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ABSTRACT 

High intensity intermittent exercise training (HIT) may favourably alter body composition despite low training 

volumes and predicted energy expenditure (EE). Purpose: to characterise the acute impact of two common HIT 

protocols on EE and post-exercise oxygen consumption (11 h EPOC). Methods: oxygen consumption (l·min
-1

), 

respiratory exchange ratio (RER) and EE were measured in nine healthy, lean males over 12 h under three 

conditions: control (CON), HIT1 (10x one min high intensity cycling bouts followed by one min rest) and HIT2 

(10x four min high intensity cycling bouts followed by two min rest). Results: total exercise period EE during 

HIT1 (1151 ± 205 kJ) (mean ± SD) was significantly lower than HIT2 (2788 ± 322 kJ; p < 0.001). EE within the 

60 min after exercise was significantly albeit marginally higher after HIT1 (388 ± 44 kJ; p = 0.02) and HIT2 

(389 ± 39 kJ; p = 0.01) compared with CON (329 ± 39 kJ), with no difference between exercise conditions (p = 

0.778). RER during this period was significantly lower in HIT1 (0.78 ± 0.06; p = 0.011) and HIT2 (0.76 ± 0.04; 

p = 0.004) compared with CON (0.87 ± 0.06). During the ‘slow phase’ of EPOC (1.25 h – 9.75 h) there were no 

significant differences in EE (p = 0.07) or RER (p = 0.173) between trials. Conclusions: single HIT sessions 

notably increases EE during exertion however the influence on metabolic rate post-exercise is transient and 

relatively minor. 
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INTRODUCTION 

Despite the common acceptance that regular physical activity reduces the risk of many chronic conditions such 

as obesity, type 2 diabetes and cardiovascular disease, participation in physical activity remains low (WHO 

2010). Specifically, within the UK approximately two-thirds of men and women do not perform sufficient 

activity to benefit their health (WHO 2010). Traditionally, health oriented physical activity guidelines have 

centred on individuals undertaking moderate intensity aerobic, continuous forms of exercise on most days of the 

week (Department of Health  2011). Given that the most commonly cited reason for not participating in physical 

activity is lack of time, and the recent evidence that individuals preferred an intermittent exercise protocol in 

comparison to continuous exercise (Bartlett et al. 2012), it is now timely to consider other forms of exercise 

which can potentially be more readily adopted.    

In recent years there has been a surge in interest concerning high intensity intermittent exercise training (HIT) 

due to its ability to confer notable cardio-metabolic health benefits rapidly, with great time efficiency (Gibala & 

Little 2010). Specifically, HIT has been shown to improve insulin sensitivity and glycaemic control 

(Burgomaster et al 2006, 2008; Gibala et al. 2006; Wisloff et al. 2007; Tjonna et al. 2008; Babraj et al. 2009; 

Haram et al.  2009; Nybo et al. 2010; Richards et al. 2010; Whyte et al. 2010; Gaesser and Angadi. 2011; Hood 

et al. 2011; Little et al. 2011; Shepherd et al. 2013) as well as other cardiovascular health factors (Fletcher et al. 

1996) after just two weeks of training (typically six training sessions).  

An intriguing body of research has also emerged documenting beneficial changes in body composition and/or 

mass in response to HIT (Boutcher 2010) with studies reporting favourable changes within short time-frames. 

Accordingly, Whyte et al. (2010) subjected overweight and obese males to six training sessions over two weeks 

with each session consisting of four to six 30s Wingate sprints, interspersed with 4.5 min of recovery. Along 

with positive changes in several metabolic health parameters, this group noted a significant 2.4 cm reduction in 

waist circumference. Our research group also observed a significant reduction in waist circumference (1.4 cm) 

in a group of overweight and obese males following the completion of two weeks of HIT (Leggate et al. 2012). 

