.2 has been transformed into the phase

transition table seen in Table 7.7. The phases of the mission have been described below:

• Phase 1: System start-up

• Phase 2: Bulb is lit

• Phase 3: Mission Success

The failure phases are as follows:

• Phase 4: System fails to start

• Phase 5: System fails and the Bulb turns OFF

• Phase 6: System fails and bulb remains lit

7.8.4 Maintenance Plan

Each component within the system is maintained through a corrective maintenance cycle

and there is an engineer assigned to each component. The component PS2 is in standby

for the component PS1. If PS1 fails and then repaired this component then becomes the

standby component for PS2.

7.8.5 Petri Net Models

7.8.5.1 Component Petri Nets and System Petri Net

The CPN created from the DTs and OMT seen in Tables 7.1-7.4 can be seen in Figures

7.32a-7.32d. There is no change in the way that these component tables are used to

generate the CPN models.

After generating the CPNs the SPN was built by connecting the components by using

the system topology. It should be noted that there is no special connection between standby

components. The SPN for this system can be seen in Figure 7.33.

Table 7.6: Failure and repair data for the components of the bulb system

Component Identifier Failure Rate Repair Rate

S 0.001 0.1
B 0.005 0.1

PS1 0.0067 0.02
PS2 0.0067 0.02

7.8. Repairable Bulb System 235

Table 7.7: Phase transition table for the bulb system

Time From Phase To Phase Condition

1 0 1 2 B OUT2 = ON
2 δ 1 4 B OUT2 = OFF
3 20 2 3 B OUT2 = OFF
4 – 2 5 B OUT2 = OFF
5 δ 2 6 B OUT2 = ON

W

F

UR

In1=C

In1=NC

Out2=ON

Out2=OFF

Out1=NC

Out1=C

(a) CPN for the component Bulb, B

W

F

In1=OFF

In1=ON

Out1=OP

Out1=NA

Out1=CL

(b) CPN for the component Operator, OP

OUT=C

OUT=NC

IN2=NC

IN2=C

mode=closed

mode=open

W

FCL

FOP

IN1=CL

IN1=NA

IN1=OP

UR

(c) CPN for the component Toggle Switch, S

IN=C

IN=NC

W

F

OUT=NC

OUT=C

UR

(d) CPN for the component
Power Supply, PS1 and PS2

Figure 7.32: CPNs for the components of the bulb system

236 Chapter 7. Modelling of Repairable Systems

O
U

T
=
C

O
U

T
=
N

C

IN
2
=
N

C

IN
2
=
C

m
o
d
e=

cl
o
se

d

m
o
d
e=

o
p
en

W

F
C

L

F
O

P

IN
1
=
C

L IN
1
=
N

A

IN
1
=
O

P U
R

IN
=
C

IN
=
N

C

W F

O
U

T
=
N

C

O
U

T
=
C

U
R

IN
=
C

IN
=
N

C

W F

O
U

T
=
N

C

O
U

T
=
C

U
R

W F

IN
1
=
O

F
F

IN
1
=
O

N

O
U

T
1
=
O

P

O
U

T
1
=
N

A

O
U

T
1
=
C

L
W F

U
R

IN
1
=
C

IN
1
=
N

C

O
U

T
2
=
O

N

O
U

T
2
=
O

F
F

O
U

T
1
=
N

C

O
u
t1

=
C

O
U

T
=
C

IN
1
=
C

IN
2
=
C

O
U

T
=
N

C

IN
1
=
N

C

IN
2
=
N

C

IN
=
C

O
U

T
1
=
C

O
U

T
2
=
C

O
U

T
1
=
N

C

O
U

T
2
=
N

C

IN
=
N

C

J1
J2

B
S

O
P

P
S
1

P
S
2

2

1

563 4

F
ig
ur
e
7.
33

:
SP

N
of

th
e
bu

lb
sy
st
em

7.8. Repairable Bulb System 237

Phase 1
Phase 2

0<t<20

Phase 3time=0 time=20
0 20

Phase 4 Phase 6

δ δ

Phase 5

B

OUT2=OFF

B

OUT2=ON

B

OUT2=OFF
B

OUT2=ON
0<t≤20

1

1

2

2

3 4 5

6

Figure 7.34: PPN of the bulb system

7.8.5.2 Phase Petri Net

By using the phase transition table in Table 7.7 the PPN was generated as seen in Figure

7.34.

7.8.6 Validation

The bulb system discussed above was used to verify that the software could cater for

repairable systems. In order to verify the system an analytical solution was required.

The modelling method used was Markov modelling as discussed in section 2.3.1. The

Markov approach was the simplest method to provide an analytical solution. A number of

assumptions were made and are discussed in the following section.

7.8.6.1 Assumptions

1. Switch S cannot fail in operational mode open, FOP . The switch changes from

open to close in a discrete phase and only returns to this mode at the end of the

mission and therefore does not spend any time in this mode for it to age. As a result

the markov model only considers the failure mode FCL.

2. The component operator is assumed to be perfect, i.e. it cannot fail.

7.8.6.2 Markov Model

The Markov model states can be found in Table 7.8. The full Markov diagram can be

seen in Figure 7.35. By using the method described by Clarotti et al (1980) and the

Markov diagram shown the analytical values were calculated. The transition matrix for

the Markov model can be seen in equation 7.8.1. Using this and the initial conditions as

238 Chapter 7. Modelling of Repairable Systems

seen in equation 7.8.2 the analytical values for the bulb system were calculated for each

phase of the mission.

Table 7.8: Markov model states for repairable bulb system

State B S PS1 PS2

1 W W W S
2 W W S W
3 F W W S
4 F W S W
5 W FCL W S
6 W FCL S W
7 W W F W
8 W W W F
9 F FCL W S
10 F FCL S W
11 F W F W
12 F W W F
13 W FCL F W
14 W FCL W F
15 W W F F
16 F FCL F W
17 F FCL W F
18 F W F F
19 W FCL F F
20 F FCL F F

7.8. Repairable Bulb System 239

1 2

3 4 5 6 7 8

9 10 11 12 13 14 15

16 1817 19

20

λB

λS

λS
λPS1

λB
λS

λPS2

λPS1

λS λPS2

λB

λB

λS
λPS1

λPS2

λPS1

λB
λPS2

λB λS

λPS2

λB
λS

λPS1

λPS1

λPS2

λS

λPS2

λS

λPS1λB

λPS2

λB λPS1

λB λS

νB νS νPS1

νPS2

νB νS

νPS2 νB

νS
νPS1

νS νB νS νB
νPS1

νB νPS2

νB
νPS1

νS

νPS2

νS

νPS2 νPS1

νPS1
νS

νB
νS

νB

νPS2 νPS1
νB νPS2 νPS1

νS

Figure 7.35: Markov Model of the Bulb System

240 Chapter 7. Modelling of Repairable Systems

2 6 4−
P 1

0
λ
B

0
λ
S

0
λ
P

S
1

0
0

0
0

0
0

0
0

0
0

0
0

0

0
−
P 2

0
λ
B

0
λ
S

0
λ
P

S
2

0
0

0
0

0
0

0
0

0
0

0
0

ν
B

0
−
P 3

0
0

0
0

0
λ
S

0
λ
P

S
1

0
0

0
0

0
0

0
0

0

0
ν
B

0
−
P 4

0
0

0
0

0
λ
S

0
λ
P

S
2

0
0

0
0

0
0

0
0

ν
S

0
0

0
−
P 5

0
0

0
λ
B

0
0

0
λ
P

S
1

0
0

0
0

0
0

0

0
ν
S

0
0

0
−
P 6

0
0

0
λ
B

0
0

0
λ
P

S
2

0
0

0
0

0
0

0
ν
P

S
1

0
0

0
0

−
P 7

0
0

0
λ
B

0
λ
S

0
λ
P

S
2

0
0

0
0

0

ν
P

S
2

0
0

0
0

0
0

−
P 8

0
0

0
λ
B

0
λ
S

λ
P

S
1

0
0

0
0

0

0
0

ν
S

0
ν
B

0
0

0
−
P 9

0
0

0
0

0
0

λ
P

S
1

0
0

0
0

0
0

0
ν
S

0
ν
B

0
0

0
−
P 1

0
0

0
0

0
0

0
λ
P

S
2

0
0

0

0
0

0
ν
P

S
1

0
0

ν
B

0
0

0
−
P 1

1
0

0
0

0
λ
S

0
λ
P

S
2

0
0

0
0

ν
P

S
2

0
0

0
0

ν
B

0
0

0
−
P 1

2
0

0
0

0
λ
S

λ
P

S
1

0
0

0
0

0
0

0
ν
P

S
1

ν
S

0
0

0
0

0
−
P 1

3
0

0
λ
B

0
0

λ
P

S
2

0

0
0

0
0

ν
P

S
2

0
0

ν
S

0
0

0
0

0
−
P 1

4
0

0
λ
B

0
λ
P

S
1

0

0
0

0
0

0
0

ν
P

S
2

ν
P

S
1

0
0

0
0

0
0

−
P 1

5
0

0
λ
B

λ
S

0

0
0

0
0

0
0

0
0

0
ν
P

S
1

ν
S

0
ν
B

0
0

−
P 1

6
0

0
0

λ
P

S
2

0
0

0
0

0
0

0
0

0
0

0
ν
S

0
ν
B

0
0

−
P 1

7
0

0
λ
P

S
1

0
0

0
0

0
0

0
0

0
0

ν
P

S
2

ν
P

S
1

0
0

ν
B

0
0

−
P 1

8
0

λ
S

0
0

0
0

0
0

0
0

0
0

0
0

ν
P

S
2

ν
P

S
1

ν
S

0
0

0
−
P 1

9
λ
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
ν
P

S
2

ν
P

S
1

ν
S

ν
B

−
P 2

0

3 7 5
(7
.8
.1
)

7.8. Repairable Bulb System 241

P (0) =
h

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iT

(7.8.2)

7.8.6.3 Single Mission Condition

The software was used to simulate the condition of a single mission in order to validate the

model generated using the algorithms discussed in sections 6.3.3 and 7.7. As a consequence

of running the simulation for a single mission the system preventative maintenance cannot

be tested for this simulation set. Each component therefore was set to be part of a corrective

maintenance policy. The simulation was run for 5,000 simulations and the results can be

seen in Table 7.9. To prove repeatability the simulation was re-run for a further 5,000

simulations. The results of which can be seen in Table 7.10. Each set of results remain

within the ± 5% tolerance.

