

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Applications Integration for Manufacturing Control Systems
with particular reference to .

Software Interoperability issues

by

Valdew Singh

A Doctoral Thesis
submitted in partial fulfilment of the requirements

for the award of
Doctor of Philosophy

of Loughborough University of Technology

September 1994

1 -· •

Department,of Manufacturing Engineering
·f - .•

Loughborough University of Technology

. .. ~ ".

@ Copyright by Valdew Singh. i994

1

1

•

J O'J,..,H l·~'1 Jch
t~ 4" 'I: .t. '. ,':" .~ University

, .. , ... / Ubrary ,
;---~ .. ;o,.. .. ---
1021 ; ~'1'"l
---~, - ..•. ~

Class
~ ,.,~ -

AcI;. I

No. (i4t)'OC)<\", 'i)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

To:

My wife, Magdalene, for her love, support and encouragement and our children

Sabrina and Seanfor the constant joy they bring.

and

In loving memory of my late father, Banta Singh, who inculcated in me the belief in

the pursuit of knowledge for self fulfilment and self-realisation.

CONTENTS

ACKNOWLEDGEMENTS vi

GLOSSARY

LIST OF FIGURES

LIST OF TABLES

SYNOPSIS

CHAPTER 1

CHAPTER 2

vii

xi

xiii

xiv

Contemporary forms of Manufacturing Control Systems
and a perspective on Software Interoperability I

1.1 Limitations of Contemporary forms of MCS 1

1.2 The Need for Software Interoperability 3
1.2.1 Coping with Legacy Software 5
1.2.2 Manufacturing Continuum Consideration 6

1.3 Applications Integration and Software Interoperability 9

1.4 Requirement Specification for Software Interoperability 13

Current "State-of-the-Art" Scenario 15

2.1 Introduction 15

2.2 Interconnection 15
2.2.1 "Pair-wise" Integration 15
2.2.2 Integrated Information Systems 18
2.2.3 Integrating Infrastructures 20

2.3 Information Reference Models 23

2.4 System Design and Development 25
2.4.1 Structured Design and Modelling Methods to support Life

Cycle Phases of an Integrated Manufacturing System 26
2.4.2 Entry Pointfor Integrated Life Cycle Support 29

2.5 Means of Controlling System Behaviour 29
2.5.1 Association between Functional and Information Entities 30
2.5.2 Model Enactment to formally describe System Behaviour 32

CHAPTER 3

CHAPTER 4

CHAPTERS

CHAPTER 6

Achieving Interoperability 33

3.1 Research Focus 33

3.2 Objectives 35

3.3 Production Planning as the Nucleus 35
33.1 Manufacturing Methods and Information Requirements 36

3.4 The need for MCS Interconnection and Interoperation 37
3.4.1 The CIM-BIOSYS Integrating Infrastructure 39

3.5 An Overview of the Methodology Derived 43

Information Architecture for MCS 46

4.1 General Considerations 46

4.2 MCS Specification 48
42.1 Characteristics of the Information Model 54
422 Reference Models for an Extended Application Domain 55

4.3 Application of Generic Reference Models -A Case Study 55

4.4 Design Criteria for a System-Wide Data Repository 60
4.4.1 A Logical Database Model of the Data Repository 63
4.42 The Future Development of Relational Database

Management Systems 65
4.43 The Needfor Database 'Drivers' 67
4.4.4 Development and Enhancement of Database 'Driver' 70

4.5 Summary 73

Integrating Infrastructure to underpin MCS
Interoperation 74

5.1 Functional Interaction Requirements in MCS 74

5.2 Contemporary Solution to enable Functional Interaction 76
52.1 Overview of Systems Integration Manager 76
522 Focus and Limitations 79

5.3 MCS Functional Interaction Management Module Subsystems 80

5.4 User Interface: Generic 'Application Shell' 87
5.4.1 Inteiface between MCS Functions and 'Application Shell' 89

5.5 Enabling Distributed Functional Interaction Management 90

5.6 Summary 91

System Life Cycle Support 94

6.1 The Requirement for Integrated Life Cycle Support 94

6.2 Software Tools to Enact Function and Information Models 95
62.1 Information Model Enactment 98
622 MCS Functional Modelling 100
623 System Behaviour Enactment 102

6.3 Summary 108

ii

CHAPTER 7

CHAPTERS

PUBLICATIONS

REFERENCES

Use and Appraisal of the Methodology Derived 110

7.1 Proof-of-Concept MCS Implementation 110
7.2 MCS Software Interoperability Demonstration System ill

72.1 1 mplementation of the Demonstration System 114
722 Analysis and Discussion 123

Conclusions and Recommendations 126

8.1 Contributions to Knowledge 126

8.2 Further Recommendations 132

134

135

iii

APPENDIX I

APPENDIX II

APPENDIX m

APPENDIX IV

APPENDIX V

APPENDIX VI

APPENDIX VII

APPENDIXvm

APPENDIX IX

APPENDIX X

APPENDIX XI

APPENDIX XII

APPENDIXxm

APPENDIX XIV

APPENDIX XV

APPENDIX XVI

APPENDIX XVII

Types of Logical Data Models ... 156

Details of CIM Model Project (Publications) 160

Information Models .. 180

Association between information models and information

representations in MCC and ELMS CAPM packilges

189

Database 'Driver' - Services Offered .. 193

Mapping MCC data entities onto information models 228

Functional Interaction Manager -Service options 248

FIMM Configurator -Service options .. .259

MCS FIMM Database Schema .. 278

Operational Characteristics and Services of MCS 280

FIMM offered through Generic 'Application Shell'

Program listings for Communication Mechanismfor 284

remote MCS FIMM services over !.AN

Overview ofIDEFo and IDEF1X .. 294

Report on IDEF1X Entity-Attribute relationship model........... 298

I. EXPRESS based information model schema 302

2. EXPRESS index datafile

3. EXPRESS model data dictionary

4. EXPRESS to SQL Compiler generated datafile

5. Example of relational database tables relationship

Report on IDEF1X Entity-Attribute relationship 324
model (to be translated to EXPRESS schema)

Report on IDEF 0 Function model .. 327

IDEFO/1X Parser user interfaces .. 336

lV

APPENDIX xvrn Program listings for IDEF OIlX Parser ... 338

APPENDIX XIX Overview - MCC CAPM software package 347

APPENDIX XX

APPENDIX XXI

APPENDIX XXII

Program listings of 'alien application shell' for Mec 354

Services and Options offered via the User Interface 362

Communication between MCC and the User Interface 366

v

ACKNOWLEDGEMENTS

The author is grateful to Loughborough University of Technology for its financial sponsorship

and the Economic Development Board (EDB) of Singapore for its support and kind

understanding in granting study leave.

The author wish to express his sincere thanks to his supervisor Professor Richard H. Weston

for his invaluable supervision, encouragement and help throughout this research study. Thanks

must also be extended to my director of research Professor David J. Williams, and those staff

of the Department of Manufacturing Engineering who have been kind and helpful. The author

wishes to fully recognise the contributions, in terms of conceptual thinking of other members

of the Manufacturing Systems Integration (MSI) Research Institute at Loughborough

University of Technology. Particular thanks are due to Mike Leech, Paul elements, Allan

Hodgson, Jack Gascoigne, Shaun Murgatroyd, Ian Coutts, Awalludin Mohamad Shaharoun,

Binglu Zhang, Marcos Aguiar and Frank Welz.

Finally, the author would also like to take this opportunity to express his gratitude to the

following:

• Professor Alan Mulhleman and David Halsall of Bradford University Management Centre

for offering case study material.

• Mr. Nick Telepneff of Manufacturing Systems Portfolio PLC (MSPL) for sharing his

technical expertise and for supporting the SIM PCID product.

• Mr. Jon Whelan of John Brown Systems PLC for his technical support and training in the

use of MCC production management application software.

• Mr. Peter Yeomans of MicroMatch PLC for sharing his experience and imparting his

knowledge of the IDEFo and IDEF IX software modelling tools.

vi

GLOSSARY

ACME
The Applications of Computers in Manufacturing Directorate of SERC (Science and
Engineering Research Council ..

Assemble-To-Order
A product where all components (bulk, semi-finished, intermediate, subassembly,
fabricated, purchased, packaging, etc.) used in the assembly, packaging, or finishing
process are planned and stocked in anticipation of customer order.

• Bespoke system
A system designed and implemented specifically for a particular (one-off) application or
site.

CAD/CAM
Computer-Aided Design! Computer-Aided Manufacturing.

CAPM
Computer-Aided Production Management.

CAPP
Computer-Aided Process Planning.

CASE
Computer-Aided Software Engineering (tools) used to speed up andformulate the process
of software design. Such systems use a variety of representations such as data flow
diagramt, entity-relationship diagrams, and in some cases generate program code.

CIM-BIOSYS lIS
Loughborough University of Technology Manufacturing Systems Integration Research
Institute's systems integrating infrastructure

CIMModel
A representation of a CIM system.

CIM-OSA
Open Systems Architecture for CIM - the output of a major ESPRIT project (No. 5288 :
AMICE) which attempts to formalise the design, implementation and running of "open"
CIM systems.

Con figure-To-Order / Engineer-To-Order
Products whose customer specifications require unique engineering design or significant
customisation. Each customer order then results in a unique set of part numbers, bills of
material and routings.

• Database
It is a mechanised,formally defined, centrally controlled collection of data.

• Database management system (DB MS)
A software system which performs the functions of defining, creating, revising, and
controlling the database.

Database prototyping
Technique used to discover the information requirements and to construct a data model.

vii

• Data integrity
The ability of the database to remain correct during operation.

Data Manipulation Language (DML)
Highly non-procedural languages associated with database system, e.g 4GL.

Data store
The set of data storage facilities containing the shared data.

DCE
Distributed Computing Environment .

• Distributed database
Database spread across a network of computers.

DNC
Distributed Nwnerical Control.

Driver
In the context of this thesis a driver is used to enable the CIM-BIOSYS llS to incorporate
proprietary devices and applications which have their own specific protocols.

ESPRIT
The European Strategic Programme for Research and ~evelopment in Information
Technology.

Essential model
A primary model or representation (of some aspect of manufacturing systems, objects or
process) at a generic level.

FIMM
FIMM (Functional Interaction Management Module) has been developed through this
research effort with the purpose of tying together a set of applications into a coherent
system to enable software interoperability. It controls and coordinates the interaction
between applications and also synchronises the flow of activities within the system to
support part manufacture.

IDEF
ICAM DEFinition methodology - a set of systems analysis and design tools.

o Information of common interest (shared information)
Information which is created by one function and is often processed and/or used by several
other functions within the enterprise .

. Integration
The aggregation of resources and applications into a synergistic whole.

Integration toolset
A set of complimentary software programmes to assist in or enable some aspect of the
development or management of Cl M systems.

IRDS
Integrated Resource Dictionary System.

Life cycle
The specification, design, implementation and useful life of a system.

viii

.
I

• Legacy
The term legacy (systems, components and software) is used to refer to a previously
installed base of systems, components and software. Legacy elements will not normally
conform to the metlwds and standards which will be adopted in current generation
solutions.

Make-To-Order
A product which is manufactured after receipt of a customer order. Frequently long lead
time components are planned prior to the order arriving in order to reduce the delivery
time to the customer. Where options or other subassemblies are stocked prior to customer
orders arriving, the term "assemble-to-order" is frequently used.

Make-To-Stock
A product which is shippedfromfinished goods, "off the shelj," and therefore is finished
prior to a customer order arriving.

MCS
Manufacturing Control Systems: Specialised applications which exhibit discrete
functionality for the rationalisation, improvement, control and execution of activities in
support of part manufacture.

Model
A model can be defined as a tentative description of a system that accounts for properties
relevant to the intended purposes of the model.

Normalise
The decomposition of more complex data structures into fiat files (relations). This forms
the basis of relational databases.

Open solution
A solution (to a CIM requirement) which does not constrain the user to specific
proprietary hardware, software or protocols.

Platform (of integration services)
A software system which provides a consistent set of integration services (interaction,
information and configuration) to manufacturing applications, to enable them to perform
as part of a CIM system.

Primary key (or tuple)
A key which uniquely identifies a record (or data grouping).

Product introduction
The activities associated with specification, design, analysis, process and resource
planning and other functions required to bring a product to the production stage .

• Proprietary
Belonging or under the control of a private organisation (e.g. AUTOCAD is a proprietary
package, SNA is a proprietary protocol).

RDA
Remote Data Access.

Relation
A two-dimensional array of data elements (implemented as a table in a relational
database).

ix

Relational Database
A database made up of relations (as defined above). Its database maoogement system has
the capability to form different relations thus giving great flexibility in the usage of data.

Schema
A structured description of the information available in a database.

SME
Small and medium sized enterprises.

Table
A collection of data (in a relatioool database) suitable for quick reference, each item being
uniquely identified either by a label or its relative position.

Thrnkey
A turnkey system is one which is delivered and implemented by the supplier with little
effort on the part of the user. It is largely "pre-designed" (at least at the component level)
and the user sacrifices a close match to his own requirements in order to be able to be "up
and running" quickly.

x

LIST OF FIGURES

Figure 1-1 Insularity of contemporary MCS solutions 2

Figure 1-2 Interoperation anwng MCS solutions 4

Figure 1-3 Continuum of discrete pan manufacturing environments 6

Figure 1-4 Evolution of production management and manufacturing systems 9

Figure 1-5 Integration levels in the manufacturing enterprise 10

Figure 1-6 Illustration of IOS/OSI seven-layer reference model 10

Figure 1-7 The standards continuum and a categorisation of their purpose 12

Figure 2-1 Interconnection between MCS applications through 16

"pair-wise" integration

Figure 2-2 "Pair-wise" integration via import/export filters 17

Figure 2-3 Interconnection between MCS applications through 18

integrated database

Figure 2-4 Interconnection via an integrating infrastructure 21

Figure 2-5 Customising the production control area information need 24

Figure 2-6 "Y-CIM" model to promote integration offunctions and information 30

Figure 2-7 Triple Diagonal modelling 31

Figure 3-1 Production planning information as the initial nucleus 36

Figure 3-2 Components of an Integrating Infrastructure 38

Figure 3-3 CIM-BIOSYS Integrating Infrastructure 40

Figure 3-4 Overview of the Methodology 44

Figure 4-1 Overview of the functional and information network within 47

the CIM Model

Figure 4-2 Overview of information flow and data dependency 50

Figure 4-3 Restructure ELMS database with reference to generic 57

information models

Figure 4-4 Grouping of data represented in ELMS database with reference 58

to information models

Figure 4-5 Mapping between information entities 59

Figure 4-6 - System-wide data repository 61

Figure 4-7 Approachfor database access 67

Figure 4-8 Database 'driver' interfaces to data repository and /IS 69

Figure 5-1 Interoperation between applications enabled through SIM 77

Figure 5-2 Frameworkfor MCS interoperation 81

Figure 5-3 Function-Informotion Association Table for MCS FIMM 82

Figure 5-4 Engineering Resource Manager 83

Figure 5-5 Overview of Functional Integration Manager management 85

of MCS activities

xi

. Figure 5-6 Structure of FlMM Configurator 86
Figure 5-7 'Application shell' to coalesce interoperating MCS components 88

and interface with MCS FlMM and CIM-BIOSYS liS

Figure 5-8 Communication interface via 'application shell' 89
Figure 5-9 Communication mechanism to support MCS FlMM 90

in a distributed environment

Figure 6-1 Software toolsetfor integrated life cycle suppon 97
Figure 6-2 IDEF1X entity-attribute relationship model representing 99

a compositr view of the informotion model

Figure 6-3 IDEF1X entity-attribute relationship model modifiedfor 101
translation to EXPRESS schema

Figure 6-4 IDEFofunction model (Context Diagram) 103
Figure 6-5 IDEF of unction model to describe Production Planning and 104

inter-relationship with other MCS functions

Figure 6-6 IDEFofunction model with detailed level of decomposition for 105
Planning for Manufacture activity within the

Production Planning domain

Figure 6-7 Methodology for function-information association 107
Figure 7-1 Demonstration systemfor MCS software interoperability 112
Figure 7-2 Overview of information flow and dependency between 113

informotion entities

Figure 7-3 IDEF1X entity-attribute relationship model representing 115
the global schema

Figure 7-4 Grouping of product and process informotion represented in 116
MCC database with reference to informotion models

Figure 7-5 Grouping of schedule information represented in MCC database 117
with reference to information models

Figure 7-6 Mapping between iriformotion entities 118
Figure 7-7 Set of build tools to develop data repository 119
Figure 7-8 Configuration of MCS FIMM 121
Figure 7-9 'Application shell' con figured to coalesce MCS components 122

and integrate with MCS FlMM and CIM-BIOSYS IlS

Figure 8-1 Degree of Software Interoperability 131

xii

LIST OF TABLES

Table 1-1 Characteristics of discrete manufacturers 7

Table 2-1 Major commercial solutions with provision of an 21

integrating infrastructure

Table 3-1 Summary of major commercially available solutions with 42

provision of an integrating infrastructure

Table 4-1 Summary of literature review 49

Table 4-2 CAPM packages examined 51

Table 4-3 Commonality of information 52

Table 4-4 Information Models 52

Table 4-5 Information requirementfor resource scheduling in ELMS 57

Table 5-1 Features of SI M 76

Table 8-1 List of life cycle support tools developed 129

xiii

SYNOPSIS

The introduction and adoption of contemporary computer aided manufacturing control

systems (MCS) can help rationalise and improve the productivity of manufacturing related

activities. Such activities include product design, process planning and production

management with CAD, CAPP and CAPM. However, they tend to be domain specific and

would generally have been designed as stand-alone systems where there is a serious lack of

consideration for integration requirements with other manufacturing activities outside the area

of immediate concern. As a result, "islands of computerisation" exist which exhibit

deficiencies and constraints that inhibit or complicate subsequent interoperation among typical

MCS components. As a result of these interoperability constraints, contemporary forms of

MCS typically yield sub-optimal benefits and do not promote synergy on an enterprise-wide

basis.

The move towards more integrated manufacturing systems, which requires advances in

software interoperability, is becoming a strategic issue. Here the primary aim is to realise

greater functional synergy between software components which span engineering, production

and management activities and systems. Hence information of global interest needs to be

shared across conventional functional boundaries between enterprise functions.

The main thrust of this research study is to derive a new generation of MCS in which

software components can "functionally interact" and share common information through

accessing distributed data repositories in an efficient, highly flexible and standardised

manner. It addresses problems of information fragmentation and the lack of formalism, as

well as issues relating to flexibly structuring interactions between threads of functionality

embedded within the various components. The emphasis is on the:

• definition of generic information models which underpin the sharing of common

data among production planning, product design, finite capacity scheduling and cell

control systems.

• development of an effective framework to manage functional interaction between

MCS components, thereby coordinating their combined activities.

• "soft" or flexible integration of the MCS activities over an integrating infrastructure

in order to (i) help simplify typical integration problems found when using

contemporary interconnection methods for applications integration; and (ii) enable

their reconfiguration and incremental development.

xiv

In order to facilitate adaptability in response to changing needs, these systems must also be

engineered to enable reconfigurability over their life cycle. Thus within the scope of this

research study a new methodology and software toolset have been developed to formally

structure and support implementation, run-time and change processes. The tool set combines

the use of IDEFO (for activity based or functional modelling), IDEFIX (for entity-attribute

relationship modelling), and EXPRESS (for information modelling).

This research includes a pragmatic but effective means of dealing with legacyl software,

which often may be a vital source of readily available information which supports the

operation of the manufacturing enterprise. The pragmatism and medium term relevance of the

research study has promoted particular interest and collaboration from software manufacturers

and industrial practitioners. Proof of concept studies have been carried out to implement and

evaluate the developed mechanisms and software toolse!.

SCOPE

The author's underlying philosophy, concepts, derived methodologies, and enabling

mechanisms have been conceived to (i) facilitate software interoperability and (ii) overcome

certain limitations and restrictions found when achieving applications integration in

contemporary forms of MCS. Such issues have been considered in chapters one to five of this

thesis. In chapter six the notion of a "model driven" methodology is introduced which has

been derived to formally structure and support change management in interoperating forms of

MCS. Here the concept of "enacting" functional and information models is examined to

provide consistent support over the MCS life cycle. Chapter seven focuses on the

implementation of a proof of concept MCS demonstration system to illustrate the application

of the research methodology adopted and developed by the author to enable interoperation of

MCS components.

Chapter 1 : The need for software interoperability and the issues which affect integration

between software applications are discussed. Some of the major considerations are examined

to develop pragmatic and viable interoperable systems. Also outlined are :

- the nature and scope of software interoperability;

- a requirement specification to effectively enable interoperation between MCS

components.

1. The term legacy (systems, components and software) is used to refer to a previously installed base of
systems, components and software. Legacy elements will not normally conform to the methods and
standards which are adopted in current generation solutions.

xv

Chapter 2 : Inherent constraints and limitations which inhibit or complicate interoperation

between contemporary forms of MCS are identified and examined. A literature review on

contemporary approaches and methodologies available to tackle particular aspects of the

interoperability problem(i.e. interconnection, system design and development, reference

models and system behavioural issues) is conducted. Based on the review, some of the

outstanding issues and "gaps" in knowledge are highlighted in terms of advancement goals for

the author to achieve and address in order to effectively facilitate software interoperability.

Chapter 3 : The focus and perceived objectives of this research study are specified. The

need for a reference information model, which can be widely applicable across the

manufacturing continuum to promote interoperability between MCS functional activities, is

highlighted. The components of an integrating infrastructure (lIS) and the important role of

the CIM-BIOSYS lIS, which has been developed by the Manufacturing Systems Integration

Research Institute at Loughborough University of Technology and used in the author's

research study to enable interconnection between MCS components, are described. Also

provided is an overview of the overall research methodology conceived by the author as part

of this doctoral study to enable software interoperability.

Chapter 4 : An information architecture which can support software interoperability is

discussed. It includes the specification of reference models, which describe information

entities of common interest shared between production planning, product design, process

planning, finite capacity scheduling and cell control systems. Included is a case study carried

out in collaboration with the University of Bradford Management Centre to demonstrate the

application of the generic reference models identified and described by the author. The design

criteria for the system data repository are specified. The mechanisms (such as the database

'driver') developed to enable open information access in a consistent and reliable manner

from the system data repository are also described.

Chapter 5 : The emphasis in this chapter is on system behavioural issues. The methodology

adopted, mechanisms developed and system management tools required to formally structure

and facilitate functional interaction (among distributed interoperating MCS components

during run-time) are discussed. The MCS Functional Interaction Management Module

(FIMM), which has been developed as part of this research study to enable effective functional

interaction, is also explained. The functional capabilities and level of effectiveness of the MCS

FIMM in facilitating interaction is compared against a contemporary commercial software

application, namely Systems Integration Manager, which is designed to tie together a disparate

set of MCS software applications into a coherent system.

xvi

Chapter 6 : A "model driven" methodology conceived by the author in this research study

to provide life cycle support of integrated manufacturing systems is highlighted. The software

toolset developed. which is coupled closely with IDEFO. IDEF,x. and EXPRESS modelling

tools. to formalise and support implementation. run-time and change processes is described.

The exploitation and enactment of function and information models by the software toolset to

structure downstream life cycle processes is also discussed.

Chapter 7 : In this chapter a proof of concept MCS implementation study has been carried

out in order to illustrate the application and ascertain the level of effectiveness of the

methodology derived in this research study. which seeks to enable interoperability among

MCS components.

Chapter 8 : A summary of the research work carried out is provided. In order to enhance

the software interoperability methodology described in this thesis. future work is

recommended to address some existing deficiencies. Expected future major areas of
. -

interoperability development are also highlighted.

xvii

Chapter 1

Contemporary forms of Manufacturing Control Systems
and a perspective on Software Interoperability

"He who does notthink/ar ahead, is certain 10 meet troubles close at hand."
Confucius, Born 551 BC

1.1 Limitations of Contemporary forms of MCS

Advances in technology have led to the widespread use of infonuation technology in

manufacturing but have mainly generated islands of computerisation [Hars 1990]. This

phenomenon can in part be attributed to the dominant influence of Tay10rism [Pugh and

Hickson 1989, Taylor 1947], which places emphasis on specialisation and distinct division of

responsibility. Traditionally this has led to a compartmentalization of business, engineering

and production activities, all of which are required to suppon the product life cycle.

Consequently, there has been a proliferation of computer-aided software applications where

each has been designed with Tayloristic principles in mind, this to address some focused

aspect of the manufacturing domain [Scheer 1988].

Contemporary software applications are used to facilitate product introduction and planning

processes. They also enable the control of manufacturing activities and processes on the shop

floor. They are implemented in a variety of forms and serve different purposes, many of which

are typically classified under the general headings of PPC, CAD, CAM, CAE, CAPP, CAQ,

DNC, SFC, etc.) [Rembold et al. 1993, Scheer 1991]. Thus typical components of

contemporary MCS 1 (Manufacturing Control Systems) are implemented in the form of stand

alone software packages, each focused on enabling localised efficiency and productivity

improvements with respect to different aspects of a manufacturing enterprise. Computer-aided

software applications of this type are conceived, implemented and supplied from various

sources, this leading to significant heterogeneity in tenus of the computer hardware, systems

software, systems management and communications systems they employ [ITAP 1990,

Weston et al. 1988]. This is accentuated by the fact that they are conceived and implemented

in the absence of an overall company wide strategic plan [Waterlow and Monniott 1986] of

how MCS should be implemented and how the integration requirements of other software

1. MCS • Specialised applications which exhibit discrete functionality for the rationalisation,
improvement, control, and execution of activities in support of part manufacture will be
viewed as typical components of MCS.

Page 1

Contemporary forms of Manuracturing Control Systems
Chapter 1 and a perspective on Software lnteroperability

applications, outside the area of immediate concern, can be met. Driven by myopic

departmental considerations, end users freely mix and match hardware and software

requirements to best suit their needs, from the plethora of systems that are currently available.

As a result, contemporary MCS solutions offer little or no interworking between constituent

software applications, particularly those associated with different functional areas of the

enterprise, and do not promote synergy on an enterprise-wide basis [Moerman 1991]. This

results in specialised departmentally-determined data organisation and contributes to data

hoarding by individual departments and applications, each with its own restricted and

incomplete view of enterprise goals [DTI 1993]. Companies are often in a dilemma when they

need to:-

• accrue and consolidate fragments of information of common concern which are

distributed and also duplicated among the various MCS applications; and

• facilitate information sharing and transfer between islands of computerisation.

This can be attributed mainly to the insular nature of contemporary MCS solutions where their

interconnections (to facilitaie transfer and sharing of information) are severely constrained by

their proprietary nature and the level of heterogeneity exhibited by them [Singh and Weston

1993, Weston et al. 1988]. Hence there is much reliance on users to establish informal links to

(i) convey messages and information, and (ii) co-ordinate transactions between specialised

departments and applications, as illustrated in Figure 1-1. Consequently, significant delays

and errors in transactions normally occur, thereby promoting opportunities for

misunderstandings and conflicts [Lars 1990]. This undoubtedly hampers the productivity and

operational efficiency of the enterprise concerned.

Customer demands

J?esign to manufacture ~
Figure 1-1 : Insularity of contemporary MCS solutions

Page 2

Chapter 1
Contemporary rorms or Manuracturing Control Systems

and a perspective on Sortware Interoperability

1.2 The Need for Software Interoperability

With a growing demand for consumer-oriented flexibility, there is increasing pressure on

companies to improve their responsiveness and to achieve better ("more informed") decision

making through effective dissemination and sharing of information and knowledge [Pheasey

1992, Weinberg 1989]. These needs have been identified and are strongly reflected in the

following emerging trends [Fry and Baker 1993, Peters 1989] :

• Inter· and intra-organisation integration to realise greater functional synergy

where conventional boundaries between enterprise functions, which span

engineering, production and management activities and systems, are traversed to

allow information of global interest to be shared within the organisation and

externally, such as with vendors and suppliers.

• Time-based competition where the drive is towards achieving shorter design to

manufacture lead time in order to be highly responsive to customers' demands and

changes in other market forces so as to enable exploitation of market potential and

capitalisation of existing business opportunities.

• Customisation of manufacturing activities and systems where they need to be

configured and geared specially to cater for the individual requirements and

idiosyncrasies of the company concerned.

Therefore, it is no longer reasonable to expect a single software application to fUlfil its

purpose without support or reference to data and events which are handled by other closely

related application systems. This would require the linking up of the various islands of

computerisation, for example:

• Product Design

Companies are under constant pressure to (i) deliver better quality products, and (ii)

dramatically reduce design-to-manufacture lead times so as to capitalise on market

opportunities by being "first to market" [DTI 1993]. Therefore, not only must there be

prompt responses to design requirements and changes but there must also be the use of

decision support systems based on information gathered from various parts of an

enterprise [OTI 1993, Schnur 1987]. For example, to aid product design, product

specifications should consider the availability of manufacturing resources [Singh 1991,

Lars 1990].

Page 3

Chapter 1

• Process Planning

Contemporary rorms or Manuracturing Control Systems
and a perspective on Sol'tware Interoperability

This serves as a technological bridge between engineering and manufacturing and

provides a blueprint for pan manufacture [Ssemakula 1987, Logan 1986, Chang 1985]. It

defines the sequence of operations required to manufacture a product and selects the

manufacturing resources (including machines, toolings, fixtures) to carry out material

processing. According to a recent report [Halevi and Weil 1992] process planning

systems should be able to communicate with other company functions, especially

production planning and product design, in order to achieve significant benefits in co

ordinating manufacturing activities.

• Cell Control

Shop and cell control systems have responsibilities for a segment of the shop floor and

are required to despatch planned orders (which are generated from production planning

systems), coordinate, control and monitor the operation of the components of a shop or

cell [Bauer 1991]. They will also be responsible for shop floor data acquisition, thereby

enabling production status feedback to the production planning system [Williams and

Rogers 1991].

Thus it is necessary to coordinate and control the interoperation of various types of software

component; this involves a need to provide and control access to commonly used engineering,

manufacturing and management information (see Figure 1-2). For example, bill of materials

(BOM) and process planning information are common information entities viewed from

different perspectives by CAD/CAM [CIM Strategies 1991, Lang-Lendroff and Unterburg

1989, Bohse and Harhalakis 1987] and CAPP [Ssemakula 1987, Logan 1986].

Customer demands

Market forces

Figure 1-2 : Interoperation among MCS solutions

Page 4

Cbapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

As illustrated in Figure 1-2, the users, on the other hand, would now require

(i) accessibility and a coherent as well as up-to-date view of information of common concern,

this to support their decision-making in a more timely and accurate manner, and

(ii) a global perspective of their work domain, so as to have a better appreciation and

understanding of its impact on and close association with other activities in the enterprise.

This would undoubtedly help to avoid errors and delays in and between transactions as well as

alleviate potential conflicts and contentious situations.

However, the following should be considered and addressed before any solution derived can

be deemed as practically acceptable:

• dealing with legacy software, this to enable interoperability among the existing installed

base of MCS components .

• ensuring generic applicability of interoperable solutions across the manufacturing

continuum which typically range from 'Project Manufacturing' to 'Repetitive

Manufacturing' [Dinitz 1990].

1.2.1 Coping with Legacy Software

Contemporary MCS are normally designed and implemented to address a set of problems

prevalent in current company situations. Once installed, inevitably any solution is at a risk of

becoming obsolete if it is incapable of coping with situations other than those for which it has

been designed. Hence MCS solutions are required to (i) adapt to changes in business needs,

and (ii) conform to methods and standards adopted in current generation solutions. When

obsolescence occurs, one of the following actions will normally be required :

(a) modification or enhancement in functionality so as to upgrade and make them

functionally effective again.

(b) to retrieve its existing information which can be a vital resource in support of the

operation of the manufacturing enterprise.

(c) discarding them entirely and replacing them by a viable alternative when there is

neither any chance nor need for (a) and (b).

With a previously installed base of a software, which is referred to as legacy (or "as is")

software, the possibility of performing (a) may be remote. Often this is due to a lack of

proprietary knowledge, support and expertise to carry out necessary changes (such as

amendments to the required source programs), thereby making the task arduous indeed [Singh

PageS

Chapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

and Weston 1993]. Funhennore, it is uncommon for software manufacturers to reveal and

release information penaining to the source programs of their developed applications.

Understandably, this is to protect their vested commercial interest and rights to intellectual

propeny embodied in their products.

Hence in seeking to facilitate information sharing, generally speaking (b) seems to be a more

workable and pragmatic means of dealing with legacy software than (a). However, in order to

achieve an acceptable level of interoperability among MCS components, often the following

prerequisites are essential :

• that the information source (which forms part of the legacy element) can be

independently accessed; and

• that the information architecture and schema used by the legacy component are clearly

understood in terms of their structure and composition [Hodgson and Weston 1993].

1.2.2 Manufacturing Continuum Consideration

Typically, the production planning methods and systems employed today are likely to have

been chosen after having considered particular characteristics of the manufacturing

environment concerned, i.e. the type of products, production volume, demand fluctuations,

manufacturing technology, markets involved, etc. [Ziipfel and Missbauer 1993]. Indeed there

is a spectrum of discrete parts manufacturing which can be viewed as ranging from 'Project

Manufacturing' to 'Repetitive Manufacturing' [Dinitz 1990] (see Figure 1-3). Not surprisingly

therefore there is considerable diversity and lack of uniformity among production planning

methods and systems.

Custom Products
Configure-To-Order Standard Products

....
Engineer Make Assemble Make-To-Stock
to Order to Order to Order

Project Repetitive
Manufacturing Manufacturing

~ Discrete Manufacturers •
Figure 1-3 : Continuum of discrete part manufacturing environments [Dinitz 1990]

Page 6

Chapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

Clearly, the environment required for each class of manufacture (be it 'engineer-ta-order',

'make-to-stock', etc.) will require its own distinct set of operating characteristics [Goyal et of.

1993], as illustrated in Table 1-1.

Manufacturing Environment

Engineer-To-Order Make-To-Stock

Production Complexity High Low/Mediwn

CapacitylMaterial Driven Material Capacily/Material

WIPValue High Low/Medium

Push/Pull Pull Push

Schedule vs Orders Orders Schedule

Forecast Stability Low Medium/High

Direct Issue vs Backflusb Direct Backflush

Shop Floor Organisation Work Centre LineICell

Manufacturing operations Staff High Low/Medium

Labor Content High Low/Medium

Overhead Basis Labor$, Labor$,
Labor Hrs, LaborHrs,
Machine Hrs Machine Hrs

Performance Goals Operation Schedule
Efficiency Attainment

Table 1-1 : Characteristics of discrete manufacturers [Goyal et al. 1993]

Hence suitable manufacturing methods have to be adopted to satisfy and address the specific

needs of each class of manufacture. They govern the fonnulation and determine the nature and

extent of MCS functionality, particularly with regard to production planning and control.

Common manufacturing methods adopted include MRP IT, HT, OPT or possibly a hybrid of

them [Zapfel and Missbauer 1993, Larsen and Alting 1993, Struedel and Desruelle 1992,

Higgins et al. 1991, Jones and Roberts 1990, Goldratt 1988, Wight 1984] where

- MRP IT operates on forecasts, time-phased resource planning and fixed lead times. It is

suitable for discrete part manufacture of standard products for the 'make-to-stock'

environment. However, it does not include functionality to support short tenn scheduling of

orders under the constraints of the real availability of resources. This can make the use of

Page 7

Cbapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

MRP II inflexible, capacity insensitive and not responsive enough to changes and short tenn

demands imposed by, for example: the 'configure to order' environment, which is

characterised by small batch quantities and large product varieties.

- OPT (Optimised Production Technology) is based on the insight that the flow of materials

and goods, consequently affecting the perfonnance of the manufacturing system, is

determined by properties of its bottlenecks, such as limited capacity, demand and

availability of raw materials.

- ill (Just-in-TIme) methods are not only used to reduce inventories but also for continual

improvement of the production process. This approach requires a reorganisation of the

logistic chain to provide sufficient flexibility and reliability to closely match resources and

capability to customer demand.

The strength of MRP II lies in its mid- to long-tenn global planning whereas the strengths of

ill and OPT are in the short tenn execution of planned needs. Each has proved to be

successful in certain production environments and each has demonstrated disadvantages under

certain conditions. It is beyond the scope of this research to discuss further these paradigms

and as each of them is sufficiently complex, no attempt will be made here to elaborate upon

the various philosophies which they embody. Instead, the reader is directed to one of the

references given.

However, bearing in mind the following realities, there is a need to scrutinize the (information

andfunctional) requirements of the various manufacturing methods so as to identify amangst

them (i) essential information of prime concern, and (ii) the existence of commnn threads of

functionality :

• In practice companies do not necessarily stop at the boundaries of one manufacturing

method but cross and mix ideas to extract what makes sense for that particular company

[Van Donselaar 1992, De Vaan 1992, Ptak 1991, SI. Charles 1987, Luscombel.

• Any choice of manufacturing method depends upon various drivers (for example, the nature

of the management style, organisation, infonnation technology and manufacturing

technology), each of which will inevitably change and evolve, as illustrated in Figure 1-4.

Quite importantly, such generalisation would alleviate any bias towards specific

manufacturing methods, thereby effectively breaking free from the restrictive bounds of the

manufacturing methods adopted. In addition, commonality in infonnation requirement and

functions would indeed help overcome the considerable diversity among production planning

methods and systems, currently existing across the manufacturing continuum, which serve to

inhibit the achievement of interoperable solutions.

PageS

Chapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

Manufacturing
Systems &
Production
Management

Manufacturing
Strategy

Competitive
Tbrusts

Inventory
Planning
TechnIques

1930s

CAE
Order Shop Door CAD/CAM
Systems Cootrol TQC

Simulation
MPS nNC

MRP MRPII

High Volume
Cost Reduction

Product Focus

OPT
JIT

Functional Integration
Closed Loop

Process Control
MalerW Velocity
Ov eadCost

Concurrent
Engineering

Integrated
Eoterprlses

CIM

Enterprise Resource Planning

Distributed Resource Planning

New Product Introductlon
Speed & Responsiveness
Organizational Structure

Cost
Market

19SOs

Quality
Time

1970s

FI .. lblllty

1980s

Globalization
Customlsatlon
Total Integration

Customlsatlon

19905

Chronology of Manufacturing Trends

Figure 1-4 : Evolution of production management and manufacturing systems

1.3 Applications Integration and Software Interoperability

As illustrated in Figure 1-5. the AMICE CIM-OSA Consortium classified integration in the

manufacturing enterprise within the following three levels [ESPRIT 1989. CIM-OSA 19891 :

• Business Integration

At this level. enterprise goals and strategic business issues are considered.

• Application Integration

Integration at this level is defined as concerning interoperation between applications.

this to facilitate data sharing and information exchange.

• Physical Integration

According to CIM-OSA. physical integration is mainly concerned with data and

inter-process communication issues. It expects this level of integration to be provided

by current information technology concepts and standards (such as the ISO/OSI

seven-layer reference model [DATAPRO 19921. as illustrated in Figure 1-6). CIM

OSA will use the relevant services as defined.

Page 9

Chapter 1

1
IT

APPLICATIONS
EVOLUfION

Contemporary rorms or Manuracturing Control Systems
and a perspective on Sof'tware Interoperability

BUSINESS INTEGRATION
Knowledge D DedsIoa Support

tor Buslnes:! Cootrol.

PHYSICAL INTEGRATION • Inter System Communications!
Network. Configuration & Management

L..-------------7"-I. Data Exchange Rules and Conversion,

• Physical System Interconnection

CIM EVOLUfJON

Figure 1-5 : Integration levels in the manufacturing enterprise [CIM-OSA 1989]

Interface

F t

Data packet
trarisfer

Route" -Y-i~

Data bit
tr.nsmJuJon

Figure 1-6 : Illustration of ISO/OSI seven-layer reference model

Page 10

Chapter 1
Contemporary rorms or Manuracturing Control Systems

and a perspective on Sof'tware Interoperahility

Within the context of computer integrated manufacturing (CIM), the tenn "software

interoperability" has been used to imply the ability of separate software applications to

functionally interact so as to meet collective goals [Pheasey 1992, Scheer 1991, CIM-OSA

1989]. Bearing in mind the CIM-OSA classifications, therefore software interoperability is

aimed at the application integration level of enterprise wide integration.

Software interoperability is widely conceived as requiring data integration as well as

functional integration [Singh and Weston 1994a, Anscombe 1992, Hars 1990, Scheer 1989,

Solberg 1989, Fritsch 1989, Weinberg 1989, OTI 1987] with the resultant effect of linking and

synchronising the behaviour of processes in different subsystems of an enterprise. The

underlying interaction processes will involve an exchange of messages and the sharing of

information of common interest between a group of software applications so that the

applications behave (both individually and collectively) in an effective manner whilst realising

system-wide goals.

Drucker, in his assessment of the factory of the future, expresses the importance of such a need

as being:

" The factory of the future will be an information network. Sectors and departments will

have to think through what information they owe to whom and what information they need

from whom. A good deal of this information will flow sideways and across departmental

lines, not upstairs as with traditional plant [Drucker 1991]

Over the last decade significant progress has been made towards improving the 'hardware

portability' ofMCS software building blocks where software vendors have sought to adopt the

use of de jure and de facto computer networks, operating systems, databases, fourth generation

languages, and graphical user interface standards [Evans et al. 1993, OATAPRO 1992]; as

illustrated in Figure 1-7.

This trend towards hardware portability has enabled the functionality implemented by any

particular piece of application software to be separated from (i) the computer hardware on

which it is run and (ii) the data on which it operates. The result is that certain problems

associated with installing, using, and changing individual MCS software building blocks can

be alleviated [Evans et al. 1993, AMR 1991]. However, in seeking significant enhancement in

the level of interoperability achieved between chosen MCS software building blocks (where

information exchange is a key requirement) common function and information models, which

encapsulate key general attributions of various forms of MCS, are also required [Hodgson and

Weston 1993, ISO 1991, Barkmeyer 1989, Weber and Moodie 1989]. Currently, there is an

absence of such models.

Page 11

Cbapter 1

Requirements

Wmdowing

G..prics

apc g
System Interface

DatabalC
Definition/Access

EnlCrprisc
Repository

File Sharing

Mail

EDI

RPC

Plant Roor
Ccmmunications

Contemporary rorms or Manuracturing Control Systems
and a perspective on Sortware Interoperability

Standards
De Jure Defado Functions

X·Wmdow System
OSF/Motif Consistent U aer

GKS·30
Interface

PIllGS
IGES

(IEEE POSIX 1.003.1.
Access to

Emerging 1.003.n)
System Services

SQ~
Emc.g~QL A=s.

.It Rem... la Ace ... (ROA) Inlonnation &

Emerging IRDS. ATIS
RcSOUlCC Sharing

Network File Sy._ (NFS) TCP/IP
Emerging OSF DCE AFS

X.400

ANSI X.12. EOIFACf EOIF

Emerging OSP OCE
Enterprise

Comnumications

MMS RS·232

Figure 1-7 : The standards continuum and a categorisation of their purpose

Thus as an initial step, there is an important need to define the nature and form of a suitable

information model which can be used and advanced to a point where it can serve as a

generalised reference model, thereby facilitating data exchange betWeen MCS components

[ISO 1991, Barkmeyer 1989]. The benefits of using this reference model need to be quantified

and widely published. Subsequently it would be necessary for the reference model to be

adopted by vendors and users of MCS where it is likely that significant additional benefits

would accrue as its applicability and adoption are widened [Singh and Weston 1994b]. Such a

model will need to describe information of common interest to the components of a typical

MCS, thus effectively serving as a precursor to their interworking. It should reference shared

information and possibly consolidate them in a data repository so as to enable data sharing

within the enterprise. Potentially using such an approach, boundaries between enterprise-wide

functions can to some extent be overcome, a key requirement as advocated by Anscombe

[Anscombe 1992].

Page 12

Chapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperability

1.4 Requirement Specification for Software Interoperability

We can conclude that ideally software interoperability should imply an uninhibited

functional interaction and intercommunication amongst CIM components through a

free exchange of shared information. This also implies a need to standardise the interfaces

between the software components of CIM systems, especially concerning the control of

information exchange between the components. Therefore, it is clear that the concept of

software interoperability extends beyond that of software portability, i.e. interoperation is

required over different hardware platforms, operating systems and information access and

storage systems.

Hence in summary, the following requirements need to be satisfied to enable software

interoperability in an effective manner which overcomes (i) limitations inherent in

contemporary MCS components and solutions; and (ii) associated and inherited difficulties

and problems involved in achieving their interoperation :

* Information sharing requirements

• Generic reference models which describe information of common concern to various

components of MCS.

• An information architecture which establishes structure and uniformity whilst enabling

sharing and transfer of information between MCS components.

* Interconnection facilities

• An integrating infrastructure which simplifies and structures interconnection by (i)

separating integration and application issues; (ii) providing inter-process communication

services; and (iii) mapping of distributed processes (embodied in MCS components) on

the physical resources contained within a target manufacturing system.

• User interface capability'

• Ability for users to access MCS related functions in a manner which provides a global

perspective and intra-organisation support for their tasks.

* Control of system behaviour

• Capability for controlling and co-ordinating the sequence of (run-time) activities carried

out by an MCS, this based on their functional dependencies, information needs and

availability.

Page 13

Chapter 1
Contemporary forms of Manufacturing Control Systems

and a perspective on Software Interoperahility

• System design and development capability

• Provision for a more formal and structured approach to

- engineering MCS solutions; and

- supporting them over their useful life. .

This is to facilitate ease of development and change management, in view of the need for

next generation forms of MCS to be adaptable and responsive.

Page 14

Chapter 2

Current "State-oJ -the-Art" Scenario

2.1 Introduction

There are various methods currently used which attempt to resolve and overcome (i) certain

limitations inherent in contemporary MCS components and solutions, and (ii) difficulties and

problems associated with achieving a degree of software interoperability. In this chapter, the

nature and status of these methods is discussed. The discussion is structured with reference to

certain aspects of the requirements specification identified in Section 1.4, namely with respect

to commonly used ways of providing:

• Interconnection facilities

• Information reference models

• System design and development capabilities

• Means of controlling system behaviour

2.2, Interconnection Facilities

In this context interconnection can be viewed as establishing electronic data interchange

between the various islands of computerisation [Rembold et al. 1993, DATAPRO 1992]. Here

components of an MCS are interconnected to provide a low level data inter-communication

and information transfer facility for the software applications (or components) which form the

MCS. Three broad classes of approach can be identified which will herein be referred to as :

• "Pair-wise" integration

• Integrated information systems

• Integrating infrastructure

2.2.1 "Pair-wise" Integration

As explained by Rui in his PhD thesis [Rui 1989], in industry a "pair-wise" integration

approach is frequently adopted to interconnect the components of an MCS, thereby enabling

information transfer between software applications (or components) of such systems. This

approach can be characterised as follows:

Page 15

Chapter 2 Current "State-or-Ihe Art" Scenario

• Requires the development of bespoke interfaces, as illustrated in Figure 2-1. These

interfaces will normally need to be custom designed (each at a relatively high cost) to

realise a level of integration between interoperating pairs of application software. The

complexity of such systems will grow substantially (theoretically in a square law fashion)

as the nwnber of interconnected applications grows [Weston 1993]. This implies that for a

set of n different systems which need to be linked, n(n-l) different interfaces may need to

be developed; what is worse is that potentially 2(n-l) interfaces need to be adapted

whenever a single application system is changed.

AppUcaUon2
AppUcatJon 1

Bespoke interfaces ..

Application 3

Figure 2-1 : Interconnection between MCS applications through "pair-wise" integration

Typically this approach results in the incorporation of knowledge (concerning the need to

interoperate) into individual application software and its associated 'drivers' [Rui 1989].