In this study each training session consisted of 10 x four  in  outs of    ling at   5    O2peak, separated by two 

min of recovery. Additionally, research has hinted that HIT may be superior to continuous moderate-intensity 

exercise training for the purpose of adiposity reduction (Macpherson et al. 2011). In this study six weeks of 

treadmill based sprint interval training induced a two-fold greater reduction in total adiposity (12.4 vs. 5.8%) 

compared with a much greater volume of continuous moderate-intensity running. Given the relatively short 
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duration of these interventions and accumulated exercise volume, the energy expended during exercise was 

unlikely to have been sufficient to account for the reported changes in waist circumference/adiposity. However, 

definitive information regarding this aspect of HIT is lacking and consequently the total impact of HIT on 

energy balance is unknown. 

Recently, Knab et al. (2011) reported that metabolic rate is augmented for 14 h after a single bout of moderate-

high intensity aerobic exercise, equating to an additional 795 kJ energy expenditure (EE) on top of that 

expended during exertion. The authors of this previous paper suggest that this excess post-exercise oxygen 

consumption (EPOC) may significantly contribute to fat loss over the course of exercise training programmes. 

Although research has been conducted to profile EPOC after continuous forms of exercise (Borsheim and Bahr 

2003; LaForgia et al. 2006), less attention has been given to high intensity forms of exercise (McGarvey et al. 

2005; Malatesta et al. 2008). Specifically, how high intensity intermittent exercise (HIIE – representing one 

single bout of HIT) impacts upon EE and substrate utilisation, both during and after exercise, is not well 

understood. Given recent reports demonstrating notable changes in body composition and/or mass with HIT 

(Boutcher 2010) it is necessary to understand how HIIE influences these parameters. Recent reports have 

provided preliminary information on this issue (Williams 2013; Chan & Burns 2013; Hazell et al. 2012) 

however in these studies the focus has been on sprint interval training i.e. the classical form of HIT which is 

characterised by bouts of all-out effort over 30s. This type of training is not feasible for many who are inactive 

or who have chronic conditions e.g. type 2 diabetes or cardiovascular disease. More acceptable forms of HIT 

have emerged which are more suitable for such individuals, however there is currently no information regarding 

the impact of these protocols on EE and substrate utilisation, during or after exercise. 

The present investigation sought to accurately characterise the EE during exercise and EPOC (11 h post-

exercise) of two commonly used HIT protocols which have been developed to be implemented with untrained 

individuals and/or clinical groups. The first protocol (HIT1) examined a HIT intervention which has been 

demonstrated as being suitable for individuals with type 2 diabetes, conferring rapid and marked 

glucoregulatory benefits (Little et al. 2011). The second HIT protocol (HIT2) examined was that previously 

implemented by our research group (Leggate et al. 2012) and others (Talanian et al. 2007), where we observed a 

significant decrease in the waist circumference of overweight/obese men after just six training sessions. In the 

present investigation we aimed to characterise the EE elicited by HIIE in terms of both the immediate and 
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delayed effect. In doing so, we sought to determine the potential contribution of HIT induced EE to previously 

documented reductions in body fat and/or waist circumference. 

METHODS 

Participants  

Nine untrained and moderately active men (defined as doing no more than two moderate intensity exercise 

sessions per week with no involvement in an  stru tured training for ≥ two years) volunteered to take part in the 

current study. The study inclusion criteria demanded that participants had a BMI 18.5-29.9 kg
.
m

-2
, and had been 

weight stable for at least three months prior to the study. Participants were free of cardiovascular, metabolic and 

haematological disease and were not taking any medications or supplements. The participants were fully 

informed of the aims, risks and discomforts associated with the investigation before providing written informed 

consent. This study conformed to local guidelines, the declaration of Helsinki, and was approved by the local 

ethics committee.  

 

Preliminary Testing  

Before main trials resting metabolic rate (RMR) was measured on two separate occasions in order to obtain 

reliable baseline results (Compher et al. 2006; Roffey et al. 2006). For these tests participants reported to the 

laboratory in the morning (~07:30) having not eaten since the previous evening. Resting metabolic rate 

assessments followed the guidance of Compher et al. (2006). In brief, participants were asked: not to exercise 

during the preceding 24 h; not to consume caffeine, alcohol or drugs during the preceding 24 h; to remain fasted 

for at least 10 h prior to laboratory entry; to record what they had eaten in the preceding 24 h in order to 

replicate this feeding pattern prior to the second RMR measurement; to eliminate uncontrolled activity by 

travelling to the laboratory by motorised transport, with any essential walking being kept to < 50 metres. The 

laboratory temperature was maintained at 23.5-24.5°C. To minimise movement participants were assisted when 

necessary by wheelchair.  