Table 7.9: Bulb system simulation results for 5,000 simulations

Phase Number

1 2 Mission

Analytical 0 0.12 0.12
Simulation 0 0.1222 0.1222

Difference(%) 0 1.83 1.83

Table 7.10: Second set of simulation results for the bulb system for 5,000 simulations

Phase Number

1 2 Mission

Analytical 0 0.12 0.12
Simulation 0 0.1172 0.1172

Difference(%) 0 2.33 2.33

Figure 7.36 shows the results obtained from both simulation runs together with the

error margins and the analytical value calculated using the Markov model discussed in

Section 2.3.1. The values remain within the ± 5% margins after approximately 3,700

simulations.

7.8.6.4 Analysis

The simulation results showed good convergence upon the analytical values calculated

using the Markov model in Figure 7.35 after approximately 3,700 missions during the

242 Chapter 7. Modelling of Repairable Systems

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
n

re
li

a
b

il
it

y

Number of Simulations

Simulated Results 1 Analytical +5% Boundary -5% Boundary Simulated Results 2

Figure 7.36: Simulation results for the repairable bulb system for 5,000 simulations

convergence study. The simulation results also showed that the values are repeatable to

give the approximate same value.

7.9 Summary

This chapter has discussed the main repairable aspects that the software has been designed

to handle. The corrective and preventative maintenance policies were the main aspects of

a repairable system. The user input to define a repairable aspect, such as the maintenance

policies, are easily implemented. There is not much more user information required for the

software to cater for a repairable component/system as the software abstracts this process

from them. The hardest aspect to implement within the software was the simulating of a

preventative maintenance cycle.

Chapter 8

Conclusion and Further Work

Contents
8.1 Conclusion . 243

8.2 Further Work . 246

8.2.1 Optimisation Study . 246

8.2.2 Minimal Cut Sets . 246

8.2.3 Automatic Generation of the System Structure File 247

8.2.4 Multiple Interacting Systems . 247

8.1 Conclusion

This thesis began by considering different modelling methods that were available that

could potentially be used as part of the software. The modelling method was required

to be versatile with the capability of being applied to both non-repairable and repairable

systems. Modelling phased-mission systems adds a further level of complexity; specific

methods applied to such systems were discussed to identify any methods that could be

taken forward as part of the solution. After taking these criteria into account, Petri nets

presented the most suitable modelling method. The main reason for this choice was due to

the versatile nature of Petri nets. As was seen in section 1.4.3.2 Petri nets can be applied in

a wide range of cases, including direct model conversions from other reliability modelling

methods. Petri nets also stood out for the ability to model different aspects of a system

and the mission undertaken, simultaneously modelling individual component states and

more abstract aspects of the system such as progress through the current mission.

Literature considered in chapter 2 provided a grounding in current methods relating

to phased-mission systems, including phase fault trees and repairable vs. non-repairable

systems. The simulation process discussed in section 2.3.2 was of particular interest in

relation to the simulation of the model, as discussed later in the thesis. The third chapter

gave an overview of some of the methods used in automating the process of creating

reliability models. Most automated methods were based around fault trees. As fault

trees are unable to model dependencies required for repairable systems they were deemed

244 Chapter 8. Conclusion and Further Work

unsuitable as a modelling method for the software. Most of the methods describe taking

an input file of the model and then using this to generate the data. As the software was

required to take some form of file input from the user about the system, its components

and the mission, this was of particular interest. One method that stood out was that

of Henry and Andrews (1997) which takes in a system description from an AutoCAD

diagram, decision tables and diagraph. After stating the top event for the system the fault

tree was generated based on information in the input files. This method did not generate

the data, but the files of the fault trees that could be used by commercial software to

generate the data. The ability to model the component states using decision tables was of

particular interest as this modelled the behaviour of individual components and provided

a relatively intuitive format for component description. Further to decision tables, state

transition tables provided a method of showing the behaviour of components with multiple

operational modes. Combining these as part of the component description provided a solid

foundation for the software.

The next chapters detailed the way in which Petri nets, decision tables and state

transition tables were taken forward and used as the basis for the software. Chapter 4

detailed the method by which the system and mission description were broken down into

simple input files. The methods of taking this information and transforming it into the four

Petri net types (Component Petri nets, System Petri nets, Circuit Petri nets and Phase

Petri nets) were discussed. The idea of breaking the Petri nets up into individual sections

and components made the construction procedure for each type of Petri net self-contained

and manageable. The biggest challenge in this work was to abstract as much of the model

generation process as possible from the user. This ensures that the user is required to

give only minimal information and requires the software to infer other information and

completely automate the model generation process. This is a key aspect of the novel work

presented in this thesis.

Once the process for model generation had been established it was applied to a pressure

tank system in chapter 5. This system served to illustrate the key concepts involved in the

model generation and was an important aspect of validating the process. This system was

later used in simulations to validate the software for the non-repairable case.

Chapter 6 discussed in more detail the structure and algorithms involved in the

implementation of this large and complex piece of software. The chapter can be divided

into the three elements of the software: the input files written by the user, the model

generation process and the simulation process. The chapter demonstrates each of the file

types required from the user by showing a step-by-step guide of how each is formatted.

Each file type requires minimal information for the software to build and simulate the

model. The input files are simple to construct where the only complexity is understanding

how a new component behaves. A function to create the circuit lists through recursive

8.1. Conclusion 245

exploration of the system topology was generated for this reason. This is a particularly

useful function in that it only needs the information stored within the component table

and the system topology files. These lists then form the basis of the Circuit Petri nets.

The simulation process discussed is specific to the model that has been generated and

therefore includes unique steps that are not seen in other simulators. One particular

step is the need to wipe clean the memory of the Petri net when there is a change of

component and therefore system state. The simulator allows the user to specify the number

of simulations as well as the duration of each simulation. This means that the simulator

supports multiple consecutive missions performed by the same system, making it more

flexible in its application. The simulator outputs detailed failure data for components,

phases, missions and the overall system. The results of the simulations served to validate

the software as a whole; from user input files through the unique model generation methods

to the simulation that yields the final results. The results show an agreement with the

analytical solution to within a tolerance of ±5%. This showed convergence on the analytical

values calculated using phase fault trees within a few thousand simulations. The run time

for these results was approximately 2.5-3 days to complete the 10,000 simulations on a

typical laptop computer. It is likely that this could be reduced by an order of magnitude

with code optimisations. The time taken to generate the Petri net model itself is in the

order of tens of seconds, with execution time expected to rise in line with system size and

complexity. What would usually take an individual days or weeks to complete takes less

than a minute through this automated process.

The final chapter discusses how this software was further developed to cater for

repairable components, adding a further layer of complexity. The chapter discusses the

different maintenance plans that can be applied at either a component level or a system-

wide event. By incorporating the preventative maintenance plan, the software simulation

needed to change to account for the system being repaired outside the mission space. The

software also caters for standby components which allows a user to model redundancy

within a system. This would aid a design engineer in identifying to what extent providing

a standby component for one prone to failure would increase the success rate of their

system.

For further validation and to test the repairable case, the software was further applied to

a bulb system. The simulation results obtained from the software showed that the software

could produce results again within a tolerance of ±5%. Following minor simulation code

optimisations, the simulation time for the 5000 simulations carried out for this system took

less than 12 hours to produce. Multiple separate instances of the software can be run in

parallel in order to run a number of design solutions at the same time. Once the files

are generated, a single command performs the model generation and simulation process

unaided.

246 Chapter 8. Conclusion and Further Work

This thesis has demonstrated a novel approach to generating a reliability model for

phased-mission systems using Petri nets. The approach requires a simple expression of

the system structure, its components and the mission the system is to undertake. This

allows engineers with little or no experience in the field of risk and reliability to perform

effective analyses of complex systems. From these inputs, a full model of the system is

generated. A software implementation of the model generation process is discussed and

used, in conjunction with a simulator written for the purpose. Further, the process has

been extended to support systems with repairable and redundant components. The overall

comparison of the results after 5,000 simulations with analytical results shows an error of

less than ±5% in both repairable and non-repairable cases.

8.2 Further Work

8.2.1 Optimisation Study

The software has already undergone a small optimisation study in which the time for

a simulation dropped to about a third of the previous value. It became apparent that

using strings to identify places and transitions affected significantly the performance of

the software, particularly when simulating the model, hence why a numeric identifier was

introduced. The building process relies heavily on the string identifiers in order to connect

the places and transitions together. If these were identified instead by numeric values then

the time to build the model would also be reduced.

8.2.2 Minimal Cut Sets

Currently the software returns the overall system unreliability for the mission and each of

the individual phases. Another output file lists the failures, repairs and maintenance that

takes place during each simulation run of the mission. Another potential output from the

software could be, for non-repairable systems, the minimal cut sets. This could be achieved

manually by the user if so desired by setting components to fail in certain phases of the

mission on each run to determine the minimal but sufficient component failures within the

system that would cause the system to fail. There is no reason this process could not be

automated using the software created. Instead of simulating the mission using generated

time to failures the software could be programmed to move through each component in the

topology and set the time to failure within a given phase and then run the mission. This

could be repeated for each individual component and then combinations of components

within a phase. If a component on its own could fail a given phase then this would not be

tested further within this phase as it is proven that it is sufficient to cause a phase failure.

This process would require a significant amount of computing time for larger systems when

8.2. Further Work 247

considering combinations of the system’s components. This would also depend on whether

time is a factor in working these minimal cut sets out. If a user was willing to wait a

significant amount of time then this may still be acceptable

This may even provide a faster method of generating the system reliability data for a

non-repairable systems of smaller systems. By using the minimal cut sets and applying the

work by La Band (2005). There is also no reason that the software could then produce an

output file that could be used within an application that can display the fault tree visually.

More study would be required into the feasibility of generating the analytical values from

the simulation model within a time that is satisfactory.

8.2.3 Automatic Generation of the System Structure File

From the files the user is required to generate as input to the software the system structure

file (.ss) has the greatest chance of error whilst generated by the user. The software will

detect most errors but the file would take time to create for larger systems. A method

to take a CAD diagram or Piping and Instrumentation Diagram (PID) and automatically

generate the file from these would save the user considerable time and effort, particularly

for larger systems. This is a method that has already been considered by Henry and

Andrews (1997) in which an AutoCAD diagram of the system is converted into a file to

show the component connections. This addition would reduce the overall time to generate

the simulation results, particularly for larger systems.

8.2.4 Multiple Interacting Systems

This software could easily be expanded to handle multiple systems that interact with each

other. This could be of particular interest if the user were designing an airport with a fleet

of aircraft. This would be done by allowing the user to enter multiple topology files into

the software and then generate a System Petri net for each system and then link them

together. If each system is undertaking a different mission this may be difficult to model

in a single Petri net model. This is due to the way in which the software simulates the time

of the mission. The Phase Petri net is used as a way of monitoring the time throughout

the simulation. If another Phase Petri net were included, any conflict between the two

would need to be resolved.

