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Abstract 

Performance during prolonged exercise capacity diminishes with increasing 

temperatures. The onset of fatigue under these conditions is not adequately explained 

by peripheral mechanisms. Recently, drugs which inhibit the reuptake of dopamine and 

noradrenaline in the brain have been found to improve exercise performance in warm 

conditions. The aim of this thesis was to further explore and characterise the role of 

these neurotransmitters during prolonged exercise in warm conditions by manipulating 

their reuptake or synthesis.  

The first series of experiments were designed to further investigate the effects of 

bupropion, a dopamine and noradrenaline reuptake inhibitor, which has been found to 

improve performance in warm conditions. To explore gender differences in response to 

acute bupropion administration, the effects of bupropion on prolonged exercise 

performance in warm conditions in women was investigated in Chapter 3. The results of 

this study suggest that during the follicular phase of the menstrual cycle, acute 

administration of bupropion improves exercise performance. To determine whether 

there are any dose-dependent effects of bupropion, the experiment in Chapter 4 was 

designed to test three different doses of bupropion. Exercise performance was only 

improved for the maximal dose, suggesting a threshold for the performance effects of 

bupropion. 

Catecholamine precursors do not appear to improve exercise performance as 

consistently as reuptake inhibitors. In agreement with previous studies, the dopamine 

precursor L-DOPA did not affect exercise performance in warm conditions in Chapter 5. 

In Chapter 6 the effect of the atypical antidepressant nutritional supplement S-

adenosylmethionine was investigated for its role in the synthesis of dopamine and 

noradrenaline. S-adenosylmethionine appeared to negatively influence cognitive 

function, increased skin temperature and circulating prolactin concentrations, but no 

effects on exercise performance were observed.  

Keywords: central nervous system, heat strain, central fatigue, dopamine, 

noradrenaline, serotonin.  
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1.1 - Central Versus Peripheral Fatigue 

Fatigue during exercise has been defined as “the inability to maintain the required or 

expected power output that leads to a loss of performance in a given task” (Edwards, 

1981) and “any exercise-induced reduction in the ability to exert muscle force or 

power, regardless of whether or not the task can be sustained” (Bigland-Ritchie & 

Woods, 1984). In this sense, performance and fatigue are intrinsically related. 

Arguments for the aetiology of fatigue during exercise have been largely divided into 

two camps: peripheral and central fatigue. The dichotomy of peripheral and central 

fatigue during exercise was considered as early as 1891 by Augustus Waller, who 

suggested that the central component may act as a protective mechanism over 

peripheral fatigue. Peripheral fatigue is predominantly characterised by changes in 

muscle contractility as a result of changes to the contractile properties in the muscle 

itself. For example, this can be a caused by changes in substrate availability, 

accumulation of metabolites or changes in muscle temperature. Central fatigue 

refers to mechanisms within the brain which control muscle contractility via 

descending corticospinal motor pathways. Alessandro Mosso (1903) later concluded 

that “there exists only one kind of fatigue, namely, nervous fatigue; this is the 

preponderating phenomenon, and muscular fatigue is also at bottom an exhaustion 

of the nervous system” (p.243), while Francis Bainbridge elaborated by suggesting 

that muscular fatigue was superadded to nervous fatigue (1919). However, following 

the famous work of Archibald Hill (Hill & Lupton, 1923), a greater emphasis was 

subsequently placed on peripheral mechanisms. Research in this area developed 

significantly with the advent of analytical techniques such as the muscle biopsy 

during the 1960s. Bergström and co-workers (1967), demonstrated the importance of 

muscle glycogen stores for performance during prolonged exercise, further 

emphasising the importance of muscle metabolism in fatigue. However, in the early 

1980s, the central component of fatigue was re-established with the application of 

twitch interpolation (Grimby et al., 1981; Belanger & McComas, 1981) and 

transcranial magnetic stimulation (TMS)(Barker et al., 1985). Experiment using these 

techniques revealed that a difference of force produced in maximal voluntary 

contractions compared to the force elicited by a superimposed contraction gradually 

increased with fatigue. This suggested that a central component was limiting the 

voluntary contractions. In addition to contributing to peripheral fatigue, the 
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mechanisms for fatigue within the muscle are detected by afferent sensory neurons, 

which sense a broad range of factors including pH, temperature and accumulation of 

metabolites. These sensory neurons provide feedback to the CNS, which can 

modulate motor neurons and inhibitory interneurons, suggesting peripheral and 

central mechanisms interact to affect performance (Gandevia, 2001). The primary 

mechanisms in the onset of fatigue depend on the type of exercise and the 

environment in which it is being performed. Complex movements such as running or 

cycling are more difficult to analyse, particularly using imaging techniques or TMS, 

because of the constant movement and ergometers required. Recently, the first 

study using TMS during prolonged cycling found that cortical excitability does not 

increase, in contrast to isolated single-muscle exercise. The authors suggest that the 

greater number of challenges to homeostasis during prolonged cycling may 

contribute to intracortical inhibitory mechanisms (Sidhu et al., 2012). Similarly, there 

is evidence that prolonged exercise is modulated by a teleoanticipatory system, 

which influences pacing relative to feedback (St Clair Gibson et al., 2004, 2006; 

Noakes et al., 2005). Nonetheless, the degree to which central and peripheral 

mechanisms determine fatigue in prolonged exercise is still hotly debated 

(Shephard, 2009; Noakes, 2011a, 2011b). However, in warm conditions, this central 

component appears to be even especially pronounced (Nybo & Nielsen, 2001a; 

Nybo, 2008), as discussed below.  

 

1.2 - Prolonged Exercise in Warm Conditions 

Endurance exercise capacity is reduced in warm conditions. This effect has been 

demonstrated to be dependent on the rate of heat-gain, which becomes impaired as 

ambient temperature increases (Galloway & Maughan, 1997). The combination of 

basal metabolic rate, external work, environmental factors and the body’s ability to 

dissipate heat contribute to this process. The 5 main routes through which heat is 

lost from the body are conduction, convection, radiation, evaporation and respiration. 

As the skin to ambient temperature gradient narrows, sweating becomes the only 

effective mechanism for heat loss. Maximal heat loss via sweating occurs when 

sweat evaporates from the skin. Large amounts of energy are required to drive the 

phase change from liquid water to vapour. As a result, the transition of sweat into 
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water vapour removes considerable thermal energy from the surface of the skin. For 

the same reason, sweat that drips off the body or is wiped away is considerably less 

effective for heat loss (Havenith, 2005). Consequently, prolonged exercise 

performance in warm conditions is further impaired by increasing humidity (Maughan 

et al., 2012). This is due to increased water vapour saturation of the air which 

increases the competition between evaporation of water molecules from the skin and 

condensation of water molecules from the air onto the skin. However, because air 

can contain larger concentrations of moisture with increased temperature, the same 

percentage relative humidity of air at higher temperatures will contain a greater 

concentration of moisture.  

 

These significant challenges to thermoregulation and fluid balance are considered to 

be the primary causes of fatigue during prolonged exercise in warm conditions 

(Hargreaves, 2008; Nybo, 2008; Maughan, 2010). During exercise in warm 

conditions the narrow core-to-skin temperature gradient results in an increased 

demand of blood flow to the skin to facilitate heat loss. The water and electrolytes 

which form the majority of sweat are mobilised from intracellular fluid compartments 

to maintain blood volume (Nose et al., 1988). As exercise continues there is a 

progressive reduction in blood volume, due to the loss of fluid as sweat, resulting in a 

fall in cardiac output and a compromised muscle and skin oxygen and nutrient 

supply via blood flow (Gonzalez-Alonso et al., 2007). Reduced blood flow also 

diminishes the capacity for convective heat loss from muscle and body core to the 

surrounding environment (Crandall & González-Alonso, 2010). Muscle 

glycogenolysis (Febbraio et al., 1996) and glucose oxidation appear to increase with 

ambient temperature, but fatigue during prolonged sub-maximal exercise in warm 

conditions occurs long before muscle glycogen depletion (Parkin et al., 1999; 

Febbraio, 2000). A critical core temperature (~39.5°C) was proposed as the 

determining mechanism for fatigue (Nielsen et al., 1993). Similarly, initial core 

temperature and rate of increase of core temperature appear to be determining 

factors for the onset of fatigue and volitional exhaustion during prolonged exercise 

(González-Alonso et al., 1999). Core temperature was also demonstrated to 

correlate more strongly to the reduction force of maximal voluntary contraction than 

muscle temperature (Thomas et al., 2006). Skin temperature has recently been 
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shown to be a determining factor as changes in cutaneous blood flow contribute to 

cardiovascular strain by requiring a higher cardiac output to circulate blood through 

the skin (Cheuvront et al., 2010). This drive to dissipate heat through the skin, paired 

with fluid loss, has been considered to be more important to the onset of fatigue than 

an elevated core temperature alone (Sawka et al., 2012). This results in increased 

relative exercise intensity at a given workload as VO2max decreases and 

cardiovascular strain increases.  

 

Hyperthermia has been found to impair maximal muscle activation, alter brain activity 

and increase perceived exertion (Nybo & Nielsen, 2001b). This is accompanied by 

reduced middle cerebral artery blood velocity (Nybo & Nielsen, 2001c), though this 

was later demonstrated not to be the cause of the changes in brain activity or fatigue 

(Rasmussen et al., 2004). These physiological responses have been implicated in 

the fatigue process during exercise in the heat via mechanisms residing within the 

CNS (Nybo, 2008). There is some evidence that central fatigue may be due to 

dysfunction in metabolic and structural function, which could ultimately lead to 

catastrophic failure. A general decrease of glucose and oxygen along with increased 

heat storage in the brain may result in general disruption of normative function (Nybo 

& Secher, 2004). Nybo and co-workers (2005) also found an increased uptake and 

retention of ammonia in the brain during prolonged exercise. Ammonia is neurotoxic, 

and can only be detoxified by conversion to glutamine (Albrecht & Norenberg, 2006). 

Nybo and co-workers (2005) suggest that this process may affect glutamate 

metabolism and subsequently both glutamatergic and GABAergic 

neurotransmission. In addition, temperature determines both the integrity and fluidity 

of cell membranes in general (Blicher et al., 2009). This is particularly significant to 

brain cells, which are especially sensitive to changes in these membrane qualities. 

Depending on the degree of integrity lost detriment to signal transduction, impulse 

conduction, metabolism and homeostasis in general would occur, which could 

ultimately lead to significant cell damage, apoptosis and eventually oedema (Kiyatkin 

& Sharma, 2009). 
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Prolonged exercise in the heat has been found to increase serum S-100β 

concentrations (Watson, Shirreffs, & Maughan, 2005), a small calcium binding 

neurotrophic protein of 27 kiloDaltons  primarily expressed by astroglial and 

Schwann cells in the CNS. The significance of this is not certain, other than it 

suggests an increase in blood-brain barrier permeability (Kapural et al., 2002). This 

could result in serious metabolic disruptions of CNS homeostasis. If a 27 kiloDaltons 

protein can escape, then a number of ions and molecules of similar or smaller size 

may escape and/or enter the CNS and affect neurotransmission. In addition to 

neuroactive substances, other proteins of similar or smaller size, such as calcium 

binding parvalbumin (12 kiloDaltons), for example, may escape the CNS and have 

deleterious effects; calcium homeostasis is essential for almost all cell function 

(Clapham, 2007), but especially so for the CNS (Heizmann, 1993; Clapham, 2007). 

Interestingly, exercise has been found to increase expression of parvalbumin in the 

hippocampus in developing male Wistar rats (da Silva et al., 2010). Despite the 

apparent changes in blood-brain barrier permeability, using magnetic resonance 

imaging (MRI), Watson and co-workers (Watson et al., 2010) found that although 

exercised-induced hyperthermia and dehydration resulted in shrinking of cerebral 

ventricles and cerebrospinal fluid  volume, but no significant changes in brain volume 

was apparent.  

 

An argument against the catastrophic models of fatigue are that even in conditions 

most conducive to catastrophic failure it is rarely observed, suggesting a protective 

mechanism terminates exercise before this can happen (Noakes et al., 2005). There 

is evidence to suggest a teleoanticipatory algorithm within the brain predicts 

expected outcome of performance relative to sensory and emotional feedback and 

adjusts power output and pacing with respect to this feedback (St Clair Gibson et al., 

2006). It is worth considering that pacing is, in part, determined by expectation based 

on previous experience. This suggests that the teleoanticipatory pacing mechanism 

and the changes to performance incurred by this mechanism might reflect a learned 

limit of expectation for performance rather than an unconscious instinct or survival 

reflex. However, as expectation and subjective experience are inherently dependent 

on learned experience, this must be viewed as another facet to central fatigue. 

Furthermore, except for in the rare cases of catastrophic failure or sudden 
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unconsciousness, the decision to stop exercising is a conscious one (Kayser, 2003). 

Nonetheless, subconscious and unconscious processes will contribute to this 

decision and appear to directly modulate performance as well. For example, the rate 

of heat storage has been found to modulate the power output in relation to a fixed 

rating of perceived exertion (RPE)(Tucker et al., 2006) further demonstrating the role 

of centrally mediated mechanisms of fatigue during prolonged exercise in warm 

conditions. Changes to the central neurotransmission which underpin the 

teleoanticipatory system would also alter its function. Though the cerebral 

mechanisms for the onset of fatigue are not fully understood, there have been many 

studies attempting to manipulate fatigue by altering CNS function. While those 

attempting to alter fatigue via manipulation of serotonin have yielded conflicting 

results (Meeusen et al., 2006b), pharmacological manipulation of central 

catecholamines has produced more consistent changes in the onset of fatigue and 

exercise performance in warm conditions (Roelands & Meeusen, 2010).  

 

1.3 - The Serotonin Hypothesis of Fatigue 

One of the first neurobiological theories for this increased sense of fatigue during 

exercise was proposed to be related to changes in brain 5-hydroxytryptophan 

(serotonin). The concept of serotonin-mediated fatigue was founded on the 

association of 5HT to feelings of drowsiness and in decreasing arousal in the sleep-

wake cycle. The basis for serotonin-mediated fatigue during prolonged exercise was 

largely due to the work of Chaouloff and co-workers which reported increased 

serotonin levels in rats during prolonged exercise (Chaouloff et al., 1985, 1986b, 

1987). They also demonstrated that provision of free tryptophan, the amino acid 

precursor for serotonin synthesis, increased this response (Chaouloff et al., 1986a). 

Soon after, Newsholme and co-workers (1987) proposed a widely cited theory linking 

changes in peripheral substrate availability and mobilisation of free-fatty acids to 

changes in neurochemistry. This hypothesis suggested that prolonged exercise 

increases plasma fatty acid concentrations, which liberate tryptophan from albumin, 

resulting in an increased uptake of tryptophan by the large neutral amino acid 

(LNAA) transporter across the blood-brain barrier. As tryptophan hydroxylase is not 

saturated under normal physiological conditions, increased delivery of tryptophan 
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would result in an elevation in brain serotonin synthesis and release (Ruddick et al., 

2006). However, the ratio of free tryptophan to albumin bound tryptophan may be of 

little importance (Pardridge, 1983), because the exchangeable tryptophan in humans 

may approximate total plasma tryptophan. Pardridge (1983) explains that this is, in 

part, due to the fact that the tryptophan-albumin complex dissociates and re-

associates many times during transit through brain capillary. As the branched-chain 

amino acids (BCAAs) compete for binding of the LNAA transporter, Blomstrand and 

co-workers (1991) suggested that supplementation with BCAA may limit the delivery 

of tryptophan to the CNS and attenuate serotonin production during exercise. They 

conducted a study in which BCAAs were administered before two long distance 

races, reporting an improvement in exercise performance in a group of slower 

runners.  

 

To substantiate the serotonin hypothesis several strategies have been employed. In 

rats, administration of serotonin precursors resulted in an enhanced increase of 

serotonin in response to prolonged exercise (Meeusen et al., 1996).Gomez-Merino 

and co-workers administered valine in rats and found that it reduced the exercise-

induced increase in serotonin levels in the hippocampus by reducing uptake of 

tryptophan (Gomez-Merino et al., 2001).Yamamoto & Newsholme (2000a) used a 

LNAA transporter blocker to prevent tryptophan uptake and subsequent serotonin 

synthesis, which prolonged exercise in rats. Subsequent human studies, however, 

have failed to support an effect of BCAA administration on central fatigue (Meeusen 

et al., 2006a). Mittleman and co-workers (1998) administered BCAAs during low-

intensity cycling in a warm environment and found a significant increase in time to 

exhaustion. However, subsequent studies have been unable to produce similar 

results (Cheuvront et al., 2004; Watson et al., 2004). It is worth noting that the 

protocol employed by Mittleman and co-workers (1998) did not induce a state of 

hyperthermia (core temperatures at fatigue of 37.3-37.7°C), due to the very low 

exercise intensity (40% VO2max). To this day only two studies have reported an 

ergogenic effect of BCAAs on prolonged exercise performance (Blomstrand et al., 

1991; Mittleman et al., 1998).  
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In addition to the serotonin hypothesis, Bailey and co-workers observed that 

dopamine  tissue content decreased at fatigue, while serotonin remained high 

(Bailey et al., 1993) leading to the theory that the ratio of serotonin to dopamine was 

the determining factor in fatigue (Davis & Bailey, 1997). A recent exercise study in 

warm conditions by Hobson and co-workers (2012) administered a tryptophan-free 

amino acid mixture, in order to reduce circulating tryptophan, and consequently 

serotonin synthesis. Despite a marked decrease in circulating serotonin, no changes 

in performance were observed. Tyrosine is an amino acid precursor to dopamine 

and noradrenaline synthesis and is also blocked by BCAA for uptake at the LNAA 

transporter. Because tryptophan depletion bypasses the problem of concomitantly 

reduced tyrosine uptake by the LNAA transporter this study provides further 

evidence that neither circulating tryptophan nor the ratio of serotonin/dopamine are 

particularly important in the genesis of central fatigue. A similar lack of convincing 

evidence has been found using pharmacological manipulation of serotonin in human 

studies. Wilson and Maughan (1992) tested the serotonin hypothesis in humans 

using the serotonin reuptake inhibitor paroxetine and found that it significantly 

decreased cycling time to exhaustion. This led to several follow-up studies with 

serotonin reuptake inhibitors, serotonin agonists and antagonists which failed to 

support those initial findings (see Meeusen et al., 2006b for review). Eventually, 

Newsholme and Blomstrand (2006) conceded that central fatigue is likely more 

complex than the serotonin hypothesis.  

 

To account for this variability in results, there are many factors to consider. Firstly, 

rat exercise studies should be regarded with caution as footshock, a consequence of 

the electric shock grids used at the rear of the treadmill in many of these studies to 

encourage the rat to perform for as long as possible, will confound the significance of 

the changes in monoamine levels throughout the brain (Dishman et al., 1997). 

Similarly, inescapable/uncontrollable stress activates the brain and alters 

monoamine levels differently than controllable stress (Weiss et al., 1981).  The 

increased level of serotonin in certain parts in the brain could be affected by several 

things, including acute stress, which increases circulating glucocorticoids, increases 

tryptophan hydroxylase (TPH) activity in a dose related manner (Clark & Russo, 

1997). Furthermore, the raphe nuclei, the source of most serotonergic projections in 
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the brain, are located in the brainstem. These neurons have been implicated with 

regulation of thermogenesis (Cao & Morrison, 2005) and stress induced cutaneous 

vasomotor tone (Blessing, 2005). serotonergic activity in the anterior 

hypothalamus/preoptic area has been implicated with stress responses including 

tachycardia and increased blood pressure (Szabó, Butz, & Alper, 1998). The 

increase of serotonin found at fatigue in the rat studies (Chaouloff et al., 1986b; 

Blomstrand et al., 1989; Bailey et al., 1993) could therefore be a result of fatiguing 

processes, rather than being the cause of fatigue. Furthermore, serotonin is 

considered to play an important role in stimulating locomotion, which would likely 

further contribute to observed changes in serotonin concentrations (Takahashiet al., 

2000; Vanderwolf et al., 1997). Finally, many of these results were obtained from 

brain tissue homogenate, rather than in-vivo microdialysis, and dynamic changes 

over time were not observed (Meeusen et al., 2001).  

 

While manipulation of central serotonin in humans has had conflicting results, 

pharmacological manipulation of catecholamines, particularly with reuptake 

inhibitors, has seen more consistent success (Roelands & Meeusen, 2010). 

Chaouloff and co-workers (1987) observed a decrease in serotonin synthesis during 

treadmill exercise after administration of amphetamine in trained rats, which acts via 

primarily catecholaminergic effects. Bailey and co-workers observed that a serotonin 

agonist decreased brain dopamine during prolonged exercise (Bailey et al., 1993) 

and led to the consideration that the ratio of serotonin to dopamine was the 

determining factor (Davis & Bailey, 1997). However, for the reasons stated above 

and the lack of consistent results in studies using nutritional or pharmacological 

manipulation of central serotonin neurotransmission (2010), the role of serotonin in 

fatigue appears to be less important than central catecholamines and will no longer 

be considered in great detail . 
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1.4 - Synthesis and Metabolism of Catecholamines 

Dopamine was originally thought only to be the precursor to noradrenaline until it 

was demonstrated to be a neurotransmitter in its own right by Nobel Prize laureate 

Arvid Carlsson in 1957. This quickly led Carlsson to establish the role of dopamine in 

Parkinson’s disease and subsequently in motor function. This became the focus of 

dopamine related research and the understanding of dopamine’s function in the 

brain became defined by this research (Schallert et al., 2009).Dopamine was 

originally associated with movement and then became associated with reward 

(Tobler, 2011), but it is now recognised that dopamine is also highly involved with 

learning, motivation, emotion, affect (Salamone et al., 2007; Wise, 2004) and the 

attribution of value or salience to sensory stimuli (Tobler, 2011).  The role of 

dopamine in motor function thus became a fundamental theme for research in 

cerebral control of exercise. This, combined with the observations by the exercise 

studies in rats mentioned in the previous section (Gerald, 1978; Chaouloff et al., 

1987; Bailey et al., 1993) are perhaps why noradrenaline has received comparatively 

little attention, despite being closely tied with dopamine function, as described below. 

 

Dopamine is synthesised from the amino acid L-tyrosine, which is converted by the 

enzyme tyrosine hydroxylase (TH) and the necessary cofactor tetrahydrobiopterin, to 

L-3,4-dihydroxyphenylalanine (L-DOPA) by the addition of a hydroxyl group. The 

carboxyl group is removed from L-DOPA by the enzyme aromatic L-amino acid 

decarboxylase (AAAD) to form dopamine (see figure 1.1). L-tyrosine can be acquired 

in the diet or synthesised from the essential amino acid phenylalanine, which cannot 

be synthesised by the body. Under normal physiologic conditions, dopamine 

synthesis is considered to be rate limited by the availability of tyrosine and 

tetrahydrobiopterin for hydroxylation by TH. Recent evidence suggests that the 

activity of AAAD is more important than originally thought (Duchemin et al., 2000; 

Duchemin et al., 2010), specifically during rapid short-term synthesis. 
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After decarboxylation of L-DOPA to dopamine, noradrenaline is formed from 

dopamine by dopamine-β-hydroxylase with the addition of a hydroxyl group at the 

second carbon (beta) from the amino group. Catecholamines are inactivated and 

metabolised by monoamine oxidase (MAO) and catechol-O-metyhltransferase 

(COMT). MAO uses oxygen, while COMT transfers a methyl group from the cofactor 

S-adenosylmethionine (SAM). Through other metabolic pathways SAM is also tied to 

monoamine synthesis, as described in section 1.8. Both enzymes are expressed 

within neurons and astroglia as well. This allows for degradation of catecholamines 

within neurons, in the synapse and extrasynaptic space as well, but occurs primarily 

within the neurons that synthesize them (Eisenhofer et al., 2004). Interestingly, 

human prefrontal cortex (PFC) has a high concentration of COMT mRNA, where 

membrane bound COMT can be expressed on the exterior surface of the cell 

membrane postsynaptically (Matsumoto et al., 2003).  

 

Figure 1.1 Cofactors and by-products (Blue): BH4 = Tetrahydrobiopterin; BH2 = Dihydrobiopterin; 

P5P=Pyridoxal-5-phosphate; DHA = Dehydroascorbate; Enzymes (Yellow) TH = Tyrosine 

hydroxylase; AADC = Aromatic L-amino acid Decarboxylase; DβH = dopamine-β-hydroxylase.  
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1.5 - Dopamine Receptors, Adrenoceptors and Signalling 

Dopamine receptors and adrenoceptors belong to a large family of transmembrane 

intracellular signalling proteins called G protein-coupled receptors. G protein-coupled 

receptors stimulate signal transduction through metabotropic instead of ionotropic 

mechanisms. This means that instead of directly opening an ion-channel, which 

rapidly changes the polarity of the neuron membrane, metabotropic receptors affect 

intracellular signalling via complex cascades (See figure 1.2). This in turn influences 

cell metabolism, but generally has a less immediate effect on extracellular signalling, 

including neurotransmitter release into the synapse. However, D1-like receptors 

have also been found to couple with glutamic NMDA receptors, in which case can 

directly stimulate calcium flux into the cell, resulting in a more rapid signalling 

process (Scott & Aperia, 2009).Dopamine receptors have been categorised into two 

separate classes based on their excitatory or inhibitory effects via alteration adenylyl 

cyclase activity and cyclic adenosine monophosphate (cAMP) production. The D1-

like receptors, which consist of D1 and D5, are stimulating G protein (Gs and Golf) -

coupled receptors and stimulate cAMP production by increasing adenylyl cyclase  

activity (Herv et al., 1993). D2-like receptor family, which include D2, D3 and D4, are 

inhibitory G protein (Gi and Go)-coupled receptors and decrease cAMP production by 

inhibiting adenylyl cyclase. While D1-like receptors are relatively well understood, 

D2-like receptors are not. This is due to the existence of various isoforms that differ 

at one of the intracellular functional groups (Jaber et al., 1997; Missale et al., 1998). 
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1.6 - Receptor Subtype and Distribution 

Table 1.1 below shows the relative distribution of the 5 subtypes of dopamine 

receptors in the cerebral cortex, hippocampus, amygdala, striatum, nucleus 

accumbens (NAc), ventral tegmental area (VTA), substantia nigra and the 

hypothalamus. These are several key areas of the brain for controlling exercise 

related behaviours.  

 

Table 1.1 Dopamine receptor and transporter (DAT) expression in 6 areas of the human brain 

(Ciliax et al., 1999; Rankin et al., 2009). Indicated levels of expression are relative expression within 

receptor and transporter groups. +++ indicates very high, ++ indicates high, + indicates significant and 

– indicates not detected. 