All resting metabolic measurements were performed using an open circuit, ventilated hood indirect calorimetry 

system (GEM Nutrition Ltd., Cheshire, England). This technique has been described as the gold standard in 

indirect calorimetry and has been validated in the measurement of RMR in both adults and children (Weissman 

et al. 1990; Tissot et al. 1995). After a 30 min seated resting period, participants were instructed to lie in a 
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comfortable supine position. The clear hood canopy was placed over the head area and plastic sheeting attached 

to the hood was placed around the body to form a seal between the air inside and outside the hood. Participants 

were instructed not to talk or fidget and listened to the radio throughout the  easure ent to redu e  oredo  and 

to pre ent sleeping.   O2 (l
.
min

-1
)    CO2 (l

.
min

-1
), RER and EE (kJ) were determined at 30s intervals (as pre-

determined by software) over a 30 min period. For analysis, the first 10 min of data were dis arded to a  ount 

for an  initial short-ter  respirator  artefa t.  inute a erages for   O2 along with RER caloric equivalents were 

used to estimate EE. The mean percentage difference between the two baseline measurements was 1.6%. 

Before main trials participants also perfor ed a   O2peak test to volitional exhaustion using an 

electromagnetically braked cycle ergometer (Lode Excalibur,  roningen   he  etherlands).   O2 was measured 

continuously throughout the test using an online breath-by-breath gas analysis system (Cortex Metalyzer, CPX 

International Inc, Berlin, Germany). For this test participants first warmed up for three min against a resistance 

of 50 watts (W). After this, the workload was increased to a starting work rate which was subsequently 

increased by 30 W at intervals of three min. The initial work load for the test was individualised for each 

participant, being selected so that the test would last for approximately 12 min (four stages). The test was 

terminated when participants could no longer maintain pedal cadence at 50 re olutions per  inute ( P ). 

  O2peak was identified over the highest 30s period during the test. Heart rate (HR) was measured during the test 

using a telemetric heart rate monitor (Polar RS100, Polar Electro, UK Ltd., Warwick, UK). 

Main Experimental Trials 

All participants completed two HIIE main trials and one control trial with each study visit being separated by at 

least four days. Figure 1 provides a schematic overview of the main trial protocols. Prior to each main trial 

participants abstained from structured physical activity and standardised their dietary intake within the prior 24 

h. On the morning of trials participants arrived at the laboratory via motorised transport to eliminate extraneous 

activity. An 11 h EPOC assessment was made across each main trial and for clarity and comparability across 

trials we have defined the beginning of this measurement point as time zero (0 h). Thus, exercise protocols 

ended at the same time (prior to the start of EPOC assessment) which meant that it was necessary for the HIIE 

start times to differ. Consequently, the beginning of the control trial and HIT2 is defined at -67 min which 

reflects the 60 min exercise period (in HIT2) before EPOC measurement, two min cool down, and an additional 

five min resting period necessary to allow CO2 levels to return to values which fall within acceptable limits for 

transfer to the ventilated hood (essential for the exercise trials). Accordingly, the beginning of HIT1 is defined 
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as -27 min which reflects the duration of the 20 min exercise protocol as well as the aforementioned seven min 

recovery period after exercise.  

Insert Figure 1 near here 

For the control trial participants reported to the laboratory in a fasted state at ~07:30. Participants then relaxed in 

a comfortable seated position for 30 min prior to the start of the trial (-67 min). At this point breath collection 

via online gas analysis (Cortex Metalyzer, CPX International Inc, Berlin, Germany) began whilst participants 

remained in a seated position. Gas collection occurred continuously for 67 min. This period prior to post-

exer ise assess ent is defined as the ‘exer ise period’ (EP). Immediately after the EP, the rapid phase (RP) of 

EPOC was measured continuously over 60 min using the ventilated hood (0 h – 1 h). During this time, 

measurements were taken continuously with participants resting in a supine position. Immediately after the RP, 

participants were seated next to the ventilated hood where breakfast was provided (1 h – 1.25 h). Participants 

consumed breakfast within 15 min, after which point ventilated hood measurement recommenced. 

