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Abstract

This Thesis explores physical phenomena characteristic for thin liquid films and

small droplets of simple and complex liquids on solid substrates for which wetta-

bility and capillarity control their statical and dynamical properties.

We start by discussing the general concepts of wettability and capillarity and

introduce the common mathematical framework of the lubrication approximation

for studies of thin liquid films and small contact angle drops. We demonstrate

the derivation of the generic equation describing the evolution of a film of simple

liquid from the Navier–Stokes equations. We show how this model can be further

extended to incorporate various effects relevant to the case of complex liquids.

The results described in the Thesis comprise three projects with the common main

theme of the influence of wettability and capillarity on the statics and dynamics

of the studied systems, namely

(i) Evaporating sessile droplets fed through the solid substrate - a geometry that

allows us to discuss steady states of the system and their role in the time evolution

of freely evaporating droplets without influx in an isothermal case;

(ii) The influence of a solute–dependent wettability on the stability, static and

dynamical properties of thin films and drops of non-volatile mixtures, suspensions

and solutions;

(iii) A parameter-passing scheme between particle–based Molecular Dynamics sim-

ulations and the continuum lubrication model which allows us to discuss equilib-

rium properties of small polymeric droplets.

We present the physical questions arising in the three systems and discuss ap-

proaches and results as well as possible extensions.
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Chapter 1

Introduction

Thin films are ubiquitous. They are found both in nature and in various tech-

nological applications. Being a subject of interest in a wide range of fields, they

are practically invaluable. For example, they appear in biophysics as membranes

or tear film in the eye [155], acting as a lubricant to protect the cornea. They

can be found in geology, when considering lava flows [11, 72]. Moreover, they

have countless applications in engineering and technology, e.g. in heat and mass

transfer processes to limit fluxes and protect surfaces [12]; in coating technology

to modulate the optical response of a surface, typically as an antireflective coating

[77, 85, 90, 134, 190]; as memory devices in the case when thin magnetic films are

employed for data storage; in immersion lithography in the process of manufactur-

ing micro- and nanodevices [57, 66]; many other processes involving liquids on solid

and soft substrates. Thin liquid films are typically composed of common liquids

such as water or oil, but also multicomponent mixtures of two or more phases,

referred to as complex liquids, such as polymer solutions or melts, nanoparticle

suspensions, etc. [40, 55, 118, 188, 191].

In fluid mechanics, capillarity and wettability are collective labels for effects result-

ing from the intermolecular interactions occurring at the interface formed when

two substances come into contact and at the three–phase contact region if three

1



Chapter 1. Introduction 2

substances are involved, respectively. They play a crucial role in practically all in-

dustrial and engineering processes where liquid-solid interfaces are involved. How-

ever, the mechanisms governing the wetting behaviour are still not completely

understood. This Thesis is formed of three projects, presented in Chapters 3, 4

and 5, with the main theme of the influence of wettability and capillarity effects

on the statics and dynamics of thin films and small droplets. In Chapter 2 we in-

troduce the basic concepts related to the wetting behaviour as well as the general

model we use throughout the Thesis.

A liquid layer on a substrate is called a thin film if its thickness is much smaller

than the typical length scales parallel to the substrate. Therefore, “thin” does not

refer to an absolute film thickness and should be defined for each physical problem

studied. The dynamical and statical properties of thin films with a liquid–gas

interface (also referred to as a “free surface”) can be analysed with the full Navier–

Stokes [84, 140] or Stokes [22] equations but the most natural theoretical approach

to them is based on the so called lubrication approximation, also known as long-

wave theory [114]. It is based on the procedure of asymptotic reduction of the full

set of governing equations and boundary conditions, characterising the system,

to a simplified, yet highly nonlinear, evolution equation for the local thickness of

the liquid film, which we refer to as the thin film equation. Although lacking the

full mathematical complexity of the original free-boundary problem, the model

preserves many of the important features of its physics. We demonstrate the

derivation of the general thin film equation in Chapter 2.

Many practical processes require the spreading of a liquid on a solid surface [21,

97]. When a liquid makes contact with a solid, a three-phase contact line is

formed. This contact line may move along the surface of the solid, driven by

both the external fluid flow and the thermodynamically-determined contact angle

that the liquid-gas interface makes with the solid surface. Evaporation of thin

liquid films and sessile droplets has attracted much attention recently as a way

to study the dynamics of the contact line [88, 141], as well as a route to create

deposition patterns through sedimentation of solutes and suspensions on a solid

surface [40, 41, 169]. For small sessile droplets in well controlled experiments
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on smooth substrates the main influences are the liquid - substrate interactions

(wettability and capillarity). In Chapter 3 we present an isothermal version of

the thin film equation describing the influence of capillarity and wettability on

evaporation in the case of complete wetting. We discuss the possible role which

the steady states of a “fed” system play in the time evolution of freely evaporating

droplets.

An increasing number of experiments is now performed not only with simple but

also with complex liquids [40, 55, 118, 159, 188, 191]. Popular examples include

spreading and dewetting of films and droplets of polymer solutions or nanoparticle

suspensions [40, 191], as well as decomposition and dewetting of films of polymer

mixtures [55]. Films of complex liquids have various presently employed and many

further potential applications, but their properties are still not completely under-

stood. An important aspect of the problems associated with thin films of mixtures,

emulsions and suspensions is their stability. In many technological and everyday

processes where a uniform film is involved, e.g. wall paint or various coatings, it

is important that the film does not rupture and break up. On the contrary, for

butterflies and birds, it is important that water does not form a continuous wet-

ting film on their wings and bodies, but instead breaks up into droplets which can

easily fall off.

Although in these systems the wettability and capillarity still control their stat-

ical and dynamical properties, they may interact with other phenomena such as

the diffusive transport of the solute, phase transitions such as phase separation,

evaporation of the solvent and others. Therefore, the understanding of the un-

derlying thermodynamic behaviour is crucial for constructing a successful model

for the coupling between the processes. For the case of two-component mixtures,

nanoparticle suspensions and solutions, at least two dynamic equations are needed

- one for height and one for composition. In Chapter 2 we introduce a gradient

dynamics formulation for a films of complex liquids and show that it is equiva-

lent to thin film equations in the literature. Later, in Chapter 4 we employ the

derived dynamical model to study the linear stability of flat homogeneous films.

In particular, we investigate how the stability thresholds are influenced by the
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incorporation of an additional degree of freedom related to the concentration field.

We also analyse nonlinear thickness and concentration profiles for steady droplets

and relate them to the binodal curves obtained for the case of two coupled fields.

Finally, we look at the time evolution of flat homogeneous films with solute and

further discuss the dynamical effects of the coupled height and composition fluc-

tuations.

The physical phenomena that determine the shape of a sessile drop on a given

surface, hence the equilibrium three–phase contact angle, have been a subject of

interest for a long time now. Both particle–based and continuum models have been

applied in the last decades to study the behaviour of small quantities of liquids

on solid [13, 21, 162] and soft [109, 151] substrates both in equilibrium and in the

presence of driving [149, 173]. In Chapter 5 we compare the equilibrium properties

of small droplets by transferring information from a particle based simulation

technique (Molecular Dynamics) towards the continuum description provided by

the thin film theory in a region where both descriptions can be presumed valid.

We explore how the two models can be “coupled”, in particular applied to find out

what information one can pass from the particle–based model into the continuum

description and how and in what form it needs to be extracted. Then we use both

approaches to determine the equilibrium contact angle for droplets of various sizes

and strengths of interaction between the liquid and the substrate. Moreover, we

describe several ways the contact angle can be defined. By comparing the results

of the two descriptions we also explore the limits of applicability of the thin film

theory.

Finally, Chapter 6 summarises the results and gives concluding remarks.



Chapter 2

Basic concepts and background

theory

2.1 Wettability: interaction of a liquid film with

the substrate.

Figure 2.1: A sketch of three different types of wetting behaviour of a liquid
on a solid substrate: (i) complete wetting (left), (ii) non-wetting (middle) and

(iii) two cases of partial wetting (right).

The interactions arising between solid substrates with a smooth rigid surface and

free surfaces need to be taken into account when characterising the macroscopic

properties of a liquid in contact with a solid. One needs to take into account

the local properties of the system (e.g. surface or interfacial tension) along with

long-range forces (e.g. van der Waals interactions). Generally speaking, the van

der Waals forces act between all molecules, due to dipolar interactions. They are

5



Chapter 2. Basic concepts and background theory 6

called after the Dutch physicist Johannes Diderik van der Waals (Nobel Laureate

in Physics, 1910), because of his contribution in the development of the equation

of state for liquids and gases. The van der Waals forces are of a universal im-

portance - they arise between all combinations of surfaces and molecules. The

term “van der Waals forces” involves a range of interactions - Coulomb interac-

tion, monopole–dipole and dipole–dipole interactions, Debye interaction, Keesom

interaction and London dispersion interactions. They are all important in under-

standing the structure and phase behaviour of any type of systems where surfaces

and interfaces are involved [28, 74, 139]. The interactions in simple and multi-

component systems with surfaces/interfaces are usually related to the interactions

between molecules in a particular medium. This is of a major importance for self–

assembling systems involving polymers or/and surfactants, as the interactions and

the equilibrium structures strongly depend on the choice of solvent.

Generally, when a liquid comes into contact with a flat solid substrate, there are

three possible outcomes: (i) complete wetting – the liquid forms a flat film on the

substrate, corresponding to a zero equilibrium contact angle θE; (ii) non-wetting

– the formed droplet does not wet the substrate and forms an ideal sphere that

touches the substrate in a single point only, θE = π or (iii) partial wetting – the

liquid forms a droplet with a finite contact angle 0 < θE < π on the substrate.

The three possible situations are sketched on Fig. 2.1. In situation (iii) the border

of the region, where the liquid wets the substrate, is the so called contact line. For

droplets on a flat homogeneous surface with no lateral driving the contact line is

a circle.

One can approximate the contact line region by a macroscopic wedge, as shown in

Fig. 2.2, and assign a certain energy per unit area (or length in the 1-dimensional

case) to every interface – γSG for the gas–solid interfacial energy, γ for the gas–

liquid interface and γSL for the liquid–solid interface. For the finite contact angle

θE characterising the three-phase region, the Young–Laplace law is satisfied [39]

γSL + γ cos θE − γSG = 0. (2.1)
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Figure 2.2: A sketch of a liquid drop sitting on a solid substrate. The three-
phase contact line region is approximated by a wedge and the corresponding
solid-gas γSG, liquid–gas γ and solid–liquid γSL interfacial energies and the

equilibrium contact angle θE are indicated.

Equation 2.1 can also be interpreted as a mechanical force balance at the three–

phase contact line. It is best derived when considering a reversible change in

the position of the contact line, with the help of global energetic arguments [21,

39]. In that way the nature of the contact line region and thus the action of

the intermolecular forces is not considered. Accordingly, θE is understood to be

measured macroscopically, meaning it is done on a scale above the one of long–

range intermolecular forces.

Here, one defines the three interfacial tensions for the case when the three par-

ticipating media (liquid, solid and gas) are in a mechanical equilibrium with each

other. Additionally, one may consider a chemical equilibrium, that is matching

between the chemical potentials for each of the components of the system, and a

thermal equilibrium, which is a temperature balance between the liquid and the

gas phase, guaranteeing the gas is the saturated vapour of the liquid. The me-

chanical, chemical and thermal equilibrium altogether constitute a thermodynamic

equilibrium [21].

If, for a given combination of materials the interfacial tensions are known, then

one can directly predict the wetting regime of the fluid. The contact angle is zero

when γSG = γSL + γ. If γSG < γSL + γ, one observes a droplet with a finite
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contact angle, corresponding to the case of partial wetting. Partial wetting corre-

sponds to droplets, coexisting with a microscopically thin film absorbed at the solid

substrate, known as a precursor film. In a state of thermodynamic equilibrium,

molecules adsorbed onto the substrate are always present - the surface surrounding

the droplet is never completely dry. The case of complete wetting corresponds to

a macroscopically thick layer. For sufficiently thick films the interfacial energies

can be calculated using the assumption that the materials are in bulk state. An

interesting question is what exactly happens when the film becomes so thin that

one can not assign to it bulk properties anymore.

0
h

0

Π
 (

h
)

partial wetting
complete wetting

Figure 2.3: Schematic plots for two examples of disjoining pressure, modelling
partial wetting (blue line) and complete wetting (red line).

In 1960 Derjaguin and coworkers suggested that for the case of ultra-thin films

with thickness below 100 nm, an additional energy term f(h) needs to be taken

into account [74]. This dependence of the corresponding force on the film thickness

leads to an additional repulsion or attraction between the interacting interfaces.

It is usually included as an additional pressure term Π = −df(h)
dh

– the Derjaguin

(disjoining) pressure and can be introduced in the normal force boundary condition
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as an addition to the curvature pressure, or as an additional body force in the

Navier Stokes equation [39, 114]1.

It can be calculated for specific intermolecular interactions. Various expressions

for the disjoining pressure exist in the literature [39, 74, 76, 114, 121]. Fig. 2.3

shows a sketch of two commonly used forms of Derjaguin’s pressure modeling the

cases of partial and complete wetting. For example, if a long-range apolar van der

Waals interaction is considered [74, 93, 138, 153, 161, 162], the disjoining pressure

has the form

Π(h) = − A

6πh3
, (2.2)

where A is the Hamaker constant giving the strength of the interaction. It can

be calculated from the optical indices of the involved materials [74]. Note that

other sign conventions are also common (cf. e.g. [21, 39, 157]). Other forms of

Derjaguin’s pressure are found in the literature. Some of them, aimed to model

partially wetting liquids, combine destabilising short-range polar interactions and

stabilising long-range van der Waals interactions. For example, the combinations

of a term ∼ 1
h3

with a term proportional either to e−h or to 1
h6

are commonly used

[161, 173].

The conventional Hamaker constant A is defined as a material property that rep-

resents the strength of van der Waals interacions between macroscopic bodies. It

is measured in [Nm] and typical values of A lie in the range of 10−19 to 10−21 Nm

for interactions across vacuum. Historically, the Hamaker constant was derived

assuming purely additive interactions between the atoms of the involved materi-

als, completely ignoring polarisation effects (Derjaguin, 1934; Hamaker, 1937). A

1The original concept of disjoining pressure was first presented in Derjaguin’s work from 1936
[32], based on experiments with thin aqueous interlayers formed between two flat mica surfaces.
The action of the disjoining pressure is also the reason why liquid helium is known for spreading
on almost any surface. If poured in a deep vessel, it climbs the walls of the vessel to eventually
leave it. The reason for this behaviour is that the dielectric constant ε = 1.057 of liquid helium
is lower as compared to the dielectric constant of any other material, different than vapour. The
latter implies that there is a repulsive van der Waals force acting across the absorbed liquid
helium film which will try to make the film thicker, thus lowering its energy. However, when the
helium climbs up the wall this means the gravitational energy will start compensating for the
gained van der Waals energy - the film thickness will decrease as the height increases [74].
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solution to the problem, completely avoiding the issue of additivity, was later pro-

posed by Lifshitz. He developed a continuum theory which does not consider the

atomic structure of the substance [74, 127]. The Lifshitz theory will be discussed

in more detail in Section 4.2.1.

Generally, the Hamaker constant can be either positive or negative, resulting in

either repulsive or attractive van der Waals interaction. Typical positive values

are A ∼ 10−21 Nm for oil films on glass, quartz or mica [157]. If one considers

a liquid film of thickness ∼ 1 nm, then the Derjaguin pressure component will

be Π ∼ 106 kg/ms2. If one, for comparison, considers a sessile spherical oil drop

of radius 100 µm on a solid substrate, the capillary pressure inside the spherical

part of the droplet will be 60 kg/ms2. In the three-phase contact line region the

Derjaguin pressure is much larger than the capillary pressure and this is the reason

for the deviation of the drop shape from the ideal spherical shape in this region.

2.2 Derivation of the film thickness evolution equa-

tion

The derivation of the film thickness evolution equation in long wave approxima-

tion passes through the following steps: At first, the transport equation for the

momentum density (Navier-Stokes) and continuity equations are written down to-

gether with appropriate boundary conditions. Next, scaling is applied in order to

obtain dimensionless equations. A non-dimensional parameter ε = l/L is intro-

duced for long wave scaling, where l and L are the vertical and horizontal length

scales. All fields are expanded in series in ε which allows us to solve the transport

and continuity equations order by order. Finally, continuity is used to get the film

thickness evolution equation.
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2.2.1 Transport equation for the momentum density

As a starting point for the derivation of the thin film equation we write down the

transport equation for the momentum density (Navier-Stokes equation):

ρ
dv

dt
= ∇ · τ̂ + f , (2.3)

where v =

u
w

 is the velocity field, f =

f1

f2

 is the body force field and

∇ =

∂x
∂z

 in the two–dimensional case, to which we restrict our attention.

The stress tensor has the form:

τ̂ = −pÎ + η(∇v + (∇v)T ), (2.4)

where p(x, z) denotes the pressure field and Î is the identity tensor. The parame-

ters ρ and η are the density and the dynamic viscosity of the fluid.

Boundary conditions are set at the solid substrate and at the free surface. The

appropriate boundary conditions for the continuous film considered here are as

follows [161].

At z = 0 (substrate) we choose the no-slip and no-penetration condition:

v = 0. (2.5)

This condition implies that at the solid boundary the fluid will have zero velocity

relative to the boundary and the solid substrate is impermeable to the fluid - it

“sticks” to the surface.

At z = h(t, x) (free surface) we have the kinematic boundary condition:

w = ∂h + u∂xh (2.6)
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and the condition for force equilibrium:

τ̂ · n = nKγ + t∂sγ, (2.7)

where ∂s = t · τ̂ , pL = −Kγ is the Laplace or curvature pressure and ∂sγ is the

variation of the surface tension along the surface. The normal and tangent vector

of the surface are

n =
1√

1 + (∂xh)2
(−∂xh, 1),

t =
1√

1 + (∂xh)2
(1, ∂xh).

The curvature of the surface is

K =
∂xxh

(1 + (∂xh)3/2
.

Now we can write the vectorial boundary condition (2.7) as two scalar conditions,

by simply projecting it onto n and t, corresponding to normal and tangential force

conditions, respectively:

n : p+
2η

1 + h2
x

[−uxh2
x − wz + hx(uz + wx)] = − γhxx

(1 + h2
x)

3/2
; (2.8)

t : η[(uz + wx)(1− h2
x) + 2(wz − ux)hx] = ∂sγ(1 + h2

x). (2.9)

2.2.2 Dimensionless groups and numbers

In the following table a general set of scaling parameters is introduced [161]:
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Dimensionless t′ x′ z′ p′ v

Scale t0 = l
U0

l l P0 = ρU2
0 U0

Dimensional t = t0t
′ x = lx′ z = lz′ p = P0p’ v = U0v

′

Next we now go back to the momentum transport equations (2.3) and introduce

the scaled variables to obtain the following expression for its x component:

ρ
U2

0

l
(u′t + u′u′x + w′u′z′) = −ρU

2
0

l
p′x′ + η

U0

l2
(u′x′x′ + u′z′z′) + ρg sinα, (2.10)

where f = ρg = ρg(sinα, cosα) is assumed for a film or drop on an inclined surface

with inclination angle α.

Further simplification can be achieved by introducing the dimensionless numbers

of Reynolds and Froude:

Re =
U0lρ

η
, Fr =

U2
0

lg
. (2.11)

Using these non-dimensional numbers, the two components of equation (2.3) be-

come:

ut + uux + wuz = −px +
1

Re
(uxx + uzz) +

sinα

Fr
;

wt + wwx + wwz = −pz +
1

Re
(wxx + wzz)−

cosα

Fr
, (2.12)

where we have dropped the dashes for simplicity.

If one examines these dimensionless numbers, one notices that in this case the

Reynolds numbers stands for the ratio of the selected velocity scale and the viscous

one, and the Froude number corresponds to the squared ratio of the selected

velocity scale and the gravitational one.
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This scaling is general unless the used scales l and U0 are specified. All scales

introduced above are based on the same length l and velocity U0. However, this

is not compulsory. For example, a number of appropriate scales for the case of

thin film flowing on an inclined substrate exist, any of which leads to different

expressions for the dimensionless numbers. We will use the so called “viscous”

scaling based on the viscous velocity scale:

U0 =
η

ρl
. (2.13)

It implies
1

Re
→ 1, G :=

1

Fr
→ gl3ρ2

η2
, (2.14)

where G is the Galilei (gravitational) number.

The introduced scaling brings us to the following form of the non-dimensional

momentum equations:

ut + uux + wuz = −px + uxx + uzz +G sinα,

wt + uwx + wwz = −pz + wxx + wzz −G cosα. (2.15)

The non-dimensional tangential and normal boundary conditions (2.9) and (2.8)

become:

(uz + wx)(1− h2
x) + 2(wz − ux)hx = 0; (2.16)

p+
2

1 + h2
x

[−uxh2
x − wz + hx(uz + wx)] = − 1

Ca

hxx
(1 + h2

x)
3/2

+ Π, (2.17)

where Ca = η2

γ0lρ
is the capillary number. Here γ0 is defined as γ0 = γ(T0) if a

linear dependence of surface tension on temperature is assumed. However, the

possibility for dependence of γ on the temperature will not be discussed further

in the Thesis as no thermal effects will be considered.

Π is the Derjaguin’s (disjoining/conjoining) pressure introduced in Section 2.1 and

it is scaled using the standard pressure scale.
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2.2.3 Long-wave scaling

Consideration of the geometry of the thin film and particularly the disparity of the

length scales leads us to further simplification of the Navier - Stokes equations. The

procedure is based on an asymptotic reduction of the full set of governing equations

and boundary conditions. The model obtained may not have the mathematical

complexity of the original free-boundary problem, but it still preserves many of the

important physical features of the described system [161]. In the case of thin film

geometry all length scales parallel to the substrate L (e.g. periods of surface waves

or drop length), are large if compared to the film thickness l. This observation

prompts us to introduce the smallness parameter ε, defined as follows:

ε =
l

L
, l� L.

Next, two separate scales are introduced for the two coordinates x and z:

x = Lx′ =
l

ε
x′, z = lz′. (2.18)

Because of continuity, the velocity components also scale differently:

u = U0u
′, w = εU0w

′. (2.19)

The time is scaled as

t =
L

U0

=
l

εU0

t′. (2.20)

The rescaled non-dimensional momentum equations have the form

ε(ut + uut + wuz) = −εpx + ε2uxx + uzz +G sinα;

ε2(wt + uwx + wwz) = −pz + ε3wxx + εwzz −G cosα; (2.21)

ux + wz = 0.
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The boundary conditions become

(uz + ε2wx)(1− ε2h2
x) + 2ε2(wz − ux)hx = 0;

p+
2

1 + ε2h2
x

[−ε3uxh2
x − εwz + εhx(uz + ε2wx)] = − 1

Ca

ε2hxx
(1 + ε2h2

x)
3/2

; (2.22)

w = ht + uhx.

2.2.4 Small inclination or horizontal substrate

The standard procedure for solving the rescaled momentum equations involves

expansion of all fields as series in ε so the equations can be solved order by order.

The resulting non-linear partial differential equation [15] explicitly contains ε so

it consists of terms of different order. The approach used here for studying the

situation of a thin liquid film on a slightly inclined or horizontal solid substrate

suggests that all physically interesting effects enter the lowest order equations. To

achieve this, the dependent variables and dimensionless numbers are rescaled. A

new O(1) variable is introduced, considering the inclination of the substrate to be

small (α� 1):

α′ =
α

ε
≈ sinα

ε
=⇒ sinα→ εα′, cosα→ 1−O(ε2)

One further chooses

Ca′ =
Ca

ε2
; v =

v′

ε
,

where the fact that for small α all velocities are small is taken into account. Now

we can drop the dashes and write the transport equations to the lowest order in ε:

uzz = px −Gα, (2.23)

pz = −G. (2.24)
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The continuity equation writes

ux + wz = 0. (2.25)

The boundary condition at z = 0 is

u = w = 0. (2.26)

The boundary conditions at the surface z = h(x) are written as

w = ∂th+ u∂xh, (2.27)

uz = 0, (2.28)

p = −hxx
Ca

+ Π. (2.29)

After solving the system, the pressure and velocity fields are obtained:

p(x, z) = −Gz +Gh− Π(h)− hxx
Ca

, (2.30)

u(x, z) =

(
z2

2
− zh

)
(px −Gα). (2.31)

Finally, from the kinematic boundary condition and continuity equation we obtain

∂th = −∂xΓ, Γ =

∫ h

0

udz. (2.32)

Here Γ is the flow in the laboratory frame. Substituting (2.30) and (2.31) into

(2.32), we obtain the general hydrodynamic form of the thickness evolution equa-

tion for a film on a slightly inclined substrate:

∂th = −∂x
{
h3

3

[
∂x

(
hxx
Ca
−Gh− Π(h)

)
+Gα

]}
. (2.33)
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2.3 Hydrodynamic formulation of the thin film

equations for simple and complex liquids.

2.3.1 Simple liquids on horizontal substrates

Without lateral driving, for dewetting and spreading of simple liquids on a smooth

horizontal substrate under the sole influence of capillarity and wettability (G = 0),

Eq. (2.33) takes the form

∂th = −∇ ·
[
h3

3η
∇(γ∆h+ Π(h))

]
, (2.34)

where we have reintroduced the dimensions in order to allow for easier identifi-

cation of the physical meaning of the individual terms. Here η is the dynamic

viscosity of the liquid and the pressure term in the brackets on the right hand side

consists of the curvature pressure γ∆h and the disjoining (Derjaguin) pressure

Π(h) = −∂hf(h), modelling wettability.

