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Abstract 

Human tissue banks are a potential source of cellular material for the emerging cell-

based therapy industry; umbilical cord tissue (UCT) private banking is increasing in such 

facilities as a source of mesenchymal stem cells for future therapeutic use. However, early 

handling of UCT is relatively uncontrolled due to the clinical demands of the birth 

environment and subsequent transport logistics. It is therefore necessary to develop extraction 

methods that are robust to real world operating conditions, rather than idealised operation. 

This will be critical for all processes using primary tissue or cell sources. 

The research work undertaken in this PhD project was initiated by the collaboration 

with one of the leading private cord blood banks in the UK and later driven by the prospect of 

expanding the cell therapy and business potential of the bank. The investigation described in 

this thesis has focused on: 

 Developing an extraction method for human mesencymal stem cells (hMSCs) from UCT. 

 Understanding and minimizing the noticed variability in cell yield extracted from UCT 

by mapping the operating environment and assessing the risk factors before empirically 

determining their effect on the process.  

 Establishing the necessary process controls in the production of high quality hMSCs, 

through a series of wet experiments, targeted at narrowing down the sources of 

variability down to sub-process level. 

 Finding a novel method for assessing the cell content and viability of cords prior to 

processing. Therefore, helping the tissue processing facility to predict the risk of sub-

optimal cell yield from a given cord tissue section and processing method, given 

different operating ranges. 

 Determining the tissue storage requirements and isolation method with acceptable risk of 

adequate cell recovery. 

 Characterization of cells extracted from UCT via different extraction methods and 

comparison to primary cells extracted from other tissue sources. 

 Investigation of cryopreservation method for UCT. 

The result of this work provides a solid example of the type of data and analysis that 

will be required to inform a Quality-by-Design type approach for cell product development 

and manufacture. It will help tissue processing facilities and banks to predict the probability 

of cell yields from tissue sections given different operating ranges, and to aid and inform the 

experimental approach of others.  
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1. INTRODUCTION 

 

1.1 Regenerative medicine 

 

“Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore 

or establish normal function
1
.” 

With an increasingly aging population, a lack of donors for transplantation and the 

limited existing therapies to treat degenerative diseases such as cancer, Parkinson’s, or 

Alzheimer, regenerative medicine represents a field of great interest and enthusiasm in the 

present and future outlook of science
2
. Cell therapy, tissue engineering and gene therapy are 

some of the most novel and promising regenerative medicine approaches for major paradigm 

shifts in healthcare
1
. 

Tissue engineering is a fast growing, multidisciplinary area of research that combines 

engineering, physical sciences, biology, and medicine with the aim to restore or replace 

tissue’s and organ’s functions by creating tissue equivalents of blood vessels, heart muscle, 

nerves, cartilage, bone, and other organs
3
.  

Construction of engineered tissues and organs in vitro for transplantation, or 

regeneration of the tissue in vivo could be achieved by the use of stem cells
4
. Biological 

advances in the last decade have made it possible to study the path of differentiation and the 

effect of different parameters in stem cell proliferation for regenerative medicine 

applications
5
. 

The therapeutic use of stem and progenitor cells in treating a variety of human diseases 

requires the development of validated, clinical-grade cell therapies
6
. In order to achieve 

successful results of transplantation and treatment of significant diseases as Parkinson’s 

disease, Alzheimer’s disease, leukaemia, diabetes, stroke, muscular dystrophy, hepatic, renal 

failure, optimum methods need to be developed on how to extract stem cells from various 

primary tissue sources, the way in which they are expanded, how and for how long they are 

cryopreserved
7-9

. 
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1.2 Stem cells  

 

“The central focus of regenerative medicine is human cells. These may be somatic, 

adult stem or embryo-derived cells
1
”.  

Stem cells are cells found in all multi cellular organisms. They are undifferentiated 

cells characterized by the ability to renew themselves through mitotic cell division and 

differentiate into a diverse range of specialized cell types, generating multiple cell 

lineages
10,11

. Therefore, they have the potential to contribute to tissue homeostasis by 

replenishment of cells or regeneration of tissue after injury
12-14

.  

Stem cells possess three main characteristics that differentiate them from somatic 

cells
15

:  

• self-renewal, or the ability to generate at least one daughter cell after mitosis with 

identical characteristics to the mother cell;  

• multi-lineage differentiation of a single cell into one of the three germ layer cells that 

form an organism; 

• in vivo functional reconstitution of a given tissue; 

There are different ways of classifying stem cells: 

 

 Depending on their differential potential, stem cells can be classified as
9
: 

• Totipotent (a.k.a omnipotent) stem cells can differentiate into embryonic and extra-

embryonic cell types. Such cells can construct a complete, viable, organism. These 

cells are produced from the fusion of an egg and sperm cell. Cells produced by the 

first few divisions of the fertilized egg are also totipotent. 

• Pluripotent stem cells are the descendants of totipotent cells and can differentiate 

into nearly all cells, i.e. cells derived from any of the three germ layers (ectoderm, 

mesoderm and endoderm) but cannot form a whole organism. 

• Multipotent stem cells can differentiate into a number of cells, but only those of a 

closely related family of cells (e.g. skin stem cell, would give rise to the various types 

of skin cells
4
. 
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• Oligopotent stem cells can differentiate into only a few cells, such as lymphoid or 

myeloid stem cells. 

• Unipotent stem cells can produce only one cell type, their own, but have the property 

of self-renewal which distinguishes them from non-stem cells (e.g. pancreatic, 

endothelial and fibroblastic stromal progenitor stem cells, blast cells). 

 According to their origin, stem cells can also be classified into three categories :  

• Embryonic stem cells (ESCs). 

• Foetal stem cells (FSCs). 

• Adult stem cells (ASCs). 

 

1.2.1 Embryonic stem cells (ESCs)  

 

ESC lines are derived from the inner cell mass of the blastocyst that originates five days 

after the fertilization of a female egg with a spermatozoid. ESCs are pluripotent and give rise 

during development to all derivatives of the three primary germ layers: ectoderm, endoderm 

and mesoderm. In other words, they can develop into each of the more than 200 cell types of 

the adult body when given sufficient and necessary stimulation for a specific cell type. They 

do not contribute to the extra-embryonic membranes or the placenta. Embryonic cells were 

first obtained from mouse, but it was not until 1998 when J. Thomson derived the first line of 

human embryonic stem cells
16. These cells can be propagated in vitro while maintaining 

pluripotency for extended periods of time. However, embryonic stem cell lines are an artefact 

of cell culture techniques, since they do not remain as such in vivo. The cells that constitute 

the blastocyst differentiate quickly into different lineages to form tissues and organs for the 

development of an organism. Embryonic stem cells can also be propagated in vitro for 

months while retaining self-renewal potential and pluripotent characteristics
17

. Current 

research focuses on differentiating ESCs into a variety of cell types for eventual use as cell 

replacement therapies
18

.    Some of the cell types that have or are currently being developed 

include cardiomyocytes, neurons, hepatocytes, bone marrow cells, islet cells 

and endothelial cells. However, the derivation of such cell types from ESCs is not without 

obstacles and hence current research is focused on overcoming these barriers
133, 134

. 
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1.2.2 Foetal stem cells (FSCs) 

 

FSCs are primitive cell types found in the organs of foetuses. The classification of 

foetal stem cells remains unclear and this type of stem cell is currently often grouped into an 

adult stem cell. However, a more clear distinction between the two cell types appears 

necessary
19

. 

Although the literature is lacking more information about this type of stem cells, 

several differences between FSCs and ASCs have been distinguished and described recently. 

First, FSCs appear to have a greater expansion capacity in vitro and faster doubling times 

than ASCs, which may be due to their having longer telomeres than ASCs
20,21

. Second, 

FSC’s appear to lack some of the immune suppression properties observed in ASCs; also 

appear to synthesize HLA-G, which is absent in ASCs
22

. Third, FSCs appear to lack class II 

human leukocyte antigens (HLA), in contrast to ASCs
23

. Fourth, FSCs express a slightly 

different cytokine profile than ASCs
23

. In conclusion, primitive stem cells have a greater 

ability to expand in culture, are less lineage committed than ASC, and have a different 

physiology that is most likely due to their immature condition.  

 

1.2.3 Adult stem cells (ASCs) 

 

ASCs, also known as somatic stem cells, are undifferentiated cells found in many 

organs and tissues in the body including brain, bone marrow, peripheral blood, blood vessels, 

skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, and testis. They are thought 

to reside in a specific area of each tissue, called a "stem cell niche". Although they possess 

stem cell characteristics of self-renewal and differentiation, they have limited proliferation 

potential in vitro
24

. Their self-renewal potential is maintained in the body, since these cells 

are involved in the maintenance and repair of tissues and organs throughout the life span of 

the individual
25

. Most adult stem cells are multipotent and are generally referred to by their 

tissue origin (e.g. mesenchymal stem cell, adipose-derived stem cell, endothelial stem 

cell)
26,27

. Pluripotent adult stem cells are rare and generally small in number but can be found 

in a number of tissues including umbilical cord and cord blood. A great deal of adult stem 

http://en.wikipedia.org/wiki/Cell_differentiation
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cell research has focused on clarifying their capacity to divide or self-renew indefinitely and 

their differentiation potential
28

.  

Mesenchymal stem cells (MSCs) are a type of multipotent adult stem cell; a common 

progenitor, not just of skeletal tissues, but of ‘‘mesenchymal’’ tissues, meaning virtually all 

non-hematopoietic derivatives of the mesoderm; and although found in the bone marrow, it is 

not unique to the bone marrow
135

. MSCs have also been isolated from placenta, adipose 

tissue, lung,  blood, Wharton's jelly from the umbilical cord,
136

 and teeth (perivascular niche 

of dental pulp and periodontal ligament)
137

. Although MSCs have become more recently 

attractive for clinical therapy due to their ability to differentiate, provide trophic support, and 

modulate innate immune response
135

, the origin of the concept of a ‘‘mesenchymal’’ stem 

cell goes back to the pioneering experiments of Tavassoli and Crosby in the 1960s
138

. 

While the terms Mesenchymal Stem Cell and Marrow Stromal Cell have been used 

interchangeably, neither term is sufficient to describe the differentiation potential of this type 

of cells. Mesenchyme refers to the embryonic connective tissue that is derived from 

the mesoderm and that differentiates into hematopoietic and connective tissue, whereas 

MSCs do not differentiate into hematopoietic cells
28

. Stromal cells are connective tissue cells 

that form the supportive structure in which the functional cells of the tissue reside. While this 

is an accurate description for one function of MSCs, the term fails to convey the relatively 

recently discovered roles of MSCs in the repair of tissue
28

.  

The International Society for Cellular Therapy (ISCT) differentiates between MSCs 

and mesenchymal stem cells based upon in vivo characterization; for example, mesenchymal 

stem cells undergo self-renewal and multipotential differentiation following engraftment. 

Currently, a compromise marker set that would allow for a prospective identification of 

mesenchymal stem cells from the in vitro MSC population has not yet been portrayed. There 

is no single surface marker, but rather a panel of surface markers that define hMSC’s, derived 

from fresh tissues or cryopreserved samples. Due to different hMSC tissue sources, 

differences exist among these cells
29

. The matter is further complicated because these stem 

cells have poorly characterized growth conditions, such as low glucose DMEM containing 

fairly high concentrations of foetal bovine serum (FBS, 10–20%) and because not all lots of 

FBS are equal in terms of their ability to maintain MSCs growth
30

. Therefore in 2006, the 

Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

Therapy summoned a group of researchers to discuss, analyse and define the immune-

http://en.wikipedia.org/wiki/Placenta
http://en.wikipedia.org/wiki/Adipose_tissue
http://en.wikipedia.org/wiki/Adipose_tissue
http://en.wikipedia.org/wiki/Lung
http://en.wikipedia.org/wiki/Wharton%27s_jelly
http://en.wikipedia.org/wiki/Umbilical_cord
http://en.wikipedia.org/wiki/Adult_stem_cell#cite_note-crev-16
http://en.wikipedia.org/wiki/Dental_pulp
http://en.wikipedia.org/wiki/Periodontal_ligament
http://en.wikipedia.org/wiki/Adult_stem_cell#cite_note-17
http://en.wikipedia.org/wiki/Trophic_hormone
http://en.wikipedia.org/wiki/Innate_immune_response
http://en.wikipedia.org/wiki/Innate_immune_response
http://en.wikipedia.org/wiki/Mesenchyme
http://en.wikipedia.org/wiki/Embryo
http://en.wikipedia.org/wiki/Connective_tissue
http://en.wikipedia.org/wiki/Mesoderm
http://en.wikipedia.org/wiki/Haematopoiesis
http://en.wikipedia.org/wiki/Stromal_cells
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phenotype of MSCs. There were proposed 3 minimal criteria to define human MSCs 

(hMSCs)
 30

:  

1. the ability to adhere to plastic;  

2. presence of  ≥ 95% expression of hMSC-specific antigen markers (CD13, CD44, 

CD90, CD73, CD105) and ≤ 2% positive for hematopoietic/endothelial marker 

expression (CD14, CD11b, CD79, CD 34, CD45 and HLA-DR); 

3.  the differentiation of the hMSCs into osteoblasts, adipocytes, and chondroblasts in 

vitro. 

While there might be a lot more answers in regard to mesenchymal stem cells from 

other, more explored, sources, like bone marrow; the exploration of human umbilical cord 

tissue as a source of MSCs still raises a lot of questions, presenting researchers with the 

opportunity of new challenges and discoveries.  

 

1.3 The human umbilical cord (hUC) 

 

The hUC, embryologically formed at day 26 of gestation
32

, represents the link between 

mother and foetus during pregnancy. It is composed of a special embryonic mucous 

connective tissue, called Wharton’s jelly, lying between the covering amniotic epithelium and 

the umbilical vessels (Fig.1.1). 

 

 

Fig. 1.1 (a) Umbilical Cord Sample; (b) Cross-section of an umbilical cord displaying the two 

arteries (left) and vein (right), which has a larger lumen. Note that the lower artery is 

sectioned tangentially
41-43

. 

a. b. 

Arteries 

Vein 
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The main role of this jelly-like material is to prevent the compression, torsion, and 

bending of the enclosed vessels, which provide bidirectional blood flow between foetal and 

maternal circulation
33, 34

. The human UC weighs approximately 40 g, its length reaches to 

approximately 60–65cm, and it has a mean diameter of 1.5 cm at term
35,36

. It is covered by a 

single/multiple layer(s) of squamous-cubic epithelial cells called umbilical epithelium, which 

is generally thought to be derived from amniotic epithelium
37, 38

. Those epithelial cells 

display ultra-structural and functional characteristics to those seen in keratinocytes
39

 and 

were also shown to possess stem cell characteristics
40

. The inner tissue architecture is 

composed of a set of two arteries and one vein and a surrounding matrix of mucous 

connective tissue comprised of specialized fibroblast-like cells and occasional mast cells 

embedded in an amorphous ground substance rich in proteoglycans, mainly hyaluronic acid. 

Neither capillaries nor lymphatics are found in the UC. Vessels are normally organized as left 

spiral (counter clockwise) turns (Fig. 1.2). In clinical practice, determining the “umbilical 

coiling index” (number of complete coils divided by the length of the cord; average 0.24 coils 

per centimetre) may identify the foetus at risk of foetal demise
40

. 

 

Fig. 1.2 Different regions for the isolation of hMSCs in the umbilical cord
41.  

Cord Arteries (Blue) 

Wharton’s Jelly 

Cord Vein (Red) 

 

Cord blood Stem Cells 

Umbilical cord 
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Vascular 
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The part of the cord, mentioned as Wharton’s jelly, appears to serve the function of 

adventitia (connective tissue), which the UC vessels lack, binding and encasing the umbilical 

vessels. It has been suggested that the stromal cells of Wharton’s jelly may participate in the 

regulation of UC blood flow and that, at least in some cases; the reduction in foetal growth 

could be the consequence of stromal diminution leading to hypoplasia of umbilical 

vessels
44,45

.  

At least six distinctive zones are now recognized based on the structural and functional 

studies, from outer to inner (Fig. 1.3): (1) umbilical cord blood; (2) umbilical vein 

subendothelium, (3) perivascular stroma, (4) intervascular stroma (named classically as 

Wharton’s jelly), (5) sub amnion, and (6) amnion
32

. Fine structural, immunohistochemical
46,48

 

and in vitro functional studies
49,50

 proved that there are significant differences in the number 

and nature of cells among subamniotic, intervascular, and perivascular regions, which leads 

to the hypothesis that those regions might be originating from different pre-existing 

formations. For instance, myofibroblastic cells of the intervascular stroma might have derived 

from adjacent vascular smooth muscle cells or, alternatively, from pre-existing fibroblasts
32

.   

 

  

 

Fig. 1.3 Compartments within the umbilical cord. Separate regions, which have been shown 

to contain mesenchymal stromal cells. Wharton’s Jelly is the connective tissue surrounding 

umbilical vessels and includes the perivascular, intervascular, and sub amnion regions (zones 

3-5)
29

.  

 

 

3. Perivascular 

4. Interivascular 

6. Amnion 

5. Sub amnion 

1. Umbilical cord blood 

2. Umbilical vein subendothelium 
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1.4 Human umbilical cord mesenchymal stem cells 

 

1.4.1 Isolation methods for umbilical cord tissue (UCT) hMSCs 

 

UCT hMSCs have been reportedly isolated from the different areas that form the 

umbilical cord (Fig. 1.2 and 1.3). 

More precisely they have been described to be isolated from: 

 Umbilical cord blood
5, 50-59

. 

 Umbilical vein sub-endothelium
19, 49, 60-64

. 

 Wharton’s jelly
29, 32, 41, 65-69

. 

Within the Wharton’s jelly, MSCs have been isolated from three relatively indistinct 

regions: the perivascular zone, the intervascular zone, and the sub amnion. It is still 

undecided whether MSCs isolated from the different compartments of the umbilical cord 

represent different populations
48, 139,140

. The nomenclature used in the literature for these 

various compartments has been misleading and not standardized, with terms such as ‘cord 

lining’, ‘subamnion’, ‘intervascular’, ‘perivascular’ and ‘hUVEC’ being used. Stem cell 

populations with varied stemness properties have been reported for each of these 

compartments
140

, but the various individual derivation protocols
 
published in the literature for 

stem cells from the UCT are
 
ambiguous and do not pay regard to the differences in stem cell

 

populations between compartments. At the same time it is not
 
known whether the stem cell 

populations between compartments
 
are one and the same as there is no clear demarcation

 

histologically between some of these compartments.
 

Given the reports that stem cell 

populations in different
 
compartments have varied stemness characteristics the derivation

 

protocols involving entire cord pieces containing all the
 
compartments will result in mixed 

heterogeneous stem cell
 
populations making a meaningful assessment of investigations

 

difficult. It is therefore urgently necessary to standardize
 
a derivation protocol for MSCs of 

the UCT that yields defined
 
or minimally heterogeneous cell populations

140
. 

Bongso A and Fong CY have discussed in a recent review diverse methods for isolation 

of MSCs from UCT
141

. They grouped these methods into six representative isolation methods 

that involve either explant culture of the tissue, enzymatic digestion or both. The main 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bongso%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23233233
http://www.ncbi.nlm.nih.gov/pubmed?term=Fong%20CY%5BAuthor%5D&cauthor=true&cauthor_uid=23233233


Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
19 

conclusion of their study was that even though MSCs have been reported from the various 

compartments of the human UCT, the compartment with stem cell populations of the most 

optimal therapeutic value remains debatable. Robust comparisons between the stem cell 

populations of these various compartments in order to identify the most optimum source and 

subpopulation is urgently necessary for standardization and comparison of results between 

groups and to ensure reliability in terms of stemness properties, product quality, safety and 

efficiency for attaining regulatory approval for future clinical trials. Currently, stem cells 

from the Wharton’s Jelly compartment appear to be the most defined with several unique 

characteristics
141

. 

The fact that there is no standardized method for extraction of MSCs from hUCT 

comes to show that there is a gap in knowledge and that there is a real need for developing 

practical methods that apply to real processing environment, such as autologous and 

allogeneic tissue banking. There are pros and cons to each of the methods described in 

literature but the real challenge is represented by the fact that these methods are usually 

compared under idealized conditions.  However, due to the nature of tissue collection in a 

birthing environment the early period of tissue processing is relatively uncontrolled; the 

priority is maternal and neonate safety. Further, tissue often needs to be transported from 

maternity units to distant processing sites, especially in the case of private banks. Such 

factors make imposing tight process controls on early handling challenging. In addition, 

innate biological variation in the tissue will affect the cell yield. Therefore cell isolation 

methods should be assessed and engineered for robustness to innate biological tissue 

variation or arising variation due to tissue collection procedures. This is particularly 

important for tissue stored for autologous use (private banking), where a processing facility 

will not be able to select tissue based on favourable characteristics. 

Current procedures presented in literature for enzymatic digestion and explant methods 

of extraction for MSCs from UCT have been detailed below. 
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1.4.1.1 Isolation by enzymatic digestion 

 

 Protocols applied by different investigators seem to have as a general trend the use of 

collagenase-containing solutions, which have strong collagenase activity as well as caseinase, 

clostripain, and tryptic activities. Type I collagenase, or collagenase type A, is extensively 

used for the isolation of mesenchymal-like cells from the cord tissue. Furthermore, recent 

literature describes the use of a combination of collagenase with hyaluronidase, which seems 

to facilitate the degradation of matrix ground substance and shortens the time required for the 

isolation process
49, 65, 69, 70

. The use of type II collagenase, which is stronger for its clostripain 

activity, or collagenase type B, which is more efficient in solubilizing the UC microfibrils 

than other types of collagenases, is also worth taking into consideration
48, 71, and 72

. 

The duration of collagenase treatment is critically important, especially if collagenase/ 

hyaluronidase cocktails are used, since there is always a risk of degradation of cellular 

external lamina, a phenomenon preventing cells from adhering to the culture substrate after 

isolation and even causing severe cellular damage
32

. The time required for tissue digestion 

ranges from 30 minutes
49

 to 16 hours
68

 depending on the quantity/concentration of enzyme 

and duration of treatment with digesting reagents. 

It has been noted that filtration of the digested material through 70–100µm pore sized 

cell strainers facilitates the removal of any unwanted tissue debris
73

. 

 

1.4.1.2 Isolation by explants culture 

 

 Enzymatic digestion can be avoided if an explant culture is employed. Unfortunately a 

limited number of studies that involve the explant method have been conducted so far. The 

principle of the method is generally described as fine chopping of the Wharton’s jelly 

sections of the cord tissue, after excision of the blood vessels, with a scalpel, plating of the 

fine fragments in sterile culture plates or Petri dishes, and culturing of these with low-glucose 

DMEM, supplemented with foetal bovine serum (10-20% v/v), L-glutamine and 

antibiotics/antimycotics
66, 74-78

.  

 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
21 

 

1.4.2 Cryopreservation methods for UCT and hMSCs isolated from UCT 

 

Cryopreservation of cord tissue and/or cells extracted from the tissue represents an 

important stage to overcome in the view of the therapeutic use of stem cells. The banking 

model of our industrial partners is to extract MSCs from both cryopreserved and fresh cord 

tissue. Therefore, the choice of an appropriate cryopreservation protocol is essential for 

maintenance of cryopreserved tissue. UCT cryopreservation should be able maintain the 

cellular metabolism in a dormancy state for an indefinite period of time.  

Freezing conditions of both isolated UC MSCs and UCT could have a serious impact 

on the viability rates after thawing and they have to be evaluated. Most researchers prefer to 

use defined culture media supplemented with high amounts of foetal bovine serum and 7%–

10% (v/v) dimethyl sulfoxide (DMSO)
48

 or glycerol
69

 and freeze the cells gradually (eg. 

1
0
C/min) and keep them between -135°C and -196°C. After rapid thawing at 37°C, viability 

rates of over 50% were achieved
49

. The use of higher levels of foetal bovine serum especially 

during the first week after thawing the cells has proven to substantially increase their 

growth
69

. Certainly, more controlled studies are needed to maximize the freeze-thaw 

efficiency, especially when their routine use is concerned in clinical trials and even more 

when it comes to cord tissue itself.  

The success of regenerative medicine and its components depends on the ability to 

physically distribute the products to patients in need and to produce these products ‘‘off-the-

shelf’’
9
. For this reason, the ability to cryogenically preserve not only cells, but also tissue 

fragments, is an important part of a complete technology platform.  

In a recent study Da-Croce L, et al., have tested two protocols of cryopreservation on 

hUCT: slow cooling and vitrification. The samples were frozen for a period of time ranging 

from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, 

histological analysis, cell culture, cytogenetic analysis and comparison with the results of the 

fresh samples. The results showed that the slow cooling protocol was more efficient than the 

vitrification, for cryopreservation of umbilical cord tissue, because it has caused fewer 

changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the 

significant decrease cell viability compared to fresh samples, the ability of cell proliferation 
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in vitro was preserved in most samples. In conclusion, this study showed that it is possible to 

cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells 

capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue 

bank
142

. 

Also, in another recent study, Mahmood S, et al., have studied the utility of 

cryopreserved UCT by characterizing MSCs isolated from cryopreserved and fresh cord 

tissue. They found no significant functional differences between MSCs from frozen cord 

tissue as compared to fresh cord tissue
143

.  

Cryopreserving cord tissue could allow for isolation of MSCs at the point of care in the 

near future. This may be advantageous as MSC isolation protocols continue to be optimized 

dependent on intended use. More studies with large numbers of samples, testing various 

cryoprotectants, and assessing other parameters such as, viability and ability of preserving 

stemness, should be conducted
142, 143

. 

 

1.4.3 Differentiation potential of UCT hMSCs 

 

One of the main goals of regenerative medicine is to achieve the potential to use stem 

cells in cell-based therapies. Since UC is one of the most easily reached stem cell sources 

both ethically and technically, both in vitro and in vivo studies are definitely desirable. There 

have been several reports of successfully differentiated lineages using a variety of cell culture 

techniques and reagents
32

: 

 

 In vitro differentiation: 

 Adipocytes
48, 71, 75, 79

. 

 Chondrocytes
48, 68, 70, 79

. 

 Osteocytes
48, 49,71,75,79

. 

 Cardiomyocytes
62, 68

. 

 Skeletal myocytes
75

. 

 Neuronal/glial precursors
48, 71 ,80

. 

 Dopaminergic neurons
65, 69

. 

 Endothelial cells
81

. 
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 In vivo differentiation: 

 Dopaminergic neurons
65, 69

. 

 Photoreceptor rescues
73

. 

 Endothelial cells
81

. 

 Skeletal myocytes
75

. 

 

As the umbilical cord stromal cells originate from the extra embryonic mesoderm, 

adipogenic, chondrogenic, osteogenic, cardiomyogenic, and skeletal myogenic inductions 

have been the most studied cell lineages
32

.  

Despite morphological and immunophenotypical similarities, human mesenchymal 

stem cells (hMSCs) from diverse origins vary in regard to their differentiation potential
28

. 

Bone marrow hMSCs, for example, can differentiate along all known mesodermal 

differentiation pathways
82

. In contrast, umbilical cord blood (UCB) hMSCs and umbilical 

cord (UC) hMSCs display a reduced sensitivity to undergoing adipogenic differentiation
5, 83

, 

although they can differentiate into adipocytes
51

. Independently of their origin, the 

adipogenic potential of hMSCs is inversely related to the length of in vitro culture, and 

sharply declines when hMSCs become senescent
84

. Contrary, prolonged culturing increases 

their osteogenic differentiation
85

. In vitro expansion of hMSCs should therefore be performed 

with limited passaging, to avoid changes in their differentiation ability. Gradual shortening of 

the telomeres during a cell’s life continues, until the presence of critically short telomeres 

triggers a senescence pathway, which results in proliferation arrest
28

. Because of that, a 

normal human cell can only divide 50 to 100 times in in vitro conditions; hMSCs are no 

exception
51, 86

. UC blood hMSCs, however, have slightly longer telomeres than other hMSCs, 

and thus can be cultured for longer periods before they senesce
87

. Proliferation arrest in 

hMSCs results in their senescence, which is described by the appearance of large senescent 

cells with flat shape, circumscribed nuclei and increased lysosome compartment. These 

morphological changes are not restricted to the senescent stage only, but represent continuous 

alterations in the course of hMSCs long-term culture
85

. 
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1.4.4 Immunophenotyping of UCT hMSCs 

 

The scientific literature is abundant in information about marker profiles that, 

theoretically, characterize stromal cells from the umbilical cord. Investigators suggest 

different paths towards achieving a correct characterization of mesenchymal stem-like cells 

from the umbilical cord,  thus, making the process of accurate evaluation even more 

confusing and harder to reach
32

. Furthermore the existence of various populations of 

mesenchymal-like stem cells in the different areas that form the umbilical cord
76

 sets hurdles 

in establishing a standard marker profile for these cells
88

.  

At the present time, characterisation of hMSCs is generally accomplished by flow-

cytometry analysis of surface markers. Stro-1 has been identified as a marker for cells that 

can differentiate into multiple mesenchymal lineages
89

. However, other scientists’ findings
90

 

suggested that Stro-1 is not essential for the differentiation potential of hMSCs. Moreover, it 

has been demonstrated that a CD9/CD90/CD166 triple positive subpopulation of hMSCs 

showed multipotency for chondrogenic, osteogenic and adipogenic differentiation providing a 

basis for identification of hMSCs
91

. It has been indicated that positive expression of CD166 is 

indicative of multipotency in hMSCs. However, the level of expression has been shown to 

decrease with increasing cell density in culture and regained during inoculation of successive 

passages
92

. Expression levels of CD90 and CD105 are maintained over sequential passages 

and they can be important for validating cultures of hMSCs intended for therapy
93

. A good 

indication of hMSC identity can be reached by expression of CD90, CD105 and CD166 and 

lack of expression of CD34 and CD45 as a minimum set of surface markers. A more 

extensive list has been compiled from results obtained by different groups (Table 1.1)
32

. 
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Table 1.1 Expression of surface markers for human mesenchymal stem cells (hMSCs). 

 

Surface antigen Expression Surface antigen Expression 

CD9 + CD50 ICAM3  - 

CD10 + CD54 ICAM1  + 

CD11a,b - CD62E E-selectin  - 

CD13 + CD71 trasferrin rec  + 

CD14 - CD73 SH3  + 

CD18 integrin β2 - CD90 Thy-1  + 

CD29 + CD105 SH2  + 

CD31 PECAM - CD106 VCAM  + 

CD34 - CD117  - 

CD44 + CD133  - 

CD45 - CD166 ALCAM  + 

CD49b integrin α2 + HLA ABC  + 

CD49d integrin α4 - HLA DR  - 

CD49e integrin α5 + SSEA-4  + 

 

 

1.5 Process control and optimization 

 

1.5.1 Variability in hMSCs extraction from hUCT 

 

There are some sources of variability in all primary cell isolation processes that need to 

be taken into consideration when designing such a process. There are ways of minimizing 

variations between lots produced, by controlling process parameters, and by screening the 

raw materials that will be in contact with the cells and cell source
94

. There are other non-

controllable parameters such as the source of the cells, which represents a real challenge for 

regenerative medicine applications. Each cell extraction method is produced with cells from a 

different patient/donor, with intrinsic characteristics that result in variations of cell growth 

patterns and differentiation
95

. It is therefore necessary to develop extraction methods that are 
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robust to real world operating conditions, rather than idealized operation. Biological variation 

in patients, or biological material introduced into samples due to isolation and handling will 

have a major effect on the safety and efficacy of clinical applications. It is necessary to map 

the operating environment and assess risk factors before empirically determining the effect on 

the process. This will be particularly critical for processes using primary tissue or cell sources 

where the biological variation at input is likely to be high. Regulated therapeutic products 

will require characterized and risk assessed manufacturing processes
96

. This fits the 

philosophy of process control industry tools such as quality by design (QbD)
 97

 and Six 

Sigma
98, 99

; represent approaches to understanding process operating space and risks of 

associated variables. 