Subsequently, expired gas analysis was performed continuously for 15 of every 30 min over the next 9.75 h. 

This period was identified as the EPOC slow phase (SP). Standardised meals were also consumed by 

participants at 4 h and 8 h with each meal being consumed within 15 min.  

Identical procedures were completed in the exercise trials except a bout of HIIE was completed at the beginning 

of trials. During exercise, gas anal sis data was  olle ted  ontinuousl  with   O2    CO2, RER and HR averaged 

every 15s. Within each protocol the two min cool down period was composed of cycling against no resistance. 

The exercise protocol within HIT1 was identical to that described by Little et al. (2011). This protocol consisted 

of 10 x one min high intensity intervals each separated by one min of light pedalling against a resistance of 50 

W. Whilst maintaining an RPM of 80-100, workload was manipulated throughout to ensure HR was maintained 

at ~90% HRpeak during each high intensity effort. The exercise protocol within HIT2 was identical to that 

described previously by Leggate et al. (2012), consisting of 10 x four min intervals at an RPM of 60-80, each 

separated by two min of light pedalling against a set resistance of 50 W. The workload was manipulated during 

the trial to ensure that the a erage  orresponding   O2 during high intensity bouts equated to ~ 5    O2peak.  

Food Intake  

During main trials participants were provided with three standardised meals which were identical across trials. 

All meals were consumed within 15 min. The total amount of energy provided for participants at each meal was 
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individualised to meet daily energy requirements for an inactive day. This value was calculated by multiplying 

ea h indi idual’s average resting metabolic rate (from preliminary assessments) by 1.375 (Harris et al. 1918). 

Breakfast was provided immediately after the EP (at 1 h) and consisted of toasted white bread and jam (30% of 

daily energy requirements). Lunch and dinner were provided at 4 and 8 h with both meals consisting of a tuna 

mayonnaise sandwich, salted crisps, chocolate muffin and green apple (each meal 35% of daily energy 

requirements). The macronutrient composition of the food provided across each trial was typical of a UK diet 

and consisted of 38% fat, 14% protein and 48% carbohydrate (Department for Education, Food and Rural 

Affairs 2010). Mean energy intake equated 12, 385 kJ. Throughout main trials, after the completion of exercise, 

water was available for participants to consume ad libitum.  

 

Calculation of Energy Expenditure 

In the present study EE was estimated during and after exercise as per the Weir equation (Weir 1949). These 

calculations require oxygen consumption and RER data and are valid for RER values up to 1.0. Consequently, 

as RER transiently increases above 1.0 during HIIE, calculations for the EP period utilised an RER of 1.0 when 

values were higher than this level.  

 

Statistical Analysis 

The statistical analysis for this study was performed using the statistical package for social sciences for 

Windows (SPSS Ver.19). All data are reported as Mean ± SD. For both the EP and RP periods     O2, RER and 

EE minute averages were determined for each participant, whilst for the SP period data were collected as 30 min 

averages for each trial hour. The latter values were subsequently multiplied by two  to pro ide an esti ate of 

hourl    O2, RER and EE. Data were also analysed for the RP and SP periods combined to give a total EPOC. 

Each of these trial segments were analysed separately using repeated measures ANOVA. Where appropriate, 

data was analysed using area under the curve (AUC) which was calculated using the trapezoid method 

(Matthews et al. 1990). No differences were found between mean and AUC data and therefore AUC data is not 

reported. Where significant differences were found a Bonferroni post-hoc test was used to identify where 

significant differences lay. For all analyses alpha was set at 5%.   
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RESULTS 

Participant and Exercise Characteristics 

The physical characteristics of the study participants are summarised in Table 1. The average workload 

undertaken by study participants to elicit 90% of peak HR during exercise within HIT1 was 204 ± 47 W. 

Similarly, the average workload completed to elicit 85% of   O2peak during HIT2 was 211 ± 46 W. 