This equation can be formulated as a gradient dynamics for the film thickness

field, which is conserved

∂th = ∇ ·
[
Q(h)∇δF

δh

]
, (2.35)

where F [h] is the energy functional

F [h] =

∫ [γ
2

(∇h)2 + f(h)
]
dV, (2.36)

δ
δh

is a functional variational derivative with respect to h and Q(h) = h3/3η

is the mobility for the case of Poiseuille flow in the film and no-slip boundary

conditions at the substrate. Equations of the form of (2.35) exist in various areas

and examples include the Cahn-Hilliard equation for the demixing of a binary

mixture [30], evolution equations for the density in the framework of Dynamical

Density Functional Theory [10, 96], as well as phase field crystals [51, 98, 181].
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The gradient form (2.35) of the thin film evolution equation is very versatile - it

allows for incorporation of various effects. For example, one can include in (2.36)

additional terms accounting for substrate heterogeneties [78, 145, 165], hydrostatic

effects [114], temperature differences [18, 115, 167], electrical fields [91, 166], etc.

Recently, experiments involving complex liquids are becoming very popular, due to

their numerous potential applications such as ink-jet printing, emulsion stability,

in nanofluidics, etc. [57, 66, 135, 136, 183]. Examples of the involved phenomena

include dewetting of films and droplets of volatile or non-volatile solutions of poly-

mers or nanoparticle suspensions [42, 191], dewetting of polymer mixtures [55],

spreading of drops covered by soluble or insoluble surfactants [159], the spreading

of nanoparticle suspensions [188] and nematic liquid crystals [126], etc. In these

systems the interfacial effects may couple with diffusive transport of solutes or sur-

factants, as well as phase separation and evaporation/condensation of the solvent.

The theoretical models for systems in which effects like these are involved are still

not complete, as suggested in Section 1.

Next, we are going to present a thin film description for a class of complex liquids,

e.g. solutions and suspensions in the limit of small concentration, on homogenous

horizontal substrates. We are going to discuss how it can be reformulated based

on an underlying free energy functional which in consequence will allow us to

incorporate additional physical effects.

2.3.2 Complex liquids on horizontal substrates

By definition, in the long-wavelength (or long-wave) approximation, all variations

along the film are much more gradual than those normal to it, and the variations

are slow in time [114]. For the case of a thin film of a non-volatile mixture that

partially wets a flat solid substrate, this would imply that all surface slopes and

lateral gradients of the film thickness and solute concentration are small. Using

the long-wave approximation we arrive at two coupled evolution equations for the

thickness of the mixture film h and the local amount of solute ψ = hφ, where φ is
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the vertically averaged solute concentration [53, 187]. They read

∂th = ∇ · [Q(h, φ)∇p(h)] ; (2.37)

∂t(φh) = ∇ · [φQ(h, φ)∇p(h)] +∇ · [D(φ)h∇φ] , (2.38)

where the mobility is Q(h, φ) = h3/3η(φ). The dynamic viscosity may be a con-

stant η(φ) = η0 or a possibly strongly non-linear function of the local solute

concentration as, e.g., given by the Krieger-Dougherty law [87, 131].

The term on the right hand side of Eq. (2.37) represents the convective flow of the

liquid which is driven by the pressure gradient. The pressure term p(h) consists

of Laplace and Derjaguin contributions as the one discussed in Section 2.3.1.

The two terms on the right hand side of Eq. (2.38) model convective and diffusive

transport of the solute, respectively. D(φ) is the diffusion coefficient for which

the Einstein-Stokes relation is used, i.e. D(φ) = kBT/6πr0η(φ), where kB is the

Boltzmann constant, T the temperature, and r0 – the particle radius.

One may write Eqs. (2.37) and (2.38) in the alternative form

∂th = −∇ · jconv, (2.39)

∂tψ = −∇ ·
(
ψ

h
jconv + jdiff

)
(2.40)

where

jconv = −Q(h, ψ)∇p(h, ψ), (2.41)

jdiff = −D
(
ψ

h

)
h∇
(
ψ

h

)
. (2.42)

For a relaxational system (i.e., a system approaching thermodynamical equilibrium

due to energy redistribution in response to external perturbation), the convective

jconv and the diffusive jdiff fluxes can be reformulated as a gradient dynamics based
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on an underlying free energy functional [163]. In consequence one finds

jconv = −Qhh∇
δF

δh
−Qhψ∇

δF

δψ
, (2.43)

jdiff = −Q̌ψψ∇
δF

δψ
, (2.44)

where the mobility functions are

Qhh =
1

3η
h3, (2.45)

Qhψ =
1

3η
h2ψ, (2.46)

Q̌ψψ =
1

η
D̃ψ (2.47)

and η is the dynamical viscosity of the mixture. The Qij form the symmetric and

positive definite mobility matrix Qhh Qhψ

Qψh Qψψ

 , (2.48)

where

Qψψ = Q̂ψψ + Q̌ψψ =
hψ2

3η
+
D̃ψ

η
. (2.49)

The viscosity may be constant or depend on the local solute concentration.

In order to obtain Eq. (2.44), the diffusion flux (2.42) is reformulated as a gradi-

ent dynamics based on the Helmholtz free energy for an ideal gas, or a medium

consisting of non-interacting particles

F [φ] =

∫
V

kbT

a3
φ lnφds. (2.50)

The transport equation for a solute in a bulk situation can be brought into the

form

∂tφ = ∇ ·
[
Q(φ)∇δF [φ]

δφ

]
. (2.51)
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To recover the diffusion equation, one needs to make an appropriate choice for

the mobility function Q(φ). One chooses Q(φ) = −D̃φ, where D̃ is a molecular

mobility. The diffusive part of Eq. (2.40) (in the bulk, or simply for imposed

fixed h) writes ∂tφ = −∇ · jdiff with jdiff = −D̃φ∇µφ = − D̃kbT
a3

= −D∇φ, the

latter being the classical diffusion equation. Here µφ is the chemical potential

µφ = δF [φ]
δφ

= kbT
a3

lnφ.

Thus, equations (2.39) and (2.40) can be reformulated in the form of a gradient

dynamics for the two conserved fields h and ψ

∂th = ∇ ·
[
Qhh∇

δF

δh
+Qhψ∇

δF

δψ

]
, (2.52)

∂tψ = ∇ ·
[
Qhψ∇

δF

δh
+Qψψ∇

δF

δψ

]
. (2.53)

There are other types of relaxational physical systems where the evolution of two

coupled fields is described by a set of equations in the same form. A particularly

good example is the evolution of a two-layer liquid films [124], and some general

results for it can be used for the presently studied system of a film of a mixture,

particularly the techniques for the linear stability analysis of homogeneous states.

The formulation, represented by equations (2.52) and (2.53) allows for an incorpo-

ration of various physical effects via the inclusion of various terms in the free energy

functional. They may account, for instance, for solvent-solute interactions result-

ing possibly in phase decomposition, concentration-dependent dispersion forces

(wettability), entropic terms accounting for mixing in the case of polymers and

solutions, etc.

In the following Chapter 3 we are going to employ a variant of Eq.(2.34) that will

allow us to study the evolution of evaporating droplets which are “fed” through

the substrate and discuss the effects of wettability and capillarity on evaporation.



Chapter 3

The relation of steady

evaporating drops fed by an influx

and freely evaporating drops

In this Chapter we discuss a thin film evolution equation for a wetting evaporat-

ing liquid on a smooth solid substrate. The model is valid for slowly evaporating

small sessile droplets when thermal effects are insignificant, while wettability and

capillarity play a major role. The model is first employed to study steady evap-

orating drops that are fed locally through the substrate. An asymptotic analysis

focuses on the precursor film and the transition region towards the bulk drop and

a numerical continuation of steady drops determines their fully non-linear profiles.

Following this, we study the time evolution of freely evaporating drops without

influx for several initial drop shapes. As a result we find that drops initially

spread if their initial contact angle is larger than the apparent contact angle of

large steady evaporating drops with influx. Otherwise they recede right from the

beginning.

23
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3.1 Introduction

Evaporation of thin liquid films and sessile droplets has attracted much attention

both as the way to probe the dynamics of the contact line [88, 141] and as a route

to create deposition patterns through sedimentation of solutes and suspensions

[40, 41, 71, 169]. A number of studies concentrate on problems pertinent to any

evaporation process, which include mass and heat transfer and thermocapillarity

[4, 7]. For slowly evaporating small sessile droplets studied in contemporary well-

controlled experiments on smooth surfaces [29, 141], thermal effects are, however,

insignificant, while contact line dynamics and liquid-substrate interactions play

a major role. It has been suggested that the relation between spreading and

evaporation/condensation goes both ways, so that the latter may alleviate the

notorious contact line singularity [123, 189]. For background on spreading see,

e.g., [21, 158].

A remarkable phenomenon observed in evaporating completely wetting liquids is

the formation of a dynamic meniscus with a finite contact angle [41]. The stan-

dard approach to computing the form of a spreading and evaporating drop and the

resulting dynamic contact angle [7, 69, 125] is based on the lubrication approxi-

mation with the singularity at the contact line alleviated by slip. The mechanisms

limiting the evaporation rate can be of different character. One possibility, real-

ized in the presence of a temperature difference between the substrate and vapor

phase [7], is the evaporation rate determined by the balance of latent heat and

heat flux. The evaporation rate is then uniform in the limit of small Biot numbers,

but diverges near the contact line in the opposite limit. The model, considered in

[7] has been earlier applied for the description of isothermal spreading of droplets

with unsteady and capillary effects [58]. For thin droplets the evaporation rate is

uniform (as long as the layer thickness remains outside the range of intermolec-

ular forces) when evaporation is controlled either by phase transition kinetics at

the interface or by diffusion through a boundary layer of constant thickness in a

stirred vessel. Another possibility is to consider the diffusion of the liquid vapour

away from the droplet to be the evaporation-limiting mechanism. If evaporation is
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diffusionally controlled with no stirring, the evaporation rate increases towards the

contact line; an analytical solution based on interfacial equilibrium with no flux

onto the unwetted substrate yields the flux diverging on the contact line [42, 125].

The approach taken in [48, 49, 148] accounts for the influence of the thermal

conductivity of the substrate and the dependence of the vapor saturation concen-

tration on temperature. It generalises the model suggested by [42] by including

the effect of evaporative cooling on the vapour saturation concentration at the free

surface of the drop, as well as the dependence of the diffusion coefficient of vapour

on the atmospheric pressure.

The aim of the present Chapter is to present a simple isothermal thin film evolu-

tion equation with evaporation limited by phase transition kinetics (or boundary

layer transfer, but not diffusion), that correctly describes the influence of effective

molecular interactions on evaporation in the case of complete wetting. This is

achieved by taking into account the dependence of the saturated vapor pressure

on the disjoining pressure and curvature in the way it has been done in studies

of the dynamics of evaporating films [93, 116, 122] but not in the cited studies

of droplet spreading. This allows us to describe in a consistent way the transi-

tion from the bulk droplet to a precursor layer and eliminate singularities at the

contact line. Note however, that our model may be obtained as the isothermal

limit of the models in [4, 133], i.e., letting the difference of substrate and ambient

temperature, and the latent heat go to zero. It also corresponds to the limit of

infinite thermal conductivity of the liquid.

Following [7, 69], we consider a two-dimensional “fed” system that allows us to

study steady states of evaporating droplets. These steady states are compared to

droplet shapes resulting from a time evolution of an evaporating droplet (without

influx). The comparison will be employed to discuss a possible special role the

steady state profiles play in the time evolution. A related approach is taken in

Ref. [5] where steady fronts of evaporating liquid on an incline are considered.

The Chapter is structured as follows. The following section 3.2 introduces our

model and discusses the scaling, whereas section 3.3 discusses the asymptotics
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in the precursor film. Section 3.4 discusses the properties of steady drops with

influx as a function of the influx strength and of the single remaining dimensionless

parameter. The time-evolution in the case without influx is analysed in section 3.5

where we also compare the steady drop profiles in the case with influx to the time-

dependent profiles in the non-fed case. Section 3.6 gives our conclusions.

Note that the model we present here was previously discussed by Pismen [122].

The extension of the model towards including an influx to study steady states was

suggested by Thiele and Pismen. Todorova and Thiele calculated the steady states

discussed in Section 3.4. Todorova performed the time-dependent simulations in-

troduced in Section 3.5.

3.2 Basic Model and Scaling

For simplicity, we restrict our attention to a two-dimensional system as sketched

in Fig. 3.1. Conceptually, there exists no difference to the full three-dimensional

system, we only expect the transport rates to change.

q(x)

z

x h
0

h(x)

jevap(x)

Figure 3.1: Sketch of the two-dimensional geometry employed for investigating
an evaporating droplet with localised influx q(x).

Using the lubrication approximation, the evaporation dynamics for an isothermal

droplet of liquid on a porous substrate is captured by an evolution equation for
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the film thickness profile h [93, 114, 122, 162]

∂t h = −∂x jconv(x)− jevap(x) + q(x), (3.1)

jconv(x) = −h
3

3η
∂xp, jevap(x) = β

(
p

ρ
− µ0

)
,

p = −γ ∂xxh− Π(h). (3.2)

Eq. (3.1) was presented as Eq. (2.34) in Section 2.3.1 without the 2-nd and 3-rd

terms on the right hand side. The first and second term on the r.h.s. of Eq. (3.1)

are the divergence of the convective flux jconv(x) and the evaporative flux jevap(x),

which correspond, respectively, to the conserved and non-conserved part of the

dynamics. This form of the evaporative flux implies the evaporation is limited

by phase transition kinetics (or boundary layer transfer, but not diffusion). The

function q(x) is the influx through the (locally) porous substrate. The evaporative

flux is proportional to the difference between the chemical potential of the ambient

vapour and the chemical potential in the liquid µ = p/ρ; p is pressure, β is

an effective evaporation rate constant; and γ, ρ and η are the surface tension,

mass density and dynamic viscosity of the liquid, respectively. The pressure p

contains the curvature pressure −γ∂xxh and the disjoining pressure Π(h) modelling

wettability, introduced in Section 2.1; the hydrostatic pressure is neglected as we

focus on nano- and micro-droplets.

To model a droplet of completely wetting liquid, we employ a long-range stabilising

van der Waals disjoining pressure Π = −A/(6πh3) with the Hamaker constant

A < 0.

The model (3.1) is related to various models in the literature: it may be obtained

from the one in [93] by adding an influx and replacing the disjoining pressure

for a partially wetting liquid by one for a wetting liquid. The models in [4, 133]

incorporate various thermal aspects that are here neglected by assuming that

the latent heat is very small or/and the thermal conductivity is very large. The

same applies to the steady state description in [105]. Note that our model also

corresponds to the one in [133] in the limit of zero superheat.
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A dimensionless form of Eqs. (3.1) and (3.2) can be obtained by choosing the

characteristic energy density of molecular interactions between the fluid and sub-

strate κ = |A|/(6πh3
0) as the pressure scale and the equilibrium film thickness

h0 = |A/(6πρµ0)|1/3 corresponding to the ambient vapour potential µ0 as the

scale of film thickness h (note that µ0 < 0 when a thick flat film evaporates). The

horizontal coordinate x and time t can be scaled in several ways [122]. A short

horizontal length scale

l =

√
γh0

κ
= h2

0

√
6πγ

|A|
=

(
|A|
6π

)1/6 √
γ

|ρµ0|2/3
(3.3)

is fixed by the balance between disjoining pressure and surface tension at the

thickness of the wetting layer, and determines the extent of a region adjacent to

the contact line where the interface may be strongly curved due to interaction

with the substrate. The lubrication approximation remains formally applicable

as long as l far exceeds h0. Note, however, that lubrication approximation often

still predicts the qualitative behavior for many systems with larger contact angles

[76, 114]. When considering the results obtained with models like Eqs. (3.1),

one has always to keep in mind that even very large contact angles obtained in

lubrication approximation (measured as slopes at the inflection point of the drop

profiles) correspond to rather small angles in physical sense.

Another horizontal scale, applicable in the precursor layer, is determined by the

balance of flow driven by the disjoining pressure gradient and evaporation:

L =

√
h3

0ρ

βη
=

√∣∣∣∣ A

6πµ0βη

∣∣∣∣. (3.4)

This scale is large when evaporation is slow. It is appropriate to choose L as the

horizontal scale, assuming it to be of the same order of magnitude as the third

available scale – the droplet size. The respective time scale is T = (L/h0)2η/κ,

and the flux jconv is scaled by h0L/T .
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Retaining the same notation for the rescaled variables, we rewrite Eqs. (3.1) and

(3.2) as

∂t h = −∂x jconv(x) +

(
ε ∂xxh +

1

h3
− 1

)
+ q(x), (3.5)

jconv(x) =
h3

3
∂x

(
ε ∂xxh +

1

h3

)
, (3.6)

where the parameter

ε =
(6π)2/3γβη

|A|2/3ρ4/3|µ0|1/3
(3.7)

denotes the scale ratio (l/L)2. It is proportional to the evaporation rate constant

β, but contains as well a weak dependence on the chemical potential µ0 in the

denominator. Note that the choice of the two length scales l and L does not imply

for the parameter ε to be a small number.

In the following we will study steady state droplets that are obtained for an influx

q(x) localised at the centre of the drop (section 3.4). Below, the steady profiles

are compared to time simulations without influx for different initial profiles (sec-

tion 3.5). First, however, we discuss the asymptotics in the precursor film.

3.3 Asymptotics in the precursor film

In the outer precursor region, the film is almost flat and surface tension can be

neglected, i.e., we set ε = 0 in Eqs. (3.5) and (3.6) and assume q(x) = 0. In

the linear regime the film thickness decays exponentially to its equilibrium value

h = 1:

h− 1 ∼ exp(−
√

3x). (3.8)

Note the difference from the non-physical asymptotics h ∼ x1/4 in [125] where

the dependence of the evaporation equilibrium on the disjoining pressure was ne-

glected. The latter profile corresponds to the well-known result of de Gennes [39]

who failed to recognise it as an unstable solution.
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To discuss the nonlinear behaviour we convert Eqs. (3.5) and (3.6) to the stationary

equation
d2 lnh

dx2
= 1− 1

h3
. (3.9)

This equation is solved by using h as an independent variable, and y(h) = (d lnh/dx)2

as a dependent variable. The transformed equation is

y′(h) =
2

h

(
1− 1

h3

)
. (3.10)

It is integrated with the boundary condition y(1) = 0 to yield

y(h) = 2

[
lnh − 1

3

(
1− 1

h3

)]
. (3.11)

The precursor film profile is obtained in an implicit form

√
2x =

∫ [
H − 1

3

(
1− e−3H

)]−1/2

dH, (3.12)

where H = lnh. This solution, shown in Fig. 3.2, formally implies a very fast
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Figure 3.2: The solution for the film thickness profile given in an implicit form
in Eq. (3.12).

growth h ∼ exp[(x − x0)2] towards the bulk of the droplet. It becomes, however,

inapplicable as h grows, necessitating a modified scaling. One can see that the two

terms in the r.h.s. of Eq. (3.6) become, up to logarithmic corrections, comparable

at h ∼ ε−1/4, which, though appreciably exceeding the thickness of the equilibrium
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wetting layer h = 1, may be still far below the height of the bulk droplet. As follows

from Eq. (3.11), the incline at this thickness level is, up to logarithmic corrections,

hx = h
√
y(h) ∼ ε−1/4 in agreement with results by Morris [105, 106]. This sheds

light on the origin of a finite contact angle in an evaporating droplet. As we will

see below in section 3.4 the numerically obtained dependence agrees well with the

asymptotic result.

The flux J from the droplet bulk into the precursor at a “transitional” location

X corresponding to the thickness level h = ε−1/4ζ is determined by the total

evaporation rate from the precursor, which can be obtained directly from Eq. (3.9):

J =

∫ ∞
X

(
1− 1

h(x)3

)
dx = −

(
d lnh

dx

)
x=X

≈

√
2

(
ln

ζ

ε1/4
− 1

3

)
. (3.13)

The dependence both on ε and on a precise choice of the level ζ is very weak.

The rest of evaporation goes at an almost constant rate from the bulk of a large

droplet.

3.4 Steady state droplets with influx

For zero influx through the porous substrate (q(x) = 0) the only steady state

solution is h = h0. However, for q(x) 6= 0 steady droplets may exist with a volume

determined by the dynamic equilibrium between the overall influx through the

substrate and the overall evaporation flux.

Here we use continuation techniques [45–47] to numerically analyse the steady

state solutions of Eqs. (3.5) and (3.6), i.e., we set ∂t h = 0 and solve the resulting

ordinary differential equation as a boundary value problem on a domain of size

D with the boundary conditions (for a symmetrical drop) ∂xh = ∂xxxh = 0 at

x = 0 (drop centre). At x = D we employ either h = 1 and ∂xh = 0, or ∂xh = 0

and ∂xxh = 0. If the domain is sufficiently large the results depend neither on

the particular choice of D nor on the used version of boundary conditions at

x = D. For details on the usage of continuation methods for thin film equations



Chapter 3. Evaporating drops 32

see, e.g., Refs. [170], [75] and [168] where they have been employed to study sliding

drops, chemically driven running drops and drops pinned by wettability defects,

respectively.

For the influx q(x) we use a normalised Gaussian

q(x) = q0
2

σ
√
π

exp

[
−x

2

σ2

]
(3.14)

with q0 =
∫∞

0
q(x)dx being the total influx through the substrate. If the droplet

size is large as compared to the width σ, the results do not depend on the particular

choice of σ.

In order to produce localized droplets, for a flat film of thickness hp = 1 (corre-

sponding to the equilibrium film thickness) we continuously increase the parameter

q0 from 0 towards a finite value. Next, to investigate the influence of a chosen pa-

rameter, we choose one of the solutions produced for chosen value of q0 and vary

the parameter of interest.
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Figure 3.3: For the case of small droplets we give (a) droplet profiles and (b)
evaporation flux in dependence of position for ε = 1.0 and various total influxes

q0 as given in the legend. Domain size is D = 10, and σ = 0.1.

Figs. 3.3 and 3.4 show profiles of rather small (nano-)droplets (left panels) and

the corresponding dependencies of the evaporative flux on position (right panels).

The results are given for various moderate values of the influx q0 (Fig. 3.3) and

the length scale ratio ε (Fig. 3.4). In all shown cases these droplets are not much

higher than the wetting layer. For such small drops the behaviour is dominated
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Figure 3.4: For the case of small droplets we show (a) droplet profiles and (b)
evaporation flux in dependence of position for q0 = 2.5 and various ε as given

in the legend. Domain size is D = 10, and σ = 0.1.

by the influence of the disjoining pressure. In consequence, the evaporation de-

creases monotonically from the center of the drops towards the contact region.

Interestingly, in all cases the droplet assumes a shape that does not allow for any

condensation of liquid even in the contact line region where the Laplace pres-

sure is negative. Note that there exists a one-to-one correspondence between the

strength of the influx q0 and droplet volume for fixed ε. This implies that one may

characterise the relative size of droplets either by volume or by influx q0.

For extremely small drops (see, e.g., profile for q0 = 0.5 in Fig. 3.3) the disjoining

pressure influence is stronger than the capillary pressure even at the drop centre.

As a result, the absolute value of the evaporation flux jevap is smaller than one

even at the centre of the drop. For slightly larger drops (see, e.g., profile for

q0 = 2.5 in Fig. 3.3) the capillary pressure dominates the disjoining pressure at

the drop centre and jevap is larger than one. With a further increase in drop size the

influence of the capillary pressure diminishes and jevap eventually approaches unity

everywhere with the exception of the contact line region (cf. Fig. 3.5). The latter

means that with the exception of the contact line region, where the capillarity and

wettability play role, the evaporation is controlled exclusively by the equilibrium

vapour pressure.

Decreasing ε mainly influences the height of the droplets while the width remains

roughly constant [Fig. 3.4(a)]. This implies that the curvature at the drop centre

and the apparent contact angle θapp (defined as the maximal slope of the drop
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Figure 3.5: For the case of large drops we show for ε = 10−6 (a) drop profiles
and (b) evaporation flux in dependence of position. Results are given for various
total influxes j0 and droplet volumes V (see legend). The thin dotted line in (a)
gives for the largest drop the corresponding parabolic drop profile of identical
maximal height and curvature at centre (corresponding to a spherical cap in
lubrication approximation). Panel (c) shows log h to indicate the universal
behaviour near the contact line (drops shifted in x). The dotted line indicates
the linear result h − 1 ∼ exp(−

√
3x) [Eq. (3.8)]. Domain size is D = 50, and
σ = 0.1.
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Figure 3.6: Shown are (a) drop volume and (b) the apparent contact angle
θapp (defined as the maximal slope of the drop profile), in dependence of total
influx q0 for various length scale ratios ε as given in the legend. The straight

dotted [dashed] lines indicate linear [quadratic] dependencies, respectively.
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profile), increase with decreasing ε. However, although curvature increases we find

that the influence of capillarity on the evaporation flux decreases [Fig. 3.4(b)]. For

ε = 0.01, one has at the drop centre jevap slightly above one. Furthermore, at the

same ε, jevap has already a small plateau at the drop centre, i.e., the flux is nearly

constant at the value determined solely by the chemical potential.

The influence of the source width σ is marginal as long as it is sufficiently smaller

than the droplet width. For moderately large width it has still no influence on the

contact line region but has some influence on the center of the drop. Increasing,

for instance, σ from 0.1 to 1.0 at constant j0 = 2.5 and ε = 1 the drop volume

goes up by about 5%. Decreasing σ down to 0.001 has no visible influence on the

droplet shape.