References

Alam, M. & Al-Saggaf, U. M. (1986), ‘Quantitative reliability evaluation of repairable

phased-mission systems using markov approach’, IEEE Transactions on Reliability

R-35(5), 498–503.

Alam, M., Song, M., Hester, S. L. & Seliga, T. A. (2006), ‘Reliability analysis of phased-

mission systems: A practical approach’, Reliability and Maintainability Symposium,

2006 (RAMS 06) pp. 551–558.

Andrews, J. & Beeson, S. (2003), ‘Birnbaum’s measure of component importance for

noncoherent systems’, IEEE Transactions on Reliability 52(2), 213–219.

Andrews, J. D. (2008), ‘Birnbaum and criticality measures of component contribution to

the failure of phased missions’, Reliability Engineering and System Safety 93, 1861–

1866.

Andrews, J. D. & Henry, J. (1997), ‘A computerized fault tree construction methodology’,

Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process

Mechanical Engineering 211(3), 171–183.

Andrews, J. & Moss, T. (2002), Reliability and Risk Assessment, second edition edn,

Professional Engineering Publishing Limited.

Birnbaum, Z. W. (1969), On the importance of different components in a multi-component

system, in P. R. Krishnaiah, ed., ‘Multivariate analysis’, Vol. 11, New York: Academic

Press.

Birnbaum, Z. W. & Esary, J. P. (1965), ‘Modules of coherent binary systems’, SIAM J.

Applied Mathematics 13, 442–462.

Burdick, G. R., Fussell, J. B., Rasmuson, D. M. & Wilson, J. R. (1977), ‘Phased mission

analysis: A review of new developments and an application’, IEEE Transactions on

Reliability R-26(1), 43–49.

Chatterjee, P. (1975), Modularization of fault trees: A method to reduce the cost of

analysis, in ‘Reliability and Fault Tree Analysis’, SIAM, pp. 101–137.

Chew, S. P., Dunnett, S. J. & Andrews, J. D. (2008), ‘Phased mission modelling

of systems with maintenance-free operating periods using simulated petri nets’,

Reliability Engineering and System Safety 93, 980–994.

250 References

Ching, W.-K. & Ng, M. K. (2006), Markov Chains - Models, Algorithms and Applications,

Springer Science+Business Media, Inc.

Clarotti, C., COntini, S. & Somma, R. (1980), Repairable multiiphase systems - markov

and fault-tree approaches for reliability evaluation, in G. Apostolakis, S. Garribba &

G. Volta, eds, ‘Synthesis and Analysis Methods for Safety and Reliability Studies’,

Plenum Press, pp. 45–58.

Dazhi, X. & Xiaozhong, W. (1989), ‘A pratical approach for phased mission analysis’,

Reliability Engineering and System Safety 25, 333–347.

Dugan, J. B. (1991), ‘Automated analysis of phased-mission reliability’, IEEE Transactions

on Reliability 40(1), 45–55.

Dunnett, S. J. & Andrews, J. D. (2006), A binary decision diagram method for phased

mission analysis of non-repairable systems, in ‘Proceedings of the Institution of

Mechanical Engineers, Part O: Journal of Risk and Reliability’, Vol. 220, IMechE,

pp. 93–104.

Dutuit, Y. & Rauzy, A. (1996), ‘A linear-time algorithm to find modules of fault trees’,

IEEE Transactions on Reliability 45(3), 422–425.

Ericson II, C. A. (1999), Fault tree analysis - a history, in ‘The Proceedings of the 17th

International System Safety Conference’.

Esary, J. D. & Ziehms, H. (1975), Reliability analysis of phased missions, in R. Barlow, J. B.

Fussell & N. D. Singpurwalla, eds, ‘Reliability and Fault Tree Analysis, Theoretical

and Applied Aspects of System Reliability and Safety Assessment’, SIAM 1975, SIAM,

pp. 213–236.

Han, S. H., Kim, T. W., Choi, Y. & Yoo, K. J. (1989), ‘Development of a computer code

aftc for fault tree construction using decision table method and super component

concept’, Reliability Engineering and System Safety 25, 15–31.

Henry, J. J. (1996), Automatic Fault Tree Construction for Railway SAfety Systems, PhD

thesis, Loughborough University.

Henry, J. J. & Andrews, J. D. (1997), ‘Computerised fault tree construction for a train

braking system’, Quality and Reliability Engineering International 13, 299–309.

Holt, A. & Commoner, F. (1970), Events and conditions, in ‘Record of the Project MAC

Conference on Concurrent Systems and Parallel Computation’, ACM, Applied Data

Research, New York, NY, USA, pp. 1–52.

References 251

Holt, A., Saint, H., Shapiro, R. & Warshall, S. (1968), Final report of the information

system theory project, Technical Report RADC-TR-68-305, Rome Air Development

Center.

Hunt, A., Kelly, B. E., Mullhi, J. S., Lees, F. P. & Rushton, A. G. (1993), ‘The propagation

of faults in process plants: 6, overview of, and modelling for, fault tree synthesis’,

Reliability Engineering and System Safety 39, 173–194.

Kelly, B. E. & Lees, F. P. (1986a), ‘The propagation of faults in process plants: 1. modelling

of fault propagation’, Reliability Engineering 16, 3–38.

Kelly, B. E. & Lees, F. P. (1986b), ‘The propagation of faults in process plants: 2. fault

tree synthesis’, Reliability Engineering 16, 39–62.

Kelly, B. E. & Lees, F. P. (1986c), ‘The propagation of faults in process plants: 3. an

interactive, computer-based facility’, Reliability Engineering 16, 63–86.

Kelly, B. E. & Lees, F. P. (1986d), ‘The propagation of faults in process plants: 4. fault tree

synthesis of a pump system changeover sequence’, Reliability Engineering 16, 87–108.

Kim, K. & Park, K. S. (1994), ‘Phased-mission system reliability under markov

environment’, IEEE Transactions on Reliability 43(2), 301–309.

La Band, R. (2005), Systems Reliability for Phased Missions, PhD thesis, Loughborough

University.

La Band, R. A. & Andrews, J. D. (2004), ‘Phased mission modelling using fault tree

analysis’, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of

Process Mechanical Engineering 218(2), 83–91.

Lapp, S. A. & Powers, G. J. (1977), ‘Computer-aided synthesis of fault-trees’, IEEE

Transactions on Reliability pp. 2–13.

Liu, T. S. & Chiou, S. B. (1997), ‘The application of petri nets to failure analysis’,

Reliability Engineering and System Safety 57, 129–142.

Locks, M. O. (1981), ‘Modularizing, minimising and interpreting the k & h fault tree’,

IEEE Transactions on Reliability R-30, 411–415.

Majdara, A. & Wakabayashi, T. (2009), ‘Component-based modeling of systems for

automated fault tree generation’, Reliability Engineering and System Safety 94, 1076–

1086.

Meshkat, L. (2000), Dependency modeling and phase analysis for embedded computer

based systems, PhD thesis, Systems Engineering, University of Virginia.

252 References

Meshkat, L., Xing, L., Donohue, S. K. & Ou, Y. (2003), An overview of the phase-

modular fault tree approach to phased mission system analysis, in ‘IEEE International

Conference on Space Mission Challenges for Information Technology 2003 (SMC-IT

2003)’, IEEE.

Mura, I. & Bondavalli, A. (2001), ‘Markov regenerative stochastic petri nets to model and

evaluate phased mission systems dependability’, IEEE Transactions on Computers

50(12), 1337–1351.

Ou, Y. & Dugan, J. B. (2004), ‘Modular solution of dynamic multi-phase systems’, IEEE

Transactions on Reliability 53(4), 499–508.

Peterson, J. (1981), Petri Net Theory and the Modeling of Systems, Prentice-Hall Inc.

Prescott, D. R., Remenyte-Prescott, R., Reed, S., Andrews, J. D. & Downes, C. G.

(2009), A reliability analysis method using binary decision diagrams in phased mission

planning, in ‘Proceedings of the Institution of Mechanical Engineers, Part O: Journal

of Risk and Reliability’, Vol. 223, pp. 133–143.

Rauzy, A. (1993), ‘New algorithms for fault trees analysis’, Reliability Engineering and

System Safety 40, 203–211.

Reay, K. A. & Andrews, J. D. (2002), ‘A fault tree analysis strategy using binary decision

diagrams’, Reliability Engineering and System Safety 78, 45–56.

Salem, S. L., Apostolakis, G. E. & Okrent, D. (1977), ‘A new methodology for the

computer-aided construction of fault trees’, Annals of Nuclear Energy 4, 417–433.

Schneeweiss, W. G. (1999), Petri nets for reliability modeling in the fields of engineering

safety and dependability, LiLoLe-Verlag, Hagen.

Smotherman, M. & Zemoudeh, K. (1989), ‘A non-homogeneous markov model for phased-

mission reliability analysis’, IEEE Transactions on Reliability 38(5), 585–590.

Somani, A. K., Ritcey, J. A. & Au, S. H. L. (1992), ‘Computationally-efficient

phased-mission reliability analysis for systems with variable configurations’, IEEE

Transactions on Reliability 41(4), 504–511.

Stockwell, K. S. & Dunnett, S. J. (2013), ‘Application of a reliability model generator

to a pressure tank system’, International Journal of Automation and Computing

V10(1), 9–17.

Tarjan, R. E. (1972), ‘Depth-first search and linear graph algorithms’, SIAM J. Comput.

1(2), 146–160.

References 253

Taylor, J. R. (1982), ‘An algorithm for fault-tree construction’, IEEE Transactions on

Reliability R-31(2), 137–146.

Valaityte, A., Dunnett, S. J. & Andrews, J. D. (2010), ‘Development of an algorithm

for automated cause-consequence diagram construction’, International Journal of

Reliability and Safety 4, 46–68.

Vesely, W. E. & Narum, R. E. (1970), Prep and kitt: Computer codes for the automatic

evaluation of a fault tree, Technical Report IN–1349, Idaho Nuclear Corp.

Volovoi, V. (2004), ‘Modeling of system reliability petri nets with aging tokens’, Reliability

Engineering and System Safety 84, 149–161.

Xing, I. & Amari, S. V. (2008), Handbook of Performability Engineering, Springer-Verlag

London Ltd., chapter Reliability of Phased-mission Systems, pp. 349–368.

Xing, L. & Dugan, J. (2002), ‘Analysis of generalized phased-mission systems reliability,

performance and sensitivity’, IEEE Transactions on Reliability 51(2), 199–211.