Insert Table 1 near here 

Energy Expenditure 

When analysing EE for the entire trial period (combining EP, RP and SP phases) one-way ANOVA revealed 

significant differences between experimental conditions (p < 0.001). The total energy expended within HIT2 

(7280 ± 703 kJ) was significantly higher than that expended in both HIT1 (5761 ± 598 kJ; p < 0.001) and CON 

(4874 ± 456 kJ; p < 0.001). Energy expenditure in HIT1 was also significantly higher than CON (p < 0.001). 

Figure 2a illustrates the EE during the EP independently. Within this period one-way ANOVA revealed a 

significant difference between trials (p < 0.001). Specifically, EE during the EP in HIT2 (2788 ± 322 kJ) was 

significantly greater than HIT1 (1151 ± 205 kJ; p < 0.001). Logically, the EE in both exercise conditions during 

the EP was higher than CON (368 ± 46 kJ; p < 0.001). 

Insert Figure 2 near here 

 

Figure 2b shows the EE during the EPOC RP across main trials. One-way ANOVA revealed a significant 

difference between trials for the EPOC RP (p < 0.001). Specifically, the EE for this period after HIT1 (388 ± 44 

kJ) was significantly higher than that expended over the same period during CON (329 ± 39 kJ; p = 0.02). 

Similarly, EE during the RP in HIT2 (389 ± 39 kJ) was also higher than CON (p = 0.01). During this period 

there was no difference in EE between exercise conditions (p = 0.778). Figure 2c illustrates the EE during the 

EPOC SP across main trials. Within this period one-way ANOVA found no differences between experimental 

trials (p = 0.07). Energy expenditure during the SP was 4107 ± 387, 4227 ± 426, and 4268 ± 389 kJ for CON, 

HIT1 & HIT2, respectively. When the total EPOC period was analysed together (RP & SP combined; Figure 2d) 

one-way ANOVA revealed no significant differences between experimental trials with total EE of 4437 ± 419, 

4615 ± 457 and 4658 ± 421 kJ for CON, HIT1 and HIT2 (p = 0.209).  
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Respiratory Exchange Ratio 

One-way ANOVA showed that there was a significant difference in the RER during the RP after exercise (p < 

0.001).  In the RP RER was significantly lower in HIT1 (0.78 ± 0.06; p = 0.011) and HIT2 (0.76 ± 0.04; p = 

0.004) compared with that over the same period during CON (0.87 ± 0.06). There were no significant 

differences between HIT1 and HIT2 with respect to RER in this period (p = 0.411). Within the SP one-way 

ANOVA showed that there were no significant differences in RER between any experimental trials (p = 0.173). 

Furthermore, this was also the case when extending the analysis to include the RP period component i.e. RP & 

SP combined (p = 0.215). 

 

DISCUSSION 

The primary aim of this study was to profile the energy expended during, and for up to 11 hours after two 

routinely used HIIE protocols. Using a sample of healthy, moderately active males, this study has demonstrated 

that both HIIE interventions substantially raise EE during exertion and additionally increase EE and reduce RER 

for up to one hour after. Following this period however, no differences in EE or RER are apparent. 

Consequently, these findings demonstrate that the impact of these HIIE protocols on EE and RER after exercise 

is transient, with effects on EE particularly being of relatively small magnitude. These data imply that the 

impact of HIT on energy balance is primarily related to the EE induced during exertion, rather than to any 

influence on post-exercise metabolic rate. 

 

In the present study both HIT1 and HIT2 substantially raised EE during exertion. The EE elicited by the HIIE 

protocols implemented in this study were substantially higher than that induced by the classical form of HIIE i.e. 