The droplets discussed up to this point represent nano-droplets of heights normally

below 500 nm. However, for much smaller ε or much larger q0 one is able to study

micro-droplets with heights in the 10-100 µm range. Fig. 3.5 shows profiles of

such drops and the local evaporative flux for ε = 10−6. For such large drops

the local evaporation is essentially constant for the ’bulk drop’ and decreases

monotonically in a confined contact region [Fig. 3.5(b)]. Panel (c) of Fig. 3.5

shows the logarithm of h − 1. By shifting the drops in the x-direction one can

appreciate that the approach to h = 1 is universal and well described by the linear

relation h− 1 ∼ exp(−
√

3x) derived above (see Eq. (3.8) in section 3.3).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ε
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

vo
lu

m
e

1e6
1e5
5e3
5e2
50
5

Vε=1

(a)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ε
1

10

100

θ ap
p

1e6
5e3
5e2
50
  5

Vε=1

ε−1/4

(b)

Figure 3.7: Shown are (a) drop volume and (b) apparent contact angle in
dependence of the length scale ratio ε. The total influx q0 is constant for each
line, respectively. The lines are characterised by the drop volume at ε = 1.0

(see legends).
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When increasing the influx for fixed ε the steady drops become larger in width

and height [Fig. 3.3(a)]. This is indicated as well by the dependence of volume

on influx [Fig. 3.6(a)]. The corresponding apparent contact angle is shown in

Fig. 3.6(b). One clearly distinguishes a small-drop and large-drop regime with a

crossover at about V = 1. In the small-drop regime volume and contact angle

are both proportional to the influx. In the large-drop regime the contact angle

approaches a constant (or increases with growing influx following a power law

with an exponent smaller than 1/5), whereas the volume depends quadratically

on influx. The latter is easily explained noticing that the evaporative outflux for

large drops is proportional to the surface “area” of the drop (negligible influence

of Laplace and disjoining pressure). For a constant contact angle the area under

the parabola depends quadratically on its arc length. For the influx to balance

the outflux, the surface area has to grow proportionally with the influx, i.e., the

volume increases quadratically with the influx.

Inspecting Fig. 3.6 further, one notices that the overall behaviour is different for

larger (ε & 10−3) and smaller (ε . 10−3) drops. In the former case the transition

between the small-drop and large-drop regime is monotonic, i.e., the slopes of the

curves in Fig. 3.6 change monotonically. In contrast, for small ε . 10−3 in the

transition range one may define a third region where the slopes of the V (q0) and

θapp(q0) curves pass through a maximum.

The tendency towards a constant contact angle for increasing volume can also be

observed in Figs. 3.7(a) and (b) where we plot the drop volume and the apparent

contact angle, respectively, as a function of the length scale ratio ε for various fixed

influxes for rather large drops. We find that for large drops, the volume as well

as the contact angle decrease for increasing length scale ratio ε roughly as ε−1/4.

This agrees with the asymptotic expression determined above in Section 3.3.

For smaller drops, deviations from the power law are found at larger ε. Inter-

estingly, the dependence of the contact angle on ε seems to approach a limiting

curve for large drops. In the following, we employ the curve for the largest drops
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in Fig. 3.4 as an approximation to the asymptotic dependence of θapp on ε for

infinitely large drops.

3.5 Time evolution without influx

Next, we study the time evolution of evaporating droplets without influx through

the substrate, i.e., we simulate Eq. (3.5) with q(x) = 0. The domain size D and

boundary conditions at x = 0 and x = D correspond to the ones used in the

steady state calculations in the previous section. We use three different initial

profiles hi(x) = h(x, t = 0) of equal maximal height hm and volume V : (i) a

parabola hi(x) = (hm − 1)(1 − x/xc)2 + 1 with xc = 3V/(hm − 1) for 0 ≤ x ≤ xc

and hi(x) = 1 for x > xc; (ii) a Gaussian hi(x) = (hm − 1) exp((x/σ)2) + 1 with

σ = 2V/
√
π(hm − 1); and (iii) the steady-state solution of identical V and hm

obtained in section 3.4.
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Figure 3.8: Space-time plot of an evaporating droplet for ε = 10−4. The initial
profile is a parabola on a precursor film of thickness hp = 1. It has a volume
of V = 1000 and maximal height of Hmax = 140.6. The corresponding contact
angle is θini = 26.3. The initial height corresponds to the one at V = 1000 for the
steady state drops with influx for the corresponding ε (obtained in section 3.4).
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Figure 3.9: Trajectories in the phase plane spanned by the maximal drop
height and drop volume for (a) ε = 10−6 and (b) ε = 1. Shown are curves result-
ing from (i) time evolutions for three different initial profiles of equal maximal
height and volume (parabola, Gaussian and steady state with influx), and (ii)
calculations of steady state solutions with influx as obtained by continuation.

Fig 3.8 shows a space-time plot for a typical time evolution observed when using

an initial parabolic drop profile that has the same height and volume as a fed

drop obtained in section 3.4. The case shown is for ε = 10−4. At early times the

contact line region relaxes under the influence of the disjoining pressure, thereby

decreasing the apparent contact angle. Subsequently, the width and height of the

drop decrease monotonically until at about T = 100 the drop has vanished and

only the stable precursor film remains. When starting (as in the present case)

with the drop measures (volume and height) as obtained for the drop with influx,

the evolution always looks similar. In particular, we have not found that the drop

macroscopically spreads at the beginning (by “macroscopic” we mean a spreading

that goes beyond the small local relaxation at the contact line).

A more complete picture of the time evolution for different initial profiles is ob-

tained by considering the dependence of overall measures on time, and the tra-

jectories of time evolutions in various “phase planes”. For the axes of the latter

we choose measures that do not change when the domain size is varied for an

identical drop. We give results in two such phase planes, namely, the one spanned

by volume and maximal drop height (Fig. 3.9) and the one spanned by maximal

drop height and apparent contact angle (Fig. 3.10). The change of the contact

angle over time is given in Fig. 3.11, whereas Fig. 3.12 shows selected drop profiles.

Figs. 3.9(a) and (b) compare results for very small ε = 10−6 and the largest used
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Figure 3.10: Trajectories in the phase plane spanned by the maximal drop
height and apparent contact angle for ε = 10−6. Cases shown correspond to the

ones in Fig. 3.9(a).
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Figure 3.11: Shown is the dependence of the apparent contact angle on time
for ε = 10−6. The given cases correspond to the three evaporating drops in

Fig. 3.9(a).

ε = 1. As the results are qualitatively rather similar, the remaining figures 3.10

to 3.12 are for ε = 10−6 only.

Scrutinising Figs. 3.9 to 3.12 one makes several observations: (i) The time evo-

lutions starting from the three different initial profiles converge after some initial

adjustments whose details depend on the particular initial profile shape. (ii) The
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Figure 3.12: Given are for ε = 10−6 drop profiles for selected drop volumes
during the course of evaporation (for the three different initial profiles). We
show as well the steady state drop of the same volume. Panel (a) gives the
initial profiles at V = 1000 whereas panels (b) to (d) show profiles at V = 500,

V = 100, and V = 10, respectively.

convergence is slightly faster for smaller ε. Here, “faster” means that the trajec-

tories approach each other at higher volume [cf. Fig. 3.9]. In absolute terms the

overall evolution becomes faster with increasing ε. Thereby, the trajectories of the

initial parabola and the initial profile taken from the steady state calculations ap-

proach each other earlier than they are approached by the trajectory of the initial

Gaussian. (iii) The family of steady profiles with influx represents drops clearly

distinct from the unsteady shrinking drops without influx. The family of steady

profiles does not approach the trajectories of evaporating profiles when the drops

become small. Even for very small drops their contact angle remains always larger

by a roughly constant factor than the one of the evaporating drops. The factor

is about two for ε = 10−6 and approaches four for ε = 1. (iv) The overall picture

in Fig. 3.9 for different ε looks very similar, only the hmax axes scale differently.

A similar observation holds for the representations as given in Figs. 3.10 to 3.12

where, however, both axes would need to be scaled.
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Next, we discuss the behaviour of the different initial drop profiles at early times.

For larger ε the behaviour is slightly less pronounced, but all the curves look qual-

itatively the same (not shown). For instance, one obtains a plot that is roughly

the one for ε = 1 when scaling the hmax-axis and θapp-axis of Fig. 3.10 by factors

of 1/6 and 1/40, respectively. A similar rule applies to Fig. 3.11, when addition-

ally scaling time by about 1/5. In Figs. 3.10 and 3.11, one finds for the initial

parabola profile a strong decrease in the apparent contact angle at early times.

This corresponds to an adjustment of the contact line region to the influences of

the disjoining pressure. As the central drop region nearly coincides with the initial

steady profile (per definition at same volume and height) the two curves approach

each other rather fast. In the course of the time evolution the central part of the

profile remains a parabola. However, for the Gaussian at early times the contact

angle changes non-monotonically: The profile adjusts on the one hand its contact

line region to the disjoining pressure influences (related to the “earlier wiggle” in

the curve for the parabola in Fig. 3.10). On the other hand, its central region

adapts to a parabola (second “wiggle” in the curve in Fig. 3.10).

All three profiles approach each other after the initial adjustments. Their central

part can be well fitted by a parabola, e.g., for V = 500 [V = 100] and ε = 10−6

down to thicknesses of about h = 60 [h = 35]. Keeping the drop volume constant,

that thickness decreases with increasing ε and vice versa. In contrast, the steady

profile of the drop with influx can be fitted by a parabola in a smaller central part

of the drop. The deviation from the parabola becomes clearly visible, e.g., for

V = 500 [V = 100] and ε = 10−6 at about h = 120 [h = 60] (already 20-30% below

the maximum). This percentage range remains roughly the same when changing

ε for fixed drop volume.

A comparison of evaporating steady state drops with influx and evaporating drops

without influx shows that a freely evaporating shrinking drop has always a smaller

apparent contact angle than the steady fed drop. This has been shown for a wide

range of length scale ratios from ε = 10−6 to ε = 1. Note, however, that the

differences slowly decrease for decreasing ε.
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Figure 3.13: Space-time plots of an evaporating droplets for (a) ε = 10−6, (b)
ε = 10−4, (c) ε = 10−2, and (d) ε = 1.0. The initial profile is always the same
parabola of maximal height Hmax = 2500 and volume 4 × 105 on a precursor

film of h = 1. The corresponding contact angle is θini = 20.8.

We have observed that freely evaporating drops with a similar initial geome-

try (volume and height) as per steady-state drops, for the range of ε explored,

never spread macroscopically before their contact line recedes. However, an initial

spreading phase is often observed in experiments [21, 29, 150]. To investigate this

further we perform a number of simulations starting with large parabolic drops.

Fig. 3.13 gives a set of space time plots obtained for different length scale ratios

from ε = 10−6 to ε = 1. All of them start from the identical initial profile. For

small ε . 10−3 [panels (a) and (b)] the behaviour is very similar to the one de-

scribed above for drops with the same initial geometry as the steady drops: the

drops shrink monotonically, their height and width decrease slowly. However, at

larger ε & 10−3 [panels (c) and (d)] the behaviour is qualitatively different: At

early times the drops spread. Thereby they lose height and gain width quite fast,

the apparent contact angle decreases strongly. Then the drop reaches a maximal

width before the contact line starts to recede again. In the shrinking stage, the

height and width of the drop decrease slowly as before. The spreading is faster for



Chapter 3. Evaporating drops 43

larger ε [Fig. 3.13(d)].

The contact angle for the initial profile is in all cases θini = 20.8. Comparing this

with Fig. 3.7(b) one notices that this angle roughly coincides with the limiting

contact angle (for large drops) for ε ≈ 3 × 10−4. This value lies between the

regions (in ε) where we find receding and spreading evaporating drops, respectively.

Extrapolating from this finding, we formulate the hypothesis that the steady state

drops with influx studied above in section 3.4 represent limiting solutions between

the case of spreading and shrinking freely evaporating drops (without influx).
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Figure 3.14: Phase diagram indicating the initial behaviour of an evaporating
drop. In the plane spanned by the initial contact angle θini and the length scale
ratio ε we indicate where the drop initially spreads, and where the contact line
recedes right from the beginning. Each symbol corresponds to a time simulation.
The solid line corresponds to the numerical result characterising the large steady

drops with influx (cf. Fig. 3.7(b)).

To test the hypothesis we perform a number of time simulations with parabolic

initial drops of different initial contact angle and at different ε. All of them are

of the same (large) volume. The results are given as a scatter plot in Fig. 3.14

together with the curve for the large steady drops obtained in section 3.4 [solid

line of Fig. 3.7(b)]. For each initial condition we record whether the drop spreads
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initially or directly starts to recede. Our results indicate that the above hypothesis

seems to hold. The transition between initial spreading for large initial contact an-

gle and a receding of the contact region right from the beginning roughly coincides

with the power law dependence θ ∼ ε−1/4 (Fig. 3.7(b), curve for large volume) not

only in the power but as well in the prefactor. The prefactor of the curve obtained

from the steady drops with influx seems to be slightly below the transition found

in the time simulations. Further studies will be necessary to give a more detailed

account.

3.6 Conclusions

We have analysed a thin film evolution equation for a wetting evaporating liquid

on a smooth solid substrate. We have focused on slowly evaporating small sessile

droplets where thermal effects are insignificant. Employing the model, we have

first studied evaporating drops as steady state solutions for the case when they are

fed through a porous part of the substrate. In particular, an asymptotic analysis

has focused on the transition region between the precursor film and the bulk drop;

and a numerical continuation of steady state drops has determined the fully non-

linear drop profiles as a function of the overall influx for various values of the

length scale ratio ε. We have found that for large steady drops, the volume as

well as the apparent contact angle decrease for increasing ε roughly as ε−1/4. This

agrees well with the scaling ε−1/4 determined via the asymptotic analysis. Note

that the mentioned logarithmic corrections to both the overlap range where the

matching is done and the resulting profile slope (apparent contact angle) are found

to have opposite effects and are too subtle for order-of-magnitude estimates.

Furthermore, we have employed the model to study the time evolution of freely

evaporating drops that are not fed through the substrate, i.e., the full evolution

equation has been numerically integrated. Thereby the time evolution of several

different initial drop shapes (for identical maximal height and volume) has been

compared. It has been shown that freely evaporating drops with different initial
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profiles converge onto certain trajectories in phase space. A comparison of the

freely evaporating drops without influx with the evaporating steady state drops

with influx has shown that a freely evaporating shrinking drop has always a smaller

apparent contact angle than the steady drop with influx. Here this has been

investigated for a wide range of length scale ratios from ε = 10−6 to ε = 1.

However, as the differences between the two types of profiles slowly decrease with

decreasing ε, further studies should scrutinise the case of even smaller ε.

We have noted that in our simulations the freely evaporating drops with a simi-

lar initial geometry (volume and height) to steady-state drops with influx, never

spread macroscopically before their contact line starts to recede and the drop

shrinks. As drops undergo an initial spreading phase in many experiments, we

have investigated this further and found that drops spread [shrink] from the be-

ginning if their initial contact angle is larger [smaller] than the apparent contact

angle of large evaporating drops with influx.



Chapter 4

Influence of concentration –

dependent wettability of mixtures

on film stability and static drop

properties

4.1 Introduction

In this Chapter we discuss the behaviour of thin films of non-volatile liquid mix-

tures, colloidal suspensions and polymer solutions on a solid substrate.

The dynamics and stability of thin liquid films has attracted much attention over

the last decades as they are of a major importance to numerous technological

and industrial applications ranging from biology, chemical industry, pharmaceutic

science and geophysics to coating technology and manufacturing of micro– and

nanodevices [11, 55, 57, 66, 85, 188]. Typically, the involved liquid films are ultra-

thin, having thicknesses of the order of 100 nm. At these thicknesses, the issue of

stability becomes extremely important as films often become unstable and rupture

causing dewetting of the liquid from the substrate. The mechanisms for dewet-

ting can be among (i) spinodal dewetting driven by the action of destabilising van

46
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der Waals interactions [13, 103, 134, 146], (ii) heterogeneous nucleation, caused

by defects on the substrate which can give rise to local gradients in the chemical

potential and wettability and lead to formation of holes in the film [27, 78, 147],

(iii) density variations, etc [154]. For single-layer free surface films of simple or

polymeric liquids [13, 134, 147], experimental results and their theoretical interpre-

tation [17, 100, 142, 172] are well developed. However, the dynamical properties

of complex liquids composed of components with different macroscopic properties

attract an increasing amount of interest. Popular examples for complex liquids

include various mixtures, nanoparticle suspensions, polymer solutions and blends,

nematic liquid crystals [24, 41, 42, 55, 104, 110, 124, 126, 175, 186, 191, 192]. In

these systems the interfacial effects may couple with diffusive transport of solutes

or surfactants, as well as phase separation and evaporation/condensation of the

solvent.

The theoretical models for systems in which effects like these are involved are

still insufficient. Currently, there exist several long–wave theoretical approaches

towards films of mixtures.

One could introduce coupling effects of the film thickness of a colloidal solution

and the concentration of the particles by introducing concentration–dependent

viscosity [53]. In [36, 97] the authors employ particle concentration–dependent

structural disjoining pressures to model spreading of suspensions of nanoparticles.

However, this is done by directly replacing the disjoining pressure Π(h) in the

dynamical equations by an expression Π(h, φ) depending both on the film thickness

h and the height–averaged particle concentration φ. As is will become clear from

the forthcoming Section 4.3, and also as suggested in [163], in order to obtain a

consistent description it is crucial that one includes such a dependence in the local

free energy f(h) (cf. Eq. (2.36)), which results into additional coupling terms in

the coupled evolution equations for the film thickness and concentration.

In his ad hoc model Clarke [34, 35, 175] postulates coupled equations for the

film height and mean solute concentration to model the combined effects of phase

separation and dewetting. The model is based on an energy functional which
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is similar to the one used in [163] and discussed in Section 2.3.2 of this Thesis.

However, the dynamical equations from [35] describe the time evolution in terms

of the conserved field h and the non-conserved local concentration φ and they do

not agree with our system of equations (2.52) and (2.53), which expreses the time

evolution of the fields h and ψ = hφ that are both conserved. We are unable to

see how in the limit of non-interacting solute molecules these equations will result

in the hydrodynamic equations (2.37) and (2.38).

In [112] the authors develop a variational approach, based on a long–wave ex-

pansion of model-H (which couples fluid flow with the convective Cahn–Hilliard

equation), which aims to describe the effects of coupling between dewetting and

decomposition.

The lubrication model presented in [23] investigates the dynamics of thin film of

mixtures of binary mixtures with and without heat transport, without evaporation.

The authors derive coupled equations describing the evolution of the free surface

and the mean concentration. They study component separation induced by the

Soret effect (formation of a mass flux due to a temperature gradient) in heated

films and the fusion and mixing of two thin films of perfectly mixing components

in the isothermal case.

In this Chapter we develop a thin film description for solutions and suspensions

that accounts for concentration–dependent wettability (cf. Fig. 4.1).

(a)
1

3

2

1

2

3

(b)

Figure 4.1: A sketch of a solid substrate covered by a thin film of (a) a simple
liquid and (b) a mixture. A major question we are investigating is how the

wetting behaviour of the two types of systems differ.
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In Section 4.2 we discuss a way to obtain a concentration–dependent Hamaker con-

stant, hence a height– and concentration–dependent Derjaguin (disjoining) pres-

sure. This is achieved by combining the classical theory of effective molecular

interactions between the free surface of the film and the smooth solid substrate,

which we discuss in Section 4.2.1, with homogenisation techniques to obtain effec-

tive optical characteristics, which we introduce in Section 4.2.2. In Sections 4.2.3

and 4.2.4 we show how the dependence of the Hamaker constant on the concen-

tration can be approximated by a linear function and applied to some selected

mixtures. We continue in Section 4.3 by introducing coupled dynamical equations

for films and drops of mixtures and in Section 4.4 we discuss how they can be non-

dimensionalised. Further, in Section 4.5 we perform a linear stability analysis of a

flat homogeneous film with solute. In particular, we investigate how the stability

thresholds are influenced by the incorporation of the additional degree of freedom

related to the concentration field. We discuss how one can obtain coexisting states

(binodals) for the case of mixtures in Section 4.6. As we study the effects of the

solute on the stability of the system, we differentiate two main cases of interest

- a pure solvent which is either (i) stable or (ii) unstable on its own. In Section

4.7 we present our results from the linear stability analysis and discuss non-linear

thickness and concetration profiles, binodal lines and time evolution for cases (i)

and (ii). Finally, in Section 4.8 we give our conclusions.

The work presented in this Chapter involved a collaboration with Dr. Hender

Lòpez at Loughborough University. He contributed with the time–dependent nu-

merical simulations, some results from which are presented and discussed in Sec-

tion 4.7.

4.2 Hamaker constants of mixtures

We consider thin films of suspensions or solutions, which we will refer to as “mix-

tures”. The components of the mixture we will call “solvent” and “solute”,

where the latter represents the phase used to modulate the wetting properties
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of the reference state of pure solvent. In Fig. 4.2 a sketch of a three-component

system is shown. The components are marked “1”, “2” and “3”, where “1” is

a smooth solid substrate, “2” is a gas (or vacuum) phase and “3” is a film of a

mixture of two materials. First, we consider the case when component “3” is a

1

2

3

Figure 4.2: A sketch of a 3–component system, where one of the components is
a mixture. The whole system is characterised by a Hamaker constant A123(φ0),

where φ0 is the mean solute concentration, measured as a volume fraction.

film of a pure liquid and discuss the intermolecular forces acting in the system in

the framework of the Lifshitz theory.

4.2.1 Lifshitz theory

The Hamaker constants, characterising the strength of van der Waals forces be-

tween macroscopic bodies in vacuum or air, can be estimated using Hamaker’s

method derived assuming pairwise additivity of the interactions [74]. Although

conceptually simple, this method is not really accurate and is not applicable for

the types of systems we are interested in. Hamaker’s method neglects many-body

interactions along with entropic contributions and other factors. These effects are

taken into consideration in the alternative and complicated theoretical method

suggested by Lifshitz and coworkers in 1961 [74]. The interacting particles and

surrounding media are treated as continuous phases and the interactions in the

system are considered to arise from the interference between fluctuating electro-

magnetic fields which extend beyond the surfaces of the particles. In that way, the

Hamaker constants are calculated as functions of the frequency-dependent bulk

dielectric fields characterising the continuous phases. Namely, Lifshitz’s theory of

van der Waals forces uses as input parameters the dielectric permittivities and

refractive indices of the materials comprising the system (Fig. 4.3). The approxi-
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1

3

2

Figure 4.3: Sketch of a 3–component system characterised by a Hamaker
constant A123, where component “3” consists of a pure liquid.

mated expression for the 3-component Hamaker constant of such a system is

A123 =
3kbT

4
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Here νe is the main electronic absorption frequency in the UV range of the optical

spectrum with a typical value of 3×1015s−1 and it is assumed that all the materials

in the system have the same main electronic absorption frequency [74]; kb stands

for the Boltzmann constant and h is Planck’s constant, known from quantum

mechanics; ni and εi are the refractive indices and dielectric constants, respectively,

of the material number i with i = 1, 2, 3 [74].

The values of the optical constants are measured and documented for many ma-

terials. However, in the case when any of the 3 components of the system consists

of a mixture of 2 or more materials, Eq. (4.1) can not be applied directly. We use

homogenisation techniques in order to obtain effective values for n and ε of the

mixture as functions of the optical parameters of its components and their volume

fraction.

4.2.2 Effective Medium Approximation

The effective medium approximation (EMA) is a tool, broadly used for the cal-

culation of the effective optical parameters of non-homogeneous substances [26,

65, 113]. The non-homogeneous medium is treated as an effective one, having the



Chapter 4. Films and drops of mixtures on solid substrates 52

same dielectric response as the system of interest (Fig. 4.4). The dielectric con-

stant and refractive index of the effective system are calculated based on the ones

of its components, assuming a certain model which accounts for the interaction

between the components and the geometry of the arrangement.

Various effective medium theories exist, that consider different types of microstruc-

ture of the mixture ([26, 113, 176]). These models use the definition of an effective

medium, according to which a random cell, embedded in the effective medium,

should not be detectable experimentally with electromagnetic radiation in a cer-

tain range of wavelengths [113]. However, we will not enter into details about the

derivation of the existing models and we will readily use the final formulas for the

effective constants, characterising the effective medium.

Figure 4.4: The effective medium approximation (EMA) as a general tool for
the homogenisation of inhomogeneous media.

A) Maxwell – Garnett mixing rule

There exists a model, called the Maxwell-Garnett mixing rule, where the hetero-

geneous medium is treated non-symmetrically regarding its components, i.e. the

solvent is treated as a continuous medium and the solute is treated as an inclusion

[26, 113]. This assumption makes the use of the model reasonable only in the

limit of small concentrations. According to Maxwell – Garnett, the heterogeneous

system is optically equivalent to an effective system with dielectric constant εeff ,
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which solves the equation

εeff − εa
εeff + 2εa

= φ0
εb − εa
εb + 2εa

, (4.2)

where εa and εb are the dielectric constants of the solvent (or material “a”) and

solute (material “b”), respectively, and φ0 stands for the normalised bulk concen-

tration of the solute in the system, measured as volume fraction.