This will include knowledge of other application software, data sources, data access

mechanisms, communication protocols, communication channels, data fonnats, and data

structures [Kaul et al. 1989]. This results in inflexible, application-specific and rigid

solutions which can be classified as "hard" integration" [Rui 1989]. Such solutions will

not be easily supported (in terms of available technical expertise) and the understandable

reluctance of vendors to release detailed product specifications (as this may embody

knowledge which provides them with a competitive advantage) will often lead to sub

optimal interworking between components. Furthermore, the cost (in terms of resources and

time) of subsequent modification may be so great as to render the solution obsolete as soon

as requirements change significantly.

Page 16

Chapter 2 Current "State-of-the Art" Scenario

• Utilisation of import and export filters. For some software packages, export filters are

provided as a built-in utility to enable the user to have independent access to its proprietary

data [Preece 1993, DATAPRO 1992]. The filters assume responsibility for pre- and post

processing of data which is specifically selected by the software manufacturer to be made

available to the user. Here some restrictions are necessary in order to maintain data security

and integrity through controlled access. The data will be automatically converted, via the

filters (see Figure 2-2), to conform with a required database or file format supported by the

software package. Generally the file formats adopted here will either be :

- a compatible format to enable direct data transfer between software packages; or

- a neutral format, such as in the form of a flat file, to allow intermediate data transfer

(in the absence of any compatible database or file format) between software

packages. In this case, further overhead processing will be required to retrieve,

manipulate and store the relevant data.

As explained by Lim [Lim 1992], data conversion and data transfer is normally performed

in a batch mode processing.

Application 2

Neutral fonnat

Figure 2-2 : "Pair-wise" integration via import/export filters

The main limitations of using filters are (i) that they provide only restricted access to

selected data, and (ii) the details of data format and structure can be lost in the transfer

process [Preece 1993].

With such contemporary "pair-wise" methods of interconnection, each software application

manages its own data and this can result in significant access times and data transfer times, this

as a result of the inherent mechanisms used to retrieve and make data available to other

applications [DATAPRO 1992, Scheer 1991]. As a result of such delays there is no guarantee

that data will be sufficiently up-to-date to support other dependent applications.

Page I7

Chapter 2 Current "State-or·the Art" Scenario

2.2.2 Integrated Information Systems

There is a growing emphasis on the development of integrated information systems based on a

data integration approach. This approach can help prevent cumbersome information transfer

(as illustrated in Figure 2-1) and can also reduce delays in information transfer times

[Muhlemann et al. 1991, D11 1989]. The underlying principle of integrated information

systems is that they consolidate information into a dalD repository (or common pool), this by

seeking to closely map common dalD to be exchanged and shared between applications into

that pool [Jeng and Chao 1992, Martin 1988]. Generally speaking, each application is required

to support a capability to export and import schema to this data repository for which a global

schema of common data models is defined (refer to Figure 2-3 for illustration). Potentially this

approach should enable information of common concern (which typically will accrue at one

stage in the production chain) to be included in the data repository, thereby making it

accessible to application software used at other stages in the chain.

L~·'1" B
ExportlImpor1 schema

Data ~
repository ~

Commonly shared
information

Figure 2-3 : Interconnection between MCS applications through integrated database

Page 18

Cbapter 2 Current "State-or-tbe Art" Scenario

This approach has been realised industrially (at least to some extent) in recent years and has

led to a degree of rationalization within divisions of some enterprises. For example,

rationalisation spanning accounts, production planning and order handling have led to a

reduction in administrative order handling times from 3 weeks to 3 days [Scheer 1991, Hars

1990].

However, as described below major practical problems remain with regard to the

development, enhancement and maintenance of integrated manufacturing systems which

impede the wide-spread adoption of integrated information systems and may generally restrict

interoperation among MCS functions [Singh and Weston 1993, Kochhar et al. 1987]. Many of

these problems arise from:

• The tight-coupling that normally exists between MCS functions and their associated

information. This (i) makes information access difficult or even impossible; and (ii) leads

to unintended propagation of the effect of changes made. i.e. change to individual

applications (comprising software processes and their associated systems) can have

significant effect on the operation of other applications [Weston et al. 1988].

• A lack of adherence to standard architectural models of functionality and information.

Rather. contemporary software components of MCS are designed using proprietary models

of function and information which are determined by the manufacturer [Singh and Weston

1994b. Fritsch 1989. Solberg 1989]. The main disadvantage is that information of common

concern to software applications is often duplicated. translated. and re-interpreted by

different software applications. This gives rise to problems of data integrity and

consistency as well as significant database management problems [Lim 1992].

Furthermore, semantic integrity has to be ensured and maintained between valid

combinations of data items fragmented across various databases [Kaul et al. 1989].

• Heterogeneity in database systems. particularly with regards to their logical data model. As

elaborated below. there are the following three logical data models most commonly

supported by database management systems [Beeri 1993. Wilkinson and Winterflood 1987.

Date 1986, Martin 1980] :

(i) Hierarchical model

Data is represented in a hierarchical or tree structure. Tree structures provide a

natural way of modelling truly hierarchical real world relationships where one-to

many segment types can be defined to represent successive levels in a tree structure

in order to relate entities to one another.

Page 19

Chapter 2 Current "State·or·the Art" Scenario

(ii) Network model

In the network model data is represented in a network (or plex) structure where any

node can be connected to any other node represented in the structure. Network

structures offer a greater scope to represent data relationships than hierarchical

structures, albeit at the expense of simplicity (at least with respect to physical

storage structure).

(iii) Relational model

In a relational model entities, relationships and attributes are represented in the

form of two-dimensional tables known as relations. Records are assimilated to the

rows of the table and each set of attributes forms a column.

(Please refer to Appendix I for further details on the various types of logical data models).

Thus there are major difficulties involved in attempting to interconnect heterogeneous

database systems. As a result of non-uniformity in their database management systems and

physical storage structures, there are serious concurrency problems related to transactions

and controlled data access. In addition, the following must also be reconciled :

- differences in database schema;

. semantic differences among data items.

There is considerable academic and industrial interest in integrating heterogeneous

distributed database systems, with extremely large numbers of publications in the area

[Breitbart et al. 1993, Bright et al. 1992, Thompson et al. 1990, Motro 1987, Batini et al.

1986] indicated in the literature. The reader is directed to one of the references given for

further appreciation of the difficulties involved.

2.2.3 Integrating Infrastructures

An increasing number of CIM tools [Gould 1992, AMR 1991, CIM Strategies 1990, Metz

1990] which are appearing on the market claim to allow applications to "functionally interact"

(see Table 2-1 for summary). The main purpose of these integrating infrastructures (which will

be referred to by the acronym ITS) is to structure, service, and where possible simplify

interconnection between the component elements of software systems.

As illustrated in Figure 2-4, an ITS can be charged with resolving differences in a physical

system relating to heterogeneity, distribution and data fragmentation [Weston 1993]. It can

assume responsibility for maintaining a knowledge of integration details (such as the networks

used, the hardware and operating systems that software components are run on, the location of

an information fragment, etc.) so that software components (such as MCS components)

Page 20

Chapter 2 Current "State-or-the Art" Scenario

Vendor Product Remarks

IBM PlantWOIk~AE • Need compliance to IBM's SAA based
strategy of a CIM repository.

• Runs only on IBM computer systems .
DAJ: • Dbb1INztad Am-tIDa • Operating system is OS/2 based.

-LAcks third parry support for PlantWorkslDAE.

• VAX based hardware.

DEC Consillieum/
• Operating system is VMS based only.

BaseStar - Limited vertical integration between BaseStar,
which enables applications althe shop floor level,
and the planning and management activites.

-LAcks third parry support.

- Geared only for shop floor software

Hewlett Industrial Precision
development.

Packard Tools (IPTs) - No current integration between IPTs and
third porties.

- No vertical inUlJration available l.et between
shop floor appitcations and the panning and
management activities.

Table 2-1 : Major commercial solutions with provision
of an integrating infrastructure [AMR 1991]

Interconnection between conformant applications

Integrating Infrastructure

Information resource

Data repository

Figure 2-4 : Interconnection via an integrating infrastructure

Page 21

Cbapter 2 Current "State-or-tbe Art" Scenario

themselves need only have knowledge of how to use the ITS (i.e. NOT OF EACH OTHER).

An lIS is usually supported by software tools to help alleviate the complexities inherent in

most systems integration projects [TImon et al. 1990, Hughes 1988]. A range of development

tools for programmers and third party developers can be offered and may provide

• Structured access to common integration services for

- inter-process communication;

- information sharing and management via a data repository.

• Consistent user and device interfaces to allow interaction over the lIS.

Potentially, the use of an lIS

(i) makes programming easier by insulating application software from complexities

associated with managing of system resources. This improves portability of application

programs. For example, an application can run on different network types and can be

referred to in a manner which is independent of physical location (i.e. it does not matter

where that application resides).

(ii) provides a data communication system that allows the building of an integrated system,

comprising distributed software applications. Once this system is built, the lIS enables the

distributed applications to access the hardware resources in the system (which includes

data repositories).

However, existing forms of lIS offer a restricted set of integration services and tools and are

proprietary in nature. Here the lIS can enable a flexible mapping of software applications onto

the physical resources of a system. This is of major advantage with respect to enabling change,

the incremental extension of a system and providing a migration path from the use of legacy

software and resources towards more interoperable components. They offer a view of the

world and integration needs held by a particular system supplier. As a result, they provide a

limited 'de facto standard' interface capability where so called conformant software

applications (which are strictly compatible to the /IS) will be supported. Currently this limits

the potential advantage gained from proprietary forms of lIS and is particularly limiting with

respect to the inclusion of legacy systems [Singh and Weston 1993].

Furthermore, presently available forms of ITS do not treat application functions and

information independently and separately. Thus changes to either function or information will

inevitably affect both because of their close dependency. Indeed the task to effect the changes

can be very demanding and disruptive to normal operations because careful consideration for

enterprise-wide implications of such changes has to be given. This is due to the encompassing

nature of the lIS towards promoting intra-organisation integration.

Page 22

Chapter 2 Current "State-or-the Art" Scenario

2.3 Information Reference Models

It is important to model or represent manufacturing enterprises [Lopes 1992, Zhang and

Alting] in order to describe in a formal manner the ideal situation with regard to (i)

information requirement and flow; and (ii) dependencies between activities. However, there is

much diversity in the ideal situation in individual companies (even though they may be in the

same industriill sector), in relation to the organisation structure adopted, operations carried

out, manufacturing processes used, etc. Hence no two companies can be expected to be

identical, each having idiosyncrasies and specific functional and information needs to realise

its own business goals [St. Charles 1987]. As a result, it is recognised that manufacturing

information is notoriously difficult to standardise. Notwithstanding these differences reference

models are necessary to promote good practice and a certain degree of standardisation which

can promote interoperation on an inter- or intra-company basis. Where possible these

reference models should capture and describe generic properties related to 'good practice'

which are widely applicable. But they will need to be open to changes to allow modification

and expansion to cater for customised needs [Evans et al. 1993].

The reference model approach has been advocated and benefits demonstrated in previous

research projects [Hars et al. 1992, Scheer 1991, Muhlemann et al. 1991], which include the

ESPRIT project CODE (COmputer supported enterprise-wide Data Engineering). However,

to-date reference models reported in the literature have been specific and functional in nature,

in as much that their use has been focused relatively sharply on a specific application domain,

such as integrated production planning development. For example, the use of a family of

reference models was postulated by Scheer et al. [Scheer 1991, Hars et al. 1992, Hars 1990]

which characterised specialised functions such as order entry, resource planning, management

and scheduling. The models proposed were used successfully in facilitating requirement

elicitation (this involving the identification and modelling of customisation requirements for

applications) as well as enabling data re-engineering to suit specific user needs, as exemplified

in Figure 2-5. Here the aim was to derive integrated production planning systems which are

modular and reconfigurable in nature. Generally the reference models were not conceived with

an extended application domain in mind to characterise inter operation across conventional

boundaries.

Conversely, this thesis is focused on interoperation across functional boundaries where there

is a need for reference models which comprise information of common interest to different

functional areas and which can be shared by components of an MCS to enable them to

functionally interoperate. Indeed the need for reference models which focus on interoperation

across functional boundaries is becoming more widely recognised, where a noteworthy

Page 23

Chapter 2

Reference Model

Pan

wortt SclteduJ.

Tcclmica1 PIOC%SI I----k~

Tool
assignment

Tool use

Tool

Persormcl
ulignment

<l{>enttim
asSignment

.)1-__ --1 Equipment Group

Grouping

Equipment

Personnel

Hierarchy

Current "State-or-the Art" Scenario

Customised Model

Pan

Operation Sequence

PartlTooI
assignment

Equipment

Hierarchy

Employ ..

Operator

Tool

Alternative
operatioo

Alternative

Chargehand

Figure 2-5 : Customising the production control area information need [Hars et al. 1992]

Page 24

Chapter 2 Current "State-or-tbe Art" Scenario

standardisation initiative known as MANDATE (MANufacturing DATa Exchange) has been

recently setup to address the issues listed below (MANDATE [ISO 1991] is a working group

oflSO's TC 184 namely ISO{fC184/SC4/WG8):

• Model, fonn, and attributes of data exchanged between an industrial manufacturing

company and its environment

• Data to be used by manufacturing management for the purposes of managing the

manufacturing company_

• Data controlling and monitoring the flow of materials within the company from a

manufacturing management viewpoint.

Essentially infonnation models of the MANDATE ilk promise to offer a degree of

standardisation which can enable components of an MCS to functionally interoperate.

However, standardisation efforts in this arena are in their infancy and will involve much

discussion, investigation and deliberation before any consensus on standards emerge. Hence

there is an immediate need for potential solutions to be capable of satisfying and to meet a

representative set of needs which can feed into this standardisation work. Thereby it can

further advanced as wider or complementary standardisation efforts mature.

2.4 System Design and Development

In reality integrated manufacturing systems must adapt and respond to changing needs.

Further integration with other functions and re-engineering of existing functions will be

inevitable for future enhancement or upgrading, as required, to refocus a business. Where

possible, enhancement and modification of manufacturing systems should be enabled during

each of the following life cycle phases with which system designers and builders, managers,

engineers, operators and maintenance personnel are involved [Aguiar and Weston 1993b] :

• Conceptual Design

In this life cycle phase the prime focus is deciding what a system should do. This can be

achieved by analysing "as-is" (present) and "to-be" (potential) situations in order to

identify means of achieving a set of improvement goals .

• Detailed Design and Implementation

This involves specifying how the global requirements defined during conceptual design

can be realised in terms of building the required solutions. Typically step-by-step

implementation is achieved, with debugging of sub-systems carried out at each step.

Page 2;>

Chapter 2 Current "State-or-the Art" Scenario

• Operation and Maintenance

This characterises the working life of the installed solution, as well as necessary

adjustments and repair during the operational lifetime of the system. Generally

speaking any major change will involve other upstream life cycle phases.

Commonly each life cycle phase is distinct in the sense that:

(i) normally different types of personnel with various perspectives and goals are responsible

for each phase.

(ii) various methods and tools can be employed at each stage but seldom will their use be

connected through common paradigms and system models [Motro 1987, Batini et al.

1986].

(iii) in view of (i) and (ii) "over the fence" system engineering is a common phenomenon with

major discontinuities and misunderstandings as specifications and requirements for

change traverse life cycle boundaries.

Thus current approaches to system design much reduces the opportunity to share and channel

usable results and data produced in other phases. Consequently, realising life cycle support

for an integrated system progressively through its design, implementation and run-time phases

is by no means trivial, especially as the complexity of a given system grows. Many of the

difficulty facing system designers and builders can be attributed to the abse,!ce of a structured

approach to creating systems which uses commonformalisms to straddle the various life cycle

phases [Czernik and Quint 1992].

2.4.1 Structured Design and Modelling Methods to support Life
Cycle Phases of an Integrated Manufacturing System

There are various structured design methods available which can support different life cycle

phases of integrated manufacturing systems. Typically, they structure and represent certain

aspects of the system under consideration; i.e. they provide a view or views of a system,

related for example to function, information, behaviour, etc. [Orr et al. 1989]. Common used

structured design methods include: .

• Entity-Relationship (E-R) Modelling. This methodology was conceived to enable

information modelling [Orr et al. 1989] and can systematically convert user

requirements into a set of entity-relationship models [Jain et al. 1992]. Subsequently

the E-R models defined can be used as the underlying model for a database

management system. This can help facilitate information sharing \n a more structured

Page 26

Chapter 2 Current "State-of-the Art" Scenario

manner where the information model may encompass information which resides in a

variety of data sources.

• Yourdon is a widely used process oriented methodology for designing software

systems. It prescribes methods based on a set of diagrams (context, data flow, entity

relationship and state-transition) each of which illustrates a single perspective of the

system [Weymont and Honeyager 1987]. Yourdon's structured design method has

been used in a variety of applications. Also Yourdon and extensions to it have been

combined with other software tools and used to design integrated systems [Savolainen

1991].

• SSADM (Structured System Analysis and Design Methodology) is a methodology

originally conceived for software design [CutiS 1991]. It is widely used in commercial

applications [Maji 1988]. The complete methodology encompasses six stages of a

software project, viz: analysis, specification of requirements, selection of system

options, logical data design, logical process design and physical design. To improve

the input/output facilitates available to a system designer, it uses graphical modelling

in the form of data flow diagrams and entity models.

• IDEF (U.S. Air Force ICAM - Integrated Computer Aided Manufacturing Definition)

is a methodology derived from SADT (Structured Analysis and Design Technique)

which has been more specifically tailored for use in manufacturing domains [lCAM

1985]. Currently IDEF comprises a suite of methods which essentially can be

considered under one of the following main sub-divisions [Meta Software 1990] :

IDEFO - This is used to produce functional (or activity based) models of

manufacturing systems or their sub-systems.

IDEFlx - This is a data modelling methodology used to describe entities and

relationships between entities.

IDEF2 - This is a dynamic modelling methodology that describes the time

variant behaviour of function blocks and information entities of a

manufacturing system.

IDEF has been very widely used in a large number of industrial cases. It is used as a

conceptual design modelling approach in many consultancy businesses around the

world [Colquhoun et al. 1993]. A set of methods is currently under development

[Mayer and Painter 1991], which includes Process Description Capture, Design

Rationale Capture, Implementation Architecture Modelling, Organisation Modelling,

and Three Schema Mapping Design. These new methods will funher extend the scope

of IDEF and hence its coverage of the life cycle of manufacturing systems.

Page 27

Chapter 2 Current "State-of-the Art" Scenario

• GRAI (Graphe a Resultats et Activites Interlies) is a methodology which was

conceived to analyse and design production management systems [Akif and

Documeings 1991]. It models function, structure and behaviour with the purpose of

describing the flow of information, material and decisions in systems. It includes

modelling views which represent time scales in the form of planning horizons and

periods. On applying the methodology to a system, a graphical model is produced

which relates activities, their time frame of operation, the decisions made and the

information and resources required and used.

• OOADM (Object Oriented Analysis and Design Methodologies) is a collection of

relatively new systems design methods which are based on the object oriented

paradigm [Halladay and Wiebei 1993, Rumbaugh et al. 1991]. Already in many

applications they have promised to replace conventional process oriented

methodologies. Many object oriented design methods are reported in the literature that

address one or more aspects of system design (either alone or combined with other

methods) [Sanders et al. 1991, Hind et al. 1990, Schiel and Mistrik 1990,]ochem

1989, Terry and Matz 1989]. The main advantage of OOADM over process oriented

approaches is the closeness of the object representation to the physical system being

modelled [Bailin 1989], along with its orientation towards enabling simulation.

• CIM-OSA (Open Systems Architecture for CIM) has been proposed by AMICE

(European CIM Architecture) consortium within the ESPRIT I and ESPRIT IT

programmes [Kosanke 1991,]orysz and Vemadat 1990]. CIM-OSA comprises a

methodology and a framework which embraces the specification of an integrating

infrastructure [Aguiar and Weston 1993b]. It is suggested by certain authors that CIM

OSA 'goes far beyond previous modelling methodologies' and aims to support the

design of CIM systems from their requirements definition (early stages of Conceptual

Design) to their operation and maintenance [CIM-OSA 1989]. With CIM-OSA it is

also claimed that a processable model of the CIM system can be produced as opposed

to SADT-based methods which only produce static models and lack a dynamic

modelling capability.

Various studies are reported in the literature which compare the capabilities of different

modelling methodologies. To date, no one methodology includes capabilities for modelling

the functional, information, dynamic and decision-making aspects of systems [Wyatt and Al

Maliki 1990, Wood and]ohnson 1989]. As a result, independent and separate use of a number

of methods will be required if the formal modelling of systems is required on a comprehensive

basis.

Page 28

Chapter 2 Current "State-of-the Art" Scenario

2.4.2 Entry Point for Integrated Life Cycle Support

In summary, the application of most currently available design and modelling methodologies

is primarily confined to the conceptual design phase, with a few extended to include limited

support for the implementation phase as well. Functional, information and behaviour analysis

is carried out with the aim of meeting a set of previously defined requirements and goals for

the system concerned. Typically the static functional and information models generated using

these methods will include formal definition and representation of (i) dependency

relationships, and (ii) configuration and composition (e.g. database schema representation and

entity-attributes, resource requirements to achieve the required functions). Having obtained

models of the system the effect of changes and variations can be scrutinized. Thus possible

system enhancements can be identified and represented by the models.

Hence the formal modelling of systems can provide an entry point for supporting the life cycle

of manufacturing systems where the models created (offunction and information aspects) can

serve as a source of knowledge during different life cycle phases. However, in realising this

potential it is necessary to :

• Develop additional life cycle support tools coupled closely to the modelling tool.

Such a software toolset should exploit the knowledge contained within the model in

order to ensure compatibility and continuity between life cycle phases, i.e. maintain

consistency between the models produced and used during each life cycle phase

[Singh and Weston 1994b].

2.5 Means of Controlling System Behaviour

In an integrated system, functions are coupled together through sharing of common

information. Formal definition of interaction between the functional components of an

integrated system requires clear and accurate descriptions of (i) the flow of information

between function blocks and (ii) the form and type of information, which should be made

available to support and drive those functions so that they can realise their assigned tasks

[Singh and Weston 1994a]. Any lack of clarity very often gives rise to serious problems during

system design, development, operation and changes. Hence when designing and implementing

an integrated system, association between functions and information as well as functional

dependencies must be well defined and clearly captured. If this can be achieved, the

relationships defined can be used to determine and govern the manner in which the system

behaves, particularly during run-time.

Page 29

Chapter 2 Current "State-ol·the Art" Scenario

2.5.1 Association between Functional and Information Entities

As indicated in the literature there is a need to fonnally maintain an association between the

functions carried out in a manufacturing system and the infonnation entities they generate.

access and manipulate [Scheer 1991. Shunk et al. 1986]. However. in manufacturing systems

such associations are only formally maintained during the requirements definition and design

stages of systems specification which in the software design process correspond to early

phases of the development life cycle. To address this deficiency the following research

proposals have been advanced :

• The "Y-CIM" model proposed by Scheer [1991]. as illustrated in Figure 2·6. provides an

integral organisational view of the different subystems of the enterprise. From such a view.

the necessary links to be established between the different isolated subsystems making the

exchange of infonnation possible can be derived. Hence the model attempts to capture and

represent the information needs of associated functions.

If ..
i
I!:

NC programming

r •
£

Order release

ofNC.CNC. ,
Production cootrol DNC machines

androbolS :Il
• < .g control U
l! Operational data ~ • 6 collection

~ Inventory cootrol j
.5 Control AlSembly control !

Maintenance

Dispatch control
Quality assurance Cl

<
U

\
Figure 2-6 : "Y-CIM" model to promote integration of functions and infonnation [Scheer 1991]

Page 30

Chapter 2 Current "State-ol·tbe Art" Scenario

• The Triple Diagonal concept [Shunk et al. 1986]. whi<;h is based on the use of IDEFo.

proposes a modification to the functional modelling approach and this includes a definition

of information. control and material flows. Components of a manufacturing enterprise are

classified and related to each other via a defined layered architectural relationship. Thus by

including a definition of information resource requirements as well as material. information

and control flows into the IDEFo functional model. a formal association between functions

and information can be defined. with the input and output of information from associated

functions being clearly identified. as illustrated in the example model of Figure 2-7.

Job Operation Slams and Perfonnance

Process Plan Pcri'onnance/

V Ut'crepanaes

CREATE

Proc;:ell Plans
PROCESS PLAN ~ ,

Daily Production Daily Production Schedule Performance
CONTROL

Schedule
SHOP FLOOR InvcnlOJY Statu. Ope. , Seq.

n.tion uc:nces (Daily Production Sche< ~

P =- DEUVER
PARTS

~ RECEIVE
PARTS

~
Material Flow

Pan. .. BUll.D
Controls SU!lASSEMBUES

Feedback

PERFORM
Assembly ~ FINAL -ASSEMBLY

TEST .. SYSTEMS
Finished

Assembly

Figure 2-7 : Triple Diagonal (Material Flow/Controlsllnformation Integration)
modelling [Shunk et al. 1986]

c)

These formally defined associations can be made available for use in downstream life cycle

phases of a system. However. use of an appropriate modelling method alone is insufficient to

ensure that a panicular function or information entity exists as pan of an integrated system.

This is because function and information entities are normally viewed separately. thus making

it rather difficult to consider their close associations and dependencies. Thus there is a need to

establish and maintain an association between thefunction and information model streams. in

a way that can aid system design and development (see section 2.4).

Page 31

Chapter 2 Current "State-of·the Art" Scenario

2.5.2 Model Enactment to formally describe System Behaviour

It is recognised that fonnal specifications produced during system design, leading to a

conceptual (functional and their associated infonnation) requirements specification, can prove

useful in detennining and realising the required behaviour of a system. Thus it is necessary to

[Singh and Weston 1994a]

(a) unify the perspectives of functional and information modelling; and

(b) facilitate the sharing and channelling results obtained during conceptual requirement

definition so that they are useful for downstream life cycle processes, for example,

to aid implementation and configuration with relation to the co-ordination and

control of functional interaction between a given set of manufacturing components.

If such a capability can be fonnally realised using a modelling method coupled closely with a

system design tool or set of tools, it will ensure consistency of results between life cycle stages

(i.e. between system design and implementation stages). Such a capability can be referred to

as model enactment where a conceptual functional requirements definition is used as a

framework for more detailed behavioural modelling and implementation of that behaviour in a

running system. This can be viewed as the process of enacting functional models. Such an

enactment capability should inherit the following benefits:

(i) an appropriate formal definition of interactions between functional components

based on

• functional dependencies derived from higher level system descriptions; and

- a description of data requirements to support the functions concerned.

(ii) defined means of supporting functional interaction management based on

definitions and relationships established at a higher level, thereby facilitating

control system behaviour (via suitable mechanisms) by providing a description of

how run·time activities can be effectively coordinated.

However, in the following sections focus will only be on issues related to (a). Thus there is a

need to enable both (a) and (b) via some methodology, which as later explained, could take the

fonn of a software tool or tools.

Page 32

Chapter 3

Achieving Interoperability

3.1 Research Focus

The author recognises that the sharing of common data, to enable a bonding between MCS

components, constitutes one step towards fully achieving software interoperability [Singh and

Weston 1993, Hars 1990].ln order that the benefits of software interoperabiliJy can be more

fully realised, the next crucial step is to address problems of functional interaction (and the

underlying issues of behavioural interaction) between MCS components. Thus the

processes of co-ordinating and synchronising functional interdependencies and association

between MCS components (with accountability for the shared data) need to be carefully

managed and controlled. In practice, this is necessary to ensure and maintain discipline and

harmony, to enable cooperation among interoperating software components [Hars 1990] and

to establish well defined communication channels which can collectively promote and

enhance intra-organisation interaction and co-ordination of activities [Scheer 1991].

In this thesis a novel approach to achieving software interoperability is conceived and

advanced which offers means of (i) overcoming various inherent deficiencies and constraints

which would severely inhibit or complicate MCS functional interaction, and (ii) tackling in a

structured way integration problems associated with current forms of MCS and their

component elements. A particular focus is on seeking an innovative methodology which can

improve the reconfigurability of interoperating MCS software over the life cycle of such

systems, thereby facilitating their adaptability in response to changing needs (for example,

further integration with other functions and re-engineering of existing functions in order to

modify and enhance the system's functionality). Through improving the adaptability of an

MCS it should become possible to mitigate against early obsolescence and allow it to be more

universally applied.

The eight years of industrial experience gained by the author, particularly in the precision

machining industry has provided an important backcloth to this work. They have provided

invaluable insight to (a) the practical problems faced by companies in trying to achieve

applications integration, and (b) an understanding of "gaps" in technology and "know-how"

which need to be filled to resolve such problems. This experience has been gained as follows:

Page 33

Cbapter 3 Achieving Ioteroperability

• Between 1983 to 1986, as a practising manufacturing engineer the author was responsible

for production work at ASEA Brown Boveri in Singapore. This is a medium sized company

manufacturing tool and die components as well as plastic injection moulds. Shop floor

experience was gained during this period of time as a CNC programmer and machinist,

production and process planner, and production supervisor .

• Between 1989 to 1992, served as the Head of the Manufacturing Software Section of the

Singapore Economic Development Board. The author was responsible for applied research

and development activities, this to promote the general adoption of automation and

computerisation in Singapore's manufacturing industry; particularly in relation to CIM,

FMS, robotics and the application of expert and knowledge based systems [Singh 1992,

Foong et al. 1992, Singh 1991]. This activity was centred on consultancy, manpower

training and joint collaboration with local manufacturing companies and vendors.

Thus this research study has sought to adopt a mixture of pragmatic and formal approaches to

resolving software interoperability issues. Focus is on enabling software interoperability in the

arena of production planning which is defined as encompassing the management of flows of

materials and goods as well as seeking to ensure capacity utilization based on customer orders

and/or demand forecasts [Vollmann et al. 1988]; this includes order entry, resource planning

and management as well as scheduling functions. However also considered are

interoperability issues concerning MCS applications in other related manufacturing domains,

which include the following:

• Product Design

• Process Planning

• Finite Capacity Scheduling

• Cell Control

MCS applications in the arena of finite capacity scheduling are responsible for the short term

planning of manufacturing orders in a manner which optimises manufacturing operations on

the shop floor. The need to improve interoperation via use of semi-automated and

computerised cell control and production planning systems is considered essential in this

study because of the current lack of uniformity normally found between proprietary systems

used for production planning and those responsible for facilitating execution of plans; this is

necessary to ensure that appropriate plans are effectively translated into actual production

cycles. This lack of conformity has presented major problems for manufacturers, particularly

in not encouraging a coherent view of both planned and actual information (derived from shop

floor feedback) throughout the enterprise [Waterlow and Monniott 1986].

Page 34

Chapter 3 Achieving Interoperability

However, this research stuJiy is not aimed to place in the foreground details of necessary

functionol improvements to individual MCS functions. Rather it has sought to amplify the

importance of applications integration and hence software interoperability. However, at times

it does elaborate on the implications of these principles with respect to functional demands on

individual components.

3.2 Objectives

Hence the overall objectives of the author's PhD study have been:

• to identify and specify architectural models of system functionality and information

which themselves are based on studies of the inter-dependency of functions and

commonality of information shared between production planning, product design,

process planning, finite capacity scheduling and cell control processes.

• to address key issues of managing functional interaction, i.e. to study means of co

ordinating and synchronizing MCS functions. This by enabling and managing the

interoperation of associated software applications in a flexible manner.

• to provide a formalised and structured methodology which can cope with high levels of

complexity and change, straddling design, implementation, run-time and maintenance

life cycle phases of interoperable systems. This to enable overall system

reconfigurability, more optimal system design and operation and a reduction in the time

and effort involved in creating such systems.

The emphasis of the study is on providing means of building "soft" rather than "hard"

integrated solutions. Key to the methods derived will be a structuring of implementation

processes based on the use of an integrating infrastructure which embodies common

integration services. These common services will facilitate data management, access,

manipulation and presentation, and support inter-process communication between conforming

applications.

3.3 Production Planning as the Nucleus

In this study, the choice of production planning information as the initial nucleus of a model

manufacturing information is a pragmatic one. It is viewed as providing a comprehensive

information system that offers a large pool of manufacturing and logistical data which bears

varying degrees of commonality, interdependency and close association [Hodgson and

Waterlow 1992, Singh 1991, Harhalakis et al. 1990, Schnur 1987, Saxe 1985] to that of other

applications. For example, bill of materials (BOM) and process planning information are

Page 35

Chapter 3 Achieving Interoperability

Schedulel

Figure 3-1 : Production planning infonnation as the initial nucleus

common infonnation entities viewed from different perspectives by CAD/CAM [CIM

Strategies 1991. Lang-Lendroff and Unterburg 1989. Bohse and Harhalakis 1987] and CAPP

[Ssemakula 1987. Logan 1986] (see Figure 3-1). This provides a basic means of establishing

data repositories to facilitate infonnation sharing with other functional areas within a given

company.

3.3.1 Manufacturing Methods and Information Requirements

It is interesting to note that the information requirements of adopted manufacturing methods,

which include MRP H, OPT and lIT, demnnstrate many similarities [Singh and Weston 1993.

Bond 1993. Plenert 1993. Lee 1993]. differing mainly in their emphasis and degree offocus on

the activities concerned. This is illustrated in the following:

.. - OPT is a computerised scheduling system which employs a standard MRP style database of

BOM (biII of materials). resources, routes (including data on setup and operation times).

inventory (raw material. WIP and finished product) and demand (specified by due date and

quantity required).

- JIT. with its cellular manufacturing approach and the use of a 'demand pull' concept to

control the production and movement of parts through the production process. requires

infonnation on production schedules (specified by start and finish dates on a daily basis).

BOM, inventory (specified by lead-time for raw material and components delivery). routes

(includes data on cell output. setup. process and cycle times) and capacity (specified by

available working capacity for loading parts for manufacture).

Page 36

Cbapter 3 Achieving Ioteroperability

The manufacturing method adopted in a given company will significantly influence the

functional requirements of an MCS. Similarly characteristic properties of each manufacturing

environment will directly influence these needs. This gives rise to considerable diversity

among the functional properties of different production planning methods and systems which

currently exist to support the manufacturing continuum (as highlighted in section 1.2.2).

Hence when looking for similarities, it is more appropriate to consider and focus on

similarities between different forms of MCS with regard to their information requirement (as

indicated previously).

Indeed in this study an information model which represents information entities and their

inter-relationships of common interest to different MCS functions, is identified and specified.

This has been conceived to constitute essential production planning information of prime

concern.

3.4 The need for MCS Interconnection and Interoperation

MCS software components are required to be interconnected in an effective manner before

their interoperation can be enabled. Thus interconnection and interoperation between MCS

software components are closely linked. A low level data inter-communication and

information transfer facility (which facilitates data transfer between MCS components over a

digital link) is an important prerequisite to efficiently interconnect MCS software components.

However, generally such a digital data transfer capability needs to be built upon in order to

facilitate interoperation in a controlled and deterministic manner.

This enhancement can be realised through the use of an integrating infrastructure (lIS) whose

purpose is to provide structured access to infonnation services in a way which simplifies

interconnection between the component elements of software systems (see section 2.2.3 for

further details). Ideally an lIS should comprise the following two levels of integration

mechanisms and tools [Weston 1993] :

• Low level

This can encompass a number of general purpose means of accomplishing the

integrated operation of computer software processes (or software applications). In

manufacturing enterprises (as in many other computational systems) software

applications will be embedded in equipment and computer systems. Hence the low

level mechanisms need to resolve differences arising from heterogeneity in computer

processing hardware, software, operating systems, networks, human interface systems

and data sources supported. They will be required to support appropriate low level

protocol between interacting software applications as well as to resolve differences in

Page 37

Chapter 3 Achieving Ioteroperability

representing and storing information .

• High level

This includes high level integration mechanisms and system management tools to more

directly facilitate the interoperation of MCS software components (which is one of the

primary issues being addressed in this research study). They embody domain

knowledge (relating more specifically to manufacturing systems integration) to enable

the integrated operation of manufacturing applications and their internal threads of

application functionality. However, the high level mechanisms need to be built upon

their low-level counterparts [Weston 1993].

Figure 3-2 generalises the distinction between low level lIS mechanisms and tools and their

high level counterparts.

Definition & Management
Tools

to define. structure and when required
to change the way in which behavioural

interaction and infonnation sharing
occ:un in an integrated system.

Definition & Management
Tools

to define and manage the flexible
intcroperation of 'OflW8Rl processes,
thereby enabling their maintenance
and change.

~------~~~------~
Flexibly defining and

managing the integration

Integration Mechanisms

10 provide a means of achieving
defined behavioural interaction and
information sharing between
distributed and heterogeneous
manufacwring applications.

Integration Mechanisms

to provide primitive mechanisms
which achieve inter-process
communication, interaction and data
sharing.

aChievinYintegrating
dunng runume

Manufacturin~
systems mtegrabon

S~ftware process
mtegrabon

Figure 3-2 : Components of an Integrating Infrastructure [Weston 1993]

A key aspect of this research study has been a structuring of MCS implementation processes

based on the use of an lIS.

Page 38

Cbapter 3 Acbieving Interoperability

3.4.1 The CIM-BIOSYS Integrating Infrastructure

Since 1986, the general requirements of integrating infrastructures for manufacturing systems

integration have been studied by researchers of the MSI1 Research Institute at Loughborough

University of Technology. The author's research has also contributed to this study. In 1990,

MSI research led to the development of the CIM-BIOSYS (CIM-Building Integrated Open

SYStems) lIS (Integrating Infrastructure) which, as depicted in Figure 3-3, achieves a

unification of general purpose computational integration mechanisms and tools and has been

used to create a variety of 'proof-of-concept' and 'live industrial' integrated systems [Weston

1993]. It is configured to operate in a distributed manner under the UNIX environment over a

network of SUN computer workstations. This lIS provides a means for structuring,

decomposing and simplifying solutions and supporting their run-time execution and change.

Of particular importance has been an implicit ability to build and modify systems (including

systems of very wide scope) on an incremental basis. The use of the CIM-BIOSYS lIS has

demonstrated significant savings in the cost and time involved in manufacturing integration

projects [SI Group 1994].

CIM-BIOSYS 11 offers important advantages over contemporary turnkey and custom built

integration methods, in that inherently it :

• Deals with complexity

Applications only need knowledge of how to access the platform, rather than how to

access 'n-l' other applications within the integrated system. This results in a vitally

important means of coping with increased complexity as the system complexity wiII

grow in proportion to the number of applications rather than the square law fashion

found using contemporary approaches.

• Copes with change

It removes integration knowledge from interacting applications concerning the actual

structural relationships, interaction mechanisms, information structures, data

formats and communication protocol; the integrating infrastructure deals with such

issues. This knowledge is placed in the form of configuration data which can be used

in a systematic way to enable and support change.

• Promotes standardisation

This is achieved by specifying a consistent interface between the services of the

integrating infrastructure and the applications which use them. Also the integrating

infrastructure is itself decomposed into more manageable sub-systems which can be

1. MSI - Manufacturing Systems Integration Research Institute based at Loughborough University.

Page 39

Chapter 3 Achieving Interoperahility

(a) Functional view of CIM-BIOSYS ITS

SYSTEM

CONFIGURATION DATA

SOFIWARE APPUCATIONS 1r:;:=~1,

SERVICE MANAGER

INFORMATION INTERACTION
SERVICES SERVICES SERVICES

CONFIGURATION MANAGER RUNTIME MANAGER

~ ALIEN AI'PUCATION SHELLS LJ AND'DRNERS'

(b) Operational Use of CIM-BIOSYS lIS

Alien applicati,,,,
shell to enable

catformance to lIS

Software
Applications

CIM-BIOSYS lIS

MCS
Function

COMMON INTEGRATION SERVICES

Inter-pr.oce~ Inrormation Data
commumcatlOn management presentation

~
Conformanl application

Figure 3-3 : CIM-BIOSYS Integrating Infrastructure

Page 40

Chapter 3 Achieving loteroperability

standardised or built on existing standard mechanisms and services. Thus

applications can be treated essentially as open applications and as such they

themselves can become standard building blocks of systems.

MSI researchers had also previously identified and produced methods and software tools for

dealing with certain classes of non-confonnant (or alien) applications. Here the term 'alien' is

used to imply that the application component (which may be a software package or software

embedded in a machine control system) is not inherently compatible with the CIM-BIOSYS

IIS architecture. 'Drivers' and 'alien application shells' represent the particular software tools

referred to here which respectively provide MCS resources (such as databases and datafile

systems) and legacy application components with sufficient capability that they can use the

integration services of the CIM-BIOSYS ITS. These methods and tools are essential in order to

allow for the inclusion of embedded legacy systems thus helping to safeguard the user's

existing investment in computer systems [Hollyman and Anderson 1991]. A summary of some

of the major differences and similarities between CIM-BIOSYS IIS and other commercially

available solutions with provision of an IIS is provided in Table 3-1.

It must be stressed at this juncture that CIM-BIOSYS lIS includes only low level integration

mechanisms and tools, as depicted in Figure 3-2. It embodies common integration services.

These common services facilitate data management, access, manipulation and presentation,

and support inter-process communication between MCS software components. Thus the CIM

BIOSYS lIS was chosen as a primary building block in this research study, thereby providing

a foundation for implementing and evaluating high level integration mechanisms and tools

that have been developed in this research study to facilitate software interoperability. In

isolation, the CIM-BIOSYS lIS can only facilitate bottom-up system build; hence by building

the high level mechanisms upon its low level counterparts, top-down system design and

construction can be more readily facilitated.

Page 41

•

Comparison to CIM·BIOSYS lIS

Vendor Product Remarks Similarity and common emphasis Limitations or commercial solutions

IBM PlantWorks/DAE - Proprietary in terms of the following: 11 flil.ri.siD.a o.l.lOJ1.ls.l.a. l«dlilllle. ;ale.mlialJ I! fll.a,W2a &; iallJ.cmatina 'Q.ll.u1iae.
• Need to comply with IBM's SAA based A range of development tools for Functions and information are not

strategy of a CIM repository. programmers and third party developers to decoupled and treated separately
DAB:. Dbtrtbuled AlZlomadoa • Runs only on IBM computer systems. facilitate integration of MCS software which creates the following ""' ...

• Operating system is OS(l based. applications are normally offered for the difficulties:
following: -IDfa[waliDg &,CHS

- Lacks third party support for PlantWorkslDAE.
·Consistent user and device interface. Information is embedded and exists

• Access to common integration services. exclusively for the sole use of the

DEC Consillieum/ - Proprielflry in terms of the following: - Information sharing and management specific application.

BaseStar • V AX based hardware. - inter-process communications -fUDtliDg", iU(Q[walilm tbaD2t:5
• Operating system is VMS based only. Any changes to either function or

- Limited vertical integration between BaseStar,
information will inevitably affect
both because of their close which enables applicaJions at the shop floor level, 2) Integrating infrastructure dependency. and the planning and mLInagement activites.

• to simplify, structure and service
- Lacks third party support. interconnection between MCS software

applications.
1.1 s'u.ll.IlJl.CI. {«C, ,aa(Q.rmaal Q.ll.ali,atkJ.as.

Hewlett Indusuial Precision - Geared only for shop floor software · to provide structured access to common Only conformant applications which
Packard Tools (lPTs) development. integration services for communication are suiclly compatible to the

- No current integraJion between [PTs and and information management. integrating infrastructure are
third parties. supported. This poses serious

- No vertical inteQration available let between problems for inclusion of "as is" (or

shop floor applications and the p anmng and legacy) systems.
management activities.

Table 3-1 : Summary of major commercially available solutions with provision of an integrating infrastructure.

Chapter 3 Achieving Interoperability

3.5 An Overview of the Methodology Derived

A meta-Ievel overview of the methodology adopted and developed by the author during this

research study to enable interoperation of MCS components [SI Group 1994] is depicted in

Figure 3-4. This methodology comprises five inter-related and consistent sub-methods which

collectively structure and suppon key aspects of MCS design, build, operation and change

management One of the underlying concepts adopted in the methodology is (as far as

possible) to decouple MCS functions from their information repositories so as to enable the

information to be treated independently from the functional capabilities realised by software

applications. This not only enables easier access to information but also decouples changes to

application processes from those associated information systems. The purpose of the sub

methods are outlined as follows:

CD MCS Specification

A set of high level modelling methods, based on a set of generic reference models, is used to

facilitate MCS design. The output consists of particular models of 'MCS functions' and 'MCS

information entities and their interrelationships'.

Cll) Means of Enacting Function Models

A set of build tools are used to create executable descriptions of the system behaviour where

the descriptions are consistent with the MCS function models generated by (I). The output

descriptions can be used to control the way in which MCS components interact during system

run-time [Singh and Weston 1994a].

(Ill) Means of Enacting Information Models

A second set of build tools are used to create and populate information models in a form which

structures and enables control of information shared between MCS components during system

operation [Singh and Weston 1994b]. The output descriptions are consistent with the MCS

information models created in (I) and with the outputs generated from (ID.

ay) Use of an ImeID"atjng Infrastructure (uS)

This facilitates MCS run-time operation in a flexible data-driven manner, mapping distributed

software solutions onto physical resources. Here the integrating infrastructure (lIS) is charged

with resolving differences in the physical system relating to heterogeneity, distribution and

data fragmentation [Weston 1993]. Indeed the use of the lIS is the key to the methodology. As

the lIS assumes responsibility for maintaining knowledge of integration details (such as the

networks used, the hardware and operating systems on which an MCS component is run, the

location of an information fragment, etc.), the MCS components themselves need only have

Page 43

Cbapter 3 Acbieving Interoperability

/11 Specification ofMeS,

't Functional
'- Modelling

't Information
Modelling ./

r-... __

~ Generic '\r--V Reference
Models

1'"21 Enactment of Function Mode~ 1'"31 Enactment of Information Model;'

Function Models . Inrormation Models

/4 Use of an Integrating Infrastructure (lIS),

Interoperating MCS Functions

0 0 0 0 0
I ~ I Integrating Infrastructure

'- ~

Interfaces to Physical Resources

Integrating Infrastructure

Figure 3-4 : Overview of Methodology

Page 44

Chapter 3 Achieving Interoperability

knowledge of how to use the lIS (i.e. NOT OF EACH OTHER). Essentially this leads to a

linear relationship between system scope (in tenns of the number N of MCS components) and

complexity as opposed to the square law relationship inherent in pair-wise integration

methods.

(V) Interfaces to Physical Resources

An essential element of this methodology is the ability to flexibly map software applications

onto system resources, i.e. databases and computer hardware. 'Drivers' and 'alien application

shells' represent the software tools created to bring MCS resources and components (which

include proprietary software packages, database and datafile systems) to a level of

confonnance which enables interoperation over an lIS. This provides a migration path towards

more 'open' components at a later stage.

Page 45

Chapter 4

Information Architecture for MCS

4.1 General Considerations

It is important to model or represent manufacturing enterprises [Lopes 1992, Zhang and

Airing] in order to :

• Well define (i) functions and activities in terms of their associated inputs and outputs, (ii)

inter-dependencies and close relationships between functions, and (iii) information

requirement and flow as seen from the view point of a systems designer.

• Accurately capture the reality of business goals and their relationships with manufacturing

tasks.

The author's previous experience in the successful development of a working CIM model,

which is still used to provide a technological showcase for the precision machining industry

for discrete part manufacture [Singh 1992, Foong et al. 1992, Singh 1991], served as a useful

and valuable source of reference, insight and input to this research work. The CIM model

project involved close collaboration between vendors and industrial end users. It captured

many of their key needs and led to an accepted and intrinsic representation of activities to

support part manufacture. This can be universally useful in understanding important aspects of

interoperability in a manufacturing enterprise. In particular it has served to

• Identify a functional model which is representative of precision machining enterprises.

• Globally specify information inputs and outputs for MCS functions.

• Ascertain which computer-aided tools are available and which must be tailored or developed

to enable and enhance integration processes.