 

1.5.2 Quality by design (QbD) 

 

“Quality by design means designing and developing manufacturing processes during 

the product development stage to consistently ensure a predefined quality at the end of the 

manufacturing process
100

.” 

QbD was born out of the need for the pharmaceutical industry and the US Food and 

Drug Administration (FDA) to move pharmaceutical development toward a new, more 

scientific, risk-based, complete and proactive methodology. This new approach requires a 

‘built in’ quality for the product and manufacturing process. This is achieved through a deep 

understanding of process components, starting at the product development stage. The design 

and advance of the final product involves identification of critical quality attributes (CQA’s) 

and a clear outline of product performance. Understanding the impact of raw material 

characteristics and process parameters on the CQAs in the process development of a product 

is crucial in finding and controlling sources of variability. Once these sources are identified, 

measurements for control can be implemented in the manufacturing process and methods can 

be designed to deliver the desired product attributes
97

.  

QbD ensures a systematic approach to product development that allows companies to 

achieve consistent product quality. This is seen in Figure 1.4, which shows the different 

phases during the life cycle of a pharmaceutical process: define, design, characterize, 

validate, and monitor and control. The final link between “monitor and control” and “define” 
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represents process changes that are initiated based on process improvement opportunities 

identified during process monitoring or introduced otherwise to improve process performance 

or robustness
97

. 

 

 

Fig. 1.4 Different phases during the life cycle of a pharmaceutical process
97

. 

 

1.5.2.1 QbD implementation 

 

A popular concept used for implementation of QbD is ‘design space’, which has been 

defined as “the multidimensional combination and interaction of input variables (e.g., 

material attributes) and process parameters that have been demonstrated to provide assurance 

of quality. Working within the design space is not considered as a change. Movement out of 

the design space is considered to be a change and would normally initiate a regulatory post-

approval-change process. Design space is proposed by the applicant and is subject to 

regulatory assessment and approval
101

.” 

Though design space has primarily been used in the context of pharmaceutical 

processes, it can also be applied to represent the clinical and product-quality aspects of a 

product
97

. 

Define 

Design 

Characterize Validate 

Monitor&
Control 
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Because QbD is a novel concept, there is very limited literature on its application. It has 

mainly been used in small molecule manufacture
102, 103

 and in biopharmaceuticals in the 

production of monoclonal antibodies
104

. 

Another important tool for gathering process knowledge and increasing process 

understanding is multivariate data analysis (MVDA). The use of MVDA as a tool to 

establish process parameters and their interactions, therefore to define the design space for a 

particular manufacturing process has been reported in case studies involving cell-culture 

processes
105, 106

 and by other biotech companies
107

. In these circumstances MVDA was used 

to identify parameter interactions that adversely affect cell culture process performance and 

to support some of the key activities required for successful manufacturing of 

biopharmaceutical products, including scale-up, process comparability, process 

characterization and fault diagnosis. 

In all cases, it was concluded that it is possible to design control systems that rely on 

measurement of product CQAs and enable real-time decisions. Once the design space for a 

particular manufacturing process has been defined, it can be continually reassessed and 

changed, as appropriate
108

.  

Process analytical technology (PAT) is a complementary concept to that of design 

space, it is “a system for designing, analysing, and controlling manufacturing through timely 

measurements (i.e., during processing) of critical quality and performance attributes of raw 

and in-process materials and processes, with the goal of ensuring final product quality
109

” and 

it’s goal is “to enhance understanding and control the manufacturing process, which is 

consistent with our current drug quality system: quality cannot be tested into products; it 

should be built-in or should be by design
109

”.  

Appropriate use of PAT tools and principles ensures that the process operates within 

the approved process design space, and enables process understanding, therefore facilitates 

process control and optimization. “A process is generally considered well understood when 

(1) all critical sources of variability are identified and explained; (2) variability is managed by 

the process; and, (3) product quality attributes can be accurately and reliably predicted over 

the design space established for materials used, process parameters, manufacturing, 

environmental, and other conditions. The ability to predict reflects a high degree of process 

understanding. A focus on process understanding can reduce the burden for validating 
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systems by providing more options for justifying and qualifying systems intended to monitor 

and control biological, physical, and/or chemical attributes of materials and processes. 

Structured product and process development on a small scale, using experimental design and 

on- or in-line process analysers to collect data in real time, can provide increased insight and 

understanding for process development, optimization, scale-up, technology transfer, and 

control
109

”. 

The application of PAT has been reported in the use of a commercially available online 

HPLC system for real-time pooling of process chromatography columns
 110

. This case study 

shows the practicality of online-HPLC for analysis and its capacity to enable real-time 

decisions for column pooling based on product-quality attributes. Thus, the quality systems 

approach allows continuous improvement of the manufacturing process
97, 100, and 111

. 

There are many tools available that enable process understanding for scientific, risk-

managed pharmaceutical development, manufacture, and quality assurance. These tools, 

when used within a system, can provide effective and efficient means for acquiring 

information to facilitate process understanding, continuous improvement, and development of 

risk-mitigation strategies. In the PAT framework, these tools can be categorized according to 

the following
109

:  

 Multivariate tools for design, data acquisition and analysis. 

 Process analyzers. 

 Process control tools. 

 Continuous improvement and knowledge management tools. 

An appropriate combination of some, or all, of these tools may be applicable to a 

single-unit operation, or to an entire manufacturing process and its quality assurance
109

. 

The application of QbD principles to pharmaceutical manufacturing has received more 

and more interest recently
102, 103

. The biotech and traditional small-molecule pharmaceutical 

industry has been working actively on applying the concepts of Quality by Design to the 

development and manufacture of drug products
108

. Case studies mentioned previously serve 

as useful tools in establishing common ground on how to develop and define a design space. 

They provide examples of how to carry out three key steps in process characterization
108

:  

1) Performing a risk analysis to identify parameters for process characterization;  
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2) Developing studies based on a design-of-experiments approach to study those 

parameters and their interactions; 

 3) Executing those studies and analysing them to determine which parameters are 

critical and how the design space should be defined. 

 

1.5.3 Six Sigma 

 

Six Sigma represents a framework for quality improvement and business excellence 

that has been adopted by high-profile companies such as Motorola and General Electric
99

. It 

has been defined as “a disciplined method of using extremely rigorous data gathering and 

statistical analysis to pinpoint sources of errors and ways of eliminating them
112

”. Also 

Minitab, popular software used to perform statistical analysis, describes Six Sigma as “an 

information-driven methodology for reducing waste, increasing customer satisfaction and 

improving processes with a focus on financially measurable results
99

”. 

There are several features that distinguish Six Sigma from other quality improvement 

techniques. First is the use of DMAIC framework, where techniques such as QFD (quality 

function deployment), FMEA (failure mode and effects analysis), DOE (design of 

experiments) and SPC (statistical process control) are integrated into a logical flow
99

. 

DMAIC is used for projects aimed at improving an existing business process. The DMAIC 

project methodology has five phases
113

: 

1. Define the problem, the voice of the customer, and the project goals, specifically. 

2. Measure key aspects of the current process and collect relevant data. 

3. Analyse the data to investigate and verify cause-and-effect relationships. Determine 

what the relationships are, and attempt to ensure that all factors have been considered. 

Seek out root cause of the defect under investigation. 

4. Improve or optimize the current process based upon data analysis using techniques 

such as design of experiments, mistake proofing, and standard work to create a new, 

future state process. Set up pilot runs to establish process capability. 

5. Control the future state process to ensure that any deviations from target are corrected 

before they result in defects. Implement control systems such as statistical process 

control, production boards, visual workplaces, and continuously monitor the process. 
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Some organizations add a Recognize step at the beginning, which is to recognize the 

right problem to work on, thus yielding an RDMAIC methodology
113

. 

The idea of information-based improvement has been extended to design activities, in 

the form of DMADV or DFSS (design for Six Sigma)
 114, 115

. DFSS (typically in the form of 

IDOV or Identify–Design–Optimize– Validate) aims to design products, services and 

processes that are ‘Six Sigma capable’, emphasizing the early application of Six Sigma tools 

and the fact that as far as defect elimination goes, prevention is better than cure
99

. 

DFSS features five phases as well
113

: 

1. Define design goals that are consistent with customer demands and the enterprise 

strategy. 

2. Measure and identify characteristics that are critical to quality (CTQs), product 

capabilities, production process capability, and risks. 

3. Analyse to develop and design alternatives, create a high-level design and evaluate 

design capability to select the best design. 

4. Design details, optimize the design, and plan for design verification. This phase may 

require simulations. 

5. Verify the design, set up pilot runs, implement the production process and hand it over 

to the process owner(s). 

Within the individual phases of a DMAIC or DMADV/DFSS project, Six Sigma 

utilizes many established quality-management tools that are also used outside Six Sigma, 

such as design of experiments (DOE), analysis of variance (ANOVA), control charts, general 

linear model, histograms, process capability, process mapping, to name a few
113, 116

.  

It can be concluded, therefore, that statistical thinking and statistical methodologies 

constitute the backbone of Six Sigma. The results achieved through implementation of Six 

Sigma are a far better from the days when quality had to depend on testing and inspection 

(T&I). More and more the emphasis of quality improvement has been moving upstream 

through the years: from T&I on the product to statistical process control (SPC) on the 

process, then Six Sigma on the system, and finally DFSS as a pre-emptive move for 

achieving the desired performance. Certainly Six Sigma and DFSS represent a far more 

fundamental approach to problem solving and problem anticipation, respectively, in any 

given situation
99

. 
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1.6 Thesis objectives 

 

Cell-based therapeutic products will require sources of input for human cell material to 

underpin clinical supply. Different therapies will require different constituent cell types;  

human tissue banks are a potential source of cellular material for the nascent cell-based 

therapy industry; supply strategies are likely to include both large single cell-line banks for 

allogeneic application, as well as large banks of individual donor units of primary tissue for 

either autologous or allogeneic applications. In the latter category, a significant international 

industry, both public and private, now exists to bank human tissue for potential future 

therapeutic use. 

Umbilical cord tissue is increasingly privately banked in such facilities as a source of 

mesenchymal stem cells for future therapeutic use. However, early handling of cord tissue is 

relatively uncontrolled due to the clinical demands of the birth environment and subsequent 

transport logistics. It is therefore necessary to develop extraction methods that are robust to 

relevant operating conditions, rather than idealized operation. 

The research work described in this thesis was driven by the opportunity to expand the 

therapeutic and business potential of one of the leading private cord blood banks in the UK. 

The primary objectives of this collaboration were to understand and minimize variability in 

cell yield extracted from human umbilical cord tissue (hUCT) and to help the tissue 

processing facility to predict the probability of cell yields from 200-400 mg tissue sections 

given different operating ranges, and inform the experimental approach of others. 

In order to achieve this goal it was understood that tight control and characterization of 

the process was critical. Therefore a systematic approach and work program was developed; 

this allowed the necessary process controls in the production of high quality hMSCs from 

hUCT, to be established, and also for a statistically capable production process, to be 

achieved. The systematic side of this approach was rooted in industrial systems such as Six 

Sigma and QbD, described previously.  

The aim was to direct the final product of the research work towards a Product 1 type 

(Fig. 1.5), that has a large and diverse clinical market. 
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Fig. 1.5 Diagram represents an overview of potential products that could be obtained by 

expansion of hMSCs from the hUCT. 

 

Products 1-3 will likely satisfy basic hMSCs criteria at isolation, providing a basis for 

banking, however as clinical science progresses and banked samples will need to become 

practical, different cell banks will see differing results from their cryopreserved ‘hMSCs’ 

because they will have stored/isolated different cell populations, with different potentials. 

P1 is representative for a MSC population that has high clinical utility and safety, at 

low passage number and therefore the best proliferation and differentiation potential. P2 is 

representative for a senescent MSC population that has low clinical utility and safety, at a 

high passage number and therefore a considerably reduced proliferation and differentiation 

potential. P3 is representative for a cell population that has the least clinical utility and safety, 

this population possesses basic proliferation or differentiation potential characteristic for 

MSCs at isolation, but will fail to maintain these after expansion. 

Therefore, selection of cells from a processing method based on P1’s potential is 

preferable for long term success.  
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2. METHODS AND INITIAL DEVELOPMENT 

 

This thesis is focused on method development for extraction of cells from human 

umbilical cord tissue. This has presented some structural challenges in separating the 

methods chapter from the novel development work. This methods chapter contains the core 

common methods used throughout the length of the research work. Where these methods 

have been further developed as the focus of a chapter this was clearly stated as appropriate in 

the relevant chapter. Some preliminary work was conducted in order to establish some ‘base-

line’ processes and this preliminary development was also detailed within this methods 

chapter. 

Umbilical cords used for the research purposes of this project were sourced by the 

private cord blood bank, which was our industrial partner and from a public UK hospital. All 

umbilical cords used for this study were collected with parental consent. Procedures for 

collection and transportation of umbilical cords have been described further in this chapter. 

 

2.1 Isolation methods for human umbilical cord tissue mesenchymal stem cells 

 

2.1.1 Extraction of hMSCs from umbilical cord tissue via enzymatic digestion. 

Basic method development 

 

Several methods of enzymatic digestion were initially tested; on 200-400 mg cord 

slices from multiple cords, both fresh and frozen, with the purpose to screen different 

methods for an assessment of method success with a view to downstream standardization of 

the isolation and expansion of mesenchymal stem cells from the UCT (Table 2.1).  
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Table 2.1. Enzymatic digestion methods for the extraction of hMSCs from UCT. 

 

 

No. 

 

Method of digestion 

No. of 

cords 

used 

State of the 

cord 

 

 

 

 

1 

 

2 hours enzyme digestion of cord tissue with 3 

different enzymatic solutions: 

 9 (200 – 400 mg) slices of cord tissue were 

digested in 3 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 40 µm cell strainers and 

centrifuged at 1500 rcf for 10 min/each;  

 

 

 

 

3 

 

 

 

 

Frozen 

 

 

 

 

2 

 

4 hours enzyme digestion of cord tissue with 3 

different enzymatic solutions: 

 9 (200 – 400 mg) slices of cord tissue were 

digested in 3 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 70 µm cell strainers and 

centrifuged at 1500 rcf for 10 min/each; 

 

 

 

 

 

3 

 

 

 

 

Frozen 

 

 

 

 

3 

 

18 hours enzyme digestion of cord tissue with 3 

different enzymatic solutions: 

 9 (200 – 400 mg) slices of cord tissue were 

digested in 3 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 70 µm cell strainers and 

centrifuged at 1500 rcf for 10 min/each; 

 

 

 

 

3 

 

 

 

 

Frozen 
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No. 

 

Method of digestion 

No. of 

cords 

used 

State of the 

cord 

 

 

 

 

4 

 

2, 4 and 18 hours enzyme digestion of cord tissue 

with 3 different enzymatic solutions: 

 18 (200 – 400 mg) slices of cord tissue were 

digested in 3 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 70 µm cell strainers and 

centrifuged at 1500 rcf for 10 min/each; 

 

 

 

 

3 

 

 

 

Fresh 

(2 days old) 

 

 

 

 

5 

 

2, 4 and 18 hours enzyme digestion of cord tissue 

with 3 different enzymatic solutions: 

 18 (200 – 400 mg) slices of cord tissue were 

digested in 5 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 100 µm cell strainers and 

centrifuged at 500 rcf for 10 min/each; 

 

 

 

 

6 

 

 

 

 

Frozen 

 

 

 

 

 

 

6 

 

2, 4 and 18 hours enzyme digestion of cord tissue 

with 3 different enzymatic solutions: 

 9 (200 – 400 mg) slices of cord tissue were 

digested in 5 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 100 µm cell strainers; 

 no centrifugation for slices digested with 2 of 

the enzymatic solutions and 1000 rcf 

centrifugation speed for slices digested with 

the 3
rd

 type of enzymatic solution; 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

Frozen 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
38 

 

No. 

 

Method of digestion 

No. of 

cords 

used 

State of the 

cord 

 

 

 

 

 

7 

 

2, 4 and 18 hours enzyme digestion of cord tissue 

with 3 different enzymatic solutions: 

 9 (200 – 400 mg) slices of cord tissue were 

digested in 5 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 100 µm cell strainers; 

 no centrifugation for slices digested with 2 of 

the enzymatic solutions and 1000 rcf 

centrifugation speed for slices digested with 

the 3
rd

 type of enzymatic solution; 

 

 

 

 

 

1 

 

 

 

 

 

Fresh 

 

 

 

 

 

8 

 

18 hours enzyme digestion of cord tissue with cord 

bank’s method and reagents: 

 (200 – 400 mg) slices of cord tissue were 

digested in 5 ml of enzymatic solution/each;  

 solutions obtained after digestion were 

filtered through 100 µm cell strainers and 

diluted with 3ml of culture media, before 

being plated in T25 flasks; 

 no centrifugation. 

 

 

 

 

 

9 

 

 

 

 

 

Frozen 
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Reagents and materials 

 

 Media A_ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 

(D-MEM LG - 1X , Life Technologies, UK) + 10% prescreened foetal bovine 

serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, Fisher Scientific, 

UK, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 

units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% prescreened 

foetal bovine serum v/v (FBS, reserved batch of pre-screened FBS for MSCs, 

Fisher Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 

antimycotics (100x) v/v (10,000 units/mL of penicillin, 10,000 µg/mL of 

streptomycin, and 25 µg/mL of Fungizone®, Life Technologies, UK) + 2mM 

GlutaMAX
TM

-I supplement (Life Technologies, UK)_media combination used by 

cord bank; 

 CellGro media (Mediatech, UK); 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

 _ 

Life Technologies, UK); 

 Collagenase A (Type I, from Clostridium histolyticum, ≥125 CDU/mg solid, cell 

culture tested, Sigma-Aldrich, UK); 

 Collagenase Type I (Collagenase NB 4 Standard Grade from  Clostridium 

histolyticum, 100 CDU/mg solid, cell culture tested, AMS Biotechnology 

Ltd)_used by cord bank; 

 0.25% Trypsin – EDTA (1x, Life Technologies, UK); 

 TrypLE™ Express, trypsin substitute (Life Technologies, UK); 

 Hyaluronidase (Type II_from sheep testes, ≥300 units/mg, Sigma-Aldrich, UK); 

 Trypan blue (0.4%, liquid, sterile-filtered, cell culture tested , Sigma-Aldrich, 

UK); 

 Sterile DMSO (Sigma-Aldrich, UK); 

 Disposable, sterile scalpels (No. 22 blade, Scientific Laboratory Supplies, UK); 

 Disposable, sterile plastic forceps (Cole & Parmer, UK); 

 Alcohol wipes (soaked in 70% IMS, Cole & Parmer, UK);  
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 Sterile Petri dishes (Fisher Scientific and Scientific Laboratory Supplies, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 

 Disposable haemocytometers (Immune Systems, UK); 

 0.2 µm filters (Fisher Scientific, UK); 

 40, 70 and 100 µm cell strainers (Scientific Laboratory Supplies, UK); 

 Culture flasks, T12.5 and T25 (Scientific Laboratory Supplies, BD-Falcon); 

 Multiwell culture plates, 6 well plates (Fisher Scientific, UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Prep trays (Helapet Ltd., UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 MaxQ Mini 4450 Incubator-Shaker (Thermo Scientific); 

 BOECO U-32R centrifuge; 

 

 

2.1.1.1 Protocol for enzymatic digestion of frozen cord tissue 

 

The cryopreserved cord sections used in this experiment were shipped to our laboratory 

facility from the cord bank, in dry ice filled containers. These cord sections were frozen 

according to the banks cryopreservation protocol, described in section 2.6.1 of this chapter. 

 

Procedure: 

1. Vials containing cryopreserved 200-400 mg cord tissue slices were defrosted by 

placing them in a 37°C water bath for 3-5 minutes, or until only a trace of ice 

remained.  
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2. After, cryovials were transferred to a Class II biological safety cabinet (BSC) and the 

cord sections were removed from cryovials with a sterile aspirator stripette and placed 

in a Petri dish containing DPBS + 1% antibiotic/antimycotic v/v (PSA) in it.  

3. Individual slices were transferred to a fresh, sterile Petri dish, and chopped up into 

fine fragments (1-2mm
3
), with the aid of a scalpel and forceps. The fragments were 

then placed into a 15 ml centrifuge tube, with the aid of a scalpel and forceps. 

4. Cord slice fragments were enzymatically digested for 2h, 4h or 18h at 37°C (Refer to 

Table 2.1), with the following enzymatic solutions: 

A. Collagenase type I, (in serum free growth Medium A, 3-5ml/slice), 300 CDU/ml;  

B. Collagenase type I, 300 CDU/ml + hyaluronidase, 1mg/ml (in serum free growth 

Medium A, 3-5ml/slice); 

C. Collagenase type I, 300 CDU/ml for 1, 3 or 17 1/2 h, depending on the digestion 

period, followed by trypsin-EDTA 0.25% for a further 30 min (both enzyme solutions 

were prepared in serum free growth Medium A, 3-5ml/slice); 

5. Upon completion of digestion, tubes containing slices digested with enzymatic 

solutions A and B, were treated as follows: 

5.1 Diluted 50% with serum free growth Medium A. 

5.2 Filtered through a 40µm (method 1, Table 2.1), a 70µm (method 2-3, Table 2.1), or a 

100µm cell strainer (methods 5 and 6, Table 2.1); squeezing remaining tissue 

fragments with the forceps to aid cell release after filtration. 

5.3 Centrifuged cell suspension at 1500 rcf for 10 min (methods 1-3, Table 2.1), 500 rcf 

for 10 min (method 5, Table 2.1), or no centrifugation (method 6, Table 2.1).  

5.3.1 In the case of no centrifugation, an appropriate amount of FBS (final 

concentration 10%) was added to the suspension before filtration and 2ml of fresh 

growth media to wash the cell strainer with. 

5.3.2 For methods that involved centrifugation the supernatant was discarded and the 

pellet re-suspended in 5ml of fresh growth Medium A; 

5.4 Counted cells by using a disposable haemocytometer (20µl of cell suspension and 

20µl of trypan blue); and seeded at 10
4
 cell/cm

2
, in an appropriately sized culture 

vessel. 

6. Upon completion of digestion,  tubes containing slices digested with method C, were 

treated according to the protocol below: 

6.1 Diluted 50% with serum free growth Medium A. 
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6.2 Centrifuged at 1500 rcf for 10 min (methods 1-3, Table 2.1), 500 rcf (method 5, Table 

2.1), or 1000 rcf (method 6, Table 2.1). 

6.3 Discarded supernatant and re-suspended pellet in 3-5ml of 0.25% trypsin-EDTA; 

6.4 Replaced in the incubator for another 30 minutes. 

6.5 After 30 min took tubes out and added 0.3-0.5ml of FBS/each tube to stop the enzyme 

action. 

6.6 Diluted 50% with serum free growth Medium A. 

6.7 Filtered through a 40µm (method 1, Table 2.1), a 70µm (method 2-3, Table 2.1), or a 

100µm cell strainer (methods 5 and 6, Table 2.1); squeezing remaining tissue 

fragments with the forceps to aid cell release after filtration. 

6.8 Centrifuged at 1500 rcf for 10 min (methods 1-3, Table 2.1), 500 rcf (method 5, 

Table2.1), or 1000 rcf (method 6, Table 2.1). 

6.9 Discarded supernatant and re-suspended pellet in 5ml of fresh Medium A. 

6.9.1 Counted cells by using a disposable haemocytometer (20µl of cell suspension and 

20µl of trypan blue); and seeded at 10
4
 cell/cm

2
, in an appropriately sized culture 

vessel. 

7.  All culture vessels were incubated at 37°C and 5% CO2 in a humidified incubator. 

8.  First media change was performed after 48h and every 3 days thereafter until cells 

reached 80-85% confluence.  

The diagram below is an example of the arrangement made in order to provide all 

samples with the same treatment, since this is a crucial element in order to acquire 

comparable results from each digestion method. The diagram below represents the 

experimental plan for Method 1 in Table 2.1, where 9 slices of 3 frozen cords were digested 

with the different methods for 3 hours each: 
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Fig. 2.1 Experimental plan for Method 1 in Table 2.1 

 

 

 

 

 

 

 

A1, B1, C1 A2, B2, C2 A3, B3, C3 

Cord no.1 Cord no.2 Cord no.3 

Start 

Time 

10:10 am 10:50 am 

12:10 pm C1 (in);  

A1, B1 (out) 

12:20 pm C2 (out) 4:15 pm C3 (out) 

End of digestion and processing times 

11:40 am C1 (out) 

12:40 pm C1 (out) 

1:10 pm 

12:50 pm C2 (in); 

A2, B2 (out) 

1:20 pm C2 (out) 

1:50 pm 

2:45 pm 

4:35 pm C3 (in); 

A3, B3 (out) 

5:05 pm C3 (out) 

5:45 pm 
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2.1.1.2 Protocol for enzymatic digestion of fresh cord tissue 

 

Sections of cord tissue (5-12 cm long), were shipped from the cord bank at ambient 

temperature, in secure shipping containers, in saline solution, inside sterile, sealed 50 ml 

tubes, to our laboratory facility.  

 

Procedure: 

1. For processing, cord sections were removed from tubes, inside a BSC, with sterile 

forceps and positioned on sterile prep trays; the outside of the cord was wiped with 

alcohol wipes (also held with sterile forceps to avoid touching cord surface). The 

remaining cord blood was squeezed from the cord by pressing the blunt edge of a 

sterile scalpel along the length of the cord. 

2. The cord tissue sections were then placed in a Petri dish with DPBS and 1% PSA in it. 

Swirled contents to wash. If the saline water was really cloudy with blood, the wash 

step was repeated. 

3. Cord sections were cut into 200-400 mg slices (approximately 2-4mm thick, 

depending on the thickness of the cord), and placed into separate Petri dishes with 

fresh DPBS and 1% PSA, to wash. The slices were then placed in separate Petri 

dishes with warm, serum free Media A. Each slice was weighed in a pre-weighed 

sterile, closed container; only slices that weighed approximately 300 mg were used, in 

order to maintain consistency.  

4. Each slice, was placed on a separate, sterile Petri dish, and chopped up in fine 

fragments (1-2mm
3
). The fragments from each slice were placed in individual 15 ml 

centrifuge tubes. 

5. Cord fragments were enzymatically digested for 2h, 4h or 18h at 37°C (Refer to Table 

2.1), with the following enzymatic solutions: 

A. Collagenase type I, (in serum free growth Medium A, 3-5ml/slice), 300 CDU/ml;  

B. Collagenase type I, 300 CDU/ml + hyaluronidase, 1mg/ml (in serum free growth 

Medium A, 3-5ml/slice); 
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C. Collagenase type I, 300 CDU/ml for 1, 3 or 17 1/2 h, depending on the digestion 

period, followed by trypsin-EDTA 0.25% for a further 30 min (both enzyme solutions 

were prepared in serum free growth Medium A, 3-5ml/slice); 

6. For tubes containing slices digested with methods A and B, after digestion time had 

finished, refer to previous protocol, step 5. 

7. For tubes containing slices digested with method C, after digestion time had finished 

refer to previous protocol, step 6. 

8. All culture vessels were incubated at 37°C and 5% CO2, in a humidified incubator. 

9.  First media change was performed after 48h and every 3 days thereafter until cells 

reached 80-85% confluence.  

 

2.1.1.3 Protocol for enzymatic digestion of fresh and frozen cord tissue with 

the cord bank’s method 

 

The procedures described previously for processing of frozen UCT slices are identical, 

therefore will not be detailed again. The differences in procedure are specified below: 

1. Took each UCT slice, placed on separate, sterile Petri dish, and chopped it up into 

fine tissue fragments (1-2mm
3
), which were then placed in individual 15 ml 

centrifuge tubes; 

2. Fragments from each slice were digested for 18h (see Table 2.1, Method 8) with:  

2.1 collagenase type I (AMS Biotechnology Ltd, UK) 5ml/slice/tube; enzyme solution 

was prepared in serum free growth Medium B, at a concentration of 0.075% (750 

CDU/ml)_enzymatic solution A (used by cord blood bank); 

2.2 collagenase type I (Sigma Aldrich, UK) 5ml/slice/tube; enzyme solution was prepared 

in serum free growth Medium B, at a concentration of 0.075% (750 CDU/ml) 

_enzymatic solution B (used by us); 

3. Upon completion of  digestion: 

3.1 Filtered all digested slices through 100µm cell strainer in 50 ml tubes; squeezing 

remaining tissue fragments with the forceps to aid cell release after filtration. 

3.2 After filtration: 
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3.2.1  0.5ml FBS (provided by cord blood bank) + 3ml growth Media B were added to 

the suspension resulted from a slice digested with enzymatic solution A, through 

the cells strainer; this action served two purposes, releasing the remaining cells on 

the strainer and dilution of suspension.  

3.2.2 0.5ml FBS (provided by cord blood bank) + 3ml growth Media B were added to 

the suspension, resulted from a slice digested with enzymatic solution B, through 

the cells strainer. 

3.2.3 0.5ml FBS (ours) + 3ml growth Media B were added to the suspension resulted 

from a slice digested with enzymatic solution A, through the cells strainer. 

3.3 The cell suspension obtained after filtration and dilution was seeded in T25 culture 

flasks. 

4.  All culture vessels incubated at 37°C and 5% CO2, in a humidified incubator. 

5.  After 48h, culture flasks were removed from the incubator, spent media containing 

dead cells and extracellular matrix, left over from the digestion process, was aspirated 

and a wash with warm DPBS was performed. 

After washing the surface of the cell culture, fresh, warm (37°C), growth Media B was 

added. Media change was performed after that every 3 days until cells reached 80-85% 

confluence. 

 

2.1.2 Isolation of hMSCs from whole lengths of fresh umbilical cords 

Two primary methods of cell extraction, enzymatic digestion, previously developed 

method, and explant culture, were further analysed and compared in order to identify the 

relative variability in cell recovery.  

 

2.1.2.1 Umbilical cord collection and transportation 

 

For the purpose of this study, 12 umbilical cords have been collected. Subsequently, 

cords were sectioned and processed within 24 hours from birth. Remaining cord tissue was 

stored under laboratory conditions to represent variable transit times at ambient temperatures; 

and processed with the exact same methods at 72 hours and 120 hours from birth. 
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All umbilical cords used for this study were collected with parental consent by either 

me or cord bank’s qualified staff, at an UK hospital, within 5 hours from birth, using 

collection kits and labelled shipping containers used by the cord blood bank. The protocol 

used for these collections was designed specifically to mimic the bank’s collection 

procedures but also to give us direct access to whole lengths of cord and to better control and 

understand the treatment of the tissue prior to its arrival to the processing facility. 

 

Reagents and materials 

 

 Sterile collection  container (Fisher Scientific); 

 Dulbecco's Phosphate Buffered Saline (D-PBS, Life Technologies); 

 Antibiotic/Antimicotic (100x) (10,000 units/mL of penicillin, 10,000 µg/mL of 

streptomycin, and 25 µg/mL of Fungizone®, PSA, Life Technologies, UK); 

 Sterile medical prep tray (Helapet Ltd.); 

 Sterile forceps (Scientific Laboratory Supplies); 

 Sterile scalpel (Scientific Laboratory Supplies); 

 Alcohol wipes (Cole-Parmer Instrument Co. Ltd.); 

 Zip lock bag with adsorbent pad (provided by FHT); 

 Plastic secondary container and insulated shipping box (provided by FHT). 

 

Procedure: 

 

1. By holding the umbilical cord between two fingers, next to the placenta, as much of 

the cord blood as possible was pressed out of the cord to neonatal direction.  

2. The end of the cord nearest the placenta was held with sterile forceps and sectioned of 

with a sterile scalpel.  

3. Umbilical cord was placed on a sterile medical prep tray with the help of sterile 

forceps and the outer surface of the cord was wiped with an alcohol wipe. 
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4. With a sterile scalpel, a double incision nearest the end where the placenta was 

attached was made, in order to mark and distinguish the placental end of the cord to 

the neonatal one. 