Xing, L. & Dugan, J. (2004), ‘Comments on pms bdd generation in "a bdd-based algorithm

for reliability analysis of phased-mission systems"’, IEEE Transactions on Reliability

53(2), 169–173.

Zang, X., Sun, H. & Trivedi, K. S. (1999), ‘A bdd-based algorithm for reliability analysis

of phased-mission systems’, IEEE Transactions on Reliability 48(1), 50–60.

Appendix A

User Interaction

A.1 Menu Interaction

The following shows how the user interacts with the software. The main menu of the

software can be seen in Figure A.1. This has 5 options:

1. Loading the project file name into the software

2. Build the Petri net model

3. Simulate the built Petri net model

4. Output the system to a file and to screen

5. Delete the current system and mission

If the first option is selected then the user is presented with a prompt as seen in Figure

A.2. This is where the user enters the project file (.prj), this must include the extension

of the file.

The second option is selected by the user once the file has been loaded. There are no

further prompts for the user.

The third option is selected by the user once the first two options have been selected.

The user is required to enter two further details:

• The number of simulations

• The simulation length. This should be divisible by the mission length. E.g. if a

mission is 20 hours long and the user wants to run the mission 5 consecutive times

then the simulation time is 100.

The fourth option allows the current system stored in the software to be printed to

file in a user friendly form. The file name is set as SystemFile.txt. This includes each

individual component class instances including the decision and operational mode tables,

the phase transition table and the circuit lists in the current system. The Component Petri

net instances, System Petri net, Circuit Petri net and Phase Petri net descriptions are also

included.

256 Appendix A. User Interaction

Figure A.1: Main Menu Screen

Figure A.2: Main Menu Option 1

A.1. Menu Interaction 257

Figure A.3: Main Menu Option 3

Appendix B

Pressure Tank System

B.1 Input Files

This section includes the files used to generate the Petri net based on the non-repairable

Pressure Tank System

B.1.1 Project File

File Name: p2.prj

- - PROJECT pressure_tank_system

- - DT files:

contact.dt;

fuse.dt;

motor.dt;

operator.dt;

powerSupply.dt;

pressureGauge.dt;

pump.dt;

relay.dt;

pushSwitch.dt;

toggleSwitch.dt;

tank.dt;

timerRelay.dt;

valve.dt;

junctionTwoIn.dt;

junctionOneIn.dt;

boundary.dt;

- - OMT files:

contact.omt;

pushSwitch.omt;

260 Appendix B. Pressure Tank System

toggleSwitch.omt;

valve.omt;

- - SS file:

ss_pts.ss;

- - PTT file:

ptt_m4.ptt;

- - SIM file:

simulation_3.sim;

B.1.2 Component Files

This section covers the decision and operational mode table files of each component type

within the pressure tank system.

B.1.2.1 Component Contact Decision and Operational Mode Table

File Name: contact.dt

DT contact

{

in:in2, mode:mode3, out:out1;

-, open, NC;

NC, -, NC;

C, closed, C;

}

File Name: contact.omt

OMT contact

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, F_closed, closed;

closed, EN, -, closed;

closed, DE, W, open;

open, -, F_open, open;

open, DE, -, open;

open, EN, W, closed;

B.1. Input Files 261

}

B.1.2.2 Component Fuse Decision Table

File Name: fuse.dt

DT fuse

{

in:in1, state:state1, out:out1;

C, W, C;

-, F, NC;

NC, -, NC;

}

B.1.2.3 Component Motor Decision Table

File Name: motor.dt

DT motor

{

in:in1, state:state1, out:out1, out:out2;

C, W, C, ON;

-, F, NC, OFF;

NC, -, NC, OFF;

}

B.1.2.4 Component Operator Decision Table

File Name: operator.dt

DT operator

{

time:time1, in:in1, state:state1, out:out1, out:out2, out:out3;

(t=0), LPR, W, CL, CL, CL;

(0<t<3), LPR, W, NA, NA, NA;

-, HPR, W, OP, NA, NA;

-, VHPR, W, NA, OP, NA;

-, -, F, NA, NA, NA;

}

262 Appendix B. Pressure Tank System

B.1.2.5 Component Power Supply Decision Table

File Name: powerSupply.dt

DT power_supply

{

in:in1, state:state1, out:out1;

C, W, C;

-, F, NC;

NC, -, NC;

}

B.1.2.6 Component Pressure Gauge Decision Table

File Name: pressureGauge.dt

DT pressure_gauge

{

time:time1, in:in1, state:state1, out:out1;

(t<1), CONST, W, LPR;

(t<1), INC, W, LPR;

(1), CONST, W, LPR;

(1), INC, W, HPR;

-, DEC, W, LPR;

(1<t<=3), CONST, W, HPR;

(1<t<=3), INC, W, VHPR;

-, -, F_LOW, LPR;

-, -, F_HIGH, HPR;

-, -, F_VHIGH, VHPR;

}

B.1.2.7 Component Pump Decision Table

File Name: pump.dt

DT pump

{

in:in1, state:state1, out:out1;

ON, W, FL;

-, F, NFL;

B.1. Input Files 263

OFF, -, NFL;

}

B.1.2.8 Component Relay Decision Table

File Name: relay.dt

DT relay

{

in:in1, state:state1, out:out1, out:out2;

C, W, EN, C;

-, F, DE, NC;

NC, -, DE, NC;

}

B.1.2.9 Component Push Switch Decision and Operational Mode Table

File Name: pushSwitch.dt

DT push_switch

{

in:in2, mode:mode3, out:out1;

-, open, NC;

NC, -, NC;

C, closed, C;

}

File Name: pushSwitch.omt

OMT push_switch

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, F_closed, closed;

closed, CL, -, closed;

closed, NA, W, open;

open, -, F_open, open;

open, NA, -, open;

open, CL, W, closed;

}

264 Appendix B. Pressure Tank System

B.1.2.10 Component Toggle Switch Decision and Operational Mode Table

File Name: toggleSwitch.dt

DT toggle_switch

{

in:in2, mode:mode3, out:out1;

-, open, NC;

NC, -, NC;

C, closed, C;

}

File Name: toggleSwitch.omt

OMT toggle_switch

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, F_closed, closed;

closed, CL, -, closed;

closed, OP, W, open;

closed, NA, -, closed;

open, -, F_open, open;

open, OP, -, open;

open, NA, -, open;

open, CL, W, closed;

}

B.1.2.11 Component Tank Decision Table

File Name: tank.dt

DT tank

{

time:time1, in:in1, in:in2, state:state1, out:out1, out:out2;

-, FL, open, W, CONST, FL;

-, FL, closed, W, INC, NFL;

-, NFL, closed, W, CONST, NFL;

(t=<1), NFL, open, W, CONST, NFL;

(1<t=<3), NFL, open, W, DEC, FL;

B.1. Input Files 265

(t=<1), -, -, F, CONST, NFL;

(1<t=<3), -, -, F, DEC, NFL;

}

B.1.2.12 Component Timer Relay Decision Table

File Name: timerRelay.dt

DT timer_relay

{

time:time1, in:in1, state:state1, out:out1, out:out2;

(t<1), C, W, EN, C;

(t>=1), C, W, DE, NC;

-, -, F, DE, NC;

-, NC, -, DE, NC;

}

B.1.2.13 Component Valve Decision and Operational Mode Table

File Name: valve.dt

DT valve

{

in:in2, mode:mode3, out:out1;

-, closed, NFL;

NFL, open, NFL;

NFL, closed, NFL;

FL, open, FL;

}

File Name: valve.omt

OMT valve

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, F_closed, closed;

closed, CL, -, closed;

closed, OP, W, open;

closed, NA, -, closed;

266 Appendix B. Pressure Tank System

open, -, F_open, open;

open, OP, -, open;

open, NA, -, open;

open, CL, W, closed;

}

B.1.2.14 Component Junction Decision Tables

File Name: junctionTwoIn.dt

DT junction_two_in

{

in:in1, in:in2, out:out1;

C, -, C;

-, C, C;

NC, NC, NC;

}

File Name: junctionOneIn.dt

DT junction_one_in

{

in:in1, out:out1, out:out2;

C, C, C;

NC, NC, NC;

}

B.1.2.15 Component Boundary Decision Table

File Name: boundary.dt

DT boundary

{

in:in1;

FL;

NFL;

}

B.1. Input Files 267

B.1.3 System Structure File

File Name: ss_pts.ss

SS SS_Structure1

begin

S1 : push_switch

port map(

in1 => OP_S1;

in2 => J4_S1;

out1 => S1_J1;

)

J1 : junction_two_in

port map(

in1 => CT_J1;

in2 => S1_J1;

out1 => J1_PS1;

)

PS1 : power_supply

port map(

in1 => J1_PS1;

out1 => PS1_S2;

)

S2 : toggle_switch

port map(

in1 => OP_S2;

in2 => PS1_S2;

out1 => S2_J2;

)

J2 : junction_one_in

port map(

in1 => S2_J2;

out1 => J2_TIM;

268 Appendix B. Pressure Tank System

out2 => J2_R;

)

TIM : timer_relay

port map(

in1 => J2_TIM;

out1 => TIM_CT;

out2 => TIM_J3;

)

R : relay

port map(

in1 => J2_R;

out1 => R_CR;

out2 => R_J3;

)

J3 : junction_two_in

port map(

in1 => TIM_J3;

in2 => R_J3;

out1 => J3_J4;

)

J4 : junction_one_in

port map(

in1 => J3_J4;

out1 => J4_CT;

out2 => J4_S1;

)

CT : contact

port map(

in1 => TIM_CT;

in2 => J4_CT;

out1 => CT_J1;

)

B.1. Input Files 269

CR : contact

port map(

in1 => R_CR;

in2 => FS_CR;

out1 => CR_M;

)

M : motor

port map(

in1 => CR_M;

out1 => M_PS2;

out2 => M_P;

)

PS2 : power_supply

port map(

in1 => M_PS2;

out1 => PS2_FS;

)

FS : fuse

port map(

in1 => PS2_FS;

out1 => FS_CR;

)

P : pump

port map(

in1 => M_P;

out1 => P_T;

)

T : tank

port map(

in1 => P_T;

in2 => V_T;

out1 => T_PG;

out2 => T_V;

270 Appendix B. Pressure Tank System

)

V : valve

port map(

in1 => OP_V;

in2 => T_V;

out1 => V_B;

mode3 => V_T;

)

PG : pressure_gauge

port map(

in1 => T_PG;

out1 => PG_OP;

)

OP : operator

port map(

in1 => PG_OP;

out1 => OP_V;

out2 => OP_S2;

out3 => OP_S1;

)

B : boundary

port map(

in1 => V_B;

)

end

B.1.4 Phase Transition Table File

File Name: ptt_m4.ptt

ptt mission_1 {

time, from_phase, to_phase, condition;

0, 1, 2, CT.mode3=closed;

delta, 1, 8, CT.mode3=open;

B.1. Input Files 271

1, 2, 3, T.out1=CONST;

-, 2, 8, T.out1=CONST;

-, 3, 4, V.mode3=open;

delta, 3, 5, V.mode3=closed;

3, 4, 9, T.out1=DEC;

-, 4, 8, T.out1=CONST;

delta, 5, 6, CR.mode3=open;

delta, 5, 7, CR.mode3=closed;

}

B.1.5 Simulation File

File Name: simulation_2.sim

- - This is the simulation file for the pressure tank system

- - This file contains:

- - 1.) The modes of components with an operational mode table.