 

D1 D2 D3 D4 D5 DAT 

Cortex ++ + + +++ + + 

Hippocampus + + +++ ++ + + 

Amygdala + + +++ ++ - ++ 

Striatum +++ +++ + + ++ +++ 

Nucleus Accumbens +++ +++ +++ + + ++ 

Ventral Tegmental Area + ++ + + - + 

Substantia Nigra ++ ++ ++ + +++ ++ 

Hypothalamus + + + ++ ++ + 

 

The cerebral cortex is involved in relating to the outside world, via primary sensory 

areas, the primary motor area, association areas and limbic areas. The amygdala 

and hippocampus are part of the limbic system, which is involved in memory, 

emotion and motivation. The striatum and NAc are involved in reward, motor control, 

motivation and initiation of behaviour. These are key brain areas within the 

mesocorticolimbic system which is involved in motivation, reward, and learning, 

dysfunction of which is primarily implicated with impulse control disorders and drug 

addiction (Wise, 2004). The VTA and the substantia nigra are the main sources of 

projecting dopaminergic neurons in the brain. The VTA is the source of dopamine for 

the mesocorticolimbic system. The substantia nigra is the source of dopamine for the 
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dorsal striatum, is primarily involved in controlling motor behaviour, dysfunction of 

which is considered the main cause of Parkinson’s disease. Finally, the 

hypothalamus is primarily associated with homeostatic control and neuroendocrine 

secretory function, however, it is also involved in drives and emotional behaviours 

(Nolte, 2009). The anterior and preoptic area of the hypothalamus in particular 

appear to be important for thermoregulation during exercise (Hasegawa et al., 2005), 

with increases in both dopamine and noradrenaline release in the preoptic area 

positively correlated with core temperature (Hasegawa et al., 2011). The VTA 

innervated areas are in turn modulated by noradrenaline (see figure 1.2), particularly 

in the PFC, regulating effort-related function controlling motivation outcomes and 

possibly linking the intensity of input saliency to effort intensity (Puglisi-Allegra & 

Ventura, 2012). 

 

Figure 1.2 Neuroanatomical map, with axes of orientation. Light grey demarks regions of interest. 

Blue arrows represent dopaminergic projections, yellow arrows represent noradrenergic projections. 
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In total 9 different adrenoceptor subtypes have been identified, though their 

categorisation and distribution has not been as well defined as with dopamine 

receptors. The α2 and β adrenoceptors are Gi and Gs, respectively. The α1 

adrenoceptors are Gq, which increases phospholipase C activity, which increases 

cytosolic calcium release. Table 1.2 shows the relative distribution of the 7 subtypes 

of noradrenaline receptors in the cerebral cortex, hippocampus, striatum, 

hypothalamus, thalamus, locus coeruleus and nucleus tractus solitarius (NTS). The 

thalamus is important for information transfer to and from peripheral afferents to the 

cortex via the spinal cord and is modulated by the basal ganglia and noradrenergic 

nuclei to control motor pattern generation and arousal, respectively. The locus 

coeruleus and NTS are particularly important noradrenergic nuclei located in the 

brain stem and modulate the stress response, arousal and interface with the 

mesocorticolimbic system to modulate behaviour and motor control.  

 

Table 1.2 Noradrenaline receptor and transporter (NAT) distribution in 7 areas of the rat brain 

(Nicholas et al., 1996; Schroeter et al., 2000). Indicated levels of expression are relative within 

receptor and transporter groups. +++ indicates very high, ++ indicates high, + indicates significant and 

– indicates not detected. *Unfortunately, the understanding of human adrenoceptor distribution within 

human brain is not as well categorised as dopamine receptors. While interspecies variation of 

receptor and transporter expression is noteworthy, the afferent targets are very similar and the 

comparison is suitable as a general reference.  

  α1b α1d α2a α2b α2c β1 β2 NAT 

Cortex +++ ++ ++ - ++ ++ ++ + 

Hippocampus - +++ + - +++ + + ++ 

Striatum + - - - +++ - - + 

Hypothalamus + - ++ - + - + ++ 

Thalamus +++ + + + + + + ++ 

Locus Coeruleus - - +++ - - - - +++ 

Nucleus Tractus Solitarius - - ++ - - - - ++ 
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The control of synthesis and release of catecholamines are determined by cell 

signalling mechanisms that can also be triggered by the catecholamines themselves 

as inhibitory feedback. TH and AAAD activity is regulated by the number of units 

expressed in a cell and the activity of each unit. TH activity is increased through the 

transfer of phosphate groups (phosphorylation) by protein kinase A, protein kinase C 

and calmodulin-dependent protein kinase II. Protein kinase A and protein kinase C 

are in turn regulated by cAMP and cytosolic calcium levels (Nestler et al., 2008). 

AAAD is also activated by cAMP (Duchemin et al., 2000). Removal of phosphate 

groups (dephosphorylation) of TH by protein phosphatase 2A decreases activity. 

Neurotransmitter synthesis and release in dopaminergic and noradrenergic neurons 

can thus be regulated via D2-like and α2 receptors, respectively (see figure 1.3).  

 

Figure 1.3 Simplified overview of a few key differences between G-protein receptor signalling. Gq 

receptors represent α adrenergic receptors while Gs/olf receptors represent D1 dopamine receptors 

and β adrenoceptors. Gi/o receptors represent D2 and α2 adrenoceptors. Red pluses and minuses 

indicate activation and deactivation respectively. Pathways shown where substantial literature 

supports; Lack of pathways and “?” indicate lack of uniformity in the research. PLC = Phospholipase 

C; DAG = Diacylglycerol; IP3 = inositol triphosphate; AC = Adenylyl Cyclase; cAMP = Cyclic 

adenosine monophosphate; PKA = Protein kinase A; PKC = Protein Kinase C; CaM-KII = 

Ca2+/calmodulin-dependent protein kinases II. DARPP-32 = dopamine and cAMP-related 

phosphoprotein of 32 kiloDaltons; PP1 = Protein phosphatase 1. 
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D1- and D2-like receptors increase and decrease cytosolic calcium levels, 

respectively, which contributes to the modulation of signalling cascades and cell 

metabolism, but also directly affects membrane excitability. Increased cytosolic 

calcium concentrations increases the rapidity with which the membrane may 

repolarise and decreases the refractory period before another action potential may 

be triggered (see figure 1.4).   

 

Figure 1.4 Schematic of an action potential. 

 

In a given neural circuit, catecholamines may increase or decrease activity. As an 

example, excitatory neurotransmission could be increased via D1-like receptors in a 

glutamatergic neuron or D2-like receptors in a GABAergic neuron to decrease 

inhibitory neurotransmission. Conversely, dopamine can decrease excitatory 

neurotransmission in a given circuit by acting at D2-like receptors in glutamatergic 

neurons, or at D1-like receptors at GABAergic neurons (See figure 1.5). Of course, 

this is a gross simplification, but demonstrates the way in which catecholamines can 

modulate neurotransmission differently, dependent on the target receptors and the 

neurons on which they are expressed. An example of this can be found in the 

striatum, the target of the most dopaminergic afferents in the brain. In the striatum 

D1 receptors increase medium-spiny neuron reactivity to glutamatergic signalling 

while D2 decrease medium-spiny neuron reactivity to glutamate (Surmeier et al., 

2007).  
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Figure 1.5 A simplified circuit to depict different ways dopamine signalling can influence a circuit. 

Red represents inhibitory signalling and green represents excitatory signalling. The circuit on the left 

depicts how inhibition of a GABAergic neuron via stimulation of D2-like receptors leads to the 

disinhibition of the top left dopaminergic neuron and excitation of the glutamatergic neuron. The circuit 

on the right depicts how excitation of a GABAergic neuron via D1-like receptors inhibits the top left 

dopaminergic neuron and leads to disinhibition of the glutamatergic neuron. 

 

Catecholamines can also elicit biphasic responses via concentration-dependent 

activation of a combination of inhibitory and stimulatory receptors, which are 

differentially activated due to their expression and their varying affinities for their 

respective neurotransmitter. For example, Tuberoinfundibular dopaminergic (TIDA) 

neurons in the hypothalamus exert a biphasic control of prolactin secretion from the 

pituitary via changes in tonic vs. phasic firing modes. Prolactin feedback at the TIDA 

neurons shifts firing to phasic to increase dopaminergic inhibition of prolactin 

secretion (Lyons et al., 2012), while thyrotropin-stimulating hormone shifts TIDA 

neurons to tonic firing, and potentiates the prolactin response (Lyons et al., 2010). In 

the PFC both dopamine and noradrenaline exhibit an inverted-U effect on cognitive 

function (Arnsten, 2007). Concentration-dependent effects are sometimes dependent 

on the distance from the site of release at which receptors are expressed, which in 

some cases can be relatively large. In these circumstances monoamines act in a 

paracrine or extrasynaptic manner to enable volume transmission, a process 

regulated by release and controlled by reuptake by their respective transporters 

(Fuxe et al., 2010a).Dopamine receptors and transporters are primarily expressed 

extrasynaptically, (Missale et al., 1998), as are noradrenaline receptors and 
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transporters (Schroeter et al., 2000). Because diffusion occurs much faster than 

reuptake, release largely overwhelms uptake and the combination of tonic and 

phasic release determine baseline extracellular neurotransmitter levels (Rice & 

Cragg, 2008). 

 

1.7 - Tonic and Phasic Signalling 

Tonic and phasic signalling are differentiated by the number of action potentials 

within a given period of time. Tonic signalling is characterised by sustained frequent 

action potentials, which maintain background levels of neurotransmitter, while phasic 

signalling is a transient bursting of action potentials in quick succession (see figure 

1.6), which are usually coupled with salient stimuli such as aversive or rewarding 

cues.  

 

Figure 1.6 Train of action potentials in tonic (A) and phasic (B) firing. 

 

These yield comparatively small and large neurotransmitter quantal release, 

respectively. In the striatum, ventral and dorsal baseline dopamine levels are 

modulated by tonic activity from the VTA and substantia nigra pars compacta, 

respectively, and the ventral striatum is particularly sensitive to changes in tonic 

firing from the VTA due to a greater range in extracellular dopamine concentrations 

(Zhang et al., 2009). Supporting this, recent evidence suggests that in the NAc, 

located in the ventral striatum, dopamine reuptake inhibition increased tonic 

stimulation of low-affinity post-synaptic receptors and results in desensitisation to 

phasic dopamine signals (Dreyer & Hounsgaard, 2013). Low levels of baseline 

dopamine levels in the NAc shell are associated with decreased motivation and 

exertion of effort for food, whilst reward-seeking remains intact in rats (Salamone et 



21 
 

al., 2003). Tonic dopamine signals in the NAc modulate baseline extracellular 

dopamine and set an ‘average reward’ of current behaviour, which then determines 

the likelihood to exert effort and vigorous responding to reward cues (Niv et al., 

2007). As a result, this relationship between tonic and phasic dopamine signals in 

the NAc affects behaviour (see figure 1.7). In the cerebral cortex, tonic noradrenaline 

acts to modulate the level of arousal, while phasic noradrenaline acts to entrain 

cortical cross-talk toward a specific stimulus (Aston-Jones & Cohen, 2005). 

DAT/NAT blockade mimics enhanced tonic signalling because the tonic stimulation 

of receptors is determined by baseline concentrations, which become enhanced by 

reuptake inhibition, increasing the accumulation of extrasynaptic catecholamines 

from both phasic and tonic release.  

 

Figure 1.7 An example of the relationship between tonic and phasic firing in the NAc. A represents 

a normal balance between tonic and phasic dopamine, whereas B represents a decreased tonic 

dopamine resulting in exaggerated phasic dopamine signalling, which is characterised by impulsive 

behaviour. C represents excessive tonic dopamine, which masks phasic dopamine spikes and is 

observed in pain and stress syndromes (Leknes & Tracey, 2008). 

 

DAT is most heavily expressed in the midbrain and basal ganglia (Hall et al., 1999). 

Here it acts to modulate dopaminergic volume transmission and extrasynaptic 

signalling, which the results from extracellular concentrations of dopamine spill-over 

to extrasynaptic receptors when concentrations are elevated beyond the capacity for 

DAT during phasic signalling (Fuxe et al., 2010). In the midbrain and basal ganglia, 

tonic signalling delivers smaller, but more constant, dopamine release than phasic 

signalling and preferentially activates D2 receptors, which have a higher affinity for 

dopamine than D1 receptors, which only become activated by large phasic 

dopamine releases. This appears to be particularly important in the ventral striatum, 

where a broad range of firing frequencies is present, unlike the dorsal striatum where 

dopamine release is not linearly dependent on firing activity (Rice & Cragg, 2008). 

The dorsolateral striatum, which receives dopaminergic projections from the 

substantia nigra pars compacta, has a lower phasic-to-tonic ratio than VTA 
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innervated areas. This includes the ventral striatum, PFC and amygdala where the 

contrast between the tonic and phasic dopamine signals modulates attention and 

behavioural selection (Zhang et al., 2009). Human NAT is most heavily expressed in 

the brainstem, (particularly at the locus coeruleus), the thalamus and cortex (Schou 

et al., 2005; Takano et al., 2008). NAT in the locus coeruleus has been considered a 

key target for the treatment of depression (Klimek et al., 1997), while in the cortex it 

is implicated in attention deficit hyperactivity disorder (ADHD)(Pliszka, 2005). 

Attention and behavioural control are also modulated by tonic and phasic 

noradrenaline signals from the locus coeruleus to the cerebral cortex (Aston-Jones & 

Cohen, 2005). Together, the dopaminergic signals from the VTA and the 

noradrenergic signals from the locus coeruleus coordinate to control all motivated 

behaviour and learning (Puglisi-Allegra & Ventura, 2012). These systems are directly 

modulated by bupropion and methylphenidate, which have had relatively consistent 

results in improving exercise performance in warm conditions as described in section 

1.9. Furthermore, these systems directly control the behavioural response to stress. 

Therefore, the performance enhancing effects of these drugs may be due to 

alterations to the stress response within the CNS. 

 

1.8 - Central Catecholamine Precursors and Prolonged Exercise 

Attempts to manipulate central fatigue using precursors for catecholamine synthesis 

have been conflicting. Several studies during prolonged military operational drills 

found that supplementation with tyrosine reduced fatigue and stress while improving 

cognitive and motor performance in soldiers (Salter, 1989; Owasoyo et al., 1992; 

Smith et al., 2003). However, several laboratory exercise studies in humans have 

found no effect of tyrosine supplementation (Strüder et al., 1998; Chinevere et al., 

2002). The apparent disparity in effectiveness might be explained by the type of 

stress endured by soldiers was more prolonged and is perhaps incomparable to that 

experienced in laboratory studies due to differences in motivation and psychological 

stress. L-DOPA is one metabolic step closer to dopamine than tyrosine (see figure 

1.1). L-DOPA has been used to treat motor control disorders in Parkinson’s disease 

for over 40 years and is considered the “gold standard” treatment today (Nagatsu & 

Sawada, 2009). Clinically, L-DOPA is administered with an amino acid 
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decarboxylase (AADC) inhibitor that cannot readily cross the blood-brain barrier; this 

prevents decarboxylation of L-DOPA in the periphery, thereby reducing associated 

gastrointestinal distress and increasing the available L-DOPA to the brain. Tyrosine 

is not an effective treatment for Parkinson’s disease because a symptom of the 

disease is the significantly decreased expression of tyrosine hydroxylase in 

dopaminergic neurons (Javoy-Agid et al., 1990). Only one study to date has 

investigated the effects of L-DOPA administration in healthy participants on exercise 

performance and found no difference in time to exhaustion compared to placebo 

(Meeusen et al., 1997a). The lack of effect observed in the exercise studies above 

may also have been due to having been conducted in normal ambient temperatures. 

A recent study was conducted to examine whether warm conditions might provide a 

better environment to test this relationship and found that acute tyrosine 

administration before exercise did enhance performance (Tumilty et al., 2011). 

However, a follow-up study using the same conditions found no effect on 

performance (Watson et al., 2012).  

 

Catecholamine metabolism is also dependent on methyl-group donors and the one-

carbon cycle. As the primary methyl donor in human physiology, SAM plays a vast 

number of important roles in the body. SAM is directly involved in homoycsteine 

metabolism, the synthesis of creatine, metabolism of several neurotransmitters and 

the regulation of DNA, RNA. SAM is synthesised by the addition of ATP to 

methionine by SAM synthetase. The transfer of the methyl group yields s-

adenosylhomocysteine. S-adenosylhomocysteine hydrolase then removes 

adenosine from homocysteine (see figure 1.8 below). Chronically elevated 

homocysteine levels are associated with folate and B12 deficiencies as well as a 

number of disorders, including depression (Bottiglieri, 2005). SAM has been used to 

treat depression for over 60 years (Papakostas et al., 2003), osteoarthritis (Soeken 

et al., 2002) and is considered potentially useful for liver disorders (Purohit et al., 

2007). Via the transulfuration pathway SAM is involved in the synthesis of 

glutathione (Lu & Mato, 2008) and may effect on synthesis of glutamate and GABA 

as well. SAM is tightly co-dependent with folate and choline metabolism (Bottiglieri, 

2002; Zeisel & Blusztajn, 1994). These are necessary for synthesis of acetylcholine, 

betaine and cell membranes (Zeisel & Blusztajn, 1994). Folate contributes to methyl-
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group metabolism via methyltetrahydrofolate (MTHF), which can regenerate 

methionine via methylation of homocysteine and can therefore contribute to SAM 

synthesis. MTHF is also necessary for tetrahydrobiopterin synthesis, a cofactor for 

synthesis of nitric oxide, serotonin, dopamine and noradrenaline (Bottiglieri et al., 

1992; Stahl, 2007). It is thought to be through this pathway that SAM has been 

shown to improve mood (Fernstrom, 2000). Supporting this, folate deficiency is 

common in depression and has been associated with decreased cerebrospinal fluid 

SAM concentrations (Bottiglieri, 2002). The relationship of SAM to central 

catecholamine metabolism has also been characterised by the effects of L-DOPA 

treatment on SAM concentrations. In rats, brain SAM concentration decreases in 

response to L-DOPA infusions (Chalmers et al., 1971). In humans, L-DOPA 

treatment decreases cerebrospinal fluid SAM concentrations (Surtees & Hyland, 

1990). Similarly, patients receiving L-DOPA treatment for Parkinson’s disease, 

showed a decrease in plasma methionine and SAM, while homocysteine was 

elevated (Müller et al., 2001).  

 

While the effect of SAM supplementation on exercise has not been investigated, 

there have been a few exercise studies investigating related compounds such as 

homocysteine, choline, choline-containing phospholipids and betaine. In recreational 

athletes prolonged exercise has been found to increase blood homocysteine and 

decrease folate and B12 (Herrmann et al., 2003). In addition to increased plasma 

homocysteine, prolonged exercise decreases plasma choline levels. Following the 

Boston marathon have been found to be significantly lower than before the race in 

two studies by the same group (Conlay et al., 1986, 1992). Buchman, Jenden, & 

Roch (1999) investigated plasma free and phospholipid bound choline before, 

immediately after, and 2 days after a marathon in 23 experienced male and female 

marathon runners and found a significant decrease in both free and phospholipid 

bound choline immediately after the race and persisting decreased plasma 

phospholipid bound choline levels 2 days following the race.  
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Figure 1.8 A simplified metabolic map of various roles of SAM important to CNS function. 

NO=Nitric Oxide; BH4 = tetrahydrobiopterin; BH2 = Dihydrobiopterin; Tryp = Tryptophan; Tyr = 

Tyrosine; Adr= Adrenaline; THF = Tetrahydrofolate; 5-MTHF = 5-methyltetrahydrofolate; GSH = 

Glutathione; αKG = alpha-ketoglutarate; SAH = S-adenosylhomocysteine; Ach = Acetylcholine; 

GABA = gamma-aminobutyric acid; PtdEth = Phosphatidylethanolamine; PtdCh = 

Phosphatidylcholine; FFA = Free fatty acids; LysoPtdCh = Lysophosphatidylcholine; GPCh = 

Glycerophosphocholine; PhCh = Phosphocholine; CDP-Ch = Citydine diphosphate-choline 
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Phosphatidylethanolamine N-methyltransferase accepts the methyl- group from SAM 

and converts phosphatidylethanolamine to phosphatidylcholine. Membrane 

phosphatidylcholine is important for membrane physical properties and provides the 

bulk of cell choline stores (Li & Vance, 2008). Cell membrane phosphatidylcholine 

synthesis appears to also be regulated by mechanical strain in cell membranes. 

Cytidine 5’-triphosphate: phosphocholine cytidylyltransferase (CCT) activity is 

modulated by membrane curvature elastic strain (Attard et al., 2000). This occurs 

because CCT is translocated into the membrane to alleviate the elastic curvature 

strain, and this simultaneously activates CCT and thus increases its activity and 

production of phosphatidylcholine. This suggests that physical membrane strain 

during exercise may result in methylation of phosphatidylethanolamine to form 

phosphatidylcholine. Mechanical changes in cell membranes during exercise due to 

during muscle contraction and changes in osmotic pressure may induce increased 

muscle turnover of phosphatidylcholine. Two studies found that supplementation of 

lecithin, which is a mixture of phospholipids including phosphatidylcholine, was able 

to prevent the decline in plasma choline concentrations during prolonged exercise 

(von Allworden et al., 2000;Buchman et al., 2000). However, Jäger and co-workers 

(Jäger et al., 2007) point out in their review of phospholipid supplementation that 

these results should be regarded with caution as there can be great variability in 

marathon times due to variations in courses and environmental conditions. It should 

also be considered that these studies used acute dosing protocols, and because 

plasma choline is extensively metabolised for a number of different processes in 

almost every type of tissue, it is difficult to say what physiological effects it may 

produce, especially over such a small period of time. 

 

The ratio of membrane phospholipid methylation is also important to structural 

function and other methyl-group dependent reactions. This is demonstrated clearly in 

the liver, where deficiencies of phosphatidylcholine to phosphatidylethanolamine 

negatively affect folate and homocysteine metabolism (Zeisel & Blusztajn, 1994), 

supporting the notion that the increased plasma homocysteine and decreased 

plasma choline after prolonged exercise are correlated. Insufficient membrane 

phospholipid methylation disrupts lipid metabolism and lipoprotein export, as can be 

seen in both alcoholic and non-alcoholic steatohepatitis (Li & Vance, 2008). 
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Membrane integrity and fluidity are especially important for neuronal function and 

determine the function of membrane-bound proteins such as receptors and ion 

channels (Lenaz, 1987). This modulation of neuronal membrane fluidity by SAM has 

been observed in old rats, returning membrane fluidity and β-adrenoceptor 

expression in the striatum to juvenile values (Cimino et al., 1984). In human brains 

afflicted by Alzheimer’s, phosphatidylethanolamine  N-methyltransferase activity is 

depressed as well as total phosphatidylcholine in the frontal cortex (Guan et al., 

1999) and cerebrospinal fluid SAM concentrations are low (Bottiglieri et al., 1990; 

Linnebank et al., 2010). Membrane phosphatidylcholine is an important pool for 

acetylcholine synthesis. This is supported by evidence by Párducz, Kiss, and Joó 

(1976) who found that cholinergic sympathetic ganglion neurons lost significant 

membrane phosphatidylcholine in the presence of the choline uptake inhibitor 

hemicholinium during stimulation. Further supporting the connection between folate, 

choline, lipid metabolism, central acetylcholine, SAM and Alzheimer’s, two studies in 

mice have demonstrated the ability of SAM to restore acetylcholine function in folate 

deficient mice (Serra et al., 2008; Chan et al., 2008b). Due to this multifaceted 

relationship to cellular function and acetylcholine, SAM is being investigated as a 

treatment for Alzheimer’s (Chan et al., 2008a).  

 

In addition to roles of methyl group donors in neurotransmission, cell signalling and 

metabolism during exercise, they also have a volemic role. Betaine is formed by 

dehydrogenation of choline, and acts as a methyl-donor and osmolyte. Craig and co-

workers (2010) found that the betaine content of sweat in adolescent girls was 

almost 7 fold greater than in plasma, while choline was 7 fold greater in plasma than 

in sweat. This may explain the volemic, oxygen consumption and thermal strain 

differences observed in a study testing the effects of betaine supplementation on 

exercise performance during running in warm conditions (Armstrong et al., 2008). 

Even at doses of 100mg/kg body weight used by Schwahn and co-workers (2003), 

betaine was still found to be eliminated by metabolism rather than excretion, again 

indicating the importance of consideration for the metabolic versatility of these 

associated compounds when testing their effects on physiology. Central cholinergic 

function modulates motor learning and motor control, reward and motivation (Woolf 

& Butcher, 2011). Central cholinergic tone also influences proopiomelanocortin 
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derived hormones (Meister et al., 2006), and growth hormone (De Marinis et al., 

1997; de Vries et al., 2002). However, the efficacy of SAM in the treatment of 

depression and schizophrenia are attributed to the role SAM plays in catecholamine 

metabolism, as the connection between catecholamines and these disorders is well 

established. The decrease in plasma choline, loss of betaine through sweat and 

increase in homocysteine observed during prolonged exercise, may reflect a 

decreased pool of methyl-group donors. Depending on the magnitude of the effect, 

nutritional status and genetics of an individual, this detriment to methyl group 

metabolism could have significant ramifications for exercise performance. While 

choline and betaine represent a significant pool of methyl-group donors, only SAM is 

recognised for clinical effects on various central nervous disorders. The most 

significant of these effects appear to be mediated by catecholamine metabolism. 

This provides a possible link between decreases in methyl-group donors during 

prolonged exercise, which may subsequently affect catecholamine metabolism via 

SAM-dependent reactions. SAM supplementation may therefore attenuate these 

changes, or increase catecholamine synthesis and influence prolonged exercise 

performance. 

 

1.9 - Catecholamine Reuptake Inhibitors 

Pharmacological manipulations of central catecholamines with reuptake inhibitors 

have provided the most consistent changes to exercise performance, particularly in 

warm conditions. Piacentini and co-workers (2004) found no effect of bupropion, a 

combined dopamine/noradrenaline reuptake inhibitor on exercise performance in 

temperate conditions. In the studies by Watson or Roeland and co-workers (2005a; 

2008, respectively) neither bupropion nor methylphenidate (also a combined 

dopamine/noradrenaline reuptake inhibitor) enhanced time trial performance in 

temperate conditions, respectively, but did in warm conditions. However, in the study 

by Swart and co-workers (2009), an even smaller dose of methylphenidate (20mg 

vs. 8mg) improved duration and power-output during cycling exercise to exhaustion 

at a fixed RPE. Amphetamine has also been found to increase time to fatigue in 

humans in temperate conditions (Chandler & Blair, 1980). The apparent difference 

between these studies on exercise performance may be due to the influence of 
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pacing strategies in the time trial studies (Baron et al., 2011). A recent study found 

no effect for methylphenidate, but found a detrimental effect of reboxetine, a potent 

and selective noradrenaline reuptake inhibitor, on time trial, motor evoked potential 

and a psychomotor vigilance task (Klass et al., 2012). An earlier study using 

reboxetine in temperate conditions found no difference in time trial performance 

(Piacentini et al., 2002), while a study in both warm and temperate conditions found 

a negative effect in both conditions (Roelands et al., 2008a). The relative potencies 

and effects of these drugs will be described and discussed below. Thus far, three 

selective catecholamine reuptake inhibitors have been used in studies investigating 

prolonged exercise in warm conditions: bupropion, methylphenidate and reboxetine 

(Roelands & Meeusen, 2010). Many CNS stimulants originally thought to impart their 

effects primarily via dopamine have been found to have significant effects on 

noradrenaline. This includes those that have been found to benefit exercise 

performance in humans, including amphetamine (Brauer & De Wit, 1997; Rothman 

et al., 2001; Wachtel et al., 2002), bupropion (Dwoskin et al., 2006) and 

methylphenidate (Challman, T.D., and Lipsky, 2000). A recent PET imaging study in 

humans showed the effective dose to occupy 50% (ED 50) of NAT in the thalamus 

by methylphenidate (0.14mg/kg) is less than the ED 50 of methylphenidate for DAT 

in the striatum (0.25mg/kg)(Hannestad et al., 2010). The ED 50 value for DAT in this 

study was similar to that in previous research (Volkow, Wang, Fowler, & Ding, 2005). 