Wingate based sprint interval training. Specifically, two recent studies have identified remarkably similar EE 

profiles during sessions of sprint interval training with values of 595 kJ (Deighton et al. 2012) and 735 kJ 

(Hazell et al. 2012). Comparatively, both HIIE protocols utilised in the present investigation elicited 

substantially higher EE values compared with these previous studies, approximating two-fold higher with HIT1 

and 4-4.5 fold higher with HIT2. These findings are of practical importance with the indication that these forms 

of HIIE may convey dual benefit by enhancing metabolic health parameters whilst also exerting a noteworthy 

influence on energy balance. Such information begins to allow us to make judgements regarding the most 

appropriate forms of HIT suitable for various populations with differing intervention goals.  
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Perhaps the most notable finding from the present investigation was that both HIIE protocols increased EE 

within the hour immediately after exercise (EPOC rapid phase) although this response was transient and of 

small magnitude. Specifically, the net increase in EE during this period was approximately 60 kJ in both HIIE 

interventions, equating to just two (HIT2) and five (HIT1) percent of the energy expended during the actual 

exercise component. The similarity in response between protocols is noteworthy given the marked difference in 

the duration and EE induced in HIT1 and HIT2. This is likely due to the similarity of exercise intensity between 

protocols, as it is known that exercise intensity is the most important determinant of the EPOC magnitude, 

explaining five times more of the variance than exercise duration or total work completed (Gore & Withers 

1990).  

 

The EPOC magnitude and duration in the present investigation was small and brief. This finding is congruent 

with other studies which have examined the effects of HIT on EPOC and reported small changes in post-

exercise EE (Chan & Burns 2013; Williams et al. 2013; LaForgia et al. 1997) but at odds with a recent report 

which described a large increase in post-exercise EE after an acute bout of continuous moderate intensity 

cycling (Knab et al. 2011). This latter investigation is noteworth  gi en the gold standard  ethodolog  

e plo ed.  pe ifi all   post-exer ise  eta oli  rate was  easured after  5  in of  oderate intensit     ling 

(       O2max,) in a respiratory chamber over an extended duration and the researchers reported a 795 kJ net 

increase in EE over 14.2 h. At first glance, when specifically compared with HIT2 in the present study, it is 

unclear why such markedly different outcomes are apparent given that the exercise intensity in HIT2 was 

significantly greater and associated EE comparable. Closer scrutiny of the study protocol however reveals one 

key difference between study methodologies. Notably, in the study conducted by Knab et al (2011) participants 

were fed back the energy which they expended during exercise (2171 kJ) so that they consumed a much greater 

amount of food on the exercise trial than their control trial. This extra energy would have significantly 

augmented resting metabolism (thermic effect of feeding) above that on the control trial and therefore the EPOC 

that the researchers reported reflects the true increase with exercise plus the increase promoted by a heightened 

food intake. Conversely, in the present investigation participants consumed identical meals across trials and 

therefore the independent effect of exercise was isolated. 

 

In the current study EE was higher only during the RP of EPOC i.e. up to one hour after the end of exercise. 

This outcome is consistent with other studies which have examined the impact of HIIE on post-exercise 
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metabolic rate (Chan & Burns 2013; Williams et al. 2013). Specifically, Chan & Burns (2013) observed an 

increase in oxygen consumption up to 30 min after sprint interval exercise (four, 30s Wingate sprints). 

Moreover, with a similar protocol, Williams et al (2013) observed an increase in post-exercise oxygen 

consumption that lasted for up to 45 min. These findings, and those from HIT1 in the present investigation, are 

consistent with the suggestion that brief intense exercise impacts up on the EPOC early response, but that more 

significant and prolonged exercise is necessary to influence more prolonged changes in metabolic rate (LaForgia 

et al. 2006). The brevity of response, particularly with regards HIT2 in the present study, is not entirely clear 

given the longer protocol duration and relatively large associated EE. It is possible that the intermittent nature of 

the protocol attenuated the associated stress and physiological burden however other studies utilising 

intermittent protocols have documented significantly longer EPOC durations (Bahr et al. 1992; LaForgia et al. 

1997). Both of these past investigations involved supramaximal exercise however, raising the possibility that the 

higher exercise intensity is significant. Furthermore, the post-exercise EE assessment protocols were very 

different compared to the current investigation with significantly lower sampling volume and hence greater 

interpolation of data. 