B) Bruggeman’s mixing rule

Another setup, considered by Bruggeman, allows for all concentrations of the

solute in the range [0, 1], as it is completely symmetric regarding the components

of the mixture [26, 113]. The effective dielectric constant is calculated from the

equation

(1− φ0)
εa − εeff

εa + 2εeff

= φ0
εeff − εb
εb + 2εeff

, (4.3)

where the same notations as in Eq. (4.2) are used.

We assume that Eqs. (4.2) and (4.3) are valid when replacing the dielectric con-

stants with the respective squared refractive indices, i.e. εi = n2
i . This assumption

is reasonable when the imaginary parts of the refractive indices are negligible,

which is the case for many systems of interest to us, such as polymer mixtures,

some nanoparticle suspensions and solutions.

4.2.3 Hamaker constant as a function of solute concentra-

tion.

Solving Eqs. (4.2) or (4.3) with respect to the effective optical constants of the

mixture allows us to substitute the obtained values directly into Eq. (4.1). Thus
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we arrive at the expression

A123(φ0) =
3kbT
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which allows us to calculate the concentration–dependent 3–component Hamaker

constant for the interaction of two media 1 and 2 across a medium 3 that is

itself a mixture of components “a” and “b”, characterised by the concentration

of the second component φ0 (Fig. 4.2). Here νe is the main electronic absorption

frequency of the solvent.

4.2.4 Results for selected mixtures

Since data for the dielectric constants and refractive indices of many pure materials

can be found in the literature ([2, 74] and references therein), we can now use Eq.

(4.4) to determine how the Hamaker (4.4) changes over the whole concentration

range 0 ≤ φ0 ≤ 1. As from now on we consider systems where the solid substrate

interacts with the gas phase across a mixture film, we denote the corresponding

Hamaker constants by Asmg (solid-mixture-gas).

Table 4.1 provides the optical constants for the materials we use in our calculations.

For the systems we explore, we find that the results for Asmg(φ0) do practically

not depend on the particular EMA model used. Therefore from now on we only

use Bruggeman’s approximation (4.3).

The suggested scheme allows us to model the Hamaker constants for various types

of systems and depending on the optical properties of the components, we observe

versatile behaviour of Asmg(φ0), as shown in Figs. 4.5 – 4.7. For example, if

we consider a silicon substrate with a layer of mixed toluene and polystyrene

(PS) under air, we observe a Hamaker constant that monotonically decreases with

increasing PS concentration (see solid red line in Fig. 4.5).
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Table 4.1: Dielectric constants ε and refractive indices n of some typical poly-
mers, solvents and solid substrate materials.
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Figure 4.5: The 3-component Hamaker constant 1020 × Asmg [N.m] for Si/
Toluene+PS/ Air (solid line) and Si/ Toluene+Si-Ge/ Air (dashed line) in de-
pendence of the mean concentration φ0 of the solute, measured as volume frac-

tion.

Interestingly, when we replace the polystyrene in the system with Si-Ge semicon-

ductor crystaline nanoparticles, the Hamaker constant exhibits a minimum at a

certain concentration of the particles (dashed black line in Fig. 4.5). The reason for
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Figure 4.6: The 3-component Hamaker constant 1020 × Asmg [N.m] for SiO/
Toluene+Acetone/ Air in dependence of the mean concentration φ0 of the solute,

measured as volume fraction.

this behaviour can be found in the dramatic difference between the optical prop-

erties of the solvent and the semiconductor, resulting in non-monotonic behaviour

of the effective dielectric constant and effective refractive index of the mixture (εeff

and neff , respectively, and hence the Hamaker constant (4.4) of the system.

Another interesting situation is shown in Fig. 4.6, which represents the dependence

on the Hamaker constant Asmg of a system with a mixture of toluene and acetone

over the concentration φ0 of acetone. The pure toluene is unstable on a SiO

substrate (Asmg(0) > 0), but the addition of solute reduces Asmg and eventually

for a certain concentration it becomes negative, which means a film of the mixture

becomes stable (assuming it stays homogeneous).

If the optical indices of the solvent and solute are similar, then we can confidently

approximate the dependence of Asmg on φ0 with a linear function, i.e.

A(φ0) = |A0|(δ +M1φ0), where δ = ±1. (4.5)

Fig. 4.7 shows as an example the case of a PMMA/PS polymer blend on a SiO

substrate under air. The dependence of the Hamaker constant on concentration,
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Figure 4.7: The 3-component Hamaker constant 1020 × Asmg [N.m] for SiO/
PMMA+PS /Air in dependence of the mean concentration φ0 of the solute,
measured as volume fraction (solid black line). The dashed red line represents

a linear approximation of Asmg.

calculated using Eq. (4.4) with εeff and neff determined from Eq. (4.3), is rep-

resented by the solid black curve, while the dashed red line corresponds to a

linear approximation. Obviously, in the range of relatively small concentrations

(φ0 < 0.2) the two curves coincide and even for φ0 > 0.2 the approximation is still

reasonable.

Table 4.2 gives the results for ten different combinations of substrates and mixture

components, where in all cases the gas phase is chosen to be air. The notations

“Amgm” and “Asms” correspond to the symmetric cases where two slabs of mix-

ture are separated by a gas layer and vice versa (mixture-gas-mixture and solid-

mixture-solid, respectively) and are given for completeness. As demonstrated

in Figs. 4.5, 4.6 and 4.7 and Table 4.2, Asmg can be either positive or negative.

We will see below in Section 4.3 that this corresponds to unstable or stable film

configurations, respectively, but only if assuming that the films remain always

homogeneous.
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solvent solute !|Asmg0| M1 !|Amgm0| M1 !|Asms0| M1

SiO PS PMMA 1.59E-20 -1.1 9.31E-20 -0.28 3.32E-21 -1.62

SiO PMMA PS 8.44E-22 15.4 6.83E-20 0.34 3.12E-22 1.92

Si PS PMMA -2.22E-19 -0.1 9.31E-20 -0.28 6.34E-19 0.07

Si PMMA PS -1.95E-19 0.1 6.83E-20 0.34 6.774!-19 -0.06

SiO Toluene PS 1.74E-21 7.1 6.98E-20 0.31 5.34E-22 1.34

Si Toluene PS -1.97E-19 0.1 6.98E-20 0.31 6.75E-19 -0.06

SiO Toluene Acetone 2.06E-21 -9.0 6.98E-20 0.31 5.34E-22 -6.25

Si Toluene Acetone -1.97E-19 -0.2 6.98E-20 -0.45 6.75E-19 0.09

SiO PMMA PSAN 8.44E-22 13.9 6.83E-20 0.32 3.12E-22 -1.71

Si PMMA PSAN -1.95E-19 0.1 6.83E-20 0.32 6.77E-19 -0.06

Sub

Amgm [N.m] Asms [N.m]Mixture Asmg [N.m]

Table 4.2: The 3-component Hamaker constants Asmg, Amgm and Asms for
various mixtures, approximated as linear functions of the solute concentration

φ0. For definitions of δ and M1 see Eq. (4.5)

4.3 Thin film evolution equations for mixtures

The main focus of our work on mixtures is to investigate the effects that result

from a contribution in the free energy functional F , discussed in Section 2.3.2, that

accounts for the dependence of the wettability of liquid mixtures, suspensions or

polymer solutions, on the concentration of the solute. Typically, when employing

thin film theory to describe films or droplets of solutions, approaches in the litera-

ture [36, 53, 54, 97] assume that the wetting energy of the system does not depend

on the concentration, which may not always be a reasonable approximation. For

example, in the case of evaporating solutions, in the contact line region the con-

centration of solute locally becomes relatively large and the assumption that the

wetting energy does not depend on it will normally not hold.
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In the general case, F is the free energy functional

F [h, ψ] =

∫ [
e(h, ψ) +

γ

2
(∇h)2 +

σ

2
h

(
∇
(
ψ

h

))2
]

ds. (4.6)

The first term in the integral represents the contribution from the local free energy,

while the second and the third one stand for the surface and interfacial contribu-

tions, respectively. Here γ is the mixture-air surface tension, σ is (related to) the

interfacial stiffness of the solute - solvent interface in case of decomposition. The

concentration-dependent local free energy is

e(h, ψ) = f(h, ψ) + hg

(
ψ

h

)
. (4.7)

In our case, the concentration - dependent adhesion (or wetting) energy f(h, ψ) is

f(h, ψ) = −
A
(
ψ
h

)
2h2

+
B

5h5
(4.8)

and we approximate the Hamaker coefficient A
(
ψ
h

)
as a linear function of the

solute concentration

A

(
ψ

h

)
= |A0|

(
δ +M1

ψ

h

)
. (4.9)

Here we assume that B is a constant – it does not depend on the solute concentra-

tion. This implies that there exists a precursor film of a thickness, which depends

on the concentration, hp =
(

B
A(φ)

)1/3

(again assuming the film always remains ho-

mogeneous). Note that we combine a concentration-dependent Hamaker constant

A(φ) and a constant B in the short-range contribution. One may as well intro-

duce a concentration dependent short-range contribution1 or use a different form

for the short-range contribution; however, these choices do not affect the main

results. The system behavior is very similar if wetting energies of a similar form

are chosen that result in identical precursor film heights and equilibrium contact

angles.

1Note that this is just one of a few options for B. Other options include (i) fixing hp to keep
the value it has at φ = 0 and calculating B as a function of hp and φ or (ii) assuming a certain
dependence of B on φ, e.g. B = B0eαφ with α� 1.



Chapter 4. Films and drops of mixtures on solid substrates 60

The disjoining pressure is related to the local free energy by Π = −∂hf(h, ψ). The

related chemical potential is Ω = −∂ψf .

The function g
(
ψ
h

)
is the bulk part of the free energy (4.6) and accounts in the

simplest case only for entropic contributions to the local free energy, i.e., one

assumes the solute molecules/particles do not show any net attractive interaction

between them2:

g

(
ψ

h

)
=
kbT

a3

ψ

h
ln
ψ

h
. (4.10)

Here a is a molecular length scale related to the solute, kb is the Boltzmann

constant and T is the absolute temperature.

Note that in the limit of a constant film thickness, Eq. (2.53) with F given by

(4.6) and σ = 0 becomes the standard Fickian diffusion equation for φ.

The resulting variations of the free energy (4.6) with respect to the conserved fields

h and ψ are

δF

δh
= ∂he−

2σψ

h3
∇h∇ψ +

3σψ2

2h4
(∇h)2 +

σ

2h2
(∇ψ)2 −

(
σψ2

h3
+ γ

)
∆h+

σψ

h2
∆ψ,

(4.11)

δF

δψ
= ∂ψe−

σψ

h3
(∇h)2 +

σ

h2
∇h∇ψ +

σψ

h2
∆h− σ

h
∆ψ. (4.12)

The Euler - Lagrange equations that describe film thickness and concentration

profiles of extremal energy, i.e. steady states of the system, are

δF

δh
− µh = 0; (4.13)

δF

δψ
− µψ = 0, (4.14)

where in the considered non-volatile case µh and µψ are the Lagrange multipliers

accounting for mass conservation of the mixture and solute, respectively. For

2One can consider different extensions for g: (i) in the case of weakly interacting colloidal
particles, i.e. no solute-solvent decomposition, one can choose g ∼ φ log φ− bφ2; (ii) in the case
of strongly interacting colloidal particles one can recover the long–wave limit of model-H [112]
with g ∼ κ(∇φ)2 + (φ2 − 1)2.
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homogeneous flat films they may be obtained from equations (4.11) and (4.12) in

terms of the mean film thickness h0 and mean local amount of solute ψ0:

µh = (∂hf + g + h∂hg)|h0,ψ0
=
A0

h3
0

− B

h6
0

− kbT

a3

ψ0

h0

+ |A0|M1
3ψ0

2h4
0

;

µψ = (∂ψf + h∂ψg)|h0,ψ0
= −|A0|M1

2h3
0

+
kbT

a3

(
ln
ψ0

h0

+ 1

)
. (4.15)

It is also interesting to observe how the convective and diffusive fluxes introduced

in Section 2.3.2 look like when one includes the explicit dependence on the solute

concentration in the pressure term.

If one substitutes φ for ψ/h in Eqs. (2.43) and (2.44), the convective and diffusive

fluxes take the form

Jconv =
h3

3η

{
γ∇∆h−∇∂hf +

∂φf

h
∇φ− σ

h

[
∇ · (h∇φ)∇φ− σ

2
∇|∇φ|2

]}
Jdiff = −D̃hφ

η
∇
[
∂φf

h
+ ∂φg −

σ

h
∇ · (h∇φ)

]
(4.16)

respectively [171].

In the convective flux [Eq. (4.16)] the first term is due to Laplace pressure gradients

(γ(φ) is often replaced by a constant reference value γ0 [114]); the second term

is the Derjaguin pressure contribution due to wettability; and the final two terms

represent the Korteweg flux, i.e., a bulk concentration-gradient-driven flux (cf.

Ref. [8] for a discussion of the related bulk model H). The third term is a flux

driven by concentration gradients within the bulk of the film but only if the film

is sufficiently thin such that its two interfaces feel each other. This novel flux is

a direct consequence of the concentration dependence of the wetting energy and

has a similar magnitude as the Derjaguin pressure contribution. The first term of

the diffusive flux [Eq. (4.16)] is also not common in the literature although it is

a natural consequence of the gradient dynamics form. It represents the influence

of the concentration-dependent wettability on diffusion. The second term is the

flux due to gradients of the chemical potential µ = ∂φg in the bulk of the film
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while the final term is a Korteweg contribution to diffusion that counters steep

concentration gradients, e.g., for decomposing solvent-solute films.

In this section we introduced the general set of coupled evolution equations for the

film thickness (2.52) and local amount of solute (2.53) in a variational form and

proposed a particular example for the free energy functional (4.6). In the next

step we non-dimensionalise the governing equations, thus reducing the number of

parameters in them.

4.4 Non–dimensional form of the equations

In this section we introduce suitable scales for time, space and energy. Substituting

the proposed set of scaled variables in the expression for the free energy functional

(4.6) and in its variations with respect to h and ψ allows us to arrive at a non-

dimensional formulation for the evolution equations (2.52) and (2.53).

The set of scaling parameters is

Dimensionless t̃ x̃ ỹ h̃ ψ̃ ẽ

Scale T L L l l κ

Dimensional t = τ t̃ x = Lx̃ y = Lỹ h = lh̃ ψ = lψ̃ e = κẽ

Note that x and y scale differently from z, naturally allowing for a long-wave

approach. Using the proposed scales we obtain for the area element, nabla operator

and mobility coefficients

ds = L2ds̃, ∇ =
1

L
∇̃, Qij =

l3

η
Q̃ij, (4.17)
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respectively. Applying the scaling, we obtain the dimensionless local free energy

ẽ =
1

κ

[
−δ|A0|

2h̃2l2
− |A0|M1ψ̃

2h̃3l2
+

B

5h̃5l5
+
kbT lψ̃

a3
ln

(
ψ̃

h̃

)]
. (4.18)

For the dimensionless gradient terms in the free energy functional (4.6) we obtain

1

κ

[
γ

2
(∇h)2 +

σ

2
h

(
∇
(
ψ

h

))2
]

=
1

κ

 γl2
2L2

(∇̃h̃)2 +
σlh̃

2L2

(
∇̃ ψ̃
h̃

)2
 . (4.19)

If one choses the energy (per area) density scale κ = |A0|
l2

, the dimensionless free

energy functional becomes

F̃ [h̃, ψ̃] =

∫ − δ

2h̃2
− M1ψ̃

2h̃3
+

B̃

5h̃5
+M2ψ̃ ln

(
ψ̃

h̃

)
+
γ̃

2
(∇̃h̃)2 +

σ̃

2
h̃

(
∇̃ ψ̃
h̃

)2
 ds̃,

(4.20)

where we used F̃ = F
κL2 . The introduced dimensionless parameters are

B̃ =
B

|A0|l3
; (4.21)

M2 =
l3kbT

|A0|a3
; (4.22)

γ̃ =
l4γ

L2|A0|
; (4.23)

σ̃ =
l3σ

|A0|L2
. (4.24)

Using the new scales one finds for the dimensionless variations of the free energy

functional

δF̃

δh̃
=

l3

κL2

δF

δh
; (4.25)

δF̃

δψ̃
=

l3

κL2

δF

δψ
. (4.26)
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The nondimensional form of the evolution equations (2.39) and (2.40) is

∂t̃h̃ = ∇̃ ·

[
Q̃h̃h̃∇̃

δF̃

δh̃
+ Q̃h̃ψ̃∇̃

δF̃

δψ̃

]
; (4.27)

∂t̃ψ̃ = ∇̃ ·

[
Q̃h̃ψ̃∇̃

δF̃

δh̃
+ Q̃ψ̃ψ̃∇̃

δF̃

δψ̃

]
, (4.28)

where we have fixed the timescale as τ = lη
κ

.

From now on we will only refer to the non-dimensional equations and will, for

convenience, omit the tilde symbols from the non-dimensional variables and pa-

rameters.

4.5 Linear stability of the flat film

We start the analysis of our 2-field model for a mixture with concentration de-

pendent wettability by discussing the linear stability of flat homogeneous films.

Equations (4.27) and (4.28) are linearised in ε for small amplitude disturbances

described by the ansatz

h(x, t) = h0 + εeikx+βt;

ψ(x, t) = ψ0 + εχeikx+βt, (4.29)

where k, β and εχ = ε(1, χ) are the wave number, growth rate and amplitude

vector of the disturbance. Here, ε� 1 is the small amplitude of the perturbation

of the film height and χ is the ratio of the amplitudes of the perturbations of the

solute layer thickness and the film thickness. The sign of χ determines whether the

modulations of the concentration field and the film thickness are in-phase (positive)

or anti-phase (negative). The magnitude of χ indicates whether the instability is

driven by the film thickness field (|χ| � 1), by the solute layer thickness field

(|χ| � 1) or by the coupling of the two fields (|χ| ≈ 1).
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One obtains for the linearised functional derivatives (4.25) and (4.26)

δF

δh
= ε

(
∂hhe

0 + ∂hψe
0χ+ γk2 − σk2ψ0

h2
0

χ+ σk2ψ
2
0

h3
0

)
eikx+βt + µh +O(ε2);

δF

δψ
= ε

(
∂ψhe

0 + ∂ψψe
0χ− σk2ψ0

h2
0

+
σk2

h0

χ

)
eikx+βt + µψ +O(ε2), (4.30)

where e0 = e(h0, ψ0).

This can be written in matrix form using the symmetric energy matrix E that

corresponds to the matrix of the second variations of F [h, ψ] in Fourier space [124]:

 δF
δh

δF
δψ

 =

 µh

µψ

+ εeikx+βt

 E11 E12

E21 E22

 1

χ

+O(ε2), (4.31)

where

E =

 ∂hhe
0 + γk2 + σk2 ψ

2
0

h30
∂hψe

0 − σk2 ψ0

h20

∂ψhe
0 − σk2 ψ0

h20
∂ψψe

0 + σk2

h0

 . (4.32)

The dispersion relation β(k) is obtained by solving the eigenvalue problem result-

ing from (4.27) and (4.28)

(−k2Q · E − βI)χ = 0, (4.33)

where Q is the scaled symmetric mobility matrix taken at (h0, ψ0), Q · E is the

corresponding non-symmetric Jacobi matrix and I is a 2× 2 identity matrix.

The condition det(−k2Q · E − βI) = 0 yields the dispersion relations

β1,2 =
tr(−k2Q · E)

2
±

√(
tr(−k2Q · E)

2

)2

− det(−k2Q · E), (4.34)
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where

tr(−k2Q · E) = −k2(2Q12E12 +Q11E11 +Q22E22), (4.35)

det(−k2Q · E) = k4 detQ det E (4.36)

and we have used the symmetries of the matrices Q and E . As Q is symmetric

and positive definite, the onset of the instability is at det E = 0 and this condition

leads to a biquadratic equation for the critical wave number

α1k
4
c + α2k

2
c + α3 = 0, (4.37)

with coefficients

α1 =
γσ

h0

; (4.38)

α2 =
σ

h0

∂hhe
0 +

(
γ +

σψ2
0

h3
0

)
∂ψψe

0 + 2
σψ0

h2
0

∂ψhe
0; (4.39)

α3 = ∂hhe
0∂ψψe

0 − (∂ψhe
0)2. (4.40)

As the surface and interfacial tension terms in E are always positive and E is

symmetric, the stability borders are determined by the condition α3 = 0 and the

instability is always long–wave, i.e. at onset always k = 0.

Typical dispersion relations are shown on Fig. 4.8. If all the roots of Eq. (4.37)

are complex, β(k) does not cross the k-axis and this situation corresponds to a

linearly stable film. For unstable films there exists a region of unstable modes

with wave numbers 0 < k < kc, where kc is the wave number at β(kc) = 0,

known as the critical wave number. The corresponding critical wavelength of the

perturbation is Lc = 2π/kc. The harmonic film thickness and solute layer thickness

profiles of vanishing amplitude at k = kc are neutrally stable and small amplitude

harmonic periodic steady solutions of Eqs. (4.27) and (4.28) are found at k ≈ kc.

The maximum of the dispersion relation occurs at the most unstable wavelength

- it corresponds to the fastest growing unstable mode. In the decoupled case it
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is at k′ = kc/
√

2. It defines a typical lateral length scale L′ = 2π/k′ known

as the spinodal wavelength. It corresponds to the characteristic length scale of

the domains formed by thiner films which undergo spinodal dewetting, i.e. their

breakup occurring through the growth of uniformly distributed surface undulations

[134].

Figure 4.8: Dispersion relations for a flat film of mixture on a horizontal
homogeneous substrate. The dotted and solid lines represent the linearly stable

and unstable cases, respectively.

Employing linear stability analysis, we can obtain the stability thresholds in the

space spanned by the non-dimensional parameters in the non-dimensional free

energy functional (4.20), and the mean film thickness and mean solute concentra-

tion. The resulting stability diagrams will be presented and analysed in Section

4.7. They will allow us to study how the effects of coupling of the two fields in-

fluence the stability of the system. The gained information also helps to calculate

and analyse non-trivial steady states and the time evolution of a flat film. The

linear and non–linear behaviour will be discussed together in Sections 4.7.1 and

4.7.2 for the cases when the pure solvent is stable (δ = −1) or unstable (δ = 1),

respectively.

Another important issue in any multicomponent system is the presence of coex-

isting phases or states. In our isothermal model, where the concentration of the

solute is vertically averaged and both fields are conserved, we would expect to

observe coexisting film and solute layer thicknesses that e.g. characterise the state
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which a time evolution will converge to in the long–time (thermodynamic) limit.

They can be predicted using thermodynamic and geometric considerations and

will be discussed in the following Section 4.6.

4.6 Binodal lines

In thermodynamics, the condition at which two distinct phases may coexist is

characterised by the so called coexistence curve or binodal curve. The local free

energy is usually approximated by a double-well potential which means there exists

a critical point and if we consider a flat homogeneous film in the vicinity of this

point, its stability and phase behaviour can be sketched on a diagram, like the

one shown in Fig. 4.9. The y-axis corresponds to the relevant control parameter

(typically temperature) and x-axis is corresponding to the order parameter of the

problem. The dashed red line represents the spinodal curve, that is the border

below which the film is unstable. The solid black line, which is the binodal line,

marks the boundary above which the film is absolutely stable. In the region

between the two lines the system is metastable. The latter means that the system

can rupture when a certain threshold (critical nucleation solution) is overcome.

For the case of a simple liquid, the binodal curve is typically calculated by equating

the chemical potentials, the temperature and pressure for each of the coexisting

phases. The spinodal curve is defined as the border where the curvature of the

free energy is zero.

In the case of a mixture, however, the calculation of the binodal and spinodal lines

is more challenging, due to the large number of parameters in the model. To cal-

culate the binodals for the case of a non-volatile film of a two-component mixture

on a solid substrate, we assume to have two coexisting states at thermodynamic

equilibrium. Therefore, there are four conditions which need to be satisfied.

From a thermodynamic point of view, a given system is fully described if the ap-

propriate thermodynamical potential can be calculated. For an isothermal system
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Figure 4.9: Schematic equilibrium coexistence or binodal curve (solid black
line) and spinodal curve (dashed red line). The x- and y-axis correspond to
the relevant order parameter of the problem and the control parameter, respec-
tively. The critical point, stable, unstable and metastable regions are marked

accordingly.

in thermodynamic equilibrium with free energy e, the thermodynamic function

we use to describe the considered system with mixture is the grand potential ω,

defined as ω = e − µχ where µ is the relative chemical potential and χ is the

relevant composition variable.

For a two-component mixture in thermodynamic equilibrium, the grand potentials,

characterising the two coexisting phases of the isothermal system need to be the

equal. Further, the chemical potentials of the mixture and the solute should be

equal, which amounts to three conditions for the four unknowns. In order to

obtain the necessary fourth condition, we assume that the two coexisting states

are two flat films of different thicknesses h1 and h2, and concentrations φ1 and φ2,

as sketched in Fig. 4.10. For any given x = xi the relation ψi = hiφi is fulfilled.

In other words, one requests that the borders between the two states in h and in

φ coincide.

The grand potential of a given phase is

ω = e− µhh− µψψ, (4.41)
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Figure 4.10: Coexisting flat states: film heights and concentrations

where the chemical potentials are

µh =
∂e

∂h
, (4.42)

µψ =
∂e

∂ψ
. (4.43)

If we consider the geometry sketched in Fig. 4.10, we see that if the mean film

thickness h0 changes, the characteristic length Lh needs to adjust accordingly and

the mean solute thickness ψ0 has to change in such a way that Lψ remains equal

to Lh. This construction holds even in the thermodynamic limit (D →∞) as well

as in a 2-dimensional situation where areas Ah and Aψ would take the role of Lh

and Lψ, respectively.