The reader can refer to Figure 4-1 for an overview of the functional properties and information

entities of this CIM model and Appendix IT for further details.

There have been a number of alternative models conceived to define the functionality of CIM

systems where often the studies have taken different modelling perspectives [Paranuk 1988,

Yeomans 1986]. The ESPRIT CIM-OSA (CIM-Open System Architecture) consortium [CIM

OSA 1989] defined a standard for CIM implementation, offering an 'enterprise wide

framework' which can structure interactions between people and machines as well as define

relationships with traditional data processing systems. The CIM-OSA "top-down" approach to

enterprise integration can work well at the conceptual design level of integration projects, i.e.

Page 46

Chapter 4

PROCESS
PLANNING

PROBABLlSnC
SIMULATION

- modelling m
Manufacturing
for job load balancing
and analysis

Inrormation Architecture ror MCS

cusrOMER REQUEST '" MARKEr TREND

R
Plannbta

PRODUCT ..
MANUFACTURING

CAPABIUTY
ASSESSMENT

• Easure feulbUll)' 01
product for nwulfadun

Manuradurina Resouree
Orden Producllon Enquiry

(to be .cbJ ~ ... :::) ~~S~Ial~ .. =F: ... ::::::b~."'~

J~~~:(maTE
CAPACITY

SCHEDUL£R
- Day to day scheduling

c4 work aiden
- Shopftoor .tatus Le

WIP, capacity availability

Scbeduled Orden
for Manuf.dun

Sbop Floor Slatua
Feedb.ck

MANAGER
- Ne program management

Manufact&lrlna
Resources; .

-lnvmtDly

- Manuf-=tuMa
Focility c.p.bWIy

-""""= .t

TOOL, FIX11JIIE
"MATERIAL

MANAGEMENT

- Resource availability
cl 5tatUS check

Ne p"' , .. " Enalneerlna Or.wln ..

(IlNC)

- CNC machine mcnitoring &. shopHoor data capture

Flexible Machining Cell (FMC)

CNC Machining Cell for
part manufacwtc

Automated Storage" Retrieval System
(ASRS)

Flexible Assembly Cell (FAC)
RoOOtic Cell for component

f24!EIID:a.. assembly and inspection

Automated Guided

" = ... ~ ,-"""

CNC Coordinate Measuring Machine (CMM)

Figure 4-1 : Overview of the functional and infonnation network within the CIM Model

Page 47

Cbapter4 Information Arcbitecture for MCS

where 'what needs doing' is determined. The strategy maxims CIM-OSA offer can ultimately

lead to support of the complete life-cycle of manufacturing enterprises, including their

component MCS [Aguiar and Weston 1993a, Schonewolf et al. 1992]. This research adopts a

more pragmatic approach to system design but it builds upon the CIM-OSA concept of partial

models which embody knowledge concerning 'good practice' or 'good solutions' within an

enterprise. These partial models can be reused in building and updating various new systems,

thereby reducing the time involved and improving the quality of the resulting manufacturing

system.

Within the scope of this research study, information models have been defined which

encompass essential information of common interest and can be used as a generalised resource

in many discrete parts manufacturing environments (discussed later, in section 4.2).

Hopkinson, in his analysis of user needs relating to information standards, strongly stressed

the point that:

"What matters most of allfor the user is the information the system holds; the way in which

it is held and accessed, and what can be done with it, are also important but the means are

of no value if the information itself is not what is needed" [Evans et al. 1993]

The models defined in this study represent shared information which are "items of

knowledge". These have global interest to the MCS system concerned, i.e. they can be

considered to be CIM-OSA partial models. The use of partial models is essential as earlier

studies [Lars 1990] have shown that in order to manufacture in a more rational, timely and

cost effective manner, it is vital to capture and disseminate knowledge about the

manufacturing enterprise. For example, a fundamental requirement during many Product

Design processes is to ensure the manufacturability, ease of assembly and testability of the

product. Therefore, it is necessary for the designer to have access to accurate information

about the manufacturing process, with due consideration to constraints such as the availability

and type of resources (e.g. material, toolings and fixtures) and orders which exist for the

product. For example, information stored in conformance with the partial models will be

useful in matching product specifications and requirements to the capabilities available in the

enterprise. However, this fundamental requirement is not usually provided for, this being a

major cause of a fairly large proportion of engineering changes and discrepancies in

manufacturing enterprises today [Singh 1991, Lars 1990].

Page 48

Cbapter 4 Information Arcbitecture for MCS

4.2 MCS Specification

For manufacturing information to be shared between MCS applications in an effective way,

ideally it is necessary to make available a pool of most of the information entities that are

commonly shared between two or more applications. In order to achieve this an information

model is required which identifies real world objects, their key attributes and inter

relationships.

A detailed analysis of production planning functions, with regard to their commonality of

information and functional inter-dependency with Product Design, Process Planning, Finite

Capacity Scheduling and Cell Control processes, was carried out by the author. This involved

the following areas of study and analysis:

(i) A review of the literature and current practice with regard to the techniques used to

accomplish integration of production planning, CAD/CAM, CAPP and cell control

systems. Some of the findings of this work are as summarised in Table 4-1.

Relevant references Integrated systems Commonality of Functional Purpose
Information & Dependency

Halevi and Weil 1992 1. Product hierarchical decomposition
CIM Strategies 1991 into sub-components to aid

Scheer 1991 i) resource planning;

Singh 1991
Integration of ii) sub<omponents manufacture; and

Production Planning iii) standard components procurement.
HarllaIakis et al. 1990 with
Lang-Lendroff et al. 1989 -CAD/CAM Dill of Materials (DOM) 2. Material requirement planning Scheer1989

-CAPP and allocation for part manufacture
Schnur 1987 - Sbop Boor control (e.g. raw material. toolings. fictures.
Bohse and Harhalakis 1987 systems Inventory & resources manufacturing facilities. etc.)

Ssemulaka 1987
Logan 1986 Process plans/Routes

3. Sequencing of manufacturing
Saxe 1985

Schedules
actitivites for part manufacture.

Shop Boor status
zapfel and Missbauer 1993 feedback

Material requirement planning
Lee 1993 Resource allocation and scheduling
Muhlemann et al. 1991 Integrated Order entry Production Planning
Scheer 1991 with modularised Routing
PtakI991 functions Capacity planning

Waterlow and Monnion 1986 Inventory management

Luscombe 1991 Shop floor status monitoring &
acquisition

Table 4-1 : Summary of literature review

Page 49

Chapter 4 Inrormation Architecture ror MCS

(ii) By building on insights gained from the CIM model project [Singh 1992, Foong et al.

1992, Singh 1991]. 10 particular it has served to

• Globally specify common information inputs and outputs for MCS functions.

• Identify close relationships and dependencies among typical MCS components.

• Define data mapping requirements based on functional relationships.

A general overview of information shared between MCS functions and their information

dependencies is illustrated in Figure 4-2. As a result of close collaboration with end users,

the CIM model project was successful in capturing and reflecting their practical

requirements, this in terms of shared information requirements between typical MCS

components to facilitate their interoperation. This consideration (of the end users

viewpoint) is very important in helping to validate the findings derived from (i), this being

important in order to achieve a pragmatic and industrially acceptable solution.

PART MASTER!
ORDER ENTRY _. HOM

(Parent component)
PROCESS PLAN

MANUFACTURING

CUSTOMERS SCHEDULE CELL

ENGINEERING
RESOURCE

WIP
MANUFACTURING (Shop Door status) RESOURCE

FACILITY

HOM
(SuIJ.components)

SUPPLIERS

Figure 4-2 : Overview of information flow and data dependency

(iii) Through the examination of generic features and common attributes among representative

commercially available computer-aided production management (CAPM) packages

[Buyer's Guide Supplement 1990]. Those selected are listed in Table 4-2. The choice of

CAPM products was made on the basis that (a) collectively they encapsulate the generic

working knowledge of a number of vendors which itself reflects the perceived needs of

many manufacturing user organisations; and (b) the technical support offered by the

vendors concerned in understanding the information and functional properties of their

products.

Page 50

Chapter 4 Information Architecture for MCS

CAPM Produm

z 0 E

~
..

!:i ~
.c

'" :1'1 '"
Z ~I ~

~
:1'1

~
i! u

~ ;;l 0 ~
u

u :1'1 ., ./ ., ., ., ., .,., Capacity Requirement Planning ., I., ., ., ., Master Production Schedule

Planning ., ., ., ., ., ., ., ., BOM ., ., ./ .f ., ./ "- Manufacturing order management

!
.,., ., ., ., ., .,., Routing > ., ., ., ., ./ ./ ., ./ Material Requimncnt Planning ~

i Inventory Management .-, . ., ., ., ., .,., Inventory ConJ.rol ~

~ " '" Scheduling <I • ~ " ~ • " Scheduling " :1'1 SbopFloor • <I • ~ Shop floor C(Xltrol 8. .. 1<1 i < u loJ " <I .J <I ~ " Sales Order Processing
Manufacturing Support • .,

1 ./ ./ • ./ ./ " Purchasing
services

lof '" --" • '" FinancWs

I. " " " • • ., " Management reporting

,''' '" '" '" '" " Costing

Table 4-2 : CAPM packages examined

However. the author experienced inherent difficulties in fOllllally evaluating and

analysing these candidate systems on a common basis because of major differences in

their underlying philosophies and their implicit understanding of the activities within a

factory and how they should be controlled. This is further complicated by the

proliferation of names used to refer to essentially similar and basic functional capabilities

which collectively enable production management. Also in different systems different

functions can be included under the same name. Thus the CAPM systems analysed were

compared and classified with reference to the following subsystems [Maull and Childe

1993. Timon et al. 1990. De Toni et al. 1988]; this in order to gain a more structured and

unifollll understanding of the functions offered :

• Planning

• Inventory Management

• Scheduling

• Shop Floor

• Manufacturing Support services

Following this analysis common classes of MCS application module and infonnation entity

were identified. as listed in Table 4-3. As a result infollllation models were identified and

defined to satisfy generic requirements. these models being listed in Table 4-4.

Page 51

Cbapter4 Inrormation Architecture ror MCS

Production Planning

Product Design • Inventory I Part master records
• BiD of Materials (BOM)

Process Planning • Process plans I Routes
• Manufacturing facility records

Finite Capacity • Manufacturing orders
Scheduler • Bill of Materials (BOM)

• Work centre capacities

Cell Control
• Scheduled manufacturing orders
• Shop Hoor production and

status feedback

Table 4-3 : Commonality of infonnation

Manufacturing Information on manufacturing suppon facilities with data on

Facility manufacturing capabilities and specification.

Part Master/ Product structure according to its sub-components relationship.
BOM

Resource
Inventory record and status for raw materials, fixtures and tools
inclusive of labour and facilities, i.e. work centres and processes.

Process Routing for pan manufacture. It includes the sequence of operation
Plan for planned and alternative processes and manufacturing resource

requirement.

Order Order registration for order type, quantity, batch size and due date.
Entry

Schedule
Production time· table where manufacturing orders are scheduled
according to order commitment and availability of resources.

WIP Shop floor status feedback, actual to planned comparison, and
work centre utilisation rate.

Engineering It includes resources related to or are assigned for pan
Resource manufacture, e.g. engineering drawings and NC programs.

Manufacturing Grouping of manufacturing stations for manufacture of a family of
Cell products.

Table 4-4 : Infonnation Models

Page 52

Chapter 4 Information Architecture for MCS

The reader should refer to Appendix ill for further details on the infonnation entities and

attributes represented in the information models. Examples of associations between these

information models and specific information models which form the basis of the MCC [MCC

1989] and ELMS [ELMS 1990] proprietary software packages are included in Appendix IV. A

case study (discussed in detail in section 4.3) has been carried out in collaboration with the

University of Bradford Management Centre to validate the applicability of the generic

information models. In this case study, the ELMS CAPM software package has been re

engineered with reference to the generic reference models to facilitate its ease of further

development to enhance its existing functionality.

As part of the author's research studY, systeni desjgn_ and model~ing tools have been used to

formally represent and structure the function and information models defined in tables 4-3 and

4-4. IDEFO was used to identify and define dependencies and inter-relationships between the

common classes of MCS applications identified. In addition, IDEF1x was used to represent

entity-attribute relationships for information models and the data modelling language

EXPRESS was used for information modelling. The choice and application of these software

tools is further discussed in chapter 6.

It is important to stress at this juncture that the generic information models identified and

formally defined as part of this research study, provid~ an important cornerstone of the

author's overall approach to enabling software interoperability in the MCS domain.

Furthermore. the author is confident that the components of those models and their

interrelationships are appropriate, certainly with respect to their use for the forms of MCS

investigated here. However, it is not argued that the models are sufficiently definitive or

complete to form the basis of a standard model, but as illustrated in this thesis, they are

sufficiently definitive and complete to contribute towards an important advance in creating

more open and configurable forms of MCS and as such can provide a reference model of good

practice which can be refined and enhanced, possibly until it reaches the status of a standard.

Also later in this thesis it will become clearer that a second cornerstone of the author's

approach is the use of model enactment to guide MCS life cycle processes (this being outlined

in section 2.3). Indeed through the use of formal models and a set of tools which can

manipulate and transform those models, improved opportunities exist to refine and enhance a

reference model until it becomes more widely accepted and used.

Page 53

Chapter 4 Information Architecture for MCS

4.2.1 Characteristics of the Information Model

The information models identified incorporate essential data (i.e. data of prime concern) that

will very commonly be used in any discrete part manufacturing environment. Thus they can

serve as a foundation upon which the rest of the enterprise data can be built. Together, these

information models can provide the enterprise with a single coherent view of engineering,

production and management information which will be in common usage throughout the

product life cycle. MCS data will need to be stored with reference to these generic models and

in a practical system will be stored in distributed data repositories to enable common access

and usage by MCS components.

It is recognised that information is notoriously difficult to standardize [Evans et al. 1993].

Therefore, as outlined above the choice of information models is not meant to be fixed and

exhaustive in nature, rather they have been chosen to serve as generic reference models which

are open to changes and can be modified and expanded when necessary. Bearing these

restrictions in mind the information models can be considered to possess the following

characteristics:

• Wide applicability

They conform to the requirements of many potential users and are not structured or

geared towards a particular enterprise but rather for a set of enterprises. In this study

the reference models where chosen to support the precision machining industry but

they could well have an essential form which can constitute the basis of reference

models for other industrial sectors.

• Flexibility

They are adaptable and can be customised to specific needs of a user. The flexibility is

attained as a result of their formalism in a computer readable form offering

opportunities to manipulate their underlying data structures.

Also collectively these information models can serve as partial models which can be further

expanded or coupled with specific information models that contain information which is

unique to the manufacturing environment concerned. Certainly before the proof-of-concept

models advanced here could form the basis of any standard it would be necessary to consider

the extent to which a reference model should aim to be complete, as the inclusion of entities

seldom used will inevitably lead to some overheads in terms of required data storage and

processing capabilities.

Page 54

Chapter 4 Information Architecture for MCS

4.2.2 Reference Models for an Extended Application Domain

The reference model approach adopted in this research study has an extended application

domain in mind which crosses conventional product boundaries and indeed crosses common

organisational boundaries found in many manufacturing enterprises. Thus the reference

models specified in this research comprise information shared by several functional areas and

effectively serve as a precursor to enable components of an MCS to functionally interoperate.

In comparison, the approaches advocated and validated in previous research projects [Hars et

al. 1992, Scheer 1991, Muhlemann et al. 1991] have been specific in nature, in as much that

they have focused relatively sharply on an application domain, such as integrated production

planning development (as highlighted in section 2.3).

The perspective and inputs gained from on-going standardisation initiatives, such as

MANDATE [ISO 1991] to model manufacturing information (see section 2.3 for details), will

undoubtedly help to further advance the generic reference models identified in this study.

These reference models aim to provide an effective solution capable of satisfying current

needs.

4.3 Application of Generic Reference Models - A Case Study

In 1990 the University of Bradford Management Centre (UBMC), under the sponsorship of

ACME, was responsible for the development of generic CAPM software which seeks to

address the key production management needs of SMEs [Afferson et al. 1992, Muhlemann et

al. 1990]. The microcomputer-based prototype solution has since been successfully translated

into a commercial product which is known as ELMS (EMM Lane Manufacturing Software)

[ELMS 1990].

ELMS was developed as a set of integrated software templates which comprise the following

"core" or principal production management functions [Muhlemann et al. 1991] :

r "Core" Production Management functions "'I

1. Production Planning
• Material Requirement Planning

2. Production Progressing

3. Materials Management

"
4. Costing

Page 55

Chapter 4 Inrormation Arcbitecture ror MCS

The ELMS software application has been developed based on the use of a proprietary

relational database, namely DP4, and a fourth generation language, namely Datafit, to aid data

manipUlation, representation and access. It basically consists of a group of executable

programs which operate on the database in order to realise the functionality of the "cores".

Further research work is currently being carried out at UBMC to enhance the basic

functionality of ELMS to provide a resource scheduling capability [Halsall et al. 1993]. The

work entails the development and incorporation of the required scheduling capability where

its information needs could be satisfied and derived from the existing underlying database.

However, due to the proprietary nature and lack of understanding of the database structure (in

terms of the information entities represented and their dependency and interrelationship

defined within the database), the task of identifying the relevant information necessary to

suppon resource scheduling has proven to be very difficult and demanding. This problem is

typical for such "as is" software systems, a propeny which can severely inhibit their future

development.

Thus as an initial step towards facilitating ease of funher development to incorporate resource

scheduling capability in ELMS (and indeed future functional enhancements as required), work

has been carried out at UBMC to restructure the ELMS database with reference to the generic

information models proposed by the author in Section 4.2. As illustrated in Figure 4-3, this

research has involved the following activities:

(i) Identification of specific information entities from the ELMS proprietary database

which correspond closely to those represented in the generic information models (refer

to Figure 4-4 for illustration).

(ii) Establishing a mapping between those closely associated information entities. Please

refer to Figure 4-5 for illustration.

(iii) Populating with data the mapped information entities (contained in the generic

information models) with relevant physical data from the existing ELMS database.

Based on this restructuring, the information entities required for resource scheduling (which

are stored with reference to the generic information models) are listed in Table 4-5.

This case study clearly demonstrates the ability of the generic reference models (identified by

the author in this research study) to

• provide clarity in the database schema where information entities and their attributes are

clearly defined so that they may be well understood within the enterprise.

Page 56

Chapter 4

ELMS database

Proprietary
Inronnadon representation

Information Architecture for MCS

ELMS application functions
operate on infonnation stored

with reference to information models

Figure 4-3 : Restructure ELMS database with reference to generic information models

Information models Proprietary information

Order Entry Customer Order
Work Order Usage

Schedule Work Order Item

- Part quantity Operation Process
Process Plan

- Production due date Item Operation

" Suppliers lead times
- Operation sequence Resource Item
- Work groups or cells
- Stock level Part Master/BOM BOM

Manufacturing
Facility

Process

Manufacturing Cell Work Group

Table 4-5 : Information requirement for resource scheduling in ELMS

Page 57

Customers Data

Order Entry
Schedule

WORKS _ORD..NR
WO~_ORD_KEY

WO_STAT

OlST_ORDJaiY

WORKS _ORD_KEY

WORKS _ORD_KEY
lTEMJ<EY
QUANlTIY
WO..sTART
WO_DEUVERY
PlANJ<R
WO....PlANftART

uraerEmry

ITEMlRESOURCES

ITEM KEY
ITEM)D
ITEM_CLASS
ITEM_NAME

ITEM_DESCP
ITEM_UNIT
ITEM_MA X_STOCK
ITEM M1N STOCK
ITEM -S'I'OCK ORDERS
ITEM-STOCK-ALLOCATED
ITEM-STOCK-WIP
ITEM=STOCK=REQUlRED
ITEM_STOCK]LAN
ITEM_COST
ITEM LEADTlME
ITEM-PRICE
STORE_LIFE
ITEM_SPEC_NR

llliMJCBY (USED)
BATClUDJOt
QUANIITY
USAOILPflLUNlT
IBVBL
PlANJ<R
SI!QtJl!NCIUIR

ITl!M..KBY
SEQUENCB-NR
OPERATIONJaiY
SEQUI!N"'J<R (NEX'I)
TlMBUNITS
START OPERATION
TlMB UNITS (SBlUP)
TlME.JJNITS (U.BOR)
WO~OROUP JCBY
oP..s~AME.
OP_SBQJlR

lTDUCEY
OPf.RATlON..JCEY
TIMR_SlOl'
1UNJ<R
TlMllPNITS (STARI)
TIMB_UNITS (END)
11MB_UNITS (SB11.IP)

W~OROUP_KBY

SKILL.J(BY
PI!RSONNEL..KBY

Part Master I BOM

Suppliers Data I
Resources

Figure 4-4 : Grouping of data represented in ELMS database with reference to information models

Resources!
Process Plan I

Manufacturing
cell configuration

Chapter 4

__ ID -------------.....-z

--_JiIo --"'"

wart--.ardar.).oy

'--"" .-0. __
__ dcJ.iw:ry

Pnxe. PIIa lleaUr

o
........ 1'Im1D -_ID
Op=r.ucn Un.
~OpcntiDa[l)

Nul Clp:nlioa ID

o

PlrtNmnb::f
.: Plmmd Qu.uaity

~Stll1Oa111:

"""""" ... 0...

Inrormation Architecture ror MCS

Figure 4-5 : Mapping between information entities

Page 59

Chapter 4 Information Architecture for MCS

• increase the flexibility of the database so as to enable information required by the functions

concerned to be made easily and quickly available (with flexible association between

information entities).

• transform from a proprietary database schema to a more widely applicable and formally

structured schema for which future change can be more readily supported.

One of the major benefits of the approach adopted is an enhancement of ELMS from a stand

alone "as is" CAPM software application to one which now has the potential to more readily

interoperate with various other MCS applications. This is made possible because the

information stored with reference to the generic information models in the underlying

database constitutes information of common interest which is typically shared between

various other MCS applications concerned (such as product design, cell control and process

planning systems). Although the results of a single case study are reported here the author is

confident that the information model and the method used to transform between proprietary

and neutral representation could also be used to achieve enhancement to many CAPM

software packages of similar structural design.

4.4 Design Criteria for a System-Wide Data Repository

As pan of the information architecture proposed by the author, a new approach to

consolidating MCS data is offered. The approach was conceived after having recognised the

need for solutions in the following problem areas (as highlighted in section 2.2.2) :

(A) Lack of adherence to any standard architectural models of information, which

undermines the semantic integrity of shared information, can result in invalid

combinations of data (this as a consequence of incompatibility and inconsistency in

data definition and format).

(B) Multi-database concurrency problems, related to database transactions and

concurrency control and a means of consistently handling data access, transfer and

presentation issues, for data which is normally fragmented and distributed across

various databases. This includes

- independent and transparent data access, i.e. access without having to specify

or know where the data is stored.

- support for multi-user access where appropriate in-built system mechanisms

ensure that competing applications wishing to access data entries do not

endanger the integrity of the data repositories.

Page 60

Chapter 4 Inrormation Architecture ror MCS

The data repository comprises a directory of shared elements where common data definitions

are recognised throughout the enterprise as global data elements; i.e. they have globally

understood inter-relationships. The system-wide data repository would serve as thefoeal point

for access of shared data and provides users and software applications with a consolidated

view of information - one that is independent of physical media or data location; refer to

Figure 4-6 for an illustration of the concepts involved here.

It should be noted that data which will always be unique to an application can remain in its

own private local database, this to realise efficient processing. By restricting the number of

information entities made globally available there will be a diminution in the amount of data

exchanged, thereby reducing network traffic and bottlenecks relating to data access.

_
PNooPart Number
Mo-Mf,Ordcn

Data definitions

User views

InfonnaUon models

Repository

Inrormation
or common interest

Mapping or commonly shared data available
in local databases to data repository with
rererence to generic rererence models.

Figure 4-6 : System-wide data repository

External schema

Global schema

Internal schema

Page 61

Chapter 4 Information Architecture for MCS

The data unification mechanisms of the information architecture conceived by the author in

conjunction with other MSI researchers unifies the use of a distributed set of data repositories

which will be located over several computer nodes connected over a local area network.

As part of this research study, the following techniques were proposed and advanced to help

overcome the problem specified in (A) :

• Apply the generic reference models identified and defined by the author (as described

in section 4.2) to offer a degree of formalism in terms of recognising infonnation of

common concern over an extended domain .

• Adopt a suitably defined logical data model (to be further discussed in section 4.4.1)

to represent information entities and attributes in a uniformed manner where these

entities comprise information fragments within distributed data repositories. This

can

- alleviate problems of incompatibility and inconsistency in data definition and

format;

- facilitate required changes to the data model and physical data.

The CIM-BIOSYS lIS was utilised in this study to address some of the inherent problems

referred to in (B). It provides software applications with structured access to common

integration services for communication and management of data stored in distributed data

respositories (see section 3.4.1 for details). Database 'drivers' have been developed by other

MSI researchers [Leech 1993) to enable the following capabilities to be offered via the lIS :

- connection and direct communication with a number of proprietary databases (in

a manner which is independent 'of the physical location of the information

fragments involved); and

- a means of accessing information held in the data bases.

However, the previously available database 'drivers' (created by MSI researchers) were

originally designed to provide low level services where the communication protocol adopted

by the 'drivers' can only handle packets of data of limited size. Thus in their original form the

available database 'drivers' were only capable of providing support for simple database

queries with limited information access. As a result, they were found to be relatively

ineffective in supporting data-intensive activities which require large amounts of data to be

accessed, transferred and processed. Thus as part of this research study, it was necessary for

the author to further develop the capabilities of database 'drivers' (as discussed in section

4.4.4) so that they incorporate an enhanced SQL capability which offers extended and more

Page 62

Chapter 4 Information Architecture for MCS

flexible functions that can satisfy varying needs ranging from file transfer to complex database

queries.

4.4.1 A Logical Database Model of the Data Repository

A relational data model has been used as an underlying structure for accessing information

fragments from the distributed data repository. In a relational model entities, relationships and

attributes are represented in the form of two-dimensional tables known as relations. Records

are assimilated into the rows of the table and each set of attributes forms a column. In a

relational database entities are stored totally independently; i.e. the existence of a relation is

not dependent on any other relation. Logical associations among the stored data are exploited

through relational operations such as select. project and join which can be used to create new

tables. Any number of operators and relations can be combined in a 'relational expression' and

used to answer almost any query. The entities. attributes and relationships of the conceptual

data model can often be rrwdelled directly as relations in a relational database model [Martin

1980].

The use of the relational model rather than hierarchical or network models has been claimed to

demand less of a compromise when representing and transforming real-world data

relationships [Wilkinson and Winterflood 1987, Date 1986. Martin 1980]. This claim is

because of the following:

(i) In many real life situations, relationships cannot naturally be represented by a

hierarchical model (where normally one-to-many segment types are used to

represent successive levels in the hierarchy, thereby relating entities to one another).

It is not easy. for example. to directly represent relationships among segment types

at the same hierarchical level nor is it possible. without introducing data duplication,

to represent many-to-many relationships between entities [Martin 1980].

(ii) Network structures offer greater scope in representing data relationships when

compared with hierarchical structures, albeit at the expense of simplicity. This is

certainly true of their underlying physical storage structure. The need to transform

many-to-many relationships by the construction of a network model results in the

need to make more or less irreversible decisions about the natUre of relationships

between entities when the data model is designed [Taylor and Frank 1976]. It

should be noted that the network model, whilst permitting means of representing

many-to-many relationships without introducing duplication of record occurrences.

does make retrieval of data a laborious process [Olle 1978].

Page 63

Chapter 4 Inrormation Arcbitecture ror MCS

Please refer to Appendix I for further details on the relational, hierarchical and network data

models.

The importance of the relational model is widely acknowledged and the development of

relational database management systems (RDBMS) is progressing rapidly [Golberg 1993,

Beeritbart 1993, Wilkinson and Winterflood 1987]. Potentially, the relational data model

offers the following advantages:

• Ease of use. Visualisation and clarity of data, which are represented in two-dimensional

tables, is better for both programming and non-programming users.

• Si11lplicity. Here all data is viewed in the form of relations (tables), thereby allowing easy

data manipulation and query via SQL (Structured Query Language).

• Flexibility and relatability. With relational operations a standardised and effective way of

decomposing and recomposing relations [Rusinkiewicz and Czejdo 1987] is provided. This

approach enables the incremental building of larger systems module by module.

• Security. Security controls can be easily implemented where security authorization will

relate to relations to protect company sensitive attributes.

• Data independence. There will be a need for most databases to grow by adding new

attributes and new relations and also for data to be used in new ways. The relational model

supports dynamic reorganisation (i.e. extension and modification to the structure) of the

database without affecting existing applications [Maude and Willis 1991]. This is important

because of the excessive and growing costs of maintaining the software applications of an

enterprise and its data from the disruptive effects of database growth.

• Data manipUlation language (DML). One of the strengths of the relational model is that it

is generally supported by high level non-procedural, set-oriented languages, such as 4GLs

(fourth generation languages), to enable flexible access, management and presentation of

data stored in the database [Martin 1980].

As illustrated in Figure 4-6, within this study the "three-schema" architecture [Hodgson 1993,

Hodgson et al. 1988, Date 1986] was adopted in order to map from the logically integrated

relational model to the physically distributed databases in which the actual data is stored. The

three schema approach requires definition of the following information schema :

Page 64

Chapter 4 Inrormation Architecture ror MCS

• Internal schema

This represents the physical organisation and storage of the information.

• Global (or Conceptual) schema

This represents a composite view of a common pool of shared data. The objective is

to provide a consistent definition for meanings and inter-relationships between data

entities in order to aid information management.

• External schema (or Local viewpoint)

This describes the use of information, i.e. the information required by a user or an

application. Objects in the external schema are automatically mapped onto

information attributes in the internal schema via reference to the global schema.

In this study the shared elements represented by the global schema correspond to information

entities and attributes which are defined and specified in the generic reference models (as

described in section 4.2). Hence with the three schema approach all commonly shared

physical data which is fragmented across the various local databases of the data repository can

be flexibly mapped and associated through established object relations. Thus each software

application only requires one interface to the global schema, thereby enabling access to a

common pool of information. Similarly, each local data source only requires one interface.

Changes are required to the global schema if new data entities are provided or old entities are

removed. In the event of a physical restructuring of the database, reorganisation only affects

the internal schema and a single mapping between the global schema and the internal schema.

Mappings between the external schema and the global schema remain unaffected.

Hence the three schema approach provides a greater degree of data independence when

compared with two or single schema approach where information is typically embedded

causing them to be exclusive in nature with regard to the functions concerned, thereby making

it rather difficult to separate and access them. Thus the use of a three schema database

architecture leads to improved flexibility where changes can be made without the need to

modify applications. Hence individual local databases can retain their autonomy, with a focus

on serving their existing customer set.

4.4.2 The Future Development of Relational Database
Management Systems

It is the intention of the author at this stage to provide some insight into future development of

relational database management systems (RDBMS). This provides a justification for choosing

Page 65

Chapter 4 Information Architecture for MCS

the relational model as a viable long term basis for manufacturing systems integration which

can be expected to cope with advances in application requirements and database technology.

Traditionally, RDBMSs have lacked adequate data types to fully represent engineering data

[Jain et al. 1992, Buchman 1984, Koriba 1983]. In a typical manufacturing company,

engineering data will include CAD/CAM generated product models, part drawings and tool

paths (used for generation of CNC programs). This engineering data is highly complex, where

for example, relationships between the lines and angles of their vector graphics must be

effectively represented and preserved. Within the literature, it is strongly advocated that such

data be best handled and supported by some form of object orientation [Chaudhri and Revell

1994, Chaudhri 1993, Codd 1992, Maier 1989].

Progress is being made within the database research community towards extended RDBMS so

as to provide increased functionality and support for object concepts. Examples include

Intelligent SQL [Khoshafian et al. 1990], Objects in SQL [Beech and Ozbutun 1990], and

current efforts of the ANSI X3H2 committee (SQL3) [Rimes 1993, Hayes 1992]. Indeed

major RDBMS manufacturers such as ORACLE, Sybase, Informix, Borland and Ingres have

begun to add extensions to their products [Golberg 1993, Computing 1991], which can handle

simple forms of object orientation, this to support complex and user defined data types which

include:

• provision of large data fields that can store binary data;

• inclusion of stored procedures and triggers which allow for the storage of data along

with programs and procedures that apply to them [Golberg 1993].

The reader is directed to one of the references given for details of the underlying concepts of

the extended relational model. Hence choice of relational technology should provide a

foundation for the future adoption of developed and enhanced forms which can also benefit

from its inherent simplicity (which has been recognised as one of the great strengths of the

relational model) [Chaudhri 1993]. Within the current scope of this research study, only non

engineering data, which is generally alphanumeric in nature and can be represented by the

generic reference models identified and described in section 4.2, will be considered. However,

in the long term there exists the prospect of managing both engineering and non-engineering

data as object-oriented relational database technology matures and becomes readily available.

Such requirements have been identified and considered in specifying the conceptual solutions

proposed in this research study (see section 5.3 on management of engineering resources).

Page 66

Cbapter4 Inrormation Arcbitecture ror MCS

4.4.3 The Need for Database 'Drivers'

Depending on the class of user interacting with a database management system, two access

approaches can be adopted for relational databases [Davis and Olson 1987] as illustrated in

Figure 4-7 :

la
Non-programmmg user

4b~
Programming user

Facility

Database Programming

Language Interrace

Figure 4-7 : Approach for database access

(I) Database Query Language Facility

.. ~ Database

Relational Database Management Systems (RDBMS) essentially adopt a table based

organisation of data. The user must establish links from table to table, thereby making tables

behave temporarily as relations. This can be done through the provision of fourth generation

database query languages such as SQL (Structured Query Language). SQL in various forms is

offered by different database manufacturers, for example: Query DL/1 for DL/l (mM); SQL

for DB2 (mM); SQL for ORACLE (Oracle); NATURAL for ADABAS (Siemens); SQL for

Ingres (Ingres); and so on. Via the help of a basic structure, based on the following three key

words, SQL allows complex queries to be made:

SELECT Eklds (columns) to be displayed;

FROM Relations (files) containing the fields;

WHERE Conditions (giving the selection criteria).

The use of SQL is appropriate for non-programming users as it enables independent access to

information necessary for the particular area of application concerned.

(ll) Database Programming Language Interface

This approach is well suited for the programming user. Special database interface instructions

(i.e. embedded SQL), which are normally offered as a set of readily available program

functions, are incorporated into the application program to enable access to the database

through the database management system. However, when using this approach, if changes to

data access, manipulation and presentation are required, it would require a change in the

application program(s).

Page 67

Cbapter4 Information Arcbitecture for MCS

Despite the widespread commercial and indusoial use of SQL two major technical barriers

currently exist with respect to data access across multi-vendor RDBMS [Krishnamurthy et al.

1991]. These two barriers are considered below :

(A) SQL language differences.

In reality each vendor has their own SQL "dialect" where each is peculiar to the

RDBMS it supports. It has been estimated that approximately 80% of the SQL

syntax and semantics is identical between dialects [Rimes 1993]. However, the

remainder includes subtle differences which make it extremely difficult to convert

from one SQL dialect to another.

(8) Differences in message formats and communication protocol.

In practice different RDBMS vendors have targeted the use of their products at

different hardware platforms and operating systems. As a result there exist distinct

differences in the message formats and communication protocols of the different

RDBMS which can funher accentuate the heterogeneity of integrated systems. This

undoubtedly causes interconnection problems between multi-vendor RDBMS.

A novel approach to accomplishing access to a disoibuted and heterogeneous set of data

repositories, which has been used and is reported here, has been conceived by MSI researchers

and advanced by the author in this research study by providing mechanisms in the form of

specially developed database 'drivers' based upon SQL. As illustrated in Figure 4-8, the

database 'driver' brings the database system up to a level of conformance which allows it to

utilise the integration services of an lIS. The 'driver' is required to operate at the interface

between the lIS and the database system. It provides a set of services to link the lIS and

database system; it handles the lIS service requests and the inherent complexities of the

database system concerned to access the information required.

In the implementation the CIM-BIOSYS lIS is utilised to provide distributed software

applications with structured access, via common integration services for communication and

management of data, to fragments of information stored in disoibuted data respositories. Here

'drivers' are generic in nature and are configurable, thereby enabling a degree of tailoring to

account for the idiosyncrasies of the relational database management system to which they

interface. Whilst efforts in SQL standardisation are progressing, which will ultimately make it

easier to connect RDBMS from different vendors [Rimes 1993, White 1993, Hayes 1992,

Perkovic 1991, Van der Lans 1989], in the interim the database 'driver' provides a migratory

path towards more open systems which enable wider information access. Thus the 'driver'

acts as a standard interface to a relational database where its underlying services can be

utilised by any MCS functions requiring access to the database via the lIS. To-date a number

of database 'drivers' have been developed by MSI researchers to enable information

Page 68

Chapter 4 Inrormation Architecture ror MCS

lIS

'Driver'

Interoperating MCS functions
,.-----,

ORACLE Ingres Progress

Data
repositories

Figure 4-8 : Database 'driver' interfaces to data repository and lIS

access from a number of commercial RDBMSs [Leech 1993]. These include ORACLE

version 6.0 [ORACLE 1992], Progress version 6.2 [Progress 1990], and Ingres version 6.4

[Ingres 1991]. All three databases provide an SQL user interface as well as some form of

embedded SQL capabilities, and various forms of higher level 4GL programming language.

It should be stressed at this juncture that the database 'driver' developed in this research study

is an improvement on an earlier version developed by other MSl researchers [Leech 1993]. In

the earlier version, use of the 'driver' was restricted as it was capable of only handling fixed

maximum length packets of data (limited up to 1500 characters only). This limitation was

primarily attributed to the communication protocol adopted which involved UNIX based

sockets responsible for handling and transmitting data packets over the local area network

(this being Ethernet for the systems implemented during this study). Thus in its original form

the 'driver' was only capable of supporting simple database queries. This limited information

access involved laborious and time consuming overhead processing in terms of

- fragmenting the required data into the necessary packet size;

- handling the sequential transfer of these data packets; and

- reassembling the data from the data packets transferred.

As a result the earlier version of database 'driver' proved to be ineffective and inefficient in

supporting data intensive activities which normally require large amounts of data to be

accessed, transferred and processed.

Page 69

Chapter 4 Information Architecture for MCS

4.4.4 Development and Enhancement of Database 'Driver'

The 'driver' developed by the author in this research study is aimed at enabling consistent,

reliable, transparent and open access of information stored in the database system concerned

by the distributed software applications via the lIS. It is developed as a set of ANSI-C program

functions. The 'driver' is structured in a modular manner and comprises the following (see

Figure 4-8) :

• 118 Interface Module to provide an interface to the lIS to bring the database system serviced

to a level of conformance which facilitates utilisation of the common integration services

(i.e. inforination management and access) offered by the lIS. This is to enable transparent

access to information (which is held in the distributed data repositories) from MCS

functions via the lIS embedded communication protocol.

• Database Interface Module to provide an interface to specific database system, configured

to translate between lIS and proprietary (i.e. specific to the database system concerned),

message and data formats as well as SQL dialect requirements. Here the database

programming language interface of a given RDBMS (i.e. embedded SQL) is used to access

the database system. It incorporates standard SQL capabilities and in combination with the

lIS the following services are provided :

Data Definition:

'CONNECT: Start a database session with the specified database.

·DISCONNECT: End a database session.

Retrieve Data:

·SELECT: Retrieve rows that meet a given search condition.

Data ManipUlation:

·INSERT: Insert a new row in a database table.

'UPDATE: Modify rows that meet a given search condition.

·DELETE: Delete rows in a database table specified by a search condition.

Transaction Processing:

·COMMIT: Make permanent all changes performed in the current transaction.

·ROLLBACK: Undo the work done in the current transaction.

The reader should refer to Appendix V for further details on the information services

offered by the database 'driver'. Program listings for the relevant services are also included.

Due to the modular structure and generic feature of the 'driver', the task of creating 'drivers'

for different database systems is simplified considerably. It is only required to modify the

Database Interface Module to suit the specific requirements of the database system concerned.

Page 70

Chapter 4 Information Architecture for MCS

For example, the ORACLE RDBMS 'driver' was created by taking the completed Ingres

database 'driver' and replacing its Database Interface Module after modifying it to suit

ORACLE RDBMS.

The operation of the 'driver' is initiated by the lIS to perform the set of tasks listed below:

- Establish connection to the database system concerned.

- Route information access requests received from MCS functions (via the lIS) to the database

system. These requests are converted and conform to the SQL compliant services provided

by the 'driver', i.e. SELECf, INSERT, UPDATE, and DELETE data objects.

- Receive the requested information from the database, re-format it and send it back to the

MCS function which requested the information.

- Report and recover from errors which may occur.

During its operation the 'driver' references a set of meta-files which describe data access

objects. A data access object is uniquely identified and consists of one or more of the database

table names from which data is to be accessed, a list of field names and an optional search

condition. The data access objects are predefined and can be altered easily in the meta-file

(even during run-time if required) to suit specific information needs. This object oriented

approach helps to avoid the tedium of modifying the database 'driver' whenever changes

occur. Please refer overleaf for illustration of the use of data access objects by the database

'driver'. The notion of data access objects

• makes manipulation and query services simple, flexible, fast and easy to use, as it is not

necessary to repeatedly reconstruct syntactically correct SQL statements from scratch

every time a service is requested.

• simplifies and enables mapping between the data representation used in the physically

distributed databases and that used in the logical integrated relational data model of the

data repository. This in essence represents the link between the internal and global

schema respectively in relation to the three schema architecture (as discussed in section

4.4.1). Please refer to Appendices IV and VI respectively for an illustration of the way in

which this mapping was established between the generic reference models (described in

section 4.2) and specific information models of two proprietary software packages used

in this study, namely MCC [MCC 1989] and ELMS [ELMS 1990]. The program source

code designed and developed by the author to populate the data repository with shared

data from MCC is also included in Appendix VI for reference.

Page 71

Chapter 4 Information Architecture for MCS

Illustration of the use of data access objects

"objec:tl" object Dame "ITEM, BOM" table Dame "item_desert item_no" columns "item_no = born_no" where clause
"object2" object name "ITEM" table Dame "item_no" columns "item_no = 223356" where clause

• The 'driver' is invoked and operates on data access objects. In the example given,
a data access object called objectlleads to the deletion of all data satisfying the
search condition "item_descr" = 'Drill Plate'

• objectl is defined in the meta-fiIe. It provides a composite description of a data
access to the SQL tables ITEM and BOM which in turn involves attributes
"item_descr" and "item_no" and the need to satisfy the search condition

"item no = born"

Page 72

,

Chapter 4 Information Architectllre for MCS

Hence the database 'driver' developed in this research study is an improvement on an earlier

version developed by other MSI researchers. It incorporates standard SQL capabilities and

offers extended and more flexible functions to support data intensive activities which range

from file transfer to complex database queries via the IIS.

4.5 Summary

In relation to the overall methodology conceived in this research study to enable

interoperation of MCS components (as described in section 3.5), the work described in this

chapter has a direct bearing on following three sub-methods:

• MCS specification

A set of widely applicable generic reference models representing prime information

of common concern among MCS components has been identified and described in

order to help structure and facilitate MCS design.

• Use of an lIS
The CIM-BIOSYS IIS, which assumes responsibility for maintaining knowledge of

integration details, is used to simplify problems of realising interconnection between

MCS components. It resolves differences in the physical system relating to

heterogeneity, distribution and data fragmentation.

• Interfaces to physical resources

An SQL based database 'driver' has been specially developed to effectively support

data intensive activities. The 'driver' enables the following:

- brings MCS components to a level of conformance which enables

interoperation over the CIM-BIOSYS IIS, and hence allows practical

application with regard to existing custom designed database

components.

- flexibly maps software applications onto system resources, i.e. achieves a

mapping between physically distributed databases and the logically

integrated relational data repository which corresponds to the ANSI

SPARC "three schema" architecture.

Page 73

Chapter 5

Integrating Infrastructure to underpin MCS Interoperation

5.1 Functional Interaction Requirements in MCS

The author recognises that the identification and specification of generic reference models (as

described in section 4.2), to enable a bonding of MCS components through shared

information, is merely an entry point towards achieving software interoperabiliry [Singh and

Weston 1993]. In order that the benefits of software interoperability can be more fully realised,

the next crucial step is to address problems of functional interaction between MCS

components [Hars 1990]. In practice, this demands cooperation among interoperating

software components to establish well defined communication channels which collectively

promote and enhance intra-organisation interaction and co-ordination of activities [Singh and

Weston 1994a]. Hence an inherent capability to control system behaviour is essential. Indeed

this is one of the requirements (as stated in section lA) which need to be satisfied to enable

software interoperability in an effective manner.

A primary objective of this research study is to provide a generalised and flexible way of

enabling functional interaction between the components of integrated manufacturing systems.

Hence a framework is required which formally structures and manages functional interaction

between MCS components. In this way a group of normally autonomous MCS components

can function as a co-ordinated whole, with means of maintaining discipline among them

[Singh and Weston 1994a]. The following requirements are identified as being necessary to

enable and suppon functional interaction:

(I) Establish formal association between MCS functions and their required information.

Typically in a manufacturing company, the sequence of activities necessary to perform

pan manufacture in progressive stages, relies heavily on their functional dependencies

and on information needs between the different stages. Generally, the association

between functions and their required information is not formally and clearly defined,

particularly across different functional domains, and much depends on the users to

ensure control and co-ordination of the system [Lars 1990]. Consequently, this

contributes to significant delays in transactions as well as misunderstandings and

conflicts. Hence the existence of a formal association, established between MCS

functions and their required information, is viewed to be highly beneficial in terms of

providing means to structure and govern system behaviour (during run·time), where

Page 74

Chapter 5 Integrating Inrrastructure to underpin MCS Ioteroperatioo

associated preceeding and succeeding activities and consideration for their shared

information needs (as defined by the generic reference models in section 4.2) have to be

taken into full account.

In addition, any associations established between MCS functions and information must

be configurable in nature. This is necessary to suit both specific and changing user

functional and information needs.

(m Capability for controlling and co-ordinating the sequence of MCS activities.

Consideration needs to be given to the availability of shared information necessary to

satisfy and support each of the (run-time) activities carried out by an MCS. This needs to

be done with close reference to associations established between MCS functions and

their required information, as stipulated in <0. Mechanisms will be required to closely

monitor the availability of such information (held in the data repository), and to initiate

or trigger appropriate functional activities in need of that information for further

processing.

(Ill) Means to effectively coalesce all interacting MCS components.

It is necessary to provide easy user access to associated functions which may be

distributed across the local area network so that human centred tasks can be

appropriately supported. Such an approach can provide users with a global perspective

when conducting their specific tasks so as to ensure better and more informed decision

making.

(IV) Means to manage engineering data.

Normally in a manufacturing company, some engineering data, which includes part

drawings, is frequently referenced to help determine resource requirements (for example

toolings, fixtures, etc.), plan route for part manufacture, part inspection routines and so

on. Controlled access to this engineering data can prove very useful and can effectively

contribute globally towards more informed decision-making and planning. Thus it

would certainly be helpful to have knowledge of the existence of such data and where it

can be accessed or requested within the system. As RDBMSs which manage both

engineering and non-engineering data are not currently available (as discussed in section

4.4.2), a means is, therefore, required to manage such useful engineering data where the

user can at least be informed of its availability and physical location over the local area

network.