- - 2.) The failure and repair distributions/rate.

- - 3.) The initiating component

SIM

- - Component Modes:

- - List as component_identifier mode = mode_type; e.g. S1 mode = OP;

COMPONENT MODES

{

S1 mode = open;

S2 mode = closed;

CT mode = open;

CR mode = open;

V mode = closed;

}

- - Failure distributions/rates

- - List as component_identifier distribution_type(parameter_1, parameter_2);

- - for WEIBULL distribution: component_identifier weibull(characteristic_Life,

shape_parameter);

272 Appendix B. Pressure Tank System

- - for EXPONENTIAL distribution: component_identifier exponential(mean);

- - for NORMAL distribution: component_identifier normal(standard_deviation,

mean);

- - for time to failure: component_identifier ttf(rate);

FAILURE

{

S1 F_closed exponential(10);

S1 F_open exponential(10);

PS1 F exponential(1000.000);

S2 F_closed exponential(1000.000);

S2 F_open exponential(1.149689584);

TIM F exponential(1000.000);

R F exponential(10.000);

CT F_closed exponential(10.00);

CT F_open exponential(10.00);

CR F_closed exponential(4347.826087);

CR F_open exponential(4347.826087);

M F exponential(1000.000);

PS2 F exponential(1000.000);

FS F exponential(100.000);

P F exponential(10.000);

T F exponential(10000.000);

V F_closed exponential(33.333);

V F_open exponential(33.333);

PG F_LOW exponential(100.000);

PG F_HIGH exponential(100.000);

PG F_VHIGH exponential(100.000);

OP F exponential(10.000);

}

- - Initiating component

- - List as component_identifier port_name = value; e.g. OP out1 = CL;

INITIAL

{

OP out3 = CL;

}

B.2. Analytical Results 273

B.1.6 Setup File

File Name: setup.ini

– SETUP FILE –

INI

- - DEFAULT

- - Working state of components

working state :: W;

- - Wire link types current, no current used for the decision tables

- - List as Current, noCurrent

wire type :: C, NC;

B.2 Analytical Results

B.2.1 Single Mission

Table B.1 shows the phase reliability and unreliability values used within the analytical

calculations seen in Chapter 6.

B.3 Simulation Results

B.3.1 Single Mission

Tables B.2 - B.4 show the simulation results for the single mission condition for the Pressure

Tank System.

B.3.2 Multiple Missions

Table B.5 shows the simulation results for the testing of multiple consecutive missions

undertaken by the Pressure Tank System.

274 Appendix B. Pressure Tank System

T
ab

le
B
.1
:
A
na

yt
ic
al

va
lu
es

fo
r
th
e
U
nr
el
ia
bi
lit
y
an

d
R
el
ia
bi
lit
y
of

ea
ch

ph
as
e
an

d
ea
ch

ph
as
e
ra
ng

e

ID
F
ai

lu
re

M
ea

n
T

im
e

F
ai

lu
re

U
n
re

li
ab

il
it
y,

Q
(t

)
R

el
ia

b
il
it
y,

R
(t

)
M

o
d
e

to
F
ai

lu
re

R
at

e
p
h
as

e
2

p
h
as

e
3

p
h
as

e
1-

2
p
h
as

e
1-

3
p
h
as

e
2-

3
p
h
as

e
2

p
h
as

e
3

p
h
as

e
1-

2
p
h
as

e
1-

3
p
h
as

e
2-

3

S
1

F
_

op
en

10
0.

1
0.

09
51

62
58

2
0.

08
61

06
66

5
0.

09
51

62
58

2
0.

18
12

69
24

7
0.

18
12

69
24

7
0.

90
48

37
41

8
0.

91
38

93
33

5
0.

90
48

37
41

8
0.

81
87

30
75

3
0.

81
87

30
75

3
S
1

F
_

cl
os

ed
10

0.
1

0.
09

51
62

58
2

0.
08

61
06

66
5

0.
09

51
62

58
2

0.
18

12
69

24
7

0.
18

12
69

24
7

0.
90

48
37

41
8

0.
91

38
93

33
5

0.
90

48
37

41
8

0.
81

87
30

75
3

0.
81

87
30

75
3

S
2

F
_

op
en

1.
14

96
89

58
4

0.
86

98
0.

58
09

64
65

2
0.

24
34

44
72

5
0.

58
09

64
65

2
0.

82
44

09
37

7
0.

82
44

09
37

7
0.

41
90

35
34

8
0.

75
65

55
27

5
0.

41
90

35
34

8
0.

17
55

90
62

3
0.

17
55

90
62

3
S
2

F
_

cl
os

ed
10

00
0.

00
1

0.
00

09
99

5
0.

00
09

98
50

1
0.

00
09

99
5

0.
00

19
98

00
1

0.
00

19
98

00
1

0.
99

90
00

5
0.

99
90

01
49

9
0.

99
90

00
5

0.
99

80
01

99
9

0.
99

80
01

99
9

P
S
1

F
10

00
0.

00
1

0.
00

09
99

5
0.

00
09

98
50

1
0.

00
09

99
5

0.
00

19
98

00
1

0.
00

19
98

00
1

0.
99

90
00

5
0.

99
90

01
49

9
0.

99
90

00
5

0.
99

80
01

99
9

0.
99

80
01

99
9

P
S
2

F
10

00
0.

00
1

0.
00

09
99

5
0.

00
09

98
50

1
0.

00
09

99
5

0.
00

19
98

00
1

0.
00

19
98

00
1

0.
99

90
00

5
0.

99
90

01
49

9
0.

99
90

00
5

0.
99

80
01

99
9

0.
99

80
01

99
9

T
C

F
_

op
en

10
0.

1
0.

09
51

62
58

2
0.

08
61

06
66

5
0.

09
51

62
58

2
0.

18
12

69
24

7
0.

18
12

69
24

7
0.

90
48

37
41

8
0.

91
38

93
33

5
0.

90
48

37
41

8
0.

81
87

30
75

3
0.

81
87

30
75

3
T

C
F
_

cl
os

ed
10

0.
1

0.
09

51
62

58
2

0.
08

61
06

66
5

0.
09

51
62

58
2

0.
18

12
69

24
7

0.
18

12
69

24
7

0.
90

48
37

41
8

0.
91

38
93

33
5

0.
90

48
37

41
8

0.
81

87
30

75
3

0.
81

87
30

75
3

R
C

F
_

op
en

43
47

.8
26

08
7

0.
00

02
3

0.
00

02
29

97
4

0.
00

02
29

92
1

0.
00

02
29

97
4

0.
00

04
59

89
4

0.
00

04
59

89
4

0.
99

97
70

02
6

0.
99

97
70

07
9

0.
99

97
70

02
6

0.
99

95
40

10
6

0.
99

95
40

10
6

R
C

F
_

cl
os

ed
43

47
.8

26
08

7
0.

00
02

3
0.

00
02

29
97

4
0.

00
02

29
92

1
0.

00
02

29
97

4
0.

00
04

59
89

4
0.

00
04

59
89

4
0.

99
97

70
02

6
0.

99
97

70
07

9
0.

99
97

70
02

6
0.

99
95

40
10

6
0.

99
95

40
10

6
T

IM
F

10
00

0.
00

1
0.

00
09

99
5

0.
00

09
98

50
1

0.
00

09
99

5
0.

00
19

98
00

1
0.

00
19

98
00

1
0.

99
90

00
5

0.
99

90
01

49
9

0.
99

90
00

5
0.

99
80

01
99

9
0.

99
80

01
99

9
R

F
10

0.
1

0.
09

51
62

58
2

0.
08

61
06

66
5

0.
09

51
62

58
2

0.
18

12
69

24
7

0.
18

12
69

24
7

0.
90

48
37

41
8

0.
91

38
93

33
5

0.
90

48
37

41
8

0.
81

87
30

75
3

0.
81

87
30

75
3

M
F

10
00

0.
00

1
0.

00
09

99
5

0.
00

09
98

50
1

0.
00

09
99

5
0.

00
19

98
00

1
0.

00
19

98
00

1
0.

99
90

00
5

0.
99

90
01

49
9

0.
99

90
00

5
0.

99
80

01
99

9
0.

99
80

01
99

9
F
S

F
10

0
0.

01
0.

00
99

50
16

6
0.

00
98

51
16

0.
00

99
50

16
6

0.
01

98
01

32
7

0.
01

98
01

32
7

0.
99

00
49

83
4

0.
99

01
48

84
0.

99
00

49
83

4
0.

98
01

98
67

3
0.

98
01

98
67

3
P

F
10

0.
1

0.
09

51
62

58
2

0.
08

61
06

66
5

0.
09

51
62

58
2

0.
18

12
69

24
7

0.
18

12
69

24
7

0.
90

48
37

41
8

0.
91

38
93

33
5

0.
90

48
37

41
8

0.
81

87
30

75
3

0.
81

87
30

75
3

T
F

10
00

0
0.

00
01

9.
99

95
E
-0

5
9.

99
85

E
-0

5
9.

99
95

E
-0

5
0.

00
01

99
98

0.
00

01
99

98
0.

99
99

00
00

5
0.

99
99

00
01

5
0.

99
99

00
00

5
0.

99
98

00
02

0.
99

98
00

02
V

F
_

op
en

33
.3

33
0.

03
00

00
3

0.
02

95
54

75
8

0.
02

86
81

27
4

0.
02

95
54

75
8

0.
05

82
36

03
1

0.
05

82
36

03
1

0.
97

04
45

24
2

0.
97

13
18

72
6

0.
97

04
45

24
2

0.
94

17
63

96
9

0.
94

17
63

96
9

V
F
_

cl
os

ed
33

.3
33

0.
03

00
00

3
0.

02
95

54
75

8
0.

02
86

81
27

4
0.

02
95

54
75

8
0.

05
82

36
03

1
0.