If one chooses Lψ = Lh = L and denotes the domain size by D, one obtains the

relations

(D − L)h2 + Lh1 = Dh0, (4.44)

(D − L)ψ2 + Lψ1 = Dψ0. (4.45)

Eliminating L̃ = L
D

, one arrives at the fourth condition, needed for the calculation

of the binodal thicknesses. It has to hold for any D, even in the thermodynamic
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limit D,L→∞. Then the system for the 4 unknowns is completely determined:

ω(h1, ψ1) = ω(h2, ψ2); (4.46)

µh(h1, ψ1) = µh(h2, ψ2); (4.47)

µψ(h1, ψ1) = µψ(h2, ψ2); (4.48)

h0 − h2

h1 − h2

=
ψ0 − ψ2

ψ1 − ψ2

. (4.49)

This system of equations is employed to determine the binodals presented below

in Sections 4.7.1.2 and 4.7.2.2 for the cases when a solute is added to an stable or

unstable solvent, respectively.

4.7 Results

The wetting energy (4.8) contains a concentration-dependent long-range part, in

which the dependency on concentration is incorporated via the Hamaker constant

A(φ) = |A0|(δ + M1φ) with δ = ±1. For a chosen combination of materials, i.e.

fixed A0 and M1, the value of A(φ) depends on the solute concentration and can

either be positive or negative. For the sign convention chosen in Eqs. (4.6) and

(4.8) positive [negative] Hamaker constants correspond to destabilising [stabilising]

long-range interactions. This means that δ = −1 characterises a linearly stable

film of pure solvent, while δ = 1 implies a film of pure solvent that is linearly

unstable above hc = (2B)1/3. Adding a solute, characterised by M1 < 0 [M1 > 0]

into the system, we add a material that on its own would form a stable [unstable]

film on the given substrate. A major question is whether adding solute to a film

of pure solvent results in a stabilisation [destabilisation] of the mixture film.

The short-range part in Eq. (4.8) is always stabilising (B > 0). The other free

parameters that we can use to control the properties of the system (see Eqs.

(4.15)), are the constant in the entropic term M2, the mean film thickness h0 and

the mean local amount of solute ψ0 (or the mean solute concentration φ0 = ψ0/h0).
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solvent solute ! |A0| in Nm M1

SiO PS PMMA 1 1.59E-20 -1.07

SiO PMMA PS 1 8.44E-22 15.37

Si PS PMMA -1 2.22E-19 -0.11

Si PMMA PS -1 1.95E-19 0.15

SiO Toluene PS 1 1.74E-21 7.10

Si Toluene PS -1 1.97E-19 0.14

SiO Toluene Acetone 1 2.06E-21 -9.00

Si Toluene Acetone -1 1.97E-19 -0.20

SiO PMMA PSAN 1 8.44E-22 13.85

Si PMMA PSAN -1 1.95E-19 0.13

A=|A0| (!+M1")

substrate

mixture

Table 4.3: Hamaker coefficient A as a linear function of the solute concentra-
tion φ for various substrate/solvent+solute/air combinations. The first three
columns represent the materials in the three–component system and the last
three columns give δ, |A0| and M1 characterising the Hamaker coefficient of the
mixture. The shaded rows mark the cases for which a film of pure solvent is

linearly stable.

From an experimental point of view, changing the value of the parameter M1

corresponds to choosing a different material as a solute. For the range of materials

given in Table 4.3, the values of M1 lie in the range [−10, 15]. However, there exist

material combinations, characterised by values of M1 of larger magnitude.

Using Eq. (4.22) one can give a rough estimate for practically important values of

the parameter M2. For the range of materials listed in Table 4.3 one deduces that

|A0| belongs to the range [10−22, 10−19] Nm. At room temperature the thermal

energy is kT = 4.1 × 10−21 Nm. Assuming the vertical length scale l ∼ 10−9 m

and considering values for the molecular length scale a between 10−10 m and 10−6

m, one obtains a rather broad interval of plausible values for the dimensionless

parameter M2 ∈ [10−11, 104].
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In order to investigate how the linear stability reflects changes in the main parame-

ters of the two coupled equations, we obtain the corresponding stability thresholds

from (see Section 4.5)

α3 = ∂hhe
0∂ψψe

0 − (∂ψhe
0)2 = 0. (4.50)

This allows us to express the critical value of each parameter as a function of the

other parameters:

M c±
1 = −

2

3
h3

0M2 ±

√
h0M2(6B − 3δh3

0 + h5
0M2ψ0)

ψ0

 ; (4.51)

ψc0 =
(8B − 4δh3

0)h0M2

(3M1 + 4h3
0M2)M1

; (4.52)

M c
2 =

9M2
1

4h4
0

(
−3M1

h0
− 3δ

ψ0
+ 6B

h30ψ0

) . (4.53)

Next, we present some particular results of the linear stability analysis for homo-

geneous flat films of mixture. We distinguish two main cases depending on the

value of the parameter δ. As we suggested earlier, this allows us to observe how

the introduction of a solute influences the stability of the homogeneous flat layer.

4.7.1 Stable solvent

First, we focus on the case with δ = −1, i.e. when a film of pure solvent is linearly

stable. Adding a solute, characterised by M1 < 0, results in a Hamaker constant

of the mixture A, which remains negative at all concentrations of solute and has

a larger absolute value than the one of the pure solvent. Examples are given in

Table 4.3 and include PS + PMMA and toluene + acetone on Si substrates. The

other possible situation is the inclusion of a solute, characterised by M1 > 0, to

the linearly stable film of a pure solvent. In this situation, the resulting Hamaker
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constant of the mixture may switch its sign depending on the concentration. Ex-

amples for mixtures with positive M1 include PMMA + PS, toluene + PS and

PMMA + PSAN on Si substrate.

4.7.1.1 Linear stability

In Fig. 4.11 we present a stability diagram in the plane spanned by the parameters

M1 and h0 obtained using Eq. (4.51). The pure solvent film is stable (δ = −1) and

the remaining parameters are fixed as M2 = 0.01 and φ0 = 0.1. The solid black

curves separate the plane into three regions, as marked on the graph. As expected

in this case, for M1 = 0 (no solute) the system is always stable. For any fixed mean

thickness h0, an increase of M1 from zero leads to an expected destabilisation,

thus resulting in the linearly unstable region for positive M1. What seems at

first glance surprising is the occurrence of another unstable region for moderate

M1 < 0, observed for sufficiently thin films. This means that even when both,

the pure solvent (characterised by δ = −1) and the pure solute (characterised by

M1 < 0), are stable on their own, still there can exist a region in the parameter

space where the mixture is linearly unstable. This observation is rather nontrivial,

as it predicts a new type of thin film instability based on the coupling of height

and concentration fluctuations.

For comparison, the stability borders in the (M1, h0) plane for the case of an

imposed homogeneous distribution of the solute within the film are represented

in Fig. 4.11 by a dotted line. The assumption of a constant and homogeneous

concentration φ(x, t) = φ0 simplifies the analysis to the one of a single field. The

local part of the free energy (4.20) is

e = −δ +M1φ0

2h2
+

B

5h5
+M2hφ0lnφ0. (4.54)

Now, the condition ∂hhe = 0 alone determines the linear stability borders:
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Figure 4.11: Stability diagram in the space spanned by M1 and h0 for δ = −1
(stable solvent) for fixed M2 = 0.01 and φ0 = 0.1. The dotted line corresponds
to the case of imposed homogeneous concentration as obtained via Eq. (4.55).
The stability regions are marked “S” for “linearly stable” and “US” for “linearly

unstable”.

Mh
1 =

1

φ0

(
2B

h3
0

− δ
)
. (4.55)

Obviously, the linear stability thresholds for the situation when the concentration

field and the film thickness change in a coupled way (Eq. (4.51)) look dramatically

different from the case of imposed homogenous solute distribution. As visible in

Fig. 4.11, for the coupled case not only there exists a linearly unstable region for

M1 < 0, but also the upper instability (for M1 > 0) appears at much smaller,

positive values of the parameter, compared to the decoupled case.

To investigate the influence of the other parameters on the stability borders in the

(M1, h0)–plane, we substitute different values for φ0 and M2 in Eq. (4.51). The

results are shown in Figs. 4.12 and 4.13. Fig. 4.12 gives two sets of stability borders

calculated for φ0 = 0.1 (solid black curves) and φ0 = 0.3 (dashed red curves), while

the dotted curves represent the case of imposed homogeneous distribution of solute

for the two cases. For higher mean solute concentration the stable region becomes
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narrower in M1 as compared to the case of smaller concentrations, as A(φ) becomes

positive for smaller absolute values of M1.

In Fig. 4.13 one can see the resulting stability thresholds for M2 = 0.01 and

M2 = 0.1. The unstable region occurring at negative M1 for small h0, becomes

more pronounced for smaller values of M2. In other words, for a given h0, the

ratio between the molecular length scale related to the solute, a, and the vertical

length scale related to the precursor height of the pure solvent, l, entering the

non-dimensional parameter M2, is critical for the linear stability of the system.

One may see the new instability as a higher order equivalent of Turing instability in

a two-component reaction diffusion system [119]. Here the two diffusion processes

that interact are the (high order) diffusion of the film height and the diffusion of

the solute. However, note that the analogy is incomplete as here both fields are

conserved and the instability is of infinite wavelength at onset.
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Figure 4.12: Stability diagrams in the space spanned by M1 and h0 for δ = −1
(stable solvent) for fixed M2 = 0.01 and φ0 = 0.1 (solid black curves) or φ0 = 0.3
(dashed red curves). The dotted black and red lines correspond to the case of
imposed homogeneous concentration for the two cases. The stability regions are

marked “S” for “linearly stable” and “US” for “linearly unstable”.

Next, we employ Eq. (4.51) to plot the critical M1 as a function of M2 for fixed

h0 and φ0, which determines the stability borders of the system in the (M1,M2)–

plane. The function has two branches, corresponding to the two conjugate roots
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Figure 4.13: Stability diagrams in the space spanned by M1 and h0 for fixed
δ = −1 (stable solvent) and φ0 = 0.1. The two sets of black and orange curves
correspond to the two conjugate roots for M1(h0) for values of M2 as given in
legend. The stability regions are marked “S” for “stable” and “US” for “unsta-
ble”. The dotted black line corresponds to the case of imposed homogeneous

concentration (identical for both values of M2).

of M1. Fig. 4.14 shows the resulting curves for h0 = 5 and φ0 = 0.1. The existence

of the unstable region for negative M1 is well demonstrated on this type of plot.

Again, the system is always linearly stable for M1 = 0, for all values of M2. Then,

if a destabilising solute is introduced, this results in an unstable region for M1 > 0.

Again, there exists another unstable region in the M1 < 0 half–plane, implying

that the mixing of two stable materials can result in an unstable film.

Varying M2, one effectively changes the coefficient in front of the entropic term

of the free energy (cf. Eq. (4.20)) that may be used to control diffusion of the

solute. The destabilisation results from a decrease of the stabilising influence of

the entropy, hence an analogy with homogeneous “cooling” of the system can be

made (Fig. 4.14). Accordingly, moving from the unstable region towards larger M2

corresponds to the opposite situation – diffusion is strengthened and the system is

stabilised by entropy, related to homogeneous “heating”. Reducing the parameter

M2 can switch the system from the stable to the unstable regime even when the

total disjoining pressure term is stabilising.
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Figure 4.14: Stability diagram in the space spanned by M1 and M2. The
rest of the parameters are fixed as follows: δ = −1 (stable solvent), h0 = 5 and
φ0 = 0.1. The stability regions are marked “S” for “stable” and “US” for “un-
stable”. The dotted black line corresponds to the case of imposed homogeneous

concentration. The arrows are explained in the main text.

Moreover, for any given value of M2 there exists a critical negative M1, below

which the system is linearly unstable. The dotted line corresponds to the case

of imposed homogeneous concentration field and is included for comparison, to

demonstrate the effects of the coupling.

The coordinates of the turning point of the stability border in Fig. 4.14 are

(M1,M2) = (0, 0) as calculated from Eq. (4.51) for the case of a stable pure

solvent. They are (M1,M2) =
(

4B−2δh30
h20ψ0

,
−6B+3δh30

h50ψ0

)
for the case of unstable pure

solvent considered below in Section 4.7.2.

To analyse the influence of the choice of h0 on the form of the stability borders

in the (M1,M2)–plane, next we consider films of different thicknesses at a fixed

mean solute concentration φ0 = 0.1. The resulting stability diagrams are shown

in Fig. 4.15 for three values of h0, where the dotted black line is the stability

threshold when the concentration inside the film is assumed to remain always

homogeneous. As demonstrated in the figure, if one assumes a model, in which

the concentration does not change in a coupled way with the film thickness, the

stability borders do practically not change when one varies h0 (cf. Eq. 4.55), which
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Figure 4.15: Stability diagrams in the space spanned by M1 and M2 for fixed
δ = −1 (stable solvent), φ0 = 0.1 and h0 = 5 (solid black line), h0 = 10
(dashed red line) or h0 = 15 (dot-dashed blue line). The dotted black line is
the stability border corresponding to the case when the concentration of solute
remains homogeneous and is valid for all the cases shown in the Figure. The

stability regions are marked “S” for “stable” and “US” for “unstable”.
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Figure 4.16: Stability diagrams in the space spanned by M1 and M2 for fixed
δ = −1 (stable solvent), h0 = 5 and φ0 = 0.05 (dashed red line), φ0 = 0.1
(solid black line) or φ0 = 0.5 (dot-dashed orange line). The stability regions
are marked “S” for “stable” and “US” for “unstable”. The thin dotted lines
correspond to the respective cases of imposed homogeneous concentration of

solute.
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is not the case for the coupled model. For any given value of M1 < 0 there exists a

region, where the mixture is linearly unstable. The comparison for different mean

thicknesses demonstrates that a smaller h0 needs a larger coefficient M2 in front of

the stabilising diffusion term to switch into a linearly stable state. In other words,

for the same strength of the diffusion, to become unstable thicker films need more

strongly destabilising solutes as compared to thinner films. This is visible in Fig.

4.15 if one considers a vertical cut M2 = const.

Fig. 4.16 demonstrates the influence of the mean solute concentration on the sta-

bility behaviour in the (M1,M2)–plane. The smaller φ0 is, the wider the “stable”

region is. For any given value of M1 one needs to strengthen the stabilising effect

of the diffusion in order to stay in the linearly stable regime when increasing the

mean concentration of the solute. The dotted lines show the results in the case of

imposed homogeneity.
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Figure 4.17: Stability diagram in the space spanned by M1 and M2 for fixed
δ = −1 (stable solvent), ψ0 = 3.0 (φ0 = 0.2) and h0 = 15. The stability
regions are marked “S” for “stable” and “US” for “unstable”. The coloured
square symbols mark points for which we present the corresponding dispersion

relations in Figs. 4.18 and 4.19, where the same colour coding is used.
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4.7.1.2 Non-linear steady states and time evolution

Next, we investigate steady solutions by continuing solution families through the

parameter space in the case of a stable solvent, or δ = −1. We fix the mean

solute concentration to φ0 = 0.2 and the mean film thickness to h0 = 15. The

corresponding (M1,M2)–diagram is shown in Fig. 4.17.
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Figure 4.18: Dispersion relations for a flat film of mixture on a horizontal
substrate. The colour code corresponds to different values of the parameter
M1, as given in the legend. The rest of the parameters is fixed: δ = −1 (stable
solvent), φ0 = 0.2, h0 = 15 and M2 = 0.0001. The colouring of the curves

corresponds to the colouring of the square symbols in Fig. 4.17.

First, we calculate the dispersion relations corresponding to selected linearly un-

stable points from the diagram, marked by coloured square symbols in Fig. 4.17.

The colour code corresponds to the one used in Figs. 4.18 and 4.19 . Their purpose

is to demonstrate how the shape of the dispersion relation and the value of the

critical wave number kc change when we change position in the stability diagram.

On the one hand, when we increase M1 at fixed M2 (see Fig. 4.18), kc decreases,

which means the critical domain size Lc increases, until eventually Lc diverges

and the stability threshold is crossed. On the other hand, if M2 increases for a

fixed value of M1 (see Fig. 4.19), then kc decreases as well - the instability onset

is observed at larger domain size.
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Figure 4.19: Dispersion relations for a flat film of mixture on a horizontal
substrate for various values of the parameter M2, as given in the legend. The
rest of the parameters are fixed: δ = −1 (stable solvent), φ0 = 0.2, h0 = 15
and M1 = −3. The colouring of the curves corresponds to the colouring of the

square symbols in Fig. 4.17.

One also observes in Fig. 4.18 that the maximal growth rate βmax, corresponding

to the fastest growing instability mode, increases when one decreases M1 and so

does the corresponding wave number kmax. On the other hand, as visible in Fig.

4.19, both βmax and kmax increase when M2 decreases.

If we pick a particular point from the linearly unstable region of this diagram, we

can observe how the parameters influence the shape of the steady film profiles, as

well as the profiles of the vertically averaged concentration of the solute.

Fig. 4.20 shows a family of fully non-linear drop and hole solutions obtained for

M1 = −8 and M2 = 0.001 when varying the domain size L, while Fig. 4.21

demonstrates how the steady drop and concentration profiles change along the

upper branch of Fig. 4.20 when continuing towards large domain size. Starting

from small-amplitude sinusoidal modulations of a flat film at a critical domain

size Lc determined by the linear stability analysis, these solutions are calculated

using continuation techniques [45–47], as discussed in Chapter 3. Three solution

measures are presented in Fig. 4.20: the “amplitude” of the film thickness profile

hmax − hmin, the L2-norm of the film thickness ||δh||, and the 10-times magnified

L2-norm of the concentration field ||δφ||.
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Figure 4.20: Solution family obtained when varying the domain size for fixed
δ = −1 (stable solvent), h0 = 15, φ0 = 0.2, M2 = 0.001 and M1 = −8. The
black dot-dashed curve represents the amplitude of the height profile hmax−hmin,
the red solid curve is the L2-norm of the film thickness ||δh||, and the 10-times
magnified L2-norm of the concentration field ||δφ|| is given as dashed blue curve.
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Figure 4.21: Film thickness and the corresponding solute concentration pro-
files at various domain size L, as given in the legend. The solutions, shown here,
belong to the upper branch emerging from the saddle-node bifurcation in the

bifurcation diagram in Fig. 4.20.

Only the upper branch of the diagram in Fig. 4.20 corresponds to stable stationary

solutions. Their L2 - norm increases monotonically with increasing the domain

size. These solutions are linearly stable if one takes one period as the unit for the
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Figure 4.22: Film thickness and corresponding solute concentration profiles
of two different domain sizes L, as given in the legend. The profiles, shown here,
belong to the lower branch emerging from the saddle-node bifurcation in Fig.

4.20 and represent nucleation solutions.

stability analysis. The lower branch has an amplitude that goes to zero when the

domain size approaches the critical wavelength Lc = 2π/kc obtained in the linear

stability analysis. It represents nucleation solutions – unstable solutions that need

to be overcome in order to break a film into structures with a length scale smaller

than Lc.

As visible from Fig. 4.21, an increase of the domain size results in a change of the

solution shape, until eventually a coexistence of two film and solute thicknesses,

corresponding to the values on the binodal line (discussed in Section 4.6), is estab-

lished. Such “pancake” drops could otherwise not be obtained with a disjoining

pressure based on two power laws. Two nucleation solutions belonging to the lower

branch are shown in Fig. 4.22.

Next, we look at the time evolution of flat homogeneous films in 1D. For the time

dependent calculations, Eqs. (4.27) and (4.28) are solved numerically using a sec-

ond order central finite difference scheme in space. For the time integration, we

used a variable-order and variable-step Backward Differentiation Formulae algo-

rithm. The number of grid points used is chosen depending on the total length

of the system. Knowing the domain size L, one can determine the grid spacing
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in x. In all calculations, periodic boundary conditions for both the fields (h and

ψ) are used. As an initial condition we use a flat h and ψ profiles which are then

perturbed by a small (0.1%) uniform noise. It is carefully checked that the total

volume of h and ψ does not change during this process.

(a)

(b)

Figure 4.23: Time evolution of film thickness (a) and concentration (b)
profiles for δ = −1 (stable solvent), M1 = −3, h0 = 15, φ0 = 0.2 and (a)

M2 = 0.0002, L = 1500.

Figs. 4.23 (a) and (b) show “space-time” plots corresponding to the time evolution

of the film thickness and concentration profiles for a system with parameters as

given in the legend. Starting from a flat film with uniformly distributed solute,

one observes how a droplet forms with a peak of solute concentration inside. For

this particular choice of parameters, the local concentration increases with the film

thickness and exhibits a maximum corresponding to the maximum of the local film

thickness.

Fig. 4.24 shows some selected height and concentration profiles corresponding to

consecutive stages of the time evolution for the very same case shown in Fig. 4.23.
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Figure 4.24: Time evolution of a flat film (solid brown line) on a solid sub-
strate. The system is characterised by δ = −1 (stable solvent), M1 = −3, h0 =
15, φ0 = 0.2 and M2 = 0.0002, L = 1500 (linearly unstable region in Fig. 4.17).
The solid lines of different colour represent subsequent profiles obtained through
the time evolution until a stationary shape is established (solid blue line). The

dotted red line is the steady state, obtained with AUTO.

The figure serves to demonstrate that in the final stage of the time evolution, the

h and φ profiles agree very well with the steady state profiles that minimise the

free energy, obtained by numerical continuation.
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Figure 4.25: Film thickness and concentration profiles for δ = −1 (stable
solvent), M1 = −3, h0 = 15, φ0 = 0.2 and (a) M2 = 0.0002, L = 105 (linearly
unstable region in Fig. 4.17) or (b) M2 = 0.00025, L = 5 × 105 (linearly stable

region).

Fig. 4.25 shows stationary solutions for the film thickness of the mixture and the

corresponding concentration of the solute, for parameter configurations belonging
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Figure 4.26: Solution families obtained when varying the domain size for fixed
δ = −1, h0 = 15, φ0 = 0.2, M2 = 0.00025 and M1 = −3 .
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Figure 4.27: Film thickness and the corresponding solute concentration pro-
files of two different domain sizes L, as given in the legend. The profiles belong
to the lower branch emerging from the saddle-node bifurcation in Fig. 4.26 and

represent nucleation solutions.

to the linearly unstable (a) and the linearly stable (b) regions in Fig. 4.17. The

second one is obtained by using M2 as a continuation parameter starting with the

profile in (a). In analogy to the case pictured in Fig. 4.20, first, a family of solutions

is obtained in dependence of domain size L for fixed h0 = 15, φ0 = 0.2,M1 = −3

and M2 = 0.0002. The profile at L = 105 from the resulting branch of stable
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solutions is shown in Fig. 4.25 (a). Keeping all the other parameters fixed, but

increasing M2 to 0.00025, we cross the stability border and enter the linearly stable

region. Now we continue in L again and obtain the family shown in Fig. 4.26. It

qualitatively differs from the one in Fig. 4.20. The flat film is metastable, i.e. there

exist two branches of periodic solutions that both continue towards infinite period,

as shown in Fig. 4.26. The lower branch represents linearly unstable nucleation

solutions for different domain sizes, while the upper branch represents the linearly

stable solutions similar to the ones shown in Fig. 4.21. A stable profile at large

domain size from the upper branch is pictured in Fig. 4.25 (b), while Fig. 4.27

represents two profiles from the lower branch of Fig. 4.26, i.e. nucleation solutions

and the corresponding concentration profiles.

Fig. 4.28 shows the binodal curves in terms of the coexisting equilibrium film

thicknesses h (solid black lines) and solute concentration φ (dashed red lines) for

δ = −1 and four parameter sets, as explained in the caption. The dotted vertical

lines mark the situation captured in Fig. 4.25 (a) and its crossing points with

the binodal curves agree well with the coexisting values in Fig. 4.25 (a). This

demonstrates that knowledge of the binodal curves hb and φb over h0, φ0,M1 or

M2 with the rest of the parameters fixed, allows us to predict the coexisting film

thickness and concentration values relevant at large domain sizes (and long times).

It is interesting to note that the turning points of the binodal curves in Fig.

4.28 do not coincide with the linear stability thresholds indicated by the vertical

dashed orange lines, which is best visible in Fig. 4.28(b). The reason for this is

the existence of the metastable region discussed earlier – the system is unstable

to finite amplitude disturbances and for large system sizes one observes coexisting

states.

The steady state configuration, which we just described, is universal for δ = −1.

In all of the studied cases within the linearly unstable region of the corresponding

M1 : M2 diagram for M1 < 0 the solution families look like the one shown in Fig.

4.20. In all of the observed cases, the flat film appears to be metastable in a small

region close to the stability border. However, in the half-plane M1 > 0 we were not
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Figure 4.28: Binodal lines corresponding to coexisting equilibrium film thick-
nesses h (solid black lines) and solute concentration φ (dashed red lines) for
δ = −1 (stable solvent) as functions of (a) the mean film thickness for fixed
φ0 = 0.2,M1 = −3,M2 = 0.0002, (b) the mean solute concentration for fixed
h0 = 15.0,M1 = −3,M2 = 0.0002, (c) M1 for fixed h0 = 15, φ0 = 0.2,M2 =
0.0002 and (d) M2 for fixed h0 = 15, φ0 = 0.2,M1 = −3. The vertical dot-
ted blue lines mark the case shown in Fig. 4.25(a), whereas the vertical dashed
orange lines indicate the linear stability threshold. Note, that it does not coin-
cide with the critical point of the binodal curves. The two different thicknesses
of the binodal lines indicate correspondence between the coexisting thicknesses

and concentrations in the two phases.

able to obtain any linearly stable steady solutions for large domain sizes, as in all

the cases we looked at, numerical convergence problems occurred most probably

because the concentration locally becomes very small (< 10−6). Below, the case

is further studied.