Unfortunately, there is a disparate lack of in-vivo verification for occupancy of the 

NAT in humans. This has been due to difficulties synthesising appropriately selective 

radioligands, however, recent developments with reboxetine analogues, such as 

(S,S)-[11C]methylreboxetine, promise to further elucidate the role of NAT in 

neuropharmacology (Kiyono et al., 2008). 

 

While the bupropion and methylphenidate have been demonstrated to improve 

exercise performance, reboxetine administration has produced negative effects, 

leading the authors to conclude that noradrenaline negatively influences exercise 

(Roelands et al., 2008a; Klass et al., 2012). While in those studies this effect is 

attributed to central effects of the drug, it deserves some mention that reboxetine has 

significant peripheral activity, which complicates the matter of qualifying the central 

effects. Boschmann and co-workers (2002) conducted a study of the effects of 
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reboxetine in combination with isoproterenol, a β-adrenergic agonist with negligible 

ability to cross the blood-brain barrier, to investigate the involvement of NAT in 

autonomic control of metabolism. This study found that reboxetine augmented 

responses to isoproterenol for heart rate, systolic blood pressure, serum glucose (in 

male participants), glycerol, and free fatty acids. Reboxetine also increased the 

respiratory quotient in favour of glucose over fat oxidation and interfered with 

adipocyte metabolism clearly demonstrating a peripheral effect of the potent NAT 

blockade by reboxetine. Another study found in healthy normal volunteers an acute 

dose of reboxetine induced a physiological state comparable to orthostatic 

intolerance which is characterised by symptoms of light-headedness, fatigue, 

nausea, orthostatic tachycardia and exercise intolerance (Schroeder et al., 2002). 

While in both papers it is acknowledged that reboxetine’s physiological effects are 

likely to arise from both the peripheral and central nervous systems, it is of 

considerable importance to recognise that effects in either of these systems have 

tremendous potential for impact on exercise performance. Indeed, the resting 

tachycardia observed by Piacentini et al., (2002) (cited as not significant, but ~14% 

higher in reboxetine than placebo), Boschmann et al., (2002), Schroeder et al., 

(2002) and Roelands et al., (2008) may be explained by decreased noradrenaline 

clearance by NAT in the heart, which is more dependent on NAT than any other 

tissue for noradrenaline clearance (Esler et al. 1990; Goldstein, et al. 1988). The 

peripheral effects of reboxetine may also result in sympathetic feedback inhibition. 

Further to this, a recent review and meta-analysis of reboxetine for use in acute 

treatment of major depression found no greater therapeutic effect compared to a 

placebo and higher rates of both adverse events and patient withdrawals due to 

adverse events (Eyding et al., 2010). Therefore, the results of studies using 

reboxetine should be considered carefully before drawing conclusions about the role 

of noradrenaline.  

 

The primary mode of action for bupropion has been considered to be via DAT 

blockade due to findings from in-vitro studies and studies in rats. However, in-vitro 

studies remove the element of bupropion metabolism, which occurs in the liver, and 

rats do not metabolise bupropion the same way that humans (mice, guinea pigs and 

dogs) do. Humans rapidly and extensively metabolise bupropion, predominantly to 
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the metabolites hydroxybuproprion and threohydrobuproprion (Bondarev et al., 

2003). In humans, bupropion metabolites accumulate at levels 10-100 times greater 

in plasma (Damaj et al., 2004) and 6 times greater concentration and cerebrospinal 

fluid respectively than bupropion (Cooper et al., 1994). Furthermore, it has been 

found in guinea pigs, which have the most similar pharmacokinetic profile for 

bupropion to humans in rodent models (Suckow et al., 1986), that bupropion 

metabolites accumulate in brain tissue more than bupropion (DeVane, Laizure, & 

Cameron, 1986) in a linear relationship to the observed plasma ratios. Additionally, a 

study using rats found that bupropion only increased extracellular dopamine 

concentrations in the NAc using doses that were significantly higher than are used in 

clinical doses (25mg/kg)(Nomikos et al., 1992). There is considerable evidence that 

the differential effects of bupropion metabolites contribute significantly to its action.  

 

Several human studies using acute doses of bupropion have found the area under 

the curve (AUC) for hydroxybupropion and threohydrobuproprion in ranges roughly 

4-36 times greater than bupropion, with hydroxy-metabolites obtaining the maximum 

plasma concentration (Cmax) and AUC values, while hydro-metabolites had the 

longest elimination half-life values (Stewart et al., 2001; Turpeinen et al., 2007; 

Kharasch et al., 2008). Similarly, in-vitro binding tests have found that bupropion and 

hydroxybupropion are equally bound by plasma proteins, while threohydrobuproprion 

is bound 5 times less. hydroxybupropion can exist as two pairs of enantiomers (4 

diastereomers) but in human plasma, only the enantiomers (2S,3S)- and (2R,3R)-

hydroxybupropion are found, respectively identified as (+) and (-) by their optical 

rotation (Suckow, Zhang, & Cooper, 1997). The (+)-hydroxybupropion isomer more 

potently inhibits NAT than DAT in vitro (Damaj et al., 2004), while (-)-

hydroxybupropion had no significant effect on either. Kharasch et al., (2008) found 

roughly 95% Cmax of hydroxybupropion in humans as (-)-hydroxybupropion leaving 

the more active (+)-hydroxybupropion in quantities over 10 times less than 

bupropion. In the same study (+)-hydroxybupropion contributed only 2% to the AUC 

for overall hydroxybupropion due to the significantly shorter elimination half-life. 

Because (-)-hydroxybupropion and (+)-threohydrobuproprion are found in the highest 

concentrations in humans, it seems reasonable to conclude that the majority of the 

effects are contributed by these metabolites. This may explain the comparatively 
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weak reuptake inhibition observed in human imaging studies. Recently, Egerton and 

co-workers(2010) found that after a single clinical dose (150mg sustained release 

formula) there was no observable change in striatal extracellular dopamine 

concentrations in normal healthy volunteers as measured by [11C]raclopride positron 

emission tomography. Other studies have similarly found that DAT occupancy by 

bupropion does not correlate with therapeutic efficacy (Argyelán et al., 2005). 

Therefore, the contribution of noradrenaline reuptake inhibition to bupropion’s 

therapeutic effect at clinical doses appears to more significant than originally 

thought. Because amphetamine, bupropion and methylphenidate all inhibit 

noradrenaline and dopamine reuptake, the function and roles of both catecholamines 

should be considered with respect to exercise and stress. 

 

1.10 - Measuring Central Catecholaminergic Activation via Pituitary 

Hormones 

While the application of microdialysis techniques has enabled measurement of 

neurotransmitter release during exercise in rodents, the measurement of changes in 

central neurotransmission is fairly limited in human exercise studies. Modern imaging 

techniques are often not suitable due to expense, access to experienced operators 

and logistical problems with performing exercise in or close to the equipment. 

However, it is possible to measure changes in central catecholaminergic activity 

indirectly via changes in circulating pituitary hormones. Although a large number of 

neurotransmitters and hormones affect pituitary hormone secretion, the effects of 

monoamines on the secretion of adrenocorticotropic hormone (ACTH), growth 

hormone (GH) and prolactin  have been well characterised. Prolactin secretion is 

inhibited by high concentrations of dopamine, which is released by 

tuberoinfundibular neurons at the pituitary as an inhibitory feedback mechanism in 

response to circulating prolactin. Noradrenaline weakly increases prolactin secretion 

by inhibiting tuberoinfundibular dopamine release (Freeman et al., 2000). While It is 

well established that dopamine stimulates GH secretion, noradrenaline has opposing 

actions at α and β adrenoceptors on GH secretion, but it is generally accepted that 

endogenous noradrenaline increases GH secretion (Müller et al., 1999). An 

important mediator of the hypothalamic-pituitary-adrenal (HPA) stress response is 
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corticotropin-releasing factor (CRF). Noradrenaline stimulates CRF release from 

projections of the paraventricular nucleus of the hypothalamus (PVN) to the 

hypothalamo-hypophyseal portal system, which stimulates the secretion of ACTH 

into the blood stream. Circulating ACTH then acts at the adrenal glands to increase 

circulating cortisol (Tsigos & Chrousos, 2002). 

 

Monitoring the hormonal response of individuals to nutritional and pharmacological 

interventions or stressors has become an important tool in both a clinical setting and 

in exercise physiology to provide information regarding alterations in central 

neurotransmission, or the individual variability and sensitivity to such changes. 

Although the regulation of pituitary hormone secretion is complex and modulated by 

a number of other neurotransmitters and hormones, changes in circulating 

concentrations can be a useful guide. Nonetheless, caution must be exercised when 

interpreting the results as complex interactions between factors which increase and 

factors which decrease secretion of these hormones may conflate the significance of 

a given hormonal response. This is particularly true during stress, when peripheral 

and central physiological changes, as well as psychological changes can all 

contribute to the regulation of their secretion (described below).  

 

1.11 - Central Stress Signalling During Prolonged Exercise  

A great deal of emphasis has been given to central dopamine in central fatigue and 

the role of dopaminergic neurons in motor control and motivation, while 

comparatively little attention has been given to the role of noradrenaline. This is in 

spite of being directly involved in many of the same processes as well as being a 

critical component of the stress response. Of the noradrenergic nuclei, the locus 

coeruleus has received the most attention due to its aberrant activity in depression 

(Nestler et al., 1999) and possibly attention deficit hyperactive disorder (Pliszka, 

2005; Del Campo et al., 2011). Many drug treatments for these disorders, such as 

anti-depressants, modulate locus coeruleus activity (West et al., 2009) including 

bupropion (Cooper et al., 1994) and methylphenidate (Devilbiss & Berridge, 2006; 

Ishimatsu et al., 2011). The locus coeruleus is well known for its role in the 
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attention/arousal system, involved in waking from sleep and promoting alertness or 

mediating the fight/flight stress response. Recent evidence has demonstrated a more 

complex role for the locus coeruleus in behavioural flexibility and implicate its 

dysfunction in a broad range of behavioural disorders (Devilbiss & Berridge, 2006). 

The evidence suggests that both insufficient and excessive noradrenaline activity 

may result in psychomotor, cognitive, attention-arousal dysfunction, as well as 

depression, anxiety disorders and ADHD (Aston-Jones et al., 1999; Nieuwenhuis et 

al., 2005; Aston-Jones & Cohen, 2005; Aston-jones et al., 2007). 

 

Whether the predominant stressor during prolonged exercise in a warm environment 

is core temperature, cardiovascular strain or both, the stress systems recruited in the 

CNS which dictate the behavioural response are the same. These systems are 

heavily dependent upon central catecholamine function in both their bottom-up 

signalling of the stress event and the top-down control of the behavioural response. 

The signalling of peripheral stress within the CNS is determined by two key areas of 

the brain: the hypothalamus and the brain stem (Joëls & Baram, 2009). The 

hypothalamus and noradrenergic nuclei of the brainstem are interconnected and 

coordinate the activation of the stress system. Two of these nuclei are especially 

suited to coordinate the stress response. The A2 nucleus of the nucleus tractus 

solitarius receives ascending afferents via the spinal cord, while the locus coeruleus 

does not; however, both are heavily interconnected throughout the brain and spinal 

cord. They are instrumental in providing the sympathetic activation required for 

exercise, both directly via spinal pathways and indirectly via the HPA axis. As 

described in section 1.10, noradrenaline stimulates CRF release from the PVN, 

resulting in activation of the HPA axis and increases in circulating ACTH and cortisol. 

Circulating cortisol acts in a negative feedback loop to decrease CRF and ACTH 

secretion from the PVN and hypothalamo-hypophyseal portal, respectively (Tsigos & 

Chrousos, 2002). However, the HPA feedback loop can be overridden by 

noradrenergic afferents from the locus coeruleus and A2 at the PVN, increasing CRF 

secretion and HPA activity during acute stress (Ziegler et al., 1999).  
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In both the A2 (Glass et al., 2001) and the locus coeruleus (Nestler et al., 1999) α2 

autoreceptors provide negative feedback to noradrenaline release, however, this 

regulatory mechanism may become overridden during acute stress. The afferents 

from the A2 also increase CRF signalling within the CNS via projections from the 

hypothalamus  and amygdala (Johnson et al., 2011). Both the hypothalamus and 

amygdala send CRF afferents to the locus coeruleus, which forms a feedforward 

system for the activation of the stress response (Koob, 1999; Gold & Chrousos, 

2002). Psychological stress has been found to increase CRF mRNA in the central 

nucleus of the amygdala, but not in the PVN (Makino et al., 1999). This suggests that 

psychological stress can act independently or concert with physiological strain to 

activate or enhance the stress response via these amygdalar afferents (see figure 

1.9).  

 

Figure 1.9 CRF projections in the brain displayed as red arrows.  
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During prolonged exercise CRF, ACTH and arginine vasopressin  have been found 

to increase in a linear time-dependent fashion in male athletes (Inder et al., 2012). 

Both ACTH and arginine vasopressin also increases locus coeruleus neuronal 

activity in a dose-dependent manner (Olpe et al., 1987). Thermal strain also 

increases locus coeruleus neuronal activity (Morilak et al., 1987) and activation of 

locus coeruleus by hemodynamic strain appears to be due to local release of CRF 

(Valentino et al., 1991). Arginine vasopressin secretion is also enhanced by 

hyperosmolality, heat/hyperthermia and hypovolemia (Takamata et al., 1995). 

Consequently, there may be an additive stimulatory effect on locus coeruleus activity 

during prolonged exercise in the heat, which increases as core temperature and 

blood osmolality increase while blood pressure decreases. Similarly, circulating 

adrenaline is increased during prolonged exercise in warm environments (Febbraio, 

2001), which can stimulate the A2 via ascending sympathetic afferent feedback 

(Rinaman, 2011). Collectively, this provides a link between the thermoregulatory 

strain, the resulting demands on the cardiovascular system described by Cheuvront 

and co-workers (Cheuvront et al., 2010) and the catecholaminergic neural circuits 

within the CNS, which modulate the behavioural response.  

 

The mesocorticolimbic circuit is where dopamine and noradrenaline interact to 

coordinate the behavioural stress response. The locus coeruleus projects the 

cerebellum, thalamus, hippocampus, and cerebral cortex, while the A2 projects to 

the locus coeruleus, amygdala and NAc and both nuclei project to the hypothalamus 

(Rinaman, 2011). Therefore, the A2 more directly controls emotion and affect during 

stress, while also modulating the locus coeruleus, which has more direct control over 

sensory informational processing and cognitive function. The mesocorticolimbic 

circuit consists of projections arising from the mesencephalon (or midbrain), the 

cortex and the limbic system. The midbrain projections are primarily from the VTA, 

the dopaminergic nucleus of the brain with the most diverse afferent projections. The 

cortical projections come from the frontal cortex and the limbic system projects from 

the anterior cingulate cortex (ACC) and ventral striatum. This circuit therefore 

integrates sensory, memory, emotional, affective, behavioural, motor and executive 

thought centres, encodes the salience of the stimuli and elicits a response in 
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accordance with the learned expectation of the outcome (Schultz, 1997; Wise, 

2004).  

 

Central to the mesocorticolimbic motivation system is the projection of dopaminergic 

VTA neurons to the NAc (Wise, 2004). This system was originally considered the 

pleasure centre of the brain, with dopamine release being responsible for the 

‘hedonic impact’ of drugs and rewarding stimuli. Interestingly, evidence is 

accumulating to support the notion that both aversive unpleasant stimuli activate the 

motivational system the in the same ways that rewards do, as confirmed by 

microdialysis, electrophysiological and voltammetric studies (Salamone et al., 2007). 

Further supporting this evidence, it has been found that amphetamine enhanced 

aversive responses in animals, and NAc lesions interfere with aversive responses 

(Kelley and Berridge 2002). Dysfunction of the mesocorticolimbic circuit is also 

implicated in pathological pain disorders (Borsook et al., 2007). Aversive responses 

can be triggered by noxious stimuli, such as noxious heat, by coupling the 

corticolimbic circuit with the “classic pain circuitry” via nociceptive signals (Becerra et 

al., 2001). The amygdala, which was originally considered the fear centre, is also 

active in these processes. The central nucleus of the amygdala also projects to the 

major brainstem monoamine nuclei, which includes the SN, the VTA, the 

serotonergic Raphé nucleus, and locus coeruleus as well as the hypothalamus 

driving appropriate autonomic and motor responsivity to emotionally salient input 

(Cardinal et al., 2002). The amygdala also has direct interaction with the shell of the 

NAc, PFC and ACC, providing a direct pathway for emotionally salient stimuli to 

influence motivation and behaviour.  

 

Recent discoveries on the significance of locus coeruleus activity have demonstrated 

an important distinction in electrophysiological modes of neuronal firing, which 

modulate behaviour and determine task performance. Increased phasic firing of 

locus coeruleus neurons is associated with improved attention and focus, while 

increased tonic firing of locus coeruleus neurons disengages animals from task 

performance and promotes behavioural adaptation (Aston-Jones & Cohen, 2005). 

This is relevant because CRF has been found to increases tonic but not sensory-
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evoked phasic activity of noradrenergic locus coeruleus neurons in unanesthetized 

rats (Valentinol & Foote, 1987). Similarly, CRF was found to modulate locus 

coeruleus activity in a dose-dependent inverted U-shaped response, initially 

improving task performance, but as the dose increased, promoted behavioural 

flexibility and a shift to searching of alternative activities (Snyder et al., 2012). This 

inverted-U response to locus coeruleus activity is reflected in the control of 

noradrenaline concentrations over PFC function. Because of this concentration-

dependent modulation, this stress/arousal system promotes different behaviours 

depending on the level of activation. Higher levels of noradrenaline activate α1 and 

β1 receptors and take the PFC “off-line” whereas in other regions they provide a 

more optimal neurochemical environment and shifts to more reflexive, instinctive 

behaviour driven more by subcortical structures (Ramos & Arnsten, 2007; Arnsten, 

2009). 

 

The PFC and ACC are interconnected and both send and receive projections to 

catecholaminergic nuclei, collectively contributing to the integration of emotional and 

cognitive processes (Bush et al., 2000) and directing motor behaviour, allowing the 

transformation of intention into action (Paus, 2001). Their activity is also integrated in 

the generation of the error-related negativity (ERN) component of event-related 

potentials measured by electroencephalogram (EEG)(Herrmann et al., 2004). The 

ERN is thought to reflect  internal monitoring errors and has been shown to occur 

even as a result of unperceived, or subconscious errors and are proportionate to the 

degree of mismatch between expectation and outcome (Nieuwenhuis et al., 2001). 

Interoceptive information provided from the insular cortex allows for autonomic 

management of behavioural economics, linking intent, action and consequence 

(Sanfey et al., 2006; Salamone et al., 2009; Medford & Critchley, 2010). Although all 

motivated behaviour is dependent on NAc dopamine (Salamone et al., 2009), the 

appropriate selection and maintenance of behaviour in response to these signals 

appears to be dependent on the ACC, particularly in extended or prolonged 

behaviour (Holroyd & Yeung, 2012). noradrenaline facilitates processing by the ACC, 

while phasic dopamine bursts transmit information based on reinforcement history 

for decision making, particularly in difficult or demanding tasks (Warren & Holroyd, 

2012). 
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The teleoanticipatory centre proposed by St Clair Gibson and co-workers (2006) 

closely mirrors the role of the ACC and ERN. As power output is modulated a 

prediction of performance feedback will be computed. If afferent stress signals do not 

match those predicted by the algorithm, a change in power output may be made to 

compensate and the experience of this change of demand will be reflected in 

perceived exertion. Indeed, the perception of errors acts as aversive, or unpleasant 

stimuli (Hajcak & Foti, 2008). This suggests that when unexpected negative 

teleoanticipatory feedback is received it would have a negative emotional and 

cognitive impact. This may explain the findings by Baden and co-workers (2005) in 

which participants were surprised by a small extension in the amount of exercise 

asked of them, resulting in an increase of negative affect which corresponded with 

an increase in RPE, despite being otherwise well within their means to perform. 

Supporting this notion, negative affect increases the amplitude of ERN in response 

to errors (Wiswede et al., 2009), suggesting a potential feed-forward effect of an 

increasingly negative impact on affect and stress by error detection and awareness. 

There is also evidence supporting the contribution of unconscious stress signals to 

the same teleoanticipatory algorithm for pacing. A study comparing the cycling power 

output at a fixed RPE until power reached below 70% max in different temperatures 

showed that power output is decreased when rate of heat storage is increased 

(Tucker et al., 2006). The relationship between PFC, insular cortex and ACC 

represent a possible neuroanatomical substrate for the subjective experience of 

perceived exertion. This neural construct serves as a bridge between conscious and 

unconscious regulation of effort, in which psychological and physiological strain 

interact and modulate the performance of motivated behaviours. 

 

Because of the difficulty of measuring brain function during exercise, there is little 

direct evidence of the processes underlying central fatigue. However, fatigue during 

exercise in the heat has been associated with decreased EEG cortical β power 

without significant changes to α power, which was positively correlated with ratings 

of perceived exertion (Nybo & Nielsen, 2001b; Rasmussen et al., 2004). β power has 

also been investigated with respect to movement disorders, as relatively high β 

power over the motor cortex is associated with advanced stages of Parkinson’s 

disease and dopamine depletion (Jenkinson & Brown, 2011). Recently, it has been 
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proposed that total cortical β power represents a cross-network communication, 

which maintains the status quo, facilitating and reinforcing the networks promoting 

appropriate behaviour, while decreasing β power is associated with increasing 

bottom-up stimuli, distractibility and promoting a shift in behaviour(Engel & Fries, 

2010). It is worth noting that individuals with ADHD display decreased frontal β 

power compared to controls (Snyder & Hall, 2006) and bupropion, amphetamine and 

methylphenidate, which have been successful in improving performance during 

prolonged exercise in the heat are treatments for ADHD (Wilens, 2006). Similarly, 

clinically relevant doses of psychostimulants preferentially increase extracellular 

catecholamines in the PFC (Berridge & Arnsten, 2012) while also slightly decreasing 

locus coeruleus cell firing by inhibiting reuptake(Stahl et al., 2004; Devilbiss & 

Berridge, 2006). This includes methylphenidate (Berridge et al., 2006) and bupropion 

(Bares et al., 2010) and amphetamine (Berridge & Arnsten, 2012).  

 

1.12 - Summary and Aims 

Studies using central catecholamine reuptake inhibitors have thus far been the most 

successful pharmacological manipulation of central fatigue during prolonged 

exercise, particularly in a warm environment. These drugs share a common 

therapeutic efficacy in treating ADHD and appear to preferentially affect the PFC and 

brain stem nuclei. However, the effects of these drugs during prolonged exercise in 

warm conditions warrants further characterisation. Similarly, few studies have been 

conducted to examine the effects of changes to catecholamine metabolism on 

prolonged exercise performance in warm conditions. Therefore the aim of this series 

of studies is to contribute to both elements of the role of central catecholamines 

during prolonged exercise in a warm environment. The studies described in 

Chapters 3 and 4 are designed to further explore the effects of central catecholamine 

reuptake inhibition with bupropion. Chapter 3 was the first study to examine the 

gender differences in the role of central catecholamines during prolonged exercise. 

The aim of this chapter was to determine whether the same effects observed by 

Watson and co-workers (2005) are the same for women as they were in men. The 

aim of Chapter 4 was to determine the effects of different doses of bupropion on 

exercise performance. Both Chapters 3 and 4 were conducted with funding from the 
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World Anti-Doping Agency, and were designed to help determine the necessary 

guidelines and regulations for bupropion. Chapter 5 was designed as a follow up to 

the study conducted by Meeusen and co-workers (1997). In this study the 

pharmaceutical Sinemet, which is the catecholamine precursor L-DOPA combined 

with an AADC inhibitor (carbidopa), was administered before prolonged exercise and 

had no effect on performance. The study described in Chapter 5 was designed to 

examine the effect of the same pharmaceutical on prolonged exercise in warm 

conditions, with the consideration that warm conditions provide an environment more 

sensitive to central catecholamine function. Furthermore, Chapter 5 included a 

dosing schedule better suited to the pharmacokinetics of this particular drug. The 

study described in Chapter 6 was an experimental probe into alternative nutritional 

manipulation of central catecholamines. SAM is readily available as a nutritional 

supplement in the UK and USA, but is the most heavily researched and supported 

alternative antidepressant treatment (Bottiglieri, 2002). It is hypothesised that these 

manipulations of central catecholamines will improve performance during prolonged 

exercise in warm conditions.  
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2.1 - Ethical Approval 

All work described in Chapters 3, 5 and 6 received approval from the Loughborough 

University Ethical Advisory Committee. The study in Chapter 4 was approved by the 

Research Council of the Vrije Universiteit Brussels, Belgium. Prior to the start of 

each investigation all potential participants were first approached either in person, or 

contacted via email or poster. Those expressing an interest in taking part received 

written details approved by the local Ethics Committee outlining the background to 

the study, information regarding the protocol and any possible discomfort or adverse 

effects that could arise during the investigation. Following an opportunity to ask 

questions, those interested in participating completed a health screen questionnaire 

and signed a written statement of consent. In the studies using prescription drugs, 

the health screen questionnaire was viewed by the prescribing doctor to ensure no 

contraindications prior to enrolling in the study. All participants were fully aware from 

the outset that they were free to withdraw from the study at any time without 

providing any reason for doing so.  

 

2.2 - Participants 

Participants were recruited from local university staff and student populations as well 

as local sports clubs. Female participants were recruited in Chapter 3 and male in 

Chapters 4, 5 and 6. Due to the physically demanding nature of the investigations, 

participants were familiar with the sensation of strenuous and prolonged exercise. 