05
82

36
03

1
0.

97
04

45
24

2
0.

97
13

18
72

6
0.

97
04

45
24

2
0.

94
17

63
96

9
0.

94
17

63
96

9
P
G

F
_

L
O

W
10

0
0.

01
0.

00
99

50
16

6
0.

00
98

51
16

0.
00

99
50

16
6

0.
01

98
01

32
7

0.
01

98
01

32
7

0.
99

00
49

83
4

0.
99

01
48

84
0.

99
00

49
83

4
0.

98
01

98
67

3
0.

98
01

98
67

3
P
G

F
_

H
IG

H
10

0
0.

01
0.

00
99

50
16

6
0.

00
98

51
16

0.
00

99
50

16
6

0.
01

98
01

32
7

0.
01

98
01

32
7

0.
99

00
49

83
4

0.
99

01
48

84
0.

99
00

49
83

4
0.

98
01

98
67

3
0.

98
01

98
67

3
P
G

F
_

V
H

IG
H

10
0

0.
01

0.
00

99
50

16
6

0.
00

98
51

16
0.

00
99

50
16

6
0.

01
98

01
32

7
0.

01
98

01
32

7
0.

99
00

49
83

4
0.

99
01

48
84

0.
99

00
49

83
4

0.
98

01
98

67
3

0.
98

01
98

67
3

O
P

F
10

0.
1

0.
09

51
62

58
2

0.
08

61
06

66
5

0.
09

51
62

58
2

0.
18

12
69

24
7

0.
18

12
69

24
7

0.
90

48
37

41
8

0.
91

38
93

33
5

0.
90

48
37

41
8

0.
81

87
30

75
3

0.
81

87
30

75
3

B.3. Simulation Results 275

Table B.2: Simulation Results for the single mission condition for the Pressure Tank System
(Simulations 0-4000)

Simulation Number of failures Phase Unreliability Mission
Number Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3 Phase 4 Unreliability

0 0 0 0 0 0 0 0 0 0
50 0 6 5 4 0 0.12 0.1 0.08 0.3
100 0 15 10 9 0 0.15 0.1 0.09 0.34
150 0 28 20 11 0 0.186666667 0.133333333 0.073333333 0.393333333
200 0 37 27 16 0 0.185 0.135 0.08 0.4
250 0 50 31 24 0 0.2 0.124 0.096 0.42
300 0 65 37 28 0 0.216666667 0.123333333 0.093333333 0.433333333
350 0 71 46 29 0 0.202857143 0.131428571 0.082857143 0.417142857
400 0 84 49 33 0 0.21 0.1225 0.0825 0.415
450 0 93 52 37 0 0.206666667 0.115555556 0.082222222 0.404444444
500 0 101 56 42 0 0.202 0.112 0.084 0.398
550 0 113 61 45 0 0.205454545 0.110909091 0.081818182 0.398181818
600 0 127 67 52 0 0.211666667 0.111666667 0.086666667 0.41
650 0 137 70 57 0 0.210769231 0.107692308 0.087692308 0.406153846
700 0 144 74 59 0 0.205714286 0.105714286 0.084285714 0.395714286
750 0 151 79 64 0 0.201333333 0.105333333 0.085333333 0.392
800 0 159 86 72 0 0.19875 0.1075 0.09 0.39625
850 0 175 88 76 0 0.205882353 0.103529412 0.089411765 0.398823529
900 0 183 94 79 0 0.203333333 0.104444444 0.087777778 0.395555556
950 0 191 99 82 0 0.201052632 0.104210526 0.086315789 0.391578947
1000 0 201 104 83 0 0.201 0.104 0.083 0.388
1050 0 212 111 84 0 0.201904762 0.105714286 0.08 0.387619048
1100 0 225 119 86 0 0.204545455 0.108181818 0.078181818 0.390909091
1150 0 233 125 90 0 0.202608696 0.108695652 0.07826087 0.389565217
1200 0 243 128 92 0 0.2025 0.106666667 0.076666667 0.385833333
1250 0 251 133 95 0 0.2008 0.1064 0.076 0.3832
1300 0 259 136 100 0 0.199230769 0.104615385 0.076923077 0.380769231
1350 0 270 141 101 0 0.2 0.104444444 0.074814815 0.379259259
1400 0 282 146 103 0 0.201428571 0.104285714 0.073571429 0.379285714
1450 0 295 148 106 0 0.203448276 0.102068966 0.073103448 0.37862069
1500 0 309 150 109 0 0.206 0.1 0.072666667 0.378666667
1550 0 316 155 112 0 0.203870968 0.1 0.072258065 0.376129032
1600 0 321 160 116 0 0.200625 0.1 0.0725 0.373125
1650 0 326 162 122 0 0.197575758 0.098181818 0.073939394 0.36969697
1700 0 335 168 125 0 0.197058824 0.098823529 0.073529412 0.369411765
1750 0 345 172 127 0 0.197142857 0.098285714 0.072571429 0.368
1800 0 356 178 130 0 0.197777778 0.098888889 0.072222222 0.368888889
1850 0 362 184 133 0 0.195675676 0.099459459 0.071891892 0.367027027
1900 0 371 187 135 0 0.195263158 0.098421053 0.071052632 0.364736842
1950 0 377 195 136 0 0.193333333 0.1 0.06974359 0.363076923
2000 0 382 198 140 0 0.191 0.099 0.07 0.36
2050 0 390 209 145 0 0.190243902 0.10195122 0.070731707 0.362926829
2100 0 398 212 147 0 0.18952381 0.100952381 0.07 0.36047619
2150 0 410 224 151 0 0.190697674 0.104186047 0.070232558 0.365116279
2200 0 421 230 154 0 0.191363636 0.104545455 0.07 0.365909091
2250 0 431 238 156 0 0.191555556 0.105777778 0.069333333 0.366666667
2300 0 442 240 160 0 0.192173913 0.104347826 0.069565217 0.366086957
2350 0 453 246 163 0 0.192765957 0.104680851 0.069361702 0.366808511
2400 0 463 248 165 0 0.192916667 0.103333333 0.06875 0.365
2450 0 472 256 169 0 0.192653061 0.104489796 0.068979592 0.366122449
2500 0 481 258 173 0 0.1924 0.1032 0.0692 0.3648
2550 0 490 263 176 0 0.192156863 0.103137255 0.069019608 0.364313725
2600 0 507 266 180 0 0.195 0.102307692 0.069230769 0.366538462
2650 0 517 272 181 0 0.19509434 0.102641509 0.068301887 0.366037736
2700 0 522 275 183 0 0.193333333 0.101851852 0.067777778 0.362962963
2750 0 535 279 184 0 0.194545455 0.101454545 0.066909091 0.362909091
2800 0 548 286 185 0 0.195714286 0.102142857 0.066071429 0.363928571
2850 0 563 290 187 0 0.19754386 0.101754386 0.065614035 0.364912281
2900 0 579 295 191 0 0.199655172 0.101724138 0.065862069 0.367241379
2950 0 584 298 197 0 0.197966102 0.101016949 0.066779661 0.365762712
3000 0 593 303 201 0 0.197666667 0.101 0.067 0.365666667
3050 0 599 311 206 0 0.196393443 0.101967213 0.067540984 0.365901639
3100 0 609 317 210 0 0.196451613 0.102258065 0.067741935 0.366451613
3150 0 622 320 213 0 0.197460317 0.101587302 0.067619048 0.366666667
3200 0 633 330 216 0 0.1978125 0.103125 0.0675 0.3684375
3250 0 643 336 220 0 0.197846154 0.103384615 0.067692308 0.368923077
3300 0 648 342 224 0 0.196363636 0.103636364 0.067878788 0.367878788
3350 0 657 344 226 0 0.196119403 0.102686567 0.067462687 0.366268657
3400 0 661 350 233 0 0.194411765 0.102941176 0.068529412 0.365882353
3450 0 672 357 234 0 0.194782609 0.103478261 0.067826087 0.366086957
3500 0 685 359 239 0 0.195714286 0.102571429 0.068285714 0.366571429
3550 0 690 371 242 0 0.194366197 0.104507042 0.068169014 0.367042254
3600 0 697 374 248 0 0.193611111 0.103888889 0.068888889 0.366388889
3650 0 706 379 249 0 0.193424658 0.103835616 0.068219178 0.365479452
3700 0 721 383 253 0 0.194864865 0.103513514 0.068378378 0.366756757
3750 0 728 389 259 0 0.194133333 0.103733333 0.069066667 0.366933333
3800 0 738 396 263 0 0.194210526 0.104210526 0.069210526 0.367631579
3850 0 747 399 270 0 0.194025974 0.103636364 0.07012987 0.367792208
3900 0 756 406 274 0 0.193846154 0.104102564 0.07025641 0.368205128
3950 0 764 411 279 0 0.193417722 0.104050633 0.070632911 0.368101266
4000 0 771 415 282 0 0.19275 0.10375 0.0705 0.367

276 Appendix B. Pressure Tank System

Table B.3: Simulation Results for the single mission condition for the Pressure Tank System
(Simulations 4050-8000)

Simulation Number of failures Phase Unreliability Mission
Number Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3 Phase 4 Unreliability