As an example, we consider the case when h0 = 10 and φ0 = 0.3. The correspond-

ing stability diagram in the (M1,M2)–plane is shown in Fig. 4.29.

Employing linear stability analysis, now we calculate the dispersion relations cor-

responding to points from the linearly unstable region at M1 > 0, marked by

coloured square symbols in Fig. 4.29, where the colour code corresponds to the
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Figure 4.29: Stability diagram in the (M1,M2) – plane for fixed δ = −1,
φ0 = 0.3 and h0 = 10. The coloured boxes mark points from the stability
diagram, for which we present the corresponding dispersion relations in Figs.

4.30 and 4.31, where the same colour coding is used.
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Figure 4.30: Dispersion relations for a flat film of mixture on a horizontal
substrate for δ = −1 (stable solvent), φ0 = 0.3, h0 = 10 and M2 = 0.0001. The
colour code corresponds to different values of the parameter M1, as given in the

legend.

one used in Figs. 4.30 and 4.31, which represent dispersion relations, i.e. the de-

pendence of growth rate β1 on the wave number k. In the case shown in Fig. 4.30

we have chosen M2 = 0.0001 and the different curves result for the five values of

M1 given in the legend. As one increases the value of M1 and moves further from

the linearly stable region, the critical wave number increases - the instability onset
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Figure 4.31: Dispersion relations for a flat film of mixture on a horizontal
substrate for δ = −1 (stable solvent), φ0 = 0.3, h0 = 10 and M1 = 3. The
colour code corresponds to different values of the parameter M2, as given in the

legend.

occurs at smaller domain size, as observed earlier in Fig. 4.18. In the case when

M1 is fixed (Fig. 4.31) and we increase the value of M2, the critical wave number

increases as well.

If we pick a point from the linearly unstable region, e.g. M1 = 3,M2 = 0.0005

(light blue square symbol in Fig. 4.29 and the corresponding dispersion relation in

Fig. 4.31) and use the predicted critical domain size to start a continuation run that

varies the domain size, we obtain the solution family shown in Fig. 4.32 (a). The

obtained branch consists of nucleation solutions, as the one shown in Fig. 4.33. The

calculation terminates at the red square. The shape of the concentration profile,

well visible in Fig. 4.33 (b), suggests that the reason for the termination of the

calculation is purely numerical, as there appears to be a sharp transition between

the high solute concentration where the film is depressed, and the extremely low

concentration where the film is elevated. The closer one gets to the red square

in Fig. 4.32 (a), the smaller the concentration outside the hole becomes, until it

eventually reaches values smaller than 10−6.

Another possible situation is the one captured in Fig. 4.32 (b), where the solution

branch bifurcates at Lc supercritically from the unstable flat film, but does not
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Figure 4.32: Solution family obtained when varying the domain size for fixed
δ = −1 (stable solvent), h0 = 10, φ0 = 0.3 and (a) M2 = 0.0005, M1 = 3 or
(b) M2 = 0.0001, M1 = 4. The red square marks the region where the branch

calculation terminates due to a numerical issue.

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

h(
x)

0 0.2 0.4 0.6 0.8 1
x/L

0

2

4

φ(
x)

0 0.2 0.4 0.6 0.8 1
x/L

10
-6

10
-4

10
-2

10
0

10
2

φ
(x

)

(b)

Figure 4.33: Film thickness and concentration profiles for domain size L ≈ 50
in proximity of the red square region from Fig. 4.32 (a) for δ = −1 (stable
solvent), M1 = 3, h0 = 10, φ0 = 0.3 and M2 = 0.0005 in (a) linear and (b)

logarithmic scale for the concentration field.

continue towards infinite period. Instead, the solution branch undergoes a saddle-

node bifurcation, i.e. it folds back towards smaller L. Then, however, the same

problem with an extremely low local concentration is encountered. This case is

for M2 = 0.0001 and M1 = 4 and corresponds to the black square symbol in Fig.

4.29 and the black dispersion relation curve in Fig. 4.30. Two steady state profiles

in proximity of the red square in Fig. 4.32 (b) are given in Fig. 4.34. Again, the

shape of the concentration profiles indicates that the reason for the termination

of the calculation is purely numerical.

On Fig. 4.35 is shown the time evolution of a film with parameters as given in the

legend. Starting from a flat film with uniformly distributed solute, a droplet forms

with a peak of solute concentration corresponding to the minimal film thickness.
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Figure 4.34: Film thickness and concentration profiles for domain size L in
proximity of the red square region from Fig. 4.32 (b) for δ = −1 (stable solvent),
M1 = 4, h0 = 10, φ0 = 0.3 and M2 = 0.0001 in (a) linear and (b) logarithmic

scale for the concentration field.

(a)

(b)

Figure 4.35: Time evolution of film thickness (a) and concentration (b) profiles
for δ = −1 (stable solvent), M1 = 4, h0 = 10, φ0 = 0.3 and (a) M2 = 0.0001, L =

110.

Eventually, the shape of the evolving film and concentration profiles converge into

the stationary shapes obtained by numerical continuation.
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4.7.2 Unstable solvent

Next we focus on the case δ = 1, when a film of the pure solvent is linearly

unstable, i.e. the Hamaker constant of the pure solvent A0 is positive. Examples

for systems with A0 = δ|A0| > 0 are given in Table 4.3 and include PS + PMMA,

Toluene + PS and PMMA + PSAN on SiO2 substrates. Depending on the sign of

the coefficient M1, when increasing the mean concentration of the solute φ0, the

Hamaker constant of the mixture can stay positive for all φ0, if M1 > 0, or it may

switch sign at some φ0 if M1 < −1.

4.7.2.1 Linear stability

As an example we consider a system, characterised by δ = 1 and φ0 = 0.2. Linear

stability diagrams in the (M1,M2) – plane are shown in Figs. 4.36 and 4.37. The

first one demonstrates how the stability border shifts when we increase the mean

film thickness from h0 = 10 to h0 = 15 – the stable region moves towards larger M2.

This implies that for a given combination of materials, thicker films are stabilised at

smaller entropic influences. In the limit of very thick films (h0 � 1), one observes

that the film is always stable for A = |A0|(δ + M1φ) < 0. The coordinates of the

turning point of the stability threshold are (M1,M2) =
(

4B−2δh30
h20ψ0

,
−6B+3δh30

h50ψ0

)
and

in the limit h0 � 1 one finds (M1,M2) =
(
− 2δ
φ0

; 0
)

. The dotted line represents

the case when the concentration of the solute is imposed to remain homogeneous

and practically does not change when one varies h0 (cf. Eq. 4.55).

Fig. 4.37 demonstrates the influence of φ0 when all the remaining parameters

are fixed, as given in the caption. Increasing the concentration the linearly stable

region in the (M1,M2)–plane expands towards smaller values ofM2 and the turning

point adjusts accordingly. The dotted lines correspond to the case of imposed

homogeneous concentration.

Figs. 4.38 and 4.39 show the stability thresholds in the (M1, h0)-plane for fixed

M2 and different values of φ0 and fixed φ0 and two values of M2, respectively.
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Figure 4.36: Stability diagram in the space spanned by M1 and M2 for fixed
δ = 1 (unstable solvent), φ0 = 0.2 and h0 = 10 (dashed black line) or h0 = 15
(dot-dashed blue line). The stability regions are marked “S” for “stable” and
“US” for “unstable”. The thin dotted red line is the stability border for the
case when the concentration of solute is assumed to remain homogeneous. It is

practically the same for all h0 & 10, about 1/φ0.
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Figure 4.37: Stability diagrams in the space spanned by M1 and M2 for fixed
δ = 1 (unstable solvent), h0 = 10 and φ0 = 0.1 (solid red line), φ0 = 0.2
(dashed black line) or φ0 = 0.3 (dot-dashed blue line). The stability regions
are marked “S” for “stable” and “US” for “unstable”. The thin dotted lines
mark the stability borders corresponding to the case of imposed homogeneous

concentration.
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Figure 4.38: Stability diagrams in the space spanned by M1 and h0 for fixed
δ = 1 (unstable solvent), M2 = 0.5 and φ0 = 0.1 (dashed black lines) or φ0 = 0.3
(dot-dashed red lines). The stable and unstable regions are marked “S” and
“US”, respectively. The two thin dotted lines mark the respective stability

borders corresponding to the case of imposed homogeneous concentration.
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Figure 4.39: Stability diagrams in the space spanned by M1 and h0 for fixed
δ = 1 (unstable solvent), φ0 = 0.3 andM2 = 0.05 (dashed black lines) or M2 =
0.5 (dot-dashed red lines). The stable and unstable regions are marked “S”
and “US”, respectively. The thin dotted line is the stability border for imposed

homogeneous concentration and it is valid for any M2.

The thin dotted lines represent the case in which the concentration of the solute

is imposed to be homogenous at all times.
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4.7.2.2 Non-linear steady states

Further, we investigate the types of steady profiles which occur in the parameter

space in the case of an unstable solvent, or δ = 1. We fix the mean solute concen-

tration to φ0 = 0.3 and the mean film thickness of the mixture film to h0 = 10.

The corresponding (M1,M2)–diagram is shown in Fig. 4.40.

In analogy to Section 4.7.1, we employ linear stability analysis to calculate the

dispersion relations corresponding to coloured square symbols in the unstable re-

gions of Fig. 4.40, where the colour code corresponds to the one used in Figs. 4.41

and 4.42.
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Figure 4.40: Stability diagram in the space spanned by M1 and M2 for fixed
δ = 1 (unstable solvent), φ0 = 0.3 and h0 = 10. The regions are marked “S” for
“stable” and “US” for “unstable”. The coloured square symbols mark points
for which we present the corresponding dispersion relations in Figs. 4.41 and

4.42.

We observe how the shape of the dispersion relations and the value of the criti-

cal wave number kc change between different positions in the stability diagram.

In Fig. 4.41 we see that the value of the critical wave number kc changes non-

monotonously when we increase the value of M1. At first, while approaching the

turning point of the stability threshold in the linearly unstable region, increasing

the parameter M1 from −10 to −6, kc decreases. Once we start going further from
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the turning point, i.e. changing M1 from −6 to −3.5, kc starts to increase. When

we fix M1 and change M2, kc increases with M2, as shown in Fig. 4.42.

Also, it is interesting to note that the growth rate characterising the fastest growing

mode, βmax, changes non-monotonically when one changes M1. At first, when M1

increases and one approaches the stable region in Fig. 4.40, βmax decreases and

so does the corresponding wave number kmax (cf. Fig. 4.41). However, once one

starts to move away from the linearly stable region, both βmax and kmax increase.

On the other hand, when one fixes M1 and varies M2, one observes that βmax and

kmax decrease when M2 increases, as visible in Fig. 4.42.
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Figure 4.41: Dispersion relations for a flat film of mixture on a horizontal
substrate for various values of M1 as given in the legend. The remaining pa-
rameters are fixed: δ = 1 (unstable solvent), φ0 = 0.3, h0 = 10 and M2 = 0.01.
The colouring of the curves corresponds to the one of the square symbols in

Fig. 4.40.

Fig. 4.43 (a) shows a typical solution family obtained by varying the domain size

L, starting from the critical one determined from the linear stability analysis. All

steady states on the solution branch shown in Fig. 4.43 (a) are nucleation solutions.

When reducing L, a numerical convergence problem does not allow us to reach

domain sizes below the red square or indeed the upper (stable) branch that we

expect. Two film thickness and concentration profiles in the proximity of that

region are given in Fig. 4.43 (b). Apparently, the local solute concentration in the



Chapter 4. Films and drops of mixtures on solid substrates 99

0 0.005 0.01 0.015
k

-1×10
-8

0

1×10
-8

2×10
-8

β 1

0.005
0.01
0.015

M
2

Figure 4.42: Dispersion relations for a flat film of mixture on a horizontal
substrate for selected values of the parameter M2 as given in the legend. The
remaining parameters are δ = 1 (unstable solvent), φ0 = 0.3, h0 = 10 and
M1 = −4. The colouring of the curves corresponds to the one used for the

square symbols in Fig. 4.40.

film becomes very small (φ ≈ 10−6), as already observed in Section 4.7.1. The

time evolution computations confirm that all the explored cases are unstable.
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Figure 4.43: (a) Solution family obtained when varying the domain size for
fixed δ = 1, h0 = 10, M2 = 0.01 and (b) M1 = 1 and film thickness and solute

concentration profiles, corresponding to the red square region in (a).

Fig. 4.44 shows the binodal curves in terms of the coexisting equilibrium film thick-

nesses h (solid black lines) and solute concentration φ (dashed red lines) for δ = 1

and parameter sets, as explained in the caption. The two different thicknesses of

the binodal lines indicate correspondence between the coexisting thicknesses and

concentrations in the two phases. One observes in Fig. 4.44 that the upper binodal

thickness hbinodal diverges when the mean film thickness approaches the value of
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Figure 4.44: Binodal lines giving coexisting equilibrium film thicknesses h
(solid black lines) and solute concentrations φ (dashed red lines) as functions of
the mean film thickness for fixed δ = 1, φ0 = 0.2,M1 = 1 and M2 = 0.1. The
two line thicknesses indicate correspondence between the coexisting thicknesses

and concentrations in the two phases.

about 4.2. Unfortunately, we were not able to obtain any steady solutions for this

case.

4.8 Conclusions

In this Chapter we have investigated the influence of the concentration-dependent

wettability on the behaviour of thin films of non-volatile liquid films of mixtures.

We have discussed in Section 4.2.1 how the Hamaker constant of simple liquids on

solid substrates can be calculated in the framework of the Lifshitz theory using

the permittivities and refractive indices of the solid, liquid and gas phase. In

Section 4.2.2 we have introduced the Effective Medium Approximation (EMA) – a

technique, which has allowed us to calculate effective permittivities and refractive

indices of inhomogeneous media, based on knowledge about the optical indices

of its components. Further, in Section 4.2.3 we have showed how EMA can be

combined with the Lifshitz theory to obtain concentration–dependent Hamaker

constants for films of mixtures on solid substrates. Next, in Section 4.2.4 we have
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presented the results for the Hamaker constants for a set of selected systems with

mixtures and suggested that for most of the systems we are interested in, the

relevant Hamaker constants can be confidently approximated by a linear function

of the solute concentration, distinguishing two main cases for the studied systems.

The first case considers systems, for which a film of pure solvent is stable on its own

while the second one includes cases for which the pure solvent forms an unstable

film on its own.

Further, in Section 4.3 we have discussed coupled thin film equations for the film

thickness and effective local solute thickness for films of mixtures. First, we have

demonstrated how the free energy of the system can be extended to include a

concentration–dependent wetting energy. It has then been incorporated into the

gradient dynamics formulation of the coupled equations, which were introduced

in Section 2.3.2. We have also discussed the resulting Euler–Lagrange equations

describing film thickness and concentration profiles minimising the free energy of

the system, i.e. the steady states. We have continued in Section 4.4 by demon-

strating a procedure of non-dimensionalisation of the governing coupled equations

and introducing a set of non-dimensional parameters characterising the problem.

Next, in Section 4.5 we have analysed the linear stability of flat films of mix-

tures and we have discussed how one can obtain the stability thresholds in the

space spanned by the non-dimensional parameters entering the non-dimensional

free energy functional, and the mean film thickness and mean solute concentra-

tion. In Section 4.6 we have shown how the binodal lines for the studied case of

mixtures can be calculated, allowing us to predict coexisting film and solute layer

thicknesses.

Section 4.7 contains our main results for the two main cases we have studied,

namely for stable and unstable solvent, presented in Sections 4.7.1 and 4.7.2, re-

spectively. For the case of a stable solvent, we have first investigated how the

linear stability borders change when once a solute is introduced into the system.

The most spectacular effect we have observed is that even when both, the pure

solvent and pure solute, are stable on their own, there still can exist a region in
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the parameter space where the mixture of the two is linearly unstable. This obser-

vation is not trivial at all, as it points to the existence of a new type of thin film

instability based on the coupling of fluctuations of the height and concentration.

We have further investigated this finding in Section 4.7.1.2 where we have discuss

dispersion relations and non-linear steady states. The latter we have compared to

the binodal solutions for large computational domains. In Section 4.7.2 we have

performed a similar analysis of the case when the pure solvent is unstable. In all

of the cases considered we have observed that all of the existing instabilities get

stronger due to the coupling between the film height and the solute concentration.



Chapter 5

Parameter passing between

Molecular Dynamics and

continuum models for droplets on

solid substrates: The static case

We study equilibrium properties of polymer films and droplets on a solid substrate

employing particle-based simulation techniques (Molecular Dynamics) and a con-

tinuum description. Parameter-passing techniques are explored that facilitate a

detailed comparison of the two models. In particular, the liquid–vapour, solid–

liquid and solid–vapour interface tensions, and the Derjaguin (disjoining) pressure

are determined by Molecular Dynamics simulations. This information is then in-

troduced into continuum descriptions accounting for (i) the full curvature and (ii)

a long-wave approximation of the curvature (the thin film model). A comparison

of the dependence of the contact angle on droplet size indicates that the theories

agree well if the contact angles are defined in a compatible manner.

103
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5.1 Introduction

In the previous decade increasing attention has focused on the behavior of small

quantities of liquid on hard [13, 21, 81, 129, 132, 134, 162] or soft [109, 151]

substrates in equilibrium or under the influence of driving forces parallel to the

substrate [101, 149, 173]. Current research mainly considers two levels of descrip-

tion: particle-based models [37, 67, 81, 82, 89, 95, 99, 108] and continuum theory

[13, 21, 25, 44, 50, 60, 101, 102, 111, 132, 172, 173, 183]. The former describes

the liquid in terms of the position and momenta of particles. These may represent

atoms in a chemically realistic model or one lumps together a small number of

atoms into an effective interaction center (called “a bead”) in a coarse-grained

model. The reduction of the number of degrees of freedom and the soft interac-

tions in the coarse-grained description facilitate the study of long time and length

scales. The properties of particle-based models are studied by discrete stochastic

simulations, i.e., Monte-Carlo simulation or Molecular Dynamics. The advantage

of retaining the particle degrees of freedom consists of the ability to refine the

model towards a chemically realistic description and to include effects of thermal

fluctuations and of discreteness of matter that are expected to become important

on small length scales. However, these stochastic simulation techniques are limited

to droplets of a linear size that does not exceed a few nanometers.

Continuum models, in turn, describe the liquid in terms of collective variables that

do not refer to individual particles. They can address engineering time and length

scales but depend on phenomenological material constants that are often not re-

lated in a straightforward way to the microscopic interactions of the particle-based

description. Thus effort has to be devoted to parameter-passing techniques that

transfer information from particle-based models to the continuum description. To

this end, two questions have to be addressed: (i) Which is the relevant information

of the particle-based model needed in the continuum description and (ii) how can

one extract this information from the particle-based description in the appropriate

continuum form?



Chapter 5. Parameter passing between MD and continuum models 105

In the present work, we use a coarse-grained particle model of a polymer drop on

a solid substrate, and a thin film description that characterizes the droplet shape

by the location, h, of the liquid–vapour interface above the substrate. We explore

the behavior of small nano-drops where both descriptions are computationally

feasible. We extract the interface tensions and the Derjaguin or disjoining pressure

[39, 132, 157] from Molecular Dynamics simulation of the particle-based model and

pass them to continuum model. Then both approaches are used to determine the

equilibrium contact angle of a droplet as a function of the size of the droplet and

of interaction strength between the liquid and the substrate.

To our knowledge, such a parameter passing scheme has not yet been developed

for the case of liquid droplets on solid substrates. However, the disjoining pressure

itself can be extracted in grandcanonical ensemble [31, 61, 94, 107, 108]. Addi-

tionally, related works exist for other geometries in canonical ensemble, such as

free standing films or films adsorbed in pores [68].

Bhatt et al. [19] extract a disjoining pressure as a function of chemical potential

from MD simulations for a free standing film of a volatile Lennard-Jones liquid and

compare the results with the ones of density functional theory. Their approach

consists in the definition of the disjoining pressure as the difference of normal pres-

sure in the film and the pressure in the homogeneous liquid at the same chemical

potential as the film. However, as discussed in section 5.3, the measurement of

the chemical potential in a canonical ensemble is difficult and requires additional

simulations. Moreover, despite of truncated potentials, they relate the disjoining

pressure with solely long-range van der Waals dispersion forces and provide there-

fore comparison to Hamaker theory. The short-range forces stay outside the scope

of their research.

A planar liquid film bounded by a solid and vapour is studied by Han [63] using

grandcanonical MD simulations with a truncated and shifted Lennard-Jones in-

teraction. The disjoining pressure is extracted in a similar way as in Ref. [19] and

again is associated with only long-range dispersion forces.
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Note that parameter passing from MD simulations to continuum hydrodynamics

is also frequently done in the context of liquid flow close to solid substrates [33,

62, 80, 128–130]. However, as these works do either not involve free interfaces

[33, 128] or do not extract the disjoining pressure [62, 129, 130], we do here not

discuss them further.

This Chapter is structured as follows. In section 5.2 we present the particle-based

and continuum approaches. Then, section 5.3 details how we pass the parameters

from the particle-based model into the continuum description. The subsequent

section 5.4 presents the dependence of the equilibrium contact angle on droplet size

for various interaction energies between the liquid and the substrate. In passing,

we describe several ways to define the equilibrium contact angle and discuss their

relation to the macroscopic Young-Laplace law. Section 5.5 concludes and gives

an outlook beyond the case of equilibrium droplets.

The work presented in the Chapter is the result from a collaboration with Dr. Nikita

Tretyakov and Prof. Marcus Müller (Institute for Theoretical Physics, Georg Au-

gust University Göttingen). All the work related to the MD calculations and

simulations was done by them and is published in more detail in Dr. Tretyakov’s

Dissertation [179].

5.2 Models

5.2.1 Molecular Dynamics (MD)

Here, the mesoscopic discrete stochastic description is provided by Molecular Dy-

namics simulations of a widely used coarse-grained polymer model [59], i.e., a

polymer chain is not represented by each and every individual atom but it is

modeled as a flexible, linear string of small conglomerates of atoms. These con-

glomerates are called “beads”. The length of all polymer chains is fixed to Np = 10

monomers [117, 149] in all simulations. The potentials used in MD are represented

in Fig. 5.1.
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Figure 5.1: Snapshot from MD simulation of a cylindrical drop with illustra-
tion of Young’s equation (left). The enlargement close to the substrate (right)
sketches the pairwise bead potentials. Coarse-grained beads of polymer chains
(blue) interact with each other and with the substrate modeled by two layers of

face-centered-cubic lattice (lila)

All bonded and non-bonded beads have unit mass, m = 1, and interact via trun-

cated and shifted Lennard-Jones (LJ) potentials

U(r) = ULJ(r)− ULJ(rc) (5.1)

with

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(5.2)

if their distance is smaller than the cutoff distance rc = 2 × 21/6σ. ULJ(rc) is

the LJ potential evaluated at the cutoff distance. All LJ parameters are set to

unity, ε = 1 and σ = 1, i.e., we express all energies and lengths in units of ε and σ,

respectively. The reduced time unit τ is set by a combination of the LJ parameters

as τ = σ
√

m
ε

.

The individual beads are connected into chains employing a finite extensible non-

linear elastic (FENE) potential given by [20, 83]

UFENE =

 −
1
2
kR2

0 ln

[
1−

(
r
R0

)2
]

for r < R0;

∞ for r ≥ R0,

(5.3)

where R0 = 1.5σ and k = 30ε/σ2.
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To control the wettability of the polymeric liquid on the substrate we account for

the interaction of the beads with the solid substrate. The substrate is modeled by a

fixed array of atoms as in Ref. [149] and not by an ideally smooth and homogeneous

wall [95, 117]. Specifically, the substrate is represented by two layers of a face-

centered-cubic lattice of atoms with a number density of ρs = 1.5σ−3. We also

employ a truncated and shifted LJ interaction between the beads of the liquid and

the individual constituents of the substrate

U s(r) = U s
LJ(r)− U s

LJ(rc) (5.4)

with the length scale σs = 0.75σ. The strength of interaction εs is varied. By

changing εs from 0.2ε to ε, one tunes the wettability of the system from practically

non-wetting (polymer droplet with a contact angle of θE = 163o) to complete

wetting (polymer film with θE = 0o).

All simulations are carried out in a computational domain that corresponds to

a three dimensional box. Periodic boundary conditions are used in the x- and

y-directions, whereas the range in the z-direction is limited by a repulsive ideal

wall that is positioned far above the polymer liquid. The domain side lengths, Lx

and Ly, are chosen in such a way that one may study polymer films, Lx = Ly),

and two-dimensional drops (i.e., ridges in 3d), Ly � Lx. These ridges span the

simulation box in y direction and have the cylindrical form whose cross-section

is well visible in Fig. 5.1. Ly is limited by the Plateau-Rayleigh instability that

results in the instability of liquid ridges above a critical length. However, as this

instability is normally subcritical [14], in a MD simulation Ly has to be smaller

than a critical ridge length Lnl that is smaller than the one resulting from the

linear stability analysis of a ridge.

The radius of a 2d drop (3d ridge) scales as
√
N (in comparison to N1/3 for

a spherical 3d drop), allowing us to study larger droplets [149]. Moreover, the

length of the three-phase contact line, 2Ly, is independent of the 2d droplet size.