Participants were aged between 18 and 35 for all investigations. Participants 

recruited to take part in the studies investigating responses to exercise in a warm 

environment were unaccustomed to exercise in the heat at the time of the 

investigation. Due to the nature of these series of studies, those with a history of 

psychiatric illness and/or metabolic disease were excluded. For the investigations 

described in Chapters 3, 4, and 5, participants were provided with manufacturer 

information on contraindications and adverse effects, which served as additional 

exclusion criteria. For the investigation described in Chapter 3, only female 

participants who were not using hormonal contraceptives were selected due to a 

potential interaction with bupropion metabolism (described in Chapter 3). Those 

individuals that did not fit the inclusion criteria were thanked for their interest and 
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politely told that their help would not be required. In addition, participants were asked 

to sign an informed consent form after completing a health screen questionnaire 

approved by the prescribing doctor. 

 

2.3 - Experimental Design and Standardisation of Experimental Conditions 

All studies were placebo-controlled trials. All trials were randomised using a Latin-

square design to minimise any order effect and were administered in a double-blind 

manner. All studies employed a cross-over design. The study in Chapter 4 employed 

a randomised 4-block design to control for order effects that may have occurred over 

the 4 experimental trials. Trials were performed at the same time of day to minimise 

the influence of circadian variation. Prior to the start of the experimental trials, a 

familiarisation trial was undertaken to ensure the participants were accustomed to 

the procedures employed during the investigations and to minimise any potential 

learning or anxiety effects. This followed the exact protocol used in the experimental 

trials. In Chapters 3 and 5, an additional single-blind placebo treatment was 

administered to serve as a second familiarisation and provide an extra comparison of 

reliability for any observed effects.  

 

To help ensure metabolic conditions were similar before each experimental trial, 

participants were instructed to record all food and fluid intake (household measures 

technique), as well as any exercise performed, in a diary over the 2 days prior to the 

first trial. Participants were asked to replicate this dietary intake and physical activity 

as closely as possible during the 2 days before subsequent trials. Participants were 

also asked not to perform any strenuous exercise or consume alcoholic beverages in 

the 24 hours prior to all trials. Trials in Chapters 3 and 6 were performed following an 

overnight fast. In Chapter 4, participants consumed a standardised breakfast 90 

minutes before arriving for testing. In Chapter 5, participants were instructed to 

consume a standardised breakfast (provided) 4 hours and 30 minutes before 

entering the lab. These differences in protocol were due to timing of food around 

drug dosing. Participants in all investigations were asked to consume 500mL of plain 

water during the 90 minutes before entering the lab. The environmental conditions 
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for exercise trials were controlled using a climatic chamber with integrated 

thermostat and hygrostat (Weiss Technik UK Ltd, Loughborough, UK). When 

participants were required to remain seated at rest, the ambient temperature was 

maintained within a comfortable range (20-25°C). All trials were separated by at least 

7 days to limit the development of heat acclimation (Barnett and Maughan, 1993).  

 

2.4 - Measurement of Peak Oxygen Uptake 

To determine the workloads required during experimental protocols, participant peak 

oxygen uptake (VO2peak) was determined in advance. This was achieved with a 

discontinuous protocol (Chapters 3, 5, and 6) or continuous (Chapter 4) incremental 

graded exercise test on an electrically braked cycle. The discontinuous protocol 

required participants to complete between 4 and 6 discrete 4 minute increments, 

beginning at an initial workload of 100 watts (W) for male participants (Chapters 5 

and 6) or 50W for female participants (Chapter 3). Depending on the participant’s 

performance in the previous stage (e.g. verbal feedback, ratings of perceived 

exertion, heart rate), the workload was increased by 50 or 25W. Between each bout, 

a supervised rest period of 3 to 5 minutes was observed, during which the participant 

was able to walk around and drink plain water. This was repeated until the 

participant retired through volitional exhaustion. The continuous protocol required 

participants to begin exercise at an initial workload of 80W, with the intensity 

increased by 40W every 3 minutes until volitional exhaustion. Maximum workload 

(Wmax) was determined using the following equation: Wmax = Wout  + (t/180) x 40 

where ‘Wout‘ is the workload of the last completed stage and ‘t’ is the time in seconds 

of the final stage (Jeukendrup et al., 1996). The experimenters provided verbal 

encouragement during both protocols to help ensure a maximal effort. 

 

Expired gas was collected during the last 60 seconds of each stage in the 

discontinuous protocol, using the Douglas bag method. Throughout the continuous 

test, expired gas was analysed using an automated spirometry system (Metamax, 

Cortex, Biophysik GmbH, Germany). At the end of each increment in both protocols, 

heart rate was recorded using telemetry (Polar Favor, Kempele, Finland).The 
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expired gas collected using Douglas bags was analysed for oxygen (O2) and carbon 

dioxide (CO2) composition by drawing gas through a paramagnetic O2 transducer 

and infra-red carbon dioxide analyser (Servomex 1440c, Crowborough, UK). The 

gas analysers were calibrated with gases of known concentration (British Oxygen 

Company, London, UK). The volume of gas expired was measured through a dry 

gas meter (Harvard dry gas meter, Harvard Apparatus Ltd, Kent, UK) and the 

temperature of the expired gas was recorded using an electronic temperature sensor 

at the dry gas meter inlet (Edale Instruments Ltd, Cambridge, UK). All expired gas 

volumes were corrected to standard temperature and pressure for dry gas (STPD). 

Barometric pressure was measured using a standard mercury barometer. O2 

consumption, CO2 production and the respiratory exchange ratio were calculated 

using the equations detailed by Frayn (1983). These data were used to calculate the 

workloads corresponding to the desired percentage of participant’s VO2peak. 

 

2.5 - Exercise Trials 

All the exercise was completed using cycle exercise on a stationary, electrically 

braked cycle ergometer (Lode Corival or Lode Excalibur Sport, Groningen, Holland). 

During the VO2peak test, participants were asked to find a comfortable saddle 

height, which was recorded and used for the remaining trials. In Chapters 3 and 5, 

expired gas was collected every 15 minutes of the steady-state work period to verify 

the workload was correct. In Chapter 6 expired gas was collected every 15 minutes 

for the first hour of exercise to verify the workload and observe any potential 

changes in substrate utilisation. Participants were supervised by the same 

experimenters for all experimental trials to help ensure standardised conditions. To 

assess exercise performance in Chapters 3 and 5, participants completed preloaded 

workload challenge. The preload consisted of cycle exercise at a steady state (60% 

VO2peak), followed by completion of as much work as possible in 30 minutes. During 

this 30 minute workload challenge participants were free to manipulate the workload, 

which was initially set corresponding to 75% VO2peak. No feedback was provided 

regarding power output or heart rate. In Chapter 4 a preloaded time trial (TT) 

protocol was employed. The TT required participants to complete an amount of work 

equal to 30 minutes at 75% Wmax as quickly as possible (Jeukendrup et al., 1996). 
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Participants began the TT at a workload corresponding to 75% Wmax and were free to 

increase or decrease their power output as desired. During the TT a computer 

program displayed a bar indicting the percentage of total work completed to give the 

participant an indication of their progress. No feedback was provided regarding time, 

power output, pedal cadence or heart rate. In Chapter 6, time to exhaustion, defined 

as volitional cessation of exercise or inability to maintain cadence above 50-60 rpm 

after 3 warnings (below which the Lode Corival can no longer apply constant load), 

was used as a performance measure. This method was selected to promote fatigue-

associated physiological and psychological changes that could be affected by SAM 

supplementation.  

 

In all studies, post-void nude body mass was measured before and after exercise to 

quantify sweat loss. This difference was corrected for any urine output and fluid 

ingestion during the trial. These data were not corrected for respiratory water or 

losses due to substrate oxidation. To monitor core body temperature whilst at rest 

and during exercise, participants inserted a flexible rectal thermistor (YSI UK Ltd, 

Hampshire, UK or Gram Corp. LT-8A, Saitama, Japan) 10cm beyond the anal 

sphincter. Surface skin thermistors (Grant Instruments Ltd, Cambridge, UK or Gram 

Corp. LT-8A, Saitama, Japan) were positioned at four sites (chest, upper arm, thigh 

and calf). Thermistors were held securely in contact with the skin using transpire 

medical tape (3M, Loughborough, UK). Weighted mean skin temperature was 

calculated using the methods described by Ramanathan (1964). Ratings of 

perceived exertion (RPE) were assessed at regular intervals during exercise using 

the 15-point Borg scale (Borg, 1982). Ratings of perceived thermal strain were 

assessed at the same intervals using a 21-point thermal sensation scale ranging 

from unbearably cold (-10) to unbearably hot (+10) adapted from Hardy (1970)(see 

appendix). Heart rate was measured at rest and during exercise using short-range 

telemetry (Polar Favor, Kempele, Finland).  

 

 

 



48 
 

2.6 - Blood Collection, Handling and Analysis 

In chapters 3, 5 and 6, participants submerged their forearm into warm water (40-

42°C) for approximately 10 minutes to arterialise venous blood and improve visibility 

of superficial veins. In chapter 5 and 6, an indwelling 21 gauge butterfly cannula 

(Surflo winged infusion set, Terumo, Tokyo, Japan) was inserted into a superficial 

forearm vein and a three way tap (Luer-Loc 360, BD Connecta, Heidelberg, 

Germany) was attached to the end to allow repeated blood sampling. The indwelling 

cannula was kept patent by flushing with 2-3mL of heparinized saline after each 

sample. In Chapter 3, blood sampling was done via venepuncture in the antecubeital 

region due to the difficulty of finding superficial forearm veins in female participants. 

In Chapter 4, blood samples were collected from the antecubeital region using the 

vacutainer system. Assays used widely throughout this thesis are described below, 

with assays common to a single study described in the methods section of the 

appropriate chapter. All biochemical analyses performed throughout this thesis were 

performed in duplicate, unless otherwise stated. 

 

In Chapters 3, 5 and 6, collected blood was immediately dispensed into plain tubes 

or tubes containing K2EDTA. Duplicate 100µL aliquots of blood were rapidly 

deproteinised in 1000μL of ice-cold 0.3N perchloric acid. These were centrifuged and 

the resulting supernatant was used for spectrophotometric determination of blood-

glucose using Randox GOD-PAP kit (Randox Laboratories Ltd, Crumlin, UK). EDTA-

treated whole blood was used for the spectrophotometric determination of 

haemoglobin (Hb) by the cyanmethaemoglobin method as well as packed cell 

volume (PCV), which was measured in triplicate using microcentrifugation 

(Hawksley, Sussex, UK). Both Hb and PCV were determined within 2 hours after 

each experimental trial. These data were used to estimate percentage changes in 

blood, plasma and red cell volumes relative to the first sample using the methods 

proposed by Dill and Costill (1974). Untreated and EDTA-treated whole blood was 

centrifuged at 1500g for 15 minutes at 4°C to obtain serum and plasma, respectively. 

The supernatants were transferred into eppendorf tubes and stored at -20°C until 

analysis. In all investigations serum was used to measure cortisol, and in Chapters 

4, 5 and 6, prolactin with enzyme-linked immunosorbent assay (ELISA) kits (DRG, 
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International Inc. New Jersey, USA). For all ELISAs standard curves and a 3 level 

control sera were measured in duplicate, while participant samples were measured 

in singlicate. Additional hormone analysis undertaken in Chapter 3 is described 

therein. 

 

2.7 - Statistical Analysis 

Data are presented as means ± standard deviation (SD). The Shapiro-Wilk test was 

used to examine whether the outcome variables had a normal distribution. 

Homoscedasticity was checked using Levene’s test. Data sphericity was determined 

using the Mauchley’s test, and, where appropriate, further analysis was corrected as 

described by Atkinson and Nevill (2001). Exercise performance data were examined 

using one-way repeated measures of analysis of variance (ANOVA). To identify 

differences in data collected throughout each trial, two-way (time-by-trial) ANOVA 

was employed. Where a significant interaction was apparent pair-wise differences 

were evaluated using the Bonferroni post hoc procedure. Hormone AUC was 

compared using paired-samples t-tests. Statistical significance was accepted at 

P<0.05. Non-parametric data were analysed with Friedman’s test with Wilcoxon-rank 

sum for pairwise comparisons. 
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2.8 – Coefficients of Variation of Methods 

CV averaged from duplicate and triplicate samples 

Measure Method Mean  CV (%) 

Haemoglobin Cyanmethaemoglobin 153.3g/L 0.8 

Packed Cell Volume Microcentrifugation 43.90% 0.7 

Blood Glucose GOD-PAP (Randox) 4.45mmol/L 1.5 

    Serum Prolactin Microplate ELISA 21.29ng/mL 7.4 

Serum Cortisol Microplate ELISA 228.7ng/mL 8.0 

Plasma ACTH Microplate ELISA 108.8pg/mL 10.5 

    Serum FSH Evidence Investigator (Randox) 3.63mlU/mL 4.2 

Serum LH Evidence Investigator (Randox) 4.63mlU/mL 9.0 

Serum Prolactin Evidence Investigator (Randox) 904.7mlU/L 5.0 

Serum Testosterone Evidence Investigator (Randox) 2.63nmol/L 3.8 

Serum Progesterone Evidence Investigator (Randox) 12.74nmol/L 17.4 

Serum Oestrogen Evidence Investigator (Randox) 222.6pmol/L 3.2 
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3.1 – Abstract 

Bupropion, a dual noradrenaline/dopamine reuptake inhibitor, improves time trial 

performance in male participants in the heat. Gender differences in 

neuropsychopharmacology have been shown in animal and human studies, but it is 

not known whether these differences may alter the effect of bupropion on exercise 

performance in women. With local ethics committee approval, 9 physically active 

women (Mean ± SD age 21 ± 2 y; height 1.68 ± 0.08 m; body mass 64.1 ± 6.0 kg; 

VO2peak 50.9 ± 7.2 mL/kg/min) were recruited to examine the effect of pre-exercise 

administration of bupropion (4 x 150 mg) on prolonged exercise performance in a 

warm environment (30.2 ± 0.2°C, 50% ± 1% rh). Participants completed a VO2peak 

test, a familiarisation trial, and a single-blinded placebo control trial before a 

randomised, double-blind, placebo-controlled crossover design was employed. 

Experimental trials took place during the first 10 days of the follicular phase of the 

menstrual cycle. Participants cycled for 1 h at 60% VO2peak followed by a 30 min 

workload challenge, during which they were instructed to complete as much work as 

possible. Heart rate, skin and core temperature, and ratings of perceived exertion 

and thermal sensation were recorded throughout exercise. Total work done was 

higher on the buproprion trial (291 ± 48 kJ) than on the single-blind (267 ± 48 kJ, 

P=0.021) and double-blind trials (269 ± 46 kJ, P=0.042). No differences were found 

between all trials for core temperature throughout rest, the first hour or the workload 

challenge. However, at the end of the workload challenge core temperature was 

higher on the bupropion trial (39.5 ± 0.4 °C) than the single-blind (39.2 ± 0.6 °C, 

P=0.028) and double-blind trials (39.2 ± 0.6 °C, P=0.021). Heart rate was also higher 

at the end of the workload challenge on the bupropion trial (185 ± 9 beats/min) than 

the single-blind (180 ± 13 beats/min, P=0.048) and double-blind trials (179 ± 13 

beats/min, P=0.043). The results indicate that during the follicular phase of the 

menstrual cycle an acute dosing protocol of bupropion can improve self-regulated 

work rate in warm conditions.  
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3.2 – Introduction 

Endurance exercise capacity is reduced in warm conditions. This effect has been 

demonstrated to be ambient temperature-dependent (Galloway & Maughan, 1997) 

and exacerbated by increasing humidity (Maughan et al., 2012).  This is primarily 

due to the significant challenges to thermoregulation and, consequently, fluid 

balance as well (Hargreaves, 2008; Nybo, 2008; Maughan, 2010). This cumulative 

strain results in the eventual onset of fatigue and subsequent impairment in 

performance. This appears to be regulated largely by mechanisms within the CNS 

(as described in section 1.2). Though the cerebral mechanisms for the onset of 

fatigue are currently not understood, there have been many studies attempting to 

manipulate fatigue by altering CNS function. While those attempting to alter fatigue 

via manipulation of serotonin have yielded conflicting results (Meeusen et al., 

2006b), manipulation of central catecholamines has produced more consistent 

changes in the onset of fatigue and exercise performance in warm conditions 

(Roelands & Meeusen, 2010).  

 

The physiological strain during prolonged exercise in the heat is similar for men and 

women, but sex hormone fluctuations throughout the menstrual cycle cause 

important physiological changes, which can affect performance. De Jonge (2003) 

provided a comprehensive review on studies conducted to determine the effects of 

menstrual cycle phases on exercise physiology and performance. The review found 

no differences or conflicting results for haemoglobin, haematocrit, muscle 

contractility and lactate response during the menstrual cycle. However, differences in 

VO2 were observed during higher intensity exercise, which the author attributed to 

cardiovascular strain due to the increased resting body temperature during the luteal 

phase. This effect was exacerbated in warm conditions during light intensity 

intermittent exercise, but not at relatively low intensities (20%, 30% and 60% 

VO2max). A follow up study corroborated this decrease in performance during 

prolonged, high intensity exercise in warm conditions (de Jonge et al., 2012). This 

was characterised by increased resting core temperature, increase rate in core 

temperature rise during exercise as well as increased RPE and perceived thermal 

strain. In summary, it appears that the main performance-affecting factors to 
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consider throughout the menstrual cycle are the fluctuating thermoregulatory 

processes and consequent resting body temperature, which is increased during the 

luteal phase. This negatively affects high intensity prolonged exercise in normal 

temperature and even more so in high ambient temperatures.  

 

Ovarian sex hormones appear to modulate thermoregulation by regulating brown 

adipose tissue thermogenesis by directly acting at the progesterone receptors and 

sympathetic modulation by estrogen in the CNS (Quarta et al., 2012). In addition to 

energy balance and thermoregulation, ovarian sex steroids modulate CNS activity in 

a number of ways, including the stress response (Chrousos et al., 1998) and activity 

in areas of the brain associated with motor function and motivation (McEwen & 

Alves, 1999). Estrogen has been shown to modulate dopaminergic 

neurotransmission (Colzato et al., 2010; Disshon, Boja, & Dluzen, 1998) and 

increases activity of tryptophan hydroxylase, an enzyme involved in serotonin 

synthesis, decreases 5HT1a autoreceptor binding, and modulates the serotonin 

transporter, which leads to increased expression in the hypothalamus (Bethea et al., 

2002).  In addition to the challenges presented by de Jonge (2003), the interaction 

between ovarian sex steroids and monoaminergic neurotransmission suggest 

possible sex-dependent differences in physiological and performance outcomes in 

response to pharmacological manipulation of CNS activity. 

 

Women are more susceptible to depression than men, though this may be due to 

sociological factors, rather than differences in physiology (Piccinelli, 2000; Nolen-

Hoeksema, 2001). Nonetheless, there appear to be gender differences in response 

to antidepressants; women tend to respond better to selective-serotonin reuptake 

inhibitors and worse to tricyclic antidepressants than men (Young et al., 2009). While 

there are gender differences in neuropharmacology due to sex hormone interactions 

(Young & Becker, 2009), there are also differences in attitudes and expectations. 

Women are generally more willing to seek help, whereas this is generally stigmatised 

amongst men (Addis & Mahalik, 2003). Furthermore, gender differences in placebo 

and nocebo responses have been observed, with men more affected by expectancy 

and women to conditioning (Klosterhalfen et al., 2009). Women are more likely to 
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report adverse side-effects during placebo treatment than men (Mora et al., 2011), 

while men tend to be more susceptible to placebo analgesia (Aslaksen et al., 2011). 

All of the studies conducted to investigate the effects of pharmacological 

manipulation of fatigue during prolonged exercise in warm conditions to date, have 

used male participants. It is therefore not known whether the same increases in 

exercise capacity during prolonged exercise in warm conditions will be seen in 

women. The aim of the present investigation is to determine the effects of bupropion, 

a dual dopamine /noradrenaline reuptake inhibitor on performance during prolonged 

exercise in warm conditions in physically active women. It is therefore hypothesised 

that acute administration of bupropion will improve prolonged exercise performance 

in women during the same menstrual cycle phase. 

 

3.3 – Methods 

Nine habitually active women were recruited (age 21 ± 2 y; height 1.68 ± 0.08 m; 

body mass 64.1 ± 6.0 kg; VO2peak 51 ± 7 mL/kg/min). All participants actively took 

part in regular endurance exercise training, but were not accustomed to exercise in a 

warm environment at the time of the study. Prior to their admission to the study, 

participants were provided with information regarding the purpose and design of the 

study, including manufacturer information for bupropion. Thereafter, if participants 

confirmed their interest and eligibility, a statement of informed consent was signed. 

The Loughborough Ethics Advisory Committee approval number for this study was 

R10-P7. As oral contraceptives have been shown to interfere with bupropion 

metabolism via cytochrome P450 2B (Palovaara et al., 2003), this study investigated 

participants not taking any form of hormonal contraception. To account for the 

hormonal fluctuations in the menstrual cycle, visits were coordinated with 

participants in relation to the self-reported length of cycle and the onset of menses 

as has been done in other studies (e.g: Minson et al., 2000). Accordingly, those 

reporting irregular menstrual cycles and pregnancy were excluded from the study. 

The primary concern was to schedule the max test and experimental trials to fall 

within the follicular phase to avoid the increased cardiovascular strain and 

subsequent VO2 described by de Jonge (2003) during the luteal phase. A recent 

study found the follicular phase to last between a minimum of 10 days after the onset 
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of menses and a maximum of 22 days (Fehring et al., 2006). Therefore, participants 

were asked to visit the laboratory one week after the onset of menses for their max 

test and the following week for a familiarisation trial in order to minimise any learning 

or anxiety effects. Within a week of the onset of their next menses, participants 

completed a single-blinded placebo control trial. This served as both an experimental 

trial to compare against the double-blinded crossover trials and as a second 

familiarisation. Following the single-blinded placebo control trial a randomised, 

double-blind, placebo-controlled crossover design was employed. These trials were 

scheduled as soon as possible after the onset of the following menses and 7 days 

later for the cross-over trial (see figure 3.1 below). While this scheduling was subject 

to the participants’ availability, the timing of the visits was coordinated in the same 

manner with respect to their menstrual cycle. In the 24 hours preceding the 

experimental trials participants took either placebo (~1g starch/capsule) or bupropion 

(4 x 150 mg spread over 24 h).  

 

Figure 3.1 This schematic is an example of lab visit scheduling for the control for the hormonal and 

basal body temperature fluctuations throughout the menstrual cycle. 

 

The experimental trials were designed to be similar to previous studies (Watson et 

al., 2005a; Roelands et al., 2008d, 2008b). To determine the work rates for the 

familiarisation and experimental trials, an incremental discontinuous VO2peak test to 

volitional exhaustion was performed by participants using a Lode Corival cycle 

ergometer (Lode B.V., Groningen, Netherlands) in an environmental chamber 

(Weiss-Gallenkamp, UK) at 20°C and 50% relative humidity as described in Chapter 

2. VO2peak was then used to calculate work rates corresponding to this value using 

linear regression. The standardisation of pre-trial conditions is outlined in Chapter 2. 
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The experimental protocol is illustrated in figure 3.2. Participants were asked to cycle 

at a work rate corresponding to 60% VO2peak for 60 min, followed by a 30 minute 

workload challenge, in which participants were asked to complete as much work as 

possible. Initial work rate during the workload challenge corresponded to 75% 

VO2peak; thereafter participants were free to manipulate the work rate to complete 

as much as they felt possible. 

 

Participants arrived at the laboratory in the morning (before 9 am), overnight fasted 

and having consumed 500mL of plain water. After the collection of baseline 

measurements during the rest period, participants entered the climatic chamber 

maintained at 30.2 ± 0.2°C, 50% ± 1% relative humidity to begin exercise. During 

exercise, participants were permitted to drink water ad libitum. Water consumption 

was recorded by weight and deducted from post-exercise body mass, to enable the 

calculation of sweat loss. Throughout the trial heart rate, core and skin temperatures, 

were measured every 5 minutes. During the 15 minute rest period subjective thermal 

sensation was measured. During the 1 hour fixed work rate period subjective thermal 

sensation and rating of perceived exertion were measured every 15 minutes, when 

expired gas samples were also collected for verification of work rate. During the time 

trial subjective thermal sensation and rate of perceived exertion were measured 

every 10 minutes. Standardised verbal encouragement was provided by the 

experimenter to help ensure a maximal effort. Feedback during the time trial was 

limited to the time lapsed (power output, cadence, heart rate, etc.) were hidden from 

the participant. Following completion of the workload challenge and the collection of 

the final blood sample, participants left the climatic chamber. Skin thermistors were 

removed and participants removed the heart rate telemetry band and rectal 

thermistor in privacy before towelling off and nude body mass was recorded behind a 

screen. 

 

During the experimental trials a maximum of four 5mL blood samples were drawn. 

Samples were collected at rest, after 30 minutes and at the end of the hour steady 

state period as well as upon completion of the time trial. Due to the difficulty of blood 

sampling from some of the female participants, only the resting blood sample 
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became a priority for hormone measurement to confirm the phase of the menstrual 

cycle. The 5mL blood samples were drawn into dry syringes and immediately 

dispensed into 1mL and 2.5mL tubes containing potassium EDTA (1.5mg/mL) and 

the remaining whole blood into 5mL plain tubes. The 2.5mL EDTA tubes were kept 

on ice. The 1mL EDTA blood samples were used to analyse haemoglobin and 

haematocrit, allowing for estimation of percentage changes in blood, plasma and red 

cell volumes relative to the first resting sample (Dill & Costill, 1974). Two aliquots of 

100µL were pipetted from the 1mL EDTA tubes into eppendorfs containing 1mL of 

0.3M perchloric acid kept on ice for measurement of blood glucose. The 2.5mL 

EDTA and 5mL plain tubes were centrifuged to obtain plasma and serum, 

respectively, which was then frozen at -20°C and later -80°C for hormone analysis at 

a later date. Cortisol was measured using ELISA kits (DRG, International Inc. New 

Jersey, USA). Follicle-stimulating hormone, luteinising hormone, prolactin, 

testosterone, progesterone and oestrogen were measured using a Randox Evidence 

Investigator and Fertility Array Biochips (Randox Laboratories Ltd, Crumlin, UK) in 

order to confirm the menstrual cycle phase the participants were in during each 

experimental trial. 
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Figure 3.2 Schematic demonstrating the order and frequency of procedures during experimental 

trials. 