5. After making the incision, with the help of sterile forceps the umbilical cord was 

placed in a sterile collection container with Dulbecco's Phosphate Buffered Saline and 

1% Antibiotic/Antimycotic (PSA) v/v. 

6. After securing the top of the collection container, this was placed in a zip lock bag 

with an adsorbent pad inside it. 

7. Bag containing collection container with cord was placed in a plastic, secondary 

container. 

8. This was then placed in the appropriately labelled and insulated shipping box 

provided by the cord bank. 

9. Boxes containing cords and signed consent forms, with times of birth recorded on 

them, were then shipped via courier to our lab facility at ambient temperature in 

secure sealed boxes. 

 

 

2.1.2.2 Extraction of hMSCs from umbilical cord tissue via enzymatic 

digestion 

 

Reagents and materials 

 

 Media _ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 (D-MEM 

LG - 1X , Life Technologies UK) + 10% prescreened foetal bovine serum (FBS - 

reserved batch of pre-screened FBS for MSCs, Fisher Scientific UK, country of origin 

USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 units/mL of penicillin, 

10,000 µg/mL of streptomycin, and 25 µg/mL of Fungizone®, PSA, Life 

Technologies, UK); 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies UK)); 

 Collagenase Type I (Collagenase NB 4 Standard Grade from  Clostridium 

histolyticum, 100 CDU/mg solid, cell culture tested, AMS Biotechnology Ltd); 
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 TrypLE™ Express (1X, Life Technologies UK); 

 ViaCount Assay (Merck Millipore UK); 

 Disposable, sterile scalpels (No. 22 blade, Scientific Laboratory Supplies); 

 Disposable, sterile plastic forceps (Cole & Parmer); 

 Alcohol wipes (soaked in 70% IMS, Cole & Parmer);  

 Sterile Petri dishes (Fisher Scientific and Scientific Laboratory Supplies); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies); 

 Disposable haemocytometers (Immune Systems); 

 0.2 µm filters (Fisher Scientific); 

 Culture flasks, T25 (Scientific Laboratory Supplies, BD-Falcon); 

 24 well plates (Nunc, Scientific Laboratory Supplies UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific); 

 Prep trays (Helapet Ltd.). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 MaxQ Mini 4450 Incubator-Shaker (Thermo Scientific); 

 BOECO U-32R centrifuge; 

 Guava® System (Merck Millipore UK). 

 

Procedure: 

1. Cords were removed from collection containers, with sterile forceps and positioned on 

sterile prep trays, added sterile 1% v/v PSA in DPBS to the medical tray, enough to 

cover the cord. The remaining cord blood in the cord was squeezed by pressing the 

blunt edge of a sterile scalpel along the length of the cord.  

2. Cords were each cut into 20 equal sections, in a specific order, baby end to placental 

end, baby end representing section 1 and placental end representing section 20. 
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3. Sections were then placed in a Petri dish with sterile 1% v/v PSA in DPBS and 

washed.  If the saline water was really cloudy with blood, the wash was repeated in a 

new Petri dish with fresh 1% v/v PSA in DPBS.  

4. One 200-400 mg slice was cut out of each cord section, and placed into 24 well plates 

with sterile 1% v/v PSA in D-PBS, to re-wash in the numerical order 1-20. 

5. The remaining cord tissue sections were then placed in sterile, labeled (1-20) and 

sealed 50 ml centrifuge tubes (Fisher Scientific UK) and kept at ambient temperature 

until next processing time (72 and 120h). 

6. After washing, took each slice, placed on separate, sterile Petri dish, and chopped it 

up in fine fragments (approximately 1-2mm
3
). 

7. After placed the sectioned slice a 15 ml centrifuge tube. Added 3ml of 0.075% 

solution of Collagenase type I, prepared in warm D-MEM LG with 1% v/v PSA, to 

each tube. 

8. Enzymatically digested cord slice fragments for 18h in the incubator shaker at 37°C 

and 100rpm. 

9. Upon completion of digestion, tubes containing slices digested with enzymatic 

solutions were each treated as follows:  

9.1 Added 8ml of warm D-MEM LG with 20% v/v FBS and 1% v/v PSA. 

9.2  Re-suspended the solution with a 10ml serological stripette. 

9.3 Added the diluted enzymatically digested solution to a T25 culture. 

10. All culture vessels were then incubated at 37°C and 5% CO2, in a humidified 

incubator.  

11.  First media change was performed after ~ 48h and every 3 days thereafter until cells 

reached 80-85% confluence. 

12. The whole process was then repeated with the remaining cord tissue sections at 72 

hours from birth and 120 hours from birth.  

13.  At 7 days in culture the cell density of all culture flasks was assessed by performing 

cell counts, regardless of their confluence level.  

14. Cells were passaged with TrypLE™ Express (1X, Life Technologies UK).  

15. Cell numbers were assessed by using a ViaCount Assay on a Guava® System (Merck 

Millipore UK). 
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2.1.2.3 Extraction of hMSCs from umbilical cord tissue via explant 

culture 

 

Reagents and materials 

 

 Media _ low glucose (LG)-DMEM with GlutaMAX
TM

 (D-MEM LG - 1X, Life 

Technologies, UK) + 20% v/v prescreened fetal bovine serum (FBS, Fisher 

Scientific, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v 

(10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 DPBSA, Dublecco’s phosphate-buffered saline solution A (without Ca
2+

 and 

Mg
2+

, Life Technologies, UK); 

 TrypLE™ Express_trypsin substitute (1X, Life Technologies, UK; 

 ViaCount Assay (Merck Millipore, UK); 

 Disposable, sterile scalpels (No. 22 blade _ Scientific Laboratory Supplies, UK); 

 Disposable, sterile plastic forceps (Cole & Parmer, UK); 

 Alcohol wipes (soaked in 70% IMS _ Cole & Parmer, UK);  

 Sterile Petri dishes (Fisher Scientific and Scientific Laboratory Supplies, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 

 Multiwell culture plates,24 and 6 well plates plates (Nunc, Scientific Laboratory 

Supplies, UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Prep trays (Helapet Ltd., UK). 
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Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 Guava® System (Merck Millipore). 

 

Procedure: 

1. Twenty sections of the cord were cut, from neonatal to placental end, former 

referenced as section 1 and placental end as section 20.  

2. Sections were washed with fresh 1% PSA in D-PBS. 

3. One 200-400 mg slice was cut from sections 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20, and 

placed into 24 well plates with sterile 1% PSA v/v in D-PBS, to re-wash, in the 

numerical order 2-20. 

4.  Remaining tissue sections with time delayed processing (72 and 120h from birth) 

were placed in sealed 50 ml centrifuge tubes and stored at ambient temperature.  

5. Cord slices were individually positioned in the centre of a dry 6 well and placed in a 

humidified incubator for 30-40 min, at 37°C and 5% CO2.  

6. 2ml of media per well was then added without disturbing the tissue by slow 

dispensing at the side of the well (Fig. 2.2).  

 

Fig. 2.2 UCT slices placed in 6 well plates for explant culture method. 
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7. Media was changed every 3 days, thereafter. 

8. The process was repeated with remaining cord tissue sections after 72 hours and 120 

hours of storage.  

9. At 14 days in culture the cell yield was assessed by performing cell counts. 

10. Cells were passaged with TrypLE™ Express and counted to assess cell yield with a 

ViaCount Assay on a Guava® System. 

 

2.2 Metabolic activity assay for UCT 

 

Metabolic activity of 8 different umbilical cords was tested by using a colorimetric 

assay. Both fresh and frozen slices from different regions of the same cord were individually 

cut into fine fragments and incubated up to 18h hours with a 10% solution of Alamar Blue
®

. 

‘AlamarBlue® is designed to provide a rapid and sensitive measure of cell 

proliferation and cytotoxicity in various human and animal cell lines, bacteria and fungi. It is 

simple to use as the indicator dye is water soluble, thus eliminating the washing/fixing and 

extraction steps required in other commonly used cell proliferation assays. The assay 

incorporates a specially selected oxidation-reduction (REDOX) indicator that both fluoresces 

and undergoes colorimetric change in response to cellular metabolic reduction. This offers 

the user a choice of detection method. Unlike traditional radioactive labelling assays that 

measure cell growth, the REDOX indicator is non-toxic to cells, users and the environment. It 

also produces a clear, stable and distinct change, which is easy to interpret’ according to the 

manufacturer’s specification. 

 The course of the reaction was followed by measuring the absorbance (change in how 

much light the assay solution absorbed) of the various samples. Absorbance was measured 

with a microplate reader. Samples were taken at regular intervals throughout the duration of 

the incubation time (at 2, 3, 4, 5 and 18h). 

 

Reagents and materials 

 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% pre-screened 

foetal bovine serum (FBS - reserved batch of pre-screened FBS for MSCs, Fisher 

Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 
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(100XPenicillin/Streptomycin/ Amphotericin - PSA _ Life Technologies, UK) + 

2mM GlutaMAX
TM

-I supplement (Life Technologies, UK); 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

_ 

Life Technologies, UK); 

 Alamar Blue
®
 (Sigma-Aldrich, UK);  

 Disposable, sterile scalpels (No. 22 blade _ Scientific Laboratory Supplies, UK); 

 Disposable, sterile plastic forceps (Cole & Parmer, UK); 

 Alcohol wipes (soaked in 70% IMS _ Cole & Parmer, UK);  

 Sterile Petri dishes (100mm x 15mm _ Sigma-Aldrich, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 

 96-well plates (Fisher Scientific, UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Prep trays (Helapet, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Microplate absorbance reader (BIO-TEK INSTRUMENTS, INC.); 

 MaxQ Mini 4450 Incubator-Shaker (Thermo Scientific); 

 BOECO U-32R centrifuge; 

 

Procedure: 

1. Sections of fresh cord (5-12cm long, 2-3days old) were received from the cord bank, 

as described in previous section of this chapter.  

2. Removed cords from tubes with a sterile forceps and placed them on prep trays; 

wiped the outside of the cord with alcohol wipes (made sure not to touch cord as 

much as possible, this could be avoided by using two sterile forceps). Squeezed all the 

remaining blood out of the cord, by pressing the non-cutting side of a sterile scalpel’s 

blade on the length of the cord. 
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3. Placed the cord tissue in a Petri dish with DPBS and 1% PSA in it. Gave it a good 

swirl/wash and tried to remove any remaining blood if necessary. If the saline water 

was really cloudy with blood, repeated the previous operation in a Petri dish with 

fresh DPBS and 1% PSA in it. 

4. Cords were cut into 3 different segments (E1-end 1; M-middle and E2-end 2), 4 slices, 

2-3 mm thick, where then cut from each segment (Fig. 2.3). 

 

 

 

 

 

Fig. 2.3 Diagram shows the procedure of umbilical cord section fragmentation for the 

metabolic activity assay. 

 

5. Slices A1, B1, C1, were tested for metabolic activity fresh; A2, B2, C2 were tested for 

metabolic activity after being cryopreserved (cord bank’s method); A3, B3, C3 were 

digested fresh (cord bank’s method, described above), in order to compare/correlate 

metabolic activity with cell number extracted; A4, B4, C4 were cryopreserved (cord 

bank’s method) and digested after (cord bank’s method, described above). 

6. Placed slices that were treated with Alamar Blue
®

 in separate Petri dishes, with fresh 

DPBS and 1% PSA in them (labelled accordingly). 

7. Took each UCT slice, placed on separate, sterile Petri dish, and chopped them up into 

fine tissue fragments (1-2mm
3
), which were then placed in individual 15 ml 

centrifuge tubes; 

8. Alamar Blue
®
 solution preparation: Media B + 10% Alamar Blue

®
 (i.e. for each 5 ml 

of solution used 4.5 ml of Media B and 0.5 ml of Alamar Blue
®
). 

9. 5ml of Alamar Blue
®

 solution (10% v/v) was added to each tube containing individual 

cord slices. 

10. Tubes were placed inside the incubator-shaker (37ºC and 80rpm) for 18h. 

11. 200µl samples were taken in triplicate (600 µl for each tube containing A1, B1, C1 

slices), at 2, 3, 4, 5 and 18h time points. 

12. A microplate reader and 96-well plates were used for measurement of absorbance.  

E1 E2 M 

A1 A2 A3 A4 B1 B2 

 

B3 

 

B4 C1 C2 C3 C4 
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13. Before taking the samples from each tube, these were centrifuged at 1000rcf for 3min, 

in order to pellet the tissue. 

14. After taking samples, tubes were immediately re-placed inside the incubator shaker, 

until the following reading point. 

 

2.3 Cell passaging, seeding, expansion, cryopreservation and defrosting procedures 

for human mesenchymal stem cells extracted from umbilical cord tissue (UCT), 

dental pulp tissue (DPT) and adipose tissue (AT) 

 

Reagents and materials 

 

 Media A_ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 

(D-MEM LG - 1X _ Life Technologies, UK) + 10% prescreened foetal bovine 

serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, Fisher Scientific, 

UK, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 

units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% prescreened 

foetal bovine serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, 

Fisher Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 

(100x) v/v (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 

µg/mL of Fungizone®, Life Technologies, UK) + 2mM GlutaMAX
TM

-I 

supplement (Life Technologies, UK)_media combination used by cord bank; 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies, UK); 

 TrypLE™ Express_trypsin substitute (Life Technologies, UK); 

 Trypan blue (0.4%, liquid, sterile-filtered, cell culture tested, Sigma-Aldrich, UK); 

 Trypan blue for automated cell counter Countess (Life Technologies, UK); 

 Cell Freezing Medium-DMSO 1× (Sigma-Aldrich, UK); 

 Cryovials (Nunc_Scientific Laboratory Supplies, UK) 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 
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 Disposable haemocytometers (Immune Systems, UK); 

 Disposable counting slides for automated cell counter Countess (Invitrogen); 

 Culture flasks with vented caps, T25, T75, T175 (Scientific Laboratory Supplies, BD 

- Falcon, UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Eppendorf tubes (Fisher Scientific, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 Systec VX-95 Autoclave; 

 Automated cell counter Countess (Life Technologies, UK); 

 CEDEX cell counter; 

 CoolCellTM (Sanyo). 

 

 

2.3.1 hMSCs passaging procedure 

 

After extraction of hMSC’s from either fresh or frozen UCT slices these were expanded 

in T25 culture flasks until they reached 80 – 85% confluence.  

Adipose and dental pulp derived primary hMSCs were sourced by the cord bank. They 

were extracted in the cord bank’s lab facilities, and transported to our lab facility in culture 

flasks at passage 1 (P1); the extraction method used is proprietary and not within the scope of 

this project. Adipose and dental pulp tissues were received from donors that had signed an 

informed consent form. The inclusion of these cells in the expansion process was for 

comparison study that will be detailed in chapter five of this thesis.  
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Procedure: 

 

1. Culture flasks were first checked under the microscope (4X and 10X magnifications) 

in order to assess the confluence of the cells. This procedure was performed every day 

or every 2 days. 

2. If the cells confluence had reached 80 – 85% then flasks were placed in a safety 

biological cabinet, where the spent media was aspirated. 

3. After media was aspirated the surface of the cells was washed with warm DPBS, in 

order to remove all remaining culture media. 

4. After washing, the DPBS was aspirated and TrypLE™ Express was added to the 

culture flasks (2ml for a T25, 6ml for a T75 and 10ml for a T175). Flasks were replaced 

in the incubator for 6 – 8 min, after that the cell detachment was assessed under the 

microscope. If some of the cells were still attached, the flasks were tapped on both 

sides, in order to encourage the detachment of these cells. 

5. Once cells had detached, an equal volume of culture media was added to the cell 

suspension, in order to stop the enzymatic action of the TrypLE™ Express on the 

cells (manufacturer’s specifications). 

6. Cell suspensions were then transferred to a centrifuge tube and a cell count was 

performed. Cell counts were performed either manually with a disposable 

heamocytometer or via an automated cell counting device, Countess or Cedex, for 

more accuracy and efficiency.  

7. After establishing the cell number in the suspension, cells were reseeded in new 

culture flasks (appropriate size to accommodate a cell density of ~ 10
4
 cells/cm

2
), 

used for characterization assays or cryopreserved. 
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2.3.2 Cell density and viability assessment 

 

Trypan Blue is a vital dye. The reactivity of Trypan Blue is based on the fact that the 

chromophore is negatively charged and does not interact with the cell unless the membrane is 

damaged. Therefore, all the cells which exclude the dye are viable and the ones with 

permeable membranes that take up the dye are dead and appear dark blue under a microscope 

(manufacturer’s specification).  

Cell suspensions of hMSC were mixed by gently pipetting up and down prior to 

sampling to ensure homogeneity of the suspension. Independent 0.02 to 0.5 ml samples were 

transferred to in 1.5 ml Eppendorf tubes. Trypan Blue was then added to each sample, the 

ratio in volume of cell suspension to dye used for haemocytometer measurements was 1:1. A 

minimum of 3 minutes were allowed for the stain to penetrate the cells. The stained cell 

suspension was then loaded into a haemocytometer. A haemocytometer is a specialized 

microscope slide containing a grid in a counting chamber. The haemocytometer chamber is 

divided into two sides with a grid of 10 squares each and a loading volume of 10 µl per side. 

The dye stained cell suspension was loaded into the haemocytometer by pipetting 10 µl into 

each side of the chamber. All squares were counted per haemocytometer load, and cell 

density in cells/ml and percent viability were determined according to:  

 

                   [
    

  
]  

                                        

                     
 

 

 

Cell concentration was expressed in surface cell density by the formula: 

 

                   [
    

   
]  

                         [      ]                           [  ]

            [   ]
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Percentage viability was calculated according to: 

 

         [ ]  
                    

                     
     

 

When using an automated cell counting device all these steps are eliminated and cell 

counts and assessment of viability can be done much faster and more accurately
122

. 

 

2.3.3 hMSC seeding and expansion procedure 

 

After cells had been passaged and their density and viability had been established, as 

described above, they were seeded in new culture flasks and expanded further. This process 

(passage - re-seed – expand - passage) would usually be repeated until a certain number of 

cells was attained. Quantity of cells had to be sufficient in order to either perform a series of 

characterization assays or to be cryopreserved. 

 

Procedure: 

1. After cell density and viability had been established, cell suspension obtained after 

passaging procedure was centrifuged at 1500rcf for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture media. 

3. After re-suspending the cells, a certain volume of cell suspension was pipetted out 

into new culture flasks (Seeding). Volume of cell suspension had to have a certain cell 

density in order for the final concentration in the flask to be ~ 10
4
 cells/cm

2
 (i.e. if a 

cell suspension contains 10
6
 cells/ml, that means 0.01ml will contain 10

4
 cells; for 

seeding a T75 flask, 0.01ml X 75 [cm
2
_surface of flask] = 0.75ml of that cell 

suspension will be necessary in order to have the desired cell density in the flask). 
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4. As soon as the right volume of cells was seeded in the new culture flasks, fresh 

culture media was added (final volume for T25 – 10 ml; T75 – 25 ml; T175 – 50 ml), 

and flasks were placed in a humidified incubator at 37°C and 5% CO2. 

5. During the expansion of the cells, flasks were checked under the microscope every 

day or every 2 days. When they reached the desired confluence they were passaged 

again and either re-seeded and expanded further, used for characterization or 

cryopreserved.  

 

2.3.4 hMSC cryopreservation and defrosting procedure 

 

After passaging, if cells were not used for further expansion or characterization assays, 

they were cryopreserved in liquid nitrogen vapor phase (~ -135°C) for use at a later date. 

 

Procedure for cryopreservation: 

1. After cells were passaged and cell density and viability had been established, cell 

suspension was centrifuged at 1500rcf for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in cell freezing medium-DMSO 1× 

(Sigma-Aldrich, UK), at a density of approximately 3 X 10
6
 cells/ml. 

3. Mixed before aliquoting to ensure homogeneity. 

4. 1ml of cell suspension was added per cryovial. 

5. Cryovials were first labeled and then placed in a CoolCell
TM

 device (allows for 

controlled/consistent -1°C per minute freezing without the use of alcohol), in a -80°C 

freezer, overnight.  

6. The following day the cryovials were transferred, while still inside the CoolCell
TM

 

device, to the cryostorage bank in liquid nitrogen vapor phase.  

7. The location within the crystorage of the vials is recorder first in the folder allocated 

to the cryo-bank and after that in our online data base. 
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Procedure for defrosting: 

1. Cryovials were extracted from the specific locations recorded in the data base and 

placed immediately in a CoolCell
TM

 device that was previously positioned in a -80°C 

freezer (at least 24 h before). 

2. This step is important in transporting the cryopreserved vials from the cryostorage 

bank to the lab. It stops them from defrosting slowly to room temperature, which is to 

be avoided in the process of defrosting cells (according to the procedure followed 

within the Centre for Biological Engineering). 

3. Once in the lab, the cryovials were placed in a water bath at 37°C, for 3 – 5 min or 

until only a trace of ice was left. 

4. The cell suspension was transferred with a sterile 1000 µl pipette from the cryovial 

into a centrifuge tube with warm culture media in it. 

5. The tube(s) were centrifuged at 1500rcf for 5 min, in order to pellet the cells. 

6. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture media. 

7. After re-suspending the cells, viability of the cells was established and an appropriate 

volume of cell suspension was pipetted out into new culture flasks (seeding). 

8. As soon as the right volume of cells was seeded in new culture flasks, fresh culture 

media was added and flasks were placed in a humidified incubator at 37°C and 5% 

CO2 for expansion. 

9. When they reached desired confluence they were passaged again and either re-seeded 

and expanded further, used for characterization or cryopreserved. 
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2.4 Characterization of cell functionality by the use of differentiation assays 

 

Reagents and materials 

 

 Media A_ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 

(D-MEM LG - 1X _ Life Technologies, UK) + 10% prescreened foetal bovine 

serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, Fisher Scientific, 

UK, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 

units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% prescreened 

foetal bovine serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, 

Fisher Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 

(100x) v/v (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 

µg/mL of Fungizone®, Life Technologies, UK) + 2mM GlutaMAX
TM

-I 

supplement (Life Technologies, UK)_media combination used by cord bank; 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies, UK); 

 TrypLE™ Express_trypsin substitute (Life Technologies, UK); 

 Trypan blue for automated cell counter Countess (Life Technologies, UK); 

 HGF Human Recombinant Factor (Life Technologies, UK and R&D Systems, 

UK); 

 Recombinant Human FGF basic (146 aa) (R&D Systems, UK); 

 Recombinant Human EGF, CF (R&D Systems, UK); 

 Acetic acid solution, 0.1 M (Sigma-Aldrich, UK); 

 StemPro
®
 Adipogennesis Differentiation Kit (R&D Systems, UK); 

 StemPro
®
 Chondrogenesis Differentiation Kit (R&D Systems, UK); 

 StemPro
®
 Osteogenesis Differentiation Kit (R&D Systems, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific, UK); 

 24-well culture plates (Nunc, Scientific Laboratory Supplies); 

 Serological pipettes stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 
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 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 Systec VX-95 Autoclave. 

 

2.4.1 Adipogenic differentiation assay 

 

hMSCs extracted from fresh and frozen UCT, DPT and AT were differentiated towards 

an adipogenic lineage with the use of StemPro
®
 Adipogenesis Differentiation Kit. The kit 

contained all reagents required for inducing cells to be committed to the adipogenesis 

pathway and generate adipocytes (fat cells). 

 

Procedure: 

 

1. Cells obtained after passaging (procedure described in section 2.3.1 of this chapter) 

were assessed for cell density and viability and suspension was centrifuged at 1500rcf 

for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture Media B. 

3. After re-suspending, the cells were seeded in 24-well culture plates at a density of 

approximately 2x10
4
 cells/well (10

4
cells/cm

2
).  

4. 1ml of culture Media B was added to each well and cells were incubated with this 

media for 24 hours at 37°C and 5% CO2, in a humidified incubator. 
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5. After 24h media was replaced with pre-warmed Adipogenesis Differentiation Media 

for half of the wells, the other half were cultured with Media B for control (Fig. 2.4), 

and continued incubation. 

6. Adipogenesis Differentiation Medium preparation: STEMPRO
®
 Adipocyte 

Differentiation Basal Medium + STEMPRO
®

 Adipogenesis Supplement (10% v/v) + 

1% v/v PSA). 

7. Media was changed every 3 days. 

8. After specific periods of cultivation (14 and 26 days_one set of wells for each point), 

adipogenic cultures were processed for LipidTOX™ staining (refer to section 2.5.2.1 

of this chapter for procedure). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 A 24-well culture plate display and cell culture distribution for adipogenic 

differention of hMSCs. 
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2.4.2 Osteogenic differentiation assay 

 

hMSCs extracted from fresh and frozen UCT, DPT and AT were differentiated towards 

an osteogenic lineage with the use of StemPro
®
 Osteogenesis Differentiation Kit. The kit 

contained all reagents required for inducing cells to be committed to the osteogenesis 

pathway and generate osteocytes (bone cells). 

 

Procedure: 

 

1. Cells obtained after passaging (procedure described in section 2.3.1 of this chapter) 

were assessed for cell density and viability and suspension was centrifuged at 1500rcf 

for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture Media B. 

3. After re-suspending the cells were seeded in 24-well culture plates ~2 X 10
4
 cells/well 

(10
4
cells/cm

2
).  

4. 1ml of culture Media B was added to each well and cells were incubated with this 

media for 24 hours at 37°C and 5% CO2, in a humidified incubator. 

5. After 24h replaced media with pre-warmed Osteogenesis Differentiation Medium for 

half of the wells, the other half were cultured with Media B for control (cell culture 

distribution and plate’s display was kept identical to the one portrayed in Fig. 2.4), 

and continued incubation. 

6. Osteogenesis Differentiation Medium preparation: STEMPRO
®
 Osteocyte 

Differentiation Basal Medium + STEMPRO
®

 Osteogenesis Supplement (10% v/v) + 

1% v/v PSA). 

7. Media was changed every 3 days. 

8. After specific periods of cultivation (14 and 26 days_one set of wells for each point), 

osteogenic cultures were processed for Alizarin Red S staining (see section 2.5.2.2 of 

this chapter for procedure). 
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2.4.3 Chondrogenic differentiation assay 

 

hMSCs extracted from fresh and frozen UCT, DPT and AT were differentiated towards 

a chondrogenic lineage with the use of StemPro
®
 Chondrogenesis Differentiation Kit. The kit 

contained all reagents required for inducing cells to be committed to the chondrogenesis 

pathway and generate chondrocytes (cartilage cells). 

 

Procedure: 

 

1. Cells obtained after passaging (procedure described in section 2.3.1 of this chapter) 

were assessed for cell density and viability and suspension was centrifuged at 1500rcf 

for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture Media B. 

3. After re-suspending the cells were seeded in 24-well culture plates ~2 X 10
4
 cells/well 

(10
4
cells/cm

2
). 

4. 1ml of culture Media B was added to each well and cells were incubated with this 

media for 24 hours at 37°C and 5% CO2, in a humidified incubator. 

5. After 24h replaced media with pre-warmed Chondrogenesis Differentiation Medium 

for half of the wells, the other half were cultured with Media B for control (cell 

culture distribution and plate’s display was kept identical to the one portrayed in Fig. 

2.4), and continued incubation. 

6. Chondrogenesis Differentiation Medium preparation: STEMPRO
®

 Chondrocyte 

Differentiation Basal Medium + STEMPRO
®
 Chondrogenesis Supplement (10% v/v) 

+ 1% v/v PSA). 

7. Media was changed every 3 days. 

8. After specific periods of cultivation (14 and 26 days_one set of wells for each point), 

chondrogenic cultures were processed for Alcian Blue staining (see section 2.5.2.3 of 

this chapter for procedure). 
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2.4.4 Hepatogenic differentiation assay 

 

hMSCs extracted from fresh and frozen UCT, DPT and AT were differentiated towards 

a hepatogenic lineage with the use of Media A
 
in combination with hepatocyte growth factor 

(HGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF).  

 

Procedure: 

 

1. Cells obtained after passaging (procedure described in section 2.3.1 of this chapter) 

were assessed for cell density and viability and suspension was centrifuged at 1500rcf 

for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture Media B. 

3. After re-suspending the cells were seeded in 24-well culture plates ~2 X 10
4
 cells/well 

(10
4
cells/cm

2
) and in T75 culture flasks (10

4
cells/cm

2
). 

4. Culture Media A was added to each well and culture flask. Cells were incubated with 

this media for 48 hours at 37°C and 5% CO2, in a humidified incubator . 

5. After 48h replaced media with pre-warmed Hepatogenesis Differentiation Medium 

for half of the wells, the other half were cultured with Media B for control (cell 

culture distribution and plate’s display was kept identical to the one portrayed in Fig. 

2.4), and continued incubation. Replaced media for all the culture flasks as well. 

6. Hepatogenesis Differentiation Medium preparation: Media A + HGF 20ng/ml + EGF 

40ng/ml + FGF 20ng/ml. 

7. Media was changed every 3 days. 

8. After specific periods of cultivation (14 and 26 days_one set of wells and flasks for 

each point), hepatogenic cultures were either processed for Periodic Acid Schiff  

staining or analysed by flow cytometry for specific hepatic markers: Albumin, AFP 

and hNF4α (see section 2.5.2.4 of this chapter for procedures). 
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2.5 Flow cytometry and histology characterization assays for hMSCs extracted 

from UCT, DPT and AT 

 

2.5.1 Flow cytometry characterization 

 

Research plan was further focused on identifying the marker profile of cells extracted 

from UCT and its comparison to the marker profile of cells extracted from DP and AT. Cells 

were tested for the expression of the following markers: CD29, CD71, CD80, CD90, CD105, 

CD117, CD166, CD217, STRO-1, HLA-ABC, Nanog, Oct4a, Oct-3/4 (as positive markers), 

CD14, CD24, CD56, CD34, CD 45, HLA-DR (as negative markers). 

Flow cytometry analysis was also used in the characterization of specific markers for 

hepatic lineage, Albumin, AFP and hNF4α, in order to evaluate the outcome of the 

differentiation process for hMSCs from UCT, DPT and AT into hepatocyte like cells.   

 

Reagents and materials 

 

 Media A_ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 

(D-MEM LG - 1X _ Life Technologies, UK) + 10% prescreened foetal bovine 

serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, Fisher Scientific, 

UK, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 

units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% prescreened 

foetal bovine serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, 

Fisher Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 

(100x) v/v (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 

µg/mL of Fungizone®, Life Technologies, UK) + 2mM GlutaMAX
TM

-I 

supplement (Life Technologies, UK)_media combination used by cord bank; 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies, UK); 
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 TrypLE™ Express_trypsin substitute (Life Technologies, UK); 

 Trypan blue for automated cell counter Countess (Life Technologies, UK); 

 Human CD14 Phycoerythrin Mab (R&D Systems, UK); 

 FITC Mouse Anti-Human CD24 (BD Biosciences, UK); 

  Human Integrin beta 1/CD29 Phycoerythrin MAb (R&D Systems, UK); 

 CD34/FITC/581/Human/RUO (BD Biosciences, UK); 

 Human CD45 Phycoerythrin MAb (R&D Systems, UK); 

 Human NCAM-1/CD56 Phycoerythrin MAb (R&D Systems); 

 CD71 | FITC | M-A712 | Human | RUO (BD Biosciences, UK); 

 Human B7-1/CD80 Phycoerythrin Mab (R&D Systems, UK); 

 Human CD90/Thy1 Phycoerythrin MAb (R&D Systems, UK); 

 Human Endoglin/CD105 Phycoerythrin MAb (R&D Systems, UK); 

 Human SCF R/c-kit/CD117 Phycoerythrin Mab (R&D Systems, UK); 

 Human ALCAM/CD166 Phycoerythrin MAb (R&D Systems, UK); 

 Human IL-17 R/CD217 Phycoerythrin MAb (R&D Systems, UK); 

 HLA-DR/FITC/TU36/Human/RUO (BD Biosciences, UK); 

 FITC Mouse Anti-Human HLA-ABC (R&D Systems, UK); 

 Human STRO-1 MAb (Clone STRO-1) (R&D Systems, UK); 

 Human Oct-4A Phycoerythrin Mab (R&D Systems, UK); 

 PE Mouse anti-human Nanog (BD Biosciences, UK); 

 Human/Mouse Serum Albumin Mab (R&D Systems, UK); 

 Human alpha-Fetoprotein/AFP Mab (R&D Systems, UK); 

 Human HNF-4 alpha 1-6/NR2A1 Mab (R&D Systems, UK); 

 Mouse IgG1 Phycoerythrin Isotype Control (R&D Systems, UK); 

 Mouse IgG2A Phycoerythrin Isotype Control (R&D Systems, UK); 

 Mouse IgG2B Phycoerythrin Isotype Control (R&D Systems, UK); 

 PE Mouse IgM, κ Isotype Control (BD Biosciences, UK); 

 Stain Buffer (BSA, BD Biosciences, UK); 

 Saponin for molecular biology (Sigma-Aldrich, UK); 

 Formaldehyde solution - for molecular biology, 36.5-38% in H2O (Sigma-Aldrich, 

UK); 

 Alexa Fluor 488
®

 monoclonal antibody labeling kit (Life Technologies, UK); 
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 Disposable counting slides for automated cell counter Countess (Life 

Technologies, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific, UK); 

 Culture flasks, T75 and T175 (Scientific Laboratory Supplies, UK); 

 Serological pipettes stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Eppendorfs (Fisher Scientific, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 CEDEX automated cell counter; 

 Countess automated cell counter; 

 Quanta SC flow cytometer (Beckman Coulter); 

 Eppendorf 5804 centrifuge; 

 

 

2.5.1.1 Staining Protocol for surface markers: 

 

1. After cell density and viability had been established, cell suspension obtained after 

passaging procedure was centrifuged at 1500rpm for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture media. 