Thus, there is no direct effect of the line tension on the shape of the droplet.
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The temperature of the system is controlled by a dissipative particle dynamics

(DPD) thermostat [52, 70]. Using this DPD thermostat, we maintain the constant

temperature, kBT = 1.2ε. For more detail about the DPD thermostat we refer

the reader to N. Tretyakov’s Thesis [179], as well as Ref. [180]. The equations of

motion are integrated with the velocity Verlet algorithm [160] with a time step

∆t = 0.005τ . The simulations are performed on GPU facilities using the HOOMD

Software [1, 9, 120].

The MD simulations are used to determine parameters that are passed on to the

continuum model. Before the parameter passing is described in section 5.3, we

introduce in the following section the continuum model.

5.2.2 Continuum model (CM)

We employ a highly coarse-grained description to characterize the free-energy of

a droplet on a planar substrate in terms of the position of the solid–liquid and

liquid–vapour interfaces. Generally, the free energy takes the translationally and

rotationally invariant form

F = γSL

∫
SL

dS + γ

∫
LV

dS +

∫
LV

dS

∫
SL

dS ′ f̃(|r− r′|), (5.5)

where the integrals extend over the solid–liquid (SL) and liquid–vapour (LV) in-

terfaces 1. In Eq. (5.5), γSL and γ are the solid–liquid and liquid–vapour interface

tensions, respectively. The last term of Eq. (5.5) describes the effective interac-

tion between the interfaces, and r and r′ are points on the liquid–vapour and

solid–liquid interface, respectively. In the following, we restrict our attention to

2d droplets on a planar substrate (cf. Fig. 5.1), choose the x-coordinate along

the planar solid substrate and denote by z = h(x) the local distance between a

point r ≡ (x, y, z = h(x)) of the liquid–vapour interface and the planar substrate

1If there exist additional long-ranged interactions, Vlr, between the liquid and the solid,
then one has the additional contribution Flr =

∫
L

d3r
∫
S

d3r′ Vlr(|r− r′|). Writing Vlr(|r|) = ∇ ·
rΦlr(|r|), we obtain for the long-range contribution Flr =

∫
SL∪LV

dS ·
∫
S

d3r′ (r−r′)Φlr(|r−r′|) =∫
SL∪LV

dS · exflr(h) with flr(h) =
∫
S

d3r′ ex · (r− r′)Φlr(|r− r′|) = Ly
∫

dx flr(h) + const.
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(Monge representation). The interaction of a point on the liquid–vapour interface

with the solid is obtained by integrating over the substrate area

f(h) =

∫
SL

dS ′ f̃(|r− r′|), (5.6)

which for a homogeneous substrate only depends on the distance, h, due to sym-

metry. f(h) is the effective integrated interaction between a point of the liquid–

vapour interface with the homogeneous, planar substrate, and it is termed interface

potential. In this special case, the free energy functional (5.5) takes the form

F [h] = γSLLy

∫
dx + Ly

∫
dx

√
1 + (∂xh)2

[
γ + f(h)

]
, (5.7)

where Ly denotes the system dimension parallel to the cylinder axis. In the limit

that the equilibrium contact angle is small, one can adopt a long-wave approxi-

mation (or small-gradient expansion)

F [h] ≈ γSLLy

∫
dx + Ly

∫
dx
[
1 +

1

2
(∂xh)2 + · · ·

] [
γ + f(h)

]
. (5.8)

It is important to note that, away from the droplet, there is a thin film of thickness

hmin with a flat liquid–vapour interface (dewetted surface). hmin corresponds to

the minimum of the interface potential. Eq. (5.8) yields for this dewetted part of

the surface

F [hmin] = Ly

∫
dew
surf

dx
[
γSL + γ + f(hmin)

]
≡ Ly

∫
dew
surf

dx γSV . (5.9)

Here, γSV = γSL +γ+ f(hmin) is the solid–vapour interface tension. We emphasize

that it is not a solid-vacuum surface free energy per unit area, F0, that is half of the

work needed to cut the bonds of a solid of a unit cross section into two equal pieces

in vacuum. Moreover, as long as the solid is not altered by the contact with the

liquid or vapour, its free energy per unit area remains constant, F0 = const, and

serves as the reference point for solid-liquid and liquid–vapour interface tensions.

In our model of the solid we do not consider interactions between its constituents.

Therefore, the work needed to cut the solid is zero and the reference value of the
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surface free energy per unit area is F0 = 0.

The equilibrium shape of the droplet is obtained by minimizing this free energy

functional subject to the constraint of fixed droplet volume

Vdrop = Ly

∫
dx h(x) = const (5.10)

yielding the condition

π(x) = − 1

Ly

δF

δh(x)
= λ, (5.11)

where λ is a Lagrange multiplier constraining the droplet volume. Using Eq. (5.7)

we obtain

π(x) = −
√

1 + (∂xh)2
[
∂hf
]

+ ∂x

 ∂xh√
1 + (∂xh)2

[
γ + f(h)

]
=

∂xxh
[
γ + f(h)

]
[
1 + (∂xh)2]3/2 − ∂hf√

1 + (∂xh)2
. (5.12)

In the limit of small contact angles, |∂xh| � 1, this equation adopts the form

π(x) = ∂xxh
[
γ + f(h)

]
− ∂hf. (5.13)

The pressure (5.12) consists of two contributions: (i) the curvature pressure, where

κfull = ∂xxh

[1+(∂xh)2]
3/2 is the curvature and γ + f(h) is the effective tension of the

interface a distance h away from the solid substrate and (ii) the Derjaguin (or

disjoining) pressure Π(h) = −∂hf(h) that models wettability [39, 157]. The di-

mensionless ratio f(h)/γ dictates the shape of a drop in the continuum model and

it is this parameter that we will extract from the particle-based model in Sec. 5.3.

A spatially non-uniform pressure, π(x), gives rise to a flow of liquid inside the film.

As demonstrated in Chapter 2, using the Navier–Stokes equation and employing

the long-wave approximation [114, 161, 162], one obtains

∂th = −∂xΓ = −∂x{Q(h)∂xπ(x)}, (5.14)
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where Q(h) = h3/3η is the mobility, η is the dynamic viscosity of the liquid.

Note, that Γ is a flux that is written as the product of a mobility and a pressure

gradient. For the case when one employs the small contact angles limit for π

(5.13), one recovers equation (2.34) which we previously employed in Chapters 3

and 4 for describing the evolution of the film thickness of the systems which we

studied there, including additional physical effects.

The equation describing stationary solutions may either be obtained by directly

minimizing the functional F [h] according to Eq. (5.11), in the way it was done in

Chapter 4, or, alternatively, one sets ∂th = 0 in Eq. (5.14) and integrates twice

taking into account that Γ = 0 in the steady state, as in Chapter 3. Here we

use the numerical continuation techniques [45], discussed earlier in Chapters 3

and 4, to solve the resulting ordinary differential equation as a boundary value

problem on a domain of size L with boundary conditions such that the center of

the resulting drop solution is positioned on the right boundary (x = 0) and on the

left boundary (x = −L) the profile approaches a precursor film. The volume is

controlled by the integral condition, Eq. (5.10). Figure 5.2(a) presents typical drop

profiles for various volumes whereas Fig. 5.2(b) gives the maximal drop height as

a function of drop volume.

Note, that there exists a minimal droplet volume Vsn given by the saddle-node

bifurcation in Fig. 5.2(b). If one decreases the volume below Vsn, the droplet col-

lapses, i.e., it changes discontinuously into a flat film. The transition is hysteretic

(first order) as the primary bifurcation at Vc is subcritical. The situation is dif-

ferent for freely evaporating droplets when the chemical potential is controlled

instead of volume. For a more detailed comparison of the two cases see Ref. [162].
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Figure 5.2: (a) Shown are selected half-profiles of droplets at volumes as
given in the legend and (b) the bifurcation diagram presenting the drop height
in dependence of the drop volume. Calculations are performed with (i) the
full curvature, i.e., Eq. (5.11) with (5.12), and (ii) the long-wave curvature, i.e.,
Eq. (5.11) with (5.13). Case I and II refer to usage of only γ or the full γ+f(h) as
prefactor of curvature, respectively. The profiles in panel (a) are obtained with
case I for full curvature. The volume is controlled through appropriately adapt-
ing the Lagrange multiplier λ at fixed domain size L = 4000. The employed
disjoining pressure and interface tensions are extracted from MD simulations at
εs = 0.81ε (equivalent to an equilibrium contact angle of θE = 23.57o, for details

see below section 5.4).

5.3 Parameter passing between particle-based model

and continuum description

The particle-based model is defined in terms of pairwise interactions between

beads, while the information that dictates the behavior of the continuum descrip-

tion is the liquid–vapour tension, γ, and the interface potential, f(h). The latter

quantifies the free-energy cost of locating the liquid–vapour interface a distance

h away from the solid substrate. Several strategies have been proposed to mea-

sure the interface potential in computer simulation of particle-based models: (i)

The interaction between the interface and the substrate can be obtained in the

grandcanonical ensemble, where the chemical potential µ controls the fluctuating

thickness of the wetting layer of the liquid on the substrate. The probability,

P (h), of observing a wetting layer of thickness h is related to the interface po-

tential via f(h) = −kBT lnP (h)+const [61, 94, 107, 108], where the choice of the

constant ensures the boundary condition fh→∞ = 0. While being elegant, this

computational technique is limited to simple models because the grandcanonical
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ensemble requires the insertion and deletion of polymers and concomitant Monte-

Carlo moves are only efficient for short polymers, low densities or in the vicinity of

the liquid–vapour critical point. (ii) A negative curvature of the interface poten-

tial at a thickness h signals the spontaneous instability of a wetting layer. From

the characteristic length scale of this spinodal dewetting pattern one can deduce

information about d2f(h)/dh2 [146, 184]. (iii) Here we use the pressure tensor.

This is a general technique that is not limited to short polymers or low densities.

It does not require the implementation of particle insertion/deletion Monte-Carlo

moves and can be straightforwardly implemented in standard Molecular Dynamics

program packages.

5.3.1 Solid-liquid and liquid–vapour interface tensions

We study a supported polymer film as illustrated in Fig. 5.3 in the canonical

ensemble. By virtue of the low vapour pressure of the polymer liquid, one can

neglect evaporation effects. The flat liquid–vapour interface allows us to divide the

system into thin parallel slabs (separated by the horizontal grey lines in Fig. 5.3),

whose normal vector n is perpendicular to the substrate. All relevant quantities

can then be averaged over each slab, resulting in fields that depend on the z-

coordinate only.

In order to obtain the tension of the liquid–vapour and solid–liquid interfaces, γ

and γSL, as well as the interface potential, f(h), we consider a virtual change of the

geometry of the simulation box such that the total volume V remains unaltered.

Using the scaling parameter λ, we relate the new linear dimensions, L′x, L
′
y, L

′
z

of the simulation box to the original ones via L′x =
√
λLx, L

′
y =

√
λLy, L

′
z =

1
λ
Lz. This scaling is the analog to the spreading of a droplet on a solid substrate.

Thereby, only the liquid phase is subjected to this virtual change of the geometry

but not the solid support. The value λ < 1 corresponds to a lateral squeezing of

the liquid film on top of a solid substrate and a concomitant increase of the film

thickness h′ = 1
λ
h, where we have assumed that the liquid is incompressible. In

the continuum model such a transformation gives rise to the following infinitesimal
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Figure 5.3: Sketch of the slab geometry used to calculate the liquid–vapour
interface tension γ. The pressure tensor components pn(z) and pt(z) are calcu-
lated in every slab k and then their difference is integrated across the interface.

change of the canonical free energy [38]

dF (λ)

dλ

∣∣∣∣
λ=1

= [γSL + γ + f(h)]
dL′xL

′
y

dλ

∣∣∣∣
λ=1

+
df(h)

dh

dh′

dλ

∣∣∣∣
λ=1

LxLy (5.15)

=

[
γSL + γ + f(h)− df(h)

dh
h

]
LxLy, (5.16)

where, contrary to the related works in grandcanonical ensemble [19, 63], we use

the property of a canonical one and keep the number of particles in the liquid

constant, i.e. constant volume hLxLy = h′L′xL
′
y of the film

d(L′xL
′
y)

L′xL
′
y

+
dh′

h′
= 0. (5.17)

This transformation procedure is described in detail in N. Tretyakov’s thesis [179]

and in [180]. We will use the final result, relating the local pressure (the free

energy per unit area from 5.16) with the anisotropy of the pressure in the liquid

and contributions due to the direct interaction between the liquid and the solid
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substrate:

γfilm(h) ≡ γSL + γ + f(h)− df(h)

dh
h =

∫
dz [pn(z)− pt(z)] (5.18)

+
1

LxLy

〈∑
s,i

[
f s
z,iszis −

1

2
(f s
x,isxi + f s

y,isyi)
]
−
∑
s2,i

f s
z,is2

∆z

〉
.

Here, pn(z) and pt(z) are the profiles of the normal and tangential pressure as a

function of the slab position z. 〈· · · 〉 denote averages in the canonical ensemble

and f sx,ij denotes the x–component of the force acting between polymer beads i

and j. In the limit that the substrate is laterally homogeneous the terms involving

the lateral forces between solid and liquid vanish.

We particularly stress that in the canonical ensemble the difference of the film

tension γfilm(h) and interface tensions γSL and γ is not the interface potential

f(h) [19, 63, 68], but of the form of Legendre transform f(h)− hdf(h)
dh

.

In the absence of a solid substrate, the liquid is separated by a liquid–vapour inter-

face from its coexisting vapour phase. In this special case, Eq. (5.18) simplifies and

allows us to measure the liquid–vapour interface tension through the anisotropy

of the pressure tensor components across the interface as [178, 182, 185]:

γ =

∫ zbot

ztop

dz [pn(z)− pt(z)]. (5.19)

Here ztop and zbot stand for the top and bottom limits of the solid–liquid interface.

We find γ = 0.512 ± 0.006ε/σ2 which agrees well with previous calculations for

similar systems [149]. Mechanical stability requires that the normal component of

the pressure is constant throughout the system and equals the coexistence pressure

[182]. Since the vapour pressure of a polymer melt is vanishingly small, pn(z) ≈ 0.

We also note, that the anisotropy of the pressure is localized around the interface

and, therefore, the integration can be restricted to an interval [zbot, ztop] around

the interface.
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Figure 5.4: The dependence of solid-liquid interface tension γSL on the
strength of solid-liquid interaction εs. The horizontal dashed lines represent
the value of the liquid–vapour interface tension (γ) and the value of solid-liquid
interface tension corresponding to the wetting transition (-γ). The wetting

transition is localized at εwet
s ≈ 0.83ε.

If we consider a liquid film in contact with the solid substrate, we can measure the

solid-liquid interface tension γSL according to Eq. (5.18) (provided that the thick-

ness of the liquid film is sufficiently large to prevent the interaction of liquid–vapour

and solid-liquid interfaces, i.e., |f | � γSL). Like in the case of the liquid–vapour

interface, the anisotropy of the pressure, as well as the additional contribution due

to the interaction between the liquid and the solid, are localized in a narrow re-

gion near the interface between the polymer liquid and the solid. The solid-liquid

interface tension depends on the strength εs of the attractive interaction between

solid and polymer liquid. The simulation results are presented in Fig. 5.4.

If the droplet on a substrate depicted in Fig. 5.1 is at equilibrium, one may

describe the equilibrium of forces acting on its contact line by the macroscopic

Young-Laplace equation (2.1) that relates the interface energies and the equilib-

rium contact angle θE [86, 193],

γSL + γ cos θE − γSV = 0. (5.20)
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Figure 5.5: A part of a system used to determine solid–vapour interface ten-
sion γSV. The droplet serves as a reservoir to the chains adsorbed on the sub-
strate. The yellow dotted line indicates the curvature of the liquid–vapour

interface. The radius of curvature Rx is indicated by the orange arrow.

Since the vapour pressure is vanishingly small for our polymer melt, we can neglect

the interface tension between the solid substrate and the vapour phase, γSV ≈ 0

to a first approximation. Using this approximation, we find that the wetting and

drying transitions occur at γSL(εs) ≈ −γ and γSL(εs) ≈ γ, respectively. From the

data in Fig. 5.4 we locate the wetting transition at εwet
s ≈ 0.83ε and the contact

angle reaches 180o for small values of εs < 0.2ε.

5.3.2 Solid–vapour interface tension

While the approximation γSV ≈ 0 is appropriate for small values of the strength

of attractive solid-liquid interactions, εs, the quality of this approximation deteri-

orates in the vicinity of the wetting transition. If the wetting transition were of

second-order, the amount of liquid adsorbed onto the substrate, would continu-

ously diverge as we approach the wetting transition. Even for a first-order wetting

transition we expect that the adsorbed amount (i.e., the film thickness hmin at

which the interface potential exhibits a minimum) will increase when εs increases

towards its transition value. In this case the approximation γSV ≈ 0 becomes
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εs = 0.75ε εs = 0.80ε εs = 0.81ε εs = 0.82ε
γSV, [ε/σ

2] 0 – 0.00281 – 0.00475 – 0.00523 (– 0.01642)
γSL, [ε/σ

2] – 0.32576 – 0.44737 – 0.47419 – 0.49761
θE0 (at γSV = 0), [degree] 50.50 29.14 22.20 13.69
θE, [degree] 50.50 29.77 23.57 15.98 (20.03)

Table 5.1: Interface tensions of solid–vapour and solid-liquid interfaces and
contact angles with (θE) and without (θE0) taking the solid–vapour interface
tension into account. For εs = 0.82ε the value γSV is affected by the finite value
of ∆p and we provide in parentheses an alternative estimate of the contact angle.

unreliable and we employ a meniscus geometry as shown in Fig. 5.5 to extract the

value of the solid–vapour tension.

The film thickness is chosen sufficiently large, such that the deviation of the pres-

sure from its coexistence value, ∆p ∼ − γ
Rx+Ry

, with Rx and Ry = ∞ denoting

the principle radii of curvature of the meniscus, has only a small influence on the

adsorbed amount of polymer and γSV. Since ∆p < 0, the adsorbed amount in the

simulations will be smaller than at coexistence, γSV will be too large (i.e., negative

γSV will have an absolute value that is too small), and we will slightly underesti-

mate the contact angle, θE. This correction to the deviation of the approximation

γSV ≈ 0, however, is insignificant for the used system size for all values of εs but

the close vicinity of the wetting transition εwet
s ≈ 0.83ε. Therefore, at εs = 0.82ε,

we have used an alternative method as described in the following Sec. 5.3.3.

For the calculation of γSV we used the same procedure as earlier for the solid-liquid

interface tensions of a film, but the procedure is only applied to the part of the

simulation box that is far away from the meniscus-forming liquid bridge. The

values of γSV and γSL (for comparison) are presented in Table 5.1. One notices the

increase in γSV when the wetting transition is approached. However, compared to

the influence on the solid-liquid interface tension the effect is small. Nevertheless,

it becomes more important the closer one comes to the wetting transition, and the

correction of the contact angles is significant when one compares profiles of drops

of different sizes with the prediction of Eq. (5.20).

We compare the shape of drops obtained from the particle-based and continuum

description in the vicinity of the wetting transition. In the following detailed
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Figure 5.6: Density profiles of a polymer film at εs = 0.80ε. The solid black
line represents a thick film with a bulk region separating solid-liquid and liquid–
vapour interfaces. In the case of a thin film (dashed red line) it is no longer
possible to distinguish the two interfaces. The dotted horizontal line indicates

the coexistence number density.

comparison we employ the values εs = 0.75ε, εs = 0.80ε, and εs = 0.81ε for the

solid-liquid interaction strength that correspond to contact angles θE = 50.50o,

θE = 29.77o, θE = 23.57o, respectively. For εs = 0.82ε, however, we will use

the more accurate value, θE = 20.03o, extrapolated from the interface potential

instead.

5.3.3 Interface potential and Derjaguin pressure

If we consider a polymer film on top of the solid substrate, Eq. (5.18) provides

information about the solid-liquid and liquid–vapour interface tensions, γSL and

γ as well as the interface potential, f(h). For a thick film (cf. Fig. 5.6), the

transitions in polymer density at the two interfaces are well separated, and the

density at the center of the film approaches the bulk coexistence value. In this

case, also the contributions to Eq. (5.18) that stem from the two interfaces can

be well separated. The anisotropy of the pressure tensor at the solid substrate

gives γSL, and the one at the liquid–vapour interface gives γ. Thus, the interface
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potential vanishes, fh→∞ → 0, indicating that the liquid–vapour interface will not

interact with the substrate if the film is sufficiently thick.

However, upon decreasing the film thickness, the two interfaces start to interact

and the contributions of the solid–liquid and liquid–vapour interfaces can not

be separated anymore. The interaction between the interfaces is quantified by the

interface potential, f(h), or equivalently, by the Derjaguin pressure Π(h) = −df(h)
dh

.

From Fig. 5.6 we observe that for small film thickness both interface density profiles

are distorted, and the density does not reach its coexistence value at the center

of the film. The distortion of the density profile far away from the interfaces is

characterized by the bulk correlation length, ξ0, which therefore sets the length

scale of the interface potential [143].

Since we have determined γSL and γ independently, we are able to extract the

interface potential, f(h), from the simulation data for thin films. To this end, we

have to define the location of the liquid–vapour interface, i.e., the film thickness,

h. There are several options: Either (i) one determines the position where the

density equals a predefined value, typically the averaged density of the liquid and

the vapour (ρliq + ρvap)/2 (crossing criterion) or (ii) one defines the film thickness

via the adsorbed excess (Gibbs dividing surface),

∆Γads = LxLy

∫
dz [ρ(z)− ρvap] ≡ [ρliq − ρvap]LxLyh. (5.21)

In this work we adopt the integral criterion (5.21) to define the film thickness.

Neglecting the vanishingly small vapour density at coexistence, we obtain

heff =
Nmon

ρliqAfilm

, (5.22)

where Nmon is the number of monomers of the liquid inside the simulation box and

Afilm = LxLy is the area of the substrate underneath the film.

We note that both definitions become problematic for film thicknesses where the

curvature of the interface potential is negative, d2f
dh2

< 0. In this regime of film
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thicknesses a laterally extended, homogeneous film becomes unstable with respect

to spinodal dewetting [100, 162, 184]. However, even in this film thickness region,

the films can be linearly or even absolutely stable if the lateral extension of the

simulation box is sufficiently small. The related critical values depend on film

thickness [174, see, e.g., Fig.8 of]. In the simulation, we can still obtain meaningful

data for the interface potential if we restrict the lateral system size to be smaller

than the characteristic wavelength of the spontaneous rupture process.

Additionally, we mention that the liquid–vapour interface in the Molecular Dy-

namics simulations exhibits local fluctuation of its height (i.e., capillary waves),

and the Gibbs dividing surface measures the laterally averaged film thickness.

The interaction of the liquid–vapour interface with the substrate imparts a lateral

correlation length, ξ‖ = 2π
√
γ/d2f

dh2
, onto these interface fluctuations. These fluc-

tuations give rise to a weak dependence of the interface potential on the lateral

system size for Lx, Ly < ξ‖, i.e., the interface potential is renormalized by interface

fluctuations. Qualitatively, the effect of fluctuations is to extend the range of the

potential, i.e., ξ = ξ0(1 + ω/2) with ω = kBT
4πξ20γ

[92].

The interface potential exhibits a minimum at small film thickness, hmin. This

film thickness characterises the amount of liquid adsorbed on the substrate in

contact with the vapour. As illustrated in Sec. 5.3.2 γSV = 0 and therefore no

chains are adsorbed on the substrate except for the close vicinity of the wetting

transition. The free energy of such a vanishingly thin polymer film is given by

γfilm(hmin) = γSL + γ + f(hmin) = γSV. Thus, the measurement of the different

tensions for a planar polymer film provides the value of f(hmin).

Alternatively, we can use the measured value f(hmin), in turn, to estimate the

solid–vapour tension, γSV. We have employed this strategy for εs = 0.82ε, where

the finite curvature of the meniscus result in a relevant deviation of the pressure

from its coexistence value. Extrapolating the simulation data to the thickness

hmin ≈ 0 we obtain γSV = −0.01642. We will use this more accurate value, which

is not affected by the curvature of the meniscus and that is compatible with the

interface potential, in the comparison with the continuum model in Sec. 5.4.
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Since Eq. (5.18) only provides the Legendre transformation of the interface po-

tential and we require an analytical expression for the continuum model, we make

an Ansatz for the functional form of f(h). Generally, one can distinguish between

short-range and long-range contributions to the interface potential [43, 143]. The

long-range contribution results from dispersion forces between the liquid and the

substrate. In our particle-based model, however, we consider only the short-range

part as our LJ interaction (5.2) is cut off at rc. Thus, there is no long-range con-

tribution in our model in contrast to previous works, when an effective long-range

contribution was taken into account despite finite interaction cut off [19, 63]. The

short-range contribution to f(h) stems from the distortion of the interface profile

due to the nearby presence of the solid substrate as illustrated in Fig. 5.6, and it

is typically expanded in a series of exponentials [43, 143]

fsr(h) = ae−h/ξ − be−2h/ξ + ce−3h/ξ − de−4h/ξ + . . . (5.23)

In order to obtain f(h) in practice, we fit its Legendre transform f(h) − hdf
dh

by

a sum of four exponential terms like in Eq. (5.23), and enforce that the interface

potential exhibits a minimum at hmin ≈ 0 (there is no precursor film in our MD

model) with a value f(hmin), as obtained by the measurement of the interface

tensions. The resulting fits for f(h) at εs = 0.75ε, 0.80ε, 0.81ε and 0.82ε are given

as solid lines in Figs. 5.7 (a)-(d). The parameters of the fits are presented in

Table 5.2.