 

3.4 – Results 

Total work done was higher during the buproprion trial (291 ± 48 kJ), than during the 

single-blind (267 ± 48 kJ, P=0.021) and double-blind trials (269 ± 46 kJ, P=0.042) 

(figure 3.3A). The difference between the crossover trials represents an increase in 

performance of 7.5 ± 9.6% in the bupropion trial (figure 3.4). There was no evidence 

of an order effect during the experimental trials (visit 1 267.1 ± 48.2 kJ, visit 2 282.8 

± 36.5 kJ, visit 3 277.1 ± 54.3 kJ; P=0.230). During the bupropion trial, 7 of 9 

participants completed more work than in the double-blind placebo trial; individual 

work completed during each trial is presented in figure 3.3B. 
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A 

 

B 

 

Figure 3.3 Exercise performance by trial (A) and individual performance (B) in each trial. * denotes 

a significant difference for bupropion vs single-blind and double-blind placebo trials (P=0.021 and 

0.042, respectively). 
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Figure 3.4 Individual percentage change in exercise performance between the double-blind 

placebo and bupropion trial. The thick black line represents the average change in performance 

(+7.5%). 

 

Exercise resulted in a significant elevation in core temperature over resting values 

(P<0.05). Despite the apparent trend for greater core temperature during the 

bupropion treatment, no differences were found between trials for core temperature 

at rest or during the first hour or the workload challenge (P>0.05). However, at the 

end of the workload challenge core temperature was higher during the bupropion 

trial (39.5 ± 0.4 °C), than during the single-blind (39.2 ± 0.6 °C, P=0.028) and 

double-blind trials (39.2 ± 0.6 °C, P=0.021) (figure 3.5A). Weighted mean skin 

temperature rose rapidly with the first 15 minutes of exercise in all trials, becoming 

relatively stable thereafter (figure 3.5B). There were no significant differences for 

weighted mean skin temperature between groups (P>0.05).  
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A 

 

B 

 

Figure 3.5 Core (A) and weighted mean skin (B) temperature at rest and during exercise. * denotes 

a significant difference for bupropion vs single-blind and double-blind placebo trials (P=0.028 and 

0.021, respectively). 

 

Heart rate increased rapidly with the first 10 minutes of exercise in all trials and 

continued to rise slowly thereafter (figure 3.6). Heart rate was higher at the end of 

the workload challenge during the bupropion trial (185 ± 9 beats/min) than the single-

blind (180 ± 13 beats/min, P=0.048) and double-blind trials (179 ± 13 beats/min, 

P=0.043).  
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Figure 3.6 Heart rate at rest and during exercise. * denotes a significant difference for bupropion vs 

single-blind and double-blind placebo trials (P=0.048 and 0.043, respectively). 

 

Ratings of perceived exertion rose slowly through the first hour of exercise and 

climbed rapidly during the workload challenge in all trials (figure 3.7; P<0.01) No 

significant differences were found between trials (P>0.05). Ratings of thermal 

sensation increased rapidly after the first 15 minutes of exercise and continued to 

steadily increase until the end of the workload challenge for all trials (figure 3.8; P 

<0.05). No significant differences were found between trials (P>0.05).  

 

Figure 3.7 RPE during experimental trials. 
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Figure 3.8 Ratings of thermal sensation during experimental trials. 

 

Resting sex hormone levels were not significantly different between trials, nor were 

there any order effects (P>0.05). There were no differences between trials for 

exercise-dependent hormone changes (table 3.1). Only five complete data sets were 

available for these comparisons due to blood collection difficulties. Serum prolactin 

concentration increased at the end of exercise across all trials, but no significant 

differences between trials were observed. Serum testosterone, progesterone, 

oestrogen concentrations were significantly increased at the end of exercise across 

all trials. Cortisol concentration was increased across all trials, but this was not 

significant. There were no significant differences for follicle stimulating hormone or 

luteinising hormone after exercise.  
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Table 3.1 Serum hormones measured at rest and at the end of the each experimental trial. 
a
 and 

b
 

denote significant difference (P<0.05) for between rest and end between all trials and within the 

corresponding trial, respectively. FSH=Follicle Stimulating Hormone; LH=Luteinising Hormone; 

PRL=Prolactin; TEST=Testosterone; PRO=Progesterone; EST=Estrogen; CORT=Cortisol. 

    

Single-Blind 

Placebo 

Double-Blind 

Placebo 
Bupropion 

FSH (mIU/mL) 
Rest 3.73 ± 2.12 4.07 ± 2.23 2.99 ± 1.11 

End 3.59 ± 2.40 4.24 ± 2.29 3.19 ± 1.22 

 
     

LH (mIU/mL) 
Rest 5.64 ± 4.25 4.07 ± 2.78 4.10 ± 2.22 

End 5.07 ± 5.35 4.65 ± 3.38 4.31 ± 2.86 

 
     

PRL (mIU/mL) 
Rest 563.7 ± 46.2 673.2 ± 203.4 668.3 ± 244.0 

End 962.2 ± 386.2a 1377.7 ± 730.7ab 1183.3 ± 302.5a 

 
     

TEST (nmol/L) 
Rest 2.30 ± 1.44 1.73 ± 0.58 2.25 ± 0.89 

End 3.14 ± 1.22a 3.21 ± 2.28ab 3.18 ± 1.01ab 

 
     

PRO (nmol/L) 
Rest 6.52 ± 3.02 12.85 ± 19.69 13.72 ± 20.12 

End 7.53 ± 4.14a 18.53 ± 28.53a 17.33 ± 24.03ab 

 
     

EST (pmol/L) 
Rest 177.9 ± 83.7 201.0 ± 206.3 136.4 ± 51.8 

End 196.0 ± 101.6a 435.7 ± 588.5ab 188.7 ± 99.4ab 

 
     

CORT (ng/mL) 
Rest 172.7 ± 17.2 156.0 ± 66.4 183.6 ± 39.1 

End 187.8 ± 44.7 219.9 ± 86.8 222.4 ± 52.5 
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No significant differences were found between trials for haematocrit, haemoglobin or 

glucose (n=6). Haematocrit and haemoglobin increased across all trials after 

exercise as non-significant trends (P=0.074 and P=0.053, respectively). These 

trends manifested as a significant increase in percentage change in plasma volume 

compared to rest and within the single-blind placebo trial (table 3.3). Blood glucose 

was increased significantly at the end of exercise across and within all trials (table 

3.2).  

 

Table 3.2 Haematocrit (Hct), haemoglobin (Hb), and glucose from rest to end of each trial. 
a
 and 

b
 

denote significant difference (P<0.05) for between rest and end across all trials and within the 

corresponding trial, respectively. 

  

Single-Blind 

Placebo 

Double-Blind  

Placebo 
Bupropion 

Hct (%) 
Start 40.7 ± 1.4 41.0 ± 1.3 40.6 ± 1.3 

End 42.4 ± 1.5 42.3 ± 1.5 41.7 ± 1.8 

Hb (g/L) 
Start 139.9 ± 9.0 141.2 ± 6.1 139.6 ± 7.8 

End 145.4 ± 9.3 144.1 ± 7.3 143.6 ± 8.2 

Glucose (mmol/L) 
Start 4.6 ± 0.3 4.4 ± 0.3 4.2 ± 0.4 

End 6.5 ± 1.6ab 6.3 ± 1.4ab    6.3 ± 1.1ab 

 

Table 3.3 Percentage changes in blood volume (BV), cell volume (CV) and plasma volume (PV) at 

the end of each trial. Calculated using the method described by Dill and Costill (1974). 
a
 and 

b
 denote 

significant difference (P<0.05) for between rest and end between all trials and within the 

corresponding trial, respectively. 

 

Single-Blind 

Placebo 

Double-Blind 

Placebo 
Bupropion 

ΔBV% -2.8 ± 3.1 

 

-0.8 ± 4.1 

 

-3.1 ± 2.3 

ΔCV% 1.0 ± 3.5 

 

1.8 ± 2.5 

 

0.1 ± 2.7 

ΔPV% -5.4 ± 3.4ab 

 

 -2.4 ± 6.6a 

 

 -5.1 ± 4.9a 
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No differences between were observed for sweat loss (figure 3.9) or steady state 

expired gas values between trials (P>0.05). Expired gas showed a steady increase 

of %VO2peak throughout steady state exercise, but this was not significant (P>0.05).  

 

Figure 3.9 Sweat losses as calculated by changes in body mass adjusted for water consumption 

during exercise. 

 

3.5 – Discussion 

The onset of fatigue during prolonged exercise in warm conditions is more rapid and 

appears to be more heavily affected by factors residing within the CNS compared to 

exercise of a similar intensity undertaken in thermoneutral environments. Previous 

studies have found that acutely increasing central catecholaminergic activity, via 

administration of a dual dopamine/noradrenaline reuptake inhibitor, can improve 

exercise performance in warm conditions compared to a placebo. Gender 

differences in the regulation of neurotransmission and response to 

neuropharmacological interventions, as well as sex hormone-dependent fluctuations 

in thermoregulation, may alter this performance response to dopamine/noradrenaline 

reuptake inhibitors. The aim of this investigation was to determine whether or not 

performance benefits would manifest with the same pharmacological manipulation in 

women.  
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The results of the present study demonstrate that an acute administration of 

bupropion during the early follicular phase can improve performance in women 

during prolonged exercise in warm conditions. Oestrogen and progesterone levels 

were not significantly different between trials, suggesting that the method of 

controlling for menstrual cycle phase was successful. The lack of difference between 

trials for core temperature, skin temperature, heart rate, RPE, and ratings of thermal 

sensation during rest and steady state exercise support this. The increase in 

performance was comparable to those found by Watson and co-workers (2005) and 

Roelands and co-workers (Roelands et al., 2012) who were also using bupropion 

(7.5% vs. 9% and 5%, respectively). The dose to body mass ratio for this study was 

9.4mg/kg, while it was 7.98mg/kg and 8.15mg/kg, respectively, in the others. As the 

increase in performance falls between the two, there does not appear to be any 

obvious dose-dependent differences in performance. However, the inherent 

variability in response to pharmacological manipulation may obscure this 

relationship. In addition to genetic variation neurological factors, bupropion 

pharmacology would be affected by variation in cytochrome PY450B2. In general, 

there do not appear to be any gender differences for bupropion efficacy for treatment 

of smoking cessation or depression, or in pharmacokinetics for adult men and 

women (Dwoskin et al., 2006). In agreement with this, the results of this study 

appear to demonstrate that bupropion has similar effects for men and women during 

prolonged exercise in a warm environment.  

 

Hyperthermia and the resulting challenges to cardiovascular function and 

thermoregulation are considered to be primary contributors to the development of 

fatigue in warm conditions (Hargreaves, 2008; Nybo, 2008; Maughan, 2010). 

However, it appears that pharmacological manipulation of central catecholamines 

can, in part, override processes that mediate hyperthermic fatigue. This is not only 

evidenced by the increases in performance, but the significantly higher core 

temperatures and heart rates achieved at the end of the workload challenge in the 

present study and the time trials in previous studies using similar pharmacological 

agents (Watson et al., 2005a; Roelands et al., 2008d, 2012). The concept of a critical 

core temperature has been proposed (González-Alonso et al., 1999) and in the 

present study core temperatures approached those described by Nielsen and co-
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workers (Nielsen et al., 1993). However, the validity of a critical core temperature as 

the main determining factor of fatigue during prolonged exercise in the heat has 

recently been considered less important than the impact of increased cardiovascular 

strain (Cheuvront et al., 2010; Sawka et al., 2012). Because the higher core 

temperature and heart rate were only significant at the end of the workload 

challenge, they are likely due to the increased work rate during the bupropion trial, 

rather than pharmacologically induced changes in thermoregulation or sympathetic 

activity. This effect was also observed in the study by Watson and co-workers 

(Watson et al., 2005a). Despite completing more work and achieving higher core 

temperature and heart rates at the end of the workload challenge, perceived exertion 

and ratings of thermal sensation were not significantly different.  

 

It has been proposed that pacing strategy relies upon teleoanticipatory algorithm of 

behavioural economics which utilises peripheral feedback to calibrate power output 

and this process is interrelated to perceived exertion (St Clair Gibson et al., 2006). In 

this model, power output is modulated and subsequent period of uncertainty ensues 

as the new adjustments take time to affect a change detected in the periphery. The 

error detected by the teleoanticipatory algorithm contributes to perceived exertion. 

For example, if afferent stress signals do not match those predicted by the algorithm, 

a change in power output may be made to compensate and the experience of this 

change of demand will be reflected in perceived exertion. However, peripheral stress 

signals alone do not explain perceived exertion. There is a psychological and 

emotional component of stress that is affected by, but not dependent upon, 

peripheral signals or external stimuli. This has been demonstrated in a study where 

participants were deceived into thinking the amount of exercise they had to complete 

was less than was asked during experimental trials (Baden et al., 2005). During the 

minute after the deception, RPE increased, while ratings of affect decreased 

significantly, without changes in physiological indices or power output.  
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There is neurobiological support for the integration of the emotional and cognitive 

aspects of RPE with the teleoanticipatory algorithm, as proposed by St Clair Gibson 

and co-workers (2006). ERN in event-related potentials detected via EEG, which are 

associated with errors during internal-monitoring at the ACC, have been 

demonstrated to be aversive stimuli, increasing stress and promoting negative affect 

(Hajcak & Foti, 2008). ERN at the ACC have been shown to occur even as a result 

of unperceived, or subconscious errors (Nieuwenhuis et al., 2001). This suggests 

that when unexpected negative teleoanticipatory feedback is received it would have 

a negative emotional and cognitive impact, supporting the findings by Baden and co-

workers (2005). Furthermore, negative affect increases the amplitude of ERN in 

response to errors (Wiswede et al., 2009), suggesting a potential feed-forward effect 

of an increasingly negative impact on affect and stress by error detection. The neural 

networks associated with affect, cognition, and the cognitive/emotional experience of 

stress are interconnected and catecholamines are key neurotransmitters in their 

function (Ashby et al., 1999). This will be reviewed in greater detail in the general 

discussion. By altering the perception and/or impact of stress or exertion, bupropion 

may allow for greater power output to be maintained relative to peripheral feedback. 

This is supported by a study in temperate conditions using another 

dopamine/noradrenaline reuptake inhibitor methylphenidate during which 

participants were instructed to maintain work rate at an RPE of 16 until they could no 

longer maintain a work rate of 70% the initial value for two minutes (Swart et al., 

2009). Participants maintained a higher power output for longer at the same RPE 

during the methylphenidate trial, without significant differences in other 

measurements between trials. A study comparing the rates of fatigue at a fixed RPE 

in different temperatures showed that power output is decreased at the same RPE 

with increasing temperature (Tucker et al., 2006). Therefore, heat strain appears to 

contribute to the same teleoanticipatory algorithm for pacing strategy, which appears 

to be modulated by central catecholamines. Acute reuptake inhibition of dopamine 

and noradrenaline may interfere with the negative feedback of stress in the control of 

power output. The results of the present study indicate that this effect is similar for 

women during the follicular phase of the menstrual cycle.  
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There were several limitations with the present study. The lack of blood samples 

precluded a more robust depiction of hormone and blood volume changes 

throughout exercise. In addition to the method for controlling menstrual cycle phase, 

basal body temperature tracking could have been included; however, this is not 

necessarily reliable (Bauman, 1981). Requesting self-testing with ovulation kits to 

identify the end of the follicular phase may have improved the reliability of trial 

coordination. Future studies should investigate whether the effects of bupropion are 

preserved during the luteal phase and check for possible hormone interactions 

(described in section 3.2). In summary, the results of the present study suggest that 

acute administration of bupropion can improve self-regulated work rate for women 

exercising in warm conditions during the follicular phase of the menstrual cycle. 

Despite the apparent trend for greater core temperature during the bupropion 

treatment, this difference was not significant. In conclusion, acute administration of 

bupropion at therapeutic levels appears to have similar performance effects for both 

men and women in warm conditions. This suggests a common mechanism for 

fatigue during prolonged exercise in warm environments that can be manipulated 

with a combined dopamine/reuptake inhibitor.  
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4.1 – Abstract 

Bupropion, a dopamine/noradrenaline reuptake inhibitor, has previously enabled 

participants to maintain a higher power output with the same perception of effort and 

thermal sensation reported during the placebo session. However, it is not known if 

lower doses exert the same effects during exercise in high ambient temperature. Ten 

healthy well-trained male cyclists participated in this study. Participants ingested 

either placebo or a dose of bupropion (Bup50:150mg; Bup75:225mg; 

Bup100:300mg) the evening before and on the morning of the experimental trial. All 

trials were conducted in 30°C conditions (humidity 40-60%). Participants cycled for 

60min at 55%Wmax, immediately followed by a time trial to measure exercise 

performance. The maximal dose of bupropion significantly improved performance 

(p=0.035), while the lower doses did not change performance compared to a placebo 

condition (p>0.05).Bupropion significantly increased core temperature at the end of 

exercise and during recovery in all trials compared to placebo (p<0.05). Heart rate 

was significantly higher in the Bup100 trial during the recovery period after exercise 

(p<0.05). No changes in ratings of perceived exertion and thermal sensation were 

found. An ergogenic effect was only present when the highest dose (2 x 300mg) was 

administered to the participants. Despite an increase in core temperature and 

improved performance, there was no change in the perception of effort or thermal 

sensation. 
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4.2 – Introduction 

Exercise capacity during endurance exercise has been demonstrated to be ambient 

temperature-dependent (Galloway & Maughan, 1997) and exacerbated by increasing 

humidity (Maughan et al., 2012). These effects appear to be driven by the 

physiological challenges to thermoregulatory and fluid balance factors (Hargreaves, 

2008; Nybo, 2008; Maughan, 2010). This cumulative strain results in the eventual 

onset of fatigue and subsequent impairment in performance. This appears to be 

regulated largely by mechanisms within the CNS (as described in section 1.2). 

These challenges appear to be temporarily overridden by acute administration of 

drugs that inhibit catecholamine reuptake in the CNS (Roelands & Meeusen, 2010).  

 

Bupropion is a dual dopamine/noradrenaline reuptake inhibitor that was introduced in 

1980s as a new and atypical antidepressant (Stahl et al., 2004). In excess of 40 

million people use bupropion for various clinical purposes (Jefferson et al, 2005). In 

2003 bupropion was removed from the WADA list of prohibited substances, to be 

placed on the WADA monitoring list. Recently it was shown that use of bupropion 

and other anti-depressant medications are becoming increasing prevalent amongst 

elite athletes (Machnik et al., 2009). Watson and co-workers demonstrated that 

bupropion can enhance exercise performance in warm conditions (Watson et al., 

2005a). The maximum recommended daily dosage for bupropion is 300mg, but the 

performance effect was found using 600mg within a 24 hour period. Many in vivo 

animal studies have found bupropion to increase dopamine and noradrenaline 

throughout the brain. However, these studies should be regarded conservatively, as 

doses used are typically far in excess of the maximum dosage used in human 

studies relative to body mass. Bupropion metabolites are relatively weaker dopamine 

reuptake inhibitors and collectively act more potently in inhibiting noradrenaline 

reuptake at the NAT (Damaj et al., 2004). Human metabolism of bupropion renders 

the overall effects less potent in directly inhibiting dopamine reuptake than in rats. 

Dose-dependent pharmacokinetic studies have revealed a relatively linear 

relationship between metabolites (Suckow et al., 1986). This suggests that drug 

effects are determined by total transporter occupancy, rather than a change in its 

direct action, such as is the case with amphetamine. Human positron emission 
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tomography (PET) imaging studies have found sub-chronic dosing of 150mg/day for 

3 days, followed by 300mg/day for 7 days of bupropion produced mean DAT 

occupancy of 26% (Learned-Coughlin, 2003) and a 4-week 300mg/day study found 

20.84% (Argyelán et al., 2005). Recently, a study using the same dosages, 

achieving the same level of DAT occupancy, did not significantly increase 

extracellular dopamine in the striatum (Egerton et al., 2010). No appreciable 

increase in extracellular dopamine in the striatum were found even with 50% DAT 

blockade and only surprisingly small increases in extracellular dopamine with almost 

complete blockade (Volkow et al., 2002a). However, using a similar dose this 

research group showed a small, but significant increase (10%) in extracellular 

dopamine release in response to food stimulation (Volkow et al., 2002b).  

 

It was originally believed that both methylphenidate and bupropion inhibit DAT more 

potently than NAT. This was due to estimation of NAT blockade made using 

radiolabelled Nisoxetine, which has greater affinity for NAT than noradrenaline in the 

conditions used, resulting in underestimation of binding (Reith et al., 2005). Using 

radiolabelled noradrenaline instead, methylphenidate and bupropion are found to 

have 5 and 2 times greater affinity for NAT than DAT, respectively, and 

methylphenidate has 38 and 15 times greater affinity for NAT and DAT, respectively, 

than bupropion (Eshleman et al., 1999). Similarly, bupropion has been found to 

reduce the electrophysiological activity of the locus coeruleus by 50% (IC50) at 

13mg/kg compared to the 42mg/kg needed to reduce activity at dopaminergic 

neurons by the same amount (50%) in rats (Cooper et al., 1994). In the study by 

Watson and co-workers (Watson et al., 2005a) as well as the previous chapter the 

dose averaged at 8mg/kg. Together, the dose-dependent effects observed in human 

imaging, animal and in vitro studies suggest that both bupropion more potently 

occupies NAT than DAT in humans. The efficacy of such a relatively low dose would 

imply that striatal increased sensitivity to striatal phasic dopamine and stimulus 

salience is not necessarily the determining mechanism by which these drugs 

improve exercise performance. In spite of the large amount of research investigating 

the effects of these drugs at the striatum, recent evidence suggests that the 

therapeutic doses used preferentially affect the PFC (Berridge et al., 2006), where 

DAT expression is minimal (Hall et al., 1999) and NAT expression is high (Logan et 
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al., 2007). Here, extracellular dopamine is actively cleared by NAT (Morón et al., 

2002), suggesting that for significant dopaminergic reuptake inhibition to occur in the 

PFC, the NAT must also be blocked.  

 

The dose-dependent effects of these dual reuptake inhibitors are dependent on 

linear increases in blockade of both transporters. The resulting neurophysiological 

effects, however, are dependent on transporter expression at relevant 

neuroanatomical structures. Drug effects will therefore be determined by unique 

concentration thresholds at various structures throughout the brain and their 

interactions. Since often lower doses of bupropion than those used in previous 

studies are prescribed, it is important to investigate whether there is a dose-

response relationship for this pharmacological agent with regard to exercise in high 

ambient temperature. Previous research on the effects of bupropion during 

prolonged exercise performance in a warm environment (Watson et al., 2005 and 

Chapter 3) suggests that the maximal dose will improve exercise performance, so it 

is hypothesised that there will be a linear, dose-dependent improvement in 

performance.  

 

4.3 – Methods 

Ten healthy males (age 25 ± 4 y; height 1.82 ± 0.05 m; body mass 73.6 ± 9.1 kg; 

Wmax 351 ± 28 W; VO2peak 64 ± 6 mL/kg/min) participated in this investigation. All 

participants were well-trained cyclists or triathletes, but were not accustomed to 

exercise in a warm environment at the time of the study. Prior to the start of the 

study all volunteers received written information regarding the nature and purpose of 

the experimental protocol. Following an opportunity to ask any questions, a written 

statement of consent was signed. The protocol employed was approved by the 

Research Council of the Vrije Universiteit Brussels, Belgium. The experimental 

design used in this study is identical to the protocol used by Watson and co-workers 

(2005) and Roelands and co-workers (Roelands et al., 2008d, 2008a). All 

participants completed a preliminary maximal exercise test, a familiarisation trial and 

4 experimental trials. The preliminary trial consisted of continuous incremental cycle 
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exercise to volitional exhaustion and was used to determine the power output 

required to elicit 55% and 75% of maximal workload (Wmax) and VO2max. A 

familiarisation trial was undertaken to ensure the participants were accustomed to 

the procedures employed during the investigation and to minimize any potential 

learning or anxiety effects. This trial was identical to the experimental trials in all 

respects. Experimental trials were undertaken in warm (30oC) conditions with relative 

humidity maintained between 40 – 60%. Experimental trials were separated by 7 

days to minimise the development of heat acclimation and to ensure drug washout. 

Participants were instructed to record dietary intake and physical activity during the 

two days before the first trial, and to replicate this in the two days prior to the 

subsequent experimental trials. No exercise, alcohol or caffeine consumption was 

permitted in the 24 hours before each trial.  

 

Participants ingested a placebo (200mg lactose) or a dose of bupropion (Bup50: 

150mg; Bup75: 225mg; Bup100: 300mg) the evening before and on the morning of 

the experimental trial. A dose of 150mg is typically administered during the first week 

of the treatment in depression or to assist in the cessation of smoking, while 300mg 

is equivalent to the maximal daily therapeutic dose (Holm & Spencer, 2000). The 

treatment was randomized and administered in double-blind crossover manner. All 

capsules were prepared by an independent pharmacy to appear indistinguishable 

with regard to dimensions, weight and colour. Experimental trials were designed in 

accordance with previous studies in this laboratory (Watson et al., 2005a; Roelands 

et al., 2008d, 2008c). Participants entered the laboratory in the morning 

approximately 90 minutes after consuming a standard breakfast that included 500mL 

of plain water. Nude post-void body mass was measured after which participants 

inserted a rectal thermistor 10cm beyond the anal sphincter for the measurement of 

core temperature. Surface skin temperature probes were attached to four sites 

(chest, upper arm, thigh and calf) to enable the determination of weighted mean skin 

temperature (Ramanathan, 1964) and a heart rate telemetry band was positioned. 

Participants were dressed in only cycling shorts, socks and shoes for all trials. 

Participants then entered a climatic chamber maintained at the appropriate 

environmental condition and rested in a seated position for 15 minutes. During this 

period temperatures and heart rate were recorded at 5 minute intervals and a resting 
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venous blood sample was drawn immediately before the start of exercise. The 

exercise protocol consisted of 60 minutes constant load exercise at a workload 

corresponding to 55 % Wmax, followed by a TT to measure exercise performance. 

There was a 1 to 2 minute delay between the end of the constant load exercise and 

the beginning of the TT, to program the ergometer. The TT required the participants 

to complete a predetermined amount of work equal to 30 minutes at 75 % Wmax as 

quickly as possible (Jeukendrup et al., 1996). Participants began the TT at a 

workload corresponding to 75 % Wmax, but were free to increase or decrease their 

power output as desired from the outset. During the TT a computer program 

displayed a bar indicating the percentage of total work completed to give the subject 

an indication of their progress. Throughout the protocol no feedback was provided 

regarding time lapsed, power output, pedal cadence or heart rate. During exercise 

participants had ad libitum access to plain water. 

 

Core and skin temperatures and heart rate were recorded at 5 minute intervals 

during exercise. Ratings of perceived exertion (RPE; Borg 1982) and thermal 

sensation (assessed using a 21-point scale ranging from unbearable cold to 

unbearable heat; adapted from Hardy 1970) were assessed every 15 minutes during 

the initial 60 minute constant load period and at 10 minute intervals during the TT. 