4050 0 781 422 285 0 0.192839506 0.104197531 0.07037037 0.367407407
4100 0 794 427 288 0 0.193658537 0.104146341 0.070243902 0.36804878
4150 0 804 430 291 0 0.19373494 0.103614458 0.070120482 0.36746988
4200 0 819 435 296 0 0.195 0.103571429 0.07047619 0.369047619
4250 0 828 444 298 0 0.194823529 0.104470588 0.070117647 0.369411765
4300 0 840 451 301 0 0.195348837 0.104883721 0.07 0.370232558
4350 0 851 456 302 0 0.195632184 0.104827586 0.069425287 0.369885057
4400 0 859 460 305 0 0.195227273 0.104545455 0.069318182 0.369090909
4450 0 867 465 309 0 0.194831461 0.104494382 0.069438202 0.368764045
4500 0 879 471 312 0 0.195333333 0.104666667 0.069333333 0.369333333
4550 0 887 480 313 0 0.194945055 0.105494505 0.068791209 0.369230769
4600 0 899 485 318 0 0.195434783 0.105434783 0.069130435 0.37
4650 0 903 497 320 0 0.194193548 0.10688172 0.068817204 0.369892473
4700 0 912 503 322 0 0.194042553 0.107021277 0.068510638 0.369574468
4750 0 923 507 325 0 0.194315789 0.106736842 0.068421053 0.369473684
4800 0 933 513 328 0 0.194375 0.106875 0.068333333 0.369583333
4850 0 942 519 331 0 0.194226804 0.107010309 0.068247423 0.369484536
4900 0 950 523 339 0 0.193877551 0.106734694 0.069183673 0.369795918
4950 0 960 528 340 0 0.193939394 0.106666667 0.068686869 0.369292929
5000 0 975 530 342 0 0.195 0.106 0.0684 0.3694
5050 0 987 534 344 0 0.195445545 0.105742574 0.068118812 0.369306931
5100 0 997 543 348 0 0.195490196 0.106470588 0.068235294 0.370196078
5150 0 1008 550 351 0 0.195728155 0.106796117 0.06815534 0.370679612
5200 0 1016 556 353 0 0.195384615 0.106923077 0.067884615 0.370192308
5250 0 1032 560 354 0 0.196571429 0.106666667 0.067428571 0.370666667
5300 0 1043 564 357 0 0.196792453 0.106415094 0.067358491 0.370566038
5350 0 1054 571 363 0 0.197009346 0.106728972 0.067850467 0.371588785
5400 0 1060 575 367 0 0.196296296 0.106481481 0.067962963 0.370740741
5450 0 1068 588 369 0 0.195963303 0.107889908 0.067706422 0.371559633
5500 0 1078 591 371 0 0.196 0.107454545 0.067454545 0.370909091
5550 0 1087 595 376 0 0.195855856 0.107207207 0.067747748 0.370810811
5600 0 1099 603 380 0 0.19625 0.107678571 0.067857143 0.371785714
5650 0 1108 610 380 0 0.196106195 0.107964602 0.067256637 0.371327434
5700 0 1120 614 382 0 0.196491228 0.107719298 0.067017544 0.37122807
5750 0 1134 617 387 0 0.197217391 0.107304348 0.067304348 0.371826087
5800 0 1147 622 392 0 0.197758621 0.107241379 0.067586207 0.372586207
5850 0 1154 630 395 0 0.197264957 0.107692308 0.067521368 0.372478632
5900 0 1163 637 400 0 0.197118644 0.107966102 0.06779661 0.372881356
5950 0 1172 644 403 0 0.19697479 0.108235294 0.067731092 0.372941176
6000 0 1180 649 405 0 0.196666667 0.108166667 0.0675 0.372333333
6050 0 1190 652 410 0 0.196694215 0.107768595 0.067768595 0.372231405
6100 0 1203 657 412 0 0.197213115 0.107704918 0.067540984 0.372459016
6150 0 1213 659 416 0 0.197235772 0.107154472 0.067642276 0.37203252
6200 0 1226 664 418 0 0.197741935 0.107096774 0.067419355 0.372258065
6250 0 1232 669 420 0 0.19712 0.10704 0.0672 0.37136
6300 0 1240 678 424 0 0.196825397 0.107619048 0.067301587 0.371746032
6350 0 1250 681 426 0 0.196850394 0.107244094 0.067086614 0.371181102
6400 0 1259 688 427 0 0.19671875 0.1075 0.06671875 0.3709375
6450 0 1267 696 429 0 0.196434109 0.107906977 0.066511628 0.370852713
6500 0 1277 702 429 0 0.196461538 0.108 0.066 0.370461538
6550 0 1286 708 431 0 0.196335878 0.108091603 0.065801527 0.370229008
6600 0 1295 714 438 0 0.196212121 0.108181818 0.066363636 0.370757576
6650 0 1306 726 439 0 0.196390977 0.109172932 0.066015038 0.371578947
6700 0 1316 731 441 0 0.19641791 0.109104478 0.065820896 0.371343284
6750 0 1323 736 442 0 0.196 0.109037037 0.065481481 0.370518519
6800 0 1335 740 446 0 0.196323529 0.108823529 0.065588235 0.370735294
6850 0 1346 748 450 0 0.19649635 0.10919708 0.065693431 0.371386861
6900 0 1359 753 452 0 0.196956522 0.109130435 0.065507246 0.371594203
6950 0 1371 757 455 0 0.197266187 0.108920863 0.065467626 0.371654676
7000 0 1381 762 457 0 0.197285714 0.108857143 0.065285714 0.371428571
7050 0 1390 764 460 0 0.197163121 0.108368794 0.065248227 0.370780142
7100 0 1401 765 466 0 0.197323944 0.107746479 0.065633803 0.370704225
7150 0 1411 768 470 0 0.197342657 0.107412587 0.065734266 0.37048951
7200 0 1421 772 473 0 0.197361111 0.107222222 0.065694444 0.370277778
7250 0 1426 783 475 0 0.196689655 0.108 0.065517241 0.370206897
7300 0 1438 785 477 0 0.196986301 0.107534247 0.065342466 0.369863014
7350 0 1451 792 480 0 0.197414966 0.107755102 0.065306122 0.37047619
7400 0 1462 797 481 0 0.197567568 0.107702703 0.065 0.37027027
7450 0 1474 800 486 0 0.197852349 0.10738255 0.065234899 0.370469799
7500 0 1481 807 491 0 0.197466667 0.1076 0.065466667 0.370533333
7550 0 1489 811 494 0 0.197218543 0.107417219 0.065430464 0.370066225
7600 0 1499 817 497 0 0.197236842 0.1075 0.065394737 0.370131579
7650 0 1511 821 501 0 0.19751634 0.107320261 0.065490196 0.370326797
7700 0 1528 826 503 0 0.198441558 0.107272727 0.065324675 0.371038961
7750 0 1535 832 506 0 0.198064516 0.107354839 0.065290323 0.370709677
7800 0 1547 838 507 0 0.198333333 0.107435897 0.065 0.370769231
7850 0 1559 844 511 0 0.198598726 0.107515924 0.065095541 0.371210191
7900 0 1567 853 516 0 0.19835443 0.107974684 0.065316456 0.37164557
7950 0 1579 856 519 0 0.198616352 0.107672956 0.065283019 0.371572327
8000 0 1588 860 524 0 0.1985 0.1075 0.0655 0.3715

B.3. Simulation Results 277

Table B.4: Simulation Results for the single mission condition for the Pressure Tank
System: (Simulations 8050-10000)

Simulation Number of failures Phase Unreliability Mission
Number Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3 Phase 4 Unreliability

8050 0 1599 865 530 0 0.19863354 0.107453416 0.065838509 0.371925466
8100 0 1613 870 534 0 0.199135802 0.107407407 0.065925926 0.372469136
8150 0 1622 876 537 0 0.199018405 0.107484663 0.065889571 0.372392638
8200 0 1628 884 540 0 0.198536585 0.107804878 0.065853659 0.372195122
8250 0 1637 887 542 0 0.198424242 0.107515152 0.06569697 0.371636364
8300 0 1649 896 543 0 0.198674699 0.107951807 0.065421687 0.372048193
8350 0 1658 901 547 0 0.198562874 0.107904192 0.065508982 0.371976048
8400 0 1668 906 549 0 0.198571429 0.107857143 0.065357143 0.371785714
8450 0 1685 909 551 0 0.199408284 0.107573964 0.065207101 0.372189349
8500 0 1697 913 555 0 0.199647059 0.107411765 0.065294118 0.372352941
8550 0 1705 917 557 0 0.199415205 0.107251462 0.065146199 0.371812865
8600 0 1709 924 562 0 0.19872093 0.10744186 0.065348837 0.371511628
8650 0 1722 930 564 0 0.199075145 0.107514451 0.065202312 0.371791908
8700 0 1732 934 565 0 0.19908046 0.107356322 0.064942529 0.37137931
8750 0 1744 940 569 0 0.199314286 0.107428571 0.065028571 0.371771429
8800 0 1752 948 571 0 0.199090909 0.107727273 0.064886364 0.371704545
8850 0 1760 957 574 0 0.198870056 0.108135593 0.064858757 0.371864407
8900 0 1768 963 576 0 0.198651685 0.108202247 0.064719101 0.371573034
8950 0 1780 968 578 0 0.198882682 0.108156425 0.064581006 0.371620112
9000 0 1789 977 581 0 0.198777778 0.108555556 0.064555556 0.371888889
9050 0 1798 979 586 0 0.198674033 0.108176796 0.064751381 0.37160221
9100 0 1805 983 587 0 0.198351648 0.108021978 0.064505495 0.370879121
9150 0 1811 991 590 0 0.197923497 0.108306011 0.064480874 0.370710383
9200 0 1819 994 594 0 0.197717391 0.108043478 0.064565217 0.370326087
9250 0 1829 999 597 0 0.19772973 0.108 0.064540541 0.37027027
9300 0 1841 1004 601 0 0.197956989 0.107956989 0.064623656 0.370537634
9350 0 1851 1012 603 0 0.197967914 0.108235294 0.064491979 0.370695187
9400 0 1861 1018 604 0 0.197978723 0.108297872 0.064255319 0.370531915
9450 0 1874 1018 610 0 0.198306878 0.107724868 0.064550265 0.370582011
9500 0 1884 1021 612 0 0.198315789 0.107473684 0.064421053 0.370210526
9550 0 1895 1027 613 0 0.198429319 0.107539267 0.064188482 0.370157068
9600 0 1907 1032 616 0 0.198645833 0.1075 0.064166667 0.3703125
9650 0 1914 1037 619 0 0.198341969 0.10746114 0.064145078 0.369948187
9700 0 1923 1043 623 0 0.198247423 0.107525773 0.064226804 0.37
9750 0 1933 1051 625 0 0.19825641 0.107794872 0.064102564 0.370153846
9800 0 1948 1059 630 0 0.19877551 0.108061224 0.064285714 0.371122449
9850 0 1956 1063 634 0 0.19857868 0.107918782 0.064365482 0.370862944
9900 0 1971 1067 637 0 0.199090909 0.107777778 0.064343434 0.371212121
9950 0 1985 1073 643 0 0.199497487 0.107839196 0.064623116 0.371959799
10000 0 1990 1080 645 0 0.199 0.108 0.0645 0.3715