Page 75

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.2 Contemporary Solution to enable Functional Interaction

As indicated from the author's academic and product literature survey, there are very few

solutions available which have been designed with the purpose of tying together a set of

software applications into a coherent system (i.e. to facilitate functional interaction). SIM

(Systems Integration Manager) [SIM 1993], which is a commercial software package from

Manufacturing Systems Portfolio PLC (based in Windsor, UK), is one of the few

contemporary solutions available. To help assess the capabilities of contemporary commercial

solutions to the functional interaction problems, based on the author's working experience of

SIM, its scope of functionality and level of effectiveness in facilitating functional interaction

(with relation to the requirements identified in section 5.1) was explored. This case study was

beneficial in terms of providing a general indication of the focus and usefulness of a class of

contemporary solutions aimed at enabling and supporting functional interaction.

5.2.1 Overview of Systems Integration Manager

Messages are the core of the SIM system and interoperation between applications is achieved

through message passing. SIM provides the following features listed in Table 5-1 [SIM 1993] :

Features Description
MESSAGE PASSING The rouling of messages between applications.

MESSAGE HANDLING The definition and validation of messages.

EVENTS AND ACTIONS The specification of the occurrences of conditions such as the receipt of
a given message and the action Io be taken.

PROCESS CONTROL The administration of applications.

F1LE TRANSFER The transfer of text files between computers.

STATISTICS SIM maintains statistics on the frequency of service requests.

PRINTING The printing of files.

Table 5-1 : Features of SIM

All these features are available as a set of ANSI-C program functions and need to be

incorporated into newly developed and existing applications in order to enable an interface to

SIM to be established, thereby enabling use of the facilities it provides to allow interoperation.

The behaviour of SIM is described, defined and governed through a set of configuration tables,

as illustrated in Figure 5-1. In order to be valid and accepted by SIM, the configuration tables

comprise the following:

Page 76

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

Systems Integration Manager (SIM)

Input queue

Figure 5-1 : Interoperation between applications enabled through SIM

Page 77

Cbapter 5 Integrating Inrrastructure to underpin MCS Interoperation

• Registration of applications which includes assigning a unique identifier to each application

and specifying its actual physical location for direct access.

Example

Event ID 21
Message Receipt 5
Action ID 10

File Transfer Request ID 260

• Predefinition of the structure of messages (which includes its type, length and assigned

identifier) and a specification ofits targeted destination.

Example

Action ID
Application Loaded
Application Unloaded

Application Tenninated

10
12 ..-Application ID
16
14

• Specification of "events" which can be described as some expected happening. For

example, receipt of a message or the transfer of a file.

Exanwle

Application ID 12
Machine Address tracey ~ Logical name assigned lO machine

Application Namelusr/SIM/toolslapplyl ~ Application full path

• Definition of "actions" that should be performed when "event" happens.

Example

Message Type
Message Text
Message length

ASCII
Generate Schedule report
52

Destination Application ID 12
Message ID 5

As illustrated in Figure 5-1, during normal operation incoming messages from applications are

received and queued by SIM. They will be validated and processed with reference to the

configuration tables. In response- to the input received, predefined "actions" and corresponding

output messages will be activated and delivered respectively by SIM to trigger off targetted

applications.

Page 78

Chapter 5 Integrating Inrrastructure to underpin MCS Interoperation

5.2.2 Focus and Limitations

In relation to the requirements identified for functional interaction (as described previously in

section 5.1), the following highlights the characteristics of the contemporary solution studied:

• Event driven to control and co-ordinate a sequence of activities

It is basically event driven and is loosely based on predefined message passing between

applications. It does not take into account information resources required to drive and

support the various activities within the system. Thus association between functions and

information is not considered and availability of required information is not monitored

when attempting to validate and control the sequence of activities. Rather, system

behaviour control (during run-time) is achieved merely through management of

messages.

• No effective means of coalescing interacting applications

No front-end user interface capability is provided to coalesce interworking among the

various interacting applications. Instead all applications need to directly incorporate

special routines within themselves so that they can utilise the interaction facilities and

services provided. Hence the applications concerned are rigidly con figured as the

interaction knowledge they require will be embodied within each one of them. Thus such

solutions will face similar problems to "pair-wise" integration (as mentioned in section

2.2.1), where the complexity of such systems will grow substantially (theoretically in a

square law fashion) as the number of interconnected applications grows. As a result, it

will be tedious and cumbersome to manage changes to any of the interacting

applications within the system, and it may not be practical to give due consideration to

the full implication of changes to the system as a whole.

In view of the above mentioned limitations, the following requirements are evidently

necessary to facilitate and support functional interaction in a more effective manner:

• Control and co-ordination of the sequence of activities (Le. system behaviour during

run-time) should be data driven. This is to ensure that the use of information resources,

particularly those sharing common information, are considered during functional

interaction. This is essential in order to properly and accurately validate and co

ordinated the sequence of activities in relation to the availability of information set in the

context of realising more global goals.

• Simplify interconnection between interacting applications via an /IS. This is to provide

common integration services to all conforming applications, via use of common

integration services provided by an infrastructure.

Page 79

Cbapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.3 MCS Functional Interaction Management Module Subsystems

In order to meet the identified requirements for functional interaction, an MCS Functional

Interaction Management Module (FIMM) was designed and developed as part of this research

study. The MCS FIMM serves as an application enabler to help formally structure and

facilitate MCS functional interaction in a controlled and deterministic manner [Singh and

Weston I 994a, Welz 1993]. As illustrated in Figure 5-2, it comprises the following sub

systems which collectively can be viewed as constituting high level integration mechanisms

and tools of an lIS (as defined in section 3.4) :

• Function-Information Association Table

This represents an association, formally established and clearly defined, between MCS

functions and their required information. It is referenced (during run-time) to govern

system behaviour. Software tools have been developed in this research study to

establish and configure such association between functions and information held in the

Function-Information Association Table; the purpose and construction of these

tools will be considered further in the next chapter.

• Functional Interaction Manager

This is responsible for controlling and co-ordinating a required sequence of MCS

activities where mechanisms are provided to

- closely monitor the availability of shared information (held in the data repository).

- initiate or trigger appropriate functional activities in need of that information for

further processing.

• Engineering Resource Manager

This serves as an archive for engineering data which includes part drawings and NC

programs necessary to support part manufacture.

• FIMM Configurator

This serves as a tool to enable configuration of the MCS FIMM to suit specific user

needs.

The MCS FIMM builds upon the low level, general purpose integration services and tools of

the CIM-BIOSYS lIS [Weston 1993] which provide standard data inter-communication and •

information transfer facilities to interconnect MCS software components. Program listings for

the MCS FIMM are included in Appendix VII.

Page 80

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

FIMM
database

Sdtware
Applications

Operator
Interface

~
MCS

Function .,

Working Engineering Resource Manager
pruameoo~ ~r----------------------------1

FIMM Configurator

Function-Information
Association Table

(Low level services)

COMMON INTEGRATION SERVICES

Inter-process
communication

Information
management

Data
presentation

Figure 5-2 : Framework for MCS Interoperation

MCSFIMM

Page 81

Chapter 5 Integrating Inrrastructure to underpin MCS Interoperation

(0 Function-Information Association Table

As illustrated by Figure 5-3, the relational Function-Information Association Table identifies

predefined relationships between entities of the information model and related MCS functions

(i.e. it associates information entities to MCS functions designating them as either an input or

output requirement or both). The information model, which encodes relationships between

information entities, corresponds to the generic reference model (as identified and described in

section 4.2). The Table will be referenced (during run-time) in a way which governs system

behaviour in a controlled and co-ordinated manner, i.e. in accordance with predefined

relationships established between the information entities and MCS functions. Use of this

table driven approach offers the following benefits:

• information input/output requirement analysis with regard to the MCS functions; and

• information association, traceability and accountability to MCS functions.

This table can also serve as an intermediary storage and representation facility which can be

populated with data generated from design models and information. Details of a methodology

and software tools which have been specially developed and used to enact information and

function models in this way are included in later chapters. This approach was conceived in

order to establish and configure necessary run-time associations, as identified and represented

by the Function-Information Association Table, in a highly flexible manner.

MFGPLAN

Function-Information Association Table

ORDER
ENTRY

SCHEDULE
Infonnation input/output

to MCS functioos

LEGEND
I = Input
0= Output

Input to Function Output rrom Function

MFGPLAN
PROCESS PLAN
SCHEDULER
CELL CONTROL

DESIGN

Figure 5-3: Function-Information Association Table for MCS FIMM

Page 82

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

(m Engineering Resource Manager

The Engineering Resource Manager offers a means of managing engineering data which

includes part drawings and NC programs. It does not physically process this engineering data

but effectively serves as an archive where these resources are registered in the FIMM database

and cross referenced based on part number, as illustrated in. Figure 5-4 below. Via the

Engineering Resource Manager the user can be informed of availability and physical location

of part drawings and NC programs, distributed across a number of computer systems.

The Engineering Resource Manager facilitates the following services:

• Registering the location of engineering resource.

• Search facility with reference to part number.

• Locate engineering resource with reference to the function responsible for managing it.

The author created Engineering Resource Manager software to meet the requirements

highlighted above, program listings being provided in Appendix VII.

Product design

~
Engineering resources archive

Part N. Drawing Location NCProgram LocaUoa

111 IOINT.DWG tracer IOINT.NC wayoe

222 PLATE.DWG wayne PLATE.NC sandra

333 BRACE.DWG derek BRACE.NC tracey
Engineering Resource Manager

MCSFIMM

Logical names
assigned to computer nodes over LAN

Figure 5-4 : Engineering Resource Manager

Page 83

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

(llI) Functional Interaction Manager

The Functional Interaction Manager serves as the run-time driver of the MCS FIMM and is

responsible for sequencing and co-ordinating activities of the, various distributed MCS

functions via status management and transaction control. Transactions which involve (i)

initiation of interoperating functional activities, and (ii) request and exchange of shared data

between interoperating MCS components are closely monitored with reference to the

Function-Information Association Table (during run-time), this in order to validate

• that the required sequence of functional activities has been performed;

• appropriate association between MCS functions and their required information is

maintained; and

• that the integrity of shared data in the system repository is maintained.

Status markers and triggers were implemented to provide a mechanism to control and co

ordinate functional interaction. Here, status markers are either assigned automatically or

interactively by the operator (in response to certain system requests to alter them during

normal operation), where they are subsequently used by the system to trigger or block further

transactions between interoperating MCS components.

To enable concurrency, i.e. parallel operation of MCS components, the operational status of

the threads of functionality embedded within each MCS function is monitored closely, for

example : order registration and resource management activities which constitute the MCS

manufacturing planning function. Status markers are also used to reflect changes of the

activity instance, thereby effectively controlling and coordinating the start-up and shutdown of

subsequent and dependent activities.

The Functional Interaction Manager facilitates the following services:

• Registering new orders received.

• Altering the processing status of MCS functions, i.e. to reflect whether work is in progress,

completed or pending.

• Updating instance to reflect the processing phase at which the part is currently at.

• Search facility which references part number to indicate status and instance for the partes)

being processed.

• Job load indication for the MCS function concerned.

Please refer to Figure 5-5 for an illustration of the operational view of the Functional

Interaction Manager and Appendix VII for further details on the services offered by

Functional Interaction Manager. Program listings for the Functional Interaction Manager are

also included in Appendix VII.

Page 84

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

Function-Information Association Table

~ ORDER ROUTE BOM RESOURCE SCHEDULE
Function ENTRY

MFGPLAN I - I I 110
DESIGN I I 0 I -
PROCESS PLAN - 0 I I I
SCHEDULER I I I I 0
CELL CONTROL - I I I I

referenced during runtime

111 N 1 C P P P

222 N % C C W1P P N=New
R=Rcpeal

333
R 2 C C C P P = Pending

= Worlt-In-Progn:s.
C=Cornplete

Operational Slatus monitoring

Table

MCS 3 4 5 6

MFGPLAN

PROCESS PLAN

DESIGN

SCHEDULER

CELL CONTROL

Figure 5-5 : Overview of Functional Interaction Manager management of MCS activities

Page 85

Chapter 5 Integrating Inrrastructure to underpin MCS Interoperation

(IV) FIMM Configurator

A FIMM Configurator tool was conceived and implemented by the author to enable

configuration of the MCS FIMM to suit specific user needs. It facilitates the addition, deletion,

and display of MCS functions, which are to be managed by the FIMM, as well as enabling the

attribution of data to entities in the information model (which corresponds to the reference

model as described in section 4.2). In addition, it allows relations between the functions,

information entities, engineering resources and activity instances to be altered quite easily

through its editing services. Please refer to Annex VIII for further details on the services

provided and program listings.

The FIMM Configurator is menu driven so as to be user friendly. Its functional structure and

scope is illustrated in Figure 5-6.

All
Relation for an

Infonnation Entity

Figure 5-6 : Structure of FIMM Configurator

The configuration information describes the working parameters necessary to drive and

control the MCS FIMM; during system run-time this information is referenced by the

Functional Interaction Manager and the Engineering Resource Manager. Any alteration or

reconfiguration carried out by the FIMM Configurator is done only when the MCS FIMM and

all functional activities managed by it are inactive. This is to ensure consistency and integrity

of the required configuration.

Page 86

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

The following data which is relevant to the normal operation of MCS FIMM is stored locally

in a relational database, namely the ORACLE RDBMS :

• atnibutes of the MCS functional activities and information entities to be managed;

• type and nature of relationship between MCS functional activities and information entities;

• operational status of MCS functional activities supporting part manufacture; and

• a description of the logical links to the engineering resources based on their designated call

names.

The reader should refer to Appendix IX for further details on the MCS FIMM database

schema.

The FIMM Configurator also provides error recovery facilities to help troubleshoot and

recover from possible error situations. Further details on the use of the FIMM Configurator

tool is provided in the next chapter.

5.4 User Interface: Generic' Application Shell'

As part of the working framework conceived by the author to enable functional interaction

among MCS components, the need for a highly reconfigurable and hence widely applicable

'application shell' was perceived to be required. As illustrated in Figure 5-7, this 'application

shell' effectively serves as a front-end user interface for MCS interoperation over the IIS, to

provide easy access to associated MCS functions which are normally distributed within the

complete MCS system. Through the 'application shell' operations such as start, stop, status

update and queries (for both the MCS functions and MCS FIMM components) are performed

in a standardised way irrespective of which MCS components are used. Common integration

services, such as inter-process communication and information management, offered by the

CIM-BIOSYS lIS are also accessed and managed through this standard interface.

The 'application shell' was designed and developed by the author in the form of a multi

window environment run under the UNIX operating system. The design included provision

for data entry fields and specially configured buttons which serve as the front-end to perform

and access the necessary MCS functions and services, as illustrated in Figure 5-7. The

environment makes available all commonly required MCS functions, thereby allowing easy

access to these functions for the following purposes:

Page 87

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

~ ~ "'w""",,, _

[Got .. ",) [GotloO) [Got) [Gd ~bIIl.,)

...... ""'"
00

(LdI) (''''',) (""'" Up) (Sad! "'""')
lcIb toed. 4

part__ .,.,. ... _ pp CAD CAPP CELL FCS

.00 N 1 WIP WIP • p p

User interface

~
APPLICATION SHELL

Interoperating MCS

.: .

MCSFIMM

CIM-BIOSYS lIS

Data
repositories

Figure 5-7 : 'Application shell' to coalesce interoperating MCS components
and integrate with MCS FIMM and CIM-BIOSYS lIS

Page 88

"' -

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

• To provide users with an abstracted working viewpoint which supports them in an effective

manner when conducting their specific tasks. This satisfies the need for a user interface

capability which reflects inherent MCS-human interaction requirements (as stated earlier in

section 1.4) so as to enable software interoperability in an effective manner. This' standard'

human-MCS interaction facility provides users with a global perspective which enables

better and more informed decision-making in relation to performing their specific tasks.

• To make functional interaction management easier by effectively insulating the user from

complexities and details involved in the underlying interoperation processes which will be

taken care of by relevant services offered by the MCS FIMM and the CIM-BIOSYS lIS.

The reader should refer to Appendix X for further details on the human-MCS 'interface'

offered through the generic 'application shell'.

5.4.1 Interface between MCS Functions and' Application Shell'

In this study a proof-of-concept interface between MCS functions and the 'application shell'

was implemented based on the use of UNIX pipes. A UNIX pipe basically makes the output of

one program the input of another. Two pipes are created during normal operation. As

illustrated in Figure 5-8, user inputs, which drive MCS functions, are emulated and redirected

to one pipe. The output from the MCS functions is redirected to the second pipe to enable

interpretation and visual display by the user via the 'application shell' display window.

Program listings for the interface mechanisms implemented are included in Appendix XI.

User

Pipe in
User input and commands

MCS J
EfUnCl1~.on

Figure 5-8 : Communication interface via 'application shell'

Page 89

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.5 Enabling Distributed Functional Interaction Management

The services of the MCS FIMM are accessible as a set of ANSI-C program functions. If an

MCS application runs on the host computer where the MCS FIMM database resides, the

required services can be directly invoked as all required information is held locally. However,

in order to support MCS functional interaction in a distributed environment, where the MCS

functions are spread over several host computers connected via a local area network (LAN),

remote versions of the services (as described previously in section 5.3) are necessary. These

have been developed to allow any host computer connected to the network to have access to

MCS FlMM services. Here the proof-of-concept implementation was based on

communication mechanisms which use UNIX pipes to connect between the remote host

computer on which the MCS component resides and the computer system on which the

services of MCS FlMM reside. As illustrated in Figure 5-9, the communication mechanisms

implemented enable the following capabilities:

• requests made by MCS applications to be relayed to the host computer where the services of

the MCS FIMM reside for processing to occur.

• request made by MCS applications for MCS FIMM service(s) to be interpreted.

• MCS FIMM service(s) to be invoked as required.

• ability to relay responses or outputs from MCS FIMM services back to MCS applications

requesting its service.

Program listings for the communication mechanisms implemented are provided in Appendix
XI.

N"o

s:
Z

""

MCS FIMM Database Host

Communication Functional Interaction
Mechanlsm Manager services

--. -+ loop IRegister New Partl FIMM
receive canmand .- ... database I Get Job Load I call service
return resuh !

Remotely located romputer

Communication MCS AppllcaUon
Mechanism

remote Register New Part Eu remote FIMM .eMce I
remote Get Job Lo ... ,

loop

I wait for result -- Display resuh I
Process returned result

Figure 5-9 : Communication mechanism to support MCS FIMM
in a distributed environment

Page 90

Chapter 5 Integrating Inrrastructure to underpin MCS Interoperation

5.6 Summary

The MCS FIMM functions provide a framework which formally structures functional

interaction among MCS components. However it was conceived with the purpose of enabling

the flexible integration of MCS components. Hence it is modular in construction and

comprises the following sub-systems :

• Function-Association Table

• Functional Interaction Manager

• Engineering Resource Manager

• FIMM Configurator

The MCS FIMM was implemented in proof-of-concept form and developed to satisfy the

requirements for functional interaction identified in section 5.1. Restated these requirements

illustrated a need to :

• Establish formal association between MCS functions and their required information.

These associations are represented in the form of a Function-Information Association Table

which identifies predefined relationships between information entities (which correspond to

the generic reference model described in section 4.2) and activities perfonned by MCS

functions. This Table is referenced (during run-time) in a manner which governs system

behaviour in a controlled and co-ordinated way. Here associated preceeding and succeeding

activities and consideration for their need for shared information is taken into full account.

The FlMM Configurator was conceived and developed to facilitate flexibility in a

manageable fashion, where via its editing services, the MCS FlMM can be configured quite

easily to suit specific user functional and information needs.

• Establish a capability for controlling and co-ordinating the sequence of activities

performed in a distributed MCS.

The Functional Interaction Manager is responsible for providing this capability. It

incorporates mechanisms to

- monitor the availability of shared information via its status management capability.

- initiate or trigger appropriate functional activities which are in need of that

information for further processing.

Page 91

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

• Establish means of effectively coalescing the interaction of MCS components via a

'standard' human interface.

A generic 'application shell' has been developed to enable human interaction with MCS

components via MCS FIMM and CIM-BIOSYS lIS services. The 'application shell'

effectively serves as a front-end user interface for MCS interoperation, where easy access

to associated functions which are distributed throughout the MCS systems at different

network nodes, is offered. This provides the user with a system-wide working viewpoint of

the effect of conducting their specific tasks. The 'application shell' is responsible for

drawing together various interacting MCS components in a manner which leads to synergy

between them. As a result it promotes and enables cooperative as well as better and more

informed decision-making across the enterprise.

• Establish means of managing engineering data.

This was achieved via conceiving and developing an Engineering Resource Manager. This

effectively serves as an archive for engineering data where users are informed of the

availability and physical location of information entities which will be distributed as

information fragments stored in different databases at a number of computer nodes

connected to a LAN.

The MCS FIMM overcomes some of the limitations inherent,in contemporary solutions (as

discussed in section 5.2.2) by offering the following advantages when facilitating and

supporting functional interaction;

• Control and co-ordination of the sequence of activities in a data-driven manner.

Here due consideration is given to the availability of shared information and the need by the

functions concerned in order to properly and accurately validate and co-ordinate the

sequence of activities performed on a system-wide basis. With reference to the association

established between MCS functions and their required information. concurrent operation of

functional activities is made possible in a flexible but controlled manner (via the Functional

Interaction Manager). This enables interacting MCS software applications to run in parallel

and their activities to be synchronised based on the availability of their required

information which is monitored by appropriate mechanisms provided.

• Si!'lplify and manage interconnection between interacting applications via use of a

• domain-specific lIS.

The MCS FIMM is built upon the CIM-BIOSYS lIS in order to utilise the more general

integration services provided which includes inter-process communication and

information management. This is to help simplify interconnection between applications

Page 92

Chapter 5 Integrating Infrastructnre to underpin MCS Interoperation

by delivering these general services in a fonn which is more suited to typical users found

in the MCS domains of manufacturing organisations. Funhennore, interaction

knowledge is embodied in the MCS FIMM which is used at run-time to integrate MCS

functions with human interaction enabled over the CIM-BIOSYS ITS, via the generic

'application shell'. Thus it is only necessary to link the applications concerned to this

front-end common user interface in order to make use of the MCS FIMM services

provided. This essentially removes the need to incorporate interaction knowledge in

each individual application, thereby simplifying interconnection, facilitating interaction

and providing opponunities to standardise and modularise MCS components.

Page 93

Chapter 6

System Life Cycle Support

"The only Constant is change"
Bishop, PA Consulting Group (UK)

6.1 The Requirement for Integrated Life Cycle Support

In reality integrated manufacturing systems are characteristically evolutionary in nature and

must be adaptable and responsive to changing needs. For example, a very common

requirement is funher integration with other functions and a re-engineering of existing

functions in order to modify and enhance the functional capabilities provided. Change is

essential in order to provide competitive differentiation and to ensure the survival of

companies in the face of changing customer, supplier, financial and labour markets. As Tom

Peters aptly pointed out in his highly publicised book entitled Thriving on Chaos,

"To survive and become superlative in today's economic environment, the flexibility to react

and be responsive to changes is highly desiredlmpermanence is a cherished quality for

excellent firms" [Peters 1989]

Change in the requirements and characteristic propenies of integrated manufacturing system

will inevitably affect dependency relationships and information flows among interoperating

MCS functions in the system. Hence the author strongly advocates the need to effectively

suppon an integrated system through its life cycle, which will involve the following phases

(refer to section 2.4 for details) :

• Conceptual Design; the prime focus is deciding what a system should do.

• Detailed Design and Implementation; this involves specifying how the global

requirements defined can be realised in tenns of building the required solutions.

• Operation and Maintenance; this characterises the working life of the installed

solution, as weJl as necessary adjustments and repair during the operational lifetime of

the system.

In order to facilitate ease of system development and change management, it is necessary to

share and channel usable results and data between the different life cycle phases in a consistent

and accurate manner [Singh and Weston 1994!J]. However, there is presently an absence of an

integrated, formalised and structured approach which straddles the various life cycle phases,

that can help support systems as they evolve [Czernik and Quint 1992]. As is evident from the

Page 94

Cbapter 6 System Lire Cycle Support

literature survey (refer to section 2.4.1), no one methodology includes a capability for

modelling the functional, information, dynamic and decision aspects of integrated

manufacturing control systems. As a result, independent and separate use of a number of

metlwds will be required if the formal modelling and construction of systems is required.

As previously discussed (in section 2.4.2) the formal modelling of systems can provide an

entry point for supporting the life cycle of manufacturing systems where the models created

(offunction and information aspects) can serve as a source of knowledge during different life

cycle phases. However, it is necessary to develop additional life cycle support tools coupled

closely to the modelling tool. Such a software toolset should exploit the knowledge contained

within the model in order to :

• reference the functional and information models created during conceptual and

detailed design;

• ensure compatibility and continuity between different life cycle phases, i.e. maintain

consistency between models produced and used at each life cycle phase; and

• control and enforce structured implementation and change management.

Thus as part of this research study a new methodology and software toolset has been

developed to support implementation, run-time and change processes, thereby facilitating

integrated life cycle support of systems in response to changing needs. In this approach,

system design and modelling methods, which typically provide a means of representing

functional, information and behavioural views of a system, serve as the entry point. The

information and function models created are exploited in downstream life cycle phases to

ensure clarity, consistency, accuracy and re-utilisation of knowledge and data between phases.

6.2 Software Tools to Enact Function and Information Models

In order to enable functional and entity-attribute relationship modelling, IDEF modelling

methodologies (namely IDEFO and IDEF1X respectively) were chosen as the staning point for

this research because of the following reasons:

• They had demonstrated their usefulness as a 'simple and. effective communication tool'

which encourages end user involvement as well as their cooperation with system builders

[Maji 1988].

Page 95

Chapter 6 System Lire Cycle Support

• They have a growing popularity and acceptance, this being evident from the significant

levels of research and industrial applications published in the literature. This reflects

primarily their accessibility and potential in a wide range of applications.

• No other methodology known to the author claim to provide the same functional analysis

capability [Colquhoun et al. 1993].

• These modelling methodologies offer opportunities for enhancement and integration with

other tools [Colquhoun et al. 1993, Mayer and Painter 1991].

• Although the normal application of IDEFo and IDEF,x are separate and independent of

each other, they are able to offer a formal and relatively complete representation of the

manufacturing systems, this from their different modelling perspectives (Le. functional and

infonnation).

• IDEF,x is'a natural choice for representing a relational infonnation model, as the model

created has an inherent one-to-one correspondence with the entity-attribute relationships

nonnally defined in a relational database [Arngrimsson and Vesterager 1992].

Figure 6-1 provides an overview of the MCS modelling and implementation environment

conceived and used in this research to enact static MCS functional and infonnation models.

These models were created using IDEFo and IDEF,x methods. The purpose of this

environment is to provide a fonnal and structured approach to

(i) facilitate implementation processes based on specific user requirements concerned with

infonnation systems comprising a number of relational data repositories;

(ii) enact the infonnation and function models (which were created) in order to establish and

configure associations, as identified and represented by the Function-Infonnation

Association Table of the MCS FlMM. This table being used to represent and encode

system behaviour (see section 5.3 for details).

The environment itself is built from an aggregate of the following tools:

(A) EXPRESS to SQL Compiler

(B) STEP Parser

(C) IDEF IX to EXPRESS transformation tool

(D) IDEFOI1X Parser

(E) FIMM Configurator (refer to section 5.3 for details)

(A), (B) and (C) are tools which were developed by fellow researchers in the MSI Research

Institute [Clements et al. 1993], whereas (D) and (E) were developed as part of this research

study.

/ Page 96

Chapter 6

Interoperating MCS components

SoIlwore Operalor MCS
AppUattlons Interface Functions

.t
MCSFIMM

Controlled and co-ordinated

CIM-BIOSYS lIS

System Lire Cycle Support

MCS Functional and Information Models
Enactment Methodology

.,.....w w.·~'"W Nh" , 'N'.·...,.. ,.."."NN'·· .. WNN =..,.,.M"W'>",,.W' N ~""~N'~

; i

1

~ ,
~

'tIDEF.

Functional model

't FlMM Conflg_ro"r 't IDEF 0'1' Porser

FlUlclion·lnjormatiOlllUsocialiOll

Inronnatlon model

lran~~oUon" I mr rl
EXPRESS schema

Infomumon Modeliing

tEXPRESS
Editor

Implementation &
change management

Erdit]-AIIrib~
Rd4lionshipModeliing

t IDEF"

InronnaUon system
design

>0. •............•••••.• J

Figure 6-1 : Software toolset for integrated life cycle suppon

Page 97

Chapter 6 System Lire Cycle Support

6.2.1 Information Model Enactment

The IDEF1X entity-attribute relationship modelling tool [ICAM 1985] was used to represent

the global schema of common information used by MCS. It is a composite view of a set of

information models which corresponds to the generic reference models (as identified and

described by the author in section 4.2). The structure, content and entity relationships among

the attributes of the information models are clearly described. The semantics are, therefore,

made explicit so that there is common interpretation of the relationships among data items.

Please refer to Appendix xn and Figure 6-2 for an overview of IDEF1X and the entity

attribute relationships of the information models respectively.

The EXPRESS data modelling language [Schenck 1989] is an emerging standard which is

used within ongoing STEP (STandard for the Exchange of Product data) [ISO 1993, Joris et

al. 1993] initiatives world-wide to define data models. EXPRESS is used in this research to

facilitate detailed information modelling and was chosen because the author believed that it

would enable implementation of a physical system in a manner which maintains the structure

of the formal models. Through parallel research effort at MSI the following tools have been

developed to exploit EXPRESS as a means of representing aspects of the information

architecture of CIM systems and of providing a means of managing change more effectively

[Clements et al. 1993, Clements 1992, Clements et al. 1991, Clements 1991a, Clements

1991b] :

• EXPRESS to SQL Compiler

Using an EXPRESS to SQL Compiler software tool created at MSI by Clements, an

EXPRESS information model can be directly compiled to generate SQL statements

which will later be responsible for creating SQL compliant tables within the

database. In this way the database is structured according to EXPRESS defined

schemas so that relationships are strictly maintained; relevant information

concerning the tables and their interrelationships are automatically generated and

stored in a dictionary. This approach is database. independent (EXPRESS is not

biased towards implementation) and can produce as output SQL statements which

function for different relational database implementations, such as Ingres and

ORACLE.

• STEP Parser

This tool has been created by Clements to enable the population of the tables (within

different relational databases) with real data in the format specified by the

EXPRESS model. This process is structured by information contained in the output

files generated by the EXPRESS to SQL complier.

Page 98

USED AT: AUTHOR:

NODE:

~-'-

PROJECT:

NOTE:S:

Rn
'0

1

Relatlon,hlp C.rdln.lltl
--. .,19,_ ,

----- p ---
____ I _ e&a£t_

ID£F1X

VALDI:W SINGH

DennllJoa-or I.ror_"on ...od .. l.
lalll,"UrIIMlII " .. lIon.hlp. "

2 3 • 5 , 7 • ,

, ,

10

DATE: 15/05/93 WORJ<ING READER
REV: DRAf'T

X RECOMMENDED

PUBLICATION

ENGINEERING aElOORCK I)

PART NUIIIIEfI

IEngin_~~c. P
IU-Iion

I'IlOCUI PLAN /4

PAOCI!8II,
PART NUIIeEA

hMfG,-_caL=::.: :;c~ .. :;c.,=---_--1,
"'_o-iplion

•

p

MFG OPERATION AII.GNMKNT {41
.......-jPROCESS"'l..AH1) ___

" . ..,WOCIfIERAnDNI) ~
1 ,

MIg ap....ton DMcripllon
"'--.ine MIg ap... .. 1ion ID
Nn. &.I/v ap... .. ~on ID
"' naM &.IIg ap... 10
SM!p1iln.p.i

.. rc CKLL CONFlCURATION /5 WIchinin; IIn.t per i_
1IFOca.L QAOUP I) '"'-Iftg Itnl per iIIm
ASSI!T I) Cp..1ion Iim.p« itwn Ser.,

lft.lll1t. of &.IIgSlllIion •. 1 P

J 1 P RF.sOURCIi:..u5ICNM~T/4J
r-------/M-ANUYACTI1RIN: VACIUTV/II MVC VACIUTV A..ISIGNMKNT141 1IF0000000TIONID

ASSET., WGOPDU,TIOHI) AeKlURCI!ID

PERSONNEL/IOI
ASSET ID

P .. aonneIIO N_. -,s.. •• _

ASSET ID Roo-ouroe T ""
DMa'pkln 1 1 FNd Q,j"'My R • .cI
~bon Unit of,.
Wonoing Cepacity SpNd

l.8baI Coatp« hour D.pII of CUI I' H.nclint Cc.lp« hour b. 01 p.tNM n Room.... 1

--¥- aaouRc£ '"

I
MACHINE/I01

,-----. """",ACE.,
P,

CompanrlN

"""-Cont .. tlP .. _ T...,on.
F.

Re.ol.l"O.t Type
o..aipMn
<-....
A.ccowll Numb«
lhil of".
Iht PrioI
Bu)'n.t.k.&opPy Code
c.talo;u. QdII """ber
Purehuirog LHd Tim •
lat 0.0. 0
o..""1f Or_eel
Er/.c:mly 51.,1 0
Elhlctvil)' End O.tt
Stock on-hltld
AIIoe.t.dIRoo......:I SIt:>dt

SetIOp " Lnt 01 "' ____ for Saap

!TITLE: Information Modola Entity-Attribute relatlonahlpe

Figure 6-2 IDEF IX entity-attribute relationship model representing a composite view of the information models

Chapter 6 System Life Cycle Support

In addition an IDEFlX to EXPRESS transformation tool was developed by the author to

enable the automatic creation of an EXPRESS based information model from IDEF IX

entity-attribute relationship descriptions. It operates by directly mapping the entities of the

IDEF\X model into entities of the EXPRESS model. The reader should refer to Appendix XIV

for details on the EXPRESS based information model in which the global schema is described.

The establishment of this IDEF\X to EXPRESS computerised link not only offers a means of

formally structuring information requirements but also supports design, build and change

processes associated with them.

The overall approach conceived by the author offers the following advantages:

·It helps simplify entity-attribute relationship modelling.

This is possible because EXPRESS has a strong object oriented nature where the information

models are treated as objects, thus allowing modularity and data inheritance. It reduces the

tedium and complellity associated with the schematisation of relational infonnation models

by eliminating the need to specify all common or primary attributes (which are necessary to

link the tables together). Instead relationships among tables can be readily (i) established by

allowing tables to inherit the attributes of other tables to which they are linked (as illustrated

in Figure 6-3), and (ii) altered and relationships added or removed without causing chaos in

what remains.

• Allows easy extension and modification of information models.

• Supports and encourages the reusability of information objects, thereby reducing the

development time and enabling wider scope solutions.

• Enables the use of IDEF}X created models, this being important in system development and

maintenance phases of projects.

• Implementation is database independent.

6.2.2 MCS Functional Modelling

Within the context of this research study, the process of functional modelling is concerned

with much broader issues related to formal identification and description of dependencies

among functional activities, rather than focusing on specific details pertaining to the

capabilities and requirements of each functional activity.

Page 100

USED AT: AUTHOR: VALDKW SINGR DATE: 24/05/93 WORKING READER DATE corrrr;n,

PROJECT: Idon"aU .. mocl.l, •• IU,. .. lklbut. REV: DRAF'T
,.Ial)o •• blp. for l.p.11o EXPRESS

X RECOMMENDED
NOTES: 1 2 3 4 5 • 7 a 9 10 PUBLICATION

ENGINEERING RESOURCE" PROCESS PLAN 14

ORDHR ENTRY It PUT MAJTKR.IOMn L """""""
1-----0 I~"R-. P

,
MFOOAOEANUMBEA,""" I' , """" Pr_ OMQipkln

PrKMdng MIll Of_ Numbtr
,

EllMhity sa.t Oa .. ,
DMer"" EttectMty &od 0 ... P ,
Pro6.K:t Err.ctMly 5"'1 0." ,-"101 ... _

Pro6.K:t EIlwctMIy End Oa .. ~Chq. Notice NI"C OI'KRAnON AlSIGNNKNTI41

T, .. 0..,.. EIIKtad t.,.
r,4I MFO 0PERAl1ON ID

~ 0....0 ... (M1.oIe
u,ol 01 Ma __ • PI\uw out PIWt """baI'
I.hr Ph.:. PhaMd out br Part Numbai' "'tu ap.aIion DMeripDI
o_au rr """b.ot~ Pr~1g Opat.kIn 10

T'
"""b.oI~"ld'Iol«""J

.... , Wig .kIn 10

P , AI_MW. "'Ig 0per.1ion 10 , Set.Ip 1inI. par i_

.~.lr.~
"FG CELL CONnCURAnON 15

MIIchining par i_
~1iIn.par ... , I wo CELL OAOUP ID ,.-. ep.aiton Iim. par i_

• Scr
CUSTOMERn I~/ftb. 01 "'Iv Slalionf, I
CUSTOMBlID

, I P
Priofily

eom y/N OfdarSta..,. p P RESOURCE ASSIGNMHNT f4J -- PlIMad Ouanlily Mf'G FACIUlY ASSIGNMENT 141
Conlact P_IIOI'I lkIilol Ma MANlWACTURINC FACIIJlY fll
T..."....., ~SWto.u., .. Ra_T.".
Fa ~End(M ..

~, -- 1 1 CMn~rrR"""ad
F'" !.hit 01 t.lauur. """

WooIoing c..p.c:ily o.pr. otcul

.J.~u
L.abar Coal par hour Numb_ 01 peaaM
Hlln6\tCoaIparhOUl' "",

P , P , 1 4
SIIOP n.OOR STA11JS19 BOM CHILD 111

~ACHI~KfI01 rp<' """"''''''' Ra_ca T.".

AnI .. Ouan.Ty P,ocb:ad
, , Dnc:ripkJn

Numbai' 01 components (d'IoI<* , lDc.tion won.. c..1r"'::" Ui~"'1oOr'I RIo .. P_tT.". r1 "-n,M..mt.. ""tu" c.p.city WINd ClI ... ~ty I*' "-nbIy Rapeiradon
lkIilol ""'.

Elt.ri¥ity Start 0 •• PERSONNEL 1101 RapaIr Work 00. Numb. 1 P lhil Prka
EI'-' ty End 0 ... Mal. jobeiz.aecommocll~· XlYIZ •• "

SUPPLIER III lIoy/Uaka&lpplr Cod.
.... 101"'-""'. ""","
l.Hd Tim. Off .. 1

P.-.l10 t.Iad>ining to., par hOUf C.talogu. Ofa ~b.

Eng;.-n, Ch"lI_ NCIka
N_. HoI .. P_

Pureh.lingIl.aad r",,_ -- Sp..d R ... g. (''' ••. It.Iin.J ComJ*lrlN_. lall Or ... D ••
a-.g. Eheaad by T_ CkJ.n'ty 06wad
Chanpo.. F Rang. --... ", P.yioad

ContKtP __ EIr.ctYity Star, 0 ...
RII.llo."hl, Ca,dlnalll, ~ Out P_. Nurnt.. ... EllecWily End 0 ... -- -. ___ 1

Phued Oul t.,. P.,,..,,,..bar ::p1'::Valopa' Xl'f11JA/8
T_aphon.

Stodr. on.ftancl F. -.-,._ ... - -"", Tool Chanp TIm.
AIIoc:ale&AaNfwd Stodr.

---- , --- F CIIanQII TIm.
Scrap V

T Roe •• on Tom. Unit 01 "' lot Scrap

Tool Adju."" ... 'T
R.pid T _ .. R ...

NODE;: IDEFlX ITITLE: Inlormatlon Models Entlly-Attrlbuta relatlonshlpslor Input to EXPRESS NUMBE;R;

Figure 6-3 IDEF\X entity-attribute relationship model modified for translation to EXPRESS schema

Chapter 6 System Life Cycle Support

A proprietary IDEFO activity based modelling tool [Meta Software 1990] was used in this

study to produce a function model from which, in a structured manner, identifies and defines

dependencies and inter-relationships among Production planning, Finite capacity scheduling,

Process planning and Cell control activities. A further decomposition of this functional model

(in a hierarchical manner) can be realised to define more closely the interactions among the

functional activities where inputs required to drive the functions and their outputs (generated

under supervision of their controls and enabling mechanisms) are represented. The

hierarchical decomposition of this functional model is illustrated in Figures 6-4, 6-5 and 6-6.

Please refer to Appendix XII for an overview of IDEFO.

6.2.3 System Behaviour Enactment

A formal definition of the interaction processes between the functional components of an

integrated system requires complete and accurate descriptions of (i) the flow of information

between function blocks; and (ii) the form and type of information; which need to be made

available to support and drive those functions, so that they can realise their assigned tasks. As

previously discussed (in Section 2.5.2) there should be a means of

(a) unifying the perspectives of functional and information modelling in order to establish

an association between the two modelling streams; and

(b) facilitating the structuring of downstream life cycle processes, for example to aid

implementation and configuration in relation to co-ordination and control for

functional interaction.

Hence a novel approach is offered in this research study to meet these requirements. This

approach involves use of an IDEFO/lX Parser tool and the FIMM Configurator (previously

described) which together can formally define and describe the behavioural aspects of an

interoperating system where the

• IDEFO/lX Parser is responsible for the enactment of MCS function and infonnation models

in order to establish association between them.

• FIMM Configurator generates data which encodes the required associations (refer to section

5.3 for further details on FIMM Configurator).

As the IDEFO/lX Parser and FIMM Configurator tools need to operate in close relation with

each other, they share the same database (i.e. FIMM database). Within this database all

relevant data concerning the functions, information entities and their nature of association (i.e.

as either input or output) are stored.

Page 102

un.o AT, ._.
VALDEW SINGH ~n. It/n/n -,~ - ~n -.

.1IO.,tr.c1", D .. crlbe Mea: tu_do ... 1 -. ~
~

lal.er.r,blUoallll, 10 .. ,,.rl ,.'1 ftl8aur'aclur,
X ~ _ .. , • • • • . , • • .. .a lcuIOl

"""""" """" Enterprise: ManwtlCturina Cap!lbility Enquiry cl Rcquect

Ayallabilily of Maniradurina
Remurua cl Facililia

• Procuremrnt 01 Manu!ac:Iurin&: Rc:awrc.ca

-"""" --""""""'" Manuf'Kbuirr& RcmurceI ""'" . cl F.ci~ R~ilition Part manuracture Shop Floor Statua
Production Rcpon.

r,;, with MCS AUocatim olManufaaurina Rc.oun:cs a. Faci1ltia/Pk.klist

"" Taraaim Report (a' Pro8JallDe1ay. a. Rc:.w.rcca Sh«IIall

Shop floor S~ Repott "'" """"--~
Finilhcd Produc:ta

ID RejccuJScnp

MCS Functims ManuflClurina Cell

.UN;,
0-0 r~l Context Diagram J-'

Figure 6-4 : IDEFO function model (Context Diagram)

aIW"T. VALDEW SINGII I,,""IJ

IlIltr·,.I.doalhl, 10 .. pport put 111811111'11c:1",.

IIOT!:" t I J • , • 1 I • la

PrudUCl Orda III

.~, ..

'1IILICIoTIOJ

Pre.PI.nnlna 1-----------~>--+--------------.OrdcrAcknowIc:dganc:r&

,~,

rL.--L.t ____________ ~Procun:m:nt cl Manuf'KWring RCSOW'CCII

"-___ +I AllocItioo of Manuf.aurina; Re.ollJOCl.t:. Facilitic .. /Picldist

~-----------r~~~~
~--------~~-?~~~PWu

1---" Rc:jocta/Sa1Ip

'-------.... l.--.--_:"'~-~.-.. Shop F100c StilUS

j t
[,.------------~ () "''''''"'''Cdl

MC$ Functioru Shop Roor Datll A.cquialtion

Figure 6-5 : IDEFO function model to describe Production Planning and its inter-relationship with other MCS functions

';liED AT, 0.111'_. VALDa:W 51NGII DArr.. U/Ol/U -,~ - Mn
_.

.~OJ£C1'. Duul" MCS runcUonl1 Ir.v. - 0
Inln-,.lItlorl.lillp 10 .upporl ,.'1 lftIIaul'lclurl -. , • . • • • , • . .. X ~~ III

'UI.&'ICA1'tOll 0

Avlillbility fI MmlfIdUrina
R«*MIftU.l Facilities

FntcrprUo ManutKtllrina Caplbilily

1
Proc ... ~
Planning """""Plan.

rv--.toaurina •,. "'"
&. Facilitica Requisition

~ Rcport(or PropauIDdI)"" ~ SOOrtfan

""""""on""'" _ ProducUon
Planning Proaatanent « ManuC.aurina; Rmcurca

eonr""", ,.. AUoaucn ~ ManufIClUrirlf, Rcaouroc&.t: Flci1ltlCl/Plck.lisl

"""" r' A21
~

>Wmf~
Shop Floor Statui """" '''''''' (U"""""'<d) ~ Flair. C.pacllJ

-
Sdlldul.r

_ Schcdulca

A22

Product ~IlOM
o..lgn ~

(CADICAMI ,... &tainocring Rcsourca
~

"'" ~

MCS Functions ,_.
u I"~' A.nnlng ro' Manulactu,. I'_u,

Figure 6-6 : IDEFO function model with detailed level of decompositon for Planning for Manufacture activity within Production Planning domain

Chapter 6 System Life Cycle Support

As illustrated in Figure 6-7. the tools perform the following specific tasks:

• IDEFO/1X Parser

This sons through and assimilates large amounts of data generated in the IDEFo and

IDEF)X repons which contain details pertaining to the models. The following

services are provided :

- selection of all functions defined in the IDEFo functional model;

- selection of entity-attributes. which comprise the various infonnation models

defined with the IDEF)X tool;

- interactive selection of required functions and information enhUes through

specially developed user-friendly interfaces (as illustrated in Appendix XVII).

where the selected functions are assigned unique identifiers for easy

representation; and

- populates selected data into the FlMM database.

Program listings for the IDEF)X Parser implemented by the author are included in

Appendix XVIII.

• FIMM Configurator

The FIMM Configurator processes the data derived from the IDEFO/lx Parser. It

offers services which enable the user to interactively set. edit and display

associations between functions and information. The configured associations

between functions and information entities are stored in the Function-Information

Association Table of the MCS FIMM and used (during run-time) for the following

purposes (see section 5.3) :

- to ensure accountability of information to functions; and

- to control the flow of sequence among functions in a controlled and co-ordinated

manner where information availability and completeness is verified prior to

enabling any function requiring access to it.

The IDEFO/lX Parser and FlMM Configurator have been applied to the IDEFo function model

(illustrated in Figures 6-4. 6-5 and 6-6) and the IDEFIX entity-attribute relationship model

(illustrated in Figure 6-2); this by processing their generated repons (included in Appendices

XVI and XV respectively). This proof-of-concept demonstration illustrated the ability to

enable and suppon the establishment. management and change of associations between

functions and information as indicated in Figure 6-7.

Page 106

IDEFO generated report on MCS Functional model
IDEF IX generated report on MCS information model

(ENTrrY, 1E1, ORDERI!.N'l1tY, (MFO ORDER NUMBER,aJSTOMER ID,PARBNT PARI' NUMBER), (~Mf'a Ordc:r
NWDber,Daa-iptiaIl.Produd. E4'odiYi1y Stmt DUI,Produa BfI:Ictivity BDd Daz.1YPo. Due [)aID,UnIt d. MDuura,Unlt PrbI,Ordr:Ir QamtiIy,) [Diapan:r AO] Pm muud'aaure.,itb MCS

Activity: (AI) Pm-Plumina
Activity: [A2] PlmnirIa b M-r.:tum
Aaivity: [A3] Mmutac:tariI!& CautroI

Arrow: CutDml:=r Ordc:z- llDquiry • RDcpIeJt
CmtJol fta:n: ClIStOmm Onb &qUy .t Rcquc._
Control To: (AI J PIe-Plmnina

(ENTITY, m, PART MASTER-BOM, (MRBNT PARI' NUMBER,), {E1ktIvIry Start Dus,BlktMty IIDd DuD,UniI o!McuuJo~QqD
Notia:I.Cbul&o Ef!i:dcd by,DaD:: ofCbaJao,Pbucl oat Part NWDber, PbuDd oaI by Put NIIDiIor,NlUDberofLcnocIl,Nua:abcF of ~ (chD.dnID)ll

(ENTITY, [B4,PRoc:ESS PLAN. (PROCESS PLAN ID,PIU[I' NUMBER,MPO CEI.L GROUP IDI.