3. Approximately 2 X 10
5
 cells were used/sample/marker (1 set of samples for each type 

of cell: UCT, DPT and AT hMSCs).  

4. Samples containing appropriate number of cells were then centrifuged at 2500g for 5 

min in an Eppendorf 5804 centrifuge. 
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5. Media was removed and pellets were re-suspended in stain buffer (BSA), and 

centrifuged using the same centrifugation speed. 

6. After washing with stain buffer (BSA), pellets were re-suspended in antibody solution 

(20µl antibody + 200µl BSA) and incubated at room temp in the dark for ~30min. 

7. Following incubation time with antibody solution, samples were again centrifuged at 

2500g for 5 min. 

8. Antibody suspension was aspirated, pellets were re-suspended in 400µl BSA and 

submitted to flow cytometry analysis with the Quanta SC flow cytometer. 

9. Isotype controls and unstained cell samples were considered negative controls, 

therefore the gating for all the markers analysed was referenced against these negative 

controls. 

 

2.5.1.2 Staining Protocol for internal markers: 

 

1. After cell density and viability had been established, cell suspension obtained after 

passaging procedure was centrifuged at 1500rpm for 5 min, in order to pellet the cells. 

2. Once centrifuged, the supernatant was removed by aspiration and cells were re-

suspended gently by pipetting up and down, in warm, fresh culture media. 

3. Approximately 2 X 10
5
 cells were used/sample/marker (1 set of samples for each type 

of cell: UCT, DPT and AT hMSCs).  

4. Samples containing appropriate number of cells were then centrifuged at 2500g for 5 

min in the Eppendorf 5804 centrifuge. 

5. Media was removed and pellets were re-suspended in stain buffer (BSA), and 

centrifuged using the same centrifugation speed. 

6. After washing with stain buffer (BSA), pellets were re-suspended in formaldehyde 

solution (0.01% v/v) for 10 – 15 min. 

7. Following fixation with formaldehyde samples were centrifuged at 2500g for 5 min, 

followed by the removal of the formaldehyde solution and re-suspension in saponin 

solution (0.5% w/v) for permeabilization of cellular membrane. 

8. Samples were centrifuged again at 2500g for 5 min, pursued by removal of 

permeabilization agent and incubation with antibody solution (20µl antibody + 200µl 

BSA) at room temp in the dark for ~30min. 
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9. After incubation time with antibody solution, samples were again centrifuged at 

2500g for 5 min. 

10. Antibody suspension was aspirated, pellets were re-suspended in 400µl BSA and 

submitted to flow cytometry analysis with the Quanta SC flow cytometer. 

11. Isotype controls and unstained cell samples were considered negative controls, 

therefore the gating for all the markers analysed was referenced against these negative 

controls. 

 

2.5.1.3 Labeling protocol for unconjugated monoclonal antibodies (Albumin, 

AFP, HNF-4 alpha and STRO-1) with Alexa Fluor 488
®
 labeling kit: 

 

1. Prepared a 1M solution of sodium bicarbonate by adding 1 mL of deionized water 

(dH2O) to the provided vial of sodium bicarbonate (Component B, in the kit).  

Pipetted up and down until fully dissolved. 

2. Diluted antibody to 1 mg/ml and then added one-tenth volume of 1M sodium 

bicarbonate buffer (prepared in step 1). 

3. Transfered 100 μL of the protein solution (from step 2) to the vial of reactive dye. 

4. Incubated the solution for 1 hour at room temperature. Gently inverted the vial several 

times in order to mix the two reactants and increase the labelling efficiency (every 

10–15 minutes). 

5. During the incubation period, proceeded to prepare a spin column for the purification 

of the labelled protein. 

6.  Placed a spin column in a 13 × 100 mm glass tube. 

7. Stirred the purification resin (Component C, in the kit), then added 1.0 ml of the 

suspension into the column and allowed it to settle. 

8. Continued to add more of the suspension until the bed volume was ~1.5 ml. 

9. Allowed the column buffer to drain from the column by gravity. 

10. Placed the spin column in one of the provided collection tubes and centrifuged the 

column for 3 minutes at 1100g. 

11.  Discarded the buffer, but saved the collection tube. The spin column was then ready 

for purifying the conjugated antibody. 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
74 

12. Loaded the 100 μL reaction volume (from step 4) drop wise onto the centre of the 

spin column. 

13. Allowed the solution to absorb into the gel bed. 

14. Placed the spin column into the empty collection tube and centrifuged for 5 minutes at 

1100g. 

15. After centrifugation, the collection tube contained labelled protein in approximately 

100 μL of PBS, pH 7.2, with 2 mM sodium azide; free dye will remain in the column 

bed. 

16. Discarded the spin column. 

 

2.5.2  Histology staining protocols 

 

Reagents and materials 

 

 Media A_ Dulbecco's Modified Eagle Medium Low-Glucose with GlutaMAX
TM

 

(D-MEM LG - 1X _ Life Technologies, UK) + 10% prescreened foetal bovine 

serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, Fisher Scientific, 

UK, country of origin USA) + 1% antibiotics/antimycotics (100x) v/v (10,000 

units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of 

Fungizone®, Life Technologies, UK); 

 Media B_Stemline expansion media (Sigma-Aldrich, UK) + 10% prescreened 

foetal bovine serum v/v (FBS - reserved batch of pre-screened FBS for MSCs, 

Fisher Scientific, UK, country of origin USA) + 1% antibiotics/antimycotics 

(100x) v/v (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 

µg/mL of Fungizone®, Life Technologies, UK) + 2mM GlutaMAX
TM

-I 

supplement (Life Technologies, UK)_media combination used by cord bank; 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies, UK); 

 TrypLE™ Express_trypsin substitute (Life Technologies, UK); 

 Trypan blue for automated cell counter Countess (Life Technologies, UK); 

 Distilled water; 

 Periodic Acid Schiff Kit (Sigma-Aldrich, UK); 
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 Alizarin Red S (Sigma-Aldrich, UK); 

 Alcian Blue 8GX (Sigma-Aldrich, UK); 

 Hydrochloric acid solution (Sigma-Aldrich, UK); 

 Formaldehyde solution - for molecular biology, 36.5-38% in H2O (Sigma-Aldrich, 

UK); 

 HCS LipidTOX
TM

 Neutral Lipid Stain solution (Life Technologies, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific, UK); 

 24-well culture plates (Nunc, Scientific Laboratory Supplies, UK); 

 Serological pipettes stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Galaxy-R Incubator; 

 Olympus Inverted Microscope; 

 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 Nikon Eclipse Ti Fluorescent Microscope. 

 

2.5.2.1 Staining Protocol for Adipogenesis 

 

hMSCs from UCT, DPT and AT that were differentiated towards an adipogenic lineage 

were stained with HCS LipidTOX™ Green Neutral Lipid Stain at 14 and 26 days in culture. 

 

Procedure: 

 

1. A 3.0–4.0% solution of formaldehyde in buffer (obtained by diluting 1:10 the 

formaldehyde solution 36.5-38%) was prepared. 

2. The incubation medium from the 24-well culture plates was removed, and enough 

formaldehyde fixative solution to cover cells, and incubated for 10–30 minutes at 

room temperature, was added. 
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3. The fixative solution was removed and the formaldehyde-fixed cells were gently 

rinsed with buffer 2–3 times to remove residual formaldehyde. 

4. Labelling Solution: Diluted the LipidTOX™ neutral lipid stain 1:200 in buffer. A 

volume sufficient to completely cover cells was prepared. 

5. The buffer from the cells (after wash: step 3) was removed. 

6. LipidTOX™ neutral lipid stain was added and the cells were incubated at room 

temperature for at least 30 minutes, in the dark, before imaging.  

7. Proceeded to Image Acquisition and Analysis with Nikon Eclipse Ti Fluorescent 

Microscope. Lipids synthesized by adipocytes are fluorescent green. 

 

2.5.2.2 Staining protocol for Osteogenesis 

 

hMSCs from UCT, DPT and AT that were differentiated towards a osteogenic lineage 

were stained with Alizarin Red S calcium stain at 14 and 26 days in culture. 

 

Procedure: 

 

1. Removed culture media from 24-well culture plates and rinsed once with DPBS.  

2. Fixed cells with 3 - 4% formaldehyde solution (obtained by diluting 1:10 the 

formaldehyde solution 36.5-38%) for 30 minutes. 

3. After fixation, rinsed wells twice with distilled water and stained cells with 2% 

Alizarin Red S solution (w/v _ pH 4.2) for 2 to 3 minutes. 

4. Rinsed wells three times with distilled water. 

5. Visualized plates under light microscope and captured images for qualitative analysis. 

Red staining indicated calcium deposits synthesised by osteocytes. 
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2.5.2.3 Staining protocol for Chondrogenesis 

 

hMSCs from UCT, DPT and AT that were differentiated towards a chondrogenic 

lineage were stained with Alcian Blue (stains acidic proteoglycans/mucins)  at 14 and 26 days 

in culture. 

 

Procedure: 

 

1. Removed media from 24-well culture plates, rinsed once with DPBS. 

2. Fixed cells with 3 - 4% formaldehyde solution (obtained by diluting 1:10 the 

formaldehyde solution 36.5-38%) for 30 minutes. 

3. After fixation, rinsed wells with DPBSA and stained cells with 1% (w/v) Alcian Blue 

(solution prepared in 0.1 N HCl) for 30 minutes. 

4. Rinsed wells three times with 0.1 N HCl. 

5. Added distilled water to neutralize the acidity. 

6. Visualized under light microscope, and captured images for analysis. Blue staining 

indicates synthesis of proteoglycans by chondrocytes. 

 

2.5.2.4 Staining protocol for hepatic differentiation 

 

hMSCs from UCT, DPT and AT that were differentiated towards a hepatic lineage 

were stained with Periodic Acid-Schiff (PAS, stains glycogen)  at 14 and 26 days in culture. 

 

Procedure: 

 

1. Removed media from 24-well culture plates, rinsed once with DPBS. 

2. Fixed cells with 3 - 4% formaldehyde solution (obtained by diluting 1:10 the 

formaldehyde solution 36.5-38%) for 30 minutes. 

3. After fixation, rinsed plates for 1 minute in slowly running tap water. 

4. Immersed slides in Periodic Acid Solution for 5 minutes at room temperature. 

5. Rinsed plates in several changes of distilled water. 
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6. Immersed slides in Schiff’s Reagent (part of the kit that comes with PAS), for 15 min 

at room temperature. 

7. Washed slides in running tap water for 5 minutes. 

8. Air dried, visualized under light microscope, and captured images for analysis. Pink 

staining indicates synthesis of glycogen by hepatic like cells. 

 

 

2.6 Cryopreservation of umbilical cord tissue (UCT) 

 

2.6.1 Preliminary investigation of cryopreservation method 

 

Seven different freezing methods, including the cord bank’s method of 

cryopreservation for UCT tissue were screened, with the aim to understand what freezing 

parameters support cord cryopreservation the best.  

 

Reagents and materials 

 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

, 

Life Technologies, UK); 

 Antibiotics/Antimycotics (10,000 units/mL of penicillin, 10,000 µg/mL of 

streptomycin, and 25 µg/mL of Fungizone®, Life Technologies, UK); 

 CellGro media (Mediatech, UK); 

 Sterile DMSO (Sigma-Aldrich, UK); 

 Prescreened fetal bovine serum (FBS - reserved batch of pre-screened FBS for 

MSCs, Fisher Scientific, UK, country of origin USA); 

 Human serum/plasma (autologus plasma_provided by cord blood bank); 

 Cryovials (Nunc_Scientific Laboratory Supplies, UK); 

 Disposable, sterile scalpels (No. 22 blade, Scientific Laboratory Supplies, UK); 

 Disposable, sterile plastic forceps (Cole & Parmer, UK); 

 Alcohol wipes (soaked in 70% IMS, Cole & Parmer, UK);  

 Sterile Petri dishes (100mm x 15mm, Sigma-Aldrich, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 
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 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Prep trays (Helapet, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Fridge; 

 Controlled rate freezer; 

 Liquid nitrogen cryobank; 

 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 Systec VX-95 Autoclave. 

 

Procedure: 

1. Umbilical cords, prepped as described in the above methods (Section 2.1 of this 

chapter), were sectioned into 28 slices/each, 200-400mg each. 

2. After washing slices once or twice with saline solution and PSA, each slice was 

placed in a 2 ml cryovial and 1ml of cryoprotectant was added. Table 2.2, below, 

describes the different cryoprotectants, time spent in the fridge prior to freezing and 

freezing method for each slice.  

 

Table 2.2 Cryopreservation methods. 

 

Slice 

 

Cryoprotectant 

combination 

Time spent in the 

fridge (2-8°C) prior 

to freezing [min] 

 

Type of freezing 

1 DMSO 10% + CellGro 30 Controlled 

2 DMSO 10% + CellGro 45 Controlled 

3 DMSO 10% + CellGro 45 Controlled 

4 DMSO 10% + CellGro 60 Controlled 
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Slice 

 

Cryoprotectant 

combination 

Time spent in the 

fridge (2-8°C) prior 

to freezing [min] 

 

Type of freezing 

5 DMSO 20% + CellGro 30 Controlled 

6 DMSO 20% + CellGro 45 Controlled 

7 DMSO 20% + CellGro 45 Controlled 

8 DMSO 20% + CellGro 60 Controlled 

9 DMSO 10% + FBS 30 Controlled 

10 DMSO 10% + FBS 45 Controlled 

11 DMSO 10% + FBS 45 Controlled 

12 DMSO 10% + FBS 60 Controlled 

13 DMSO 20% + FBS 30 Controlled 

14 DMSO 20% + FBS 45 Controlled 

15 DMSO 20% + FBS 45 Controlled 

16 DMSO 20% + FBS 60 Controlled 

17 DMSO 10% + plasma 30 Controlled 

18 DMSO 10% + plasma  45 Controlled 

19 DMSO 10% + plasma 45 Controlled 

20 DMSO 10% + plasma 60 Controlled 

21 DMSO 20% + plasma 30 Controlled 

22 DMSO 20% + plasma 45 Controlled 

23 DMSO 20% + plasma 45 Controlled  

24 DMSO 20% + plasma 60 Controlled 

25 DMSO 10% + CellGro 30 Uncontrolled 

26 DMSO 10% + CellGro 45 Uncontrolled 

27 DMSO 10% + CellGro 45 Uncontrolled 

28 DMSO 10% + CellGro 60 Uncontrolled 
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3. Cryovials that spent 60 min in the fridge prior to freezing were prepared first, then the 

45 min ones and last the 30 min ones. This way they all came out of the fridge at the 

same time. 

4. After period spent in the fridge ended, samples that were frozen with the controlled 

method were placed in the controlled rate freezer (cycle duration ~30min, temperature 

drops in stages from 4°C to -150°C, Fig. 2.5). 

 

 

Fig. 2.5 Controlled rate freezer protocol used for controlled freezing methods. 

 

5. Samples frozen with the uncontrolled method were placed straight in liquid nitrogen 

vapour phase at -135
0
C. 

6. Slice 25 in Table 2.2, was frozen with cord bank’s method of freezing. 

7. Autologus plasma used in this experiment was obtained by centrifugation of cord 

blood left after extraction of haematopoietic stem cells at 3000g for 10min.  
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2.6.2 Further investigation of cryopreservation method 

 

Reagents and materials 

 

 DPBS, Dublecco’s phosphate-buffered saline solution (without Ca
2+

 and Mg
2+

 _ 

Life Technologies, UK); 

 Antibiotics/Antimycotics (10,000 units/mL of penicillin, 10,000 µg/mL of 

streptomycin, and 25 µg/mL of Fungizone®, Life Technologies, UK); 

 Sterile DMSO (Sigma-Aldrich, UK); 

 Prescreened fetal bovine serum (FBS - reserved batch of pre-screened FBS for 

MSCs, Fisher Scientific, UK, country of origin USA); 

 Human serum/plasma (autologus plasma_provided by cord blood bank); 

 Cryovials (Nunc_Scientific Laboratory Supplies, UK); 

 6 well plates (Nunc_Scientific Laboratory Supplies, UK); 

 Disposable, sterile scalpels (No. 22 blade, Scientific Laboratory Supplies, UK); 

 Disposable, sterile plastic forceps (Cole & Parmer, UK); 

 Alcohol wipes (soaked in 70% IMS, Cole & Parmer, UK);  

 Sterile Petri dishes (100mm x 15mm, Sigma-Aldrich, UK); 

 Centrifuge tubes, both 15ml and 50ml (Fisher Scientific and Scientific Laboratory 

Supplies, UK); 

 Serological pipettes/stripettes: 5ml, 10ml, 25ml, 50ml (Fisher Scientific, UK); 

 Sterile pipette tips: 5 - 200µl and 100 - 1000µl (Fisher Scientific, UK); 

 Prep trays (Helapet, UK). 

 

Equipment 

 

 HERASAFE KS Class II biological safety cabinet (BSC); 

 Fridge; 

 Controlled rate freezer; 

 CoolCellTM (Sanyo); 

 Liquid nitrogen cryobank; 
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 BOECO U-32R centrifuge; 

 Biohit mechanical pipettes: mLINE Series - m200 and m1000; 

 Pipette gun; 

 Systec VX-95 Autoclave. 

 

Procedure: 

 

1. 4 whole umbilical cords have been collected and transported to our lab facility as 

described in section 2.1.2 of this chapter. 

2. Cords were removed from collection containers, with sterile forceps and positioned on 

sterile prep trays, added sterile 1% v/v PSA (Penicillin/Streptomycin/Amphotericin) 

in DPBS to the medical tray, enough to cover the cord. The remaining cord blood in 

the cord was squeezed by pressing the blunt edge of a sterile scalpel along the length 

of the cord.  

3. Cords were each cut into 10 equal sections, in a specific order, baby end to placental 

end, baby end representing section 1 and placental end representing section 10. 

4. Sections were then placed in a Petri dish with sterile 1% PSA in DPBS and washed.  

If the saline water was really cloudy with blood, the wash was repeated in a new Petri 

dish with fresh 1% PSA v/v in DPBS.  

5. Five 200-400 mg slices were cut out of each cord section, and placed into 6 well 

plates with sterile 1% PSA in D-PBS, to re-wash in the numerical order 1-10.  

6. The remaining cord tissue sections were then placed in sterile, labeled (1-10) and 

sealed 50 ml centrifuge tubes and kept at ambient temperature until next processing 

time (72h). 

7. Whole and sectioned slices form cords 1 and 2 were cryopreserved with FBS + 10% 

DMSO v/v; whole and sectioned slices from cords 3 and 4 were cryopreserved with 

Plasma + 10% DMSO v/v; in a controlled rate freezer, using two different freezing 

protocols. 

7.1 First freezing protocol kept the cryovials containing cord tissue slices and 1ml of 

cryoprotectant at 4
0
C for 30 minutes, after the temperature dropped by 1

0
C/min until 

it reached -80
0
C. 
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7.2 Second freezing protocol kept the cryovials containing cord tissue slices and 1ml of 

cryoprotectant at 4
0
C for 30 minutes, after the temperature dropped by 3

0
C/min until 

it reached -80
0
C. 

8. For cords 1 and 2 (Table 2.3): 

 Slice 1 out of the five cut from each section (1-10) was frozen whole (W) with 1 

ml of FBS + 10% DMSO v/v, by using the first freezing protocol (1
0
C/min). 

 Slice 2 out of the five cut from each section (1-10) was sectioned (S) with a 

scalpel prior to freezing with 1 ml of FBS + 10% DMSO v/v; by using the first 

freezing protocol (1
0
C/min). 

 Slice 3 out of the five cut from each section (1-10) was frozen whole (W) with 1 

ml of FBS + 10% DMSO v/v, by using the second freezing protocol (3
0
C/min). 

 Slice 4 out of the five cut from each section (1-10) was sectioned (S) with a 

scalpel prior to freezing with 1 ml of FBS + 10% DMSO v/v; by using the second 

freezing protocol (3
0
C/min). 

 Slice 5 out of the five cut from each section (1-10) was used fresh for explant (as 

described in section 2.1.2.3 of this chapter). 

9. For cords 3 and 4 (Table 2.3 below): 

 Slice 1 out of the five cut from each section (1-10) was frozen whole (W) with 1 

ml of Plasma + 10% DMSO v/v, by using the first freezing protocol (1
0
C/min). 

 Slice 2 out of the five cut from each section (1-10) was sectioned (S) with a 

scalpel prior to freezing with 1 ml of Plasma + 10% DMSO v/v; by using the first 

freezing protocol (1
0
C/min). 

 Slice 3 out of the five cut from each section (1-10) was frozen whole (W) with 1 

ml of Plasma + 10% DMSO v/v, by using the second freezing protocol (3
0
C/min). 

 Slice 4 out of the five cut from each section (1-10) was sectioned (S) with a 

scalpel prior to freezing with 1 ml of Plasma + 10% DMSO v/v; by using the 

second freezing protocol (3
0
C/min). 
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 Slice 5 out of the five cut from each section (1-10) was used fresh for explant (as 

described in section 2.1.2.3 of this chapter). 

10. After vials reached -80
0
C, they were transferred with a CoolCell

TM
 into a -800C 

freezer. Vials were then transferred to a cryotank in liquid nitrogen phase at -1500C after 

24h. 

11. The whole process was then repeated with the remaining cord tissue sections at 72 

hours from birth. 

 At 72 hours an extra slice (slice 6) was cut out of sections 2, 4, 6, 8 and 10 for 

both cord 3 and 4. These extra slices were frozen whole with 1 ml of FBS + 10% 

DMSO v/v, by using the first freezing protocol (1
0
C/min); as a control. 

12. After 2 weeks cord slices were defrosted, procedure identical to section 2.1.1.1 

(procedure 1-2).  

13.  Cells were extracted via explant method as described in section 2.1.2.3.  

 

            

Fig. 2.6 Post cryopreservation explant culture of sectioned and whole 200-400mg umbilical 

cord tissue slices. 
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Table 2.3 Freezing methods used for cords 1-4. 

 

Cord Section Type F. rate Age Method Section 

1 W 1oC/min 24 F+10%D 1 

1 W 1oC/min 24 F+10%D 2 

1 W 1oC/min 24 F+10%D 3 

1 W 1oC/min 24 F+10%D 4 

1 W 1oC/min 24 F+10%D 5 

1 W 1oC/min 24 F+10%D 6 

1 W 1oC/min 24 F+10%D 7 

1 W 1oC/min 24 F+10%D 8 

1 W 1oC/min 24 F+10%D 9 

1 W 1oC/min 24 F+10%D 10 

1 S 1oC/min 24 F+10%D 1 

1 S 1oC/min 24 F+10%D 2 

1 S 1oC/min 24 F+10%D 3 

1 S 1oC/min 24 F+10%D 4 

1 S 1oC/min 24 F+10%D 5 

1 S 1oC/min 24 F+10%D 6 

1 S 1oC/min 24 F+10%D 7 

1 S 1oC/min 24 F+10%D 8 

1 S 1oC/min 24 F+10%D 9 

1 S 1oC/min 24 F+10%D 10 

1 W 3oC/min 24 F+10%D 1 

1 W 3oC/min 24 F+10%D 2 

1 W 3oC/min 24 F+10%D 3 

1 W 3oC/min 24 F+10%D 4 

1 W 3oC/min 24 F+10%D 5 

1 W 3oC/min 24 F+10%D 6 

1 W 3oC/min 24 F+10%D 7 

1 W 3oC/min 24 F+10%D 8 

1 W 3oC/min 24 F+10%D 9 

1 W 3oC/min 24 F+10%D 10 

1 S 3oC/min 24 F+10%D 1 

1 S 3oC/min 24 F+10%D 2 

1 S 3oC/min 24 F+10%D 3 

1 S 3oC/min 24 F+10%D 4 

1 S 3oC/min 24 F+10%D 5 

1 S 3oC/min 24 F+10%D 6 

1 S 3oC/min 24 F+10%D 7 

1 S 3oC/min 24 F+10%D 8 

1 S 3oC/min 24 F+10%D 9 

1 S 3oC/min 24 F+10%D 10 
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Cord Section Type F. rate Age Method Section 

1 W 1oC/min 72 F+10%D 1 

1 W 1oC/min 72 F+10%D 2 

1 W 1oC/min 72 F+10%D 3 

1 W 1oC/min 72 F+10%D 4 

1 W 1oC/min 72 F+10%D 5 

1 W 1oC/min 72 F+10%D 6 

1 W 1oC/min 72 F+10%D 7 

1 W 1oC/min 72 F+10%D 8 

1 W 1oC/min 72 F+10%D 9 

1 W 1oC/min 72 F+10%D 10 

1 S 1oC/min 72 F+10%D 1 

1 S 1oC/min 72 F+10%D 2 

1 S 1oC/min 72 F+10%D 3 

1 S 1oC/min 72 F+10%D 4 

1 S 1oC/min 72 F+10%D 5 

1 S 1oC/min 72 F+10%D 6 

1 S 1oC/min 72 F+10%D 7 

1 S 1oC/min 72 F+10%D 8 

1 S 1oC/min 72 F+10%D 9 

1 S 1oC/min 72 F+10%D 10 

1 W 3oC/min 72 F+10%D 1 

1 W 3oC/min 72 F+10%D 2 

1 W 3oC/min 72 F+10%D 3 

1 W 3oC/min 72 F+10%D 4 

1 W 3oC/min 72 F+10%D 5 

1 W 3oC/min 72 F+10%D 6 

1 W 3oC/min 72 F+10%D 7 

1 W 3oC/min 72 F+10%D 8 

1 W 3oC/min 72 F+10%D 9 

1 W 3oC/min 72 F+10%D 10 

1 S 3oC/min 72 F+10%D 1 

1 S 3oC/min 72 F+10%D 2 

1 S 3oC/min 72 F+10%D 3 

1 S 3oC/min 72 F+10%D 4 

1 S 3oC/min 72 F+10%D 5 

1 S 3oC/min 72 F+10%D 6 

1 S 3oC/min 72 F+10%D 7 

1 S 3oC/min 72 F+10%D 8 

1 S 3oC/min 72 F+10%D 9 

1 S 3oC/min 72 F+10%D 10 

2 W 1oC/min 24 F+10%D 1 

2 W 1oC/min 24 F+10%D 2 

2 W 1oC/min 24 F+10%D 3 

2 W 1oC/min 24 F+10%D 4 
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Cord Section Type F. rate Age Method Section 

2 W 1oC/min 24 F+10%D 5 

2 W 1oC/min 24 F+10%D 6 

2 W 1oC/min 24 F+10%D 7 

2 W 1oC/min 24 F+10%D 8 

2 W 1oC/min 24 F+10%D 9 

2 W 1oC/min 24 F+10%D 10 

2 S 1oC/min 24 F+10%D 1 

2 S 1oC/min 24 F+10%D 2 

2 S 1oC/min 24 F+10%D 3 

2 S 1oC/min 24 F+10%D 4 

2 S 1oC/min 24 F+10%D 5 

2 S 1oC/min 24 F+10%D 6 

2 S 1oC/min 24 F+10%D 7 

2 S 1oC/min 24 F+10%D 8 

2 S 1oC/min 24 F+10%D 9 

2 S 1oC/min 24 F+10%D 10 

2 W 3oC/min 24 F+10%D 1 

2 W 3oC/min 24 F+10%D 2 

2 W 3oC/min 24 F+10%D 3 

2 W 3oC/min 24 F+10%D 4 

2 W 3oC/min 24 F+10%D 5 

2 W 3oC/min 24 F+10%D 6 

2 W 3oC/min 24 F+10%D 7 

2 W 3oC/min 24 F+10%D 8 

2 W 3oC/min 24 F+10%D 9 

2 W 3oC/min 24 F+10%D 10 

2 S 3oC/min 24 F+10%D 1 

2 S 3oC/min 24 F+10%D 2 

2 S 3oC/min 24 F+10%D 3 

2 S 3oC/min 24 F+10%D 4 

2 S 3oC/min 24 F+10%D 5 

2 S 3oC/min 24 F+10%D 6 

2 S 3oC/min 24 F+10%D 7 

2 S 3oC/min 24 F+10%D 8 

2 S 3oC/min 24 F+10%D 9 

2 S 3oC/min 24 F+10%D 10 

2 W 1oC/min 72 F+10%D 1 

2 W 1oC/min 72 F+10%D 2 

2 W 1oC/min 72 F+10%D 3 

2 W 1oC/min 72 F+10%D 4 

2 W 1oC/min 72 F+10%D 5 

2 W 1oC/min 72 F+10%D 6 

2 W 1oC/min 72 F+10%D 7 

2 W 1oC/min 72 F+10%D 8 
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Cord Section Type F. rate Age Method Section 

2 W 1oC/min 72 F+10%D 9 

2 W 1oC/min 72 F+10%D 10 

2 S 1oC/min 72 F+10%D 1 

2 S 1oC/min 72 F+10%D 2 

2 S 1oC/min 72 F+10%D 3 

2 S 1oC/min 72 F+10%D 4 

2 S 1oC/min 72 F+10%D 5 

2 S 1oC/min 72 F+10%D 6 

2 S 1oC/min 72 F+10%D 7 

2 S 1oC/min 72 F+10%D 8 

2 S 1oC/min 72 F+10%D 9 

2 S 1oC/min 72 F+10%D 10 

2 W 3oC/min 72 F+10%D 1 

2 W 3oC/min 72 F+10%D 2 

2 W 3oC/min 72 F+10%D 3 

2 W 3oC/min 72 F+10%D 4 

2 W 3oC/min 72 F+10%D 5 

2 W 3oC/min 72 F+10%D 6 

2 W 3oC/min 72 F+10%D 7 

2 W 3oC/min 72 F+10%D 8 

2 W 3oC/min 72 F+10%D 9 

2 W 3oC/min 72 F+10%D 10 

2 S 3oC/min 72 F+10%D 1 

2 S 3oC/min 72 F+10%D 2 

2 S 3oC/min 72 F+10%D 3 

2 S 3oC/min 72 F+10%D 4 

2 S 3oC/min 72 F+10%D 5 

2 S 3oC/min 72 F+10%D 6 

2 S 3oC/min 72 F+10%D 7 

2 S 3oC/min 72 F+10%D 8 

2 S 3oC/min 72 F+10%D 9 

2 S 3oC/min 72 F+10%D 10 

3 W 1oC/min 24 P+10%D 1 

3 W 1oC/min 24 P+10%D 2 

3 W 1oC/min 24 P+10%D 3 

3 W 1oC/min 24 P+10%D 4 

3 W 1oC/min 24 P+10%D 5 

3 W 1oC/min 24 P+10%D 6 

3 W 1oC/min 24 P+10%D 7 

3 W 1oC/min 24 P+10%D 8 

3 W 1oC/min 24 P+10%D 9 

3 W 1oC/min 24 P+10%D 10 

3 S 1oC/min 24 P+10%D 1 

3 S 1oC/min 24 P+10%D 2 
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Cord Section Type F. rate Age Method Section 