Venous blood samples were drawn after 60 minutes of constant load exercise and at 

the end of the TT. Following the completion of the TT participants returned to a 

seated position where recovery was monitored for 15 minutes (see figure 4.1). The 

probes and cannula were then removed and nude body mass was re-measured to 

allow the estimation of sweat losses. Venous blood samples were drawn directly into 

pre-cooled vacutainer tubes). 10mL samples were collected into plain tubes and left 

to clot for 1 hour at room temperature before centrifugation. The resulting serum was 

stored at –20oC for the determination of prolactin and cortisol. Samples for plasma 

ACTH were collected into 4.5mL tubes containing K3EDTA. All hormones were 

measured using ELISA kits. A 0.5mL aliquot of whole blood was extracted and used 

for the determination of haemoglobin and haematocrit, with these used to estimate 

percentage changes in plasma volume relative to the pre-exercise sample. 
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Figure 4.1 Schematic of experimental trials. 

 

4.4 – Results 

All participants completed all experimental trials with no reported side effects. 

Participants finished the TT significantly faster in the Bup100 trial compared to the 

placebo trial (p=0.035; placebo: 33’42” ± 2’12”, Bup100: 32’06” ± 1’54”; Fig. 1) 

equivalent to a ~5% reduction in time to completion. TT performance during the 

Bup50 (p=0.411) and the Bup75 (p=0.423) trials were not significantly different to the 

placebo trial (figure 4.2). A linear performance response to increasing dose was not 

apparent for the majority of participants (figure 4.3).  
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Figure 4.2 Group time trial performance * denotes significant difference compared to placebo 

(32’06” ± 1’54 vs. 33’42” ± 2’12”, respectively; p=0.035). 

 

 

Figure 4.3 Individual time trial performance. Thick black line represents the mean. 

 

Exercise caused a gradual increase in core temperature in all trials (p=0.001; figure 

4.4A). In all bupropion trials, there was a tendency for the core temperature to be 

increased during the time trial compared to the placebo trial. Core temperature rose 

significantly higher in Bup100 trial (40.0 ± 0.6°C) than during the placebo trial (39.5 ± 

0.6°C) near the end of the TT and during recovery (p<0.05). During the Bup50 and 
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Bup75 trial significantly higher core temperatures were reached compared to the 

placebo trial during recovery phase (p<0.05). No differences in weighted mean skin 

temperature were apparent between the placebo and bupropion trials (figure 4.4B). 

Skin temperature increased during exercise in all conditions, reaching a plateau after 

10 min of exercise. 

A 

 

B 

 

Figure 4.4 Core (A) and weighted mean skin (B) temperature throughout trials. Significant 

differences (P<0.05) compared to placebo at the corresponding time point are denoted as # for 

Bup50, § for Bup75, and * for Bup100. 
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Heart rate increased significantly in all trials (p<0.001). In the Bup100 trial heart rate 

showed a tendency to be increased near the end of exercise and was significantly 

higher during the recovery phase compared to the placebo (p<0.024; figure 4.5). No 

differences in heart rate were found between the lower doses of bupropion and the 

placebo trial.  

 

Figure 4.5 Heart rate during experimental trials. Significant difference compared to placebo 

(P<0.05) denoted by * for Bup100. 

 

Both RPE and TS scores significantly increased during exercise (p<0.05; figure 4.6). 

Ratings of perceived exertion were similar between the placebo and different 

bupropion treatments. The participants’ ratings of thermal sensation were also not 

influenced by the drug treatment. The loss of body mass after exercise, corrected for 

fluid intake, did not show any change due to the bupropion administration.  
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A 

 

B 

 

Figure 4.6 RPE (A) and ratings of thermal sensation (B) during experimental trials. 

 

All measured hormone concentrations rose during exercise in all trials (figure 4.7). 

ACTH similarly increased significantly after constant load exercise (P<0.005) and at 

the end of TT had increased significantly compared to at rest (P<0.001). Rise in 

circulating cortisol concentrations were significant only at the end of TT in all trials 

(P<0.05) compared to at rest and after the constant load exercise. Prolactin 

concentrations were significantly elevated at the end of TT and had increased 

significantly compared to both at rest (P<0.001) and after the initial 60 min (P<0.001) 

for all trials.  
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Figure 4.7 Circulating hormone concentrations throughout and within trials. Significant difference 

(P<0.05) compared to placebo is indicated as * and significant difference compared to both rest and 

60min is denoted as **. Within trial significant difference (P<0.05) compared to baseline and 60min is 

denoted as 
a 
and 

b
, respectively. 

 

There were no differences between trials in haematocrit, haemoglobin or percent 

changes in blood volume, cell volume or plasma volume. Packed cell volume and 

haemoglobin significantly increased compared to baseline overall (P<0.05), but only 

significantly increased between steady state and the end of the time trial in all trials 

except at 75% dose (table 4.1). This trend was preserved through the calculation for 

percentage changes in blood volume and plasma volume, while cell volume did not 

significantly change throughout (table 4.2). There were no differences between trials 

for sweat loss (figure 4.8). 

 

Table 4.1 Haematocrit (Hct) and haemoglobin (Hb) during experimental trials. 
a
 and 

b
 denote 

significant difference between start and 60min, respectively. 

 

 

Placebo Bup50 Bup75 Bup100 

Hct (%) 

Start 42.3± 2.2 42.3 ± 2.7 42.6± 2.6 42.5± 2.4 

60min 43.9 ± 2.9
a
 43.7± 3.3

a
 44.0 ± 3.2

a
 44.2 ± 3.3

a
 

End 44.8± 2.9
ab

 44.6 ± 3.7
ab

 44.6± 3.8
a
 45.4± 3.2

ab
 

Hb (g/L) 

Start 149.9± 9.0 149.5 ± 10.4 150.1 ± 9.9 150.7± 9.1 

60min 157.1 ± 11.2
a
 156.0± 13.4

a
 156.8± 12.8

a
 157.0 ± 12.1

a
 

End 159.3 ± 11.5
ab

 158.5± 13.9
ab

 159.1± 14.5
a
 160.5± 11.9

ab
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Table 4.2 Percentage changes in blood, cell and plasma volume compared to rest throughout trials 

as calculated by the method put forth by Dill and Costill (1979). 
a
 and 

b
 denote significant difference 

between start and 60min, respectively. 

  

Placebo Bup50 Bup75 Bup100 

ΔBV% 
60min -4.5± 1.5

a
 -4.0± 2.4

a
 -4.1± 2.2

a
 -3.9± 2.3

a
 

End -5.8 ± 1.9
ab

 -5.5± 2.2
ab

 -5.4 ± 2.7
a
 -6.0 ± 1.7

ab
 

ΔCV% 
60min -0.9± 1.3 -1.0 ± 1.2 -0.9± 1.2 -0.1± 0.5 

End -0.3 ± 1.4 -0.6± 0.9 -1.1± 1.2 0.3± 1.2 

ΔPV% 
60min -7.2± 3.1

a
 -6.3 ± 3.9

a
 -6.6 ± 3.7

a
 -6.8 ± 4.3

a
 

End -9.9± 3.8
ab

 -9.3 ± 4.3
ab

 -8.8± 4.8
a
 -10.7± 3.3

ab
 

 

 

Figure 4.8 Post-exercise corrected body mass losses due to sweat. 

 

4.5 – Discussion 

Previous studies have found that acutely increasing central catecholaminergic 

activity via dual dopamine/noradrenaline reuptake inhibitors can improve exercise 

performance in warm conditions compared to placebo. The present study is the first 

to investigate the effects of a range of lower doses. The results of the present study 

demonstrate that only the maximum acute dose of bupropion improved performance 

in during prolonged exercise in warm conditions. The increase in performance was 

comparable to those found by Watson and co-workers (2005) and in those in 

Chapter 3 (5% vs. 9% and 7.5% respectively). Acute manipulation of central 

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Placebo Bup50 Bup75 Bup100

S
w

e
a

t 
L

o
s
s

 (
L

) 



86 
 

catecholaminergic neurotransmission can enhance performance in the heat, despite 

the attainment of core temperatures in excess of those observed during the placebo 

trial. Bupropion is not currently included in the list of prohibited substances, meaning 

that athletes are currently free to use this agent in training and competition. A 

consequence of this improvement in performance was the maintenance of a greater 

rate of heat production, resulting in the attainment of a higher core temperature 

towards the end of the TT phase of the trial. In a similar manner to previous 

investigations (Watson et al., 2005; Roelands et al., 2008a), this was accompanied 

by a lack of difference in perceived exertion or ratings of thermal sensation, so it 

seems possible that the use of drugs of this nature has the potential to increase the 

likelihood of developing heat illness.  

 

This ability to maintain a higher power output and attain higher core temperatures 

may be due to catecholaminergic modulation of error detection in the 

teleoanticipatory algorithm described by St Clair Gibson and co-workers (2006). Heat 

strain appears to contribute to the same teleoanticipatory algorithm for pacing 

strategy. A study comparing the rates of fatigue at a fixed RPE in different 

temperatures showed that power output is decreased at the same RPE with 

increasing temperature (Tucker et al., 2006). As power output is modulated a 

prediction of performance feedback will be computed. If afferent stress signals do not 

match those predicted by the algorithm, a change in power output may be made to 

compensate and the experience of this change of demand will be reflected in 

perceived exertion. Methylphenidate, another dopamine/noradrenaline reuptake 

inhibitor, has been demonstrated to alter this relationship in RPE and power-output 

in a study controlling for RPE. Participants maintained a higher power output for 

longer at the same RPE during the methylphenidate trial (Swart et al., 2009). The 

perception of exertion has also been demonstrated to be related to affect (Baden et 

al., 2005). This is supported by evidence from research focused on the ACC, which 

has been identified as a key neuroanatomical structure for internal monitoring and 

autonomic management of behavioural economics (Sanfey et al., 2006; Salamone et 

al., 2009). The relationship between affect and RPE may be explained by internal-

monitoring errors acting as aversive stimuli, increasing stress and promoting 

negative affect (Hajcak & Foti, 2008). ERN at the ACC has been shown to occur 
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even as a result of unperceived, or subconscious errors (Nieuwenhuis et al., 2001). 

This suggests that when unexpected negative teleoanticipatory feedback is received 

it would have a negative emotional and cognitive impact, supporting the findings by 

Baden and co-workers (2005). Furthermore, negative affect increases the amplitude 

of ERN in response to errors (Wiswede et al., 2009), suggesting a potential feed-

forward effect of an increasingly negative impact on affect and stress by error 

detection. The neural networks associated with affect, cognition, and the 

cognitive/emotional experience of stress are interconnected and catecholamines are 

key neurotransmitters in their function (Ashby et al., 1999). This includes the PFC, a 

key target of action for therapeutic doses of methylphenidate (Berridge et al., 2006) 

and bupropion (Bares et al., 2010). PFC and ACC are interconnected, collectively 

contributing to the integration of emotional and cognitive processes, and 

catecholamines modulate their activity  (Bush et al., 2000). Their activity is also 

integrated in the generation of the ERN (Herrmann et al., 2004). By altering the 

perception and/or impact of stress or exertion, acute bupropion administration may 

allow for greater power output to be maintained relative to peripheral feedback.  

 

The prevalence of antidepressant and psychostimulant use appears to be increasing 

among elite athletes (Eichner, 2008; Machnik et al., 2009). While many individuals 

may have legitimate reasons for seeking this type of treatment, the inappropriate use 

of these agents by athletes to enhance performance is also a distinct possibility. The 

combination of manipulating catecholaminergic neurotransmission and strenuous 

exercise in the heat has been shown to enable the attainment of higher core 

temperatures, potentially increasing the risk of heat illness (Watson et al., 2005; 

Roelands et al., 2008a). Because lower doses of bupropion (compared with the 

recommended maximal daily dose) are often prescribed (150mg/day), the present 

study investigated the dose–response effects of acute administration of bupropion on 

performance, thermoregulation and hormonal responses to prolonged exercise in 

warm conditions. Given that an ergogenic effect was present only when the highest 

dose (2 x 300mg) of bupropion was administered, this suggests a threshold at which 

the reuptake inhibition of dopamine and noradrenaline begin to affect performance. 

In addition, administration of a more potent catecholaminergic agent (such as 
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methylphenidate) results in greater performance improvements (Roelands et al., 

2008a).  

 

The therapeutic use of these drugs entails chronic administration over a period of 

weeks, months or years. A previous study using a sub-chronic dosing protocol (10-

day) reported no benefit to exercise performance (Roelands et al., 2009). Daily 

administration of bupropion has been found to result in a decrease in the tissue 

levels of dopamine, lower concentrations of its metabolites, and a reduction in 

voluntary motor activity (Santamaría & Arias, 2010). The authors attribute this effect 

of bupropion administration over a period of several days to excessive 

dopamine/noradrenaline release, which eventually depletes the tissue pool of 

dopamine. However, it should be noted that this study used very high concentrations 

of bupropion relative to body mass (~30mg/kg). Furthermore, reuptake inhibitors 

typically reduce synthesis of the respective neurotransmitters they affect due to 

negative feedback, as demonstrated by reduction in the presence of synthetic 

enzyme mRNA, which is also the case for bupropion and tyrosine hydroxylase 

(Nestler et al., 1990). This effect has been observed in tandem with the changes in 

electrophysiological adaptations at the locus coeruleus after treatment with 

antidepressants, including bupropion (Nestler et al., 1999). These findings may be of 

interest to WADA, because bupropion is currently on the monitoring program, 

meaning its use by athletes is not restricted in competition, unlike the use of 

methylphenidate or amphetamine. Unfortunately, determining whether an athlete has 

been using the treatment in the appropriate manner would be difficult to determine.  

 

 

 

 



89 
 

 

 

 

Chapter 5 

 

The Effect of a Catecholamine Precursor 

on the Development of Fatigue during 

Prolonged Exercise in Warm Conditions 
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5.1 – Abstract 

Acute doses of the catecholamine precursor L-DOPA and peripheral amino acid 

decarboxylase inhibitor (Sinemet) on prolonged exercise previously failed to change 

exercise performance in normal ambient temperatures. This may have been due to 

the short half-life of L-DOPA and sensitivity to food consumption. Therefore, it is not 

known whether acute doses of L-DOPA timed to reach Cmax during exercise will 

improve prolonged cycling performance in warm conditions. 10 physically active men 

(age 26 ± 4 y; height 1.76 ± 0.08 m; body mass 76.3 ± 10.6 kg; VO2peak 57.4 ± 8 

mL/kg/min) were recruited for this study. Participants cycled for 1 h at 60% VO2peak 

followed by a 30 min workload challenge, during which they were instructed to 

complete as much work as possible. Heart rate, skin and core temperature, as well 

as ratings of perceived exertion and thermal sensation were recorded throughout 

exercise. A finger tap test at the beginning and end of exercise were employed to 

examine fine motor control. No significant difference in exercise performance was 

observed between trials. Prolactin concentrations were significantly increased at the 

end of exercise in all trials (P<0.001) but this response was attenuated at the end of 

exercise for the L-DOPA trial (11.4 ± 5.5 ng/mL) compared to single-blind (23.6 ± 5.6 

ng/mL) and double-blind placebo trials (20.8 ± 3.3 ng/mL; P=0.024). No differences 

between trials were found for all other measures. The results indicate that 

augmenting central catecholamine pools inhibit the normal prolactin response to 

exercise in the heat, but do not alter performance, thermoregulation or sympathetic 

outflow.  
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5.2 – Introduction 

Endurance exercise capacity is reduced in warm conditions in a temperature- 

(Galloway & Maughan, 1997) and humidity-dependent manner (Maughan et al., 

2012).  The main physiological difference to exercise in normal ambient conditions is 

the challenge to thermoregulation and, consequently, fluid balance as well 

(Hargreaves, 2008; Nybo, 2008; Maughan, 2010). This cumulative strain results in 

the eventual onset of fatigue and subsequent impairment in performance. This 

appears to be regulated largely by mechanisms within the CNS (as described in 

section 1.2). Pharmacological inhibition of catecholamine reuptake consistently 

improves performance during prolonged exercise in warm conditions, whereas 

studies attempting to influence catecholamine metabolism have been conflicting 

(Roelands & Meeusen, 2010). L-DOPA is the precursor molecule for dopamine 

synthesis. L-DOPA has been used to treat motor control disorders in Parkinson’s 

disease for over 40 years and is considered the “gold standard” treatment today 

(Nagatsu & Sawada, 2009). Clinically, L-DOPA is administered with an amino acid 

decarboxylase (AADC) inhibitor that cannot readily cross the blood-brain barrier; this 

prevents decarboxylation of L-DOPA in the periphery, thereby reducing associated 

gastrointestinal distress and increasing the delivery of L-DOPA to the brain. To date, 

only one study has investigated the effects of L-DOPA on prolonged exercise 

performance (Meeusen et al., 1997b). This study was conducted in normal ambient 

temperature and reported no effect on exercise performance. This study used 

Sinemet, a combination drug containing L-DOPA and carbidopa, an AADC inhibitor, 

in a ratio of 4:1. Instant Sinemet is designed begin absorption 30 minutes after 

ingestion. Thereafter Cmax of L-DOPA occurs roughly 1 hour after ingestion and the 

half-life is only approximately 2 hours (Contin & Martinelli, 2010). In the study by 

Meeusen and co-workers (1997), the dosing protocol is described as 4mg/kg 

Sinemet and is taken 24 hours before exercise and the morning of the trial. It is not 

clear whether this meant the dose was 4mg/kg Sinemet (4:1 L-DOPA/carbidopa) or 

4mg/kg L-DOPA. Furthermore, it isn’t clear if the 4mg/kg was divided between the 

two doses or if it is taken twice. The study imposed a standardised breakfast before 

exercise. Whether this was before or after the morning dose is not mentioned, but in 

either case, this would have a drastic impact on L-DOPA pharmacokinetics, severely 

reducing circulating L-DOPA concentrations (Contin & Martinelli, 2010). Therefore, 
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the dosing protocol employed was not ideal with respect to L-DOPA 

pharmacokinetics. Nonetheless, peripheral catecholamines were increased as was 

circulating growth hormone, suggesting a central effect. While this study found no 

effect on exercise performance, the effects of central catecholaminergic manipulation 

appears to be more pronounced during exercise undertaken in warm conditions. 

Therefore, the aim of the present study is to determine the effects of a dosing 

protocol designed to provide peak L-DOPA concentrations during a performance test 

during prolonged exercise in a warm environment. It is hypothesised that an acute 

dose of Sinemet will improve prolonged exercise performance in warm conditions.  

 

5.3–Methods 

10 physically active men (age 26 ± 4 y; height 1.76 ± 0.08 m; body mass 76.3 ± 10.6 

kg; VO2peak 57.4 ± 8 mL/kg/min) were recruited to participate in this study. All 

participants took part in regular endurance exercise, but were not accustomed to 

exercise in a warm environment at the time of the study. Prior to their admission to 

the study, participants were provided information regarding the purpose and design 

of the study, including manufacturer information about Sinemet. Thereafter, if 

participants confirmed their interest and eligibility, a statement of informed consent 

was signed. Participants visited the laboratory 5 times in total. The first visit was a 

VO2peak test to determine work rates for the experimental trials. Subsequently, 

participants returned for a familiarisation trial to minimise any learning or anxiety 

effects and to ensure proper work rate configuration. This was followed by a single-

blinded placebo control trial, which served both as an additional comparison against 

experimental trials and as a second familiarisation. The experimental trials which 

followed were arranged in a randomised double-blind, placebo-controlled crossover 

design.  

 

VO2peak was determined by a discontinuous test to volitional exhaustion was 

performed by participants using a Lode Corival cycle ergometer (Lode B.V., 

Groningen, Netherlands) in an environmental chamber (Weiss-Gallenkamp, UK) at 

20° C and 50% relative humidity as described in Chapter 2. VO2peak was then used 
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to calculate work rates corresponding to this value using linear regression. The 

standardisation of pre-trial conditions is outlined in Chapter 2. On the day of testing, 

participants ingested 100/25mg L-DOPA/carbidopa or placebo (glucose) upon 

waking with water. After 1.5 hr, participants consumed a standardised aproteic 

breakfast consisting of two small cereal bars and 500mL of orange juice. 1.5 hr later 

they consumed their second dose of Sinemet. During the following 2.5 hours, 

participants were asked to steadily consume 500mL of water, after which they 

arrived at the laboratory for testing. This dosing protocol was intended to augment 

central catecholamine stores and coordinate peak blood concentrations to occur 

during exercise, while avoiding nausea which is relatively common with 

administration of L-DOPA. Experimental trials were designed to be similar to 

previous studies (Watson et al., 2005a; Roelands et al., 2008d, 2008b;chapters 1 & 

2). Upon arrival participants were asked to void their bowels and bladder, before 

nude body mass was recorded. Participants then changed into cycling clothing, 

positioned a rectal thermistor 10cm beyond the anal sphincter and a radio telemetric 

heart rate monitor in privacy. Surface skin thermistors were placed at four sites 

(triceps, chest, quadriceps and calf) for the measurement of weighted mean skin 

temperature using the Ramanathan method (1964). Whilst seated for 15 minutes in a 

thermoneutral environment a 2g butterfly cannula was introduced to a superficial 

forearm vein to allow repeated blood sampling throughout the experimental protocol. 

Due to the short Cmax and half-life of L-DOPA, participants were asked to consume a 

final dose of Sinemet or placebo immediately before beginning exercise; totalling 

300mg L-DOPA and 75mg carbidopa, which is the minimum recommended daily 

dose to start with treating of Parkinson’s disease.  

 

The experimental protocol is illustrated in figure 5.1. After the collection of baseline 

measurements during the rest period, participants entered the climatic chamber 

maintained at 30.2 ± 0.2 °C, 50% ± 1% relative humidity. Before and after exercise 

participants performed two finger-tap tests with both hands, to determine any 

changes in fine motor control. During exercise, participants were given 100mL of 

water to drink every 10 minutes, amounting to 900mL in total, which was deducted 

from post-exercise body mass, to calculate sweat loss. Throughout the trial heart 

rate, core temperature and skin temperature, were recorded every 5 minutes. During 
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the 15 minute rest period subjective thermal sensation was measured. During the 1 

hour fixed work rate period subjective thermal sensation and rate of perceived 

exertion were measured every 15 minutes. Expired gas samples were also collected 

for verification of work rate at 30 min and just before steady state exercise was 

complete. During the time trial perceived thermal sensation and exertion were 

measured every 10 minutes. Participants were asked to cycle at a work rate 

corresponding to 60% VO2peak for 60 minutes, followed by a 30 minute workload 

challenge, in which participants were asked to complete as much work as possible. 

Initial work rate during the workload challenge corresponded to 75% VO2peak, 

thereafter participants were free to manipulate the work rate to complete as much as 

they felt possible (see figure 5.1). Standardised verbal encouragement was provided 

by the experimenter to help ensure a maximal effort. Feedback during the time trial 

was limited to the time lapsed (power output, cadence, heart rate, etc. were hidden 

from the participant). Following completion of the workload challenge and the 

collection of the final blood sample, participants completed a second finger tap test 

before leaving the climatic chamber. Skin thermistors, heart rate telemetry band and 

rectal thermistor were removed in privacy before towelling off and nude body mass 

was recorded behind a screen. The second measurement of nude body mass was 

used to calculate sweat loss, correcting for the weight of water consumed during 

exercise. 
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Figure 5.1 Schematic of experimental trials. 

 

5.4 –Results 

Multivariate analysis revealed that there were no significant differences between 

trials for performance (P=0.08) (figure 5.2A). Post-hoc paired-sample t-tests were 

employed to observe between trial differences, which revealed a significant 

difference between the single-blind placebo (316.6 ± 49.4 kJ) and L-DOPA trial 

(326.3 ± 48.1; P=0.023) and no significant difference between single-blind and 

double-blind (314.1 ± 42.7; P=0.797), or double-blind placebo and L-DOPA 

(P=0.276). However, because these trials are not conducted under the same 

conditions, the significance is untenable. No order effect was observed on 

performance (P=0.553). Two participants performed substantially worse on their 

double-blind placebo compared to their single-blind placebo trial (see figure 5.2B). 

This resulted in a larger effect size for the L-DOPA trial and should therefore be 

considered with caution (see figure 5.3).   
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A 

 

B 

 

Figure 5.2 Total work done during the time trials expressed by trial (A) and for each individual (B). 

 

250

270

290

310

330

350

370

390

W
o

rk
 D

o
n

e
 (

K
il
o

jo
u

le
s

) 

225

250

275

300

325

350

375

400

Single-Blind
Placebo

Double-Blind
Placebo

L-DOPA

W
o

rk
 D

o
n

e
 (

K
il
o

jo
u

le
s

) 

1

2

3

4

5

6

7

8

9

10



97 
 

 

Figure 5.3 Percentage change in performance from double-blind placebo to L-DOPA trials. 

 

Core temperature rose steadily in all trials during exercise, but there was no 

significant difference between trials (figure 5.4A). Weighted mean skin temperature 

rose rapidly in the first 15 minutes of exercise after which it plateaued until the end of 

exercise (figure 5.4B). No significant differences were observed between trials. 

Similarly, heart rate rose rapidly in the first 15 minutes of exercise, then stabilised 

and increased gradually throughout the steady state period. Heart rate increased 

sharply again after the start of the workload challenge and continued to rise slowly 

until the end (figure 5.5). No significant differences were observed between trials.  
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A 

 

B 

 

Figure 5.4 Core temperature (A) and weighted mean skin temperature (B) throughout trials. 
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Figure 5.5 Heart rate throughout trials. 

 

Rating of perceived exertion increased throughout exercise (figure 5.6), but no 

significant differences were observed between trials (P=0.853). Ratings of thermal 

sensation rose rapidly in the first 15 minutes of exercise, but remained stable during 

the prolonged exercise period (figure 5.7). During the workload challenge thermal 

sensation ratings rose more rapidly. No significant differences were observed 

between trials (P=0.682).  

 

Figure 5.6 Ratings of perceived exertion throughout exercise. 
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Figure 5.7 Ratings of thermal sensation throughout trials. 

 

Prolactin concentrations were significantly elevated at the end of exercise in all trials 

(P<0.001), but this response was significantly attenuated during the L-DOPA trial 

(11.4 ± 5.5 mIU/mL) compared to single-blind (23.6 ± 5.6 mIU/mL) and double-blind 

placebo trials (20.8 ± 3.3 mIU/mL; P=0.024). Cortisol concentrations were 

significantly increased at the end of exercise in all trials (P=0.001), but there was no 

significant difference apparent between trials (P=0.448). 

 

Figure 5.8 Serum prolactin at rest and after the workload challenge. * denotes significant difference 

from rest (P<0.001). ** denotes significant difference between trials (P=0.024). 
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Figure 5.9 Serum cortisol throughout trials. * denotes significant difference from rest, 30min and 60 

min (P=0.001) 

 

A significant exercise effect was found for finger-tap performance for the dominant 

hand only (P=0.007). This was reflected in an increased number of taps after 

exercise. No significant difference was observed for finger-tap test between trials.  

 

Table 5.1 Number of taps for dominant and non-dominant hands before and after exercise for each 

trial. 
a 
denotes significant difference after exercise (P<0.05). 