278 Appendix B. Pressure Tank System

T
ab

le
B
.5
:
A
na

ly
ti
ca
lR

es
ul
ts

fo
r
th
e
m
ul
ti
pl
e
m
is
si
on

co
nd

it
io
n
fo
r
th
e
P
re
ss
ur
e
T
an

k
Sy

st
em

N
um

be
r
of

cy
cl
es

Si
m
ul
at
io
n
T
im

e
N
um

be
r
of

fa
ilu

re
s

P
ha

se
U
nr
el
ia
bi
lit
y

M
is
si
on

U
nr
el
ia
bi
lit
y

P
ha

se
1

P
ha

se
2

P
ha

se
3

P
ha

se
4

P
ha

se
1

P
ha

se
2

P
ha

se
3

P
ha

se
4

1
3

0
2

0
0

0.
00
00

0.
00
04

0.
00

00
0.
00
00

0.
00
04

5
15

9
17

4
1

0.
00
18

0.
00
34

0.
00
08

0.
00
02

0.
00
62

10
30

23
29

7
2

0.
00

46
0.
00
58

0.
00
14

0.
00
04

0.
01
22

20
60

64
56

14
5

0.
01
28

0.
01
12

0.
00
28

0.
00
10

0.
02
78

30
90

94
10
7

29
17

0.
01
88

0.
02
14

0.
00
58

0.
00
34

0.
04
94

40
12
0

12
3

13
1

32
18

0.
02
46

0.
02
62

0.
00
64

0.
00
36

0.
06
08

50
15
0

16
8

15
4

46
36

0.
03
36

0.
03
08

0.
00
92

0.
00
72

0.
08
08

10
0

30
0

29
8

32
8

73
48

0.
05
96

0.
06
56

0.
01
46

0.
00
96

0.
14
94

20
0

60
0

59
1

59
4

13
8

84
0.
11
82

0.
11
88

0.
02
76

0.
01
68

0.
28
14

30
0

90
0

81
9

84
0

20
1

12
5

0.
16
38

0.
16
80

0.
04
02

0.
02
50

0.
39
70

40
0

12
00

10
40

99
3

23
3

13
2

0.
20
80

0.
19
86

0.
04
66

0.
02
64

0.
47
96

50
0

15
00

12
15

11
83

27
5

15
6

0.
24
30

0.
23
66

0.
05
50

0.
03
12

0.
56
58

10
00

30
00

16
86

17
12

38
2

22
9

0.
33
72

0.
34
24

0.
07
64

0.
04
58

0.
80
18

20
00

60
00

20
07

20
57

44
8

28
4

0.
40
14

0.
41
14

0.
08
96

0.
05
68

0.
95
92

30
00

90
00

20
82

21
30

45
3

28
1

0.
41
64

0.
42
60

0.
09
06

0.
05
62

0.
98
92

40
00

12
00
0

21
11

21
24

47
5

27
1

0.
42
22

0.
42
48

0.
09
50

0.
05
42

0.
99
62

50
00

15
00
0

21
23

21
26

47
3

26
4

0.
42
46

0.
42
52

0.
09
46

0.
05
28

0.
99
72

Appendix C

Bulb System

C.1 Input Files

This section includes the files used to generate the Petri net based on the repairable bulb

system.

C.1.1 Project File

- - PROJECT bulb_system

- - DT files:

toggleSwitch.dt;

powerSupply.dt;

b_operator.dt;

bulb.dt;

junctionOneIn.dt;

junctionTwoIn.dt;

- - OMT files:

toggleSwitch.omt;

- - SS file:

ss_b1.ss

- - PTT file:

ptt_b1.ptt;

- - SIM file:

simulation_b1.sim;

280 Appendix C. Bulb System

C.1.2 Component Files

This section covers the decision and operational mode table files of each component type

within the bulb system.

C.1.2.1 Component Power Supply Decision Table

File Name: powerSupply.dt

DT power_supply

{

in:in1, state:state1, out:out1;

C, W, C;

-, F, NC;

NC, -, NC;

-, UR, NC;

}

C.1.2.2 Component Toggle Switch Decision and Operational Mode Table

File Name: toggleSwitch.dt

DT toggle_switch

{

in:in2, mode:mode3, out:out1;

-, open, NC;

NC, -, NC;

C, closed, C;

}

File Name: toggleSwitch.omt

OMT toggle_switch

{

mode:mode1, in:in1, state:state1, mode:mode2;

closed, -, F_closed, closed;

closed, CL, -, closed;

closed, OP, W, open;

closed, NA, -, closed;

closed, -, UR, open;

C.1. Input Files 281

open, -, F_open, open;

open, OP, -, open;

open, NA, -, open;

open, CL, W, closed;

open, -, UR, open;

}

C.1.2.3 Component Operator Decision Table

File Name: b_operator.dt

DT_operator

{

time:time1, in:in1, state:state1, out:out1;

0, OFF, W, CL;

(0<t<=20), OFF, W, NA;

(0<t<20), ON, W, NA;

20, ON, W, OP;

-, -, F, NA;

}

C.1.2.4 Component Bulb Decision Table

File Name: bulb.dt

DT bulb

{

in:in1, state:state1, out:out1, out:out2;

C, W, C, ON;

NC, -, NC, OFF;

-, F, NC, OFF;

-, UR, NC, OFF;

}

C.1.2.5 Component Junction Decision Tables

File Name: junctionTwoIn.dt

DT junction_two_in

{

in:in1, in:in2, out:out1;

C, -, C;

282 Appendix C. Bulb System

-, C, C;

NC, NC, NC;

}

File Name: junctionOneIn.dt

DT junction_one_in

{

in:in1, out:out1, out:out2;

C, C, C;

NC, NC, NC;

}

C.1.3 System Structure File

File Name: ss_b1.ss

SS SS_Structure_bulb

begin

OP : b_operator

port map(

in1 => B_OP;

out1 => OP_S1;

)

S1 : toggle_switch

port map(

in1 => OP_S1;

in2 => J2_S1;

out1 => S1_B;

)

PS1 : power_supply

port map(

in1 => J1_PS1;

out1 => PS1_J2;

)

C.1. Input Files 283

PS2 : power_supply

port map(

in1 => J1_PS2;

out1 => PS2_J2;

)

J1 : junction_one_in

port map(

in1 => B_J1;

out1 => J1_PS1;

out2 => J1_PS2;

)

J2 : junction_two_in

port map(

in1 => PS1_J2;

in2 => PS2_J2;

out1 => J2_S1;

)

B : bulb

port map(

in1 => S1_B;

out1 => B_J1;

out2 => B_OP;

)

end

C.1.4 Phase Transition Table File

File Name: ppt_b1.ptt

ptt mission_b1

{

time, from_phase, to_phase, condition;

284 Appendix C. Bulb System

0, 1, 2, B.out2=ON;

delta, 1, 4, B.out2=OFF;

20, 2, 3, B.out2=OFF;

-, 2, 5, B.out2=OFF;

delta, 2, 6, B.out2=ON;

}

C.1.5 Simulation File

File Name: simulation_b1.sim

SIM

COMPONENT MODES

{

S1 mode = open;

}

FAILURE

{

S1 F_closed exponential(1000);

S1 F_open exponential(1000);

PS1 F exponential(150.00);

B F exponential(200.00);

PS2 F exponential(150.00);

}

REPAIR

{

S1 exponential(10);

PS1 exponential(50.000);

PS2 exponential(50.000);

B exponential(10.000);

}

- - Maintenance Plan

MAINTENANCE

{ corrective PS1(eng1);

corrective PS2(eng2);

corrective S1(eng4);

corrective B(eng5);

C.1. Input Files 285

}

- -STANDBY

{

PS1 * COLD(PS2);

PS2 COLD(PS1);

}

INITIAL

{

OP out1 = CL;

}

C.1.6 Setup File

File Name: setup.ini

– SETUP FILE –

INI

- - DEFAULT

- - Working state of components

working state :: W;

- - Default under repair state

repair state :: UR;

- - Wire link types current, no current used for the decision tables

- - List as Current, noCurrent

wire type :: C, NC;

286 Appendix C. Bulb System

	List of Figures
	List of Tables
	Principal Notation
	List of Acronyms
	Introduction
	Background
	Research Objectives
	Basic Definitions
	Hazard Rate
	Reliability and Unreliability
	Availability and Unavailability
	Maintenance Policies
	Cut Sets and Minimal Cut Sets
	Implicants and Prime Implicants

	Reliability Techniques
	Combinatorial
	State-Space
	Simulation

	Summary

	Phased-Mission Systems
	Introduction
	Types of phased-mission systems
	Analytical Modelling Techniques

	Non-Repairable Systems
	Phase Fault Trees
	Phase Modular Approach
	Binary Decision Diagrams for Phased-Mission Systems

	Repairable Systems
	Markov applications in Phased-Mission Systems
	System and Phase Petri Nets

	Summary

	Automated Techniques
	Introduction
	Methods for Automation of Reliability Models
	Decision Table Methods
	Digraph Method
	Modified Decision Table method
	Cause-Consequence Diagrams
	Mini fault trees
	Faultfinder

	Summary

	Modelling of Non-Repairable Systems
	Introduction
	Model Inputs
	Component Description
	System Description
	Circuit Description
	Phase Description
	Initial Conditions

	Petri Net Models
	Component Petri Nets
	Circuit Petri Nets
	System Petri Nets
	Phase Petri Nets

	Algorithm
	Summary

	Application of the Procedure to Pressure Tank System
	Introduction
	The Pressure Tank System

	System and Mission Description
	Components
	System Structure
	Circuits
	Mission Profile

	Pressure Tank System Model Construction
	Component and System Petri Nets
	Circuit Petri Nets
	Phase Petri Net
	The Completed Model

	Summary

	Automated Reliability Modelling
	Introduction
	Object-Oriented Programming in C++
	Key Definitions

	Software Files
	Component Description Files
	System Topology Description
	Mission Description
	Simulation File
	Setup File

	Software Structure
	Storage of System and Mission Description
	Building the Petri Net Model
	Simulating the Petri Net Model

	Testing and Validation
	Validation using Phase Fault Trees

	Summary

	Modelling of Repairable Systems
	Introduction
	Preventative Maintenance
	File Input
	System Storage
	Construction Procedure

	Corrective Maintenance
	File Input
	System Storage
	Construction Procedure

	Standby Systems
	File Input
	System Storage
	Construction Procedure
	Cold Standby
	Warm Standby
	Hot Standby

	Voting Systems
	File Input
	System Storage
	Construction Procedure

	Mission Abort
	File Input
	System Storage
	Construction Procedure

	Simulating a Repairable System
	Simulation Algorithm
	Simulation of the model
	Simulating Transitions

	Repairable Bulb System
	Introduction
	System Description
	Mission Description
	Maintenance Plan
	Petri Net Models
	Validation

	Summary

	Conclusion and Further Work
	Conclusion
	Further Work
	Optimisation Study
	Minimal Cut Sets
	Automatic Generation of the System Structure File
	Multiple Interacting Systems

	References
	User Interaction
	Menu Interaction

	Pressure Tank System
	Input Files
	Project File
	Component Files
	System Structure File
	Phase Transition Table File
	Simulation File
	Setup File

	Analytical Results
	Single Mission

	Simulation Results
	Single Mission
	Multiple Missions

	Bulb System
	Input Files
	Project File
	Component Files
	System Structure File
	Phase Transition Table File
	Simulation File
	Setup File