3 S 1oC/min 24 P+10%D 3 

3 S 1oC/min 24 P+10%D 4 

3 S 1oC/min 24 P+10%D 5 

3 S 1oC/min 24 P+10%D 6 

3 S 1oC/min 24 P+10%D 7 

3 S 1oC/min 24 P+10%D 8 

3 S 1oC/min 24 P+10%D 9 

3 S 1oC/min 24 P+10%D 10 

3 W 3oC/min 24 P+10%D 1 

3 W 3oC/min 24 P+10%D 2 

3 W 3oC/min 24 P+10%D 3 

3 W 3oC/min 24 P+10%D 4 

3 W 3oC/min 24 P+10%D 5 

3 W 3oC/min 24 P+10%D 6 

3 W 3oC/min 24 P+10%D 7 

3 W 3oC/min 24 P+10%D 8 

3 W 3oC/min 24 P+10%D 9 

3 W 3oC/min 24 P+10%D 10 

3 S 3oC/min 24 P+10%D 1 

3 S 3oC/min 24 P+10%D 2 

3 S 3oC/min 24 P+10%D 3 

3 S 3oC/min 24 P+10%D 4 

3 S 3oC/min 24 P+10%D 5 

3 S 3oC/min 24 P+10%D 6 

3 S 3oC/min 24 P+10%D 7 

3 S 3oC/min 24 P+10%D 8 

3 S 3oC/min 24 P+10%D 9 

3 S 3oC/min 24 P+10%D 10 

3 W 1oC/min 72 P+10%D 1 

3 W 1oC/min 72 P+10%D 2 

3 W 1oC/min 72 P+10%D 3 

3 W 1oC/min 72 P+10%D 4 

3 W 1oC/min 72 P+10%D 5 

3 W 1oC/min 72 P+10%D 6 

3 W 1oC/min 72 P+10%D 7 

3 W 1oC/min 72 P+10%D 8 

3 W 1oC/min 72 P+10%D 9 

3 W 1oC/min 72 P+10%D 10 

3 W 1oC/min 72 F+10%D 1 

3 W 1oC/min 72 F+10%D 3 

3 W 1oC/min 72 F+10%D 5 

3 W 1oC/min 72 F+10%D 8 

3 W 1oC/min 72 F+10%D 10 

3 S 1oC/min 72 P+10%D 1 
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Cord Section Type F. rate Age Method Section 

3 S 1oC/min 72 P+10%D 2 

3 S 1oC/min 72 P+10%D 3 

3 S 1oC/min 72 P+10%D 4 

3 S 1oC/min 72 P+10%D 5 

3 S 1oC/min 72 P+10%D 6 

3 S 1oC/min 72 P+10%D 7 

3 S 1oC/min 72 P+10%D 8 

3 S 1oC/min 72 P+10%D 9 

3 S 1oC/min 72 P+10%D 10 

3 W 3oC/min 72 P+10%D 1 

3 W 3oC/min 72 P+10%D 2 

3 W 3oC/min 72 P+10%D 3 

3 W 3oC/min 72 P+10%D 4 

3 W 3oC/min 72 P+10%D 5 

3 W 3oC/min 72 P+10%D 6 

3 W 3oC/min 72 P+10%D 7 

3 W 3oC/min 72 P+10%D 8 

3 W 3oC/min 72 P+10%D 9 

3 W 3oC/min 72 P+10%D 10 

3 S 3oC/min 72 P+10%D 1 

3 S 3oC/min 72 P+10%D 2 

3 S 3oC/min 72 P+10%D 3 

3 S 3oC/min 72 P+10%D 4 

3 S 3oC/min 72 P+10%D 5 

3 S 3oC/min 72 P+10%D 6 

3 S 3oC/min 72 P+10%D 7 

3 S 3oC/min 72 P+10%D 8 

3 S 3oC/min 72 P+10%D 9 

3 S 3oC/min 72 P+10%D 10 

4 W 1oC/min 24 P+10%D 1 

4 W 1oC/min 24 P+10%D 2 

4 W 1oC/min 24 P+10%D 3 

4 W 1oC/min 24 P+10%D 4 

4 W 1oC/min 24 P+10%D 5 

4 W 1oC/min 24 P+10%D 6 

4 W 1oC/min 24 P+10%D 7 

4 W 1oC/min 24 P+10%D 8 

4 W 1oC/min 24 P+10%D 9 

4 W 1oC/min 24 P+10%D 10 

4 S 1oC/min 24 P+10%D 1 

4 S 1oC/min 24 P+10%D 2 

4 S 1oC/min 24 P+10%D 3 

4 S 1oC/min 24 P+10%D 4 

4 S 1oC/min 24 P+10%D 5 
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Cord Section Type F. rate Age Method Section 

4 S 1oC/min 24 P+10%D 6 

4 S 1oC/min 24 P+10%D 7 

4 S 1oC/min 24 P+10%D 8 

4 S 1oC/min 24 P+10%D 9 

4 S 1oC/min 24 P+10%D 10 

4 W 3oC/min 24 P+10%D 1 

4 W 3oC/min 24 P+10%D 2 

4 W 3oC/min 24 P+10%D 3 

4 W 3oC/min 24 P+10%D 4 

4 W 3oC/min 24 P+10%D 5 

4 W 3oC/min 24 P+10%D 6 

4 W 3oC/min 24 P+10%D 7 

4 W 3oC/min 24 P+10%D 8 

4 W 3oC/min 24 P+10%D 9 

4 W 3oC/min 24 P+10%D 10 

4 S 3oC/min 24 P+10%D 1 

4 S 3oC/min 24 P+10%D 2 

4 S 3oC/min 24 P+10%D 3 

4 S 3oC/min 24 P+10%D 4 

4 S 3oC/min 24 P+10%D 5 

4 S 3oC/min 24 P+10%D 6 

4 S 3oC/min 24 P+10%D 7 

4 S 3oC/min 24 P+10%D 8 

4 S 3oC/min 24 P+10%D 9 

4 S 3oC/min 24 P+10%D 10 

4 W 1oC/min 72 P+10%D 1 

4 W 1oC/min 72 P+10%D 2 

4 W 1oC/min 72 P+10%D 3 

4 W 1oC/min 72 P+10%D 4 

4 W 1oC/min 72 P+10%D 5 

4 W 1oC/min 72 P+10%D 6 

4 W 1oC/min 72 P+10%D 7 

4 W 1oC/min 72 P+10%D 8 

4 W 1oC/min 72 P+10%D 9 

4 W 1oC/min 72 P+10%D 10 

4 W 1oC/min 72 F+10%D 2 

4 W 1oC/min 72 F+10%D 4 

4 W 1oC/min 72 F+10%D 6 

4 W 1oC/min 72 F+10%D 8 

4 W 1oC/min 72 F+10%D 10 

4 S 1oC/min 72 P+10%D 1 

4 S 1oC/min 72 P+10%D 2 

4 S 1oC/min 72 P+10%D 3 

4 S 1oC/min 72 P+10%D 4 
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Cord Section Type F. rate Age Method Section 

4 S 1oC/min 72 P+10%D 5 

4 S 1oC/min 72 P+10%D 6 

4 S 1oC/min 72 P+10%D 7 

4 S 1oC/min 72 P+10%D 8 

4 S 1oC/min 72 P+10%D 9 

4 S 1oC/min 72 P+10%D 10 

4 W 3oC/min 72 P+10%D 1 

4 W 3oC/min 72 P+10%D 2 

4 W 3oC/min 72 P+10%D 3 

4 W 3oC/min 72 P+10%D 4 

4 W 3oC/min 72 P+10%D 5 

4 W 3oC/min 72 P+10%D 6 

4 W 3oC/min 72 P+10%D 7 

4 W 3oC/min 72 P+10%D 8 

4 W 3oC/min 72 P+10%D 9 

4 W 3oC/min 72 P+10%D 10 

4 S 3oC/min 72 P+10%D 1 

4 S 3oC/min 72 P+10%D 2 

4 S 3oC/min 72 P+10%D 3 

4 S 3oC/min 72 P+10%D 4 

4 S 3oC/min 72 P+10%D 5 

4 S 3oC/min 72 P+10%D 6 

4 S 3oC/min 72 P+10%D 7 

4 S 3oC/min 72 P+10%D 8 

4 S 3oC/min 72 P+10%D 9 

4 S 3oC/min 72 P+10%D 10 
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3. PROCESS ANALYSIS AND IDENTIFICATION OF PROCESS 

PERFORMANCE 

 

Some of the objectives of this research project were to establish the necessary process 

controls in the production of high quality hMSCs from human umbilical cord tissue (hUCT) 

and to achieve a statistically capable production process.  

Several key process components must be first of all identified, then understood and lastly 

controlled in order to design a successful process for the production of stem cells as the end 

product. Careful design of processing can reduce problems associated with variable 

biological input material
116

.  

In this chapter terms used in process control analysis have been described and the need 

to understand how a process is structured in order to enable control and optimisation has been 

explained. It is necessary to map the operating environment and assess risk factors before 

empirically determining their effect on the process. The notion of process mapping has been 

defined; detailed process and sub-process maps that describe the systematic approach that 

was engaged in order to recognize the variation within the process and the steps that derived 

from this process analysis with the intention to control and optimise it have been detailed. 

The role of the process maps generated in this chapter was to establish the structure of the 

hMSC’s extraction process and to identify opportunities for process variation, therefore 

enabling these to be ranked for further investigation.  

 

3.1 Process mapping 

 

One of the outcomes of process analysis should be a High Level Process Map 

(HLPM)
118-120

, which identifies all the processes ‘sub-units’ or sub-processes and the 

variation within these. Beyond targeting to recognize all the different sub-processes, a HLPM 

should outline controls and validation opportunities for each sub-process and opportunities to 

reduce process variation. Simply put a HLPM should answer two very important questions: 

WHY and WHAT to optimise? 
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3.1.1 How to generate a High Level Process Map (HLPM) 

 

It is essential in building a process map to identify
118-120

: 

 Major points for variability and control from historical process data. 

 Potential variables for each step, to assess whether or not they are controlled and if so 

with what precision?  

 If they are not controlled, how could they be controlled and how is it likely to 

influence the process? 

 Noise variables, are explicitly those variables we can’t control and should be 

identified. ‘General’ noise will still be present from measurement system accuracy, 

precision of control variables, and variability of input from previous sub-process(es).  

 What tests can be carried out on the individual sub-process output (validation 

question) to confirm control? This prevents variability from one sub-process 

confusing analysis of another and greatly increases speed of analysis. It is very 

difficult to isolate variability in a complex process by running it in its entirety. 

 What is the confidence in measurement systems? 

 Plan experiments systematically based on candidates identified in this framework and 

build data on control confidence at each point, and influence of key variables.  

 

3.1.2 Process map definitions 

 

Inputs, the state of activities and resources before a process is carried out (i.e. media, 

cell stocks, cord tissue, plastic ware, input gases, incubator state). This is distinguished from 

the processing element
120

. 

Input controls, inputs will be the outputs of another sub-process that may or may not be 

under consideration. If the sub-process that forms them is under investigation, its 

measured/validated outputs will be the control for the following inputs. Inputs need to be in 

statistical control for the sub-process under investigation to be meaningfully interrogated for 

that process’s statistical control. Input controls should comment on what we know about the 

control of the input (this could again be subdivided into noise, controlled, uncontrolled). This 

is complicated, and arguably the root of a significant amount of the variation seen. It is 
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complicated by the fact that we sometimes don’t know what attributes of the input are critical 

to the output after processing; we can only make informed guesses
120

. Cell input stock, for 

example, is often controlled within a particular range, but may not be controlled for ‘x’ gene 

expression. Cell input variation in number should therefore be in the input controls column 

(this is number in vial, not seeding density, which is a process variable), but the comment that 

many other attributes of the cells are not measured, and only presumed controlled due to prior 

‘standardised’ process and storage is important. Cell number per vial may be statistically 

controlled. Other attributes of cell state may not be. Plastic-ware is standard plastic type, we 

can only rely on the manufacturer data, and manufacture process, which is likely automated, 

on accuracy, precision and tolerances, and that it is controlled for topography, 

hydrophobicity, etc. 

Variable, ‘transport’ or ‘incubator’ are not well defined variables; however they do 

relate to physical condition sets/profiles that are. Variables are preferably 

numerical/quantitative, sometimes, i.e. with plastic type, a variable may appear categorical. 

However there is probably an underlying quantifiable property that directly relates to the 

outputs (hydrophobicity or non-specific binding capacity etc.). These may not be easily 

measurable
120

. Arguably, if you could list all quantitative physical properties of a plastic, the 

plastic type would not need to be listed as a categorical variable.  

Control variable, an attribute of the processing environment, or a process characteristic, 

where some attempt is made to control the value
120

 (i.e. incubation temperature, gas 

concentration, pipette speeds or temperatures, timings etc.). 

Uncontrolled variable, an attribute of the processing environment, or a process 

characteristic, where no attempt is made to control the value, but this could realistically be 

done
120

 (i.e. incubator door opening, pipetting mechanics, time cells stand without media 

etc.).  

Noise variable, an attribute of the processing environment, or a process characteristic, 

where the variable cannot be controlled
120

 (i.e. humidity in the incubator etc.). 

Outputs, represents the outcome of the sub-process
120

 (i.e. homogenous suspension, cell 

markers, growth profile etc.). 
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Validation/Historic data gives information on the previous successes or failures of the 

process’s output. It should also give an indication of experiments and measurements 

necessary to run in order to validate certain results achieved from historic data
120

. 

Diagnostic, a diagnostic should identify if a control, uncontrolled or noise parameter is 

impacting the process (sub-process) output and therefore inform on degree of required 

control, or opportunity for optimisation. Diagnostics may need to be factorial where a number 

of parameters are involved and interact
120

. 

 

3.2 Process mapping and sub-process definition 

 

Historical data analysis and theoretical process analysis are essential first steps for 

reducing process variation. The former ensures the process problem is clearly defined and 

bench marked for future validation studies. The latter provides a systematic framework for 

any wet experimental work or process decisions. It avoids the classic scenario of ad hoc 

process decisions made on a subjective basis in response to perceived variation. There are 

many process analysis tools, but process mapping is the fundamental starting point
118-120

. The 

objective of a process mapping exercise is multi-fold: 

 Provides a model of the process to facilitate a common understanding in the team. 

 Enables systematic visualisation of how the different parts of the process are 

interdependent. 

 Facilitates discussion and identification of problems, opportunities and process 

decision points. 

 Provides a systematic framework for process analysis and investigation including 

break down of the process to discrete and strategic component parts (sub-processes), 

each of which can be independently analysed for variability and control. 

The series of diagrams and tables below give examples of how the hMSCs production 

process can be deconstructed into high level maps for the hMSCs production process from 

UCT. First two diagrams (Fig. 3.1 and 3.2) represent high level maps of the entire process 

that leads to the production of hMSCs from cord tissue slices, via enzymatic digestion or 

explant culture. They are designed to identify the peripheral processes that feed into the core 

cell production process.  
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Fig. 3.1 High Level Process Map for production of hMSCs from fresh and frozen umbilical cord tissue slices via enzymatic digestion.  
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Fig. 3.2 High Level Process Map for production of hMSCs from fresh and frozen umbilical cord tissue slices via explant culture.
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If any of these sub-processes are uncontrolled then they will confound any attempt to 

investigate or characterise the core cell culture process. These peripheral sub-processes need 

to be identified, an assessment made of their control, and a rational set of specifications 

developed (tolerances with regard to impact on the core-process)
 119, 120

.  

Sub-processes are identified so that they can be used as smaller, more manageable, 

units of process analysis with less confounding input to output relationships.  If the analysis 

identifies and controls the correct sub-process inputs, then a set of controlled low variability 

sub-processes should deliver a controlled low variability full process. However, to achieve 

this, it is necessary to understand input controls and outputs at a sub-process level (Fig. 3.3)  

 

 

 

 

 

Fig. 3.3 Sub-process diagram. Where KIPV – key process inputs variables and KPOV – key 

process outputs variables. 

The sub-process input variables (KPIV) will include the output (KPOV) of the previous 

sub-process (amongst others) and it is therefore only possible to experimentally analyse a 

sub-process if the previous sub-process is controlled or if it is isolated from variation in the 

rest of the process. It can be challenging, and require experimentation to identify, what aspect 

of an input to measure in order to ensure control of the sub-process (for cells e.g. what 

markers, numbers). Similarly, as the functional output of the overall process cannot be 

measured at intermediate points, defining relevant sub-process outputs requires an 

understanding or estimation of in-process outputs that are directly related to control of the 

subsequent sub-process and therefore eventually end process quality (cell numbers that are 

within specification etc.).  

Only by achieving control over these strictly relevant sub-process outputs will variation 

in the entire process be reduced. In reality this involves educated guess work. For example, it 

is understood that variation in tissue viability is likely to have significant cumulative impact 

through the process. Developing sub-process units requires detailing these perceived critical 
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sub-process outputs and collecting data. Experimental strategies can then assess their control 

and, where possible, provide evidence for their effect on end of process quality. 

Understanding of some of the more complex sub-processes such as tissue digestion and 

explant culture may require further process breakdown similar to that described for the core 

cell processes below.  

Figures 3.4 and 3.5 are examples of how the maps should be further broken down to 

identify the individual steps in the sub-processes. This assists identification of all the possible 

in process controls, mechanisms of control, and in-process performance measures. For 

example, when considering mincing of cord tissue slices, the step should detail the 

characteristics of those fragments (slice size, ~300mg; fragments size 1-2 mm
3
). The actual 

wet experimental measurements employed to target process variation are pulled from this 

systematic analysis. The example used in figure 3.4 is the sub-process that involves digestion 

of cord tissue and explant of cord tissue slices in figure 3.5.  
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Fig. 3.4 High Level Process Map of tissue digestion sub-process. 
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Fig. 3.5 High Level Process Map of tissue explant sub-process. 
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Table 3.1 Process map definition description and application to the hMSCs production process. 

 

Sub-process Input Control variables Uncontrolled/noise 

variables 

Output Validation 

 

 

 

 

 

 

 

 

Cord tissue 

supply 

from clinic to 

cord blood bank 

 

 

 

 

 

 

Cord tissue 

 

Consumables 

 

Transportation 

device 

 

Transportation 

media 

 

 

 

 

Harvest 

handling/conditions 

 

Extraction sample 

repeatable 

 

Transport 

time/conditions/tempera

ture 

 

Consumables 

brands/batches 

 

Biological donor 

variation 

 

Uncontrolled  

consumable properties 

 

Medical history of the 

mother/age/number of 

previous children/life 

style habits 

(smoker/non-smoker 

etc) 

 

Labour 

process/normal 

birth/c-section/with or 

without medication 

 

 

 

 

Quality cord 

sections with 

desired, 

consistent 

viability and 

that will 

deliver 

enough 

hMSCs to 

place the 

final product 

within 

specification. 

 

 

Cell counts immediately after 

extraction of cells 

 

Assays that can test and 

confirm the viability of the 

tissue prior to extraction of 

cells 

 

Existing data:  

Historical data from cord bank 

and also from the experiments 

that we have performed so far 

indicates that there is a great 

variability between cord 

samples. 
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Sub-process Input Control variables Uncontrolled/noise 

variables 

Output Validation 

 

 

 

 

 

 

 

 

 

 

 

Cryopreservation 

of 

cord slices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cord tissue 

 

Consumables 
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harvest to freeze 
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cord sections 
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tissue prior to extraction of 
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frozen cord slices of the same 

cord, in terms of tissue 
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extracted 

Existing data:  

Historical data from 

Cord bank and also from the 

experiments that we have 

performed so far indicates that 

there is a great variability 

between cord samples that 

arrive at cord bank and also the 

viability of the tissue and 

recovery of cells from frozen 

tissue . 
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Sub-process Input Control variables Uncontrolled/noise 

variables 

Output Validation 
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Sub-process Input Control variables Uncontrolled/noise 

variables 

Output Validation 
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Sub-process Input Control variables Uncontrolled/noise 

variables 

Output Validation 
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3.3 A systematic approach to process improvement 

 

The variation in the key process output (KPOV; Cell number/Viability) is a function of 

the precision with which the key process inputs (KPIV) are controlled (Figure 3.6).  

 

 

 

 

Fig. 3.6 Standard process diagram. 

An ideal process definition from a risk management perspective will include an 

understanding of all key input variables, and the latitude with which those key input variables 

can move before the process fails to meet specification. It will also include an understanding 

of which input variables are well controlled, uncontrolled, or noise factors
119, 120

.  

A process definition with appropriate detail will allow a scientific approach to selecting 

and implementing mechanisms to deliver the necessary rigour of process control at key 

process control points. It enables process inputs to be set within the centre of their safe 

window and to reduce the impact of other input changes. This is a ‘quality by design’ 

approach to manufacture
116

. 

The challenge of developing this understanding for the production of hMSCs from cord 

tissue process is diverse. As reported by the cord blood bank, the production process for these 

cells has a lot of variation and the only current quantitative measurement of process quality is 

cell number. When viewed as a whole, the process box in the above diagram represents a 

large number of complex process parameters, any one of which, or series of which, may 

contribute to the variation noticed in the process output. Investigation of these KPIV/KPOV 

cause and effect relationships is held back by the high process variation described; therefore 

opportunities for confusion and loss of resolution are created between many of the candidate 

process parameters and the end of process quality measurement. 
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There are two broad approaches to improving the hMSCs production process towards a 

lower variability and characterised state
113

: 

 

 Theoretical (dry) process analysis informed process control design 

 Experimental (wet) process analysis informed process control design 

Given this initial process status, it was concluded that conventional wet experimental 

strategies that interrogates the total process to understand which process parameters have the 

greatest effect on the endpoint process output will have a poor statistical resolution. Instead, 

using theoretical process analysis in conjunction with wet experimental design for greater 

effect was suggested. The theoretical analysis ensures the wet is systematic and data driven, 

applied to the highest value parts of the process, and applied only where there is sufficient 

statistical resolution. 

In practice it is useful to: 

a) Establish higher level documents (including down to process step level) to help visualise 

the process. 

b) Carry out wet/dry process interrogation to narrow down sources of variability to sub-

process level. 

c) Establish further levels of process map detail on focussed ‘problem’ sub-processes. 

 

3.4 Analysis of major points for variability and control from historical process data 

 

All processes where the end product is the cell enclose variability in output. The 

purpose of analysing the historical data is to compare both the mean output and the variability 

in the output, with the product specification
119

. This will provide a statistically informed 

assessment of process capability (i.e. the probability of achieving specification on any given 

run) and the required process improvement to achieve product specification with acceptable 

frequency
118, 119

.  

Analysing all previous runs that have been performed with current parameter sets gives 

an indication  of whether the problem are process parameter controls or process parameter 
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values (something is controlled or poorly controlled). Removing identified sources of 

variation that can be controlled is essential, even if they are not the basis of current problem. 

A measurement of process capability is based on the standard deviation of the process 

output and therefore assumes a normal distribution of the process output without statistical 

outliers
118

. Before meaningful assessment of process capability it is therefore necessary to 

identify if these conditions exist and, if not, normalize the data and/or identify causes of 

outlying process runs. The manufacturing terminology for a normally distributed process 

output without statistical outliers is ‘in-control’ or subject to intrinsic variation
119

. This type 

of process variation generally arises from a lack of precision in the control of process 

parameters (such as the dispensed volume from a pipette); this will usually lead to a 

statistically normally distributed variability in process output. Uncontrolled process variation 

is caused by ‘special events’ (examples in cell culture may include a missed media change, a 

defective reagent batch, an incorrect cell density or error in cytokine calculation etc.). 

Because special events are one-off occurrences, the effect is to generate a process output that 

is a statistical outlier. Uncontrolled processes cannot be assessed for process capability, are 

not easy to optimise or manage, and limit the tools that can be used to address process 

variation
118, 119

. 

All critical process outputs should be assessed for distribution, control and capability. 

These will differ for different outputs (such as cell expansion, viability or markers) as each 

will respond differently to variability in process parameters and have different specification 

windows. The capability of the process must be assessed against the worst capability
120

 (i.e. 

the critical process output most likely to deviate from specification, in this case the number of 

cells extracted from each cord).  

As mentioned in previous section of this chapter the analysis of historical data is an 

essential step for reducing process variation. It ensures the process problem is clearly defined 

and bench marked for future validation studies. 

The critical quality measurement of the process output analysed from the cord bank’s 

historical data was the number of cells extracted from 48 (200-400mg) frozen and fresh 

slices, of 8 umbilical cords (as a measurement of tissue quality). A successful (within 

specification) output was considered to be a cell yield between 125000 – 10
6
 cells. The chart 
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below (Fig. 2.1) illustrates the results achieved from the quality measurements of 48 slices of 

UCT. 

 

 

 

Fig. 2.1   Chart shows the frequency with which different cell yields were achieved from 200-

400mg slices of UCT of 8 different cords. Best outcome was considered to be in the region 

125000 – 10
6
 cells from a T25 flask after 7 days in culture), therefore cell yield was within 

specification only 6.25% of the time (3 slices out of 48). 

The frequency chart above can be used to deduce a series of key statements: 

 The existing process framework has produced in specification product, and therefore 

is capable of doing so on a reproducible basis if appropriately controlled. 

 However, under current processing controls, product will be in specification only 

approximately 6.25% of the time (cell numbers above estimated process specification 

lower limit). The process is therefore not capable. 

 The process mean produces a product with cell numbers in the region 10
2
 cells, which 

represents a low cell density.  

Considering all the above statements, it can be concluded that in order to reach process 

specification with acceptable frequency, the process requires two remedial actions: 

 Firstly, the intrinsic process variation needs to be reduced. 
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 Secondly, the process mean needs to be shifted higher (i.e. as the current successful 

runs lie on the edge of the distribution, simply reducing variation around the current 

mean would deliver a more consistent but permanently outside specification product). 

Note: Process control is defined relative to intrinsic process variation; it is quite probable that 

reducing intrinsic process variation may cause statistically uncontrolled events to be 

identified. This will need to be identified via validation runs of process changes. 

The next step after analysing the major points for variability and control from historical 

process data is to investigate what are the contributors to the process variation identified. This 

analysis should be carried out on any available intermediate measurements in the production 

process
119, 120

 (i.e. tissue viability at receipt, intermediate yields - primary cell count after 

isolation process/in process counts/harvest count after expansion) or expansion rates (would 

be estimated based on seeding/yield accuracy). The variation seen in output will be reflected 

in key variables or intermediate outputs earlier in the process. It would be particularly 

informative to understand if the data distribution characteristics are equivalent over the 

multiple sets of intermediate counts.  
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Chapter four 

ISOLATION OF hMSCs FROM hUCT 

UNDERSTANDING AND MINIMISING VARIABILITY IN 

CELL YIELD FOR PROCESS OPTIMIZATION 
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4. Development of isolation methods 

 

The attraction of hUC as a donor tissue for regenerative medicine has been enhanced by 

the discovery of mesenchymal like stem cells in the cord
32, 48

.  Furthermore the therapeutic 

potential of stem cells derived from umbilical cord, combined with easy and ethically non-

contentious access to these cells came to suggest that cord blood banks may be able to expand 

their activities to provide cells for mesenchymal stem cell therapies such as cartilage, bone 

and muscle repair, consequently this has led to a boom in the business of hUC banking
76, 117

. 

More and more research groups are focusing their interest in confirming the stem cell potency 

of stromal cells isolated from the hUC tissue
29

. However, early handling of cord tissue is 

relatively uncontrolled due to the clinical demands of the birth environment and subsequent 

transport logistics.  

In order to store tissue with consistent clinical potential, methods need to be selected to 

minimize the variability in the extracted stem cells given the operating restrictions of the cell 

banking model. Due to the nature of tissue collection in a birthing environment the early 

period of tissue processing is relatively uncontrolled; the priority is maternal and neonate 

safety. Further, tissue often needs to be transported from maternity units to distant processing 

sites. Such factors make imposing tight process controls on early handling challenging. In 

addition, innate biological variation in the tissue or biological material introduced into 

samples due to isolation and handling will have a major effect on the safety and efficacy of 

clinical application and the cell yield.  

Therefore cell isolation methods should not be compared under idealized conditions. It is 

critical that processes are assessed and engineered for robustness to innate biological tissue 

variation or arising variation due to tissue collection procedures, and with an understanding 

of critical sensitivities, rather than simply for optimal yield under highly controlled 

conditions
94

. This is particularly important for processes using primary tissue or cell sources 

where the biological variation at input is likely to be high; especially critical for tissue stored 

for autologous use, where a processing facility will not be able to select tissue based on 

favourable characteristics.  
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Currently, although our industrial partner is able to isolate mesenchymal stem-like cells 

from fresh and frozen umbilical cord fragments, the process does not allow for consistent 

quantities of cells to be extracted from cord tissue. Several experiments, which were targeted 

at screening different control variables in the extraction of hMSCs from cord tissue, were 

performed; the methods for these experiments have been described in section 2.1 of chapter 

two. 

These wet experiments were part of a process mapping experimental design, aimed at 

characterizing the key process variables and process control points, with a view to optimizing 

the mean value for the product quality attributes, as mentioned in chapter three. 

 

 

4.1 Preliminary development of isolation methods for human mesenchymal stem 

cells (hMSCs) from umbilical cord tissue (UCT).  

 

Extraction methods 1-8 described in section 2.1.1 of Chapter two have been assessed by 

culturing the digested suspension resulted from enzymatic treatment of 200-400 mg slices of 

cord tissue, in T25 flasks. The individual UCT slices were digested for various time intervals, 

with different enzyme combinations and concentrations. The confluence of the cultures was 

established visually with the help of an Olympus inverted microscope; the results are 

presented and discussed below: 
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Results for 1
st
 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.1 (a), (c), (e). Frozen tissue digested with methods A, B and C after 48h from seeding, 

before 1
st 

 media change; (b), (d), (f). Frozen tissue digested with methods A, B and C after 9 

days from seeding and 3 media changes. Dots visible in the photos are not cells but cellular 

debris and extracellular matrix debris left from tissue digestion. An example of an attached 

cell has been circled in red (f). 

 

a. b. 

c. d. 

e. f. 
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Results for 2
nd

 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.2 (a), (c), (e). Frozen tissue digested with methods A, B and C after 48h from seeding, 

before 1
st 

 media change; (b), (d), (f). Frozen tissue digested with methods A, B and C after 7 

days from seeding and 2 media changes. Dots visible in the photos are not cells but cellular 

debris and extracellular matrix debris left from tissue digestion. 

 

e. 

c. 

a. b. 

d. 

f. 
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Results for 3
rd

 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.3 (a), (c), (e). Frozen tissue digested with methods A, B and C after 48h from seeding, 

before 1
st 

 media change; (b), (d), (f). Frozen tissue digested with methods A, B and C after 7 

days from seeding and 2 media changes. Dots visible in the photos are not cells but cellular 

debris and extracellular matrix debris left from tissue digestion. 

 

a. 

c. 

e. 

b. 

d. 

f. 
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Results for 4
th
 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.4 (a), (b), (c). Fresh tissue digested with method A, for 2h, 4h, and 18h after 48h from 

seeding and first media change; (d), (e), (f). Fresh tissue digested with method B for 2h, 4h, 

and 18h after 48h from seeding and first media change; (g), (h), (i). Fresh tissue digested with 

method C for 2h, 4h, and 18h after 48h from seeding and first media change. Dots visible in 

the photos are not cells but cellular debris and extracellular matrix debris left from tissue 

digestion. 