 Single-Blind 

Placebo 

Double-Blind 

Placebo L-DOPA 

 Pre Post Pre Post Pre Post 

Dominant 74.4±9.1 77.5±9.0
a
 74.7±8.3 76.1±11.1 74.4±9.3 77.2±10.6

a
 

Non 68.3±9.2 72.8±9.4
a
 69.8±12.6 72.6±12.8 69.1±11.6 72±8.8 
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Table 5.2 Changes in haematocrit (Hct), haemoglobin (Hb), and glucose from rest to end of each 

trial. All values were significantly increased compared to rest (P<0.05). No significant differences 

between trials were observed. 

  

Single-Blind 

Placebo 

Double-Blind 

Placebo L-DOPA 

 

Rest 43.3 ± 1.9 43.4 ± 1.5 43.4 ± 1.4 

Hct (%) 30min 45.2 ± 1.6 44.1 ± 0.9 45.4 ± 1.6 

 

60min 45.1 ± 1.6 44.6 ± 1.7 45.3 ± 1.3 

 

End 45.8 ± 1.7 45.2 ± 1.1 46.1 ± 1.1 

     

 

Rest 151.8 ± 5.8 151.6 ± 5.5 149.0 ± 7.7 

Hb (g/L) 30min 159.3 ± 9.2 156.9 ± 5.9 159.4 ± 6.8 

 

60min 160.6 ± 7.2   162.0 ± 11.0 159.0 ± 6.6 

 

End 163.1 ± 7.3 160.2 ± 5.6 161.6 ± 6.2 

     

 

Rest 4.5 ± 0.9 4.5± 0.9 3.9 ± 0.4 

Glu(mmol/L) 30min 4.5 ± 0.7 4.1 ± 0.5 4.1 ± 0.8 

 

60min 4.7 ± 0.7 4.3 ± 0.7 4.1 ± 0.8 

 

End 5.0 ± 1.1 4.6 ± 0.8 4.6 ± 0.8 
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Table 5.3 Percentage changes in blood volume (BV), cell volume (CV) and plasma volume (PV) at 

the end of each trial. Calculated using the method described by Dill and Costill(1974). All values were 

significantly increased compared to rest (P<0.05). No significant differences between trials were 

observed. 

 

  

Single-Blind 

Placebo 

Double-Blind 

Placebo L-DOPA 

 

30min -4.6 ± 2.5 -4.2 ± 2.3 -6.3 ± 3.7 

ΔBV% 60min -5.5 ± 1.8 -5.8 ± 4.8 -6.2 ± 3.5 

 

End -6.9 ± 1.7 -5.6 ± 1.9 -8.0 ± 3.8 

 

30min -0.3 ± 3.3 -1.7 ± 2.8 -2.1 ± 5.6 

ΔCV% 60min -1.4 ± 1.9 -3.4 ± 4.7 -2.1 ± 5.3 

 

End -1.3 ± 2.0 -1.5 ± 1.8 -2.2 ± 4.7 

 

30min -7.8 ± 2.8 -6.0 ± 3.0 -9.4 ± 3.2 

ΔPV% 60min -8.5 ± 2.9 -7.6 ± 5.3 -9.3 ± 3.0 

 

End -11.1 ± 3.0 -8.8 ± 2.8 -12.4 ± 3.4 

 

No differences between were observed for sweat loss (figure 5.10) or steady state 

expired gas values between trials (P>0.05). Expired gas showed a steady increase 

in %VO2peak throughout the bout of steady state exercise, but there was no 

significant differences apparent between trials (P>0.05).  

 

Figure 5.10 Mean sweat loss during experimental trials. 
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5.5 – Discussion 

The results of the present study suggest that augmenting availability of a 

catecholamine precursor produces no effect on exercise performance, 

thermoregulation or sympathetic outflow. While an effect on brain catecholamine 

production was confirmed through a change in circulating prolactin concentrations, 

no other clear physiological effects were apparent, supporting the findings by 

Meeusen and co-workers (Meeusen et al., 1997b). Inhibition of the prolactin 

response was evident in the L-DOPA trial, which is a common effect of L-DOPA 

treatment that has been well documented (Ben-Jonathan & Hnasko, 2001). This 

indicates that the dosing protocol produced the desired response: elevating brain 

catecholamine synthesis and release. The lack of performance response observed 

may be due to an insufficient increase in synaptic release elicited by the dose used 

in the present study. However, a study using similar dosages to the present study 

found an inverted-U dose-response to L-DOPA on cognitive function associated with 

the inverted-U dose-response to dopamine on PFC function (Onur et al., 2011). In 

the present study, a finger-tap test was employed to examine possible fine motor 

control effects, which is often used as a diagnostic test in experiments concerning 

Parkinson’s disease. No drug effect was observed, but an increase in finger-tap 

performance was observed after exercise. This may be due to increased relative 

arousal, sympathetic outflow or thermal effects on conductivity following intense 

exercise in the heat. While the pathological loss of dopaminergic function in 

Parkinson’s disease provides a completely different environment in which L-DOPA 

can improve motor control, it is worth noting that L-DOPA has been found to exert an 

inverted-U dose-response on transcranial magnetic stimulation-elicited motor-evoked 

responses in healthy young men, using similar doses to those used in the present 

study (Monte-Silva et al., 2010).  

 

Because L-DOPA can increase central catecholamine stores and release without 

altering performance as reuptake inhibition does, perhaps there are regional cerebral 

changes that are affected differently by distinct mechanisms important in the control 

of central fatigue during prolonged exercise in warm conditions. For example, 

catecholamine reuptake inhibition changes the electrophysiology of the locus 



105 
 

coeruleus via autoreceptor mediated feedback inhibition (Nestler et al., 1999). 

Despite L-DOPA actively taken up by locus coeruleus neurons for noradrenaline 

synthesis, it has no effect on locus coeruleus electrophysiology in healthy rats 

(Miguelez et al., 2011). In the striatum, ventral and dorsal baseline dopamine levels 

are modulated by tonic activity from the VTA and substantia nigra pars compacta, 

respectively, and the ventral striatum is particularly sensitive to changes in tonic 

firing from the VTA due to a greater range in extracellular dopamine concentrations 

(Zhang et al., 2009). Supporting this, recent evidence suggests that in the NAc, 

located in the ventral striatum, dopamine reuptake inhibition increased tonic 

stimulation of low-affinity post-synaptic receptors and results in desensitisation to 

phasic dopamine signals (Dreyer & Hounsgaard, 2013). In a study in humans, [11C]-

raclopride, a radioisotopic ligand for the D2 receptor, demonstrated that an acute 

dose of 100/25mg L-DOPA/carbidopa did not increase resting extracellular 

dopamine in young healthy human striatum at rest, but did during mental task 

performance (Floel et al., 2008).  

 

Low levels of baseline dopamine levels in the NAc shell are associated with 

decreased motivation and exertion of effort for food, whilst reward-seeking remains 

intact in rats (Salamone et al., 2003). Tonic dopamine signals in the NAc modulate 

baseline extracellular dopamine and set an ‘average reward’ of current behaviour, 

which then determines the likelihood to exert effort and vigorous responding to 

reward cues (Niv et al., 2007). Phasic dopamine signalling is dependent on synaptic 

vesicle exocytosis, whereas tonic dopamine signalling is dependent on non-vesicular 

efflux (Moquin & Michael, 2011). This is supported by evidence in rats that 

demonstrates L-DOPA-induced increases in dopamine release is primarily due to 

increased phasic dopamine quanta (Rodríguez et al., 2007). This may explain why 

vesicular monoamine transporter inhibition by reserpine attenuates L-DOPA induced 

extracellular dopamine increases (Kannari et al., 2000), but does not affect low does 

amphetamine induced extracellular dopamine increases in vivo (Cadoni et al., 1995). 

Indeed, phasic and tonic dopamine releases appear to be affected by two distinct, 

but related pools of presynaptic dopamine: cytosolic or the AMPT-sensitive 

dopamine pool and the vesicular or reserpine-sensitive dopamine pool. These two 

pools of dopamine appear to play a role in distinguishing drug actions and individual 
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variability in sensitivity and susceptibility to particular drug effects (Verheij & Cools, 

2007). In the study by Rodríguez and co-workers (2007), L-DOPA-induced increase 

in dopamine release was found to be reliant on the reserpine-sensitive pool, via 

synaptic vesicle exocytosis.  

 

In summary, provision of L-DOPA, resulting in increased central catecholamine 

synthesis may not be sufficient to alter prolonged exercise performance in warm 

conditions. Despite effects on cognitive function and motor cortex plasticity seen in 

other studies, neither exercise nor finger-tapping performances were affected by 

acute augmentation of central L-DOPA availability. Furthermore, because L-DOPA 

preferentially increases dopamine quantal release during phasic signalling, but does 

not alter exercise performance, it may be that the alteration in tonic 

neurotransmission by catecholamine reuptake inhibitors is more important to 

exercise performance. The significance of this distinction will be reviewed in greater 

detail in chapter 7.  
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Chapter 6 

 

The Effect of One Week of Oral S-

adenosylmethionine Supplementation on 

Cycling Performance and 

Thermoregulation in Warm Conditions 
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6.1 – Abstract 

The onset of fatigue during endurance exercise in warm conditions appears to be at 

least partly mediated through mechanisms residing within the central nervous 

system. S-adenosylmethionine (SAM) is a primary methyl group donor, involved in 

the metabolism of several neurotransmitters. It has been used to treat depression, 

but it is not yet known what role SAM may have in exercise performance. With local 

ethics committee approval, 8 physically active males (Mean ± SD age 26 ± 4 y; 

height 1.79 ± 0.07 m; body mass 76.3 ± 10.2 kg; VO2max 55.7 ± 4.0 mL/kg/min) 

were recruited to examine the effect of a week-long oral administration of SAM (2 x 

800 mg/day) on time to exhaustion in a warm environment (30.2 ± 0.2°C, 50 ± 1% 

rh). Participants completed a VO2max test and a familiarisation trial before a 

randomised, double-blind, placebo-controlled crossover design was employed. Trials 

consisted of cycle exercise at a power output equivalent to 70% VO2max to volitional 

exhaustion. Heart rate, skin and core temperature, and ratings of perceived exertion 

and thermal sensation were recorded throughout exercise. Blood samples were 

collected at rest, every 15 min of exercise and at exhaustion. No difference in time to 

exhaustion was observed between the placebo (67.5 ± 12.4 min) and SAM (68.5 ± 

12.0 min) trials (P=0.857). Serum prolactin concentration (P=0.009) and weighted 

mean skin temperature (P=0.015) were elevated during exercise in the SAM trial 

compared to placebo. No further differences were found between trials in the other 

measures and no order effects were observed. These results suggest that a week-

long dosing protocol of SAM does not influence time to exhaustion in warm 

conditions, despite evidence supporting an effect on the CNS and thermoregulation.  
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6.2 – Introduction 

Endurance exercise capacity is reduced in warm conditions in a temperature- 

(Galloway & Maughan, 1997) and humidity-dependent manner (Maughan et al., 

2012).  The main physiological difference to exercise in normal ambient conditions is 

the challenge to thermoregulation and, consequently, fluid balance (Hargreaves, 

2008; Nybo, 2008; Maughan, 2010). This cumulative strain results in the eventual 

onset of fatigue and subsequent impairment in performance. This appears to be 

regulated largely by mechanisms within the CNS (as described in section 1.2). 

Manipulation of central catecholamines has produced consistent changes in the 

onset of fatigue and exercise performance in warm conditions (Roelands & 

Meeusen, 2010, Chapters 3+4). Accordingly, research points to an increase in use of 

drugs which act on central catecholamines amongst athletes (Machnik et al., 2009). 

However, there are several over-the-counter alternative treatments for depression 

that may influence central neurotransmission and should be considered as well. 

SAM is a compound which has been researched for over 50 years for its unique 

versatility, efficacy and tolerability (Delle Chiaie, Pancheri, & Scapicchio, 2002). It 

has been used to treat depression (Papakostas et al., 2003), osteoarthritis (Soeken 

et al., 2002) and is considered potentially useful for liver disorders (Purohit et al., 

2007). While it is a prescription drug in Germany, Spain and Italy, it is available over 

the counter and online in the UK and USA. As the primary methyl donor in human 

physiology, SAM plays a vast number of important roles in the body (see figure 1.8). 

These include homoycsteine metabolism, the synthesis of creatine, metabolism of 

several neurotransmitters and the regulation of DNA and RNA. Via the 

transulfuration pathway SAM is involved in the synthesis of glutathione (Lu & Mato, 

2008) and may effect on synthesis of glutamate and GABA as well. SAM also plays 

a role in the one carbon cycle, in which it is tightly co-dependent with folate and 

choline metabolism (Bottiglieri, 2002; Zeisel & Blusztajn, 1994). These are involved 

in acetylcholine and betaine synthesis (Zeisel & Blusztajn, 1994), as well as 

tetrahydrobiopterin  synthesis, which is a cofactor for nitric oxide and monoamine 

synthesis (Bottiglieri et al., 1992; Stahl, 2007).  
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While there have not been any exercise studies with SAM, related compounds such 

as homocysteine, choline, choline-containing phospholipids and betaine have been 

investigated. In recreational athletes prolonged exercise has been found to increase 

blood homocysteine and decreases folate and B12 (Herrmann et al., 2003). 

Synthesis of SAM is directly related to homocysteine metabolism. SAM is 

synthesised by the addition of ATP to methionine by SAM synthetase. The transfer 

of the methyl group yields s-adenosylhomocysteine. S-adenosylhomocysteine 

hydrolase then removes adenosine from homocysteine. Chronically elevated 

homocysteine levels are associated with folate and B12 deficiencies as well as a 

number of disorders, including depression (Bottiglieri, 2005). The efficacy of SAM in 

the treatment of depression and schizophrenia are attributed to the role SAM plays in 

catecholamine metabolism, as the connection between catecholamines and these 

disorders is well established. This is relationship to catecholamine metabolism is 

clearly demonstrated by the effects of L-DOPA treatment on SAM concentrations. In 

rats, SAM brain concentration decreases in response to L-DOPA infusions 

(Chalmers et al., 1971). In humans, L-DOPA treatment decreases cerebrospinal fluid 

SAM concentrations (Surtees & Hyland, 1990). Similarly, patients receiving L-DOPA 

treatment for Parkinson’s disease, showed a decrease in plasma methionine and 

SAM, while homocysteine was elevated (Müller et al., 2001).  

 

The decrease in plasma choline, loss of betaine through sweat and increase in 

homocysteine observe during prolonged exercise may reflect a decrease of on 

methyl group donors. Depending on the magnitude of the effect, nutritional status 

and genetics of an individual, this detriment to methyl group metabolism could have 

significant ramifications for exercise performance. While choline and betaine 

represent a significant pool of methyl-group donors, only SAM is recognised for 

clinical effects on various central nervous disorders. These most significant of these 

effects appear to be mediated by catecholamine metabolism. As central 

catecholamines appear to play a role in the genesis of fatigue during prolonged 

exercise in warm conditions, the aim of the present study was to determine if SAM 

would affect physiological and psychological measures as well as performance 

during prolonged exercise in a warm environment. Because SAM is involved in the 

synthesis of dopamine and noradrenaline, it is hypothesised that by increasing SAM 
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availability, prolonged exercise in warm conditions will be improved by increasing 

central catecholamine concentrations.   

 

6.3 – Methods 

With the approval of the Loughborough Ethics Advisory Committee (reference no. 

R11-P99) eight male volunteers (age 26 ± 4 y; Ht 1.79 ± 0.07 m; mass 75.5 ± 10.9 

kg; VO2peak 57 ± 9 mL/kg/min) were recruited to participate in this randomised 

crossover design study. Volunteers visited the laboratories at Loughborough 

University on 5 separate occasions. The first visit was to complete an incremental 

exercise test to determine VO2peak, which was used to determine the intensity of 

exercise to be undertaken during subsequent tests. A familiarisation trial was 

followed by a double-blind placebo controlled crossover design. Between 

experimental trials participants were asked to visit the labs to collect their supply of 

capsules at the end of the washout period. Experimental trials consisted of two 7 day 

periods, with a 7 day washout period between the first experimental trial and the 

beginning of the following dosing period. The dosing protocol consisted of ingesting 

800mg SAM (Nature Made, USA) or placebo (approximately 1.2g glucose) twice 

daily for 6 days. On day 7, participants took either 800mg of SAM or placebo 

following an overnight fast having consumed 500mL of water and arrived at the 

laboratory for the experimental trial approximately 2 hours thereafter. Since many 

dietary supplements have been reported to contain additional compounds not 

included on the ingredients label (Geyer et al., 2004), samples of the SAM 

supplement were sent to the Centre for Doping Research, German Sport University, 

Cologne for independent testing (analysis report no: S2011005796; see appendix ). 

No additional steroid or stimulant compounds found to be present in the batch. The 

SAM content of the supplement was also confirmed, in house, by fluorimetric post-

column derivitisation on reversed phase HPLC (Birsan et al., 2008). 
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Upon arrival to the laboratory participants were asked to void their bladder and 

bowels, if necessary. Nude body mass was then recorded behind a curtain and 

participants were asked to position a heart rate monitor and rectal thermistor in 

private. Four skin thermistors were positioned and participants were asked to remain 

seated to establish baseline measurements for 15 minutes. At the end of this period, 

a cannula positioned in a superior forearm vein and blood samples were drawn as 

described in Chapter 2 at rest and every 15 minutes throughout the first hour of 

exercise and once upon the cessation of exercise. Participants were then asked to 

enter the environmental chamber, which was maintained at 30°C, 50%rh. Before 

exercise began participants were asked to complete a series of computer-based 

cognitive function tests. These included a visual search test, the Stroop word-colour 

test and a rapid visual information processing (RVIP) test. Upon completion 

participants were asked to cycle to volitional exhaustion at 70% VO2peak, intended 

to last 60-90 minutes. This performance test was selected over a time trial or 

performance challenge as in previous chapters as it was desired to observe the 

effects of SAM on a pronounced state of mental fatigue. During this period skin and 

core temperature were recorded every 5 minutes. Participants were asked to 

consume 100mL of water every 10 minutes during exercise at which point RPE and 

ratings of thermal sensation were recorded. For the first hour of exercise, expired 

gas was collected every 15 minutes to confirm work rate (see figure 6.1). Whole 

blood was used to measure haematocrit, haemoglobin and glucose. Serum was 

used to measure prolactin and cortisol by ELISA. Hormone AUC calculations were 

made using the linear trapezoidal method. 
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Figure 6.1 Schematic of the experimental trials. 
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6.4 – Results 

All participants completed all experimental trials. There was no difference in time to 

exhaustion (figure 6.2) between PLA (67.5 ± 12.4min) and SAM (68.5 ± 12.0min) 

(P>0.05). Two participants appeared to demonstrate a response to SAM 

supplementation, but this was in opposite directions (figure 6.3). 

 

Figure 6.2 Mean times to exhaustion between trials. No significant differences were observed 

between PLA (67.5 ± 12.4min) and SAM (68.5 ± 12.0min) (p>0.05). 

 

 

Figure 6.3 Individual changes in time to exhaustion. 
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Core temperature increased throughout exercise (figure 6.4A) with no differences 

apparent between trials. Weighted mean skin temperature rose rapidly during the 

first 15 minutes of exercise and remained relatively stable until exhaustion (figure 

6.4B). Weighted mean skin temperature remained an average of 0.26°C higher 

throughout exercise in the SAM trial compared to placebo (P=0.015). Heart rate rose 

rapidly during the first 15 minutes of exercise and climbed steadily until exhaustion. 

No differences between trials were observed (P>0.05).  

A 

 

B 

 

Figure 6.4 Core temperature (A) and weighted mean skin temperature (B) during experimental 

trials. * denotes significant difference (P=0.015). 
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Figure 6.5 Heart rate during experimental trials. 

 

Ratings of perceived exertion rose steadily throughout exercise, but there were no 

significant differences apparent between trials (P=0.774; figure 6.6). Ratings of 

thermal sensation increased at the onset of exercise and steadily increased until 

exhaustion. There were no significant differences between trials (P=0.853; figure 

6.7).  

 

Figure 6.6 Ratings of perceived exertion during experimental trials. 
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Figure 6.7 Ratings of thermal sensation during experimental trials. 

 

Serum cortisol concentrations were significantly increased at the end of exercise 

compared to rest (P<0.05), but no significant differences were observed between 

trials (P=0.371; figure 6.8). Prolactin was significantly increased at the end of 

exercise compared to rest (P<0.05) and prolactin AUC was significantly larger in the 

SAM trial (537 ± 152mIU/hr/mL), compared to placebo (453 ± 158mIU/hr/mL) 

(P=0.009; figure 6.9).  

 

Figure 6.8 Serum cortisol area under the curve. 
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Figure 6.9 Serum prolactin area under the curve. * denotes significant difference (P=0.009). 

 

Packed cell volume, haemoglobin were significantly increased compared to baseline 

at 30min and exhaustion (P<0.05) (table 6.1). No differences were observed 

between trials. Glucose was only significantly elevated at the exhaustion compared 

to baseline (P<0.05). No differences were observed between trials. Percentage 

change in blood and plasma volumes all increased compared to baseline at 30min 

and exhaustion (P<0.05) (table 6.2). Cell volume did not change significantly from 

baseline after 30min during the SAM trial (P>0.05), but did during placebo (P<0.05). 

No differences in sweat rate (figure 6.10) or total sweat loss were observed (P>0.05). 

Work rate as determined by percentage of VO2max increased significantly at 

exhaustion compared to the first 15 minutes of exercise (P<0.05), but this response 

was not different between trials (P>0.05).  
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Table 6.1 Haematorcrit (Hct), haemoglobin (Hb) and blood glucose concentrations. 
a
 denotes 

significant difference from baseline measure (P<0.05). 

 

 

 

 

 

 

 

 

Table 6.2 Percentage changes in blood volume (BV), cell volume (CV) and plasma volume (PV).
a
 

denotes significant difference from baseline measure (P<0.05).  

  

Placebo SAM 

ΔBV% 
30min -5.0 ± 2.8

a
 -4.1 ± 2.6

a
 

End -5.1 ± 2.9
a
 -3.9 ± 2.0

a
 

ΔCV% 
30min -1.4 ± 0.9

a
 0.0 ± 1.3 

End -0.9 ± 1.6
a
 -0.4 ± 1.1

a
 

ΔPV% 
30min -8.0 ± 4.8

a
 -7.6 ± 4.1

a
 

End -8.6 ± 4.4
a
 -6.7 ± 3.8

a
 

 

 
 

Placebo SAM 

Hct (%) 

Start 45.1 ± 1.9 45.3 ± 1.6 

30min 46.9 ± 2.5
a
 47.3 ± 1.7

a
 

End 47.2 ± 2.5
a
 46.9 ± 1.8

a
 

Hb (g/L) 

Start 157.5 ± 9.3 160.4 ± 6.8 

30min 165.6 ± 11.0
a
 168.1 ± 8.6

a
 

End 165.8 ± 11.5
a
 166.9 ± 7.3

a
 

Glucose 

(mmol/L) 

Start 4.0 ± 0.4 4.0 ± 0.2 

30min 3.9 ± 0.6 4.1 ± 0.5 

End 4.6 ± 0.7
a
 4.8± 0.6

a
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Figure 6.10 Mean sweat rate between trials.  

 

No exercise effects were observed for visual search and no significant differences 

between trials were observed (P>0.05). Percentage correct scores for RVIP were 

significantly decreased in the SAM trial compared to placebo for both before and 

after exercise (P<0.05; figure 6.11). A non-significant trend (P=0.06) was observed 

for exercise effect on RVIP percentage correct scores. A treatment effect (P<0.01) 

and a treatment x time interaction effect (P=0.01) were observed for reaction times 

during the word-match portion of the Stroop test, but not for the conflicting portion of 

the test (figure 6.12). SAM reaction times were significantly slower (P<0.05) before 

exercise compared to placebo, but was similar to placebo after exercise.  
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Figure 6.11 RVIP proportion correct. Treatment main effect P=0.02, time main effect P=0.06. stime 

1 and 2 represent before and after exercise, respectively. Solid lines represent mean and dotted lines 

represent 95% confidence intervals.  
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Figure 6.12 Stroop reaction times during the word match (left) and conflicted (right). Session time 1 

and 2 represent before and after exercise, respectively. 

 

6.5 – Discussion 

This is the first study to examine the effects of SAM supplementation on exercise. 

The complex and diverse actions of SAM make it difficult to determine the exact 

physiological mechanism, but effects on central monoaminergic effects are likely 

important. This is supported by evidence from human studies whereby SAM exerts 

therapeutic effects via central catecholaminergic metabolism. The present results 

demonstrate a week long dose of SAM does not affect prolonged exercise 

performance in warm conditions, despite increased skin temperature and impaired 

cognitive function. The small increase in skin temperature, increased prolactin and 

impaired cognitive performance, do not appear to have affected exercise 

performance, heart rate, core temperatures, RPE or thermal sensation in this study. 

Core temperature appears to be marginally lower during the SAM trial compared to 
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the placebo condition, possibly due to the increased heat loss at the skin, but this 

response was not statistically significant.  

 

Previous studies have found that acutely increasing central catecholaminergic 

activity via dual dopamine/noradrenaline reuptake inhibitors can improve exercise 

performance in warm conditions compared to placebo. The neural networks 

associated with affect, cognition, and the cognitive/emotional experience of stress 

are interconnected and catecholamines are key neurotransmitters in their function 

(Ashby et al., 1999). This includes the PFC, a key target of action for therapeutic 

doses of methylphenidate (Berridge et al., 2006) and bupropion (Bares et al., 2010). 

The present study, however, may provide evidence suggesting that lower PFC 

dopamine does not necessarily negatively affect prolonged exercise performance in 

warm conditions. Because the difference in Stroop reaction times normalised 

between trials at the end of exercise may indicate that at the point of fatigue during 

placebo PFC dopamine concentration had surpassed the apex of the inverted-U 

response. This stress induced switch to taking the PFC offline may serve to favour 

dorsal- and sub-cortical control over behaviour, effectively reducing executive control 

over behaviour (Arnsten, 2009), but does not appear to be a causative factor in the 

voluntary cessation of exercise per se.  

 

Prolactin secretion appears to be positively correlated to skin temperature 

independently of core-temperature (Low et al., 2005; Mündel et al., 2006). 

Exogenous SAM increases COMT activity and COMT expression is much higher in 

the periphery, where COMT-dependent methylation of catecholamines is much more 

significant than in the CNS (Männistö & Kaakkola, 1999). Peripheral noradrenaline 

acts as a vasoconstrictor (Charkoudian, 2003), and by increasing COMT activity, 

increased SAM may have reduced peripheral noradrenaline, thereby disinhibiting 

cutaneous blood flow and temperature, which may explain the increased circulating 

prolactin during the SAM trial. This effect has been demonstrated in patients with 

COMT polymorphism (Kang et al., 2010). However, monoamines tonically inhibit, 

while acetylcholine increases prolactin secretion (Freeman et al., 2000). Because 

SAM increases monoamine turnover and may enhance cholinergic tone, a less 
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inhibited prolactin response to the increased skin temperature may explain the 

findings of the present study, at least in part. A study using a potent noradrenaline 

reuptake inhibitor found decreased prolactin and higher core temperature after 

exercise than placebo in normal ambient temperature despite a lower rate of exertion 

(Roelands et al., 2008a). This could be due to decreased heat dissipation through 

the skin due to increased cutaneous vasoconstriction. However, no differences in 

skin temperature were detected in that study.  