1-Dooaiptioa,II

{DEPENDENT mmn', OB21, BOM am.o. (PARENTPARTNUMBER,PARI' NUMBER),
Arrow: Availability ofMmIlfacIurina RctoI.ln::cI ok PKiliticll

CmlIroI. Prom: Availahility of Mmufacmrirl& IbourCCII A Puiliticll
{Number of ecmpour::DlJ (c.hiIdrcu).Part 1YPo,QIImlit)' pm' A.=nbIy,EfJ'oetivUy Start Daz,Effoc:dvil:y BDd DuD, Unit orMculn,lad TImII
~o.:n.Notb.ClIqoEf!Dc:cDdby.a.mpo.m.

FUNCI10NS

~ {?~~ __ ~_~ __ N=m __ ~ __ ~_'~_~ __ N=m __ " ____________________________ ~

V INfORMATION

"uu ORDERP.NTRY"

tAO) PctIrWll1&c:buo with Ma"
"(All f'ro.Pla:mlia&"
'1Al) ~ b MaJwfadwl:,"
'1A3) ~faaurina CantroI."
'1A21) Prodac:tim Plcmiaa"

"1""1""'"" _"
"'MA) I'roctIIa Daip (CAD/CAM)"
"IA2:2J Piahic CapKity Sdmduler"

IDEFO/IX Parser
.. Extraction of functions and infonnation entities

'

.lk. Selection of r~uired functions via IDEFO/lX Parser
.. /<Y: Asstgned um~ue tdentifier
.... ~' for seled.ed functions ~. _____________ ...

"(All Mmnl':aeturin& CouIrol" ., SFCTRL

'A2lJProcltctim.PlmDiD&" • MPGPLAN
'lAD) Proo::e. Plcmiua" ., ROum
"'{A24jProdw:tDetip(CAD/CAM)" • DESIGN

iA22] PiniII: Capacity Scbedulc:r" .. SOIEDUlER

InfonnaUoa

......-
J.awuI MFGPLAN

1.laplll DESIGN
O.Output

FIMM Configurator

.. Con6gure association between
functions and information

~
ORDER BOM PROCESS
ENTRY PLAN RESOURCE

I I

0 I I

SCHEDULE

I/O

"'IEl PART MAS1BR-BOM"
'1E4 PRc:x:BSS fI..AN"
"0821 80M 0iD..D"
"OS41 MP(] OPERATION ASSICJNMBN'r
"0643 RESOl1Rai ASSIGNMENT"'
"DB42MPG FACILITY ASSJONMINr'
"IE.5MPOCELLCONFIOURATION"
"IE6 RESOURCE"
"IE3 ENGINEERING RESOURCER
"IE7 aJSTOMER"
"1E8 SCiEDUl.B"'
"1E9 SHOP FLOOR STAlUS"
"1E10 MANUFAClURING PAaurY"
"!Ell StJPIIUER."

"OEIOI P8tSONNEL"
"DEI02MAanNH'"

"lEI ORDER ENTRY"
"IB2 PARI'MASTER·BOM"

"1E4 PROCESS PLAN"
"1E6 RESOURCE"
"1E3 ENGINEERING RESOURCE"
'1E7 aJSTOMER"
"IE8 SOiEDULB"

"IE9 SHOPPLOQRSTAlUS"

"mlo MANUPACI1JRINO PAcn.rrr
"1811 SUPl'LIER"

Selection of required information
via IDEFO/lX Parser

ROun: I 0
SOIEDULER I 0 I-====--+-.--I--i--+-+-+--i--+--;;'-+-' FIMM Function-Information Association Table

SFCTRL I

Figure 6-7 : Methodology for function-infonnation association

Chapter 6 System Lire Cycle Support

The methodology proposed in this research study is based on the use of IDEFO/lX Parser and

FIMM Configurator tools and offers an effective and formal means of capturing and

establishing a link between MCS functions and their required information. No extra effort is

placed on the system designer or builder, except for con figuring the required associations

based on data drawn directly from existing function and information models. In addition, the

consistency and accuracy of the associations between function and information is ensured and

maintained from a very early stage in the system life cycle (Le. the conceptual design stage)

right through to system implementation and maintenance. This reduces uncertainty and

resolves many potential conflicts. In addition, this approach also helps improve the

accountability and traceability of functions and information.

6.3 Summary

As illustrated by this research study, system design and modelling can provide an effective

entry point for supporting the life cycle of systems in an integrated manner (Le. in a manner in

which the results and knowledge generated at one phase can be used during other life cycle

phases). Models generated using one or more chosen modelling methods can provide a formal

representation of different views (Le. function, information, behaviour) of the system under

consideration and can serve as a source of usable data to structure and enable various

downstream life cycle processes.

However, in order to truly achieve and enable integrated life cycle support it is necessary to

allow usable data to be referenced, accessed, manipulated and formatted in a manner suitable

for use at each life cycle phase. The work reported in this chapter represents a useful first step

towards meeting this requirement, namely through use of the following software toolset:

• EXPRESS to SQL Compiler

• STEP Parser

• IDEFIX to EXPRESS transformation tool

• IDEFO!lX Parser

• FIMM Configurator

Each of these tools exists as an independent entity but are linked through a shared database

(Le. FIMM database) where usable data is stored for common access and usage to support the

different life cycle phases. It should be noted that the software toolset developed can be

configured to support other system design and modelling methodologies on condition that the

methodologies in question provide ready access to their underlying data and knowledge

structures which they use to encapsulate function and information models.

Page 108

Chapter 6 System Lire Cycle Support

Finally. in relation to the overall methodology conceived in this research study to enable

interoperation of MCS components (see section 3.5). this chapter has reponed on two sub

methods. namely:

• Means of Enacting Function Models

• Means of Enacting Information Models

In view of their need to adapt and respond to changes in system requirements. the set of build

tools used here offers the system builder a more formalised and structured approach (as

compared to current practice) to the creation and maintenance of integrated manufacturing

systems.

Page 109

Chapter 7

Use and Appraisal o/the Methodology Derived

7.1 Proof-of-Concept MCS Implementation

A proof-of-concept MCS implementation study was carried out in order to illustrate the

application and ascenain the level of effectiveness of the methodology derived in this research

study, which seeks to enable interoperability among MCS components.

In this study a proof-of-concept MCS system was built to demonstrate the interoperation of a

number of typical software applications which are representative of the manufacturing control

domain being considered in this research study [Singh and Weston 1994a, 1994b, 1993]. The

main generic class of problem tackled in the system involves the transformation of a

commercially available stand-alone proprietary CAPM package, namely MCC, into a more

open system so as to enable interoperation with other MCS components. This demonstrates a

panicularly imponant industrial capability, namely the integration of existing legacy (or "as

is") software applications. The following sub-systems are utilised :

• MCS FIMM (Functional Interaction Management Module) to facilitate MCS domain

specific functional interaction and to govern system behaviour (during run-time).

• CIM-BIOSYS lIS to simplify interconnection and to provide common general

purpose integration services to support functional interaction.

• Set of build tools (used and developed in this research study) to formally structure

- interaction among MCS components;

- implement and maintain information system on a system-wide basis, by

managing and maintaining a data repository which holds information of

common concern.

PagellO

Chapter 7 Use and Appraisal or the Methodology Derived

7.2 MCS Software Interoperability Demonstration System

As illustrated in Figure 7-1, the fellewing functienal cempenents are invelved in the MCS

demenstratien system:

• Productien Planning

This encempasses .order entry, scheduling, and manufacturing reseurce and facility

management which includes allocatien, procurement as well as routing fer part

manufacture. MCC (Manufacturing Centrol Code), which is a cemmercially available

CAPM package frem Jehn Brewn Systems PLC, was chesen fer this study as its

infermatien is stered in arelatienal database, namely ORACLE RDBMS, and is to a certain

degree accessible by ether applicatiens. The purpese .of MCC is te turn product .orders into

manufacturing schedules fer enactien by a set .of manufacturing resources. Please refer to

Appendix XIX fer an .overview .of MCC.

• Finite Capacity Scheduler

Altheugh the finite capacity scheduling function available in MCC is utilised, it is

intentienally treated as an independent and separate functien in .order to iselate and

effectively study its interactien needs with ether MCS cemponents. This finite capacity

scheduling sub-system is respensible fer the shert term planning .of manufacturing .orders in

a manner which eptimises manufacturing operatiens en the shop floor. It relies en the

availability .of data from productien planning, treating it as its input, to perferm the

necessary scheduling function based en, fer example: resource and manufacturing facility

allocatien and censtraints, part procurement and manufacture lead time as well as reutes fer

part manufacture.

• Cell Controller

A cell centreller, separately cenceived and develeped by a ce-MSI researcher, Binglu

Zhang, was integrated inte the MCS demenstratien system. Here the cell centroller has

respensibility fer a segment .of a pseud~ shep floor (based en data supplied by a local

engineering cempany manufacturing cranes and heists) and is required te despatch planned

manufacturing orders (scheduled by the finite capacity scheduler), and te co-erdinate,

execute, centrel and meniter the eperatien .of shop fleer activities. The cell contreller is alse

responsible fer shep floor data acquisitien thereby enabling and generating productien

status feedback.

• Decision Support System

This class .of software system was represented by a dynamic cost analysis tool which was

created by anether co-MSI researcher [Shaharoun 1992] te suppert strategic decisien

making for ecenemic part manufacture. This decisien support system has been included in

the demenstratien system in .order te highlight the ease with which the system can be

Page III

Cbapter7 Use and Appraisal of tbe Methodology Derived

Interoperating MCS components

Decision Support System

Production Planning ~
~~ Q Cost Modeller

MCSFIMM

CIM-BIOSYS lIS

... /

Repository

Commonly lbared
Wonnation Ittmd
with rcfen:nce to

infonnation modcb:

~ ~
---=::::::: Mapping of data@jcc

to the repository
Cell Controller

Data Store Database

Production Planning

"R:-.'-!"' ~M5
f? "'""'""' s_ • {1

Dec~ Support ~ Finite Sdaeduler
System

~ ~.~ s_

Cell Controller

MCS F1MM has knowled,ile of information
requirement and availability of resources

ID support internction between
MCS components

Figure 7 -1 : Demonstration system for MCS software interoperability

Page. 112

Cbapter 7 Use and Appraisal or tbe Methodology Derived

expanded in terms of building and plugging in ad-hoc specialised MCS components that

require access to data available in the system data repository. It relies on both planned and

actual production data. derived from production planning and the cell controller

respectively. to perform the necessary cost analysis.

It should be noted that the cell controller and the decision suppon system for cost analysis

represent a new generation of modular and reconfigurable MCS components created through

research effon at Loughborough's MSI Research Institute.

The MCS demonstration system was built to facilitate interoperation between the above

mentioned functional components in a manner to enable sharing of and access to information

of common interest (see Figure 7-2 which depicts information flow between functional

components and dependency between information entities).

Figure 7-2: Overview of information flow and dependency between information entities

Page 113

Chapter 7 Use and Appraisal or the Methodology Derived

7.2.1 Implementation of the Demonstration System

The following four inter-related meta-steps were supported by the author's methodology in a

way which structured the development of the proof-of -concept MCS demonstration system:

• Implementation of a system-wide information repository

• Flexible interconnection of the functional components of the MCS

• Establishment and configuration of appropriate functional interaction capability

• Establishment and configuration of user interface capabilities

Details of the activities carried out in each of these meta-steps are outlined as follows:

CD Implementation or a system-wide information repository

Here the following activities are facilitated which are representative example activities

typically involved in establishing and managing the manufacturing information system:

(a) Identification and formal representation of information requirements

A global schema corresponding to system-wide shared information, i.e. shared between

the MCS components concerned, was represented in the proof-of-concept system with

reference to the generic information models. It represents a unification of information

entities of common concern (to be held in the system data repository) which will

require to be accessed and updated. Here IDEF,x was used to formally represent the

global schema (as illustrated in Figure 7-3). It uncovers semantic propenies of the

underlying information system and make them explicit within the data definition of

information objects.

(b) Mapping between local databases to the system data repository

Proprietary information, stored in the MCC relational database, which is of common

interest to other MCS functional components, were mapped onto the system data

repository via reference to the global schema (refer to Figures 7-4, 7-5 and 7-6 for

illustration). This same mapping principle can be applied for all legacy components, in

which proprietary information data structure is used, thereby enabling other system

components to gain access and update that information in a flexible manner.

(c) Creation of relational tables stored in the system data repository

The set of build tools used here to develop the system data repository is depicted in

Figure 7-7. First the IDEFlX to EXPRESS transformation tool is applied to

automatically create an EXPRESS based information model which has an underlying

data structure related to the entity relationships defined in the global schema, i.e.

Page 114

USED AT: AUTHOR: VALDEW SINGH DATE: 24/05193 WORKING READER DATE CONTEXT,

PROJECT: laformaUoa ~1I'DtlIJ·.ltrllMah REV: ORA.,.
r.ldloa.blp.'Of' Input to EXrRESS

X RECOMMENDED
NOTES: 1 2 J • , • , , • 10

PU8LICATION

ENGINEERING RKSOVI:CE"

ORDRR I1.N11lY I PART M.uTKI..aoM 11 ,
'1: 'D

WOOROBt NUMBER '..-..,,."""- -- p

I"""
" Pr.-.cing"g 0" 1 1 £~ty StIrt Oft -- £n.cthoIty End 0 ...

' P
1

Pl'ocb:t EhclM", se.t 0.- lftIoI"_
Product EJfKtM", End 0 •• Er9r-'~C"""'''''

'''' CMno' EII.cW by r,- ...oOPaU.TON D

~ 0...0 •• o.t.oIChanfe
lbt"" a...._. Ph-. out Part fbftber
lh. Prioe PhaMd out by Part ber WIg ap..kn o..cnp4ioln

0-... 0.._", beroll""- Pr_",*", "19 ap..WlID
"""'ber 01 comporoan.I~"") Hul "la ap..tion 10

P 1 '('
............. 1g~.1ian.0

1 sn.p Wft. J* i'-n

~
~-p..;""

,J,1'u
HMcIi'I, plO' iIam

1 ~.tion lira. J* iWrn , Suap , ••
CUS'TOMRRn

CUSTOIIEA 0 1

_~,' P
Priori",

Comp«lrlN_. 0 ... 1kII_ . P P IlBIOUItCB ASSIGNMENT 143 -- ~~Mw" MFe rACIUn AanGNMEN'TUl
Cont.ct P-wn Unitol .. _

MANUJ'ACT1JllING FACIUn ft. , ~s...tO'"
..... D

Ra __ TrP"

F. Sd'IaWIe End 0..
1 Oulllli", R,"""ad

DNa"iplion 1

~
F_ UniloI,.-Wor1Ung c.p.c;", -.

.~E."
t..bcII' Co.lpIO' hcuo

......,b«oI~ HanckIi Cc.t plO' heM
_ ...

P 1 P 1 1 -4-1
80M CIIILP III

MACIII~KII.:a
..---;;t AE90UACED

SIIOf'tl.OORBTATUB"

--
PART NUMBER ""_c.T~

A<:a..al 0.. ... ",. P.~ 1 1 0Mcr,*,"
Number 01 componan"jdMlch"'J """tim w ... C-tr..<: tion R. .. P •• Tp Q Acc:cu>t ,...,~

Ad". C~c:il)' UliiMd 0uan1r1)' plO' AaMmtII,. R.p.irad,," Lhilol
Ef'-<: ty Slat 0 ... ,.:aSON'N'RL/ItI R.p.ir Work 0. ... Num 1 P Lhit Pnc.
Elt.riooity EJWl D ... W ... job aiz. _ ... odoIlIod· "JU'ffZ

.UPn.IER III Buyllolakal9upply Coda
Unilof _. P ID '" c.~Dtc_ bef
lMd TiIn. OIIMt ~ Co.. PI" hcuo-D Pwdl.u.g l.-d Tim.
eng;.-ng C"-',. NOIC.

N_. Ho-rHP_ l-.tO. D •• -- SpMd Rang·I ··lMin.) ComI*lJIN a-..a. Ellaellod by , FMd Ralga -- Q., ... lilyo-d._

"""'" Do., Pqoad ConllC1: P.toro E.t.I::-..ity ShIrt D ••
R,I.I~n.hlp C.rdln.IIIJ PtI-. Out P t. W"'ing En~~· XlYflJAJ8 u .. ,- E'Iec"';ty End 0 ... -- -.---.y PhaMd 0.1 by P." S. ... pTim. F. Skid< ,,"~.nd

Moc..IIod'R......t Skid< --, --- _ ...
Tool Oaanga Tim. Sa.pV -, --- FMd Chan,. rom. Unilol w. b Scnp T __ RoI._ Tim.

Tool Adjun 1 Tim.
R.p.d 1, R ••

NODE: ID£flX !TITLE: Information Mod"'s Entlty-Attrlbul8 rotatlonshlps for Input to EXPRESS NUMBER:

Figure 7-3 IDEF,x entity-attribute relationship model representing the global schema

"

Process Plan

ITEM_NO
NAM
N0..ITEMS_PROD
PR!
UNITYAM
BIll._OF ...MAT_IDENT
DESCR
TOOLYO

FROM_OPER_IDENT
IDENT
ROUT_IDENT
TO_OPER_IDENT
TYP
ENG_CHANG_IDENT
LAG_UNIT_NAM
MAJCLAG
MIN_LAG

OPER_IDENT
ROUT_REQJDENT
UTIL
RES_IDENT

NAM
ROUT_IDENT
TYP
UNIT_NAM
DESCR
EFF_TO_DAT
FDCTIM
ITEM_TIM
YIELD
BATCH_SIZ

ITEM_NO
OPER_IDENT
UNIT_NAM
FDCQUANT
ITEM_QUANT
COST

Common resource

BOM

ROUT_IDENT
ENG_CHANG_IDENT
FDCQUANT
ITEM_QUANT
RES_CLASSJDENT
RES_IDENT
TYP
PERS_IND
RES_IND
PA~IND
INT_IOBJND
SIllFfJND

BIlL_OF _MATJDENT

BIlL_OF_MAT_ITEM....NO

BIlL_OF_MATYAM

DESCR
IDENT
NAM
COSf]ER_MIN
CURR_NAM
FIX_COST
OVERHEAD
FACfOR

RES_CLASS_IDENT
RES_IDENT
EFF
PRI

NAM
COST]ER_MIN
DESCR
FDCCOST

Figure 7-4: Grouping of product and process infonnation represented in MCC database with reference to information models

Manufacturing
Facility

IDENT
LAST_WIP_lRANUDENT
OPER_IDENT
ROUT_REQJDENT
SCHJOB_IDENT
SCH_ASS_IDENT
SCH_IDENT
START_TIM

ASS_GROUP _IDENT
SCH_ASS_IDENT
CALflAM
START_DAT

IDENT
OPER_IDENT
PERC_COMPL
QUANT
SCH_IDENT
SCHJOB_IDENT

DEM_IDENT
SCH_IDENT
IDENT
ROUT_IDENT
PR!
QUANT

SCHJOBJDENT
SCH_ASS_IDENT
SCH_IDENT
IDENT
FROM_TIM
ro_TIM
OPER_IDENT
ROUT_REQ.JDENT

Figure 7-5: Grouping of schedule infonnation'represented in MCC database with reference to information models

Schedules

Cbapter 7

....... ,

__ ID

Op=aticGID
Alm-.tivo 0pcn1Xm ID --lknp-
~OpenUaaID
Ncn Opn.ticG ID

Use and Appraisal of tbe Metbodology Derived

"- s ""
""""'= ID SlIwlil:rlD
Compmy/N~ Compmy/N~
c....a """"
T T_
Fu ""

Figure 7-6 : Mapping between infonnation entities

Page 118

Chapter 7 Use and Appraisal or the Methodology Derived

Inrormation model.

ThaD~«m.U.D to I ~ r I
EXPRESS schema

In/onzuUkm Mott./Jing EratiIy-AIbibw.
EXPRESS 10 SQL RelaJiolUhip ModelJing

CompUerto

~ ~
creaIe IabIcJ

STEP Parser to ,.. EXPRESS T IDEFll
popuIatc daLa EdIt ...

into dictionary Implementation & Information system
change management design

Figure 7 -7 : Set of build tools to develop data repository

during activity (a) by using the IDEFIX modelling tool. The reader should refer to

Appendix XIV for details on the EXPRESS based information model used as the

global schema of the MCS demonstration system.

The EXPRESS information model is then compiled by applying the EXPRESS to

SQL Compiler to generate SQL statements (responsible for creating relational tables

which will be stored in the system data repository). In this case, the MCS

demonstration system data repository was chosen to be ORACLE cased. ORACLE has

a similar nature to that of the MCC database, and this simplified to some extent,

information sharing and transfer between the two databases. Hence the system data

repository was structured according to the EXPRESS defined schemas which has the

important benefit that relationships are strictly maintained, resulting in relevant

information contained in the tables and inter-relationships among information objects

being automatically generated and stored in a data dictionary via use of the STEP

Parser.

(d) PopUlating the system data repository

At run-time the shared information (stored in the system data repository) is accessed

through using services offered by a database 'driver'. This is achieved via suitably

defined data access objects (as illustrated in Appendix VI), thereby making them

accessible to the other MCS functional components. Thus the system data repository

effectively serves as the focal point for exchanging, updating and sharing information

of common concern between the various MCS functional components concerned. The

services of the database 'driver' and the data access objects are required to have a

knowledge of the mapping processes (defined during activity (b)) between local and

global database schema as illustrated in Figure 7-6.

Page 119

Cbapter 7 Use and Appraisal ortbe Methodology Derived

Using a similar principle, the data store of the cell controller was mapped onto the system data

repository; this was also to establish a share information capability within the MCS

demonstration system

W) Flexible intercoDnection of the functional components of the MCS

The task here is to interconnect the various MCS functional components which will normally

be heterogeneous in nature and reside at different computer nodes of a distributed system. As

earlier explained the CIM-BIOSYS lIS was chosen to achieve flexible interconnection among

such components. However, viewed from the perspective of a CIM-BIOSYS system builder

MCC is a non-conformant (or alien) application, i.e. it is not inherently compatible with the

CIM-BIOSYS lIS architecture. Thus it was necessary for the author to design and implement

an 'alien application shell' specially developed for MCC; this to provide it with sufficient

capability to use the common integration services offered by the CIM-BIOSYS lIS (which

includes inter-process communication and information management). Program listings related

to the 'alien application shell' for MCC are included in Appendix XX. Conversely, being

originally conceived by MSI researchers, the cell controller and the decision support system

are conformant applications and they can operate directly over the CIM-BIOSYS lIS; hence

they have no need of an 'alien application shell'.

The MCS.functional components and the system data repository need to be registered users of

the CIM-BIOSYS lIS. This registration requires their actual physical location over the local

area network (LAN) to be clearly specified and stored within a CIM-BIOSYS configuration

file. This knowledge is essential to the CIM-BIOSYS lIS during its normal operation in order

for it to (i) activate required MCS functional component; and (ii) enable independent and

transparent information access via the database 'driver', i.e. without the need for users to have

detailed knowledge of integration issues.

(UIl Establishment and cootie-oration of an appropriate functional interaction capability

In this meta-step, as illustrated in Figure 7-8, the IDEFO/lX Parser is used to process the IDEFo

function model (described in Figures 6-4, 6-5 and 6-6 in section 6.2.2) and the IDEF1X entity

attribute relationship model (described in Figure 7-3) as encoded by their generated reports

(see Appendices XVI and XV respectively). This process can be viewed as enacting the MCS

function and information models in order to establish associations between them. The reader

should refer to Figure 6-7 in section 6.2.3 for an illustration of principles involved here.

Subsequently the FIMM Configurator is used to formally establish and configure associations

between MCS functions and their shared information requirements, this being represented by

Page 120

Chapter 7

Referenced for I
system behaviour conlr01 ..

MCSFIMM

Use and Appraisal or the Methodology Derived

Functional model Informatloa model

~~

'r FIMM Configuralor l' IDEF0I1X Parser

Function-Information association

Figure 7-8: Configuration ofMCS FIMM

the Function-Information Association Table of the MCS FIMM. The Table is referenced by

the MCS Functional Interaction Manager (during run-time) to govern the dynamic behaviour

of the system in a controlled and co-ordinated manner based on predefined sequences of

activities and information needs established between MCS functions.

(IV) Establishment and configuratjon of user interface capabilities

As illustrated in Figure 7-9 and earlier described, a configurable 'application shell' was

created to act as a generic MCS front-end user interface. In the proof-of-concept MCS

demonstration system this 'application shell' was configured to

- provide a consistent and simple user interface to the various MCS functional

components, thereby providing an effective working environment for human

interaction during run-time.

provide human access to MCS FIMM tools, CIM-BIOSYS lIS and MCS

components, in a way which facilitates system construction, management and

change.

The reader should refer to Appendix XXI for further details on the services and options

offered through this user interface. Details on the mechanism developed to enable

communication between MCC and the 'application shell' are provided in Appendix XXll.

Page 121

Chapter 7 Use and Appraisal or the Methodology Derived

as MCC~
W
~ (ID(0mm>')
(a~) (v __ II"_)

CID~~
(N"",BII_B)

(ShowK) Ci:J(-.)
~ (.... ,.UN)

pltLDD t)'pI imtmce pp CAD

WIP WIP

CAPP

•
CELl. fCS

Ball::r.J.:.;.;.-.-.-.- -.-..... --.-.,._'.-, ... -....... ;., .. ,
100 N l •

Description !tSWIVELSTOPPER;LEVELOiift.ffi;;\;rt: ;.r; \!

Qty !rld UoM lEACH! Efr. from !29:ocT,92! To!;).;! Priority I3Iill

BIlL OF MATERIAL DETAILS

Item No Description Qty UoM Type

Char Mode: Replace Page 1 Count: '2

Figure 7-9 : 'Application shell' configured to coalesce MCS components and
integrate with MCS FIMM and CIM-BIOSYS lIS

•

Display
windowror

MCS
runctional
operation

Page 122

Chapter 7 Use and Appraisal of the Methodology Derived

7.2.2 Analysis and Discussion

The following sections summarise the most important observations and findings resulting

from the implementation and running of the proof-of-concept MCS demonstration system:

(A) Development process

(i) A higher entry point to integrated system development is offered which provides a

structured path towards a more organised and prescribed approach. This property is

attributed to the application of generic reference and functional models which capture

and encapsulate generic working knowledge of part manufacture, this in terms of

clearly specified and defined information flows as well as relationships between MCS

functions and their information needs. This approach avoids continuously re-inventing

the wheel, which is a common disadvantage of developing custom built MCS solutions

from scratch.

(ii) It is necessary to have detailed knowledge of the proprietary information structures used

in proprietary databases (MCC in this case) in order to understand their semontics and

structure sufficiently well enough to share information in a flexible and effective

manner. Such knowledge is required before the relevant information can be accessed or

mapped from the database of any "as is" MCS application onto the system data

repository, thereby establishing its common usage. Thus it is vital to gain a sufficient

level of support and understanding of would be interoperating software products from

their manufacturer (this being provided by John Brown Systems PLC for MCC in this

study). Without such knowledge there will be severe restraints on further progress in

the development of interoperable systems.

(iii) When incorporating "as is" MCS applications (of the MCC ilk) into interoperating

systems, some degree of data duplication is inevitable. However, as an underlying

axiom of the methodology adopted in this research study is to decouple MCS functions

from their information repositories, local changes (i.e. on the locality of a single

component) to information and functional aspects of a MCS component will have

minimal effect on other applications. Thus change management is much facilitated and

it can be expected that functional and information needs of the system can be handled in

a largely separate and less complicated manner.

Page 123

Cbapler7 Use and Appraisal or Ibe Metbodology Derived

(iv) The system data repository can be expecled 10 be only partially populated (such as with

infonnation of common concern 10 a single data store, like the MCC database); thus a

degree of data independence is offered where the individual local databases retain their

autonomy and hence can continue to serve their existing customer set.

(v) The sel of build tools used in this case study provides a more fonnal and structured

approach to engineering interoperable manufacturing control systems solutions, as

compared to others observed in the literature by the author or other MSI researchers.

Thus the software toolset facilitates ease of system development and change

management beyond that of alternative methodologies reponed.

(B) Operation during run-time

(i) The MCS functions (contained within interoperating components) are made available to

MCS users through the con figured 'application shell'. which coalesces and integrates

the interworking of the MCS functions via use of the MCS FIMM tools and the CIM

BIOSYS lIS. This can result in considerable synergy, not only in providing any single

user with access to specialised MCS functions to suppon pan manufacture but also in

enabling the sharing of concurrent knowledge in a way which can suppon better and

more infonned decision making. For example the user is able to take into account

infonnation regarding availability of manufacturing resources and facilities as well as

manufacturing capability when considering the requirements and specifications of pans

accepted for manufacture. Thus the proof-of-concept system has been shown to

promote intra-organisation integration, where an effective and defined channel for

dissemination of knowledge and infonnation is made available via a consistent and

effective front user interface.

(ii) Discipline is well maintained when MCS components interact during run-time. As

functional interaction is based on data availability and clearly predefined sequences of

activities, any conflict or misunderstanding that might occur, in relation to infonnation

flows and needs, are effectively eliminated. For example, when the production schedule

is required by the cell controller to control and monitor shop floor execution, the user

issues a request through the configured 'application shell' for access of the production

schedule (stored in the system data repository). The Functional Interaction Manager of

the MCS FlMM would interpret the user's request and check for availability of the

production schedule via its status management mechanism. The Functional Interaction

Manager also ensures that the production schedule has been processed and prepared by

Page 124

Chapter 7 Use and Appraisal or the Methodology Derived

the finite capacity scheduler in accordance with the sequence of activities predefined in

the Data VD Table, prior to triggering off the cell controller to proceed with access of

the requested information from the system data repository.

Hence cooperation among interoperating software components is enabled which is not

normally possible by conventional means.

Finally, it should be highlighted that the demonstration system implemented offers an effective

means of improving interworking among finite capacity scheduling, cell control and

production planning systems and represents a step towards more open versions of such

systems which could provide even greater benefit from such a facility. This in turn will help to

narrow the wide gap which currently exist between production planning and the shop floor.

Page 125

Chapter 8

Conclusions and Recommendations

8.1 Contributions to Knowledge

The methodology devised and used in this research study supports the formal design and

development of interoperable systems where the mechanisms and software toolset developed

enable software components to "functionally interact" in a coherent manner by sharing

information of common interest; this through accessing distributed data repositories in an

efficient, highly flexible and standardised manner.

The viability of this methodology has been tested by selecting or producing software

mechanisms and tools which collectively support the implementation of that methodology

whilst enabling the interoperation of MCS components. By doing so, the methodology has

been shown to meet the requirements identified in section 1.4, namel y to enable software

interoperability in an effective manner by facilitating:

- Information Sharing

- Interconnection

- Control of System Behaviour

- Consistent User Interface Capabilities

- System Design and Development

en Information Sharin~

• Generic reference models have been identified and defined by the author which underpin

the sharing of information of common interest among production planning, product

design, finite capacity scheduling and cell control systems. They constitute prime

information which are required by various components of MCS, as mentioned. The

generic reference models specified are characterised by their generalised applicability,

while being sufficiently flexible to enable customisation to suit specific user needs.

Indeed the reference models offer promise as being effective in addressing current

problems which result from a lack of standardisation in information representation and

exchange for MCS components. The applicability and effectiveness of the generic

reference models was demonstrated in a case study carried out in collaboration with

UBMC. Here the database of a commercially available proprietary CAPM software

package, namely ELMS, has been restructured with reference to the generic information

models, this in order to facilitate the incorporation of additional functionality.

Page 126

Cbapter 8 Conclusions and Recommendations

• An information architecture has been devised and adopted which establishes structure

and uniformity whilst enabling sharing and transfer of information between MCS

components, this via use of the generic reference models. The infonnation architecture

acts as a global library of information entities, providing mechanisms for representing

"and managing physical data, which is actually stored in a fragmented fashion within a

number of heterogeneous data stores. Hence the information architecture provides a

foundation for defining, identifying, and integrating both specific and generic

information entities.

CIl) Interconnection

• The CIM-8IOSYS integrating infrastructure (liS), developed by other researchers at the

MSI Research Institute at Loughborough University of Technology, has been used to

structure and simplify problems of realising interconnection among MCS components. It

separates integration and application issues in a manner which resolves differences in the

physical system relating to heterogeneity, distribution and data fragmentation. The CIM

BIOSYS lIS provides low level common integration services for inter-process

communication and information management. It maps distributed processes (embodied

in MCS components) onto the physical data repository contained within a target

manufacturing system. The CIM-BIOSYS lIS offers "soft" or. flexible integration of

MCS activities so as to enable their reconfiguration and incremental development.

The author's research has contributed to the enhancement of the functionality and

capability of a database 'driver' which handles data intensive activities. By doing so,

this 'driver' (via the liS) ensures consistent, reliable, transparent and open access of

information stored in the data repository making it available to distributed processes in

a device independent manner.

Application of the CIM-BIOSYS lIS and the enhanced 'driver' has been "demonstrated

in a proof-of-concept MCS demonstration system built as part of this research study.

Here interoperation of a number of typical software applications has been enabled.

(Ill) Control of System Behaviour

• The MCS Functional Interaction Management Module (FIMM) was designed and

developed as pan of this research study to (i) formally and flexibly structure threads of

functionality embedded within various MCS components; and (ii) facilitate their

interaction (during run-time) in a controlled, co-ordinated and deterministic manner,

where considerations for associated preceeding and succeeding activities and for their

shared information needs are taken into account.

Page 127

Chapter 8 Conclusions and Recommendations

The FIMM offers an effective framework for governing system behaviour in a data

driven manner based on functional dependencies and information needs and

availability. The MCS FIMM can be viewed as constituting high level integration

mechanisms and tools of an US. It builds upon the low level, general purpose integration

services and tools of the CIM-BIOSYS lIS, which provide standard data inter

communication and information transfer facilities to interconnect MCS software

components. The FIMM Configurator has been developed to configure the MCS FIMM

in a manner which can meet specific user functional and information needs.

(IV) Consistent User Interface Capabilities

• A highly reconfigurable generic 'application shell' has been developed to serve as the

front-end user interface. It provides consistent access to and coalesces the interoperation

of various MCS functional activities over the CIM-BIOSYS lIS. This user interface

capability supports intra-organisation integration across functional boundaries where it

enables access to MCS related functions which are distributed across the local

area network. Hence users are provided with a system-wide working viewpoint,

this to effect better and more informed decision-making in relation to the specific

tasks they perform.

- makes functional interaction management easier by effectively insulating the user

from the complexities and tedium involved, which will be taken care of by the

relevant services offered by MCS FIMM and the CIM-BIOSYS lIS.

The functionality of the 'application shell' has been highlighted and demonstrated in

the proof-of-concept MCS demonstration system produced in this research study.

(V) System Design and Development

• As pan of this research study a new metlwdology and software toolset have been

developed which use models to formally structure and support implementation, run-time

and change processes, this in a way which supports the various life cycle phases of

systems. In this approach, system design and modelling methods, which typically

provide means of representing functional and information views of a system, serve as the

entry point. The information and function models created are exploited during

downstream life cycle phases to ensure clarity, consistency, accuracy and re-utilisation

of knowledge and data between phases. This is enabled via a set of life cycle support

tools which have been developed to closely couple IDEFo and IDEF1X modelling tools

(used for functional and entity-attribute relationship modelling respectively) with tools

based on EXPRESS (which enable information modelling). As indicated in Table 8-1,

some of these tools were developed by other MSI researchers.

Page 128

Chapter 8 Conclusions and Recommendations

Life Cycle Support Tools Developed by

EXPRESS to SQL Compiler

STEP Parser Other MSI researchers

IDEFIX to EXPRESS transformation tool

ID EF OIIX Parser Author as part of this research srudy

FIMM Configurator

Table 8-1 : List of life cycle support tools developed

Accordingly, these tools reference, access, manipulate and reformat data (corresponding

to function and information models) so that it assumes a form which is suitable to

structure and enable various downstream life cycle processes. Hence the software toolset

offers system builders a more formalised and structured way of creating and maintaining

integrated manufacturing systems, thereby catering for their need to adapt and respond

to changes in system requirements.

Use of the set of tools has been assessed by formally structuring and supporting

implementation, run-time and change processes associated with the proof-of-concept

MCS system produced as part of this research study.

Hence the requirement specification for enabling software interoperability (identified in

section 1.4) has been met; in proof-of-concept form, it has proved possible:

• to identify and specify architectural models of system functionality and information which

themselves are based on studies of the inter-dependency of functions and commonality of

information shared among production planning, product design, process planning, finite

capacity scheduling and cell control processes.

This has been met in relation to the work carried out to satisfy the requirement

specification in (I).

• to address key issues of managing functional interaction, i.e. to study a means of

coordinating and synchronizing MCS functions. This by enabling and managing the

interoperation of associated software applications in a flexible manner.

Work done to satisfy (11), (Ill) and (IV) has provided a capability and working

mechanism which successfully address the issues related to functional interaction and

interconnection between MCS components.

Page 129

Chapter 8 Conclusions and Recommendations

• to provide a fonnalised and structured methodology which can cope with high levels of

complexity and change, straddling design, implementation, run-time and maintenance life

cycle phases of interoperable systems. This to enable overall system reconfigurability, more

optimal system design and operation and a reduction in the time and effort involved in

creating such systems.

An innovative approach which facilitates support of the MCS life cycle has been

realised in order to satisfy the requirement specification in (V).

In conclusion it is evident that the realisation of a 'fully specified open standard for software

interoperability', which enables on a widespread basis unconstrained interaction and

interchange between heterogeneous software components, is currently an impractical goal.

This is attributed to the enonnous complexity of the problem and to the many outstanding

standardisation issues which have yet to be resolved. Much of it depends upon

• availability of suitable MCS with facilities required for the following which should be

sufficiently standard to make many people adopt and write to those standards:

- interprocess communication

- infonnation sharing and management

- interconnection

• availability of acceptable reference models which can describe in a comprehensive

manner (i) information flow and requirement; (ii) functional activities and their inter

relationships and dependencies; and (iii) system behaviour.

• availability of integrated life cycle support systems to design better MCS solutions.

• progressive release of more interoperable MCS components (with more modular and

atomic functionality) from vendors.

However, on the other hand, the use of contemporary 'turnkey' or 'custom built' solutions

(which do not adhere to any open standards) is not tenable for systems requiring interoperation

of many MCS components. Constraints in software interoperability will undoubtedly remain if

such proprietary systems are not designed to enable access to their threads of functionality or

underlying infonnation.

Page 130

Chapter 8 Conclusions and Recommendations

Bearing in mind these difficulties. this research has offered a realistic approach which can

be considered to be part-way between the extremes of "open" and "closed" systems, as

illustrated in Figure 8-1. The emphasis has been to provide a means of enabling a degree of

software interoperability which overcomes (a) limitations inherent in contemporary MCS

components and solutions; and (b) associated and inherited problems concerned with

achieving their interoperation. Hence based upon the implementation studies in this research.

an infrastructure that enables a degree of interoperation is offered which not only allows for

the adoption of legacy (or "as is") MCS components but also the introduction of a new

generation of highly reconfigurable. modular and more open MCS software products. i.e. "to

be" products (as they become available to industry). Thus a migration path is offered towards

"open" manufacturing control systems which are readily adaptable in the face of changing

functional and operational requirements.

High

Low

I
High

"to be"

• Fonnally structure Interoperable systems

• Specification 01 generic reference models

• MCS software components Interconnection via

Low

Degree of difficulty & Level of errort and investmenl
10 facilitate

Software Inleroperability

Figure 8-1 : Degree of Software Interoperability

Page 131

Chapter 8 Conclusions and Recommendations

8.2 Further Recommendations

As part of the immediate requirement for progressive enhancement of the software

interoperability methodology described in this thesis, the author recommends further

investigation and development in the following key areas in order to address existing

deficiencies :

(A) Integration and management of multi-vendor database systems

A number of database "drivers" have been created to enable access to the Progress, Ingres and

ORACLE RDBMS. However, the 'drivers' are restricted and dedicated to addressing the

idiosyncrasies of the specific database system they service. They are not equipped to handle

semantic differences among different database systems. Currently, collating data from

different database systems can be somewhat tedious where the data needs to be filtered

through a series of programs in order to resolve semantic differences and to convert them to

the required format when retrieving and populating data across different database systems.

Thusfurther research is required towards developing a more elegant solution for global data

management and manipulation across such multi-vendor database systems. The emphasis

should be to provide a means of unifying data across different database systems, resolving the

heterogeneity and semantic differences between them and presenting the information in

accordance with the format requested by the user. Hence information would appear as part of a

unified system-wide database.

(B) Modelling and simulation capability for system behaviour control

The MCS Functional Interaction Management Module (FIMM) was developed to provide an

effective framework which (i) formally and flexibly structures threads of functionality

embedded within the various MCS components, and (ii) facilitates their interaction (during

run-time) in a controlled, co-ordinated and data-driven manner.

It would be beneficial to also provide a modelling and simulation capability which during

initial system design or prior to making a system change. enables peiformance analysis of the

interoperable system. This would help identify and enable a study of conditions under which

the system can interoperate in a more optimal manner in relation to the constraints imposed.

The following could be considered in the analysis for system behaviour control:

- functional dependencies, this to properly structure the co-ordination of the combined

activities in order to clearly identify succeeding and preceeding activities and their

shared information requirement.

Page 132

Cbapter 8 Conclusions and Recommendations

- type and nature of suitable associations (such as one-ta-one, one-ta-many, many-ta

many, etc.) to be established between functions and their information needs so as to

ensure better information flow for enhanced system performance. This would help

alleviate conflicts, contentions and ambiguities with regard to information

requirement in the interoperating system.

Such a capability could be provided for in the form of a software tool, coupled closely with the

FIMM database to access and use the relevant data needed.

Finally, the research methodology described in this thesis can only facilitate software

interoperability which is sufficiently useful and effective in satisfying mid-term needs. In

order to provide for more effective and universally applicable interoperable solutions, the

author expects future interoperability development in the following major areas:

• Advancement of life cycle support approaches leading to simulation, emulation and

execution of MCS so as to result in better designed systems.

• Standardisation ofinfonnation reference models andfunctional models .

• Improved and standard infrastructural facilities.

• Progressive development of a new generation of more open MCS components

(possibly on the base of general software developments).

Page 133

PUBLICATIONS

The following refereed technical publications have been made in relation to this research
study:

I) International Journals

• Singh, v., Weston, R. H., 1994,

Functional interaction management: A requirementfor software inter operability

Journal of Engineering Manufacture, The Institution of Mechanical Engineers, Part B,

• Singh, V., Weston, R. H., 1994,

Life Cycle Support of Manufacturing Systems based on an Integration of Tools

Journal of Production Research

• Singh, v., Weston, R. H., 1994,

Information Models: A Precursor to Software Interoperability

Journal of Production Planning and Control

• Weston, R. H., Singh, V., 1994,

Structured Specification and Construction of Open Manufacturing Control Systems

Journal of Manufacturing Systems

SME (Society of Manufacturing Engineers, USA)

11) Proceedings of International Conferences

• Singh, v., Weston, R.H., May 1994,

Software Interoperability for Integrated Manufacturing,

A Reference Model Driven Approach

Conference on Data and Knowledge Systems for Manufacturing and Engineering

(DKSME '94), Hong Kong.

• Singh, V., Weston, R. H., September 1993,

New Generation of "Open" Manufacturing Control Systems

for "Seamless" Integration in CIM

Conference on Computer Integrated Manufacturing (lCCIM' 93), Singapore

Page 134

REFERENCES

Afferson, M., Andrews, J. K., Muhlemann, A. P., Price, D. H. R., Sharp, J. A., 1992,

Generic manufacturing information systems development via template prototyping,

European Journal of Infonnation Systems, Vol. 1, p379-386

Aguiar, M.W., Weston, R.H., 1993a,

CIM-OSA and stochastic time Petri nets for behavioural modelling

and model handling in CIM systems design and building,

Procs. of the Institution of Mechanical Engineers, Vol. 207. Part B. Journal of Engineering

Manufacture, ppI47-158.

Aguiar, M. W., Weston, R. H., August 1993b,

Reference Architectures for Enterprise Integration,

Procs. of CARS/FOF' 93 Conference, USA

Akif, H. C., Documeings, G., 1991,

Computer aided GRy method (C.. A. GRAl)>j
Procs. of Advances in Production Management Systems - IFIP/91 , France, pp283-292

AMR (Advanced Manufacturing Research), March 1991,

Application Enabler,

Report, USA

Anscombe, J., November 1992,

Integration - Breaking the Barriers to Excellence,

Procs. Twenty-seventh Annual BPICS Conference, Binningham, UK, pp89-103

Amgrimsson, G., Vesterager, J., August 1992,

STEP: Experiencesfrom actual use of the standard,

Procs. of IFIP Working Group 5.7, Conference on Integration in Production Management

Systems, Eindhoven, Netherlands, pp23-35

Bailin, S. C., 1989,

An object-oriented requirements specification method,

Communications of the ACM, Vol. 32, No. 5, pp608-623

Page 135

Barkmeyer, E. J., 1989,

Some Interactions of information and control in Integrated Automation systems,

Advanced Infonnation Technology, Industrial Material Flow Systems, Springer-Verlag

Batini, C., Lenzerini, M., Navathe, S. B., December 1986,

A Comparative Analysis of Methodologies for Database Schema Integration,

ACM Computing Surveys, Vol. 18, No. 4, pp322-364

Bauer, A., 1991,

Shop floor control systems: from design to implementation

Chaprnan and Hall

Beech, D., Ozbutun, c., 1990,

Object databases as generalizations of relational databases,

Proc. of the Object-Oriented Database Task Force Group Workshop,

Ottawa, Canada, pp 119-135

Beerit, c., October 1993,

New Directions in Database Management Systems

Procs. of Fifth Jerusalem Conference on Infonnation Technology, Israel, pp500-506

Bohse, M. E., Harhalakis, G., 1987,

Integrating CAD and MRP II Systems,

CIM Review, Vol. 3, No. 4, pp7-15

Bond, T. C., 1993,

An investigation into the use of OPT production scheduling,

International Journal Production Planning and Control, Vol. 4, No. 4, pp399-406

Breitbart, A., Morales, H., Silberschatz, A:, Thompson, G., October 1993,

Multidatabase Concurrency Problems

- Multidatabase Transctions Concurrency Control Mechanisms,

Procs. of Fifth Jerusalem Conference on Infonnation Technology, Israel, pp507-519

Bright, M. w., Hurson, A. R., Pakzad, S. H., 1992,

A Taxonomy and Current Issues in Multidatabase Systems,

IEEE, pp50-59

Page 136

Buchman, A. P., 1984,

Current Trends in CAD Databases,

Computer-Aided Design, Vol. 16, No. 3

Buyer's Guide Supplement, February 1990,

Production Management Software, Industrial Computing, pp46-58

Chang, TIen-Chien, 1985

An Introduction to Automated Process Planning Systems

Prentice-Hall

Chaudhri, A. B., Revel!, N., 1994,

Object database benchmarks: past, present andfuture,

Proc. of Object-Oriented Databases: Realising their Potential and Interoperability with

RDBMS, London, UK

Chaudhri, A. B., 1993

Object database management systems: an overview

BCS OOPS Newsletter, No. 8, pp6-15

CIM-OSA ESPRIT Consortium AMICE, 1989,

Open System Architecture for CIM,

Springer-Verlag, Berlin (0)

CIM Strategies, March 1990,

DELTA factory floor manager combines data management methods, pp7-1O

CIM Strategies, March 1991,

Application Case Study, Interoperabiliry standards form a base for CIM,

Vol. 8, No. 3, pp4-7

Clements, P., Coutts, I.A., Weston, R.H., September 1993,

A life-cycle support environment comprising open systems manufacturing

modelling methods and the CIM-BIOSYS infrastructura[tools,

Proc. of the Symposium on Manufacturing Applicaton Programming Language Environment

(MAPLE) Conference, Ottawa, Canada, ppI81-195.