 

Neither of the above methods managed to provide quantifiable amounts of cells, not even 

after more than 2 weeks in culture. Dots visible in the photos presented in the above figures 

were initially thought to be attached cells and trypsin treatment was applied to the culture 

flasks in order to remove them from the culture surface and count them. However they could 

not be removed from the flask’s culture surface, not even after scraping the surface, therefore 

a. b. c. 

d. e. f. 

g. h. i. 
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it was concluded that this was either cellular debris or extracellular matrix debris resulted due 

to enzymatic digestion of UCT.  

It was concluded that the procedure applied in the extraction method should be revised 

and certain parameters changed, with the intent to improve the extraction method. Some of 

the steps in the protocol, thought to have a major impact on the fate of the cells during the 

extraction process, were the centrifugation speed and the size of the sieves used to filter the 

digested suspension.  Therefore it was decided to amend the centrifugation speed from 

1500rcf to 500 rcf, since the first was thought to be too high; in addition a 100µm cell strainer 

was chosen instead of the 70µm one, since this was believed to be too small to let through 

enough cells. Digestion times tested (2h, 4h and 18h) were kept the same, along with the 

enzymes’ concentrations used. 
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Results for 5
th
 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.5 (a), (b), (c). Frozen tissue digested with method A, for 2h, 4h, and 18h after 7 days 

from seeding and 2 media changes; (d), (e), (f). Frozen tissue digested with method B for 2h, 

4h, and 18h after 7 days from seeding and 2 media changes; (g), (h), (i). Frozen tissue 

digested with method C for 2h, 4h, and 18h after 7 days from seeding and 2 media changes. 

Dots visible in the photos are not cells but cellular debris and extracellular matrix debris left 

from tissue digestion. 

 

This method of extraction did not deliver the desired results either. As it can be observed 

from the above pictures, the cells are scarcely present in any of the cultures. It was concluded 

that the centrifugation speed used was to low and cells might have remained in the filtrated 

suspension, due to its viscous consistence. Consequently it was decided to not centrifuge the 

digested suspension any longer and just plate it into a culture flask straight after filtration (see 

b. 
a. c. 

d. e. 
f. 

g. h. i. 
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procedure described in the protocol). The 100µm cell strainer was considered more suitable 

than the 70µm one so it was kept in use for the following methods. The digestion times tested 

(2h, 4h and 18h) were kept the same, along with the enzymes’ concentrations used.  

 

Results for 6
th
 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 
 

Fig. 4.6 (a), (b), (c). Frozen tissue digested with method A, for 2h, 4h, and 18h after 10 days 

from seeding and 3 media changes; (d), (e), (f). Frozen tissue digested with method B for 2h, 

4h, and 18h after 10 days from seeding and 3 media changes; (g), (h), (i). Frozen tissue 

digested with method C for 2h, 4h, and 18h after 10 days from seeding and 3 media changes. 

Dots visible in the photos are not cells but cellular debris and extracellular matrix debris left 

from tissue digestion. 

 

 

 

a. b. c. 

d. e. f. 

g. h. i. 
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Results for 7
th
 method of digestion (see Table 2.1, section 2.1.1, Chapter two): 

 

 

 

 

 

Fig. 4.7 (a), (b), (c). Fresh tissue digested with method A, for 2h, 4h, and 18h after 10 days 

from seeding and 3 media changes; (d), (e), (f). Fresh tissue digested with method B for 2h, 

4h, and 18h after 10 days from seeding and 3 media changes; (g), (h), (i). Fresh tissue 

digested with method C for 2h, 4h, and 18h after 10 days from seeding and 3 media changes. 

Dots visible in the photos are not cells but cellular debris and extracellular matrix debris left 

from tissue digestion. 

 

Method 6 and 7 also failed to deliver satisfactory outcomes, as noted from the pictures 

presented above. As a result it was concluded that the centrifugation speed and the size of the 

cell strainer were not the key elements influencing the outcome of the extraction methods. It 

was concluded that the procedures applied in the extraction methods should be revised and 

certain parameters changed, with the aim of improving the extraction method. Given the 

g. 

a. b. c. 

d. e. f. 

h. i. 
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range of control variables that were tested, it was agreed that there was an uncontrolled 

variable that was changing the output of the process every time (i.e. uncontrolled 

consumables/reagents properties). 

In order to identify whether the problem was created by process parameter controls or 

process parameters it was decided to analyse all previous runs that had been done with 

current parameter sets and compare them to the ones used by the cord bank. 

From the bank’s historical data it was established that satisfactory numbers of cells 

(according to their standards) were achieved; the best outcomes accomplished to that date 

were cell yields within a range of 125000 - 10
6
 after 7 days in a T25 culture flask (from a 200-

400 mg slice); even though this wasn’t accomplished on a regular basis (as shown in previous 

chapter). Consequently it was decided to compare our set of parameters with the ones used by 

the cord bank in their method of extraction. It was concluded that only two of the reagents 

used in methods 1-7 were different from those used by the cord bank, foetal bovine serum 

and collagenase enzyme; method for treating the tissue was identical. 

200-400 mg frozen slices from 3 different cords were digested for 18h (method 8, 

described in section 2.1.1 of chapter two): 

 With cord bank’s enzyme and serum; 

 With our enzyme and cord bank’s serum; 

 With cord bank’s enzyme and our serum. 
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Fig. 4.9 hMSCs extracted from frozen UCT via enzymatic digestion (method 8). (a) With 

cord bank’s enzyme and serum; (b) With our enzyme and cord bank’s serum; (c) With cord 

bank’s enzyme and our serum. 

 

It became clear that the collagenase enzyme used in testing methods 1-7 had been 

affecting the output of the process we were trying to optimize (Figure 4.9, (b)). This was 

believed to be linked to the clostripain activity of the collagenase enzyme utilized. The 

duration of collagenase treatment, concentration and type of enzyme used are critically 

important, especially if collagenase/ hyaluronidase cocktails are employed, since there is 

always a risk of degradation of cellular external lamina, a phenomenon preventing cells from 

adhering to the culture substrate after isolation and even causing severe cellular damage
32

. 

Removing identified sources of variation that can be controlled is essential, even if they 

are not the basis of the current problem. 

A further set of frozen and fresh slices form six umbilical cords were tested with 

method 8 (cord bank’s enzyme and our serum). Cell yield was assessed visually at 7 days in 

a. b. 

c. 
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culture for all the seeded flasks, with an Olympus inverted microscope. Fresh slices had 

higher yields of cells than frozen ones and frozen slices from three out of the six cords 

yielded no cells post enzymatic treatment (Table 4.1). 

 

Table 4.1 Visually assessed confluence of culture flasks seeded with cells extracted via 

enzymatic treatment (method 8) of fresh and frozen cord tissue slices from 6 umbilical cords. 

 

 

Cord 

 

 

Confluency for fresh cord 

slices 

 

Confluency for frozen cord 

slices 

 

 

 

1 

 

 

 

 

80-90% 

 

50-60% 

 

>90% 

 

60-70% 

 

>90% 

 

50-60% 

 

 

 

2 

 

 

 

 

10-20% 

 

No cells 

 

10-20% 

 

No cells 

 

30-40% 

 

No cells 

 

 

 

 

3 

 

 

 

 

50% 

 

30-40% 

 

30-40% 

 

10-20% 

 

70% 

 

30-40% 
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Cord 

 

 

Confluency for fresh cord 

slices 

 

Confluency for frozen cord 

slices 

 

 

 

4 

 

10-20% 

 

No cells 

 

10-20% 

 

No cells 

 

10-20% 

 

No cells 

 

 

 

5 

 

30-40% 

 

10-20% 

 

30-40% 

 

30% 

 

50% 

 

10-20% 

 

 

 

6 

 

80-90% 

 

No cells 

 

70% 

 

No cells 

 

>90% 

 

No cells 

  

These results lead to the further conclusion that variability noticed in output is caused 

not only by inter-cord and intra-cord variation but also that the cord tissue’s viability might 

be affected by the freezing method used to cryoprotect the tissue. 

It was decided to run a series of metabolic activity assays, in order to measure the 

viability of UCT and correlate this to cell recovery from both fresh and frozen UCT; also 

with the purpose to gain more insight regarding the effect of the cryopreservation method on 

the viability of cord tissue post freezing. 

 

 

 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
130 

 

4.2 Metabolic activity analysis and correlation to cell yield for fresh and frozen 

umbilical cord tissue (UCT) sections 

 

Metabolic activity of 200-400 mg UCT slices from 3 different regions within the cord 

(E1, M, and E2, see Fig. 2.3 in section 2.2 of chapter 2) was measured for 8 umbilical cords 

(method described in section 2.2 of chapter 2). It was found that metabolic activity within 

cord is less variable than between different cords, also that its variability increases for frozen 

UCT. Furthermore metabolic activity seems to decrease for frozen cord compared to fresh 

cord tissue (Fig. 4.10). 

Furthermore when correlating the cell yield resulted from fresh and frozen cord slices 

to the metabolic activity measured for both of these, the decrease in cell numbers from frozen 

tissue compared to fresh tissue was in direct correlation with lower absorbance levels 

measured for frozen tissue as well (Fig. 4.11). It was concluded that there was a significant 

reduction in cell recovery and growth from frozen tissue versus fresh tissue when compared 

in the same cord and using the cord bank’s freezing method for UCT; also lower cell yields 

corresponded to lower metabolic activities, therefore confirming previous theory regarding 

loss of cell viability after freezing of UCT. 
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Fig. 4.10 Inter and intra-cord variation analysis by measurement of metabolic activity for 

fresh and frozen UCT slices from three different regions within the cord of 8 umbilical cords. 

Graph shows that variability within cord is better compared to inter-cord one; inter-cord 

variability increases for frozen cord tissue and metabolic activity decreases for frozen tissue. 
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Fig. 4.11 Significant loss in cell yield post freezing for UCT slices analysed; also direct 

correlation between cell recovery/growth from fresh and frozen tissue and metabolic activity 

of UCT, lower cell yield appears to correspond to lower metabolic activity values. 

 

There is a definite correlation between metabolic activities measured and cell recovery 

and growth. If we group the results shown in Fig. 4.11 into two columns (yellow line on the 

graph), first column being represented by tissue that expressed absorbance levels between 0 

and 0.4, and the second column absorbance levels between 0.4 and 0.8, it is clear that tissue 

that had low metabolic activity delivered low numbers of cells and tissue that had higher 

metabolic activity delivered higher cell numbers. 

The few events where lower cell numbers corresponded to higher absorbance levels 

were considered to be outliers. Outliers caused perhaps by the fact that AlamarBlue
®
 may not 

be the most accurate assay when it comes to measuring the metabolic activity of UCT. This is 

an assay designed for measuring the metabolic activity of cells, and translation into 

measuring the same activity for tissue is not ideal. This is due to the complexity of tissue 

structure in comparison to single cell suspensions. It is very difficult to find specific assays 
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that will test the viability of tissue, these have to be adjusted, and therefore their accuracy 

cannot be 100%. 

However this investigation not only confirmed the cell recovery variability between 

different cords, indicated by the isolation method, but managed to deliver new insights into 

the fate of the tissue after freezing. Since the cord bank’s business model was to extract 

hMSCs from frozen UCT slices it was understood that the cryopreservation method used at 

the time needed to be examined further and improved. This was further analysed and 

discussed in chapter six of this thesis. 

 

4.3  Isolation of hMSCs from whole lengths of fresh umbilical cords 

 

Analysis of preliminary results regarding the investigation of UCT as a source for 

mesenchymal stem cells has led to the realization that variability in cell yield obtained from 

different cords represented the main challenge to overcome. Therefore identifying and 

minimising the source of this variability represented the keys for future process optimization. 

Previous investigations allowed for measurement of level of variability but did not clarify its 

sources. 

Furthermore, it was understood that in order to store tissue with consistent clinical 

potential, methods need to be selected to minimise the variability in the extracted stem cells 

given the operating restrictions of the cell banking model. Hence cell isolation methods 

should not be compared under idealised conditions. Methods should be assessed and 

engineered for robustness to innate biological tissue variation or arising variation due to 

tissue collection procedures. This is particularly important for tissue stored for autologous 

use, where a processing facility will not be able to select tissue based on favourable 

characteristics. Once a method has been established, determining the statistical distribution 

inherent in the method relative to required cell yield (process capability) will be necessary to 

allow tissue processing facilities and banks to predict the risk of sub-optimal cell yield from a 

given cord tissue section and processing method, and thereby to determine the tissue storage 

requirements and isolation methods with acceptable risk of adequate cell recovery. 

Consequently an experiment that allowed for more insight into the possible effects of 

different processing methods, tissue storage time, inter-cord and intra-cord variability on cell 
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yield, was designed. Two primary methods of cell extraction, enzymatic digestion and 

explant culture, have been analysed in order to identify the relative variability in cell recovery 

(methods have been described in section 2.1.2 of chapter 2). It was further sought to identify 

the robustness of each extraction method to changes in ‘hard to control’ process variables and 

to define methods that would be more appropriate to maintain quality under different 

operational restrictions. Also the noticed variability in output has been reduced by changing 

some of the initial stages in the process and methods, therefore the initial high level process 

maps, described in previous chapter 3, have changed as shown in Figures 4.12 and 4.13, 

below: 
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Fig.4.12 High Level Process Map for production of hMSCs from fresh umbilical cord tissue slices via enzymatic digestion. 
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Fig. 4.13 High Level Process Map for production of hMSCs from fresh umbilical cord tissue slices via explant culture. 
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Twelve umbilical cords were used for the purpose of this analysis. They were each 

sectioned into 20 equal sections. Slices were taken from each section for processing after 

storage for 24, 72, and 120 hours from birth, this was recorded on the consent forms that was 

collected with each cord used in this study. The reason for choosing these time points was to 

represent variable processing delays associated with logistics of delivery and transport. Slices 

were then processed by enzymatic digestion or explant culture method. Data was analysed to 

determine average cell yield and yield variability associated with the processing methods in 

combination with other factors, such as tissue storage time (age), tissue position in cord, and 

individual cord to cord variation. 

Data presented and discussed further was analysed using Minitab 15™. Statistical 

analysis was applied to Box-cox transformed (log10 or square root) data. Summary statistics 

were transformed back to original scale for presentation. Data was analysed graphically using 

box and interval plots to compare means and variability. Outliers in the data sets were not 

excluded unless attributed to a special cause.  Interaction plots were used to show association 

between factors. Two sample hypothesis tests were applied to compare mean and standard 

deviation of the responses between the two isolation methods. A general linear model (GLM) 

analysis was used to perform an analysis of variance (ANOVA) for the response variable 

(cell yield) in balanced and unbalanced data sets involving fixed (isolation method, storage 

time) and random (cord) factors. Post-hoc Bonferroni Simultaneous test was used for 

comparison of multiple means. For all tests, p≤0.05 was considered significant. One cord (8) 

was excluded from the analysis because no cells were isolated. 

 

4.3.1 Effect of isolation method on cell yield 

 

Baseline process performance was established by evaluating the cell yield from cord 

slices processed by explant (n = 330) or digestion (n = 660) method, within a standard 

process operating range. Digestion yield was assessed after 7 days and explant after 14 days 

in culture due to significantly slower cell release. The average cell yield isolated from cords 

using the digestion method was higher (2.3E
5
) compared to the explant method (1.8E

5
) (p = 

0.002), but the cell yields were significantly more variable (p = 0.0005) (Table 4.2).  This 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
138 

suggests that cell yield from the explant method, whilst slower, may be more robust to input 

variation (i.e. delay before processing or biological variation) in the operating range selected.  

 

Table 4.2 Baseline process performances for enzymatic digestion and explant culture 

isolation methods. Mean and SD for normalised data (lambda = 0.5, square root 

transformation) and back transformed means are shown for each isolation method. 

 

 

Isolation 

method 

Transformed 

mean 
Transformed 

SD 
Interquartile 

Range 
Back-transformed 

mean 

Digestion 477.6 331.6 200 - 680 228102 

Explant 426.1 182.6 300 - 520 181561 

Statistical 

significance 
N Y  -  - 

 

An ANOVA (GLM) was conducted to decompose the variation in the cell yield 

amongst the factors (method, cord and storage time). 

The analysis showed that cord, as a random effect, contributed significantly to the 

variation observed in cell yield. Substantial interactions were observed among random (cord) 

and fixed (isolation method, age) factors with evidence that cell yield from cord is dependent 

on isolation method (p = 0.045) and cord storage time/age (p = 0.024), but also that the effect 

of cord age was dependent on isolation method (p = 0.0005) (Figure 4.14). In order to 

determine how the isolation method influenced the cell yield from the cords at different 

storage times (24, 72 and 120 hours) the data was further stratified and an ANOVA (GLM) 

applied independently to each isolation method. 
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Fig. 4.14 Interaction plot for normalized data (lambda = 0.5, sqrt transformation) for 

digestion (1) and explant (2) isolation methods. Interactions are observed between random 

factor (cord) and fixed factors (age and isolation methods) as determined by a GLM 

ANOVA. 

 

4.3.2 Effect of cord storage time (age) on cell yield 

 

The average cell yield isolated from cords using the enzymatic digestion method 

differed significantly between the storage time points (p = 0.0005); the effect, however, was 

variable, between individual cords (Figure 4.15). Post hoc tests revealed that storage of cord 

significantly reduced mean cell yield after 72 hours (1.7E
5
) and 120 hours (0.64E

5
) compared 

to the cell yield at 24 hours (5.9E
5
). In contrast, the mean cell yield from the explant isolation 

method did not differ significantly between the storage time points (p = 0.08), with some 

suggestion of yield improvement over the first 72 hours, although effects can again be seen to 

vary between individual cords (Figure 4.15). 
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Fig. 4.15 The effect of storage time on cell yield from umbilical cord tissue processed by 

explant or digestion methods. Boxplots show interquartile range shaded, with median line, 

whiskers represent 1.5 times the interquartile range, and stars show extreme values beyond 

this range. (a) The median yield of the digestion method clearly decreases with time whilst 

that of the explant extraction remains relatively constant; (b) The level of decline varies 

between cords processed by digestion (c) No systematic decline is observed in any cord 

processed by explant. 

 

This analysis indicates that cord storage time causes significant reduction in mean cell 

yield (in a population of cords) when cells are isolated using a digestion method but not when 

isolated using the explant method. It is hypothesised that this could be due to cells becoming 

more susceptible to stress of single cell isolation after prolonged storage, rendering older cord 

cells more susceptible to damage during digestion relative to explant. It could also be 

associated with cell mediated extra cellular matrix degradation during storage, allowing 

easier migration of cells out of the tissue during explant culture, but exposing to more 

enzyme activity during digestion. One alternative explanation is that the explant culture limits 
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the number of cells that can migrate from the cord; in this scenario the reduced cell content 

with storage time is still present in the explant cultures, but not apparent due to the limitations 

of the method in releasing the cells. If the latter were the case we would expect to see reduced 

growth over time; this does not occur and is discussed below. 

Another explanation to be considered in understanding the mechanistic of cell 

survival and migration out of the cord tissue, could be that differences between time of 

recovery and isolation method were caused due to the fact that with digestion, after longer 

storage periods more of the recovered material is dead, whereas for the explant method, only 

viable cells will migrate out of the core. It is most probable that with the explant method only 

cells that are close to the outer edges of the tissue will migrate out, and cells that are closer to 

the core will be compromised due to factors such as O2 perfusion gradients and tissue 

hypoxia. Therefore through enzymatic digestion of tissue all the cells get released, whilst 

with explant only the viable ones will migrate out.  

The variation of cell yield (%CV) increases for both methods with increased tissue 

storage time (24hrs =31%, 72hrs=42%, 120hrs=52% explant; 24hrs =37%, 72hrs=67%, 

120hrs=76% digestion). This strongly implies a non-uniform degradation of cell yield 

potential from fresh tissue. A non-uniform degradation of tissue yield suggests a change in 

the relative performance of cords over storage time. This is apparent in Figure 4.16, which 

shows that the relative difference between mean cord cell yields from digestion reduces with 

increased storage time.  
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Fig. 4.16 Interval plots showing the mean yield and 95% confidence interval of the 

mean stratified by individual cord after different storage times. (a) Digestion extraction 

shows a retained relative performance between cords after different storage periods; however, 

it also shows that the differences between cords means diminishes with increased storage 

time. (b) These effects are not observable from explant culture. 

 

A weak inverse correlation (R
2
=55%) between higher initial cell yield and the cells 

recovered after 72 hours of tissue storage as a proportion of initial yield, suggests that this 

non-uniform degradation may be due to higher yielding tissue degrading faster (Fig. 4.17). It 

is possible that more metabolically active tissue, with higher cell content, is more sensitive to 

storage. An alternative explanation is that the cell population in the cords is heterogeneous in 

sensitivity to a processing delay – this is supported by the fact that approximately 50% of 

potential cell yield is lost with each additional 48 hours of storage/delayed processing. This 

implies more rapid cell loss in absolute numbers in the early period of storage, and would 

lead to smaller relative differences between cords after prolonged storage. 

 

a. b. 
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Fig. 4.17 Digestion extraction shows that the differences between cords’ means diminish with 

increased storage time. This observation of decreased differences between cords with 

increased storage time implies that yield from early higher yielding cords initially drops 

faster than that from lower yielding cords; a correlation analysis supports this.  

 

4.3.3 Cord to cord variability and the influence of sampling location on cell yield 

 

In order to determine if the sampling location (section) within the cord influences the 

cell yield, the mean yield from each cord section was plotted against the sequential position 

from neonatal to placental end of the cord (section 1 = neonate end and section 20 = placental 

end), for both isolation methods (Figure 4.18). A discernible effect of tissue location on mean 

cell yield was not observed for the explant method but a trend of increasing mean cell yield at 

the placental end of the cord was observed when the isolation was conducted by enzymatic 

digestion. This implies that the explant method may initially restrict the number, or growth, 

of cells recovered from the tissue, thereby potentially hiding a difference in tissue cell 

content. This effect was also not seen in all cords.  
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Fig. 4.18 The effect of location in cord on cell yield from umbilical cord tissue processed by 

explant or digestion methods (section 1 = neonate end and section 20 = placental end). The 

95% statistical confidence interval for the population mean is shown for each position after 

each storage time. (a) The position of tissue in cord strongly affects yield from the digestion 

isolation method, with a trend increase in yield towards the placental end of the tissue 

observable over approximately a quarter of the cord length. (b) This location effect is not 

observed from explant culture. 

 

Interaction plot presented in Figure 4.19 summarises all the effects established with 

the GLM ANOVA and confirms their impact on the variability of cell yield extracted with 

the two methods. 
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Fig.4.19 Interaction plot for normalized data (lambda = 0.5, sqrt transformation) for digestion 

(method 1) and explant (method 2). The plot checks the interactions between random factor 

(cord) and fixed factors  (age, isolation method and section), established with a GLM 

ANOVA test. 

 

The finding that cell yield depends on extraction method, and is influenced by process 

variables, requires that the quality of cells extracted via different methods is compared. Cells 

from cord slices processed by enzymatic digestion or explant method after variable storage 

times were cultured over a prolonged period of 16 passages and tested for their capacity to 

differentiate to adipogenic, osteogenic and chondrogenic lineages at passage 1, 8, and 16. 

These findings have been further analysed and discussed in detail in chapter 5 of this thesis. 
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4.3.4 Operational significance 

 

Given an operating environment where control of rapid tissue processing and cord 

location selection is not feasible the explant method offers logistical and quality benefits over 

the digestion method. This applies to many birth environments and subsequent banking and 

transport logistics.  

The impact of the observed variation on operational performance can be illustrated by 

comparing the predicted population distributions for cell yield obtained from both isolation 

methods. Figure 4.20 shows that despite the lower average cell yield, the explant isolation 

method is more robust than the digestion method to the effects of cord storage on cell yield. 

This ‘capability snapshot’ indicates that if the lower limit for acceptable cell yield was set at 

50,000 cells (223, as shown in Figure 4.21), fewer cords would fail to provide sufficient cells 

if they were processed using the explant method (13% out of specification) compared to the 

digestion method (26% out of specification).  
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Fig. 4.20 Population distribution plots of cell yield for enzymatic (a) and explant (b) isolation 

methods. There is a higher risk of failure using enzymatic digestion for achieving a back-

transformed minimum specification of 50,000 cells (223), resulting in a lower process 

capability. The distributions and capabilities that could be achieved with the enzymatic (c) or 

the explant (d) methods are shown if storage time could be logistically controlled. 
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Fig. 4.21 Process capability prediction graphs for the different extraction methods 

show that digestion failure rate (26.36%) is higher than explant’s (13.03%). 

 

However having established the important effect of age on cell yield obtained with the 

two different methods we have analysed and predicted the capability of the different methods 

at different ages as well. Even though for both methods there seems to be an increase in 

failure with storage time (age), this effect is more evident for digestion than for explant 

(digestion at 24h = 2.6%, 72h = 24.58%, 120h = 43.79%, explant at 24h = 6.47%, 72h = 

10.96%, 120h = 20.78%, Figure 4.22). 
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Fig. 4.22 Process capability prediction graphs for the different extraction methods 

show that digestion method is more susceptible to storing time than explant method. 
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Biological variation in patients, or biological material introduced into samples due to 

isolation and handling will have a major effect on the safety and efficacy of clinical 

application. It is critical that processes are engineered for robustness, and with an 

understanding of critical sensitivities, rather than simply for optimal yield under highly 

controlled conditions. It is necessary to map the operating environment and assess risk factors 

before empirically determining the effect on the process. This will be particularly critical for 

processes using primary tissue or cell sources where the biological variation at input is likely 

to be high; it will also be labour intensive requiring large data sets, such as those presented 

here, due to inherently high variability. 

The study indicates that the cell yield obtained from an explant method, whilst lower 

in a given timeframe, is more robust to common process/biological input variables relative to 

the digestion method. Verification of expansion capacity and differentiation potential 

indicates no loss of potential due to this slower initial yield. The data is important as it 

indicates that careful design of processing can reduce problems associated with variable 

biological input material. Regulated therapeutic products will require characterised and risk 

assessed manufacturing processes. This fits the philosophy of Quality by design (QbD)
 97

; an 

approach to understanding process operating space and risks of associated variables. The type 

of study conducted here is an example of the type of data and analysis that will be required to 

inform a QbD type approach for cell product development and manufacture. It will help 

tissue processing facilities and banks to predict the probability of cell yields from tissue 

section given different operating ranges, and inform the experimental approach of others. 

 

 

 

 

 

 

 

 

 

 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 
Processing to Understand and Minimise Variability in Cell Yield 

 

 
151 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter five 

CELL FUNCTIONALITY  
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5. CELL FUNCTIONALITY CHARACTERIZATION 

 

Mesenchymal stem cells are found in many organs and tissues in the body including 

brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin, adipose tissue, 

teeth, heart, gut, liver, ovarian epithelium, and testis. They are involved in the maintenance 

and repair of tissues and organs throughout the life span of the individual
25

.  

A great deal of adult stem cell research has focused on clarifying their capacity to 

divide or self-renew and their differentiation potential. This constitutes one of the main goals 

of regenerative medicine along with achieving the potential to use stem cells in cell-based 

therapies.  

Umbilical cord has become recently a tissue of great interest as a source for hMSCs due 

to easy and ethically non-contentious access to these cells.  Mesenchymal stem cells have 

been isolated from different regions of the cord including the sub endothelial layer of the 

umbilical cord vein, the Wharton’s Jelly and the perivascular cells. These areas have been 

suggested to contain functionally distinct mesenchymal like populations that may offer 

advantages in terms of potency and replicative potential over other mesenchymal stem cell 

sources like dental pulp or adipose tissue
29

. 

There have been several reports of successfully differentiated lineages using a variety 

of cell culture techniques and reagents
26-33, 135-141

. 

The main focus of the research discussed in this chapter has been to apply basic 

characterization methods to cells extracted from UCT, in order to investigate their 

differentiation and proliferation potential and imunophenotype. The cells extracted from cord 

tissue were also compared to cells extracted from adipose tissue and dental pulp, in a study 

aimed at analysing weather or not UCT MSCs have indeed a different potential to those 

extracted from other sources.  

Furthermore the finding that cell yield not only depends on the extraction method, but 

is influenced by process variables, required that the quality of cells extracted via different 

methods (discussed in previous chapter four) was investigated and compared.  
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5.1 A comparison study between hMSCs extracted from umbilical cord tissue 

(UCT), adipose tissue (AT) and dental pulp tissue (DPT) 

 

As UCT, AT and DPT stromal cells originate from the extraembryonic mesoderm, 

adipogenic, chondrogenic, osteogenic, cardiomyogenic, and skeletal myogenic inductions 

have been the most studied cell lineages
48

.  

The comparison study described in this section was aimed at comparing the 

differentiation potential and marker expression of hMSCs isolated from the UCT to hMSCs 

extracted from other sources like AT and DPT, in order to see if indeed UCT cells are unique. 

Cells extracted from the three different sources were differentiated towards typical 

mesodermal lineage pathways (adipogenic, chondrogenic, osteogenic differentiation) and into 

a non-mesodermal hepatic lineage (Fig. 5.1).  



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: Processing to Understand and Minimise 
Variability in Cell Yield 

 

 
154 

   

 

Fig. 5.1 Process map for differentiation of primary hMSCs from UCT, AT and DPT.
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5.1.1 Adipogenic lineage differentiation of hMSCs 

 

Adipogenic conditions (method described in chapter two, section 2.4.1), induced 

morphology changes and lipid accumulation in cells from all sources as presented in Figure 

5.2, below. Culture plates were stained with HCS LipidTOX™ Green Neutral Lipid Stain; 

method has been described in chapter two, section 2.5.2.1. 
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Fig. 5.2 Adipogenic differentiation of hMSCs from AT, DPT and UCT. Control cells (left 

column) were kept in culture for 26 days with normal growth media; they did not present any 

lipid accumulation at the end of the study. Treated/induced cells (right column) cultured in 

adipogenic media for 26 days presented lipid accumulation and changed cell morphology at 

the end of the study. 
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AT and UCT derived hMSCs achieved the best differentiation, both presenting high 

levels of lipid accumulation and obvious cell morphology changes. DPT derived MSCs 

however, have shown the lowest levels of lipid accumulation and morphology change. This 

result comes to show that human mesenchymal stem cells from diverse origins vary in regard 

to their differentiation potential
28

. Also the fact that UCT MSCs presented such a positive 

expression of lipid accumulation represented a very good outcome, considering the theories 

that umbilical cord blood (UCB) and UCT hMSCs display a reduced sensitivity to 

undergoing adipogenic differentiation, presented in literature
5, 83

.  

 

5.1.2 Osteogenic lineage differentiation of hMSCs 

 

Osteogenic conditions (method described in previous chapter 2, section 2.4.2), induced 

mineralization in hMSCs derived from all three sources, UCT, DPT and AT (Figure 5.3, 

below). Culture plates were stained with Alizarin Red S calcium stain, method has been 

described in chapter two, section 2.5.2.2. 
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Fig. 5.3 Osteogenic differentiation of hMSCs from AT, DPT and UCT. Control cells (left 

column) were kept in culture for 26 days with normal growth media; they did not present any 

mineralization at the end of the study. Treated/induced cells (right column) cultured in 

osteogenic media for 26 days presented mineralization (Ca
2+

 deposit formation) and changed 

cell morphology at the end of the study. 
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The levels of expression were variable again for hMSCs derived from the different cell 

sources (Figure 5.3). Adipose tissue mesenchymal stem cells seemed to express lower levels 

of mineralization when compared to UCT and DPT derived hMSCs.  