 

In the present study both HIIE protocols had a significant impact on the RER during exercise and within the 

EPOC RP.  Explicitly, during exercise the RER increased in each protocol representing an increasing reliance 

on carbohydrate oxidation commensurate with the high exercise intensity. Subsequently, within the immediate 

hour after exercise, RER decreased dramatically, indicating an enhancement of fat oxidation within the 

immediate hour after exercise. This response was transient however in the current study as participants 

consumed a breakfast meal one hour after exercise and the resultant switch in metabolic fuel preference masked 

any more prolonged enhancement of fat oxidation which may otherwise have occurred. Specifically, other 

investigations have shown that lower RER values may persist for several hours after interval type exercise 

(McGarvey et al. 2005; Malatesta et al. 2008). The mechanisms responsible for this change in metabolism 

possibly include an elevated catecholamine response to HIIE which may stimulate mitochondrial respiration, 

lipolysis and fat oxidation (Mulla et al. 2000). An increase in CO2 retention as a means of replenishing the 

bicarbonate used to buffer lactic acid (Bahr et al. 1986, 1991a, 1991b, 1992; Short and Sedlock 1997; LaForgia 

et al. 2006) may also be important. Nonetheless, given the relatively small absolute increase in EE the 

importance of this change in fuel preference is debatable. 
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This investigation has notable strengths and limitations which should be recognised. Firstly, the strict control of 

diet and physical activity, prior to and during the investigation, is a key strength of the study. Moreover, the 

detail of post-exercise assessment in terms of the percentage of actual sampling time, rather than data 

interpolation, is also notable (51% of the total 11 h EPOC assessment). Limitations of this study include the lack 

of generalisability afforded by the use of a homogenous sample of young, healthy males. Specifically, previous 

investigations which have shown improvements in body weight/composition with the HIIE protocols utilised in 

the current investigation have studied overweight/obese individuals. Thus, we cannot be certain that the results 

obtained in the present investigation would transfer directly to this different population. Consequently, there 

would be merit in future studies to examine the impact of HIIE on metabolic rate in individuals who are 

overweight/obese whereby post-exercise changes may make a greater relative contribution to the overall energy 

deficit imposed by exercise. Sex based differences in metabolism and energy homeostasis also demand that 

investigations are conducted with females. 

In conclusion, the present investigation has shown that HIIE exerts a notable influence on EE and RER during 

exertion however after the end of exercise these changes diminish rapidly. Consequently, the impact of HIT on 

energy balance appears to be chiefly determined by alterations in metabolic rate that occur solely during 

exercise, and not after. These findings may suggest that modifications in post-exercise metabolic rate (EPOC) 

are unlikely to be responsible for previously documented changes in body weight/composition that have been 

reported in response to HIT (Boutcher 2010). Additional work is needed to confirm this however given that 

changes in body weight/composition have previously been reported in individuals who are overweight/obese. 

Nonetheless, it is pertinent to consider other potential mechanisms contributing to the documented 

improvements in body weight/composition. Data from a recent investigation indicate that changes in appetite 

and energy intake may be important (Sim et al. 2013) however a better understanding of the impact of HIT on 

these parameters are needed before firm conclusions can be drawn.  
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TABLES 

Table 1 Characteristics of the study participants.   

  

Values are mean ± SD for all participant variables. n = 9. Minimum and maximum values for each variable are 

also presented. 

 

FIGURE CAPTIONS 

Fig 1 Schematic representation of the main trial protocols. Grey shaded box represents a two min cool down and 

five min resting period (seven min total). 

Fig 2 Energy expenditure (mean ± SD) during the (a) exercise period; (b) EPOC rapid phase; (c) EPOC slow 

phase; (d) EPOC rapid & slow phases combined (total EPOC) for the control, HIT1 and HIT 2 trials. * 

significantly different from control (P<0.05); ‡ significantly different from HIT1& control (P<0.05) 

 
Mean Minimum Maximum 

Age (yr) 21± 2 19 24 

Height (cm) 181.2 ± 7.5 172.1 192 

Weight (kg) 73.9 ± 7.5 61.6 88.2 

Body Mass Index (kg.m
-2

) 22.5 ± 1.8 20.3 25.0 

   2Peak (mL.kg.min
-1

) 44 ± 6 33 58 

RMR (kJ.day
-1

) 8629 ± 636 7478 9655 