Page 137

Clements, P., October 1992,

The application of EXPRESS modelling and tools within an integration platform,

Second EXPRESS Users Group, Dallas, USA

Clements, P., Hodgson, A., Leech, M., Ryan, A., November 1991,

Information Systems Modelling and Implementation in an industrial environment,

Procs. of AUTOFACT '91, Chicago, Illinois, USA

Clements, P., March 1991a,

Internal Report on the STEP Parser, Loughborough University of Technology

Clements, P., February 1991b,

Internal Report on the EXPRESS to SQL Compiler, Loughborough University of Technology

Codd, E. E, 1992,

Dr. Codd on "End of Relational",

DBMS, Vol. 5, No 11:6

Colquhoun, G. J., Baines, R. w., Crossley, R., 1993,

A state of the art review of IDEFO,

International Journal Computer Integrated Manufacturing, Vol. 6, No. 4, pp252-264

Computing, November 1991,

Database giants revamp products, pll

Cutts, G., 1991,

SSADM Structured Systems Analysis and Design Methodology,

Blackwell Scientific, Oxford, UK

Czernik, S., Quint, w., 1992,

Selection of methods, techniques and tools for system analysis

andfor the integration of Cl M elements in existing manufacturing organizations,

International Journal Production Planning and Control, Vol. 3, Part 2, pp202-209

DATAPRO, March 1992,

Manufacturing Automation Series: Factory Automation Systems,

McGraw Hill , USA

Page 138

Date, J. , 1986,

An Introduction to Database systems,

Vol. 1, Addison-Wesley Publishing Co, lnc

Davis, G. B., 0lson, M. H., 1987,

Management Information Systems,

Second Edition, McGraw-Hill, ppS02-S04

De Toni, A., Caputo, C., Vinelli, A., 1988,

Production management techniques,

International Journal of Operations and Production Management, Vol. 8, No. 2, pp3S-S1

De Vaan, M. J., July-September 1992,

Introduction MRP ll, with enhancements: the case of afurniture manufacturer,

Intrnational Journal Production Planning and Control, Vol. 3, No. 3, pp2S8-263

Dinitz, M., July 1990,

Con figure-To-Order: An industry challenge,

Industrial Engineering, pp21-22

Drucker, P. E, November 1991,

The Factory of the Future,

World Executive's Digest, pp26-32

DTI, 1993,

Computer Integrated Manufacturing - A Survey of Worldwide R & D

DTI,1989,

PA Consulting Group, Manufacturing into the late J990s, HMSO

DTI, 1987,

UK, Through MAP to CIM, Moore & Matthes Lld

ELMS Technical Manual, 1990

ESPRIT Consortium, 1989,

Open System Architecture for CIM,

Project 688, Vol. 1, Springer-Verlag, pp13-16

Page 139

Evans, C. D., Meek, B. L., Walker, R. S., 1993,

User Needs in Information Technology Standards,

Butterwonh-Heinemann Ltd (Publisher), UK

Foong, N. E, Ang, K. P., Singh, V., May 1992,

Computer Simulation as a Toolfor Integrated Manufacturing,

Procs. Asia-Pacific Industrial Automation (lA)' 92 Conference, Singapore

Fritsch, C. A., 1989,

Information Dynamicsfor Computer Integrated Product Realisation,

NATO ASI Series, Springer Verlag, Vol. F53:, pp21-38

Fry, T., Karwan, K., Baker, W., 1993,

Performance measurement systems and time·based manufacturing,

International Journal of Production Planning and Control, Vol. 4, No. 2, ppl02-lll

Golberg, C. J., Winter 1993,

Object Oriented Databases - The New Wave in RDBMS Technology,

ORACLE, Vol. VII, No. I, pp35-39

Goldratt, M., E., 1988,

Computerized shop floor scheduling,

International Journal of Production Research, Vol. 26, No. 3, pp443-455

Gould, L., August 1992,

CIM Interface Modules: A route to Open Systems,

Managing Automation, Vol. 7, No. 8, pp47-50

Goyal, S. K., Gunasekaran, T. Martikainen, YIi-OIli, P., 1993,

Design of optimal configuration for a multi-stage production system,

International Journal of Production Planning and Control, Vol. 4, No. 3, pp239-252

Halevi, G., Weil, R., 1992,

CAPP as concurrent link between Design and Production Management,

IFIP Transactions Part B Applications in Technology, Vol. 6, pp177-184

Halladay, S., Wiebel, M., 1993

Object-Oriented Software Engineering.

Lawrence, Kan.: R & D Publications

Page 140

Halsall, D. N., Muhlemann, A. P., Price, D. H. R., September 1993,

A Production Planning and Resource Scheduling Modelfrom

Small Manufacturing Enterprises,

Procs. Ninth National Conference on Manufacturing Research

Harhalakis, G., Lin, C. P, H. Hillion, Moy, K. Y., 1990,

Development of afactory Level CIM Model,

Journal of Manufacturing Systems, Vo!. 9, No. 2, pp1l6-128

Hars, A, Heib, R., Kruse, Chr., Michely, J., Scheer, A, -W., May 1992,

Reference Modelsfor Data Engineering in CIM,

Procs. Eighth CIM-Europe Annual Conference, Birmingham, UK, pp249-260

Hars, A, 1990,

CIDAM - modulesfor the creation of Cl M,

Procs. Sixth CIM-Europe Annual Conference, pp286-295

Hayes, F., Spring 1992,

Esperanto for Databases,

Unixworid-Supplement: Special Report Interoperability, pp49-51

Himes, D. A, 1993,

Database lnteroperability and portability through standards,

Procs. of the Second International Conference on Parallel and Distributed Infonnation

Systems, pp225-256

Hind, C. J., West, A A, Williams, D., J., 1990,

The use of object orientation for the design and implementation of

manufacturing process control systems,

Internal Report, Dept of Manufacturing Engineering, Loughborough University of

Technology, LUT Press

Hodgson, A., 1993,

Production Planning and Control within a CIM environment:

some current developments and requirements for the future,

International Journal Production Planning and Control, Vo!. 4, No. 4, pp296-303

-----~~-

Page 141

Hodgson, A., Weston, R. H.; 1993,

Application and Information Support Systems for Planning and Control in CIM,

ACME Review Final Report, Grant No. GR/F 69192

Hodgson, A., Waterlow, G., 1992,

Special feature: Computer-aided production management,

. Computing & Control Engineering Journal, Vol. 3, No. 2, Published by lEE, ISSN 0956-3385

Hodgson, A., Weston, R. w., Sumpter, C. M., Gascoigne, A., August-September 1988,

Planning And Control Informationflow in CIM,

Procs. International Conference on Factory 2000 - Integrating Information and Material Flow,

Cambridge, UK, pp49-56

Higgins, P., TIerney, K., Browne, J., September 1991,

Production Management State of the Art and Perspectives,

Procs. Fourth International IF1P TC5 Conference, Computer Applications in Production and

Engineering, Bordeaux, France, pp3-14

Hollyman, B., Anderson, L., January 1991,

Implementing an Open Systems Architecture,

CommUNIXations, Published by Uniforum (International Association of Unix Systems

Users), Vol. XI, No. I, pp23-29

Hughes, D., August-September 1988,

Criteria for the distribution of information processing in factory 2000,

Procs. International Conference on Factory 2000 - Integrating Information and material flow,

Cambridge, England, pp45-48

ICAM, December 1985,

Information Modelling ManuallDEFl - Extended,

ICAM Project Report (Priority 6201), D. Appleton company, Inc, Manhattan Beach,

California

Ingres, 1991,

Database set of manuals Version 6.4

ISO, 1993, ISO DIS 10303-1,

Product Data Representation and Exchange Part 1 : Overview and Fundamental Principles,

International Organization for Standardization, Geneva

Page 142

ISO, 1991,

MANDATE,

ISO TCI84/SC4/WG8 Document NI, ISO TCI84/SC4 Secretariat, National Institute of

Standards and Technology, Gaithersburg, MD 20899, USA

ITAP Technology Seminar, 1990,

Advances in Computer Integrated Manufacturing,

ITAP Technology Report No. 5/90, National Computer Board (Singapore)

Jain, K. H., Bu-Hulaiga, I. M., Summer 1992,

'E-R Approach to Distributed Heterogeneous Database Systems for Integrated Manufacturing,

Journal of Database Administration, Vo!. 3, Part 3, pp21-29

Jeng, B. C., Chao, W. S., July 1992,

Communicating Objects for System Integration modelling, Procs. Second International

Conference on Automation Technology, Taipei, Taiwan, Vo!. 2, pp307-312

Jochem, R., 1989,

An object oriented analysis and design methodology for

computer integrated manufacturing systems,

Tools 89, pp75-84

Jones, G., Roberts, M., 1990,

Optimized Production Technology (OPT),

IFS Publications, UK

Ioris, S. M., Vergeest, Matthijis, Sepers, June 1993,

Techniques to make CAD/CAM Systems communicative,

Procs. of the Third International Flexible Automation and Integrated Manufacturing,

University of Limerick, Ireland, pp255-266

Jorysz, H. R., Vernadat, F. B., 1990,

CIM-OSA part 1 : Total enterprise modelling andfunction view,

International Journal Computer Integrated Manufacturing, Vo!. 3, Nos. 3 and 4, pp 144-156

Kaul, M., Drosten. K.. Neubold, E. 1., 1989,

View System: Integrating Heterogeneous information bases by object-oriented views.

Procs. IEEE International Conference on Data Engineering

Page 143

Khoshafian, S., Blumer, R., Abnous, R., 1990

Inheritance and generalization in Intelligent SQL,

Proc. of the Object-Oriented Database Task Force Group Workshop,

Ottawa, Canada, pp 103-118

Kochhar, A. K., Monniott, J. P., Price; D. H. R, Rhodes, D. J., Towill, D. R., Waterlow, J. G.,

1987,

A study of computer aided production management in UK batch manufacturing,

International Journal of Operations and Production Management, Vol. 7, pp7 -57

Koriba, M .. , 1983,

Database Systems: Their Applications to CAD Software Design,

Computer-Aided Design, Vol. 15, No. 5

Kosanke, K., 1991,

Open Systems Architecturefor CIM (CIM-OSA) Standards for Manufacturing,

Procs. International Conference on Computer Integrated Manufacturing (ICCIM' 91),

. Singapore

Krishnamurthy, R., Litwin, w., Kent, W., Apri11991,

Interoperability of Heterogeneous Databases with schematic discrepancies,

Procs. First International Workshop on Interoperability in Multidatabase systems, Kyoto,

Japan, ppl44-151

Lang-Lendroff, G., Unterburg, J, June 1989,

Changes in understanding of CAD/CAM: a database-oriented approach,

Computer Aided Design, Vol. 21, No. 5, pp309-314

Lars, D. T., 1990,

Is there a "GAP" of knowledge between R&D and Production?,

Advances in production management systems, Procs. Fourth International IFIP Conference

TC5/WG 5-7, Espoo, Finland

Larsen, N. E., Alting, L., 1993,

Criteria for selecting a production control philosophy,

International Journal Production Planning and Control, Vol. 4, No. 1, ppS4-68

Page 144

Lee, C. Y., 1993,

A Recent Development of the Integrated Manufacturing System: A Hybrid of MRP and lIT,

International Journal of Operations and Production Management, Vol. 13, No. 4, pp3-17

Leech, M., J., March 1993,

Internal Repon on CIM-BIOSYS Datastore Driver Guide, Loughborough University of

Technology

Lim, B. S., July-October 1992,

CIMIDES - A Computer Integrated Manufacturing Information and Data Exchange System,

International Journal of Computer Intergrated Manufacturing, Vol. 5, No. 4 & 5, pp240-254

Logan, F. A., March 1986,

Evolutionary Cycle of an Expen CAPP System,

Procs. Conference CIMTECH, Boston, Massachusetts

Lopes, P. F., 1992,

CIM 11 : The Integrated Manufacturing Enterprise,

Industrial Engineering, Vol. 24, No. 11, pp43-45

Ll!scombe, M., 1991

Design and Implementation of Integrated Production Control systems,

Integrated Manufacturing System, Vol. 2, No. 4, pp4-8

Maier, D., 1989,

Object-Oriented Concepts, Databases, and Applications,

Edited by W. Kim and F. H. Lochovsky,

Addision-Wesley

Maji, R. K., October 1988,

Tools for development of Information Systems in CIM,

Advanced Manufacturing Engineering, Vol. 1, pp26-34

Martin, J., 1980,

Computer Data Base Organization,

Second Edition, Prentice-HalI, Englewood Cliffs, New Jersey

Page 145

Manin, J., 1988,

elM: What the Future Holds?,

Manufacturing Engineering

Maude. T., Willis, G., 1991,

Rapid Prototyping,

Pitman Publishing; London, UK

Maull, R. S., Childe, S. J., 1993,

A step-by-step guide to the identification of an appropriate

computer-aided production management system,

International Journal of Production Planning and Control, Vol. 4, No. I, pp69-76

Mayer, R. J., Painter, M. K., 1991,

Roadmap for enterprise integration,

Procs. of Autofact 91, USA

MCC Technical Manual, 1989

John Brown Systems PLC

Meta Software, 1990,

Design/IDEF User's Manual, Meta Software

Metz, S., August 1990,

Making Manufacturing Better, notjustfaster,

Managing Automation

Moerman, P.A., 1991,

The evaluation of technology in relation to products and markets:

observations, considerations, experience, and solutions,

International Journal of Computer Integrated Manufacturing, Vol. 4, No. I, pp2-15.

MottO, A., July 1987,

Superviews : Virtual Integration of Multiple Databases,

IEEE Trans. Software Engineering, Vol. 13, No. 7, pp785-798

Page 146

Muhlemann, A. P., Price, D. H. R., Sharp, J. A., Afferson, M., 1991,

Fourth Generation languages and integrated information systems for

small manufacturing companies,

International Journal Computer Integrated Manufacturing, Vol. 4, No. 1, ppl6-22

Muhlemann, A. P., Price, D. H. R., Sharp, J. A., Afferson, M., Andrews, J. K., 1990,

Information systems for use by production managers in smaller manufacturing enterprises,

Procs. of the Institution of Mechanical Engineers (Part B), Vol. 204, p191-196

One, T. w., 1978,

The CODASYL Approach to Database Management Systems,

John Wiley and Sons, New York

ORACLE RDBMS, June 1991,

Utilities User's Guide,

Version 6.0, Oracle Corporation

ORACLE, 1992

Database set of manuals

Version 6.0, Oracle Corporation

Orr, K., Gane, C., Yourdon, E., Chen, P. P., Constantine, L. L., April 1989,

Methodology: The Experts Speak,

Byte, pp221-244

Paranuk, H. V. D., 1988,

Chapter 5: Factory communication system, Artificial Intelligence : Implications for CIM,

IFS Publications Ltd, Springer-Verlag

Peters, T., 1989,

Thriving on Chaos,

Pan Books Ltd, UK

Perkovic, P., Spring 1991,

SQL Access and ANSI/ISO SQL and X/Open,

COMPCON, ppI20-122

Page 147

Pheasey, D., November 1992,

Competitive Manufacturing - 'A Vision of the year 2001',

Procs. Twenty-seventh Annual BPICS Conference, Binningham, UK, pp23-31

Plenert, G., 1993,

An Overview of lIT.

International Journal of Advanced Manufacturing Technology, Vo!. 8, pp91-95

Preece, J., 1993,

A Guide to Usability.

Addison-Wesley

Progress. 1990.

Database set of manuals version 6.2

Ptak. C. A., 1991.

MRP. MRP 1I. OPT. lIT. and CIM - Succession. Evolution. or necessary combination?

Production and Inventory Management Journal, Vo!. 32, Part 2, pp7-11

Pugh, D. S., Hickson, D., J., 1989

Writers on Organization

Penguin Books (Fourth Edition), pp90-93

Rembold, U., Nnaji B. 0., Storr, A., 1993

CIM

Addison-Wesley, UK

Ross,D. T., 1977,

Structured Analysis (SA) : A language for Communicating Ideas.

IEEE Transactions on Software Reliability, Vo!. 3, No. 1

Rui. A., 1989,

Information support systems for the distributed planning and control in batch manufacture.

PhD Thesis. (Supervised by Weston, R.H. and Hodgson. A.): PhD awarded 1989.

Rumbaugh, J .• et al., 1991

Object-Oriented Modeling and Design.

Prentice Hall International

Page 148

Rusinkiewicz, M., Czejdo, B., 1987,

An approach to query processing in federated database systems.

Procs. Hawaii International Conference on Systems Sciences

Sanders, L., Mayer, R. 1., Browne, D. C., Menzel, c., 1991,

Containers objects: a description based knowledge representation scheme,

Procs. of Autofact' 91, USA, pp7.39-7.50

Savolainen, T., 1991,

CIMVlEW : a toolfor symbolic top-down simulation for CIM,

Procs. of Advances in Production Management Systems, IFIP, Holland

Saxe, K., November 1985,

MRP 11 Into CIM : The Interface Phase,

Procs. Conference Autofact '85, Detroit, Michigan

Scheer, A.-w., 1991,

CIM - Towards the Factory of the Future,

Second Edition, (Springer-Verlag)

Scheer, A.,-W., 1989,

Enterprise-Wide Data Modelling -Information Systems in Industry,

Springer-Verlag, pp259

Scheer, A.-w., 1988,

Computer Integrated Manufacturing - Computer Steered Industry

First Edition, (Springer-VerJag)

Schenck, D., December 1989,

Information Modelling Language EXPRESS,

ISO TCI84/SC4/WGl N442

Schiel, U., Mistrik, I., 1990,

Using object-oriented analysis and design for integrated systems,

Procs. of the First International Conference on Systems Integration, USA, ppI25-134

Schnur, 1. A., Summer 1987,

Can there be CIM Without MRP II?,

CIMReview

Page 149

Schonewolf, w., Langendoen, M., Gransier, T., Baisch, R., Drossopoulos, May 1992,

Application of CIM -OSA in Machine Tool Manufacturing and Aluminium Casting,

Procs. Eighth Annual CIM-Europe Conference, Binningham, UK, pp217-229

Shaharoun, A. M., Hodgson, A., Weston, R. H., August 1992,

Cost modelling in Advanced Manufacturing Systems,

Procs. of International Conference for Manufacturing Automation (lCMA), Hong Kong

Shunk, D., Sullivan, B., Cahill, J., Fall 1986,

Making the Most of lDEF Modeling - The Triple Diagonal Concept,

CIM Review, pp2-17

SI (Systems Integration) Group (LUT), February 1994,

Model Driven CIM : The design, implementation and management of Open CIM systems

Loughborough University of Technology

SERC/ACME Review Report No. 2, Grant No. GRIH/22798

SIM,1993,

User and Technical Manual,

MSPLLtd.

Singh, V., Weston, R. H., 1994a,

Functional interaction management: A requirement for software interoperability,

Procs. of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture

Singh, V., Weston, R.H., May 1994b,

Software Interoperability for Integrated Manufacturing, A Reference Model Driven Approach,

International Conference on Data and Knowledge Systems for Manufuring and Engineering

(DKSME '94), Hong Kong.

Singh, V., Weston, R. H., September 1993,

New Generation of "Open" Manufacturing Control Systems for

"Seamless" Integration in CIM,

Procs. International Conference on Computer Integrated Manufacturing (ICCIM' 93),

Singapore, pp309-32l

Singh, v., May 1992,

Flexible Materials Handling and Storage System for Integrated Manufacture,

Procs. Asia-Pacific Industrial Automation (lA)' 92 Conference, Singapore, pplO-2l

Page 150

Singh, V., October 1991,

CIM Modelfor Metal Machining Trade - Translating Vision into Reality,

Procs. International Conference on Computer Integrated Manufacturing (ICCIM' 91),

Singapore, pp336-341

Solberg, J. J., 1989,

Managing Information Complexity in Material Flow Systems,

NATO ASI Series, Springer Verlag, Vol. F53:, pp3-20

Ssemakula, M. E., 1987,

The role of process planning in the integration ofCADICAM systems,

Procs. of Fourth European Conference on Automated Manufacturing (AUTOMAN 4),

Binningharn, UK

SI. Charles, D. P., October 1987,

The Fractured CIM Market,

Managing Automation

Struedel, H. 1., DesruelIe, P., 1992,

Manufacturing in the Nineties,

Van Nostrand, Reinhold, New York

Taylor, F. W., 1947

Scientific Management

Harper and Row (Publishers)

Taylor, R. w., Frank, R. L., 1976,

CODASYL data base management systems,

ACM Computing Surveys, New York, Vol. 8, No. 1

Terry, W. R., Matz, T. w., 1989,

An object-oriented programming paradigm for synchronous manufacturing,

Computers Industrial Engineering, Vol. 17, Nos. 1-4, pp124-129

Tbompson, G. R., Gomer, T., Chung, C., Barkmeyer, E., Carter, F., Templeton, M., Fox, S.,

Hartrnan, B., September 1990,

Heterogeneous Distributed Databases Systems for Production Use,

ACM Computing Surveys, Vol. 22, No. 3, pp237-265

Page 151

)

Timon, E, Jagdev, H. S., Browne, J., 1990,

The Analysis of and the selection Criterion for Production Management Packages,

Advances in production management systems, Procs. Fourth IntemationallFIP Conference

TC5/WG 5-7, Espoo, Finland, pp427-438

Van der Lans, R. E, 1989,

The SQL standard, ,

Prentice Hall

Van Donselaar, K., July-September 1992,

The use of MRP and LRP in a stochastic environment,

International Journal Production Planning & Control, Vol. 3, No. 3, pp239-246

VolImann, T. E., Berry, W. L., Whybark, D. C., 1988,

Manufacturing Planning and Control Systems,

Dow Jones Irwin, Homewood, IL.

Waterlow, J. G., Monniott, J. P., 1986,

A study of the state of the Art in Computer-Aided Production Management in UK industry,

ACME Report

Weber, D. M., Moodie, C. L., 1989,

Distributed intelligent information systems for automated integrated manufacturing systems,

Advanced Information Technologies for Industrial Material Flow systems, Springer-Verlag

Weinberg, J. c., 1989,

Linking the CIM Plan with Operations Strategy,

Procs. Conference Autofac!' 89, Detroit, Michigan

Welz, E, March 1993,

Software Interoperability within Manufacturing Control Systems,

Graduate Dissertation (Dept of Manufacturing Engineering, Loughborough University of

Technology), LUT Press

Weston, R.H., 1993,

Steps Towards Enterprise-Wide Integration: a Definition of Need

and First Generation Open Solutions,

International Journal of Production Research, Vol. 31, No. 9, pp2235-2254.

Page 152

Weston, R. H., Zhang, P., Murgatroyd, I. S., Coutts, I. A. and Hodgson, A., September 1991,

Soft Integrated Assembly Systems,

Procs. Founh World Conference on Robotics Research, Pittsburg, USA, pp410-419

Weston, R. H., Gascoigne, J. D., Rui, A., Hodgson, A., Sumpter, C. M. and Coutts, I., 1988

Steps towards information integration in manufacturing,

International Journal Computer Integrated Manufacturing, Vol. 1, No. 3, pp140

Weymont, N., P., Honeyager, J. S., 1987,

Developing a elM Architecture,

Procs. of the Digital Equipment Computer Users Society, USA

White, C. J., Winter 1993/1992,

Interoperability : The Impact of New Standards,

INFODB, Vol. 7, Pan 1, pp21-30

Wight, 0.,1984,

Manufacturing Resource Planning: MRP 1/,

Essex Junction, Oliver Wight Publications Ltd

Wilkinson, G., G., Winterflood, A. R., 1987,

Fundamentals of Information Technology

John Wiley and Sons, pp207-219

Williams, J., Rogers, P., 1991,

Manufacturing cells: control, programming and integration

Butterworth-Heinemann

Wood, P. J., Johnson, P. N., 1989,

A review of the use of SSADM and IDEF at the University of Warwick,

Procs. of SAMT' 89 Conference, Sunderland, UK

Wyatt, T., AI-Maliki, 1.,1990,

Methods in manufacturing systems engineering - the background,

Integrated Manufacturing Systems, Vol. 1, No. 2, pp91-93

Yeomans, R. w., Choudry, A., 1986,

Design Rules for CIM,

North Holland

Page 153

Zhang, H. -C., Airing, L.,

An Exploration of Simultaneous Engineering for Manufacturing Enterprises,

International Journal of Advanced Manufacturing Technology, Vol. 7, No. 2, pplOl-108

Zlipfel, G., Missbauer, H., 1993,

New Concepts for production planning and control,

European Journal of Operational Research, Vol. 67, pp297-320

Page 154

APPENDICES

Page 155

APPENDIX I I

Types of Logical Data Models

Page 156

There are the following three logical data models most commonly supported by database

management systems [Wilkinson and Wmterflood 1987, Martin 1980] :

• Hierarchical model

Data is represented in a hierarchical or tree structure. The highest level in the hierarchy

is known as the root node. It has no parent node above it. Apart from the root node all

other nodes must have only one parent node, but any node can have more than one

dependent or child node. As illustrated in Figure a, node Department is the root, node

Employee is the child of node Department and the parent of node Job History. Tree

structures are a natural way to model truly hierarchical relationships from the real world

when one-to-many (parent to child) segment types can be defined to represent

successive levels in a tree structure in order to relate entities to one another. However, in

many situations relationships do not naturally fit into this model. For instance it is not

easy to directly represent relationships between segment types at the same level in the

hierarchy, nor is it possible without introducing data duplication to represent many-to

many relationships between entities. A more detailed discussion of the hierarchical

model can be found in Date [1986] .

• Network model

In the network model, data is represented in a network or plex structure. In the network

model any node can be connected to any other node in the structure. The nodes consist of

groups of data usually representing an entity and its attributes, whilst the connection

between the nodes represents the existence of relationship between the nodes (entities),

as illustrated in Figure b. Network structures offer more scope to represent data

relationships than hierarchical structures, albeit at the expense of simplicity, at least with

respect to physical storage structure. The need to transform many-to-many relationships

by the construction of a network model does mean than more or less irreversible

decisions have to be made about the nature of the relationships between entities when the

data model is designed. It should be noted that the network model, whilst permitting a

representation of many-to-many relationships without introducing duplication of the

duplicating record occurrences, does make retrieval of data a laborious process. For

further reading on network database systems the reader is referred to Taylor and Frank

[1976], Olle [1978] and Date[1986].

Page 157

Department

I DEPH I NAME I MANAGER I BUDGET D

+
Employee

L EMPLOYEEII jNAMEI DEPf * 1 SALARY 1 LOCATIONH

Job

1 JOB * 1 JOB DESCRIPTION I
Next or kin

Job History I ~ I RELATIONSHIP I AGEI

1 lQlIllAIIl 11TILE I

Salary History

1 SAl.a.BY DAI~ 1 SALARY I

(a) A multilevel hierarchical schema

Supplier

1 SUPPUER * 1 ADDRESS I NAME 1 DETAILS m

I
Part

I PARH I NAMEI DETAlLSI QTYON-HANDh

<I)

ffi
@ Quotation

~ . I PART * I SUPPUER * I QUOTE PRICE I DEIlYERY TIME Jl

I Order 0

ORDER *1 ORDER DATEI DEllVERY DATEITOTA41

Purchase Item

-I PARH I QTY ORDEREDI PRICE ~

(b) A plex structure of five record types used for a purchasing application

Figure: Database models and structures

Page 158

• Relational model

In a relational model, entities, relationships and attributes are represented in the form of

two-dimensional tables known as relations. Records are assimilated to the rows of the

table and each set of attributes forms a column. Each row in a table is known as a tuple

and consists of a fixed number of attributes. In a relational database entities are stored

totally independently. That is to say the existence of a relation or a tuple in a relation is

not dependent on any other relation or tuple, nor is access to a tuple reliant on explicitly

pre-defined access paths through complex data structures as it is in the formatted

hierarchical or network models. Instead logical associations among the stored data are

exploited through relational operations, such as select, project and join which can be

used to create new tables. The application of any (relational) operation produces an

object which is itself a relation (which can be stored as a new table in the database).

Thus any number of operators and relations can be combined in a 'relational expression'

used to answer almost any query. The entities, attributes and relationships produced

from the conceptual data model can often be modelled directly as relations in a

relational database model. The use of the relational model rather than hierarchical or

network models is seen to demand less compromise in transfonning the real-world

model of the conceptual data model, although the processing overhead it requires is still

often a serious deterrent to its use for many applications [Date 1986].

Page 159

APPENDIXU{

The following publications relate to the elM Model Project :

"elM Model For Metal Machining Trade - Translating Vision into Reality"

Valdew Singh

Proceedings of International Conference on CIM (ICCIM' 91),
October 1991, Singapore, pp336-341

"Flexible Materials Handling and Storage System for Integrated Manufacture"

Valdew Singh

Proceedings of Asia Pacific Industrial Automation (lA' 92) International Conference,
May 1992, Singapore, pplO-21

Page 160

Proceedings of International Cooferencc on CIM (ICCIM' 91),
Oct 1991, Singapore

elM Model for Metal Machining Trade
. Translating Vision into Reality

Yaldew Singh
Applied Technology Group

Singapore Economic Development Board

ABSTRACT

This paper describes the effort involved in developing a Computer Integrated Manufacturing (OM) model which
will serve as a working showcase to the local industry. It comprises a defined hierarchy of control and integrated
information flow which links very closely the various production planning and shop floor related activities, and a
flexible manufacturing cell serviced by an automated material handling system that includes an AGY and ASRS.
A detailed overview of the realised system and the functional aspects and requirements of the CIM modules will
be provided.

INTRODUCTION

An immediate problem facing Singapore is the shortage of labor supply and according to the National
Automation Master Plan (1988) Report [1], automation is the key technology to improving labor productivity,
flexibility, enhancing competitiveness, and stimulating growth in the future. ClM technology, therefore, has
definitely a very important role to play towards ensuring the continued survival and helping to sharpen the
competitive edge of manufacturing companies.

However, its vision seldom translates into reality primarily due to the lack of awareness, proper training as well
as standards and open structure in the use of multi-vendor systems to integrate and interface the various "islands
of automation".

In order to help promote greater awareness and better expose industry, particularly in the metal machining trade,
to CIM technology, a project to develop a CIM model [2] was initiated by the Applied Technology Group (ATG)
of EDB; vehicle for the promotion and propagation of new application technologies.

The emphasis for the CIM model is on the development of a strategy to guarantee a constant, efficient and
distributed information flow and processing to link all production related activities. It also comprises a flexible
manufacturing cell (FMC) responsible for the machining activities and an automated material handling system
that includes an automated guided vehicle (AGY) and an automated storage and retrieval system (ASRS) to offer
transportation and storage support to the FMC.

APPROACH FOR IMPLEMENTATION

As a guideline, the following is the approach taken to initiate the implementation of the elM model:

Rationalization to identify and understand the specific needs and relate them to already available technology
for selection and adoption.

The analysis and simplification of all existing business and manufacturing activities to eliminate counter
productive weak points such as double tracking and dead ends to achieve efficiency through optimization of
these activities.

Automation and computerisation is then initiated. Full compatibility and ease of customisation must always be
considered for future integration of these newly created "islands of automation". The initial approach to
computerisation is via the MRP II system to allow automation of labor intensive and time consuming
processes, purchase order processing, routing, bills of material pre calculation and MRP.

Page 161

Proceedings of International Ccnferenoe 00 CIM (lCCIM' 91),
Oa. 1991, Singapore

• The inlegration of the "islands of automation" is carried out in progressive stages to make it manageable and to
help isolale and tackle any problem that might arise.

MODULES INCORPORAlED FOR THE CIM MODEL

The configuration of the CIM model is illusualed in Fig. I and it includes the following modules :

In-bouse developed modules

Sbop floor
Scheduler

Finile capacity planning and loading.

Tool, Fixturing & Check on the machining parnmelers and the availability and inventory
Material Management status of selecled tools, fixtures and maleriais. The TFM system is linked

(TFM) direct! y to MRP II.

Product To selectively identify and accept suitable product for processing. Assessment

RemoteDNC Network based Distribuled Numerical Control (DNC) syslem linked to
the mCON DNC manager for NC program management and automatic
control and monitoring of the CNC and inspection stations.

The lack of suitable commercial syslems which could offer the required openness and functionality that is
encompassing enough for the needs of the user has made it necessary for these in-house developments.

Ocr-the-sbelf commercially available modules

MRPUsystem Production managemen~ planning and control.
• Fourtb Shift

CAD Generation of engineering drawings.
• AUTOCAD

CAM
Generation of NC programs.

• EZ-CAM

CAD/CAM
Management To archive and manage engineering drawings and NC programs.

• COMPASS

Provide status feedback & event triggering to initiate shop floor
Real-time ShOt floor activities in a coordinaled manner. It is carried out through direct Monitoring & ontrol

·ONSPEC communication with the SIEMENS PLC which is networked with the

SINEC L I Local Area Network to offer distributed PLC control.

Simulation Graphical and discrele event simulation to model and analyze the

• GRASP operational sualegies of the shop floor manufacturing activities.
• SIMFACTORY

Quality Control
Generale inspection program for CMM ·CVQA

Page 162

Proceedings of International Cooference on CIM (lCCIM' 91),
<la 1991, Singapore

These modules, however, exist as stand-alone "islands of automation" and they need to be specially customized

and bespoke software and macros have to be provided to offer the opponunity for these modules to be integrated

and interfaced,

All the CIM modules are linked via the NOVElL Local Area Network (LAN) for information flow, refer to Fig,
1 for illustration. The following LAN solution has been adopted to allow intercommunication between the
various in-house developed and heterogeneousmix of selected multi-vendor systems which operate over varied
platforms which includes MD-DOS, OS(l. and UNIX:

• Netware protocol between all MS-DOS and OS(l. based systems. In addition, the MAP ASSIST utility has been
utilized to offer peer to peer communication over NOVEl..L LAN between the MS-DOS based systems. This
effectively help reduces the dependency on the network server and the information traffic flow to the server.

3+Open TCP with DPA (Demand Protocol Architecture) for communication between the MS-DOS and OS(l.
based systems with UNIX.

Based on this LAN solution, a database strategy is developed to support a distributed infonnation processing
architecture. This is to facilitate the integration of all dissimilar, non-standard and local databases which are
proprietary to the respective application software in use to a more standard and shareable DBMS (Database
Management System) [3,4,5]. ORACLE RDBMS has been chosen to serve as the required DBMS because of its
portability over MS-DOS, OS(l. and UNIX platforms, data and security control across distributed platforms and
flexibility as well as ease in application development and structuring because of SQL support User friendly front
end interfaces have been developed through ORACLE to allow easier and common access and storage of
information by the various application software. Tracking, confirmation and logging in of all the planned
activities and relevant information will be undertaken by it.

MANUFACTURING CELL

The layout for the FMC is illustrated in Fig. 2. The cell includes two CNC machining centres (i.e. MAHO MC5
and MHO MH700s), and automated material handling system which includes an AGV and an ASRS. The
machines are linked to the remote ONC terminals which serve as cell controllers. It was necessary to enhance and
retrofit these stand-alone CNC machines for unmanned machining operation through the provision of the
following:

• Modular docking cum buffer stations for the receipt and delivery of pallets from and to the AGV.

• Automated transfer mechanism for the transfer of the pallets between the docking stations and the machines.

• Automated clamping and location for holding the pallets securely when machining.

All these automated systems are under the control of the networked based SIEMENS PLC.

The FMC is able to function in an autonomous manner without much operator intervention because of the
following:

• Ease of handling a defined family of products with minimum setup and transfer time due to the multi-axis
machining capability.

• The communication protocol available on the CNC controller allows micro-computer control for:

- Automatic start-up, NC program selection, upload and download.

- Vertical integration of the cell with the real-time shop floor monitoring and control software and the
remote ONC system for statuS feedback and automated control and coordination of the cell.

The parts will be fed into the ASRS for storage via a manual fixturing station where they will be fixtured with the
aid of modular fixtures on common size pallets [6]. The ASRS will be responsible for the storage of empty
pallets, prefixtured parts that are ready for machining operations but need to be stored temporarily prior to
dispatch. The AGV is equipped with a twin conveyor carrier to handle two pallets simultaneously. It will
automatically shuttle pallets between the ASRS and the FMC

Page 163

Proceedings of International Conferena: on CIM (lCCIM' 91),
Oa. 1991, Singapore

The Carl Zeiss UMC 550S coordinate measuring machine (CMM) is responsible for inspection of the parts that
has been machined. The parts to be inspected will be delivered by the AGV from the ASRS to the specially
developed buffer cum transfer mechanism for automated transfer to the CMM.

INFORMATION FLOW

The CIM environment created represents what happens when an order is placed and the logic that follows. With
reference to Fig. 3, the information generated and the sequence of flow between the modules are as follows:

• Product Assessment - Check for suitability

The order received is interactively assessed for suitability. Existing constraintsand specifications must be satisfied
such as lIIe size of part, payload, batch quantity and type of material permitted and lIIe machining processes lIIat
can be accommodated by lIIe system. Suitable order will be fur!her processed.

• MRP n - Order Entry

The order is registered and availability check on lIIe required machining capacity and other resources necessary
to manufacture lIIe order will be performed. The route plan will be generated and a delivery date is provided after
considering lIIe manufacturing and delivery lead times for lIIe required items as well as the loading commitment
for all prior confirmed orders.

The quotation will also be generated based upon the available costing information. IT the quote and delivery date
is agreeable to the customer, the process of product design will commence.

• CAD - Product Design & Engineering Drawing Generation

Within lIIe CAD/CAM manager environment, all part drawings will be generated. The TFM software has been
directly interfaced to provide on-line information on available toolings, fixtures and materials for possible
selection and consideration.

The CAD system has been customised to include a standard libmry for lIIe modular fixturing elements so as to
allow computer aided fixturing to be carried out interactively to generate lIIe necessary fixturing drawing for lIIe
part concerned.

The part drawing has to be converted to eilller the neutral Data Exchange Format (DXF) or Intermediate Graphic
Exchange Standard Format (IGES) for input to lIIe EZ-CAM and lIIe CVQA inspection software for subsequent
NC and inspection program generation respectively.

The generated part and fixturing drawings as well as lIIe DXF/lGES converted file will be stored in lIIe CAD/
CAM manager database located on lIIe network server.

The BOM (Bill of Materials), specifying all materials and standard items required for the part as well as the
necessary modular fixture elements, will be created through lIIe BOM module of the MRP 1I system residing
willlin lIIe CAD/CAM manager.

• CAM - NC & Inspection Program Generation

EZ-CAM also operates within lIIe CAd/CAM manager environment It imports the necessary IGES or DXF
formatted part drawings to post-process the required NC program. Similarly, the CVQA software will post
process the IGES formatted part drawings to generate the inspection program necessary for the CMM. The NC
and inspection programs will be sent to the mCON DNC manager for storage until required.

The BOM, specifying all tooling requirements, will be created through the BOM module of the MRP II system
residing within the CAD/CAM manager.

• MRP n -Generation of Manufacturing & Purchase Order

The MRP II system will automatically generate action messages for the purchase of relevant items after receipt of
the full BOM for the part concerned. The order will be confirmed and incorporated into the Master Production
Schedule (MPS).

The manufacturing order and a picklist, which provides information on all the resources needed to produce the

Page 164

Proceedings of International Cooferencc: on CIM (ICCIM' 91).
0c11991. Singapon:

pan. i.e. maleriaJs. toolings. fixtures. etc. will be generated. The manufacturing order for !he pan will be input
automatically to the shop floor scheduler for further processing.

The picklists and the manufacturing orders will only be released when the availability of maJerials, toolings.
fixtures. process plans, Nc programs, and pan and fixturing drawings are confirmed.

• Shop Door Scheduler - Generation of Scheduled Orders

The shop floor scheduler will perform finile scheduling of the manufacturing orders received from the MRP IT
system. It is heuristic based [7. 8) and considers criteria such as critical ratio and slack dme in obtaining a
feasible solution fast. It will generale the following three schedules for:

- Processing of parts stored in the ASRS.

- Prefixturing of parts for forward loading.

- Processing of the batch orders for each of the specific stations.

The shop floor scheduler is linked to the simulation software, SIMFACTORY. in order to determine optimum
capacity loading and resource allocation. This is to a1leviale polential problems such as boltlenecks as well as
poor and unbalanced utilization of machines. The scheduled orders will be held in queue until they are to be
released depending upon !he stan dale.

The scheduled lists for !he processing of the parts stored in the ASRS and prefixturing of parts for forward
loading will be accessed by the ASRS controller for processing based upon the availability of the stations. The
lists will be updaJed by the ASRS controller in order to allow order monitoring for the following:

- Comparison of actual to planned quantity status.

- Indication of the operational status for the order.

• Remote DNC - NC Program Management & Cell Control

The remOIe ONC terminal attached to the specific machine will access the scheduled list containing the batch of
orders to be processed by it It will upload the associaJed NC programs from the DlCON DNC manager. The
terminal will coordinate the sequence of activities necessary for unmanned machining operationsuch as sensing
for pallet presence and checking 10 ensure that the pallet has been properly secured prior to activating the
machining cycle. An optical based pan identification (ID) system, SUNX/lOX, is interfaced to the terminal to
allow the reading of the ID tag. which is attached to the pallet. This is to check the authenticity of the part
received and relate it to its NC program for maChining. The pan ID syslem allows traceability of the pan as it
flows through its planned route.

• MRP n -Close Order

. Information concerning the completion of an order will be captured by the shop floor scheduler from the updaJed
schedule lists. It will automatically update and inform the MRP JJ system. The MRP JJ system wiu then generate
action messages which can be acJed upon to close the order. The completed order is then ready for dispatch to the
customer.

CONTROL ARCHITECTURE

The control architecture has been formulated to cater for the processing of the scheduled orders based on the pull
through technique; i.e. required orders and services will only be provided when the need arises. This is to allow
balanced and optimum utilization of resources.

The ASRS controller will process the orders from the scheduled lists depending upon the availability of the
buffering cum docling stations at each of the machining and inspection stations. This information is feedback on
line by the real-time shop floor monitoring and control software, ONSPEC. After dispalch of the order the ASRS
will register a request for the service of the AGV to collect and deliver the part to its designaJed station. The AGV
will be informed by ONSPEC to collect parts that have been machined and inspecJed.

This network based heterogeneous control architecture [9) has been adopted over the more pervasive hierarchical

Page 165

Proceeding. of International Conference on ClM (lCCIM' 91),
Qa" 1991 ,Singapore

architecture so as 10 cater for effective distributed information processing. Each entity will be able to operate
independently with intercommunication on a peer 10 peer basis. Furthermore, such an architecture allows for ease
of software development, maintenance, system reconfiguration and expansion.

CONCLUSION

In summary, it is hoped that this model can help serve as means 10 an end in keeping pace with the constantly
evolving elM technology and 10 offer assurance and confidence 10 those wishing to venture into CIM.

The future plan is 10 incorporate more intelligence inlO the system to further isolate and contain menacing
production variables and to enable it to operate with greater autonomy in the acquisition and processing of the
necessary information across multi·vendor platforms.

ACKOWLEDGMENT

The author wishes to express his thanks to the Manpower Development Division of the Singapore Economic
Development Board for much appreciated support. Special thanks are also expressed to his colleagues in PUG
involved in the project (in particularC. N. Chang, S. D.Foo, N. F. Choong,S. H. Ang, K. S. Tam,C. K. Lim and
C. M. Ching) and to his family, Magdalene and Sabrina, for their understanding, patience and constant
encouragement.

Page 166

Proceedings of International Cmferencc 00 OM (ICCIM' 91),
Oct 1991, Singapore

REFERENCES

1. Productivity Digest! SME Newsletter, March 1989

2. Singh, V., "PC Based Computer Integrated Manufacruring Solution for Small and Medium Enterprise",
Proceedings of the Asia-Pacific Industrial Automation (lA' 90) Conference, May 1990, Singapore

3. Ranky, P. G., "Manufacturing Database Management and Knowledge Based Systems" CIMware LTD,
Guildford, Surrey (UK), 1990

4. Yourdon, E., "Modem Struc1llre Analysis", Prentice-Hall, Eaglewood Cliffs, New Jersey, 1989

5. CIM Sttategies, "Client-Server Architec1llre, What does it buy you?" Vol. VIn, No. 3, March 1990

6. Lewald, R., "Soon: an interrtationai pallet standard", American Machinist, Feb 1990, pp69-70

7. Berry, W. L., Rao, V., "Critical ratio scheduling", Management Science, Vol28, No. 2, 1975

8. Chang, Y. L., Sullivan, R., "Schedule generation in a dynamic job shop", International Journal of Production
Research, Vol 28, No. 1, 1990

9. Duffie, N., A., Piper, R. S., "Non-Hierarchical Control Model of a Flexible Manufacruring Cell", Robotics &
Computer Integrated Manufacturing, Vol. 3, No. 2, pp175-179

REGISTERED TRADEMARKS

SIMFACfORY - CACI SimLab, Inc

GRASP - BYG Systems Ltd, U.K.

ORACLE - ORACLE Corp

ONSPEC - Heuristics, Inc

NOVELL - Novell, Inc

FOURTII SHIFf - Fourth Shift Corp.