 

5.1.3 Chondrogenic lineage differentiation of hMSCs 

 

Chondrogenic conditions (method described in chapter two, section 2.4.3), induced 

morphology changes and proteoglycan/mucin accumulation in cells from all sources (Figure 

5.4, below). Culture plates were stained with Alcian Blue (stains acidic 

proteoglycans/mucins); method has been described in chapter two, section 2.5.2.3. 
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Fig. 5.4 Chondrogenic differentiation of hMSCs from AT, DPT and UCT. Control cells (left 

column) were kept in culture for 26 days with normal growth media; they were not positive 

for proteoglycan/mucin staining at the end of the study. Treated/induced cells (right column) 

cultured in chondrogenic media for 26 days stained positive with Alcian Blue for formation 

of proteoglycans/mucins and presented changed cell morphology at the end of the study. 
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Different levels of differentiation were noticed for hMSCs extracted from the different 

sources in this case as well. UCT derived hMSCs seemed to express the highest levels of 

proteoglycan accumulation, also there was an obvious change in cell morphology, which was 

not noticed for hMSCs extracted from AT and DPT. 

 

5.1.4 Hepatic lineage differentiation of hMSCs 

 

Hepatic conditions (method described in chapter two, section 2.4.4), induced some 

glycogen formation and morphology changes in UCT, AT and DPT derived hMSCs (Figure 

5.5). Culture plates were stained with Periodic Acid-Schiff (PAS, stains glycogen), method 

has been described in chapter two, section 2.5.2.4. 
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Fig. 5.5 Hepatic differentiation of hMSCs from AT, DPT and UCT. Control cells (left 

column) were kept in culture for 26 days with normal growth media; they presented positive 

for glycogen staining at the end of the study. Treated/induced cells (right column) cultured in 

hepatogenic media for 26 days stained positive with Periodic Acid-Schiff (PAS, stains 

glycogen) and presented changed cell morphology (especially DPT derived hMSCs) at the 

end of the study. 
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Results achieved with this type of stain did not confirm the accumulation of glycogen 

in the treated culture wells; due to positive staining in some of the control wells as well (pink 

staining indicates this Figure 5.5, below). DPT treated cells had the most evident change in 

morphology, but they were the least positive for the histology stain.  

Even though glycogen is mostly produced by hepatic cells it is found in other types of 

cells like muscle cells, where it appears to function as an immediate reserve source of 

available glucose for muscle cells. Other cells that contain small amounts use it locally as 

well. Consequently the staining results could indicate that hMSCs might be able to secret this 

form of starch without being induced by hepatic differentiation media.  

Positive differentiation of treated cells from the different sources has been confirmed 

through immunophenotyping, this is further discussed in this chapter in the next section. 

 

5.1.5 Immunophenotyping of  hMSCs extracted from UCT, AT and DPT 

 

The scientific literature is abundant in information about marker profiles that, 

supposedly, characterize stromal cells from the umbilical cord. Investigators suggest different 

paths towards achieving a correct characterization of mesenchymal stem-like cells from the 

umbilical cord,  thus, making the process of accurate evaluation even more confusing and 

harder to reach
48

. Furthermore the existence of various populations of mesenchymal-like stem 

cells in the different areas that form the umbilical cord sets hurdles in establishing a standard 

marker profile for these cells
76

.  

Currently, a compromise marker set that would allow for a prospective identification of 

mesenchymal stem cells from the in vitro MSC population has not yet been established. 

There is no single surface marker, but rather a panel of surface markers that define hMSCs, 

derived from fresh tissues or cryopreserved samples. Due to different hMSCs tissue sources, 

differences exist among these cells
28

.  

For the purposes of this study cells extracted from UCT, DPT and AT were tested for 

the expression of: CD29, CD71, CD80, CD90, CD105, CD117, CD166, CD217, STRO-1, 

HLA-ABC, Nanog, Oct4a, Oct-3/4 (as positive markers), and CD14, CD24, CD56, CD34, 

CD 45, HLA-DR (as negative markers). These are some of the markers discussed in chapter 
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one section 1.4.4 
31, 32, 76, 88-93

.
  
Even though it was believed that a possible contamination with 

endothelial cells might occur, due to digestion of whole UCT slices without removal of blood 

vessels
42

, cells suspensions analyzed for MSCs marker expression, were not tested for 

specific endothelial markers
39

. Culture conditions used for cells extracted from UCT were 

specific for MSCs culture
28, 29, 31, 140, 141

, therefore it was theorized that possible endothelial 

cells will not survive in these culture conditions. 

Flow cytometry analysis was also used in order to evaluate the outcome of the 

differentiation process for hMSCs from UCT, DPT and AT into hepatocyte like cells.  Both 

differentiated and undifferentiated cells were tested for the marker panel detailed above and 

also for specific hepatic markers: Albumin, AFP and hNF4α.  

A comparison between marker expressions of undifferentiated cells versus differentiated 

ones is presented in Table 5.1: 
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Table 5.1. In the graphs represented above, the red and blue lines represent negative controls, the solid grey shows the expression of the markers 

and the bar is marking the region of cells that are positive for the specific markers. 

 

 

Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

CD14 

      

CD24 

      

CD29 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

CD34 

      

CD45 

 

      

CD56 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

CD71 

      

CD80 

      

CD90 

      



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: Processing to Understand and Minimise 
Variability in Cell Yield 

 

 
168 

 

Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

CD105 

      

CD117 

      

CD166 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

CD217 

      

HLA-

DR 

      

HLA-

ABC 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

STRO-1 

 

 

 

 

 

 

Nanog 

 

 

 

 

 

 

Oct 4a 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

Oct 3/4 

 

 

 

 

 

 

Alb 

      

AFP 
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Marker 

Cell source/type 

UCT 

Undiff. 

UCT 

Diff. 

AT 

Undiff. 

AT 

Diff. 

DPT 

Undiff. 

DPT 

Diff. 

HNF4α 
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Fig. 5.6 Immunophenotyping of undifferentiated hMSCs extracted from UCT, AT and DPT. Expression of markers is presented as a percentage 

for positive events. 
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Fig. 5.7 Immunophenotyping of differentiated hMSCs extracted from UCT, AT and DPT. Expression of markers is presented as a percentage 

for positive events. 
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Table 5.2 Summarizes the highlights from the graphs presented above in Figures 5.6 and 5.7. 

 

 

After analysis of the above presented data it was concluded that undifferentiated cells 

derived from all three sources, UCT, DPT and AT, expressed the right markers from the 

expected hMSCs marker panel described in chapter one, section 1.1.7, Table 1.1. 

Correspondingly cells from three sources were strongly positive for CD90, CD105 and 

CD166, which are markers known to be indicative of multipotency in hMSCs
91-93

. They also 

maintained these high levels of expression even after differentiation.  

Undifferentiated  

cells 

Differentiated  

cells 

 

Strongly 

positive 

 

 

Weakly positive  

(> 10%, < 30%) 

 

Strongly  

positive 

 

 

Weakly positive 

 (> 10%, < 30%) 

CD29 CD14  

(DPT) 

CD14 

(DPT) 

CD24  

(UCT) 

CD90 CD56 

 (UCT) 

CD24 

 (AT and DPT) 

CD71  

(DPT and UCT) 

CD105   CD29  

CD166   CD90  

HLA-ABC   CD105  

  CD166  

  HLA-ABC  

  AFP  

  ALB  

  HNF4α  
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Furthermore, exposure to hepatogenic conditions induced not only representative 

hepatic markers (ALB, AFP and HNFα) in cells from all three sources but also changed the 

expression of other markers, as summarized in Table 5.2, above. 

As a conclusion for this comparison study it can be quantified that UCT derived 

hMSCs have presented high levels of positive staining for adipogenic, osteogenic, 

chondrogenic and hepatogenic differentiation, moreover they have expressed high levels of 

markers that are indicative of stemness. Whereas AT and DPT showed a more preferential 

differentiation potential for adipogenic differentiation (AT derived hMSCs) and osteogenic 

differentiation (DPT derived hMSCs). These results lead to a further supposition that UCT 

derived hMSCs are more flexible in terms of differentiation potential and this could be due to 

their more naïve state. Therefore, these primary cells should possess a preferential position 

when it comes to choosing an adult stem cells source.   

 

5.2 Characterization of hMSCs extracted from UCT via enzymatic digestion and 

explant culture. A comparison study 

 

In previous chapter four, section 4.3, an experiment that allowed for more insight into 

the possible effects of two different processing methods, tissue storage time, inter-cord and 

intra-cord variability on cell yield, was discussed. Twelve umbilical cords were used for the 

purpose of that analysis. They were each sectioned into 20 equal sections. Slices were taken 

from each section for processing after storage for 24, 72, and 120 hours (to represent variable 

processing delays associated with logistics of delivery and transport). Slices were then 

processed by enzymatic digestion or explant culture method. Data was analysed to determine 

average cell yield and yield variability associated with the processing methods in 

combination with other factors, such as tissue storage time, tissue position in cord, and 

individual cord to cord variation. 

The conclusions derived from that analysis lead to the implication that cell yields 

depend on extraction methods, and are influenced differentially by process input factors and 

variables. Therefore these results demanded that the quality of cells extracted via different 

methods was further compared and analysed.  
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Subsequently, cells from cord slices processed by enzymatic digestion or explant 

method after variable storage times (methods described in chapter two, sections 2.1.2.2 and 

2.1.2.3), were cultured over a prolonged period of 16 passages. They were then tested for 

their capacity to differentiate into adipogenic, osteogenic and chondrogenic lineages and for 

marker expression at passage 1, 8, and 16. Same protocols used previously for differentiation 

of hMSCs from UCT, AT and DPT (chapter two, sections 2.4.1-2.4.3) and histology staining 

protocols (chapter two, sections 2.5.2.1-2.5.2.3), were applied in this study as well. The only 

changes in the histology staining protocol were for cells tested for adipogenic differentiation 

potential at passage 1 and 8; for a better representation of cell morphology, the cells’ 

cytoskeleton was stained with Phalloidin Red (Tetramethyl-rhodamine B isothiocyanate or 

TRITC, Sigma-Aldrich, UK) and the nuclei were stained with Hoechst, blue stain 

(Trihydrochloride, tryhidrate, Life Technologies, UK), according to manufacturer’s 

specifications. 

Similar to reports by others
85, 123

, a qualitative reduction in differentiation potential 

from P1 to P8 (Figure 5.8), was noticed. At P16 the cells no longer differentiated effectively. 

However, no discernible qualitative differences in differentiation outcomes dependent on 

extraction method or time of storage were observed; representative histochemistry 

micrographs are shown for passages 1 and 8 in Figure 5.8.  
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Fig. 5.8 

Representative images of 

histochemistry:   

Adipogenic 

differentiation (neutral 

lipid vacuoles were 

stained with LipidTOX™ 

Green; cytoskeleton was 

stained with phalloidin 

red – for cells 

differentiated at passage 8 

(c)&(d); nuclei was 

stained with Hoechst) for 

hUCT-MSCs at passage 1 

(b) and passage 8 (d), 

Chondrogenic 

differentiation 

(glucosaminoglycans 

stained with Alcian Blue) 

at passage 1 (f) and 

passage 8 (h). Osteogenic 

differentiation (calcium 

deposition stained with 

Alizarin Red S) at passage 

1 (j) and passage 8 (l).  

Negative controls are un-

induced cells (a), (c), (e), 

(g), (i) and (k). 

 

Control Treated 

b. 

d. 

a. 

c. 

f. 

h. 

e. 

g. 

s. 

i. j. 

k. l. 
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The cells extracted also showed no differences in proliferative rate (within the time 

period tested) dependent on isolation method or pre-process tissue storage time (Figure 5.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Growth properties of cells extracted from two cords by explant or digestion 

after different storage times. (a) & (b) A series of growth rates of cell cultures were 

equivalent irrespective of explant or enzymatic digestion, storage time prior to extraction, or 

cord. 
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 Nevertheless, a small percentage (2.5%) of the individual tissue slice cultures stopped 

proliferating before P8; all of these culture failures were isolated by digestion method.  

The marker profile that the cells were tested for at passage 1, 8 and 16 was limited to 

testing the expression of CD90 and CD105 as positive markers, and CD34 and CD45 as 

negative markers. Considering previous results and indications from literarture
91-93

, this set of 

markers was considered to be sufficient in giving a good indication of hMSC identity. 

The positive surface marker profile (CD90, CD105) showed some reduction over time 

in culture for both extraction methods. Even though for both methods there seems to be an 

increase in failure with storage time (age), this effect is more evident for digestion than for 

explant. At passage 8 and especially at passage 16 the expression of markers reduces 

considerably, compared to passage 1, for both methods. However it appears that expression 

of CD90 and CD105 is considerably higher for cells that were extracted via explant at age 

120h than for cells extracted via digestion at 120h (Table 5.3). This result is consistent with 

the effect of storage time on extraction method, discussed in previous chapter.  
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Table 5.3 Marker expression and medians at different passages, for cells extracted from one 

cord at different ages, by explant and digestion. 

 

Passage Method 

of extraction 

Age 

[hours] 

CD90 

[% positive] 

Median CD105 

[% positive] 

Median 

 

 

 

1 

Digestion 24 84.1 165.8 81.5 115.3 

Digestion 72 79.7 158.8 81.6 136.5 

Digestion 120 75.7 186.7 77.3 118.5 

Explant 24 85.2 233.4 86.2 375.3 

Explant 72 73.1 167.6 75.7 96.32 

Explant 120 78.6 218.3 83.8 116.5 

 

 

 

8 

Digestion 24 93.9 32.3 46.1 11.7 

Digestion 72 91.5 22.1 57.3 9.5 

Digestion 120 54.4 5.9 25 6.6 

Explant 24 57.2 15.4 50.6 10.1 

Explant 72 59.7 12.7 26.3 6.9 

Explant 120 83.4 22.3 36.8 8.1 

 

 

 

16 

Digestion 24 60.1 49.3 51.3 31.4 

Digestion 72 43.9 17.5 47.7 25.1 

Digestion 120 34.5 17.8 30.9 12.1 

Explant 24 49.5 61.9 41.9 21.5 

Explant 72 53.9 28.1 51.4 27.5 

Explant 120 66.8 47.7 67.4 41.5 

 

Overall the evidence presented in this comparison study, further supports explant as a 

more robust extraction method for UCT hMSCs. Data also suggests that the explant method 

is a slow early release, rather than a significantly restricted release, isolation method. This is 

an important distinction. If the explant was releasing a very small proportion of potential 

cells, we would anticipate a lower proliferative capacity and more rapid reduction in 

differentiation potential compared to digestion.  
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Chapter six 

CRYOPRESERVATION OF UMBILICAL CORD TISSUE 

(UCT) 

METHOD INVESTIGATION 
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6. CRYOPRESERVATION OF UMBILICAL CORD TISSUE (UCT) 

METHOD INVESTIGATION 

 

6.1 Preliminary investigation of cryopreservation method 

 

An earlier investigation regarding the metabolic activity of UCT and its correlation to 

cell yield achieved from fresh and frozen UCT sections (presented in chapter four, section 

4.2), revealed new insights into the fate of the tissue after freezing. A noticeable decrease in 

cell yield and metabolic activity was observed post freezing. The freezing method used to 

cryopreserve the cord sections in this previous study was the same method used by the cord 

blood bank. Since the business banking model used by the cord blood bank was to 

cryopreserve the tissue prior to extracting the cells (hMSCs), further investigation and 

optimization of the cryopreservation method for UCT was a mandatory next step to pursue. 

For this purpose, seven different freezing methods, including the cord bank’s method of 

cryopreservation for UCT tissue were screened (Figure 6.1), with the aim to understand what 

freezing parameters support cord cryopreservation the best (for methods see chapter two, 

section 2.6.1).  
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Fig. 6.1 Cell yield (represented as log) recovered from UCT sections (200-400mg) of one 

umbilical cord; cryopreserved with 7 different methods including cord blood bank’s method 

(indicated by arrow). 

Cell yield achieved with the seven different cryopreservation methods, depicted in 

figure 6.1, demonstrates how diverse factors (i.e. time spent with cryoprotectant before 

freezing or cryoprotectant concentration, combination), can influence the fate of 

cryopreserved tissue. Also noticeable is that the cord blood bank’s method of freezing was 

not amongst the best ones that were screened in this investigation.  

It was noticed that for the uncontrolled freezing method, longer exposure times to 

cryoprotectant prior to freezing resulted in better cell recovery. This could be due to the 

complexity of tissue sections structure in comparison to single cell suspensions. Therefore, 

longer times of exposure may have a more beneficial effect when freezing tissue, compared 

to freezing cell suspensions. Even though, the line between protecting the cells and damaging 

them, when it comes to DMSO’s activity, is quite fine, therefore extra care needs to be 

applied. DMSO is an amphipathic molecule and besides causing adverse effects and toxicity 

to patients
124

, is also known to cause unexpected changes in cell fate
125, 126

. It is well 

established that DNA methylation and acethylation control mammalian development and 
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cellular differentiation
127

. DMSO likely affects these epigenetic changes by acting on one or 

more of Dnmts (DNA methyltransfereases) as well as on enzymes which modify histones
128

. 

Hypermethylation and hypomethylation may also occur in several diverse genomic and genic 

loci thus affecting stem cells phenotype
8
.  

The rate at which cells are cooled and the concentration of cryoprotectant used are two 

of the main factors that govern the survival of frozen cells. The use of various freezing 

devices allows for better control of the cooling rate and protects cells at critical stages during 

the freezing process
129, 130

.  Even though in the case presented here, the uncontrolled method 

(it was called ‘uncontrolled’ only with the purpose to distinguish between methods that we 

used a controlled rate freezer), seemed to perform just as well as the controlled freezing 

methods, but only when the exposure time to cryoprotectant prior to freezing had been 

increased. 

The rate of addition of the cryoprotectant also appears important to the outcome of 

cryopreservation. As cryoprotectants are usually permeating compounds added at high 

concentrations, they should be added to the cell suspension at 4°C to reduce potential cell 

toxicity. When permeating cryoprotectants are added prior to freezing, they enter the cells at 

a slower rate than water resulting in the cell losing water by exosmosises. After thawing, the 

cells (containing the cryoprotectant) will swell when placed in an isotonic solution. 

Consequently, cryoprotectants are usually added to the cell suspension slowly (drop or 

stepwise) allowing time for the freezing suspension to equilibrate to minimise potential 

damage from osmotic imbalance
131, 132

. 

In conclusion, this initial experiment suggested that plasma was a superior 

cryoprotectant to FBS or CellGro under the conditions tested. However, the high viability of 

CellGro cryopreserved tissue under non-controlled rate freezing indicates an interaction 

between the cryoprotectant mix performance and the freezing rate.  

The seven methods of cryopreservation were tested on four more cords, but no more 

results were added to the previous panel, due to no cell recovery from any of them. However, 

it is our belief that this outcome was not caused by the freezing process of the tissue, as fresh 

cord tissue slices were digested as a control from all four cords, and these failed to yield any 

cells as well. It can only be assumed that other factors that impacted the quality of the tissue 

prior to processing could have led to this effect. These results confirmed once again that the 
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isolation method was strongly affected by inter-cord and possibly intra-cord variability. 

Hence, the cryopreservation method could not be further investigated or optimized until the 

source for the noticed variability was identified (this was analysed in chapter four). 

 

6.2 Further investigation of cryopreservation method 

 

In order to verify if the variation in output, noticed in the preliminary investigation of 

the cryopreservation method, was caused by the quality of the tissue or by the method of 

extraction an experiment that allowed for more insight into the possible effects of different 

processing methods, tissue storage time, inter-cord and intra-cord variability on cell yield, 

was designed; this study was discussed in chapter four, section 4.3. Two different methods of 

extraction, enzymatic digestion and explant culture, were tested on 12 umbilical cords. The 

conclusion of this study was that the explant method not only offers logistical and quality 

benefits over the digestion method, but also the cell yield obtained from an explant method, 

whilst lower in a given timeframe, is more robust to common process/biological input 

variables relative to the digestion method. 

Therefore, further investigation of the cryopreservation method was pursued by using 

explant culture as a method to measure the success of hMSCs extraction from UCT. For the 

purpose of this investigation multiple slices from 4 umbilical cords were frozen to account for 

the variability reported in chapter four. Whole and sectioned slices from cords 1 and 2 were 

cryopreserved with FBS + 10% DMSO; whole and sectioned slices from cords 3 and 4 were 

cryopreserved with Plasma + 10% DMSO; in a controlled rate freezer, using two different 

freezing protocols. The first freezing protocol kept the cryovials containing cord tissue slices 

and 1ml of cryoprotectant at 4
0
C for 30 minutes, after the temperature dropped by 1

0
C/min 

until it reached -80
0
C. The second freezing protocol kept the cryovials containing cord tissue 

slices and 1ml of cryoprotectant at 4
0
C for 30 minutes, after the temperature dropped by 

3
0
C/min until it reached -80

0
C. Methods used in this experiment have been presented in 

chapter two, section 2.6.2.  

For cords 1 and 2, frozen with FBS + 10% DMSO, at cord age 24h, cell yields achieved 

post freezing are substantially higher than pre cryopreservation of the tissue (Figure 6.2 

(a)&(b)). This outcome could be associated with extra cellular matrix degradation during 
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freeze-thaw cycle, allowing for an easier migration of cells out of the tissue during explant 

culture. This effect was also noticed in our previous study, discussed in chapter four, section 

4.3; where it was hypothesized that cell mediated extra cellular matrix degradation during 

storage, also allowed for easier migration of cells out of the tissue during explant culture, 

therefore explaining the increase in cell yield at cord age 72h for explant culture. This effect 

was reconfirmed for cords 1 and 2 (Figure 6.3). 

It does not seem to be a major difference between cords’ slices frozen whole or 

sectioned, but at cord age 24h for cords 1 and 2 freezing rate of 1
0
C/min has an overall 

beneficial effect on the cell yield, compared to 3
0
C/min. However this trend changes for cord 

1 at age 72h, where the best performing freezing method is for whole slices, frozen at 

3
0
C/min (Figure 6.2(c)&(d)).  

The effect of extracellular matrix degradation due to freeze-thaw cycle at 72h is not 

consistent for cord 2; fresh cord slices have much higher cell yields than any of the frozen 

ones. This deviation from the trend, compared to cord 1, could be explained by the more 

pronounced effect of storage time on cord 2. Cell yield for cord 2 at age 72h is ten times 

higher than cell yield at age 24h, compared to approximately five times higher for cord 1. If 

this outcome is indeed due to cell mediated extracellular matrix degradation with storage time 

than it can only be concluded that further degradation of tissue matrix due to the freeze-thaw 

cycle process has a detrimental effect for cord 2.  
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Fig. 6.2 Cell yield comparison for cords 1 and 2 cryopreserved with FBS + 10% DMSO, at ages 24h (a)&(b) and 72 h (c)&(d), with two different 

freezing rates 1
0
C/min and 3

0
C/min.
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Fig. 6.3 Cell yield comparison for fresh tissue sections, from cords 1 and 2, at ages 24 and 72 

hours.  
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Cell yields achieved post cryopreservation for cords 3 and 4 (frozen with 

Plasma+10%DMSO) were considerably lower than those achieved from fresh cord tissue 

slices (Figure 6.4). Lower cell yields were recorded for cords aged both 24 and 72 hours. This 

suggests that FBS+10% DMSO is the better cryoprotectant. This result is further confirmed 

by the outcomes achieved with control slices from cords 3 and 4, that were cryopreserved 

whole, at age 72 hours with FBS+10% DMSO and a freezing rate of 1
0
C/min (Figure 6.5 

(a)&(b)). For both cords 3 and 4, three out of the 5 control slices cryopreserved yielded more 

than 20000 cells, while for slices cryopreserved with Plasma+10%DMSO, only one out of 

forty slices yielded over 20000 cells, for cord 3, and four out of 40 slices for cord 4.    

Out of all the methods tested for cords 3 and 4 at age 24 hours, slices frozen whole with 

a freezing rate of 3
0
C/min, appear to have performed the best overall. However this is not 

maintained for slices frozen at cord age 72 hours (Figure 6.4 (c)&(d)). Sectioned slices 

achieved better yields at age 72 hours for both cord 3 and 4, which is an effect noticed for 

cord 2 as well.  

Cords 3 and 4 do not appear to be as susceptible to extracellular matrix degradation 

with storage time as cords 1 and 2. Cell yield from fresh tissue at 72 hours is on average 

lower than cell yield from fresh tissue at 24 hours. 

Another observation regarding cell yield achieved from cryopreserved tissue slices is 

that there seems to be a variation in cell yield between the different sections within the cord. 

This variation due to position within cord was noticed before only for fresh tissue processed 

via enzymatic digestion.  

It was previously theorized that the explant method may initially restrict the number, or 

growth, of cells recovered from the tissue, thereby potentially hiding a difference in tissue 

cell content. This effect was noticed in fresh cords. The fact that there is a noticeable 

influence of sampling location for cryopreserved tissue, proposes that the initial theory 

regarding the limiting effect of explant culture on cell yield released from fresh tissue was 

true. And the limiting effects observed for fresh tissue are reduced in the case of 

cryopreserved tissue, possibly due to extracellular matrix breakdown induced by the freezing 

process.  
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Fig. 6.4 Cell yield comparison for cords 3 and 4 cryopreserved with Plasma + 10% DMSO, at ages 24h (a)&(b) and 72h (c)&(d), with two different 

freezing rates 1
0
C/min and 3

0
C/min. 
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Fig. 6.5 (a)&(b) Cell yield achieved from cords 3 and 4, control sections frozen whole with FMS+10%DMSO. (c)&(d) Cell yield comparison for fresh 

tissue sections, from cords 3 and 4, at ages 24 and 72 hours.
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Further investigation of the cryopreservation method gave us added insight into the 

possible effects of extraction method on cell yield post cryopreservation. Also new factors 

that were not considered before, such as extracellular matrix degradation due to the freezing-

thawing process, were hypothesised to be possible contributing factors to noticed intra-cord 

variation and higher cell release post freezing.  

Freezing rates also appear to have an impact on cell yield, even though this effect varies 

with storage time of the tissue. But this interaction of control parameters is to be expected if 

we accept the theory that tissue’s structure changes not only with storage time but also due to 

the freezing process.  

Results achieved post cryopreservation with the explant culture method seem to 

indicate that this method is desirable to enzymatic digestion.  As noted before storage time 

has a more pronounced effect on cords processed by enzymatic digestion. Cells become more 

susceptible to stress of single cell isolation after prolonged storage, rendering older cord cells 

more susceptible to damage during digestion relative to explant. The same effect could be 

expected from cords that have been cryopreserved. Cords tested in our preliminary 

investigation that did not yield any cells fresh or post freezing, had been stored for over 72 

hours, which could be the reason they did not yield any cells, post extraction with enzymatic 

digestion.  

Therefore, when choosing a freezing method for UCT, the post freezing cell extraction 

process has to be carefully considered as well. 

Cryoprotectant also plays a crucial role in the fate of the cells post freezing. The results 

achieved with FBS and plasma have been contradictory between our preliminary 

investigation and the later one. Plasma+10% DMSO had better results than FBS+10%DMSO 

in the preliminary investigation. Nonetheless this effect could be due to using different 

batches of plasma and FBS.  

It can be concluded that major factors that dictate the fate of cell yield extracted from 

cryopreserved UCT are age of tissue, cryoprotectant, concentration of cryoprotectant and 

exposure time to it pre freezing, freezing rate if a controlled freezer is used for the 

cryopreservation process and most of all treatment applied post freezing for the extraction of 

cells. However, this data shows that these factors interact in highly complex ways, and 
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provides some support for mechanistic theories involving tissue degradation. Given the 

variation inherent in the cord position, and the challenges of measuring viable cell output post 

expansion, it could be argued that effort should be focussed on novel methods for assessing 

the cord status (e.g. cell content and viability), prior to extensive repeat work on these 

parameters. This would allow an optimised cryopreservation protocol to separate the effect of 

transport and freeze on cord from the subsequent effects of culture or inherent biological 

differences between cords. An ability to measure the attributes of cord that predict this 

variance and the appropriate process response to optimise output would be key to high quality 

consistent cord storage/extraction. This is in line with current paradigms for high quality 

therapeutic product development such as Quality-by-design (QbD); the focus is on the ability 

to accurately measure critical quality attributes of process and product before investing in 

process development work. There is clearly room for improvement in this aspect of cord 

harvest, storage and cell extraction. 

Further work is therefore necessary for establishing the best parameters for 

cryopreservation of UCT; however the method investigations presented in this chapter raises 

awareness regarding the various limitations that are currently associated with 

cryopreservation of UCT, and our ability to investigate them.   
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7. CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Conclusions 

 

The research work undertaken in this PhD project was initiated by the collaboration 

with one of the leading private cord blood banks in the UK. The core focus of the research 

has been to develop an extraction method for hMSCs from human umbilical cord tissue 

(hUCT); to understand and minimize the noticed variability in cell yield extracted from 

hUCT, and to help the tissue processing facility to predict the risk of sub-optimal cell yield 

from a given cord tissue section and processing method, given different operating ranges; 

thereby to determine the tissue storage requirements and isolation method with acceptable 

risk of adequate cell recovery. 

 Even though the literature is abundant with information on various hMSCs isolation 

methods from UCT, we and our industrial partner felt that there was a gap in terms of finding 

a practical solution for this increasingly expanding international industry, both public and 

private, to bank human tissue for potential future therapeutic use. Most of the methods 

presented in literature are tested and compared under idealized conditions. However, due to 

the nature of tissue collection in a birthing environment the early period of tissue processing 

is relatively uncontrolled; the priority is maternal and neonate safety. Further, tissue often 

needs to be transported from maternity units to distant processing sites, especially in the case 

of private banks. Such factors make imposing tight process controls on early handling 

challenging. In addition, innate biological variation in the tissue will affect the cell yield. 

Therefore cell isolation methods should be assessed and engineered for robustness to innate 

biological tissue variation or arising variation due to tissue collection procedures. This is 

particularly important for tissue stored for autologous use (private banking), where a 

processing facility will not be able to select tissue based on favourable characteristics.  

Prior to investing in process development work it was understood that the focus of the 

research work should be aimed at establishing the necessary process controls and accurately 

measure critical quality attributes of process in the production of high quality hMSCs from 

human umbilical cord tissue (hUCT) in order to achieve a statistically capable production 

process. Careful design of processing can reduce problems associated with variable input 
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material, cord tissue in this case. This is in line with current ideology for high quality 

therapeutic product development such as QbD
97

; an approach to understanding process 

operating space and risks of associated variables. 

Terms used in process control analysis have been described and the need to understand 

how a process is structured in order to enable control and optimisation has been explained in 

chapter three. Also the notion of process mapping has been defined; detailed process and sub-

process maps that describe the systematic approach that was engaged in order to recognize 

the variation within the process and the steps that derived from this process analysis with the 

intention to control and optimise it have been detailed in chapter three. The process maps 

generated and the investigation of historical data enabled us to establish the structure of the 

hMSC’s extraction process and to identify possible sources for process variation.  After 

analysing the major points for variability and control from historical process data it was 

concluded that in order to reach process specification with acceptable frequency, the process 

required firstly, the intrinsic process variation to be reduced, and secondly, the increase of 

process mean needs towards higher cell yields.  

The next step in the research was to investigate what were the contributors to the 

process variation identified, by undertaking a series of wet experiments targeted at narrowing 

down the sources of variability down to sub-process level. Results acquired from this series 

of process interrogations lead to the further conclusion that variability noticed in output was 

caused not only by inter-cord and intra-cord variation but also that the cord tissue’s viability 

might have been affected by the freezing method used to preserve the UCT by the bank.  

Prior to investing more time in extensive repeat work on these parameters, it was 

decided that further work should be focussed on finding a novel method for assessing the cell 

content and viability of cords prior to processing. This method consisted of measuring the 

metabolic activity of UCT and correlating this to cell recovery from both fresh and frozen 

UCT. Establishing such a technique would represent a great advantage in measuring and 

controlling the variability of a key input that goes into the production process of hMSCs from 

this source. A definite correlation between metabolic activities measured, cell recovery and 

growth was found; tissue that had low metabolic activity delivered low numbers of cells and 

tissue that had higher metabolic activity delivered higher cell numbers. There were however 

few events where lower cell numbers corresponded to higher absorbance. Nevertheless, this 



Mesenchymal Stem Cell Extraction from Human Umbilical Cord Tissue: 

Processing to Understand and Minimise Variability in Cell Yield 

 

 
198 

investigation not only confirmed the cell recovery variability between different cords, 

indicated by the isolation method, but managed to deliver new insights into the fate of the 

tissue post cryopreservation.  