Parameter εs = 0.75ε εs = 0.80ε εs = 0.81ε εs = 0.82ε
a, [ε/σ2] 0.13191 0.06485 0.05057 0.06132
b, [ε/σ2] 1.40871 0.58700 0.41256 0.36875
c, [ε/σ2] 1.67606 0.70902 0.50249 0.42963
d, [ε/σ2] 0.58566 0.25447 0.18323 0.15318
ξ, [σ] 1.51770 1.26964 1.14735 1.00512

Table 5.2: Parameters of the fitting curves of f(h) for the case where the first
four terms of the short-range contributions [Eq. (5.23)] are taken into account.
Note, that only three parameters are independent since there are two additional
constraints: The local minimum criterion at h ≈ 0σ implies d = (a− 2b+ c)/4
and the Young-Dupré relation (5.24) dictates the value fmin by setting b =

a+ c− d− fmin = 1.5a+ 0.5c− 2fmin.
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Figure 5.7: Panels (a), (b), (c) and (d) give the interface potential f(h) at
εs = 0.75ε, εs = 0.80ε, εs = 0.81ε and εs = 0.82ε, respectively. They are obtained
by fitting the MD results for the tension γfilm(h) − γ − γSL of films of various
small thicknesses (black symbols with error bars) by the expression f(h)+hΠ(h)
(dashed black line) obtained employing the first four terms of the short-range
part of the interface potential fsr(h). The resulting interface potential f(h) is
given as solid red line. Note, that the minimal value of fmin is always reached
at vanishingly small thicknesses h ≈ 0σ, as there is no precursor film in our MD

model.

Using the macroscopic Young-Dupré relation, one observes that value of the min-

imum of f(h) dictates the contact angle [38]

f(hmin) = γ(cos θE − 1). (5.24)

Much more information can be extracted from the interface potential: (i) The

shape of the interface potential controls deviations of the drop shape from a

spherical cap in the vicinity of the wetting transition. (ii) Within the square-

gradient approximation the integral of
√
f(h) is related to the line tension at the

three-phase contact line [56, 73, 111, 144]. For all values of εs investigated in the

particle-based model, the line tension is expected to be negative. (iii) The obser-

vation that f(h) increases above zero at intermediate values of h indicates that
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the wetting transition is of first-order.

5.4 Static case - Sitting droplets

In the following we will compare the shape of droplets obtained from the particle-

based model and the continuum description. This comparison focuses on droplets

with small contact angles ≤ 50o obtained in the particle-based model for strengths

of solid-liquid interaction close to the wetting transition (εs = 0.75ε to 0.82ε).

Different numbers of polymer chains are used to create cylindrical 2d droplets (3d

ridges) of varying volumes and hence heights. Data are sampled with a frequency

of 4000 MD steps. This time interval between two samples corresponds to the

Rouse relaxation time for a similar polymer liquid τR = 25.6 ± 5 τ [149]. For

small droplets (up to 600 chains) the sampling lasted 2 × 106 steps, whereas for

bigger ones (up to 9600 chains) this interval was increased up to 107 steps, because

large fluctuations of the droplet shape occur. As a result, every density profile is

obtained by averaging over 500 (small drops) to 2500 (large drops) snapshots. To

extract the droplet shape and measure the contact angle, we use a set of density

profiles obtained in 10 independent runs. In total, all large droplets are simulated

over 108 steps.

The resulting cylindrical droplet snapshots are cut into slices along the invariant

y-direction. In every slice the two-dimensional (x, z) density map is created with

respect to the center-of-mass of the droplet cut. An average over these maps

results in the average number density profile in the (x, z) plane. A two-dimensional

drop profile is extracted by localizing the solid-liquid and liquid–vapour interfaces

by the crossing criterion for the density as ρint = (ρliq + ρvap)/2. Examples of

profiles are presented in Fig. 5.8. The resulting profiles are then compared to the

ones extracted from the employed continuum models, which are also presented in

Fig. 5.8.

One popular characteristic of the drop shape is the contact angle, because it is

related to the balance of interface tensions at the three-phase contact line of a
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Figure 5.8: Profiles of two-dimensional droplets obtained by cutting cylin-
drical droplets obtained in MD simulations [solid noisy black line] for the case
εs = 0.82ε for two values of hmax (4.046σ and 12.181σ). The corresponding
spherical cap fit is given as solid smooth red line. The MD drops are com-
pared with results of the continuum model Eq. (5.11) with the full curvature
[Eq. (5.12)] and in long-wave approximation [Eq. (5.13)] that are given as dashed
green and dotted blue lines, respectively. The inset shows a zoom into the three-

phase contact line region of the smaller droplet.

macroscopic drop. For finite-sized drops, however, the contact angle is not uniquely

defined: (i) One may define a mesoscopic contact angle θmes as the slope at the

inflection point of the droplet profile, as it was done in Chapter 3 for θapp [173,

177]. However, the steepest slope obtained in this way may not coincide with

the (larger) macroscopic contact angle even in the limit of large drop size [152].

This corresponds to the distinction of macroscopic and microscopic contact angle

in Ref. [156]. Moreover, in the particle-based model, the inflection point may be

located very close to the three-phase contact line where liquid-like layering effects

of the particle fluid 2 may occur and affect the drop profile3. (ii) Alternatively,

one may define a spherical cap contact angle by approximating the drop profile by

a spherical cap profile with a minimal radius of curvature R = −1/κ, i.e., using

the curvature at hmax. The resulting contact angle is θsph = arccos (1− hmax/R)4.

2The layering visible in Fig. 5.8 and the MD-simulated droplets presented further corresponds
to density variations in the interface region. The effective bead size sets the intrinsic scale of
packing and layering in the fluid [179].

3Similar extrapolation schemes, like defining a contact angle via the steepest slope of the
liquid–vapour interface or the local extrapolation of the droplet shape towards the contact line,
have been explored for the particle-based model but did not give reliable results for the contact
angle.

4There are different strategies of measuring the contact angle with the spherical cap approxi-
mation: direct geometric measurements [16, 95], estimation from the center of mass position [149]
or from the volume of the droplet. In our MD simulations, we define a contact angle by the
geometrical method. Other methods give a similar result as all of them assume the spherical
shape of the droplet.
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Figure 5.9: Droplet profiles as obtained from continuum theory with full
curvature (heavy solid lines) for εs = 0.81ε and drop height (a) H = 4 and (b)
H = 20. Also shown are the spherical caps as obtained from the curvature at
the drop maxima (heavy dashed lines), and the tangent lines at the point of
the steepest slope of the profile (thin solid line), and the tangent line of the
spherical cap profile at precursor height (thin dashed line). Drop height H is

defined as difference of height at maximum and precursor height.

In the profiles extracted from the particle-based model, we extract θsph by only

considering the central part of the drop to define the curvature. In this way,

the calculation is not perturbed by liquid-like layering effects or by the short-

range interface potential that distorts the liquid-gas interface close to the three-

phase contact line. The height of the drop is determined as the difference of the

highest point of the spherical cap and the position of the solid-liquid interface.

θsph converges to the proper macroscopic contact angle in the limit of large drop

size, but may misrepresent the shape and volume of small droplets.

For the continuum model, the two angles θsph and θmes are illustrated in Fig. 5.9

that shows two droplet profiles h(x) as obtained from Eqs. (5.11) with (5.12),

their approximated spherical cap profiles and the tangents of h(x) at the point of

steepest slope (giving θmes) and of the spherical cap profile at the point where it

crosses the precursor height (giving θsph). One clearly notes that the two measures

differ, and that the difference decreases with increasing droplet size. We will see

below that the two measures do not converge even for very large drops. In the

following we focus on the spherical cap contact angle θsph.



Chapter 5. Parameter passing between MD and continuum models 128

The resulting contact angles for drops of various sizes are presented for different εs

as open square symbols in Fig. 5.10. Overall, they agree well with the prediction of

Eq. (5.20) that is given as horizontal dashed black line (with the standard deviation

indicated as a grey hatched region). Corresponding results for the contact angle

obtained from the continuum model, employing the long-wave approximation for

the curvature, Eq. (5.13), and with the full curvature, Eq. (5.12), are given as

well. The results for both are shown as solid (case I) and dashed (case II) lines

of different colors depending on the angle shown (θmes or θsph) and the curvature

used. Note that both curvature models result in identical results for θsph because

∂xh = 0 at the apex of the drop. This is not the case for θmes. Case I and II refer

to the usage of only γ or the full γ + f(h) as prefactor of curvature, respectively

[cf. Eqs. (5.13) and (5.12)].

The angle θsph obtained in the continuum approach agrees well with the result

of the MD simulations. This is particularly true for case I (only γ as prefactor

of curvature) where θsph converges for large drops to the value obtained with the

Young-Laplace equation. The deviations of case II from case I are small over

the entire thickness range for εs = 0.82ε, εs = 0.81ε and εs = 0.80ε, but rather

large for εs = 0.75ε. Note, that θmes does not agree well with the macroscopic

angle obtained in the MD simulations. In long-wave approximation it is always

at least some percent smaller than θsph (more so for small droplets). The angle

θmes obtained with the full curvature differs less from θsph, the difference becomes

less than one percent for large drops. For both curvature models, θmes always

decreases monotonically with decreasing drop size. All these statements apply for

the respective relation between the various curves in case I equally as in case II.

The various angles calculated in case I are always slightly below the ones obtained

in case II.

Inspecting Fig. 5.10, one notes a number of further details that warrant to be high-

lighted: (i) A common feature of the particle-based model for εs ≥ 0.80ε, shown in

Figs. 5.10 (b)-(d), is the overshooting of the values of contact angles at thicknesses

h ≈ 3 − 7σ. This effect can also be observed in the spherical cap contact angle

obtained from the continuum models. It indicates that the product of drop height
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Figure 5.10: Contact angles θ of droplets of different sizes as a function of
droplet height. Panels (a), (b), (c) and (d) give results at solid-liquid interac-
tion strengths of εs = 0.75ε, εs = 0.80ε, εs = 0.81ε and εs = 0.82ε, respectively.
Square symbols correspond to the contact angle measured in MD using a spheri-
cal cap approximation of the droplet profile. Dotted and dashed thin horizontal
lines correspond to the values θE0 and θE obtained from the Young equation
with and without accounting for the measured solid–vapour interface tension
γSV, respectively. Hashed zones show the standard deviation of θE. Panel (d)
shows additionally as a dot-dashed horizontal line the value of θE as extracted
from the meniscus geometry. Case I and II refer to usage of only γ or the full
γ + f(h) as prefactor of the curvature, respectively. The thick solid and dashed
curves (orange, red and blue) in panels (a) to (d) give the mesoscopic steep-
est slope contact angle θmes obtained from the continuum model with full and
long-wave curvature [Eq. (5.11) with Eqs. (5.12) or (5.13)] and the spherical cap
contact angle θsph, respectively. In the last case, full and long-wave curvatures

give the same result (see main text for details).

hmax and curvature at the drop apex κmax is not a constant any more, instead

|hmaxκmax| first increases with increasing volume (before decreasing again). (ii)

Another detail one notices is the importance of the solid–vapour interface tension,

γSV, measured in Sec 5.3.2. At εs = 0.75ε it equals zero and at εs = 0.80ε the

macroscopic contact angles are almost the same if one neglects γSV or properly

accounts for it (cf. the dotted and dashed horizontal lines in Fig. 5.10(b), respec-

tively). However, the difference between the two approaches becomes increasingly

important with increasing εs, i.e. decreasing contact angle (Figs. 5.10 (c) and (d)).
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Taking a non-zero γSV into account becomes crucial close to the wetting transi-

tion. There, for rather small values of the contact angle (about 15 − 20o) the

difference is of the order of 20− 40% and accounts for 2− 6o. The difference can

lead to an incorrect prediction of the contact angle if one assumes γSV = 0 in the

particle-based model.

Finally, we note that the error bars of the contact angles θ measured in MD using

a spherical cap approximation of the droplet profile (open squares in Figs. 5.10(a)

to 5.10(d)) are quite large. They increase with decreasing contact angle even in

absolute terms. Several possible explanations exist for this behavior: (i) In the

vicinity of the wetting transition, there are strong capillary waves on the surface

of the droplet (particularly close to the three phase contact line) [3]. (ii) The

crossing criterion we apply to define the profile of the drops (ρ0 + ρV )/2 is not a

unique choice. There are other possibilities to define the local interface position

based, e.g., on 10-90% or 20-80% rules (cf. [6, 64, 137]).

Next, we compare the drop profiles as obtained from the particle-based model and

the continuum description. For the case of a rather small contact angle, εs = 0.82ε,

Fig. 5.8 gives results for a very small droplet of hmax = 4.046σ and a larger one

with hmax = 12.181σ. The layering effects of the particle-based model are rather

independent of droplet size. Obviously, the layering of the particle-based model

is not captured by the continuum model, however, its predictions go smoothly

through the steps of the profile and always lay between the lateral end points of

the steps. At the center of the drop, the spherical-cap fit to the particle-based

model and the continuum results, obtained with Eq. (5.11) with the full curvature

(Eq. (5.12)) as well as in long-wave approximation (Eq. (5.13)), nicely agree with

each other. As cases I and II can not be distinguished by eye alone we have only

included case I.

Differences between long-wave and full curvature and the results of the particle-

based model are only visible in the contact line region. There, the spherical cap

is not a good fit to the particle-based model. The two continuum models nearly

coincide, implying that the long-wave approximation for static droplets is still
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Figure 5.11: Droplet profiles obtained in MD simulations and with continuum
models are compared for the case εs = 0.80ε, apex heights (a) hmax = 6.594σ
and (b) hmax = 10.469σ. The solid light blue curves give the liquid–vapour
interface as obtained in the MD simulation, while the solid red curves give
the corresponding spherical cap fit. Results of the continuum model (CM)
Eq. (5.11) with the full curvature (Eq. (5.12) - green curves) and in long-wave
approximation (Eq. (5.13) - dark blue curves) are shown for cases I and II as

solid and dashed lines, respectively. For details see main text.

very good for contact angles around 20o. In the contact line region, they seem to

represent a better approximation to the particle-based model than the spherical

cap. One should actually expect this, as the continuum models incorporate the

Derjaguin pressure as measured in the particle-based model. One may conclude

that within its limitations the continuum model describes the profiles rather well

if it incorporates the interface tensions and Derjaguin pressure from particle-based

model.

The situation differs for larger contact angles as obtained for εs = 0.80ε and

shown in Fig. 5.11: (i) The deviation from the spherical-cap approximation is

more significant than for the smaller contact angle and (ii) the continuum model
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fails to describe the simulation data for the smaller droplet size. The difference

between the predictions of the different versions of the continuum description is

small compared to the deviation between the continuum models and the particle-

based model. Therefore, the reason of the discrepancy is not rooted in the different

approximations of the curvature.

We note that interface fluctuations in a small droplet are strongly suppressed.

Therefore, one should rather use the bare interface potential (i.e., interface po-

tential without accounting of capillary waves that could be obtained from a thin

film with very reduced lateral dimensions) than the one deduced from a laterally

extended film. Since the bare interface potential has a smaller range than the

renormalized one [92] that accounts for thermal fluctuations of the liquid–vapour

interface (i.e., capillary waves), we expect the profile of a small droplet to be better

approximated by a spherical-cap shape than that of a large one, which is indeed

consistent with the simulation data.

For the same reason, the predictions of the continuum model are more accurate for

the larger drop than for the smaller one because it uses the renormalized interface

potential as input. This rational explains why the predictions of the continuum

model systematically deviate from the results of the particle-based model for small

droplet size. For the large droplet, in contrast, the continuum model succeeds in

describing the deviations from the spherical cap shape, which is larger for small

contact angles. The profile of the particle-based model lies right in the middle

of the predictions of the continuum models. The one that fits best is the case I

with full curvature. Therefore, we conclude that even for contact angles of about

30o all models agree fairly well with the particle-based simulations provided the

appropriate interface potential is used.

Finally, we compare the profiles with a rather large contact angle as obtained for

εs = 0.75ε and shown in Fig. 5.12. For comparison we use a large droplet with

hmax = 25.494σ. The difference between the various versions of the continuum

models is clearly seen not only at the contact line but over the entire droplet

profile. The best agreement with the particle-based model is achieved for case
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Figure 5.12: Droplet profiles obtained in MD simulations and with continuum
models are compared for the case εs = 0.75ε and apex height hmax = 25.494σ.
The solid light blue curve gives the liquid–vapour interface as obtained in the
MD simulation, while the solid red curve gives the corresponding spherical cap
fit. Results of the continuum model (CM) Eq. (5.11) with the full curvature
(Eq. (5.12) - green curves) and in long-wave approximation (Eq. (5.13) - dark
blue curves) are shown for cases I and II as solid and dashed lines, respectively.

For details see main text.

I with full curvature; all other versions differ more significantly. Therefore, we

conclude that for contact angles of about 50o only the model with full curvature

agrees well with the particle-based model, while the long-wave approximation is

not valid anymore. It is not advisable to apply at θE = 50o where it predicts a

contact angle θmes that is 20% lower.

5.5 Conclusions

The equilibrium properties of polymer droplets have been studied by Molecular

Dynamics simulation of a coarse-grained particle-based model and a continuum

description in terms of an effective interface Hamiltonian. We have devised a sim-

ple method to compute the interface potential for laterally corrugated substrates,

which is based on the anisotropy of the pressure inside the film. This general

computational strategy can be applied to dense liquids of large macromolecules

and can be implemented in standard Molecular Dynamics programs. Using the so-

determined interface tensions and the interface potential in the continuum model,

we find quantitative agreement between both descriptions if (i) the full curvature
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is used in the continuum model for large contact angles and (ii) the size of the

drop is larger than the lateral correlation length, ξ‖, of interface fluctuations. We

also find that for contact angles up to about 30 degree the long-wave approxima-

tion that is normally used in thin film models describes the droplet shapes even

quantitatively quite well.

These results demonstrate that the tensions and the interface potential capture the

relevant information that needs to be passed on to a continuum model to describe

the equilibrium shape of droplets, including the deviations from the spherical cap

shape in the vicinity of the three-phase contact line.



Chapter 6

Conclusions and outlook

This thesis covers three projects with the common purpose of exploring the in-

fluence of wettability and capillarity on the statics and dynamics of thin liquid

films and small drops. The theoretical approach we have chosen to study these

types of systems is based on the lubrication approximation. This final chapter

summarises the main conclusions of the Thesis, discusses their implications and

possible directions for future research.

In Chapter 2 we have introduced the main concepts of capillarity and wettability

and the general thin film theory. This theory is developed to describe geome-

tries for which the velocities parallel to the substrate are much larger than the

orthogonal ones and due to continuity the latter implies the gradients orthogonal

to the substrate are much larger than the parallel ones. These assumptions give

rise to the lubrication approximation which significantly simplifies the governing

equations. Combining this with a kinematic boundary condition for the free sur-

face serving to guarantee that the material boundary moves with the velocity of

the liquid at the boundary, we have demonstrated the derivation of the evolution

equation for the film thickness.

Having in mind the idea of developing the thin film theory further to suit the case

of complex liquids, we have introduced the standard hydrodynamic formulation

for solutions and suspensions and have shown how it can be reformulated as a

135
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gradient dynamics based on an underlying free energy functional. We have dis-

cussed the adaptability of this formulation towards various physical effects which it

can incorporate, e.g. solvent–solute interactions resulting possibly in phase decom-

position, concentration–dependent dispersion forces (wettability), entropic terms

accounting for mixing in the case of polymers and solutions, etc.

In Chapter 3 we have considered an isothermal variant of the general thin film

equation and we have applied it to slowly evaporating small sessile droplets. We

have first studied evaporating droplets with an influx localised in the centre of

the drop and serving to establish non–trivial steady states. We have applied an

asymptotic analysis at the transition region between the precursor film and the

shape of the bulk droplet. Further, we have employed the model to study the time

evolution of freely evaporating drops without influx with various initial shapes.

We have shown that a freely evaporating shrinking drop is always characterised

by a smaller apparent contact angle (measured as the slope at the inflection point

of the height profile) as compared to the steadily fed drop. In our simulations we

have found that a drop spreads [shrinks] from the beginning if its initial contact

angle is larger [smaller] than the contact angle of a large evaporating drop with

influx of the same volume.

This seems to be a very promising result that should be further scrutinised as it

might have interesting consequences: (i) If the apparent contact angle of a steady

drop with influx takes the role of an equilibrium contact angle θe, relations between

the dynamic angles and the contact line velocity known from non-volatile partially

wetting liquids [39] could hold. Although, this has recently been shown for the

case of evaporating partially wetting liquid [5], it remains an open question for

the case of a wetting liquid that we study here. (ii) It might further be possible

to predict the maximal drop radius and the contact angle at which the initial

spreading ceases, and the ’turn around’ to the receding motion occurs. It seems

plausible that the profile at turnaround might actually be identical to the steady

drop profile with influx at the same volume. Note that the freely evaporating drop

spreads and evaporates, i.e., the volume at turn-around does not correspond to

the initial one.
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Note also, that we have studied a particular evaporation model valid for small

drops in situations where thermal aspects and the dynamics in the surrounding

gas phase can be neglected. However, the non-isothermal models can all be studied

with a similar methodology, i.e., the properties of steady drops with local influx

can be determined and may be employed to gain a deeper understanding of the

coupled transport and phase change processes.

In Chapter 4 we have discussed the behaviour of thin films of non-volatile liquid

mixtures, colloidal suspensions and polymer solutions on a solid substrate. We

have used a gradient dynamics formulation based on an underlying free energy

functional that has allowed us to establish coupled long-wave time evolution equa-

tions for the film height and mean solute concentration that reduce for a ’passive’

solute to equations, well known in the literature [53, 187]. This form naturally

allows us to incorporate additional effects. In particular, we have focused on

the inclusion of a concentration-dependent wettability, derived with the help of

homogenisation techniques to obtain effective optical characteristics. Combining

this with the classical theory of effective molecular interactions between the free

surface of the film and the smooth solid substrate, we have arrived at a wetting

energy that depends on film height and concentration. Its partial derivative with

respect to the film height is a concentration and height dependent Derjaguin (or

disjoining) pressure.

We have used the derived dynamical model to study the linear stability of flat ho-

mogeneous films. In particular, we have investigated how the stability thresholds

are influenced by the incorporation of the additional degree of freedom related to

the concentration field. We have also analysed nonlinear thickness and concen-

tration profiles for steady droplets and have related them to the binodal curves

obtained for the case of two coupled fields. Finally, we have looked at the time

evolution of flat homogeneous films with solute and have further discussed the

dynamical effects of the coupled height and composition fluctuations.

The presented case illustrates that the above introduced thermodynamically con-

sistent long-wave model allows one to predict a novel interface instability for thin
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films (below about 100 nm) of liquid mixtures and suspensions under the influ-

ence of long-range van der Waals forces that are concentration dependent. The

resulting coupling of film height and concentration fluctuations always renders

such films more unstable than the decoupled subsystems. It is demonstrated that

the destabilisation can even occur if all decoupled subsystems are unconditionally

stable.

In summary, we have presented a general gradient dynamics model and a partic-

ular underlying free energy which is able to describe a wide range of dynamical

processes in thin films of liquid mixtures, solutions, and suspensions on solid sub-

strates, including the dynamics of coupled dewetting and decomposition. More-

over, we have discussed the physical meaning of important contributions that are

missing in the hydrodynamic literature and have shown that they are needed for

a thermodynamically consistent description of, e.g., evolution pathways controlled

by concentration-dependent wettability. The presented gradient dynamics form

will allow for systematic future developments. Most importantly, the here pre-

sented model for a film of a mixture without enrichment or depletion boundary

layers at the interfaces may be combined with models for films with an insolu-

ble surfactant [79, 164] to also describe systems where enrichment or depletion

layers form at the interfaces, including instabilities and structuring processes, as

observed in Ref. [175].

Further, the model provides intriguing opportunities for a theoretical description

of effects specific to polymer systems. In particular, it can almost effortlessly

accommodate effects like Flory–Huggins free energy, accounting for coupling of

decomposition and dewetting for the case of polymer mixtures/solutions, as well

as attractive terms between the solute particles to study gelation.

In Chapter 5 we have introduced a parameter–passing scheme between coarse-

grained particle-based Molecular Dynamics simulations and the continuum lubri-

cation model for the case of small droplets of polymeric liquids on solid substrates.

The liquid-vapor interfacial tension, and the interface potential as a function of

the film height have been determined by the particle-based simulations in the
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canonical ensemble. A method, based on the anisotropy of the pressure inside the

film, developed in [179], has allowed us to compute the interface potential for lat-

erally corrugated substrates. The so-derrived interface potential has been passed

towards the continuum description provided by the thin film theory in a region

where both descriptions are feasible.

Further, drop profiles of various size obtained by both descriptions have been

compared and analysed. We have found quantitative agreement if (i) the full

curvature is used in the continuum model for large contact angles and (ii) the size

of the drop is larger than the lateral correlation length of the interface fluctuations.

Moreover, we have found that the long-wave approximation describes the droplet

shapes even quantitatively quite well for contact angles up to about 30 degree.

This is an excellent starting point for comparing the dynamics of droplets driven

by external forces, which we will possibly pursue in the future.
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Figure 6.1: Inspiration could be so easy to find - accidental dewetting exper-
iments in my bathroom.
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