3+Open - 3COM Corp

MAP ASSIST - Fresh Technology Corp

AUTOCAD - Autodesk , Inc

EZ-CAM - Bridgeport Machines, Inc

COMPASS - TCAE GmbH

CVQA - Computer Vision, Inc

DlCON - Dinkel Industrie Automation GmbH

Page 167

,

Proceedings of International Conference on CIM (ICCIM' 91),
Oct 1991, Singapore

ONC
Tnmlaal

CAD/CAM
- Design
• NC program
·BOM

CAD/cAM
Manager

I I
~JWiR ~JIiiR. [J

~~~~ 
MADOMC5 

MADOMH700s 

MRPII 
- Order Enuy 
• Costing 
- Inventory 

control 

-BOM 

Product 
Assessment 

- Feasibility 
check for part 
manufacture 

Process P1anning 

Scheduler 

- Shop Hoor 
Scheduling 

• Enquiries 
- Order status 

JU 
SIEMENS SIMATIC 

SS PLC 

-Docking statims 
-Transfer mechanisms 
- Automated clamping 
-Cmveyon 
- Tool distribution system 

Graphical sbnuladon 

Coordinate measuring machine 

Quality tGlltrol 

Fig 1 • CIM MODEL CONFIGURATION 

Simulation Tool, fixture & 
- Modelling material 

& analysis management 

• Availability 
and statui check 

SIMFACJURY on ~lOUrocS 



Proceedings of Intemational Conference 00 OM (lCCIM' 91), 
<let 1991. Singapore 

Flexible Machining Cell (FMC) 
CNC Machining Cd! for r-rr...,,=lIi§~~ 

part manufacture 

Transfer 

Inspection Station 

CNC Coordinate Measuring Machine (CMM) 

Automated Storage & Retrieval System 
(ASRS) 

Fig. 2 - Physical Layout of Flexible Manufacturing cell (FMC) 

I Market ana1ysis, re.search &. sales forecast I 

Production Planning 
and control level 

CAD/CAM. CAF. 
CAQC 

NC &. lnspectioo. 
programs 

Shop Door level 

Automatic 
ceU oontrol 

Quotation &. 
Delivery date 

ROM MRP IT Resoun:e planning 
(Fourth Shiflll-----l checking 

Shop floor 
feedback 

Schedule 

Fig. 3 - Infonnation flow 

Sirnulatioo. &. analysis 

Shop Hoor 
monitoring &. control 

ONSPEC 

Status feedback &. 
event triggering 

Page 169 



Proceedings of Asia Pacific Indusuial AUlanation (lA' 92) Imemational Conference. 
May 1992. Singapore 

Flexible Materials Handling and Storage system 
for 

Integrated Manufacture 

Valdew Singh 
Applied Technology Group 

Singapore Economic Development Board 

ABSTRACT 

The flow and management of material and infonnation in material handling system are proving to be 
technologies with the most dramatic impact on integrnted factory automation. In estimated between 70 and 80 % 
of throughput time during manufacturing can be accounted for by processes such as transpon, handling, buffering 
and storage. 

A flexible material handling and storage system (FMHSS) has been developed as part of a project to develop a 
computer integrnted manufacturing (CIM) model which will serve as a working showcase to the local industry. 
The FMHSS comprises an AS/RS (Automated Storage and Relrieval System) and two AGVs (Automated 
Guided Vehicle) to provide storage and transponation services respectively to a flexible machining cell (FMC), 
flexible assembly cell (FAC) and an automated CMM inspection station. The objective of the FMHSS is to 
supply the right quantity of pans in an efficient, controlled and coordinated manner at the righl time. The FMC 
has been retrofiued with specially designed clamping and transfer system for unmanned precision machining and 
automated part transfer. The FAC comprises two robotic system working in close coordination for automated 
assembly of a family of components. The AS/RS cater for parts and component for both FMC and FAC. The 
AGVs offers controllability and fast reaction to flexibly interlink the AS/RS, FMC, FAC and the CMM 
inspection station. The FMHSS is driven by schedules and shop floor status feedback generated by an integrated 
production planning and management system. 

This paper describes the effon involved in the development of the FMHSS and it will highlight the following: 

- The modular approach for progressive implementation of the various individual material handling modules with 
the aim of combining them into an integrnted system. 

- The network based control architecture which involves an ethemet based local area networking for dislributed 
information processing and PLC networking for shop floor automation. 

- The adoption of the pull-through technique where the FMC and the FAC will be services by the AS/RS and the 
AGVs based upon their availability for part processing. 

- The integration of the AS/RS warehouse management software with the production planning and management 
systems such as MRP IT and the Shop floor Scheduling through a SQL based relational database management 
system (RDBMS). 

1.0 INTRODUCTION 

In the local manufacturing industry today, the investment in factory automation such as the application of 
automated machine tools and computer-aided applications, e.g. CAD/CAM systems, to improve productivity is 
pervasive because of the following reasons: 

- Growing problem of shonage and high cost of skiIled labour. 
- Intense competition among companies 10 gain the competitive edge. 
- Maturing of related technologies, such as computer numerical control (CNC), programmable logic controllers 

(PLC), computer and electronic communication technology. 

However, the level of automation among the local small and medium enterprises (SMEs) [1] is generally 
confined to stand-alone automatic machines and computer-aided applications where implementation is usually 

Page 170 



Proc:eedings of Aria Pacific Industrial Autcmation (lA' 92) buemational Conference. 
May 1992, Singapore 

not well planned and is often carried out on a piece meal basis. This can only offer short tenn benefits with 
limited opponunity for progressive growth and enhancement 

Therefore, to help introduce and create greater awareness among the local companies to the concept of CIM 
(Computer Integrated Manufacturing) a CIM model [2,3) was developed by the Applied Technology Group 
(ATG) of EOB; vehicle for the promotion and propagation of new application technologies. 

The model incorporates a flexible machining cell (FMC) for precision machining and a ftexible automated cell 
(FAC) for automated pan assembly. Its emphasis is on the sttategic application of computer-aided technologies to 
fonn an information network to combine the activities relating to engineering, business and production functions 
required for product planning and manufacwre. The distribution of activities within the hierarchy of this CIM 
model is iIIusttated in ANNEX I. 

As the prime task for the realisation of this model lies in the integration of both information and material flow, the 
inclusion of Automated Guided Vehicle Systems (AGY) and Automated Storage and Retrieval Systems (AS/RS) 
are necessary as these are fast becoming indispensable components in integrated factory management and 
automation. These technologies facilitate automated movement of products and materials according to planned 
schedule and provide effective management and control to help optimise production. 

2.0 FLEXIBLE MATERIALS HANDLING & STORAGE SYSTEM 

As iIIusttated in ANNEX n, the following are the major components of the flexible materials handling and 
storage system (FMHSS) for the developed CIM model: 

• Flexible Machining Cell (FMC) 

The FMC includes the MAHO MC5 and MH700S CNC machining centres for the fabrication of a defined family 
of products. These products will be mounted on common sized pallets [4) with the aid of modular fixtures. The 
Carl Zeiss UMC 550S coordinate measuring machine (CMM) is incorporated for quality control and automated 
pan inspection. These stand alone machines are dissimilar are linked to remote Oirect Numerical Control (ONC) 
tenninals which serve as cell controllers. In order to enable the ceD to function in an autonomous manner without 
much operator intervention the following enhancements and provisions were necessary : 

- Buffering cum AGV docking slDtions /0 service CNC machines 
These wiu serve as intennediate buffer areas for the receipt and delivery of pallets from and to the AGV. They are 
made of standard height for the benefit of the AGV and are modular in design. 

-Automated pallet transfer units 
It is responsible for the ttansfer of pallets between the AGV docking station and the CNC machine. It is made 
mobile over a short linear ttack and is controlled by the linear axis motion control module of the PLC. This 
makes the location programmable and reconligurable if necessary. It also provides the necessary height 
adjustment between the AGV docking and the height of the CNC machine table during the ttansfer of pallets. 

- Swarf control & automated pallet clamping and location 

- CMM conveyor system 
A conveyor system for pallet ttansfer has been developed and incorporated with the CMM. It allows the 
automated ttansfer of pallets from the AGV to the CMM and vice-versa. 

- Upgrading o/CNC machine controllers 
The MAHO machine controllers were upgraded to allow for the provision of the LSV2 communication protocol. 
Through the remote ONC tenninals apecilic communication routines have been wriuen based on the LSV2 
protocol to address the required machine functions in order to allow for remote control of the CNC machines 
such as automatic start up, upload, download and selection of NC programs. 

Page 17l 



Proceedings of Asia Pacific Industrial A..nomaUon (lA' 92) Inlcmational Conference, 
May 1992, Singapore 

- PLC for FMC hardware automation 
The SIEMENS SIMATIC S5 PLC HSU is used for sequence control of an sensors, actuators, limit switches and 
other devices that would require digital I/O control for the FMC. The SIEMENS SIMiITIC S5 Ll PLC bus 
network is used to link the various automated modules in the FMC. The master PLC in the network is linked to 
the microcomputer based shop floor control and process monitoring software, ONSPEC, for status feedback and 
event triggering for the FMC. Refer to ANNEX III for illustration. 

- Part Identification 
Pan identification (ID) within the FMC is provide by the optical based SUN X/ID system which allows for read/ 
write of information such as routing and operation sequences to special ID tags which are embedded and 
carefully concealed at the side of the pallets. The ID read/write scanners are locate at the various processing 
stations to check for pan authenticity during receipt of the pallets as well as to update the operation status of the 
pan after it has completed each operation. It allows for ease of part traceability and error recovery. 

Flexible Assembly Cell (FAC) 

The FAC has been configured to include the BOSCH & SKlLAM pick and place robotic systems to perform 
assembly activities for the family of components to be stored on pallets in magazine. The FAC is capable of the 
following: 
• Ease of handling a defined family of products with minimum setup and uansfer time without operator 

intervention. 
• Flexibility in programming and movement of the robot to avoid restriction for component handling and 

orientation. 
• Integration of the two robotic systems with the automated conveyor system for transfer of magazine within the 

FAC via the PLC. 
• Ability to control and monitor the activities and status of the robotic cell through the in·house developed 

EYESCREAM based shop floor control and process monitoring application. This offers the opportunity for 
vertical integration for status feedback and information processing. 

• Magazine transfer through the provision of automated magazine transfer and buffering facilities for unmanned 
assembly for receipt and delivery of magazine between the assembly stations and the AGV. 

The OMRON PLC is used to link the various automated modules for the FAC. The OMRON SYSLINK RS422 
link is used to coordinate and synchronize the activities of the BOSCH and the SKlLAM robotic systems with the 
automated conveyor system for transportation of pallets and magazine for automated part assembly. It is linked to 
EYES CREAM based shop floor control and process monitoring software. 

• ASIRS and AGVs 

The AS/RS is for common storage of pallets and magazine to service both the FMC and FAC. It consists of two 
racks facing each other with the stacker crane servicing the 216 available storage compartments. Eighty of the 
storage compartments are reserved exclusively for the storage of magazine for the FAC. There are two AGVs. 
One AGV is equipped with a twin conveyor carrier dedicated to shuttle pallets between the AS/RS and the FMC 
and the other has a two tier conveyor system to transport magazine between the FAC and the AS/RS. The AS/RS 
has been retrofitted with the following in-house developed transfer system to support its automated material 
handling functions: 
• Modular chain' driven conveyor system equipped with input and output bays for store·in and store-out of pallets 

forFMC. 
• A two tier roller conveyor system for store-in and store-out of magazine for FAC. 

Since the AS/RS has to service the FMC and FAC Simultaneously, its control and inventory management 
application software has, therefore, been developed under the UNIX platform to take advantage of the necessary 
multi·task:ing and multi-user functions. The ORACLE relational database management system has been chosen 
as the database for the AS/RS system because of the fOllowing: 
• Openness for access of relevant data for processing and manipulation through SQL. 
• Ease of report generation and formatting. 
• Portability and ability to intercommunicate across heterogeneous platforms. 

Page 172 



Proceedings of Asia Pacific Industrial AUlOOlation (lA' 92) Inlcmational Conference. 
May 1992. Singapo.-e 

The AGVs rely on magnetic guidance 10 move along special magnetic based !racks laid on the floor 10 define the 
AGV routing. They are capable of bidirectional and Iransverse movements with spin turn abili1Y. The AGVs are 
interfaced with all the docking stations through a special 4-bit optical based sensor. This sensor serve as an 
intermediate co!l'munication interface between the AGV and the PLC module controning the docking station. It 
helps 10 synchronize pallet and magazine 1ranSfer between the AGV and the docking stations. 

3.0 FMHSS PLANNING AND DESIGN 

3.1 Graphical Simulation 

The GRASP computer-aided graphical simulation package has been utilized 10 build a model of the FAC, FMC, 
AS/RS as well as the two AG Vs for visualization and dynamic simulation of the material flow. It serves as a 
useful 1001 10 help analyse the design of the various automated material handling modules and enables the 
simulation of the operational performance. The derivatives from this graphical simulation exercise includes the 
following: 
- Optimum layout planning. 
- Collision detection of all interacting facilities. 
- Determination of parameters such as operation cycle, Iransfer and idle times. 
- Definition for operation sequence and digital I/O specification for overaU PLC program consideration. 

3.2 Part Family specification 

Based upon the physical specifications as derived from the FMC and FAC and hislOrical production records; 
statistics were obtained 10 determine the characteristics of the parts that have been produced such as maximum 
and minimum physical size of parts that can be accommodated, IOOling and material requirements, number of 
settings required, processes supported, and etc. This information is used 10 formulate the part families and based 
upon these information a Product Assessment Module has been developed 10 assess the suitability of parts and 
only parts that meet the characteristics for the part family win be accepted. This is essential in order 10 match 
process and operation requirements 10 available capability and resources. 

4.0 CONTROL ARCffiTECTURE FOR FMHSS 

The description for the flow of information within the control architecture of the FMHSS will commence from 
the receipt of the daily schedule lists by the AS/RS contronet from the Scheduler for machining and assembly. 
These schedule lists have been optimised [5] based on criteria such machine utilisation, throughput time and 
work-in-progress. 

4.1 Operation Procedure 

The operation begins with raw materials pre-fixtured on common size pallets and components loaded inlO the 
magazine at the manual fixturing and assembly stations and SlOred away in the AS/RS. Parts will be retrieved 
from the AS/RS and sent 10 the respective machining centre, assembly station and the CMM for processing, and 
finally sent back 10 the AS/RS for either in progress or temporary slOrage. Parts that require secondary operations 
like grinding or heat treatment, are sent out of the system for these operations 10 be accomplished and returned 
finally 10 the AS/RS. 

4.2 Information Processing 

The AS/RS controller needs 10 shuttle between servicing the FAC and FMC. It wiu only slOre-out the orders from 
the scheduled lists depending upon the availability of the machining, assembly and inspection stations. This 
information is feedback on-line by the real-time shop floor control and process monitoring software, ONSPEC, 
which is responsible for the initiation, coordination and synchronization of all FMHSS activities. After dispatch 

Page 173 



Proceedings of Asia Pacific Industrial Autanation (lA' 92) Inlemational Cooference. 
May 1992, Singapore 

of the order the AS/RS will register a request for the service of the AGV to collect and deliver the pans to its 
designated station. The AGV will be infonned by ONSPEC to collect pans that have been machined, assembled, 
and inspected. Refer to ANNEX IV for iIIusuation of the information flow for the FMHSS. 

The AS/RS and AGV controllers, ONSPEC and the shop floor control and process monitoring application for 
FAC are integrally linked over a NOVELL ethernet based local area network (LAN) backbone. The following 
were incorporated as part of the LAN solution in order to allow for intercommunication and infannation uansfer 
between the specific applications across heterogeneous platfonns : 

- Netware protocol between all the MSDOS and OS/2 based systems. In addition, the MAP ASSIST utility bas 
been used to offer peer to peer communication over NOVELL LAN between MSDOS based systems. This 
effectively reduces the dependency on the LAN server and the infonnation traffic flow to the server. 

- 3+Open TCP with DPA (Demand Protocol Architecture) for communication between the MS DOS and OS/2 
based systems with UNIX. 

Based upon this LAN solution the control architecture has been fonnulated to cater for the processing of the 
scheduled orders based on the "pull-through technique" wbere pans will be fabricated and assembled only upon 
availability of the processing station. This is to allow balanced and optimum utilization of resources. 

This heterogeneous control architecture has been adopted because it caters for effective distributed iofonnation 
processing. Each entity will be able to operate independently with intercommunication on a peer to peer basis. 
Furthennore, such an architecture allows for ease of software development, maintenance, system reconfiguration 
and expansion. 

5.0 CONCLUSION 

In summary, the developed integrated material handling system offers flexibility in terms of the following: 

- Modularity 
- Programmability 
- Reconfigurability 

This is essential in order to allow for progressive implementation, ease of adaptation to suit changing product and 
process needs, and more importantly to safeguard the system against technological redundancy and obsolescence. 
This system will serve as a working technological showcase to help promote the concept of integrated 
manufacturing to the local manufacturing industry. 

6,0 ACKNOWLEDGMENT 

The author wishes to express his thanks to the following: 

- The Manpower Development Division of the Singapore Economic Development Board for much appreciated 
support. 

- Colleagues in ATG involved in the project (in particular N.F. Choong, S.H. Ang, C.K. Lim and C.M. Ching) 
- Paul Binding and Yarnanouchi from ER Mechatronics Pte Ltd. 

Special thanks are also express to his wife Magdalene for her constant encouragement, patience and kind 
understanding. 

Page 174 



Proceedings of Asia Pacific Industrial Autanation (lA' 92) In1emational Confen:nce. 
May 1992, Singapore 

REFERENCES 

I. Productivity Digesl/SME Newsletter March 1989. 

2. Valdew Singh, .. PC Based Computer Integrated Manu/acturing SolUlionfor Small and Medium Enterprise", 
Proceedings of Asia-Pacific Industrial Automation (lA) '90 Conference, May 1990. 

3. Valdew Singh, .. CIM Model for Metal Machining Trade", Proceedings of International Conference on CIM 
(lCCIM) '91 Conference, Oct 1991. 

4. Roon Lewald, "Soon: an international pallet standard", American Machinist, Feb 1990, pp 69-70. 

5. NF Choong, KP Ang, V. Singh, .. Computer Simulation as a Toolfor IntegraJed Manufacturing", Proceedings 
of Asia-Pacific Industrial Automation (lA) '92 Conference, May 1992. 

REGISTERED TRADEMARKS 

SIMFACfORY - CACI SimLab, Inc 

GRASP - BYG Systems Ltd, U.K. 

ORACLE-ORACLECo~ 

ONSPEC - Heuristics, Inc 

NOVELL - Novel!, Inc 

EYESCREAM - Real Tune Graphics, Inc 

3+Open - 3COM Co~ 

MAP ASSIST - Fresh Technology Co~ 

Page 175 



ANNEX I 

I PRODUCTION PLANNING AND MANAGEMENT! 

I DESIGN AND DEVELOPMENT! 

I SHOPFLOOR LEVEL! 

FLEXIBLE MAC1IlNIHC CELL 

11---
OC_-~S 

~-"'"" 

k~ 

If-E;J--- ETHERNET BASED LOCAL 
AREA NETWORK (UN) 

rr====iI ..."....".. .u",." ... 
CQI'fTML (Ol'C) POll HC 

l'==::!J PItOCIWf IlANACDIENT 

- Distribution of activities within the elM hierarchy 



elM MODEL 
SHOP FLOOR LAYOUT 

OPERATION & CONTROL ROOM 

FLEXIBLE MACllINING CEU 

5-AXIS MACHINING CEHTRE 

TURN-MILL 

4-AXLS MACHINING CENTRE 

AUTOMATED STOAAC[ &: 
RETRIEVAl SYSTOA 

'" 

FI.EXIBLE ASSEMBLY CELL 
FLEXIBLE Rooone C[ll FOR 
COIolPQHENT ASSEMBLY .*HO 
INSPECTION 

> 
to: 
to: 
to:l 

I~ 
H 
H 



SHOPFLOOR MONITORING AND CONTROL 

"CV FOa 
rHC 

AUTOMATED STORAGE 
& RETRIEVAL SYSTEM 
WITH CONVEYOR SYSTEM 

'CV FOR 
FAC 

181 

AGV 
CONTROULR 

R 

FLEXIBLE ROBOTIC 
CELL FOR COMPONENT 
ASSEMBLY & INSPECTION 

EYESCRHAW BASED SHOPFLOOR 
CONTROL I.ND MONITORING .. . ~c 

~ 
rr===112!:.,::-==ilpECII 

~A~rn ljIP.PLC 

FLEXIBLE MANUFACTURING CELL 

~ 

CNC COORDINATE MEASURING 
MACHINE 

11-
i2l 
i2l 
t<I 
~ 

... ... ... 



CIM ARCHITECTURE 
FOR SHOPFLOOR CONTROL & MONITORING 

o SHOPflOOR 
~ SCHEOULER 

- UNIX BASED . 
- DAY TO DAY SCHEDULING Of 

WORKS ORDER tOR COMPONENT 
MACHINING AND ASSEMBLY OPERATION 

o $HOPflOOR MONITORING 
S AND CONTROL sonw.4.R[ (Fl.4C) 

- OS/2 BASED 
- OVERAll MANUFACTURING ACTMTY CONTROL 

AUTOIt.lA.TfO GUIDED 
VEHlCt£ 

EftJ 
-l1UHSPORT~nON fOR 
NAHUf'AC1\JRH:: cru.s 

g DISTRIBUTED NUMERiCAl CONTROL 

- Ne PROGRAM MANAGEMENT 
- OPERATION DATA ACOUISITION 

WORKS ORDER 

AUTOMATED STORAGe &: 

RErRI£VAl SYSTEM 

-FOfII P4U.£T,IUGAZIHf 
AKl COwPONUlT S1()R.OG[ 

CNe TURN-WU 4-AXIS MACHINING .5-AXIS UACHJNING CNe COORDINATE 

~ 
-fOR C()J.IP(lNDlT 

IoW(Uf,.tCllJRlHC 

~ ~ M~~HIN[ 

-fOA CQl.lPOt€ttI' 
IoW-ILE.l(tURlHC 

-fOR COul'OH£tlT 
WHJr ACTlIRlNC 

-roR tO~[NT 
ou.o.un 1N$P[C11OH 

o SHOPflOOR MONITORING 
Eel AND CONTROL SOnwARE (FA(;) 

-MS-DOS BASED 
-OVERALL ASSEMBLY ,Io,CTMTY CONTROL 

AUroWoTfO cU/om 
VEHICLE 

~ 
-lRNISPORlATlON roR 

ASS[uIIlT CIllS 

FLeXIBLC ROBOTIC CELL FOR 
COMPONENT ASS[MBL Y AND INSPECTION 

-.tSSEIoIBU 
-IHSPECnoN US~G IUoCHIt€ 'o1SION 

> :z: :z: 
too 
~ 

... 
~ 



APPENDIxrn 

INFORMATION MODELS 

Manufacturing 
Facility 

Part Master/ 
HOM 

Resource 

Process 
Plan 

Order 
Entry 

Schedule 

WIP 

Engineering 
Resource 

Manufacturing 
Cell 

Customer 

Supplier 

Page 180 



FIELD DEFINITION SIZE DESCRIPTION 

Manufacturing order number N[7J User defined unique identifier for a batch of manuIaa.uring order. 

Part number C(15) Unique identifier for the part (or component). 

Priority N(3) It sorts and dic:ta1e. the sequencing of scheduled jobl. 

Order Status C[l) It indicatellhe part's current JX>Sition within the order process. 

~ Sdledule Status C[IO) It indicates the status of the part within the scheduling & manufacturing procelS. 

Planned Quantity N(9) It specifies bow many or how much of the pan is required for manufacture. 

Unit of Measure C(4) 11 is the standard quantitive unit for the part used in the manufacturing procell. 

Schedule Start Date Date Planned date of commencement for the manufacture of the required quantity of parts .. 

Schedule End Date Date Planned date of completioo for the manufacture of the required quantity of parts. 

~ (Schedule I Vnschedule I Canplete I WlP I Hold) 

~ = Quotation or Firmed planned forecast 
'\ 

3 = Open Order. Confinned order but all required issues or shipment have not been made for the item. 

4 = Released Order. Coofirmed and planned oot pending receipt of required issues or shipments. 

5 = Closed Order. All required issues or shipment have been made for lite item and can lherefore proceed 
with manufacture. 

6 = Closed Order. Manufacture of the item is complete and is ready for dispatch. 

7 = Closed Order. The order is ready to be deleted from the active file and relained in order history. 

8 = Closed Order. Purge the order and do nO( retain in order history. 

9 = Credit Hold. The customer's credit limit has been exceeded or the order is placed on hold for anc:Jther 

"- reason. The item is then treated as an open order. 
/ 

Page 181 



-= .. ... 
<'<I 

~ .. -., <'<I 
::; -... <'<I 
Q.. 

~ :c 
U 
::; 
0 
~ 

The bill of materials (BOM) is a list of the items, ingredients or materials needed to produce a paren1 item, end item, 
or product. h is nOl just a simple listing eX dq>endent demand items, bw a structured list which describes the sequence 
of steps in manufacturing the product.. 

Part Masterl 
ROM 

Parent 

O.n_ ....... ~ The DaM is utilised for the following, .......... Child 2 

• Monufacturing engmeering use the DaM 10 show bow 10 manuf."ure Ibe product. 1 Child 1 X 
• Production planning use the ROM to schedule the parts which make the product. 
• ManufactUJUlg use the ROM to make the prodUd. on the shop Hoor. 
• Fmance use the BOM to con the prodUd.. 
• Order cn~ use the BOM to tnmsfate custaner orden and enquiries based upon the inler-depcndcncy and 

relationships of components! for the product in lenns of manUfatture, procurement and etc. 

HELD DEFINITION 

Parent Part Number 

Elfedlvlty start Dale 

Effectlvlty End Date 

Unit of Measure 

Engineering Change Notice Number 

Change F.J1"ected by 

Date 

Phases out Part Number 

Phased out by Part Number 

Number or levels 

Number or children 

Parent Part Number 

Number of Children 

Part Number (Child) 

~PartType 

\ ,. 
Quantity per assembly 

Effectlvlty start Date 

Effectlvlty End Date 

Unit of Measure 

Lead-time offset 

Engineering Change Notice Number 

Change Effected by 

Date 

Phases out Part Number 

Phased out by Part Number 

SIZE 

C[IS) 

Date 

Date 

C[4) 

N[7) 

C[20) 

Date 

C[IS) 

C[IS) 

N[2) 

N[3) 

C[ll) 

N[3) 

C[IS) 

C[l) 

N[12,2) 

Dale 
Date 

C[4) 

N[9) 

NI7l 

C[20) 

Date 

C[IS) 

C[IS) 

DESCRIPTION 

Unique identifier for the parent item which is the higher level item in the BOM. 

Date m which the part is introduced into the BOM. 

Date m which the part is severed from the HOM 

It is the standard quantitive unit for the part used in the manufacturing process . 

The revision for the BOM as authorized by the engineering department. 

PersOfUlel, section or department responsible for the change. 

Date on which the engineering revision was initiated. 

Preceeding pan that was in use. 

Succeeding part to be used. 

Number of levels in BOM mpported for the parent item to be produced. 

Number of different sub-components supported 81 the specified level. 

Unique identifier for the parent item which is me higher level item in the HOM. 

Number of different sub-romponenu supported at the specified level. 

Unique identifier for the part (or component). 

It distinguishes the various types of relationship between a component & its 
parent item in the BOM. 

Number of components required for assembly of per unit parent item. 

Date on which the part is introduced into the HOM. 

Date on which the part is severed fran the BOM 

It U: the standard quantitive unit fOf' the part used in the manufacturing process. 

It is the difference between the due date and the re1eue date. 

The revision for the BOM as authorized by the engineering departmenL 

Personnel, section or department responsible for the change. 

Date 00 which the engineering revision was initiated. 

Preceeding part that was in use. 

Succeeding part to be used. 

N = Nonnal component that is consumed in the manufacture of its parenL 

P = Phantom com~ent that is used for BOM structuring purposes only (e.g. a transient subassembly consumed in the 
manufacture of its parenL 

R = Resource component used in the planning process of the manufacture of its pareol'(;.g. labour & ~a-chining hrs). 

C = Co-product component derived from the manufacture of the parent. 

T = Tool component used in the manufacture of the part. 

U = Tool return item which will be returned after manufacture of the part. 

Page 182 



c g s:i 
~~ 
H 

c .g 
~ 

t ... 
Oll ,,-
c E 
"S!f 
1l~ 
.:!< 
0 
c 
~ 

::;: 

~ 
'ti .:: ,,-c c 
",-
o E _c u" .:!] 
E< • ::;: 

_ll 
~E 
Oc 
Q"" 
~-

'"~ 

8 
B 

The process plan will involve assignment of ttWlufaa.wing facilities and r90UfCeS to each d the planned 
manufacturing operation.: The_~s routing is gem:d towards cellular type of production where Group 
Tedmology is applied to identity "sameness" of parts. equipmenu or processes in order 10 derive 
suitable working celli. 

~~'--------' 
Manufacturing 

Operatiool 

FIELD DEFINITION SIZE DESCRIPTION 

Part Number C[!S) Unique identifier for the part (or component). 

I'ro<ess Plan ID N(7) Unique identifier for the process plan. 

Process Descrtptlon C[60) Brief lCX1ual descriptim pertaining to lbe process routing. 

Manuracturing Cell assignment N(3) Unique identifier for assigned manufacwring cell where part need to be dclivered:ror 
manufaCblIC. C/ 

Process Plan ID N(7) Unique identifier for the process plan. 

Manufacturing Operation ID N(7) Unique identifier for the manufacturing operation. 

Manuracturlng Operation Description C[60) Brief tulual description. 

PreceedJng Manufadulmg Operation ID N(7) Unique identifier for preceeding manufacturing opention. 

Next Manuracturlng Operation ID N(7) Unique identifier for next manufacturing operation to be performed. 

Alternative Manufacturing Operation ]D N(7) Unique identifier for alternative manufacturing operation. 

Setup time per unit Item (mln) N16,2) Tune required 10 equip and prepare lhe "work. centre" or cell for production. 

Machining time per unit Item (mln) N16,2) Actual productive time for manufacture of parL 

Handling time per unit Item (mln) NI6,2) lime required for handling of part which includes transportation. 

Operation time (mln) N[10,2J Cumulative setup, machining and handling times for the manufacture of the order. 

Scrap rate NIS,2) The percentage difference between the amount or number of unit parts started in a 
manufacturin~rocess and that amount or number of unitJ which is oompleted at an 
acceptable qu ty level. 

Manufacturing Operation ]D N17) Unique identifier for the manufacturing operation. 

AssellD 
N(7) Unique identifier for either an employed personnel or an item which is owned by the 

buSiness and has value that can De measured objealvtly . 
Feed N(4) 

Machining feedralC. 

Speed (mm/m!n) N(6) 
Culling speed. 

Depth or cut (mm) N(3) 

Number 01 passes 
NIS) 

Remarks C[60) Textual comment 

Manufacturing Operation ]D 
N(7) Unique identifier for the manufacturing operation. 

Resource ]D C[!S) Unique identifier assigned 10 resource item 

Resource type C[2) Oassification of resources: 
T = Toolings 

TA = Tooling Accessories or Attachmenu 
M = Materials 
F = Fixturing elements 

FA = Fixturing Accessories or Auachmenu 
M = Miscellaneous 

Quantity required N[12,2) Total quantity of resource item to be allocated or reserved. 

Unit of Measure C[4) It is the standard quantitive unit for the part used in the manufacturing process. 

Page )83 



FIELD DEFINITION SIZE DESCRIPTION 

Manufadurlng Order number N[7] User defined unique identifier for • batch -of manufaauring order. 

Part Number C[1S] Unique identifier for the part (or component). 

Actual Quantity produced N[9] The number of parU manufactured. 

Work centre or Cell utilization rate N[5,2] 
The percenl time that a "work centre" or cell u running production. 

Actual capadty (hrs) N[5,2] Capacity calculated from actual petfonnance data, 
i.e. number ofparts produced multiplied by standard hn per part. 

Order Entry 

FIELD DEFINITION SIZE DESCRIPTION 

Customer ID N[?] Unique identifier assigned to a customer. 

Preceedlng Manufacturing Order Number N[?] Unique identifier assigned for the previous batch of manufacturing order. 

Current Manuracturlng Order Number N[?I Unique identifier assigned for the current batch of manufacturing order. 

Parent Part Number C[15] Unique identifier for the parent item which is the higher level item in the BOM. 

Description 
C[60] Brief textual description of the customer orderlproducL 

Product ElTectlvlty Start Date Date Date from which the product is being supported. 

Product EfTectlvlty End Date Date Date from which me product is no longer supported. 

Type (RepeaUOne Of!) CU] Classification of manufacnuing order for either repeat or one off type. 

Due Date Da .. Planned completion or shipment date for the producL 

Unit of Measure C[4] It is the standard quantitive unit for the part used in the manufacturing process. 

Unit Price N[12,2] It is the price per unit of the item being ordered. 

Order Quantity N[9] Number of items ordered at the specified unit of measure. 

Page 184 



Manufacturing 
Facility 

~madlines, A~oo ~g1 
~~=~ ~ 0 ,.,., 

FIELD DEFINITION SIZE DESCRIPTION 

Asse.1D N(7) Unigue identifier for either a persoone1 or an item which is owned by the 
businell and has value that can be meuurcd objectively. 

DescrIption C(60) Brief tex1ua1 description for the item. 
Location C[IS) Phyricallocatim whe~ the personnel is assigned or where the asset ilem 

can be found or is being currc:mtly used. 

Working capacity (hrs) N13) Allocated productive time available for working. 
~ . 

NI7.2) Labour cost I hr 
Handling cost"' hr NI7.2) 

Asse'lD N17) 

Supplier ID NI7J Unique identifier for supplier of asset item. 
Last Service I Maintenance Date Dale Date on which service or maintenanoc is carried 0U1 on the asset item. 

Repaired on Dale Date on which repair work was carried out 00 the asset item. 
Repair work order number N17] Work order number for repair work 00 the asset item. 

Maximum Job she acrommodated Physical size of part that can be handled without any problems by the asset 
item. 

X axis (mm) NIS,2) 
Y axis (mm) NIS,2] 

Cl> Z axis (mm) NIS,2) .. .. Accuracy NI4,2) The degree of freedom from error. -e SbmdB[d Cus& 
OS 

N17.2) .. Machining cost I hr 
OS 
Cl. !.!1IIIllil:i 

.:0: ... Horse power N17) 

~ Speed range 
N16) Maximum (mm/mln) 

~ Minimum (mmlmln) N16) .. Feed range Maximum (mm/mln) N14) 
C 

Minimum (mm/mln) :E N14) 

'" NIS) OS Payload (kg) 
::; 

lYa[is; I:IIl:dw;u: NIS,2) 
X a:ds(mm) 

NIS,2) Yaxls(mm) 
Z axis (mm) NIS,2) 
A uls(mm) NIS,2) 
B axis (mm) NI5,2) 

SlIOdO[d Ilms::i 
Setup time (mln) NIS,2] 

Tool change time (mln) N)S,2] 

Feed change time (mln) N)S,2) 

Speed change time (mln) N)S,2] 

Table rotation time (mln) N)S,2) 

Tool adjustment time (mln) NIS.2) 

Rapid tranverse (mm/m In) NIS.2) 

Asset ID N)7) 

Personnel ID C/IS) .. Name C/30) 
C 
C Salary N17.2] 
0 

Address C/60] Cl> ... 
~ Telephone C/20] 

Skill C/30] Skills or apertise penannel possess. 

Skill level N12) 

Remarks C/60] 

Page 185 



Applies to 
TooIs/Materials/Fixtures 

FIELD DEFINITION SIZE DESCRIPTION 

Resource ID C[tS) Unique identifier assigned to resource item 

Resource type C[2) Oassification of resources : 
T=ToolingJ 

TA = Tooling Accessories or Attachments 
M=Materiab 
F = Fixturing elements 

FA = Fixwring Acccuories or Attaclunents 
M = Miscellaneous 

Desa-Iptlon C[60) Brief textual description for resource item. 

Location C[IS) Storage or usage area when: the resource item can be found. 

Account Number N[lS) Assigned number fIX purchase of the item. 

Unit or Measure C[4) 11 is the standard quantitive unit for lhe part used in the manufaauring process. 

Unit Price N[l2,2) It iJ the price per unit of the item being ordered. 

BuylMabJSupply Code C[I) It indicates if the item is as follows: 

M = Make (Manufactured in-house) 
8 = Buy (Purchased and no parts need 10 be supplied to the vendor) 
S = Supplied (Purchased but supplied 10 the vendor) 

Supplier ID N[7] Unique identifier assigned 10 the supplier of the resource item. 

Catalogue Order Number C[JO] Catalog number for the supplied resource item. 

Purchasing Lead Time N[7) The span of time required to obtain a purchased item which includes procurement 
lead ume, vendor lead time, transponationtime, receiving, inspection and put away time. 

Last Order Date Dale Date 00 which the last order was placed for the resource item. 

Quantity Ordered N[9) Number of items orden:d. 

Efrectlvlty Start Date Oa .. Date from which the resource item is being supported. 

Elre«lvlly End Dal. Oa .. Date from whim lhc resource item is no looger suWOrted. 

Stock on-hand N[9] Physical stock on-hand minus allocations, reservations and (usually) quantities 
held for quality problems. 

AllocatedlResened Stock N[9) Commiued resource item. 

Scrap value N[7,2) Value of scnp per unit measure of ,crap. 

Unit ormeasureror scrap C[3] It is the standard quantitive unit for the scrap item. 

Page 186 



r- -. 

Manufacturing .. Grouping of manufacturing stations into cells for part manufacture. 
Cell 

'-- --
FIELD DEFINITION SIZE DESCRIPTION 

Manufacturing Cell Group ID N[2] Unique identifier for manufacturing cell 

Number ofmanufac.turing stations N[2] Number of manufacturing stations or proresses IUpponed in the configuration. 

Manufacturing Station 1 • Assest ID N[7] U~ue identifier for manufacturing station. 
Description C[60] Brie lexma! description for manufacturing activity. 

Manufadurlng Station 2 . Asset ID N[7] - dine-
Description C[60] 

Manufacturing Station 3 • Asset ID N[?] - diao-
Description C[60] 

Manufaclorhlg Station 4 • Asset ID N[7] - ditto-
Description C[60] 

Manufacturing Station 5 . Asset ID 
Description 

N[7] -dino-
C[60] 

FIELD DEFINITION SIZE DESCRIPTION 

Customer ID N[?] Unique identifier assigned to a customer. 

CompanylName C[4Q] Name of customer. 

Address C[60] 

Contact Person C[25] 

Telephone C[20] 

F .. C[20] 

FIELD DEFINITION SIZE DESCRIPTION 

Supplier ID N[?] Unique identifier assigned to a supplier. 

CompanylName C[4Q] Name of supplier. 

Address C[60] 

Contact Person C[25] 

Telephone C[20] 

F .. C[20] 

Page 187 



Engineering 
Resource 

FIELD DEFINITION 

Part Number 

Location 
Engineering Resource 

, -

SIZE DESCRIPTION 

qlS] Unique idmtifier for the part (or cunp:ment). 
qlO] 

qlO] 

Page 188 



APPENDIX IV 

Association between information models and information representations 
in MCC and ELMS CAPM packages 

Page 189 



Manufacturing 
Facility 

LAST_~_TRJlNS_IDENT 

OPER_IDENT 
ROUT _REQJDENT 
SCH_JOB_IDENT 
SCH_ASS_IDENT 
SCH_IDENT 
START_TlM 
END_TIM 

ASS_GROUP _IDENT 
SCH_ASS_IDENT 
CALYAM 

START_DAT 

OPER_IDENT 
PERC_COMPL 
QUANf 
SCHJDENT 
SCHjOB_IDENT 

SCHEDULE DATA TABLES IN MCC 

DEM_IDENT 
SCH_IDENT 
IDENT 
ROUT_IDENT 
PR! 
QUANf 

SCH_JOB_IDENT 
SCH_ASS_IDENT 
SCHJDENT 
IDENT 
FROM_TIM 
TO_TlM 
OPER_IDENT 
ROUT_REQJDENT 

Schedules 



BOM 

Blll._OF_MAT_IDENT 

Blll._OF_MAT_l11lM_NO 

Blll._OF_MAT_NAM 

l11lM_NO 
NAM 
NO_ITEMS]ROD 
PR! 
UNIT_NAM 
BILL_OF _MAT_IDENT NAM 
DESCR ROVT_IDENT 
TOOL_NO TYP QUANT 

UNIT_NAM WAST 

DESCR 
BACK_FLUSH 

DESCR 

Process Plan EFF_TO_DAT !DENT 
FDCTIM NAM 

FROM_OPER_IDENT 
l11lM_TIM COST_PER_MIN 
YIELD CURRflAM 

IDENT BATCH_SlZ FllCCOST ROVT_IDENT OVERHEAD 
TO_OPER_IDENT FACTOR 
TYP Resources 
ENG_CHANG_IDENT 
LAG_UNIT_NAM 
MAlCLAG ITEM_NO IDENT RES_CLASS_IDENT 
MlN_LAG OPER_lllENT ROVTJDENT RES_IDENT 

UNIT_NAM ENG_CHANG_IDENT EFF FDCQUANT FllCQUANT PR! lTEM_QUANT 
COST 

ITEM_QUANT 
RES_CLASS_IDENT 
RES_IDENT 
TYP 

OPER_IDENT PERS_IND NAM 
ROVT_REQ.!DENT Common resource RES_lNll COST]ER_MIN 
UTIL PARJNll DESCR 
RES_IDENT INTJOBJNll FllCCOST 

SHIFT_lNll 

PRODUCT & PROCESS DATA TABLES IN MCC 



Customers Data 

Order Entry 
Schedule 

aJST JCBY 
ruST"", 
aJST-HAMB 
QJST..,4.DDRESS 
CUST_lEL 
aJST_CXnrrACT 
CUST_STAlUS 

WORKS _ORD_KEY 
rrnMJQlY 
QUANITIY 
WO_START 
WOJlEUVERY 
PlAN"", 
WOYLoUCSTART 

Order Entry 

ITEMlRESOURCES 

ITEM_DESCP 
ITEM_UNIT 
ITEM_MAX_srocK 
ITEM MIN srocK 
ITEM -STOCK ORDERS 
ITEM-srOCK-ALLOCATED 
ITEM-srocK-WIP 
ITEM=srocK=REQUIRED 
ITEM_srocK_PLAN 
ITEM COST 
ITEM - LEADTIME 
ITEM=PRICE 
srORE_LIFE 

rI'B~UCEY 
rJ1!MJQlY ~ ••• _.", 

BATOUD ..... 
QUANITIY 
USACDU'ER...UNIT 
UM!L 
PlAN"", 
SBQUmrlCBJiR. 

ITEM..I<I!Y 
SEQUENCB..NR 
OPERAllON..JtEy 
SEQURNCEJat (NEX'I) 
11MB UNITS 
START OPERATION 
TlMB UNITS (SImJP) 
TIME_UNITS OABOR) 
WOIULOROUPJtEy 
OPJEQJlAME. 
OP_SEQ..NR 

ITEM..l<l!Y 
OPfRATlON_KBY 
TIMB.sLOT 
PlAN ..... 
~UNITS (STAKl) 
TIMB_UNITS (END) 
TIMB_ UNITS (SE1lJP) 
W~GROUP_KBY 

SKIU....JtEY 
PERSONNEL_KEY 

Part Master! BOM 

DATA RELATIONSHIPS IN ELMS 

Suppliers Data! 
Resources 

Resources! 
Process Plan! 

cell 



APPENDIX V 

Database 'Driver' 
Services offered 

Page 193 



Database Driver 
Services OlTered Details 

CONNECT Provides a direct connection to the database and loads the definition of data 
access objects from a file. An application must connect to the database before it 
can access any data. The parameters for the connect service are the usemame and 
password to establish the database connection and the file name from which the 
definition of the data access objects is loaded. 

DISCONNECT Closes the connection to the database, established by the connect service. Before 
the connection is closed, the changes performed in the current transaction are dis-
carded. To make the changes permanent. the commit service must be used. The 
disconnect service requires no arguments. 

SELECT Retrieves rows and columns from one or more SQL tables. When requesting the 
select service, a data access object must be specified. Optional ruguments are an 
additional search condition and a file name. The actual SQL statement is build up 
using the definition of the specified data access object and the additional search 
condition if present. Assuming that the data access Object has a search condition 
defined and an additional search condition is given when the select service is 
requested, the SQL statement has the following form: 

SELECT object field list FROM object tables 
WHERE object search condition AND additional search condition 

The retrieved data is written to a file, specified by the file name when the service 
was requested. If no file name is given, the result is written to a global character 
string. Because of the fixed length of the character string it should only be used, 
when the amount of expected data doesn't exceed this length. Otherwise the rest 
of the data is discarded. When an error occurs while the SQL statement is 
executed, this is also indicated in the global character string and the specified file 
will be empty. 

INSERT Adds new rows to a database table. The insen service requires two mandatory 
arguments. One to specify a data access object, the SQL statement should refer to 
and the second argument to define the data that is to be inserted in the database 
table. The insen service can only be requested for data access objects that refer to 
one table in the table definition. Otherwise an error will occur when executing the 
SQL statement. The SQL statement has the following form: 

INSERT INTO Object table (object field list) 
VALUES (new data) 

A funher restriction of data access objects that can be used for the insen service 
concerns the list of field names. In this list, all fields must be present that are 
forced to contain a value by the definition of the database table, i.e. all fields, 
specified as NOT NULL. The new data argument must contain a value for each 