 

The source of the effects on cognitive function are difficult to pinpoint without more 

direct measurement of brain function and any rationalisation will rely heavily on 

speculation. Nonetheless, there is some evidence from previous studies 

investigating cognitive function to draw upon. Monoaminergic and cholinergic tone in 

the frontal cortex are determining factors for Stroop and RVIP performance. 

Cholinergic tone is positively correlated with cognitive function and cholinergic 

agonists improve performance (Callaway et al., 1992). As SAM favourably affects 

cholinergic tone, changes in cholinergic neurotransmission cannot explain our 

results. Acute-tryptophan depletion and catecholamine depletion by alpha-methyl-

para-tyrosine (AMPT) improve Stroop performance and decrease attention 

performance, respectively (Booij et al., 2003). Therefore, changes in serotonergic 

neurotransmission cannot explain our results either. SAM has been found to improve 

cognitive function in schizophrenics with the low COMT-activity MET/MET genotype, 

whilst reducing peripheral noradrenaline, providing evidence of its capacity to 

increase COMT enzyme activity in humans (Strous et al., 2009). Both noradrenaline 

and dopamine exert a concentration-dependent inverted-U effect on cognitive 

function in the PFC (Arnsten, 2007). COMT inhibition does not appear to affect 

dopamine release or turnover in the striatum, while it potentiates dopamine efflux in 

the PFC in rats (Männistö & Kaakkola, 1999). This does not appear to be 

accompanied by increased noradrenaline efflux however, which may be due to the 

relatively large number of noradrenaline transporters in the PFC (Tunbridge et al., 

2004). This regional selectivity may explain why central COMT inhibition does not 

appear to have reinforcing/addictive effects, but can enhance cognitive function 

(Apud et al., 2007). The inverted-U relationship for prefrontal catecholamines is 

extended to COMT activity. This is demonstrated by studies assessing cognitive 
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function between COMT genotypes in which the less active MET/MET genotype 

exhibits faster reaction times during the Stroop test than the more active VAL/VAL 

genotype under normal conditions (Reuter et al., 2005), but reverses after 

administration of amphetamine (Mattay et al., 2003). Similarly, the opposite relative 

performance after exercise observed in this study may be explained by increased 

COMT activity in the SAM trial. As PFC function is impaired during stress via 

excessive catecholamine efflux (Arnsten, 2009), what was detrimental in the placebo 

condition may have ameliorated the condition of the SAM trial. 

 

In conclusion, the results of the present study suggest that SAM supplementation for 

1 week affects thermoregulation and central neurotransmission without altering 

exercise performance. The results of this study may have implications for athletes for 

whom sustained attention and reaction times are important (i.e.: tennis, team sports, 

etc.). SAM may be of benefit to athletes with the MET/MET polymorphism, to reduce 

elevated dopamine in the PFC, improving cognitive function without directly affecting 

exercise performance. While this study attempted to saturate the various 

physiological pools for the extensive metabolism of SAM by use of a week-long 

dosing protocol, future studies should determine the effects of an acute dose as the 

neurophysiological adaptations to sub-chronic exposure may alter any potential 

impact on exercise performance, as is the case with bupropion (Roelands et al., 

2009).  
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7.1 – Background  

Fatigue during prolonged exercise in warm conditions occurs long before muscle 

glycogen depletion (Parkin et al., 1999; Febbraio, 2000). Prolonged exercise in warm 

environments places considerable strain on the thermoregulatory and cardiovascular 

systems (Hargreaves, 2008; Nybo, 2008; Maughan, 2010; Cheuvront et al., 2010). 

Prolonged heat strain and fluid loss results in further diminished capacity to dissipate 

heat (Crandall & González-Alonso, 2010). This cumulative  physiological strain may 

result in eventual fatigue via mechanisms residing within the CNS (Nybo, 2008). 

Central catecholaminergic signalling coordinates the behavioural response to stress 

(Chrousos & Gold, 1992) and coping (Pascucci et al., 2007; Snyder et al., 2012; 

Cabib & Puglisi-Allegra, 2012). Pharmacological inhibition of 

dopamine/noradrenaline reuptake has consistently improved performance during 

prolonged exercise in warm conditions, whereas studies attempting increase 

catecholamine metabolism have not (Roelands & Meeusen, 2010).The aim of the 

work described in the present thesis was to further characterise the role of central 

catecholamines during prolonged exercise in warm conditions.  

 

7.2 – Effects of Central Dopamine/Noradrenaline Reuptake Inhibitors on 

Prolonged Exercise Performance in Warm Conditions  

The results of Chapters 3 and 4 are in agreement with similar research in which dual 

dopamine/noradrenaline reuptake inhibitors at therapeutic doses improves exercise 

performance during prolonged exercise in warm conditions (Watson et al., 2005a; 

Roelands et al., 2008d). In all of the above studies, exercise performance was 

improved without significant changes to heart rate, core temperature, skin 

temperature, RPE, or thermal sensation, during steady state exercise. Changes in 

core temp and HR during the time trial were a consequence of the maintenance of 

an increased power output. Together these findings support the hypothesis that 

dopamine/noradrenaline reuptake inhibitors improve performance during prolonged 

exercise in warm conditions through central mechanisms rather than affecting 

changes in the periphery. Since the increased power outputs during time 

trial/workload challenge were not accompanied with increased RPE, it appears that 
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dopamine/noradrenaline reuptake inhibitors may alter the function of the 

teleoanticipatory system as proposed by St. Clair Gibson and co-workers (2006).  

 

The results of Chapter 3 suggest that these effects are extended to women in the 

follicular phase of the menstrual cycle; during which circulating sex hormones 

concentrations are at the lowest point. This was the first study to investigate the 

effects of central catecholamine manipulation during prolonged exercise in warm 

conditions in female participants. This strengthens the argument for a common 

underlying central mechanism for the decrease in power output observed during 

prolonged exercise in warm compared to temperate conditions. A similar core 

temperature and heart rate response was observed during the workload challenge 

compared to that observed for male participants during the time trial in previous 

studies (Watson et al., 2005a). Despite a slightly larger dose compared to those in 

the studies using male participants (9.4 vs. 8.0-8.2mg/kg), there was a similar effect 

size for exercise performance. As oestrogen and progesterone alter 

thermoregulation (Janse de Jonge, 2003) and may interact with drug effects (Young 

& Becker, 2009), future studies should determine the effect of bupropion and other 

centrally-acting dopamine/noradrenaline drugs also persist during the luteal phase.  

 

The results of Chapter 4 suggest that there is a threshold point where reuptake 

inhibition facilitates performance during prolonged exercise in warm conditions. This 

study investigated a dose-response relationship for bupropion on exercise 

performance, and was the first exercise study to use less than the maximum 

therapeutic dose. Only the maximum dose appeared to significantly influence 

exercise performance. This may be explained by a level of redundancy in the 

expression of monoamine transporters, such that partial blockade may not 

sufficiently affect reuptake to alter neurotransmission (Blier, 2008). Egerton and co-

workers (2010) found who found that 150mg bupropion, which produces a striatal 

DAT occupancy of about 26% (Learned-Coughlin, 2003), had no effect on 

extracellular dopamine concentrations in humans. Similarly, Volkow and co-workers 

(2002) induced DAT occupancy of 60% with methylphenidate and found insignificant 

increases in extracellular dopamine. However, striatal DAT occupancy levels may 
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not be the best predictor of effects on exercise. For example, Swart and co-workers 

(2009) found that 10mg methylphenidate, which has been found to produce 40% 

occupancy (Volkow et al., 1998), improved exercise performance in temperate 

conditions. In contrast, neither 300mg bupropion (Watson et al., 2005a) or 20mg 

methylphenidate (Roelands et al., 2008d), which has been found to induce 54% DAT 

occupancy (Volkow et al., 1998) found no improvements in performance in 

temperate conditions. Volkow and co-workers (Volkow et al., 2005) later 

demonstrated that striatal dopamine was more dependent on dopaminergic neuron 

activity and dopamine release, during an engaging task, for example.  

 

However, the apparent inconsistency in DAT occupancy as a predictor of exercise 

effects may be due to differences in methodology instead. Swart and co-workers 

(2009) used time to exhaustion, while Watson and co-workers (2005) and Roelands 

and co-workers (2008) used time trials as a measures of performance. As time trial 

performance is more susceptible to individual pacing strategies than time to 

exhaustion (Hinckson & Hopkins, 2005), it may be possible that time trials aren’t 

quite as robust or sensitive in detecting performance changes made by interventions 

(Laursen et al., 2007). However, more studies are required to determine the relative 

sensitivity of time to exhaustion versus time trials to the effects of 

dopamine/noradrenaline reuptake inhibition. Nonetheless, the difference in results 

underscores the contribution of heat strain to the centrally regulated component of 

performance. Another component of dopamine/noradrenaline reuptake inhibitors not 

characterised by striatal DAT imaging studies are the effects on NAT, which is the 

primary transporter for dopamine in the PFC, a key area for their therapeutic effects. 

 

Low, clinically relevant doses of psychostimulants preferentially increase 

extracellular catecholamines in the PFC (Berridge & Arnsten, 2012) while also 

slightly decreasing locus coeruleus cell firing by inhibiting reuptake (Stahl et al., 

2004; Devilbiss & Berridge, 2006)(see figure 7.1). This includes methylphenidate 

(Berridge et al., 2006) and bupropion (Bares et al., 2010) and amphetamine 

(Berridge & Arnsten, 2012). DAT expression appears to be correlated with D2-like 

receptor expression (Hall et al., 1999). The PFC expresses greater concentrations of 
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D1-like receptors than D2-like; accordingly, there is little DAT expression in cerebral 

cortical areas (Hall et al., 1999). Whereas reuptake inhibition normally increases 

stimulation of D2 autoreceptors to control dopamine release via feedback inhibition, 

the mesoprefrontal dopamine neurons do not express D2 autoreceptors (Lammel et 

al., 2008) and  PFC D1 receptors uniquely appear to be targets for tonic dopamine 

(Dreher & Burnod, 2002; Thurley et al., 2008). The increase in PFC dopamine by 

these drugs appears to be mediated by blockade of PFC NAT, which acts as the 

primary transporter for dopamine in the PFC (Morón et al., 2002). Dopamine may 

also be co-released from noradrenergic neurons in the PFC (Devoto & Flore, 2006). 

Low-dose psychostimulants also reduce the metabolic cost required for optimal 

mental performance, improve connectivity within cortical executive areas and reduce 

interference from irrelevant stimuli and interruption of focus (Swanson et al., 2011). 

This may suggest that these drugs improve task performance by increasing 

executive control over attentional and behavioural resources. 

 

Figure 7.1 Key neuroanatomical targets for dopamine/noradrenaline reuptake inhibitors at 

therapeutic doses represented by red targets. Blue and yellow arrows represent dopaminergic and 

noradrenergic projections, respectively.  
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PFC noradrenaline has been shown to be involved in mediating amphetamine 

induced behavioural activation and dopamine efflux in the NAc (Ventura et al., 2003; 

McKittrick & Abercrombie, 2007). Novel stressors increase noradrenaline release 

within the mPFC which parallels the enhancement of mesoaccumbens dopamine 

release (Pascucci et al., 2007). However, dopamine in the mPFC inhibits stress-

induced dopamine release in the NAc (King et al., 1997; Pascucci et al., 2007), while 

noradrenaline is necessary for NAc dopamine release by stress or by amphetamine 

(Darracq et al., 1998; Ventura et al., 2003; Mitrano et al., 2012). Tonic dopamine in 

the NAc appears to mediate stress-induced aversive behaviour, and inhibition of this 

stress-induced increase in tonic dopamine prevents this withdrawal behaviour (Cabib 

& Puglisi-Allegra, 2012). However, diminished tonic dopamine in the NAc shell also 

results in larger phasic signals, which promote behavioural switching and reflect 

increased salience of motivationally relevant stimuli. The ventromedial PFC appears 

to exert control over both phasic and tonic signalling in the NAc shell, by suppressing 

phasic dopamine and increasing tonic dopamine signalling, both acting to prevent 

selection of task-irrelevant behaviour (Ghazizadeh et al., 2012). Insufficient tonic 

dopamine in the NAc shell potentiates the impact of phasic D1 signalling from limbic 

inputs and facilitates behavioural flexibility, while excessive tonic dopamine inhibits 

PFC input to the NAc (Goto et al., 2007). This relative ratio between tonic and phasic 

dopamine depends on the state of the organism, but tonic dopamine levels appear to 

represent the utility of on-going behaviour, with decreases resulting in concomitant 

reduction of vigour of effort (Niv et al., 2007).  

 

A recent study in humans using arterial spin labelling MRI also investigated the 

effects of methylphenidate on the blood oxygen level dependent signal in a large 

number of extrastriatal structures (Marquand et al., 2012). The authors found a 

decreased signal in many of the structures involved in the stress-response including 

the NTS, hypothalamus and amygdala and an increase in activity in 

mesocorticolimbic structures. This supports both top-down and bottom-up alterations 

in activation, which is reflected in behavioural and EEG tests with effective ADHD 

treatments (Kenemans & Kähkönen, 2011). The increased prefrontal catecholamines 

may enable better executive control over sub-cortical structures involved in 

generating stress-mediated behaviours (as described in section 1.11). The 
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noradrenergic brainstem nuclei, the amygdala, and the NAc all receive afferent 

projections from the PFC. In rats, medioventral PFC inactivation (Amat et al., 2005) 

and activation (Amat et al., 2008) has been found to increase and decrease the 

impact of stress, respectively, by afferent control of brainstem and limbic structures 

(Maier & Watkins, 2010). Improved executive control via the PFC may facilitate the 

maintenance of desired behaviour by strengthening the input to the insular cortex or 

ACC, possible candidates for the input and output centres of the teleoanticipatory 

system, respectively. Alternatively, or concomitantly, a decreased reactivity of the 

noradrenergic nuclei may occur due to increased autoreceptor stimulated feedback 

inhibition as a result of reuptake inhibition. This might result in reduced or delayed 

stress-signalling within the CNS and a prevention of the associated behavioural shift. 

Whether by PFC-mediated top-down effects or by inhibition of bottom-up stress 

signalling, these neurobiological mechanisms provide a possible framework within 

the teleoanticipatory model for how power output is increase without changes in 

perceived exertion.  

 

7.3 – Effects of a Catecholamine Precursor on Prolonged Exercise 

Performance in Warm Conditions 

The results of Chapter 5 suggest that despite observing changes in central 

neurotransmission, as measured by the inhibition of the prolactin response, no 

differences were observed to performance, core or skin temperature, heart rate, 

RPE, thermal sensation, blood glucose, haemoglobin or haematocrit. Central 

catecholamines appear to play a greater role in the development of fatigue during 

prolonged exercise in warm conditions than in temperate conditions. Subsequently, 

studies in warm conditions should theoretically be more sensitive to changes 

induced by catecholamine precursors. Only one study has found improved 

performance in warm conditions with a catecholamine precursor (L-tyrosine)(Tumilty 

et al., 2011), while a more recent study using the same exercise conditions, but with 

a more robust increase and maintenance of plasma L-tyrosine concentrations found 

no difference in performance or cognitive function (Watson et al., 2012). The results 

of the latter study and the findings in Chapter 5 support the conclusion that acute 

oral administration of catecholamine precursors does not improve prolonged 
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exercise performance in the heat. This is in agreement with the majority of studies 

using L-tyrosine in temperate conditions, in which no effect on exercise performance 

has been found (Meeusen et al., 2006a). The lack of effect of catecholamine 

precursors on exercise performance may be related to the lack relative clinical 

efficacy in treating either ADHD or depression. Although catecholamine precursors 

appear to produce changes in cognitive function (Owasoyo et al., 1992; Onur et al., 

2011) and can produce changes in striatal dopamine in humans (Floel et al., 2008), 

they do not appear to consistently affect exercise performance. This may suggest 

that in the majority of healthy individuals catecholamine synthesis is not a 

determining factor in exercise performance. While genetic factors may determine the 

effect of precursor availability, they would similarly affect changes to reuptake 

inhibition.  

 

The effects of drugs with therapeutic efficacy for treatment of ADHD, which include 

amphetamine, methylphenidate, and bupropion (Wilens, 2006), do not share the 

same neuropharmacological effects as L-DOPA. Specifically, drugs which are 

effective in treating ADHD affect behavioural and EEG measures of top-down control 

and selective attention, while L-DOPA does not (Kenemans & Kähkönen, 2011). The 

reasons for these differences are not fully understood, but may be due to the relative 

differences in combined changes of dopamine and noradrenaline transmission. For 

example, although L-DOPA is actively taken up by locus coeruleus neurons for 

noradrenaline synthesis, it has no effect on locus coeruleus electrophysiology in 

healthy rats (Miguelez et al., 2011), while both acute bupropion and methylphenidate 

slightly decrease locus coeruleus activity (Cooper et al., 1994; Devilbiss & Berridge, 

2006). Further differences may be due to relative changes between tonic and phasic 

neurotransmission (Sikström & Söderlund, 2007). Evidence in rats suggests that L-

DOPA-induced increases in dopamine release is primarily due to increased phasic 

dopamine quanta (Rodríguez et al., 2007). There is supporting evidence from human 

imaging studies for this; the capacity of dopamine synthesis as measured by striatal 

[18F]fluorometatyrosine uptake observed with PET appears to be predictor of 

outcome-specific reversal-learning performance, which is determined by phasic 

dopamine (Cools et al., 2009). Another PET study found that acute treatment with L-

DOPA did not increase striatal D2 receptor binding as measured by [11C]raclopride at 
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rest, but during motor learning, a small increase associated with phasic spiking was 

observed (Floel et al., 2008). A similar effect has been observed for methylphenidate 

in PET imaging of [11C]raclopride binding (Volkow et al., 2005). Although both appear 

to increase striatal dopamine during engaging tasks, L-DOPA does not appear to 

influence performance, suggesting that striatal dopamine may not be a good 

predictor of the performance enhancing effects of dopamine/noradrenaline reuptake 

inhibition. This supports the notion that extrastriatal catecholamines may be more 

important for the performance enhancing effects of bupropion and methylphenidate. 

Supporting this, it is the effect of these drugs on extrastriatal catecholamines which 

appears to be more important for their efficacy in the treatment of ADHD and 

depression.  

 

7.4 – Effects of S-adenosylmethionine on Prolonged Exercise Performance in 

Warm Conditions  

SAM is a widely available nutritional supplement with clinical antidepressant qualities 

related to monoamine metabolism. The study in Chapter 6 appears to be the first 

exercise study investigating the effects of SAM supplementation on performance. It 

was thought at the onset of the study that a protocol to ensure the saturation of the 

various metabolic pathways related to SAM would be more conducive to providing 

results, but it is possible that this approach may have precluded any definitive effects 

on performance; the week long supplementation period may have resulted in an 

adaptation to the CNS, altering the response to the intervention. This neurobiological 

response is commonly reported when centrally-acting drugs are used in the 

management of many psychiatric disorders (e.g. depression) and a similar effect was 

observed when bupropion was administered chronically by Roelands and co-workers 

(2009). Despite the apparent changes in cognitive performance in tests that are 

influenced by cortical catecholamines, no clear effect on exercise performance was 

observed. The present results does suggest that supplementation of SAM for one 

week influences baseline measures of cognitive function, associated with attention, 

as well as elevating the skin temperature and prolactin concentrations during 

prolonged exercise in warm conditions, without altering performance. However, the 
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diverse metabolic fates of SAM make it difficult to precisely determine the 

physiological cause of these effects.  

 

The antidepressant qualities of SAM are comparable to typical tricyclic 

antidepressants, both in efficacy (Mischoulon & Fava, 2002) and the effects on EEG 

(Saletu-Zyhlarz et al., 2002). These EEG patterns are distinct to methylphenidate 

(Saletu et al., 2006) and appear to be more similar to imipramine (Anderer et al., 

2002; Saletu et al., 2010), a tricyclic antidepressant with primarily serotonergic and 

noradrenergic effects (Lee et al., 1982). The changes in P300 amplitude and latency 

indicate effects on the locus coeruleus and phasic noradrenergic cortical signalling 

(Nieuwenhuis et al., 2005). Supporting this, small decreases in α and β power 

observed by Saletu-Zhylarz and co-workers (2002) suggests a decreased level of 

arousal, which could be due to decreased cortical noradrenaline (Berridge & Morris, 

2000). This is also reflected in the increased reaction times and decreased attention, 

similar to what we observed in our study. After exercise, these effects appeared to 

be normalised, perhaps due to stress-induced arousal and cortical catecholamine 

efflux (Arnsten, 2009). To date there is no evidence of effects for SAM at receptors 

or transporters, meaning any changes in signalling are likely a result of changes in 

metabolism.  

 

SAM has been found to improve cognitive function in participants with schizophrenia 

with the low COMT-activity MET/MET genotype, whilst reducing peripheral 

noradrenaline, providing evidence of its capacity to increase COMT enzyme activity 

in humans (Strous et al., 2009). This may explain the increased skin temperature 

and increased prolactin release observed in this study. Similarly, participants with 

less active MET/MET genotype exhibits faster reaction times during the Stroop test 

than the more active VAL/VAL genotype under normal conditions (Reuter et al., 

2005), but reverses after administration of amphetamine (Mattay et al., 2003). This 

suggests the inverted-U relationship for prefrontal catecholamines described by 

Arnsten (2007) may be regulated, in part, by COMT activity. This is supported by 

evidence suggesting COMT plays a greater role in the degradation of 

catecholamines than MAO in the PFC, than elsewhere in the brain (Matsumoto et al., 



136 
 

2003; Tunbridge et al., 2004; Seamans & Yang, 2004). The opposite relative 

performance after exercise observed in this study may be explained by increased 

COMT activity in the SAM trial, although this is merely speculation at this point. As 

PFC function is impaired during stress via excessive catecholamine efflux (Arnsten, 

2009), what was detrimental in the placebo condition may have ameliorated the 

condition of the SAM trial. The results in Chapter 6 indicate that future studies are 

required before a definitive conclusion can be made regarding the effects of SAM on 

exercise performance. Primarily, the same tests should be conducted using an acute 

dose to determine if the central effects of this drug are connected to performance. 

 

7.5 – Conclusion and Future Research 

Pharmacological inhibition of dopamine/noradrenaline reuptake has consistently 

improved performance during prolonged exercise in warm conditions, whereas 

studies attempting increase catecholamine synthesis have not (Roelands & 

Meeusen, 2010). The studies contained within this thesis have attempted to further 

characterise this apparent difference. Central catecholaminergic signalling 

coordinates the behavioural response to stress (Chrousos & Gold, 1992) and coping 

(Pascucci et al., 2007; Snyder et al., 2012; Cabib & Puglisi-Allegra, 2012). 

Therapeutic doses of dopamine/noradrenaline reuptake inhibitors used in human 

exercise studies preferentially effect the PFC and the dopaminergic and 

noradrenergic nuclei which innervate it: the VTA and locus coeruleus, respectively 

(Berridge & Arnsten, 2012). This may result in improved executive control, a reduced 

impact of stress on behavioural switching, or a combination of both. The difference 

between catecholamine precursors and reuptake inhibitors may be due to 

differences in combined changes of dopamine and noradrenaline transmission or 

changes to tonic and phasic release, which would have differing effects on 

autoreceptor mediated feedback inhibition and subsequent signalling dynamics. The 

results of the studies presented in this thesis support the distinction in the effects of 

reuptake inhibition compared to increased synthesis of catecholamines on exercise 

performance. This suggests that future research be conducted with more 

consideration on the roles of catecholamines in particular areas of the brain.   
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Unfortunately, imaging of human brain activity during exercise remains impractical 

due to the numerous constraints of the imaging equipment. Therefore, future 

research could investigate the effects of bupropion, amphetamine or 

methylphenidate on EEG during prolonged exercise in warm conditions, to determine 

whether the changes in cortical activity reflect the performance enhancing effects of 

these drugs. Because all of these drugs are effective treatments for ADHD, the 

connection between ADHD, central catecholamines and prolonged exercise in warm 

conditions should be explored. Further pharmacotherapies for ADHD could be 

investigated, such as Atomoxetine. Studies comparing differences in prolonged 

exercise in adults with ADHD on and off their medication may further develop our 

understanding of the impact of catecholamines on the regulation of prolonged 

exercise. The importance of genetic differences in catecholamine metabolism and 

signalling, such as COMT polymorphism, could be explored. To further categorise 

gender differences, a study to investigate the effects of dopamine/noradrenaline 

reuptake inhibition on prolonged exercise in warm conditions in women during the 

luteal phase would help elucidate the impact of the menstrual cycle on exercise 

performance and the drug effects. Animal models provide the most flexibility and 

power for directly measuring changes within the CNS, but it may be difficult to devise 

an appropriate animal model for examining central fatigue, as motivation and stress 

will be difficult to control for in the context of goal-direction and executive control of 

behaviour. Forced behaviour alters the impact of stress on catecholamine systems 

(Cabib & Puglisi-Allegra, 1994), therefore, it would be necessary to develop a model 

in which animal exercise is self-motivated. This might be achieved by conditioning a 

fixed-ratio schedule or fixed-interval for rewards dependent on exercise performance 

or duration, respectively.  

Key points: 

1) The effects of bupropion on exercise performance in warm conditions appear 

to be similar in both men and women. 

 

2) There is a threshold for dosage at which the effects of bupropion on exercise 

performance manifest. 
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3) Increased availability of central catecholamine precursor does not appear to 

improve performance during prolonged exercise in warm conditions. This 

suggests site-specific changes in signalling within the CNS are responsible for 

the effects of dopamine/noradrenaline reuptake inhibitors, rather than a 

simple increase or decrease of neurotransmitter availability.  

 

4) 7-day SAM supplementation does not influence exercise capacity in the heat. 

To further characterise the role of methyl-group donors in the synthesis of 

catecholamines and how this may affect exercise performance, future SAM 

studies employing acute dosing protocols are required.   
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Appendix 

Thermal Sensation Scale 

 -10  Cold impossible to bear 

-9 

-8  Very cold, shivering hard 

-7 

-6  Cold, light shivering 

-5 

-4  Most areas of the body feel cold 

-3 

-2  Some areas of the body feel cold 

-1 

0   Neutral 

1 

2   Some areas of the body feel warm 

3 

4   Most areas of the body feel hot 

5 

6   Very hot, uncomfortable 

7 

8   Extremely hot, close to limit 

9 

10  Heat impossible to bear 
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