Although these preliminary investigations into sources of variability within the process 

revealed crucial information on the existing level of variability, they did not clearly identify 

the root causes for it.  Consequently an experiment that allowed for more insight into the 

possible effects of different processing methods, tissue storage time, inter-cord and intra-cord 

variability on cell yield, was designed. Two primary methods of cell extraction, enzymatic 

digestion and explant culture, were investigated in order to identify the relative variability in 

cell recovery. The robustness of each method to changes in ‘hard to control’ process variables 

was explored, with the objective to define methods that would be more appropriate to 

maintain quality under different operational restrictions.  

Analysis into the effect of isolation method on cell yield suggested that cell yield from 

the explant method, whilst slower, may be more robust to input variation (i.e. delay before 

processing or biological variation) in the operating range selected.  

Also an inquiry into the effect of storage time (age) on cell yield indicated that cord age 

causes significant reduction in mean cell yield (in a population of cords) when cells are 

isolated using a digestion method but not when isolated using the explant method. It was 

hypothesised that this may perhaps be caused by cells becoming more susceptible to stress of 

single cell isolation after prolonged storage, rendering older cord cells more susceptible to 

damage during digestion relative to explant. It could also be associated with cell mediated 

extra cellular matrix degradation during storage, allowing easier migration of cells out of the 

tissue during explant culture, but exposing to more enzyme activity during digestion. An 

alternative explanation found, was that the explant culture limits the number of cells that can 

migrate from the cord; in this scenario the reduced cell content with storage time would still 

be present in the explant cultures, but not apparent due to the limitations of the method in 

releasing the cells. However the most probable scenario is that with the explant method only 

cells that are close to the outer edges of the tissue will migrate out, and that the viability f 

cells that are closer to the core of the tissue slice will be damaged due to factors such as O2 

perfusion gradients and tissue hypoxia. Therefore through enzymatic digestion of tissue all 

the cells, including the compromised ones, get released, whilst with explant only the viable 

ones will migrate out.  

The analysis of sampling location within cord on cell yield, exposed a discernible effect 

of tissue location on mean cell yield for the digestion method with a trend of increasing mean 

cell yield at the placental end of the cord, on the other hand no position effect was verified 
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when the cell isolation was conducted by explant method. This noticed effect is supported by 

the theory that the explant method may restrict the number, or growth, of cells recovered 

from the tissue, thereby potentially hiding a difference in tissue cell content.  

The finding that cell yield not only depends on extraction method, but is influenced by 

process variables, required that the quality of cells extracted via different methods was 

investigated and compared. The comparison was completed not only for cells extracted with 

the different methods but also to cells isolated from others sources, such as adipose tissue and 

dental pulp. The conclusion of this comparison/investigation study was that UCT derived 

hMSCs have presented high levels of positive staining for adipogenic, osteogenic, 

chondrogenic and hepatogenic differentiation, moreover they have expressed high levels of 

markers that are indicative of stemness. Also is seems that UCT derived hMSCs are more 

flexible in terms of differentiation potential compared to cells from adipose and dental pulp 

tissue; this was theorized to be due to their more naïve state. The overall evidence, when 

comparing cells yielded from the different methods of extraction, further supported explant as 

a more robust isolation method for UCT hMSCs. Also based on the results of in vitro 

laboratory studies and preclinical animal validation already carried out on hMSCs from 

umbilical cord tissue by various groups it appears that hMSCs may be ideal agents for         

the treatment of malignant and non-malignant diseases beyond the hematopoietic            

system
134-138, 140, 141

. The major challenge is to translate and confirm whether the same results 

obtained pre-clinically, in the research studies, will be observed in human clinical settings. To 

meet this objective the next step would be the preparation and storage of clinical-grade 

hMSCs in current good manufacturing practice (cGMP) conditions to ensure that they are 

safe for clinical application. Thereafter, such cGMP compliant hMSCs could be used first in 

Phase 0 clinical trials to confirm patient safety and improved functional outcome before 

proceeding to Phase II and III trials. 

The extraction and storage of autologous UCT hMSCs on the same day that umbilical 

cord blood hematopietic stem cells (UCB-HSCs) are frozen from the same UC will serve as 

an ideal adjuvant in cord blood banks for future personalized cell based therapies and 

expansion of HSCs for the patient and immediate family. Autologous hMSCs from the same 

umbilical cord have the advantage of being a perfect match for the patient avoiding any 

immunorejection problems that might occur in the case of an allogeneic transplant. 

Furthermore, since hMSCs have been shown to be hypo immunogenic
141

, allogeneic sources 
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of hMSCs from donor umbilical cords would also serve as useful ‘off the-shelf’ cells for the 

same purposes.  

Currently, most cord blood banks discard and do not freeze UCB samples that have low 

HSCs counts. Storage of the hMSCs from UCT provides an opportunity to salvage such 

samples as they can be expanded and used in conjunction with the hMSCs. 

The operational significance of the large data set considered in the investigation 

presented in this thesis, of the two different isolation methods, indicates that in an operating 

environment where control of rapid tissue processing and cord location selection is not 

feasible, the explant method offers logistical and quality benefits over the digestion method. 

This applies to many birth environments and subsequent banking and transport logistics. The 

data generated in this study is important as it indicates that careful design of processing can 

reduce problems associated with variable biological input material. Consequently our 

industrial partners have taken on board these findings and have implemented extraction via 

explant as a standard isolation procedure for hMSCs from fresh UCTs that are older than     

72 h, and extraction via enzymatic digestion as a standard isolation procedure for hMSCs 

from fresh UCTs that are up to 72 h old.  

Regarding isolation of hMSCs from cryopreserved UCT, additional investigation of 

the cryopreservation method gave us added insight into the possible effects of extraction 

method on cell yield post cryopreservation. It was concluded that major factors that dictate 

the fate of cell yield extracted from cryopreserved UCT are age of tissue, cryoprotectant, 

concentration of cryoprotectant and exposure time to it pre freezing, freezing rate if a 

controlled freezer is used for the cryopreservation process and most of all treatment applied 

post freezing for the extraction of cells. However, the data showed that these factors interact 

in highly complex ways, and provided some support for mechanistic theories involving tissue 

degradation. The suggestion to our industrial partner regarding extraction of hMSCs from 

cryopreserved tissue was that further work is therefore necessary for establishing the best 

parameters for cryopreservation of UCT. Also the potential of hMSCs extracted from 

cryopreserved tissue should be confirmed. Nevertheless the method investigations pursued 

with the aim to improve cryopreservation of UCT in this research project, raised awareness 

regarding the various limitations that are currently associated with cryopreservation of UCT, 

and our ability to investigate them.  There are a series of studies published only this year 
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where researchers have looked into the possibility of storing human UCT for future possible 

clinical use and that have also compared the proliferation, differentiation potential and 

phenotype of hMSCs extracted from cryopreserved tissue to those extracted from fresh 

tissue
142, 143

. 

 

7.2 Future work 

 

Regulated therapeutic products will require characterised and risk assessed 

manufacturing processes. Therefore, it is critical that processes are engineered to be robust 

against critical sensitivities such as biological variation in patients, or biological material 

introduced into samples due to isolation and handling. The type of study conducted in this 

thesis shows how important it is to map the operating environment and assess risk factors 

before empirically determining the effect on the process; especially when applied to 

processes using primary tissue or cell sources, where the biological variation at input is likely 

to be high. Furthermore the research work undertaken provides a solid example of the type of 

data and analysis that will be required to inform a QbD type approach for cell product 

development and manufacture. It will help tissue processing facilities and banks to predict the 

probability of cell yields from tissue sections given different operating ranges, and inform the 

experimental approach of others.  

However, our data does not allow us to be sure whether cords that failed to grow are 

truly non-viable, or would have required different treatment (e.g. greater cell concentration to 

grow). If cords with fewer cells proliferate slower due to the lower density of cells in culture, 

then the relative difference between good conditions and poor conditions would get greater 

with culture. We don’t know what the rate dependency on density is. This highlights how 

critical it is to measure the correct and relevant output from any process to make process 

improvement decisions. This would be an important area for further study, but would require 

a precise and accurate method of measuring true cell viability in cord prior and immediately 

post extraction (similar to our attempts to use a metabolic assay, but more reliable). 

Consequently, it could be argued that future effort should be focused on finding novel, better 

methods for assessing the cord status, e.g. cell content and viability. This would also lead 
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towards finding an optimised cryopreservation protocol that would be able to separate the 

effects of transport and freezing on cord from the subsequent effects of culture. 

Future work should also focus on readdressing the extraction methods 1-7, described in 

chapter 2, section 2.1.1 with the collagenase reagent used be the industrial partner. Other 

possible factors that could impact the outcome of the cell yielded by the enzymatic digestion 

method might surface from this study.   

It would also be relevant to pursue an in depth statistical analysis on various factors 

such as maternal medical history, handling and holding conditions for cord at collection sites 

and subsequent transport conditions; in order to better understand how much of an impact or 

how they correlate to the noticed variation at input.  

Further biological characterisation of hMSCs extracted from UCT, at different stages of 

growth and for cells extracted from cryopreserved tissue is needed; the investigations 

performed in this study involved basic methods of cell characterization. Studies of the 

biology of hMSCs are continuously improving; more specific markers for the characterisation 

of these cells are becoming available. Also more functionality studies of the differentiation 

potential and performance in vitro and ideally in vivo should be carried out. These will 

determine the potential of hMSCs, extracted with the procedures developed in this work, for 

use in regenerative medicine applications.  
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ORIGINAL ARTICLE

Mesenchymal Stem Cell Isolation
from Human Umbilical Cord Tissue:

Understanding and Minimizing Variability
in Cell Yield for Process Optimization

Andreea Iftimia-Mander,1 Paul Hourd,1 Roger Dainty,2 and Robert Thomas1

Human tissue banks are a potential source of cellular material for the nascent cell-based therapy industry;
umbilical cord (UC) tissue is increasingly privately banked in such facilities as a source of mesenchymal stem
cells for future therapeutic use. However, early handling of UC tissue is relatively uncontrolled due to the
clinical demands of the birth environment and subsequent transport logistics. It is therefore necessary to develop
extraction methods that are robust to real-world operating conditions, rather than idealized operation. Cell yield,
growth, and differentiation potential of UC tissue extracted cells was analyzed from tissue processed by explant
and enzymatic digestion. Variability of cell yield extracted with the digestion method was significantly greater
than with the explant method. This was primarily due to location within the cord tissue (higher yield from
placental end) and time delay before tissue processing (substantially reduced yield with time). In contrast,
extraction of cells by explant culture was more robust to these processing variables. All cells isolated showed
comparable proliferative and differentiation functionality. In conclusion, given the challenge of tightly controlled
operating conditions associated with isolation and shipping of UC tissue to banking facilities, explant extraction
of cells offers a more robust and lower-variability extraction method than enzymatic digestion.

Introduction

Cell-based therapeutic products will require sources
of input for human cell material to underpin clinical

supply. Different therapies will require different constituent
cell types; supply strategies are likely to include both large
single cell-line banks for allogeneic application, as well as
large banks of individual donor units of primary tissue for
either autologous or allogeneic applications. In the latter
category, a significant international industry, both public
and private, now exists to bank human tissue for potential
future therapeutic use.

Mesenchymal stem cells (MSCs) are a type of adult stem
cell found in many organs and tissues in the body.1,2 They
reside in a specific area of each tissue, the stem cell niche,
where they retain stem cell characteristics of self-renewal and
differentiation and are involved in the maintenance and re-
pair of tissues and organs throughout the life span of the
individual.3 The multiple potential therapeutic applications
of these cells, such as immunomodulation, cartilage, bone or
muscle repair, amongst others, have led to a substantial
number of MSC-based therapeutic developments. They are

therefore a prime candidate-cell type for individual donor
banking for future use. The opportunity for personal banking
has been enhanced by the identification of MSCs in human
umbilical cord (UC) tissue,4 a tissue previously disposed of
as waste at birth, which affords easy and ethically non-
contentious access to the cells.5,6 Further, evidence of a small
population of cells with wider potency has increased the
potential value of UC storage.7

MSCs have been isolated from different areas of the UC,
including blood, umbilical vein sub-endothelium, and
Wharton’s jelly.8,9 However, it is still inconclusive whether
MSCs isolated from these different compartments represent
functionally different populations.6 The primary method of
MSC extraction involves nonselective isolation by enzymatic
digestion, generally using Type I or Type A collagenase-
based solutions. These solutions often have poorly defined
and potentially detrimental caseinase, clostripain, and tryptic
activities. Recent modifications describe the use of a combi-
nation of collagenase with hyaluronidase which facilitates
the degradation of matrix ground substance and shortens the
time required for the isolation process.10,11 The use of type II
collagenase, which has stronger clostripain activity, or
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collagenase type B, which is relatively more efficient at sol-
ubilizing the UC microfibrils has also been successful.12 The
duration of collagenase treatment is critically important, es-
pecially if collagenase/hyaluronidase cocktails are used,
since there is a risk of degradation of cellular external lamina,
a phenomenon preventing cells from adhering to the culture
substrate after isolation and potentially causing cellular
damage.8 The time required for tissue digestion ranges from
30 minutes13 to 16 hours14 depending on the quantity/
concentration of enzyme and duration of treatment with
digesting reagents. Additional process steps, such as filtra-
tion of the digested material through 70–100 mm pore-sized
cell strainers, are sometimes included to facilitate the
removal of any unwanted tissue debris.13,15

An alternative, less explored, cell extraction method is
explant culture.16 This entails fine chopping of the Wharton’s
jelly section of the cord tissue, after excision of the blood
vessels, and plating of the fine fragments in sterile culture
plates or Petri dishes.7,17

In order to store tissue with consistent clinical potential,
methods need to be selected to minimize the variability in
the extracted stem cells given the operating restrictions of the
cell banking model. Due to the nature of tissue collection in a
birthing environment the early period of tissue processing is
relatively uncontrolled; the priority is maternal and neonate
safety. Further, tissue often needs to be transported from
maternity units to distant processing sites. Such factors make
imposing tight process controls on early handling challeng-
ing. In addition, innate biological variation in the tissue will
affect the cell yield.

Therefore, cell isolation methods should not be compared
under idealized conditions. Methods should be assessed and
engineered for robustness to innate biological tissue varia-
tion or arising variation due to tissue collection procedures.
This is particularly important for tissue stored for autolo-
gous use, where a processing facility will not be able to
select tissue based on favorable characteristics. Once a
method has been established, determining the statistical
distribution inherent in the method relative to required cell
yield (process capability) will be necessary to allow tissue
processing facilities and banks to predict the risk of sub-
optimal cell yield from a given cord tissue section and
processing method, and thereby to determine the tissue
storage requirements and isolation methods with acceptable
risk of adequate cell recovery.

We have analyzed the two primary methods of cell extrac-
tion, enzymatic digestion and explant culture, to identify the
relative variability in cell recovery. We have identified the ro-
bustness of each method to changes in ‘hard to control’ process
variables to define methods that would be more appropriate to
maintain quality under different operational restrictions.

Methods

Umbilical cord collection and transportation

All cords were collected within 5 hours from birth. Using
two fingers, blood was pressed out of the cord to neonatal
direction. The cord was then cut from the placenta with a
sterile scalpel and the outer surface wiped with an alcohol
wipe (Cole-Parmer Instrument Co. Ltd., UK). The cord was
placed in a sealed sterile flask containing Dulbecco’s Phos-
phate Buffered Saline (D-PBS, Life Technologies, UK) with

1% Antibiotic - Antimycotic (100x Penicillin/Streptomycin/
Amphotericin – PSA, Life Technologies, UK) and then
shipped via courier to the lab facility in secure sealed boxes.

Tissue preparation

Twenty sections of the cord were cut, from neonatal to
placental end, the former referenced as section 1 and the
placental end as section 20. Sections were washed with fresh
1% PSA in D-PBS, and then 200–400 mg slices were cut from
each section, and placed into 24 well plates (Nunc, Scientific
Laboratory Supplies, UK) with sterile 1% PSA in D-PBS, to
re-wash, ready for enzymatic or explant processing. Re-
maining tissue sections with time-delayed processing were
placed in sealed 50 ml centrifuge tubes (Fisher Scientific, UK)
and stored at ambient temperature.

Isolation by enzymatic digestion

200–400 mg slices were chopped to fine fragments of ap-
proximately 1-2 mm3 and then placed in a 15 mL centrifuge
tube (Fisher Scientific, UK) containing 3mL of 0.075% Col-
lagenase type I solution (AMS Biotechnology Ltd, UK) in
warm Dulbecco’s Modified Eagle Medium Low-Glucose
with GlutaMAXTM (D-MEM LG - 1X, Life Technologies, UK)
and 1% PSA. Cord slice fragments were enzymatically di-
gested for 18 h at 37�C inside an incubated shaker (Mini
4450, ThermoFisher Scientific, UK). The contents of each tube
containing digested cord fragments was then diluted with
5 mL of warm D-MEM LG containing GlutaMAXTM with
20% fetal bovine serum (pre-screened FBS for MSCs, Fisher
Scientific UK, country of origin USA). The diluted digest
solution was added to T25 culture flasks (BD flasks, Scientific
Laboratory Supplies, UK) and incubated at 37�C and 5%
CO2. Media change was at 48 h and every 3 days thereafter.
The process was repeated with stored cord tissue sections
after 72 h and 120 h. After 7 days in culture cells were pas-
saged with TrypLE� Express (1X, Life Technologies, UK)
and counted to assess yield (ViaCount Assay on a Guava�
System, Merck Millipore, UK).

Isolation by explant culture

200–400 mg cord slices were individually positioned in the
center of a dry 6 well plate (Nunc, Scientific Laboratory
Supplies, UK) and placed in an incubator for 30–40 min, at
37�C and 5% CO2. 2 mL of media per well was then added
without disturbing the tissue by slow dispensing at the side
of the well. Medium consisted of D-MEM LG containing
GlutaMAXTM, 1% PSA and 20% FBS. Media were changed
every 3 days. The process was repeated with remaining cord
tissue sections after 72 h and 120 h of storage. At 14 days in
culture the cell yield was assessed by performing cell counts
as previously described.

Phenotype and functionality

Cells were tested for expression of the following markers:
CD90 (Human CD90/Thy1 Phycoerythrin MAb, R&D Sys-
tems, UK), CD105 (Human Endoglin/CD105 Phycoerythrin
MAb, R&D Systems, UK), CD34 (FITC/581/Human/RUO,
BD Biosciences, UK), CD45 (Phycoerythrin MAb, R&D
Systems, UK). Flow cytometry analysis was performed on
a Guava� System (Merck Millipore, UK). Cells were
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differentiated towards three standard mesenchymal lineages,
adipogenic, chondrogenic and osteogenic. Cells were differ-
entiated with the use of StemPro� Adipogenesis, Chon-
drogenesis and Osteogenesis Differentiation Kits (R&D
Systems, UK) according to manufacturer’s instructions. Dif-
ferentiation was evaluated at 24 days in culture with HCS
LipidTOXTM Neutral Lipid Stain Green stain solution (Life
Technologies, UK) for adipogenesis, with Alcian Blue stain
(Sigma-Aldrich, UK) for chondrogenesis and with Alizarin
Red S stain (Sigma-Aldrich, UK) for osteogenesis, according
to manufacturer’s instructions. Statistical analysis – Data were
analyzed using Minitab 15�. Statistical analysis was applied
to Box-cox transformed (log10 or square root) data. Sum-
mary statistics were transformed back to original scale for
presentation. Data were analyzed graphically using box and
interval plots to compare means and variability. Outliers in
the data sets were not excluded unless attributed to a special
cause. Interaction plots were used to show association be-
tween factors. Two-sample hypothesis tests were applied to
compare mean and standard deviation of the responses be-
tween the two isolation methods. A general linear model
(GLM) analysis was used to perform an analysis of variance
(ANOVA) for the response variable (cell yield) in balanced

and unbalanced data sets involving fixed (isolation method,
storage time) and random (cord) factors. Post-hoc Bonferroni
Simultaneous test was used for comparison of multiple
means. For all tests, p £ 0.05 was considered significant. One
cord (8) was excluded from the analysis because no cells
were isolated.

Results and Discussion

Twelve umbilical cords were cut into 20 equal sections.
Slices were taken from each section for processing after
storage of the cords for 24, 72, and 120 h (to represent vari-
able processing delays associated with logistics of transport
and delivery). Slices were then processed by enzymatic
digestion or explant culture method. Cell yield data were
analyzed for each method to determine the inter- and intra-
cord variation and effect of storage time.

Effect of isolation method on cell yield

Baseline process performance was established by eval-
uating the cell yield from cord slices processed by explant
(n = 330) or digestion (n = 660) method, within a standard

Table 1. Baseline Process Performance for Enzymatic Digestion and Explant Culture Isolation

Methods. Mean and SD For Normalized Data (Lambda = 0.5, Square Root Transformation)
and Back Transformed Means Are Shown for Each Isolation Method

Isolation method
Transformed

mean Transformed SD
Interquartile

Range
Back-transformed

mean

Digestion 477.6 331.6 200 – 680 228102
Explant 426.1 182.6 300 – 520 181561
Statistical significance N Y — —

FIG. 1. Interaction plot for normalized data (lambda = 0.5, sqrt transformation) for digestion (1) and explant (2) isolation
methods. Interactions are observed between random factor (cord) and fixed factors (age and isolation methods) as deter-
mined by a GLM ANOVA.
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process operating range. Digestion yield was assessed after
7 days and explant after 14 days because of significantly
slower cell release. The average cell yield isolated from
cords using the digestion method was higher (2.3 · 105)
compared to the explant method (1.8 · 105) ( p = 0.002), but
the cell yields were significantly more variable ( p = 0.0005)
(T1 c Table 1).

This suggests that cell yield from the explant method,
whilst slower, may be more robust to input variation (i.e.,
delay before processing or biological variation) in the op-
erating range selected. An ANOVA (GLM) was conducted
to decompose the variation in the cell yield amongst the
factors (method, cord and storage time). The analysis
showed that cord random effects contributed a significant
amount of variation to the observed cell yield. Significant
interactions were observed among random (cord) and
fixed (method, storage time) factors with evidence that cell
yield from cord is dependent on isolation method
( p = 0.045) and cord storage time ( p = 0.024), but also that
the effect of cord age was dependent on isolation method
( p = 0.0005) (F1 c Fig. 1). To determine how the isolation
method influenced the cell yield from the cords at different
storage times (24, 72 and 120 h) the data were further
stratified and an ANOVA (GLM) applied independently to
each isolation method.

Effect of cord storage time on cell yield

The average cell yield isolated from cords using the enzy-
matic digestion method differed significantly between the
storage time points ( p = 0.0005); the effect, however, was var-
iable, between individual cords ( b F2Fig. 2). Post hoc tests revealed
that storage of cord significantly reduced mean cell yield after
72 h (1.7 · 105) and 120 h (0.64 · 105) compared to the cell yield
at 24 h (5.9 · 105). In contrast, the mean cell yield from the
Explant isolation method did not differ significantly between
the storage time points ( p = 0.08), with some suggestion of
yield improvement over the first 72 h, although effects could
again be seen to vary between individual cords (Fig. 2).

This analysis indicates that cord storage time causes signif-
icant reduction in mean cell yield (in a population of cords)
when cells are isolated using a digestion method but not when
isolated using the explant method. It is hypothesized that this
could be due to cells becoming more susceptible to stress of
single cell isolation after prolonged storage, rendering older
cord cells more susceptible to damage during digestion rela-
tive to explant. It could also be associated with cell-mediated
extracellular matrix degradation during storage, allowing
easier migration of cells out of the tissue during explant cul-
ture, but exposing them to more enzyme activity during di-
gestion. An alternative explanation is that the explant culture

FIG. 2. The effect of storage time on cell yield from umbilical cord tissue processed by explant or digestion methods.
Boxplots show interquartile range shaded, with median line, whiskers represent 1.5 times the interquartile range, and stars
show extreme values beyond this range. (a) The median yield of the digestion method clearly decreases with time while that
of the explant extraction remains relatively constant; (b) the level of decline varies between cords processed by digestion (c)
no systematic decline is observed in any cord processed by explant.
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limits the number of cells that can migrate from the cord; in
this scenario the reduced cell content with storage time is still
present in the explant cultures, but not apparent due to the
limitations of the method in releasing the cells. If the latter
were the case we would expect to see reduced growth over
time; this does not occur and is discussed below.

The variation of cell yield (%CV) increases for both
methods with increased tissue storage time (24 h = 31%,
72 h = 42%, 120 h = 52% explant; 24 h = 37%, 72 h = 67%,
120 h = 76% digestion). This strongly implies a non-uniform
degradation of cell yield potential from fresh tissue. A non-
uniform degradation of tissue yield suggests a change in the
relative performance of cords over storage time. This is ap-
parent inF3 c Figure 3, which shows that the relative difference
between mean cord cell yields from digestion reduces with
increased storage time. A weak inverse correlation (R2 = 55%)
between higher initial cell yield and the cells recovered after
72 h of tissue storage as a proportion of initial yield, suggests

that this non-uniform degradation may be due to higher
yielding tissue degrading faster. It is possible that more
metabolically active tissue, with higher cell content, is more
sensitive to storage. An alternative explanation is that the cell
population in the cords is heterogeneous in sensitivity to a
processing delay—this is supported by the fact that ap-
proximately 50% of potential cell yield is lost with each ad-
ditional 48 h of storage/delayed processing. This implies
more rapid cell loss in absolute numbers in the early period
of storage, and would lead to smaller relative differences
between cords after prolonged storage.

Cord to cord variability and the influence
of sampling location on cell yield

In order to determine if the sampling location (section)
within the cord influences the cell yield, the mean yield from
each cord section was plotted against the sequential position

FIG. 3. Interval plots showing the mean yield and 95% confidence interval of the mean stratified by individual cord after
different storage times. (a) Digestion extraction shows a retained relative performance between cords after different storage
periods; however, it also shows that the differences between cord means diminishes with increased storage time. (b) These
effects are not observable from explant culture.

FIG. 4. The effect of location in cord on cell yield from umbilical cord tissue processed by explant or digestion methods
(section 1 = neonate end and section 20 = placental end). The 95% statistical confidence interval for the population mean is
shown for each position after each storage time. (a) The position of tissue in cord strongly affects yield from the digestion
isolation method, with a trend increase in yield towards the placental end of the tissue observable over approximately a
quarter of the cord length. (b) This location effect is not observed from explant culture.
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from neonatal to placental end of the cord (section 1 =
neonate end and section 20 = placental end), for both isolation
methods (F4 c Fig. 4). A discernible effect of tissue location on
mean cell yield was not observed for the explant method, but
a trend of increasing mean cell yield at the placental end of
the cord was observed when the isolation was conducted by
enzymatic digestion. This implies that the explant method
may initially restrict the number, or growth, of cells recovered
from the tissue, thereby potentially hiding a difference in
tissue cell content. This effect was also not seen in all cords.

Verification of cell quality

The quality of cells extracted via the different isolation
methods was assessed to verify their functional capacity.
Cells from selected cord slices processed by enzymatic di-
gestion or explant method after variable storage times were
cultured over a prolonged period of 16 passages and tested
for their capacity to differentiate to adipogenic, osteogenic
and chondrogenic lineages at passage 1, 8, and 16. Similar to
reports by others,18,19 a qualitative reduction in differentia-

tion potential from P1 to P8 was observed as illustrated by
representative histochemistry micrographs ( b F5Fig. 5). At P16
the cells no longer differentiated effectively. However, no
discernible qualitative differences in differentiation outcomes
were observed between isolation methods or storage time
points. Similarly, the surface marker profile (CD90, CD105)
showed some reduction over time in culture, but there was
no significant effect of cell isolation method or storage. The
proliferative rate (within the time period tested) of the cells
isolated by the two methods also did not differ nor was it
affected by cord storage time. A small percentage (2.5%) of
the individual tissue slice cultures stopped proliferating be-
fore P8; all of these culture failures were isolated by digestion
method, further supporting explant as a more robust ex-
traction method. Overall the evidence suggests that the ex-
plant method is a slow early release, rather than a
significantly restricted release, isolation method. This is an
important distinction. If the explant was releasing a very
small proportion of potential cells, we would anticipate a
lower proliferative capacity and more rapid reduction in
differentiation potential compared to digestion.

FIG. 5. Growth and differentiation properties of cells extracted from two cords by explant or digestion after different
storage times. (a) and (b) A series of growth rates of cell cultures were equivalent irrespective of explant or enzymatic
digestion, storage time prior to extraction, or cord. All cells showed a similar loss of differentiation potential with repeated
passage, irrespective of processing. Representative images of histochemistry: Adipogenic differentiation (neutral lipid vac-
uoles stained with LipidTOX� Green and phalloidin red cytoskeleton) for hUC-MSC’s at passage 1 (g) and passage 8 (h),
Chondrogenic differentiation (glucosaminoglycans stained with Alcian Blue) at passage 1 (k) and passage 8 (l). Osteogenic
differentiation (calcium deposition stained with Alizarin Red S) at passage 1 (o) and passage 8 (p). Negative controls are un-
induced cells (i), (j), (m), (n), (r) and (s).
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Operational significance

Given an operating environment where control of rapid
tissue processing and cord location selection is not feasible
the explant method offers logistical and quality benefits over
the digestion method. This applies to many birth environ-
ments and subsequent banking and transport logistics.

The impact of the observed variation on operational per-
formance can be illustrated by comparing the predicted
population distributions for cell yield obtained from both
isolation methods.F6 c Figure 6 shows that despite the lower
average cell yield, the explant isolation method is more ro-
bust than the digestion method to the effects of cord storage
on cell yield. This ‘‘capability snapshot’’ indicates that if the
lower limit for acceptable cell yield was set at 50,000 cells (as
shown in Fig. 6), fewer cords would fail to provide sufficient
cells if they were processed using the explant method (14%
out of specification) compared to the digestion method (27%
out of specification).

Conclusions

Biological variation in patients, or biological material in-
troduced into samples due to isolation and handling will
have a major effect on the safety and efficacy of clinical ap-

plication. It is critical that processes are engineered for ro-
bustness, and with an understanding of critical sensitivities,
rather than simply for optimal yield under highly controlled
conditions. It is necessary to map the operating environment
and assess risk factors before empirically determining the
effect on the process. This will be particularly critical for
processes using primary tissue or cell sources where the bi-
ological variation at input is likely to be high; it will also be
labor intensive, requiring large data sets, such as those pre-
sented here, due to inherently high variability.

The study indicates that the cell yield obtained from an
explant method, whilst lower in a given timeframe, is more
robust to common process/biological input variables relative
to the digestion method. Verification of expansion capacity
and differentiation potential indicates no loss of potential
due to this slower initial yield. The data are important as
they indicate that careful design of processing can reduce
problems associated with variable biological input material.
Regulated therapeutic products will require characterized
and risk-assessed manufacturing processes. This fits the
philosophy of Quality by design (QbD)20; an approach to
understanding process operating space and risks of associ-
ated variables. The type of study conducted here is an ex-
ample of the type of data and analysis that will be required
to inform a QbD type approach for cell product development

FIG. 6. Population distribution plots of cell yield for enzymatic (a) and explant (b) isolation methods. There is a higher risk
of failure using enzymatic digestion for achieving a back-transformed minimum specification of 50,000 cells, resulting in a
lower process capability. The distributions and capabilities that could be achieved with the enzymatic (c) or the explant (d)
method are shown if storage time could be logistically controlled.
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and manufacture. It will help tissue processing facilities and
banks to predict the probability of cell yields from tissue
section given different operating ranges, and inform the ex-
perimental approach of others.
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