field name given in the same order as in the data access Object definition. The 
result of the execution of the SQL statement will be indicated in a global 
character string. 

Continue ••. _ .. 

Page 194 



Database Driver 
Services OITered Details 

UPDATE Changes the data in a table. The update service has two mandatory and one 
optional argument. The first mandatory argument specifies a data access Object 
and the second gives field names and their new values. In the optional argument, 
an additional search condition can be specified. The update service is again 
restricted to data access objects which refer to only one database table. If an 
additional search condition was given when the update service was requested and 
the specified data access object has a search condition defined, the actual SQL 
statement has the following form: 

UPDATE object table SET change data 
WHERE object search condition AND additional search condition 

The actual number of changed rows will be indicated in a global character string. 
It is not Ire3ted as an error if no row is changed. 

DELETE Removes rows from a table. When requesting the delete service, a data access 
object must be specified. An additional search condition can be given, but is not 
mandatory. The delete service can only be requested for data access objects, 
referring to one database table. Otherwise an error will be indicated. If an 
additional search condition is given and the specified data access object has a 
search condition defined. The actual SQL statement has the following form: 

DELETE FROM object table 
WHERE Object search condition AND additional search condition. 

The number of deleted rows will be indicated in a global character string. It is not 
Ire3ted as an error if no row is deleted. 

If one of the optional search conditions is not present in the services select, 
update or delete, the where clause will have the following from: 

WHERE single search condition 

If none of both search conditions is defined, no where clause is added to the 
actual SQL statement. 

COMMIT Makes permanent all changes performed in the current lransaction (naturally, the 
data may be changed by future updates). Before the commit service is requested, 
the changes performed in the current lransaction are nol visible for other users of 
the same database. The commit service marks the end of the current transaction 
and the beginning of a new one. No arguments are required for this service. 

ROLLBACK Undo the work .done in the current Iran;;action. The rollback service requires no 
arguments. 

Page 195 



#include <stdio.h> 
#include "locaUncl.h" 

FILE *temp_file; 
char column[40]; 
char file_line[l32]; 
char file_name[60]; 

mainO 
( 
int i; 

Program listings 

strcpy(fiIe_name. "Jhome2/sandra/valdew/oracle_c/progslexample_l_tem''); 

mw _connect("mcc21". "m". "Jhome2/sandra/valdew/oracle_c/progslfile_1. txt"); 

!* Usage of Files * / 
mw_query("objectJ" ••••• file_name); 
if«temp_file = fopen(fiIe_name."r"» = NULL) 

printf("lnError, open.''); 
file_line[O] = "D'; 
i = 1; 
while(file_reader(column. temp_file. file_line» 
( 

printf(,'In%d. Value: %s.'·.i++.column); 

J 
fclose(temp_fiIe); 

!* Usage of Query * / 

mw_query(Uobjectl n,"item_no = 'LUT-B 1'",""); 
printf(''IoResuICString: %s. ",result_string); 
i = 1; 
while(next_ value(result_string. column. result_string» 
( 

printf(,'In%d. Value: %s .... i++.column); 
printf(''IoResult_String: %s." ,result_string); 

J 

!* Usage of insert * / 

mw _insert("objectJ". '''Example access_ora'. 'Example"'); 
printf(''IoResuICString: %s.".resulcstring); 
mw _query(Uobjeca" ,"item_oo = 'Example u, ,''''); 

printf(''IoResult_String: %s ... ,result_string); 
i = 1; 
while(next_ value(resulcstring. column. result_string» 
( 

printf(·'In%d. Value: %s.",i++.column); 
printf(''IoResulcString: %s. ".result_string); 

J 

Page 196 



/* Usage of update *' 
mw _update(uobjectl». "item_descr = 'Ex'" . ""); 
printf(''\nResult_String: %s." ,resulUtring); 
mw_query(Uobjectl n ,n .. , ""); 

printf(''\nResulcString: %s." ,result_string); 
i = 1; 
while(nexC value(result_string. column. result_string» 
( 

printf(''\n%d. Value: %s.".i++.column); 
printf(''\nResult_String: %s." ,result_string); 
} 

/* Usage of delete *' 
mw_delete("objectl". "item_no = 'LUT-Bl '"); 
printfC'\nResult_String: %s." ,resulcstring); 
mw_query("objecU","item_no = 'LUT-B ......... ); 
printfC'\nResulcString: %s. ".result_string); 
i = 1; 
while(next_ value(result_string. column. result_string» 
( 

printf(''\n%d. Value: %s.".i++.column); 
printf(''\nResult_String: %s." .resulcstring); 
} 

printfC''\n"); 
/*mw_commitO; mWJollbackO; *' 
mw _disconnectO; 
} 

Page 197 



Meta-file definition 

Name of meta-file : file_l.txt 

Definition of database-objects: (for access_ora) 

"objectl" object name "item i, bill_oCmat b" table name 
"Litem_descr, b.item_no, b.nam" columns "Litem_no = b.item_no (+) AND Litem_no LIKE 
'LUT-Bl%'" where clause 

"object2" object name "item" table name 
"item_descr, item_no" columns '''' where clause 

Page 198 



Program library functions for embedded SOL command calls to 
perform required 'Driver' services 

/* File name & Package Name "' 
struct sqlcxp 
( 
unsigned short fillen; 
char tilnam[l3); 
} ; 
static struct sqlcxp sqlfpn = 
( 
13, 
"access_orapc" 
); 

static unsigned long sqlctx = 0; 

static struct sqlexd ( 
unsigned long sqlvsn; 
unsigned short arrsiz; 
unsigned short iters; 
unsigned short offset; 
unsigned short selerr; 
unsigned short sqlety; 
unsigned short unused; 
short "cud; 
unsigned char "sqlest; 
char "sunt; 
unsigned char ." sqphsv; 
unsigned long "sqphsl; 
shon .* sqpind; 
unsigned char "sqhstv[3); 
unsigned long sqhstl[3); 
short "sqindv[3); 
} sqlsun = (1,3); 
extern sqlcex(l" _ unsigned long·, struct sqlexd ", struct sqlcxp" _of); 
extern sqlbuf(l" _ char" _of); 
extern sqlora(l" _long", void" _ "f); 

static iot IAPSUCC = 0; 
static intlAPFAIL = 1403; 
static int IAPFTI.. = 535; 
extern sqliemO; 
/* cud (compilation unit data) array"' 
static short sqlcudOD = 
( 1,2, 
2,0,0,0,27,192,3,3,0,1,0,1,5,0,0,1,5,0,0,1,10,0,0, 
25,0,0,0,29,461,0,0,0,1,0, 
36,0,0,0,31,480,0,0,0,1,0, 
47,0,1,5,17,545,1,1,0,1,0,1,5,0,0, 
62,0,1,0,19,556,1,0,0,1,0,0,32,0,0, 
77 ,0,1,0,11,576,1,0,0,1,0,0,32,0,0, 

Page 199 



92,0,1,0,20,586,1,0,0,1,0,0,32,0,0, 
\07,0,1,0,14,714,1,0,0,1,0,0,32,0,0, 
122,0,1,0,31,794,0,0,0,1,0, 
133,0,1,0,15,837,0,0,0,1,0, 
144,0,1,0,32,838,0,0,0,1,0, 
155,0,1,10,17,888,1, \'0,1,0,1.5,0,0, 
170,0.2,0,24,891,1,1,0,1,0,1.5,0,0, 
185,0.2,0,31,915,0,0,0,1,0, 
196,0,1,10,17,971,1,1,0,1,0,1.5,0,0, 
211,0,3,0,24,974,1,1,0,1,0,1,5,0,0, 
226,0,3,0,31,998,0,0,0,1,0, 
237,0,1, \0,17, \051,1,1,0,1,0,1,5,0,0, 
252,0,4,0,24,1054,\ ,1,0,1,0,1.5 ,0,0, 
267,0,4,0,31,1078,0,0,0,1,0, 
} ; 

/* ••••• ** •••••••• ** •••••••••••••••• *** ••••••••••••••••••••••••••••••••••••••••• , 
1* File: access_ora.pc "' 
1* Function: The functions in this file provide access to an oracle database"' 
1* using embedded SQL-statements. "' 
1* First, the programm has to connect to the oracle database using the"' 
1* function mw_connect. Then the data can be accessed and manipulated by"' 
1* the functions mw_query, mw_insert, mw_update and mw delete. To make"' 
1* changes to the database permanent, the function mw_commit has to be"' 
1* called. To discard changes, call the mw_rollback function. The function", 
1* mw_disconnect is used to end the database session. Note that mw_disconnect "' 
'" discards all changes that have not been commited. "' 
/* •••••••••••••••••••••••••• ** ••••••••••••••••• *** ••••• ** ••••••• ** ••• ** •••••••• , 

#include <stdio.h> 
#include <ctype.h> 
#include <slring.h> 
#include "locaUncl.h" 

#ifndef NULL 
#define NULL 0 
#endif 

/* ••••••••••••••• ** ••••••••••••••••••••••••••• *** ••••••• * ••••••• ** ••••• ********, 

1* Only for debuging purpos "' 
/*.** •••••••••••••••• *** •••••••••••••••••••••••••••••••••••••••••••• ** ••• *** ••• / 

#define NOPRINT 0 
#define NOSTATEMENTS 0 

/* •••••••••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••• / 
1* Maximum number of select-list items, allowed in an select statement. "' 
/* •••••••••• ** ••••••••••••••••••••••••• ****************************************/ 

#defme MAX_lTEMS 30 

/************* •• *.*.******.** ••••• **** •••• ****.** •• *.***.****.* ••• ************./ 
1* Maximum lengths of the names of the select-list items in an select", 

1* statement. "' 
/************.***********************************************.*.***************/ 

Page 200 



#define MAJC VNAME_LEN 30 

/*.****** ••••••••••••••••••••••••• ** •••••••••••••••••••••••••••••• *** •••• ** •••• , 
/* This string is used to process lhe SQL-statements °1 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

/* SQL stmt # 1 
EXEC SQL BEGIN DECLARE SECI10N; 

°1 
char sql_statement[I024j; 
/* SQL stmt #2 
EXEC SQL VAR sql_statement IS STRING(I024); 
EXEC SQL END DECLARE SECI10N; 
°1 

/* SQL stmt #4 
EXEC SQL INCLUDE sqlca; 
°1 
/* 
° $Header: sqlcah,v 1040100.1 91/02/2600:14:09 epotteng Generic<base> $ sqlcah 
*1 

1° Copyright (c) 1985.1986 by Oracle Corporation. *1 

/* 
NAME 
SQLCA : SQL Communications Area. 

FUNCTION 
Contains no code. Oracle fills in lhe SQLCA wilh status info 
during lhe execution of a SQL stmL 

NOTES 
If lhe symbol SQLCA_SlDRAGE_ CLASS is defined, lhen lhe SQLCA 
will be defined to have lhis storage class. For example: 

will define lhe SQLCA as an extern. 

If lhe symbol SQLCA_INIT is defined, lhen lhe SQLCA will be statically initialized. A1lhough lhis is not neces
sary in order to use lhe SQLCA, it is a good pgming practice not to have unitialized variables. However, some C 
compilers/OS's don't allow automatic variables to be init'd in lhis manner. Therefore, if you are INCLUDE'ing 
lhe SQLCA in a place where it would be an automatic AND your C cornpiler/OS doesn't allow lhis style of ini
tialization, lhen SQLCA_INIT should be left undefined -- all olhers can define SQLCA_INIT if lhey wish. 

MODIFlED 
Clare 12ft)6/84 - Ch SQLCA to not be an extern. 
Clare 10/21/85 - Add initialization. 
Bradbury 0l/U5/86 - Only initialize when SQLCA_INIT set 
Clare 06/12/86 - Add SQLCA_SlDRAGE_CLASS option. 

*1 

#ifndef SQLCA 
#define SQLCA I 

Page 201 



struet sqlca 
( 
1* ubI *' char sqlcaid[8]; 
1* b4 *'Iong sqlabc; 
1* b4 *'Iong sqlcode; 
struct 
( 
1* ub2 *' unsigned short sqlemnl; 
1* ubI *' char sqlernnc[70]; 
J sqlemn; 
1* ubI *' char sqlerrp[8]; 
1* b4 *'Iong sqlerrd[6]; 
1* ubI *' char sqlwarn[8]; 
1* ubI *' char sqlext[8]; 
J; 

#ifdef SQLCA_STORAGE_CLASS 
SQLCA_STORAGE_ CLASS struct sqlca sqlca 
#else 
struct sqlca sqlca 
#endif 

#ifdef SQLCA_INIT 
= ( 

sizeof(struct sqlca), 
0, 
(O,(OJ]' 
('N', '0', 'T',' \ 'S', 'E', 'T',' 'l, 
(0,0,0,0,0,0], 
(0,0,0,0,0,0,0,0], 
(O,O,O,O,O,O,O,OJ 
J 

#endif 

#endif 

1* end SQLCA *f 
/* SQL SUn! #5 
EXEC SQL INCLUDE sqlda; 

*' ,* 
o $Header: sqlda.h,v 1040100.191/02/26 00:14:15 epotteng Generic<base> $ sqlda.h 
of 

/*** •••• *******************.***.******************************** 
* The SQLDA descriptor definition * 
* ---. --------------------------------------------------------.-* 
o VAX/3B Version 0 

00 

• Copyright (c) 1987 by Oracle Corporation' 
**** •••••••••••••• *** ••••••••••••••••• ** ••••••••••••••••••••••• , 

Page 202 



1* MODIFIED 
Morse 12/01/87 - undef L and S for v6 include files 
Richey 07/13/87 - change int defs to long 
Clare 09/13/84 - Port Ch types to match SQLLlB structs 
Clare 10/02186 - Add ifndef SQLDA 
*1 

#ifndef SQLDA_ 
#define SQLDA_ I 

#ifdefT 
# undefT 
#endif 
#ifdefF 
# undefF 
#endif 

#ifdefS 
# undef S 
#endif 
#ifdefL 
# undefL 
#endif 

struct SQLDA ( 
long N; 1* Descriptor size in number of entries 01 
char **V; 1* Ptr to Arr of addresses of main variables *1 
long *L; 1* Ptr to Arr of lengths of buffers *1 
short *T; 1* Ptr to Arr of types of buffers 01 
short **1; 1* Ptr to Arr of addresses of indicator vars *1 
long F; 1* Number of variables found by DESCRIBE *1 
char *oS; 1* Ptr to Arr of variable name pointers *1 
short * M; 1* Ptr to Arr of max lengths of var. names *1 
short *C; 1* Ptr to Arr of current lengths of var. names 01 
char *oX; 1* Ptr to Arr of ind. var. name pointers *1 
short *Y; 1* Ptr to Arr of max lengths of ind. var. names *1 
short °Z; 1* Ptr to Arr of cur lengths of ind. var. names 01 
); 

typedef struct SQLDA SQLDA; 

#endif 

SQLDA *bind_dp; 
SQLDA *select_dp; 

/* •••••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* Functions external to this module. *1 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

extern SQLDA *sqlaldO; 
extern void sqlnulO; 

/*** •••••••••••••••••••••• ** ••••••••••••••• ** •••••••••••••••••••••••••••••• ****/ 
1* A global flag for the SQL error routine. *1 
/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ** ••••••••••• , 

Page 203 



int parse_flag = 0; 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

1* structure 10 slOre one database object *' 
1* an object consists of: *' 
1* name of the object ., 
1* the name of the associated database table(s)" 
1* a list of field names ., 

1* a where clause *' 
1* The function mw_connect loads the object definitions from a file ., 
1* inlO a list of this structure .• , 
1* The object definition in this structure is used 10 build the SQL-statements" 
1* which are send 10 the oracle data base. See mw_query, mw_insen, mw_update" 
1* and mw_delete for details. *' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

struct dtb_obLtyp( 
char ·name; 
char *dtb_table; 
char 'sli; 
char ·where; 
struct dtb_obLtyp 'nexcobj; 
); 

/* •••• ** ••••••••••••••••••••••••••••• *** ••••••••••••••••••••••••••••••• *** ••• **/ 

1* The Variable objects is used 10 slOre the definition of several objects .• , 
1* When the application connects 10 Oracle, the object definition file is ., '* read." 
,. The mw_disconnect function frees the memory ocupied by the objects." 
/* ••••••••••••••••••••••••••••••••••••••••••••• ** •••••• *** •••• ** ••••••• ****.*.*, 

struct dtb_obLtyp 'objects; 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* The result_string stores the results of the database operations" 
1* The first character determins if the operation was sucessfully executed(s) ., 
1* or if the operation faild(f). The rest of the string contains the result *' 
1* of the operation (number of processed rows, rows, filenames) .• , 
j •••••••••••••• ** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

char resulUtring[VERY _LONG_S1RING1; 
int result_strinll-len; 

, •••••• * ••• ***.** •••••• * ••••••••••••••••••••••••••• * ••••••• * •• * •••••••••••• ***., 
1* The ora_state = 0: not connected 10 oracle .• , 
1* = 1: connected to oracle but no open coursor" 
/* ••••••• * ••••••••••••••••••••••••••••••••••••••••••• * •••••••••••••••••• * ••••• *, 

/*** ••••••••••••••••••••••••••••••••••••••••••• * ••••••••••• * •• ** ••••••••••••••• , 
1* The function find_actuel_object searches for the object o_name in the *' 
1* list objects. If the object o_name is not found, the result is NULL .• , 

Page 204 



/* •••••••••••••••••• * •••••••••••••••••••••••••••••••••• * •••• ** •••• * •••••••••••• , 

sUUCt dtb_obLtyp "find_actuel_object(o_name) 
char "o_name; 
( 
sbUct dtb_obLtyp "help_obj; 

help_obj = objects; 

while«help_obj != NULL) && (strcmp(help_obj->name, o_name))) 
help_obj = help_obj->next_obj; 

retum(help_obj); 
} 

, •• ** •••••••••••••••••••••••••••••••••••••••••••••••••••• ***.** •••••••••• * •• **., 

1* The function append_where is used to consbUct a valid SQL where c1ause"f 
1* using where_string and acutel_object->where. "f 
j****.*.* ••••••• ******** ••• *****.** •••••• ******** •• *.* ***.** •• **.********.*.***, 

void append_where(where_string) 
char "where_string; 
{ 
if «actuel_object->where[O] != '\[l') 11 

(where_string[O] != '\[l')l 
( 
sprintf(&sqUtatement[strlen(sql_statement)]," where "); 
if «actuel_object->where[O] != '\[l') && 
(where_string[O] != '\[l')l 
sprintf(&sql_statement[strlen(sql_statement)],"(%s) and (%s)", 
actuel_object->where, where_string); 
else 
{ 
if (actuel_object->where[O] != '\[l') 
sprintf(&sql_statement[strlen(sqUtatement)] ,"%s", 
actuel_object->where); 
else 
sprintf(&sqUtatement[strlen(sql_statement)],"%s", 
where_string); 
} 
} 
} 

/** ••••• ******.*.** ••• ***.** ••••••••• ****** •• ****.** •• *****.****.*******.******, 
1* The function oracle_connect connects to Oracle using the usemame u_name"' 
1* and the password p_ word. "f 
/* •• *.* •••• * •• ** ••• * •• ** •• ** •• * •••• * •••••• **.* ••• * •• *.* •••••••• *.* •••••••• *****j 

int oracle_conncct(u_name, p_word) 
char "u_name; 
char "p_word; 
{ 

Page 205 



1* SQL sum #6 
EXEC SQL BEGIN DECLARE SECTION; 

*' char username[20]; 
char password[20]; 

1* SQL sunt #1 
EXEC SQL VAR username IS STRING(20); 
EXEC SQL VAR password IS STRING(20); 

EXEC SQL END DECLARE SECTION; 

*' 
slrCpy(usemame, u_name); 
slrCpy(password, p_ word); 

1* SQL sunt #10 
EXEC SQL WHENEVER SQLERROR GOTO connect_error; 

*' 
1* SQL sunt #11 
EXEC SQL CONNECf :usemame IDENTIFIED BY :password; 

*' [ 
sqlsun.iters = (unsigned shon)10; 
sqlsun.offset = (unsigned shon)2; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlest = (unsigned char *)&sqlca; 
sqlsun.sqlety = (unsigned shon)O; 
sqlsun.sqhstv[O] = (unsigned char *)usemame; 
sqlsun.sqhstl[O] = (unsigned 10ng)20; 
sqlsun.sqindv[O] = (shon *)0; 
sqlsun.sqhstv[l] = (unsigned char *)password; 
sqlsun.sqhstl[l] = (unsigned 10ng)20; 
sqlsun.sqindv[l] = (shon *)0; 
sqlsun.sqphsv = sqlsun.sqhstv; 
sqlsun.sqphsl = sqlsun.sqhstl; 
sqlsun.sqpind = sqlsun.sqindv; 
sq\cex(&sq\ctx, &sqlsun, &sqlfpn); 
if (sqlca.sqlcode < 0) goto conneccerror; 
} 
#ifndef NOPRINT 
fprintf(stderr,"lnConnected to ORACLE as user %s.'vI", usemame); 

#endif 
return 0; 

connecCerror: 
fprintf(stderr,"Cannot connect to ORACLE as user %s-n", usemame); 
return ·1; 
} 

/************************************** •• ** •• **** ••• *.* •••••••• ** •••• **.*******/ 
1* alloc_descriptors allocates memory for bind_dp and select_dp, *' 
1* which are needed to execut SQL-statements. *' 
/* •••••••••••••••• **.** •••••••• ** •••••••••••••••••••••••••••••••• ** •••••••••••• , 

iot alloc_descriptors( size, max_ vname_len, max_iname_len) 
int size, max_vname_len, max_iname_len; 
( 

Page 206 



int i; 

/* 
* The first sqlald parameter detennines the maximum number of 
* array elements in each variable in the descriptor. In 
* other words, it detennines the maximum number of bind 
* variables or select-list items in the SQL statement 

* 
* The second parameter determines the maximum length of 
* strings used to hold the names of select-list items 
* or placeholders. The maximum length of column 
* names in ORACLE is 30, but you can allocate more or less 
ilk as needed. 
* 
* The third parameter detennines the maximum length of 
* strings used to hold the names of any indicator 
* variables. To follow ORACLE standards, the maximum 
* length of these should be 30. B ut, you can aUocate 
* more or less as needed. 

*' 
/* bind variables are not used here *' 
if «bind_dp = 
sqlald(I, 0, 0)) == (SQLDA *) NULL) 
( 
fprintf(stderr, 
"Cannot allocate memory for bind descriptor."); 
return -I; /* Have to exit in this case. *' 
) 
bind_dp->N = I; 

if «select_dp = 
sqlald (size, max_vname_len, 0)) == (SQLDA *) NULL) 
( 
fprintf(stderr, 
"Cannot allocate memory for select descriptor."); 
return -1; 
) 
selecLdp->N = MAJCITEMS; 

'* Allocate the select indicator variable pointers. *' 
for (i = 0; i < MAX_lTEMS; i++) 
selecLdp->I[i] = (short *) malloc(sizeof(short *)); 

'* Allocate the select variable pointers. *' 
/* reallocO will be used to change the size. *' 
for (i = 0; i < MAX_ITEMS; i++) 
selecLdp->V[ij = (char *) malloc(sizeof(char)); 

return 0; 
) 

/******************************************************************************/ 
/* free the memory occupied by the object definitions. This function is *' 
/* caUed, where the connection to oracle is closed. *' 

PageW7 



/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void free_objectsO 
( 
struct dtb_obLtyp "help_obj, "help_obj2; 

help_obj = objects; 
help_obj2 = objects; 

!* if help_obj = NULL then there is nothing to do! "' 
if(help_obj != NULL) 
( 
!* search for the objext at the end of the list "' 
!* help_obj2 points to the second but last object, or equals 10 help_obj "' 
!* when there is only one object left"' 
while(help_obj->next_obj != NULL) 
( 
help_obj2 = help_obj; 
help_obj = help_obj->nexcobj; 
) 

while(help_obj != help_obj2) 
( 

!* there are more then one object left "' 

!* free the memory for the object at the end of the list"' 
free(help_obj->name); 
free(help_obj->dtb_lable); 
free(help_obj->sli); 
free(help_obj->where); 
free(help_obj); 

!* terminate the resulting object list with NULL "' 
help_obj2->next_obj = NULL; 

'" Slart again at the head of the list "' 
help_obj = objects; 
help_obj2 = objects; 

!* search for the object at the end of the list "' 
'" help_obj2 points 10 the second but last object, or equals 10"' 
!* help_obj when there is only one object left "' 
while(help_obj->next_obj != NULL) 
( 
help_obj2 = help_obj; 
help_obj = help_obj->next_obj; 
) 
) !* while(help_obj != help_obj2) "' 

!* free the memory for the last object left in the list "' 
free(help_obj->name); 
free(help_obj->dtb_lable); 
free(help_obj->sli); 
free(help_obj->where); 
free(help_obj); 

objects = NULL; 

Page 208 



} 1* if(help_obj != NULL) ... */ 
} 

/* ••••••••••••••••••••••••••••••••••••••••••• ** •••••••••• **** ••••• *.* ••• *******, 
1* The function mw_connecl connects to oracle using the function */ 
1* oracle_connect In addition the definitions of database objects is loaded */ 
1* from the file o_file. */ 
/** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ***., 
void mw _connecl{u_name, p_ word, o_file) 
char ·u_name; 
char *p_ word; 
char *o_file; 
( Fll..E *obLfile; 
char file_line[VERY _LONG_STRING); 
char line[FILE_LINE_LEN]; 1* to process longer lines from the"/ 
1* objects file */ 
imline_length = Fll..E_LINE_LEN; 1* ajuslthe given constants */ 
SlruCI dlb_obj_lyp "help_obj, *help_obj2; 

if (ora_slate != 0) 
( 

#ifndef NOPRINT 
fprinlf(slderr,''Vt already connected to oracle"); 

#endif 
strcpy(resull_string, "s"); 1* command faild bUI oracle connection should"/ 
/*beok"/ 
return; 

/* allocate memory for the poimer objects */ 
if«objects = (SlruCI dID_obLtyp *) 
malloc(sizeof(SlruCI dID_obLtyp))) = NULL) 
fprinlf(sulerr,''Vtno memory allocated (mw_connect, objects)"); 

help_obj = objects; 

1* open file 10 read the objecl definitions */ 
if «obLfile = fopen(o_file, "r"» == NULL) 
( 
fprinlf(sulerr,''VtCan'lopen file '%s'.",o_file); 
fprinlf(slderr,''VtNOl connected 10 Oracle. "); 
free(objects); 
strcpy( resull_ string, 'T'); 
return; 

/* read objecl definitions from the opend file */ 
while (fileJeader(line,obLlile,file_line» 
( 
if «help_obj->name = (char *)malloc(strlen{line))) = NULL) 
fprinlf(slderr,''Vtno memory allocated (mw_connect, name)"); 
strcpy(help_obj->name, line); 

if (file_reader{line,obLfile,file_line» 
( 
if «help_obj->dlb_lable =(char *)malloc(strlen{line))) = NULL) 
fprinlf(slderr,''Vtno memory allocaled (mw_connect, dID_lable)"); 

Page 209 



strcpy(help_obj->dtb_table, line); 
} 
else 
( 
fprintf(stderr, "'ruIo valid object definition(table), stop and check\n"); 
strcpy(result_string,"f'); 
return; 

if (file_reader(line,obLfile,fiIe_line» 
( 
if «help_obj->sli = (char ')malloc(strlen(line))) = NULL) 
fprintf(stderr."\llno memory allocated (mw _connec~ sli)"); 
strcpy(help_obj->sli, line); 
} 
else 
( 
fprintf(stderr,"'llno valid object definition (sli), stop and check'n"); 
strcpy(result_slring,"f'); 
return; 

if (fiIe_reader(line,obLfile,file_line» 
( 
if «help_obj->where = (char ')malloc(strlen(line))) == NULL) 
fprintf(stderr,"'nno memory allocated (mw_connec~ where)"); 
strcpy(help_obj->where, line); 
} 
else 
( 
fprintf(stderr,"\nno valid object definition(where), stop and check'n"); 
strcpy( result _siring, "f'); 
return; 

1* prepare pointer for the next object ., 
if «help_obj->nexcobj = (struct dtb_obLtyp .) 
malloc(sizeof(struct dtb_obLtyp))) = NULL) 
fprintf(stderr,"'nno memory allocated (mw_connec~ next_obj)"); 
help_obj2 = help_obj; 
help_obj = help_obj->next_obj; 
} 

1* free unnecessary allocated memory ., 
free(help_obj); 
hclp_obj2->next_obj = NULL; 

1* close file ., 
fclose(obLfile); 

if (oracle_connect(u_narne, p_word) != 0) 
( strcpy(result_slring,"f'); 
return;} 

if (alloc_descriptors(MAJUTEMS, MAX_ VNAME_LEN, 1) != 0) 
( strcpy(result_string,"f'); 
return;} 

#ifndef NOPRlNT 

Page 210 



fprintf(stderr,"'Inmw_connect sucessfuUy executed "); 
#endif 
ora_state = I; 
strcpy(resulcstring,"s"); 

J 

/*** •••••••• ********** ••••••••••••••••••••••••••••••••• ** •••••••••••••••••••••• , 
1* The mw_commit function commits aD changes in the oracle database, made Of 

1* since the last commit of rollback. Of 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void mw_commitO 
( if (ora_slate = 0) 
( fprintf(stderr, "'In not connected 10 oracle, no commit possible"); 
strcpy(resulcstring, Of'); 
} 
else 
( 

1* SQL stmt #12 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL COMMIT WORK; 0, 
( 
sqlstm.iters = (unsigned shon)I; 
sqlstm.offset = (unsigned shon)25; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char O)&sqlca; 
sqlstm.sqlety = (unsigned shon)O; 
sqlcex(&sqlclX, &sqlstm, &sqlfpn); 
J 
strcpy(result_string,"s''); 
ora_state = I; 
J 
J 

/* •••••••••••• ** ••••••••••••••••••••••••••••••••••••• ** •••••••••••••••• *******., 

1* The mWJollback function discarges all changes in the oracle database, *' 
1* made since the last commit of roUback. *' 
/* ••••••••••••••••••• **** ••••••••••••••••••••••••• *** •••••••• ** •••••• *******.**/ 

void mw_rollbackO 
( if (ora_state = 0) 
( 
fprintf(stderr,"'n not connected 10 oracle, no rollback possible"); 
strcpy(result_string,"f'); 

J 
else 
( 

1* SQL stmt #14 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

*' ( 
sqlstm.iters = (unsigned shon)l; 
sqlstm.offset = (unSigned shon)36; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned shon)O; 

Page 211 



sqIcex(&sqlctx, &sqlsun, &sqlfpn); 
) 
strcpy( resulcstring, "s "); 
ora_state = 1; 
) 
) 

/*.** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* The function mw_query executes a select statement defined by the object 0, 
1* o_name and the additional where clause in where_string. The SQL-statemant 0, 
1* has the following fonn: 0, 
1* SELECf actuel_object->sli FROM actuel_object->dtb_table 0, 
1* WHERE actueCobject->where AND where_string 0, 
1* If the string resulUile_name is not empty, the result of the select 0, 
1* statement is stored in a file of that name. Otherwise, the result is 0, 
1* stored in the variable resulCstring. 0, , .............................................................................. , 
void mw_query(o_name, where_string, resulCfile_name) 
char ·o_name; 
char "where_string; 
char "resulUile_name; 
( 
FILE "result_file; 
int i;. 
iot null_ok, precision, scale; 
char help_string[SMAL_SlRING); 

'" Open result file if a name was given. "' 
if(resulcfile_name[O) 
if«resulCfile = fopen(result_file_name, "w") == NULL) 
printf(,"lnError, open %s" ,resulUile_name); 
result_strinlt-len = 0; 

if (ora_state = 0) 
( 
fprintf(stderr,"ln not connected to oracle, query not executed! "); 
strcpy(nisulutring, "f'); 
if(result_file_name[O) 
fclose(result_file); 
return: 

if (actuel_object = NULL) 
( 
fprintf(stderr,''In object (%s) not known",o_name); 
strcpy(result_string, "f'); 
if(resulcfile_name[O]) 
fclose(resulUile); 
return; 

1* build select statement 0, 
sprintf(sql_statement, "select %s from %s ", 
actuel_object->sli, actuel_object->dtb_table); 

Page 212 



append_where( where_string); 
#ifndef NOSTATEMENTS 
fprintf(stderr,"\nexecuted select statement: \n%s;\n",sql_statement); 

#endif 
/* Prepare the statement and declare a cursor. "' 

/* SQL stmt #16 
EXEC SQL WHENEVER SQLERROR GOro sql_error; 

"' 
parse_flag = I; /* Set a flag for sql_error."' 

/* SQL stmt #17 
EXEC SQL PREPARE S FROM :sql_statement; 

"' ( 
sqlstm.iters = (unsigned short)l; 
sqlstm.offset = (unsigned short)47; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char ")&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char ")sql_statement; 
sqlstm.sqhst1[O] = (unsigned 10ng)I024; 
sqlstm.sqindv[O] = (short ")0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhst1; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
if (sqlca.sqlcode < 0) gOlD sql_error; 
} 
parse_flag = 0; /* Unset the flag. "' 

'" SQL stmt#18 
EXEC SQL DECLARE C CURSOR FOR S; 

"' 
/* Set the bind variables for any placeholders in the 

SQL statemenL "' 

/* Describe any bind variables (input host variables) "' 

bind_dp->N = I; /*Initialize count of array elements. no variables used", 
/* SQL stmt#19 
EXEC SQL DESCRIBE BIND VARIABLES FOR S INTO bind_dp; 

"' ( 
sqlstm.iters = (unsigned short) I; 
sqlstm.offset = (unsigned short)62; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char *)bind_dp; 
sqlstm.sqhst1[O] = (unsigned 10ng)0; 
sqlstm.sqindv[O] = (short ")0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhst1; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
if (sqlca.sqlcode < 0) gOlD sql_error; 
} 

Page 213 



!* If F is negati Ye. there were more bind variables 

than originally allocated by sqlaldO. "' 
if (bind_dp->F != 0) 
[ 
fprintf(stderr ....... bind variables not allowed!"); 
strcpy(resulcstrlng. "f"); 
if(resuIUile_name[O)) 
fclose(resuIUile); 
return; 
} 

!* Set the maximum number of array elements in the 
descriptor to the number found. "' 
bind_dp->N = bind_dp->F; 

!* Open the cursor and execute the statement"' 

!* SQL stmt #20 
EXEC SQL OPEN C USING DESCRIPTOR bind_dp; 

"' [ 
sqlstm.stmt = .... ; 

sqlstm.iters = (unsigned short) I; 
sqlstm.offset = (unsigned short)77; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char ")&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char ")bind_dp; 
sqlstm.sqhstl[O] = (unsigned long)O; 
sqlstm.sqindv[O] = (short ")0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhstl; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx. &sqlstm. &sqlfpn); 
if (sqlca.sqlcode < 0) goto sql_error; 
} 

!* Describe the 
select-list items. The DESCRIBE function returns 
their names. datatypes. lengths (including precision 
and scale). and NULL/NOT NULL statuses. "' 

selecCdp->N = MAX_ITEMS; 

'" SQL stmt #21 
EXEC SQL DESCRIBE SELECT LIST FOR S INTO select_dp; 

*' { 
sqlstm.iters = (unsigned short)l; 
sqlstm.offset = (unsigned short)92; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char ")seleccdp; 
sqlstm.sqhstl[O] = (unsigned long)O; 

Page 214 



sqlsun.sqindv[O] = (shan ')0; 
sqlsun.sqphsv = sqlsun.sqhstv; 
sqlsun.sqphsl = sqlsun.sqhstl; 
sqlsun.sqpind = sqlsun.sqindv; 
sqlcex(&sqlctl<, &sqlsun, &sqlfpn); 
if (sqlca.sqlcode < 0) goto sqCerror; 
) 

I" If F is negative, there were more select-list 
items than originally allocated by sqlaldO. " 
if (selecCdp->F < 0) 
( 
fprintf(stderr,"'nToo many select-list items (%d), maximum is %<1'<1", 
-(select_dp->F), MAX_ITEMS); . 
strcpy(resulUtring, uf"); 
if(resuIUile_name[O]) 
fclose(resuIUile); 
return; 

I" Set the maximum number of array elements in the 
descriptor to the number found. " 
select_dp->N = seleccdp->F; 

I" Allocate storage for each select-list item. 

sqlprcO is used to extract precision and scale 
from the length (selecCdp->L[i]). 

sqlnulO is used to reset the high-order bit of 
the datatype and to check whether the column 
is NOT NULL. 

CHAR datatypes have length, but zero precision and 
scale. The length is defined at CREATE time. 

NUMBER datatypes have precision and scale only if 
defined at CREATE time. If the colurnn 
definition was just NUMBER, the precision 
and scale are zero, and you must allocate 
the required maximum length. 

DATE datatypes return a length of 7 if the default 
format is used. This should be increased to 
9 to store the actual date character string. 
If you use the m_CHAR funcRT\ tion, the maximum 
length could be 75, but will probably be less 
(you can see the effects of this in SQL 'Plus). 

ROWID datatype always returns a fixed length of 18 if 
coerced to CHAR. 

LONG and 
LONG RAW datatypes reUJrn a length of 0 (zero), 
so you need to set a maximum. In this example, 
it is 240 characters. 

" 

Page 215 



for (i = 0; i < selecU1p->F; i++) 
( 
1* Turn off high-order bit of datatype (in this example, 
it does not matter if the column is NOT NULL). *' 
sqlnul (&(selecUIp->T[i]), &(selecLdp->T[iJ), &null_ok); 

switch (selecLdp-> T[iJ) 
( 
case 1 : 1* CHAR datatype: no change in length 
needed, except possibly for TO_CHAR 
conversions (not handled here). *' 
break; 
case 2 : 1* NUMBER datatype: use sqlprcO to 
extract precision and scale. *' 
sqlprc (&(selecLdp->L[i]), &precision, &scale); 
1* Allow for maximum size of NUMBER. *' 
if (precision == 0) precision = 40; 
1* Also allow for decimal point and 
possible sign. *' 
select_dp->L[iJ = precision + 2; 
1* Allow for a negati ve scale. *' 
if (scale < 0) 
select_dp->L[iJ += -scale; 
break; 

case 8: 1* LONG datatype *' 
select_dp->L[iJ = 240; 
break; 

case 11 : 1* ROWID datatype *' 
select_dp->L[iJ = 18; 
break; 

case 12 : 1* DATE datatype *' 
selecLdp->L[i] = 9; 
break; 

case 23: 1* RAW datatype *' 
break; 

case 24 : 1* LONG RAW datatype *' 
select_dp->L[iJ = 240; 
break; 
} 

1* Allocate space for the select-list data values. *' 
select_dp-> V[iJ = (char *) realloc(selecLdp-> V[iJ, 
(size_t) selecLdp->L[i]); 

1* Print column headings, right-justifying number 
column headings. *' 

#ifndef NOSTATEMENTS 
if (selecLdp-> T[iJ == 2) 
fprintf(stderr,"%.*s ", select_dp->L[i], select_dp->S[i]); 
else 
fprintf(stderr,"%-.*s ", select_dp->L[iJ, selecLdp->S[iJ); 

Page 216 



#endif 

1* Coerce ALL datatypes except for LONG RAW la 
character. *' 
if (selecCdp·> T[il != 24) 
select_dp-> T[il = I; 
} 

#ifndef NOSTATEMENTS 
fprintf( stderr, "'<l\n "); 

#endif 

1* FETCH all rows selected and print the column values. *' 
1* SQL sunt #22 
EXEC SQL WHENEVER NOT FOUND GOTO end_selectjound; 

*' 
strcpy(result_string, "s"); 

while(l) 
[ 

1* SQL sunt #23 
EXEC SQL FETCH C USING DESCRIPTOR selecCdp; 

*' [ 
sqlsun.iters = (unsigned short)l; 
sqlsun.offset = (unsigned shon)107; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlest = (unsigned char *)&sqlca; 
sqlsun.sqlety = (unsigned shon)O; 
sqlsun.sqhstv[OI = (unsigned char *)selecCdp; 
sqlsun.sqhstl[OI = (unsigned 10ng)0; 
sqlsun.sqindv[OI = (short *)0; 
sqlsun.sqphsv = sqlsun.sqhstv; 
sqlsun.sqphsl = sqlsun.sqhstl; 
sqlsun.sqpind = sqlsun.sqindv; 
sqlcex(&sqlctx, &sqlsun, &sqlfpn); 
if (sqlca.sqlcode = 1403) gala end_selecUound; 
if (sqlca.sqlcode < 0) gala sql_error; 
} 

1* Since each variable returned has been coerced la a 
character string, very Ii ttle processing is required 
here. This routine just prints out the values on 
the terminal. *' 

#ifndef NOSTATEMENTS 
for (i = 0; i < select_dp·>F; i++) 
[ 
if (*selecCdp->I[il < 0) 
fprintf(stderr, "'Yo-*c ",(int)select_dp->L[il, ' '); 
else 
fprintf(stderr,"'Yo-* .*s ", (int)select_dp->L[il, 
(int)select_dp->L[il, selecCdp-> VIi)); 
} 
fprintf(stderr,"\n"); 

#endif 
if(resulcfile_narne[O)) 
[ 1* print result to a file *' 
for (i = 0; i < select_dp->F; i++) 

Page 217 



( 
strcpy(help_no_blank,selecCdp-> VIi]); 
help_no_blank[select_dp->L[ill = "()'; 
if (*select_dp->I[il < 0) 
strcpy(help_string,'''n\''\""); 
else 
sprintf(help_string, 
'''n\"%s\"", no_blanks(help_no_blank»; 
fputs(help_striog, resulUile); 
) 
) 
else 
{ /* print result to the resulcstring *' 
for (i = 0; i < select_dp->F; i++) 
( 
strcpy(help_no_blank,select_dp-> VIi]); 
help_no_blank[select_dp->L[ill = "()'; 
if «*select_dp->I[il < 0) && 
(strlen(resulutriog)+4<VERY _LONG_STRING» 
strcpy(&resulcstring[strlen(result_string)l,":O:"); 
else 
( 
sprintf(help_string,"%s", no_blanks(help_no_blank»; 
if(strlen(resulutring)+ 3+strlen(help_string)<VERY _LONG_STRING) 
sprintf(&result_striog[strlen(result_string)l, 
":%d:", strlen(help_striog»; 
) 
if ((!(*select_dp->I[il < 0» && 
(strlen(resulutring)+ I <VERY _LONG_STRING» 
sprintf(&resulutriog[strlen(resuIUtring)l. 
"%s", no_blanks(help_no_blank»; 
) 
) 
) 

/* Tell user how many rows processed_ "' 
#ifndef NOSTATEMENTS 
fprintf(stderr,'''n\n%d row%c processed."''', sqlca.sqlerrd[21, 
sqlca.sqlerrd[2) == I ? ''0' : 's'); 

#endif 
ora_state = 1; 
if(result_file_name[Ol) 
fclose(resuIUile); 
return; 

/* ORACLE error handler "' 
fprintf(stderr,'''n\n%.70s\n",sqlca.sqlerrm.sqlerrmc); 
if (parse_flag) . 
( 
fprintf(stderr,'''nexecuted select statement: "'%s;\n",sql_statement); 
fprintf(stderr, 
"The parse error was at character offset %d in the SQL statement.\n", 
sqlcasqlcrrd[4]); 
) 

Page 218 



r SQL sllnt#24 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

"' ( 
sqlstm.iters = (unsigned shen)l; 
sqlstm.offset = (unsigoed shon)122; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char ")&sqlca; 
sqlstm.sqlety = (unsigned shon)O; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
) 
ora_stale = I; 
sarcpy(result_string, "f'); 
if(resuIUile_name[O)) 
fclose(resuIUile); 
return; 

j •• **.*** •• ****.******** ••••••••• ***.****** •• **************** •••••••••••••••••• , 
r The function mw_disconnect closes the connection to Oracle, after"' 
r all changes, made since the last commit, are rolledback. "' 
r The memory occupied by the data base object definitions is freed. "' 
/* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **., 
void mw _disconnectO 
( int i; 

if (ora_state = 0) 
( 

#ifndef NOPRINT 
fprintf(stderr,"\n not connected to oracle, no disconnect possible"); 

#endif 
strcpy(result_string,"f'); 
return; 

free_objectsO; 
r When done, free the memory allocated for 
pointers in the bind and select descriptors. "' 
for (i = 0; i < MA)UTEMS; i++) 
( 
if (selecCdp->V[iJ != (char") NULL) 
free(seleccdp-> VIi]); 
free(select_dp->l[i]); r MAX_ITEMS were a1localed. "' 
) 

r Free space used by the descriptors themselves. "' 
sqlclu(bind_dp); 
sqlclu(selecCdp); 

r SQL stmt #26 
EXEC SQL WHENEVER SQLERROR CONTINUE; 

"' r Close the cursor. "' 
'" SQL stmt #27 

Page 219 



EXEC SQL CLOSE C; 
*f 
{ 
sqlsun.iters = (unsigned short)l; 
sqlsun.offset = (unsigned shon) 133; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlest = (unsigned char *)&sqlca; 
sqlsun.sqlety = (unsigned shon)O; 
sqlcex(&sqlclx, &sqlsun, &sqlfpn); 
} 
1* SQL sunt #28 
EXEC SQL ROLLBACK WORK RELEASE; 
of 
{ 
sqlsun.iters = (unsigned short)l; 
sqlsun.offset = (unsigned shon)l44; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlest = (unsigned char *)&sqlca; 
sqlsun.sqlety = (unsigned shon)O; 
sqlcex(&sqlclx, &sqlsun, &sqlfpn); 
} 
ora_state = 0; 
strcpy(resulcstring,"s''); 
} 

/**** ••••••••••••••• **** ••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
f* The function mw_insert executes an insen statement, defined by the given *f 
1* object name o_name and the data_string. The used SQL-statement has the *f 
1* following fonnat *f 
1* INSERT INTO actuel_object->dtb_table (actuel_object->sli) *f 
1* VALUES (data_string) *f 
1* This function is restricted to objects, that refere to only one databae *f 
1* table and where all fields with NOT NULL values are in the *f 
1* field list (sli). *f 
1* The data_string must contain the new values for all fields in the field *f 
1* list, in the same order. * f 
/** •••••••••••••••••••••••••••••••••••••• *** •••••••••••• ******** ••• ** •••••• ****/ 

void mw_insen(o_name, data_string) 
char *o_name; 
char *data_string; 
( int i; 

if (ora_state = 0) 
( 
fprintf(stderr,"ln not connected to oracle, insen not executed! ''); 
strcpy(resulcstring, "r'); 
return; 

if (actuel_object = NULL) 
( 
fprintf(stderr,"ln object not known''); 
strcpy(resulutring, 'T'); 
return; 

Page 220 



1* build insert statement *' 
sprintf(sql_statement. "insert into %s (%s) values (%s)", 
actuel_object->dtb_table, actuel_object->sli, 
data_string); 

#ifndef NOSTATEMENfS 
fprintf(stderr,"'nexecuted insert statement \n%s;\n",sql_statement); 

#endif 
1* Prepare the statement and declare a cursor. *' 

1* SQL stmt #29 
EXEC SQL WHENEVER SQLERROR GOTO sql_error; 

*' 
parse_flag = I; 1* Set a flag for sql_error. *' 

1* SQL stmt #30 
EXEC SQL PREPARE S FROM :sql_statement; 

*' { 
sqlstm.iters = (unsigned short)l; 
sqlstm.offset = (unsigned short) 155; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char *)sql_statement; 
sqlstm.sqhstl[O] = (unsigned long)1024; 
sqlstm.sqindv[O] = (short *)0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhstl; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
if (sqlca.sqlcode < 0) goto sqCerror; 
) 
parse_flag = 0; 1* Unset the flag. *' 

'* SQL stmt #31 
EXEC SQL EXECUTE IMMEDIATE :sql_statement; 

*' { 
sqlsun.stmt = .... ; 

sqlstm.iters = (unsigned short) 1; 
sqlstm.offset = (unsigned short) 170; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char *)sql_statement; 
sqlstm.sqhstl[O] = (unsigned long)1024; 
sqlstm.sqindv[O] = (short *)0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhstl; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
if (sqlca.sqlcode = 1403) goto end_selecUound; 
if (sqlca.sqlcode < 0) goto sql_error; 
) 

'* Tell user how many rows processed. *' 
#ifndef NOSTATEMENTS 
fprintf(stderr,"\n\n%d row%c processed.\n", sqlca.sqlerrd[2], 

Page 221 



sqlcasqlerrd(2) = I ? "0' : 's'); 
#endif 
ora_slate::;: 1; 
sprintf(resululring, "s:%d",sqlcasqlerrd[2J); 
return; 

1* ORACLE error handler "' 
fprintf(stderr,"'lI\n%. 70s\n" ,sqlca.sqlemn.sqlerrmc); 
if (parse_flag) 
( 
fprintf(stderr, "\nexecuted insen slatemenc \n%s;\n",sql_swement); 
fprintf(stderr, 
"The parse error was at character offset %d in the SQL statement\n", 
sqlcasqlerrd[ 4 J); 
) 

1* SQL stmt #32 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

"' ( 
sqlstm.iters = (unsigned shon)l; 
sqlstm.offset = (unsigned shon)185; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char ")&sqlca; 
sqlstm.sqlety = (unsigned shon)O; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
) 
ora_slate = I; 
strcpy(result_slring,"r'); 
return; 

end_selectjound: 
ora_slate = I; 
strcpy(resululring,"r'); 
return; 

/** ••• *****.******** •••••••••••••••••••••••••••••••••••••••••••••••• ***** ••••• */ 
1* The function mw_update executs an update statement, defined by the object"' 
1* o_name, the additional where clause where_siring. The fields to update "' 
'" and the new values are in the siring dala_slring. Updates are only allowed "' 
1* for objects, refering to only one database lable. "' 
1* The used SQL-statemeot has the following forrnac "' 
1* UPDATE actuel_object->dtb_table SET data_siring"' 
1* WHERE actuel_object->where AND where_siring "' 
, •••••••••••••• *** •••••••••••• ** •••••••••••••••••••• ****** ••••••• *******.******/ 

void mw_update(o_name, data_siring, where_Siring) 
char "o_name; 
char "data_siring; 
char "where_siring; 
( iot i; 

Page 222 



fprintf(stderr,"<1 not connected to oracle, update not executed!"); 

strcpy(resulcstring, "f"); 
return; 

if (actuel_object = NULL) 
( 
fprintf(stderr,'''<l object not known"); 
strcpy(resulcstring, "f"); 
rerum; 

/* build update statement"/ 
sprintf(sql_statement. "update %s set %s ", 
actuel_object->dtb_table, data_string); 
append_where( where_string); 
#ifndef NOSTATEMENTS 
fprintf(stderr,"<1executed update statement: 'vJ%s;'vJ" ,sql_statement); 

#endif 
/* Prepare the statement and declare a cursor. "/ 
/* SQL strnt #34 
EXEC SQL WHENEVER SQLERROR GOTO sql_error; 
"/ 

parse_flag = I; /* Set a flag for sql_error."/ 
/* SQL strnt #35 
EXEC SQL PREPARE S FROM :sqUtatement; 
"/ 
( 
sqlstrn.iters = (unsigned short)l; 
sqlstrn.offset = (unsigned short) 196; 
sqlstrn.cud = sqlcudO; 
sqlstrn.sqlest = (unsigned char ")&sqlca; 
sqlstrn.sqlety = (unsigned short)O; 
sqlstrn.sqhstv[O] = (unsigned char ")sql_statement; 
sqlstrn.sqhstl[O] = (unsigned long) 1024; 
sqlstrn.sqindv[O] = (short ")0; 
sqlstrn.sqphsv = sqlstrn.sqhstv; 
sqlstrn.sqphsl = sqlstrn.sqhstl; 
sqlstrn.sqpind = sqlstrn.sqindv; 
sqlcex(&sqlctx, &sqlstrn, &sqlfpn); 
if (sqlca.sqlcode < 0) golO sql_error; 
] 
parse_Hag = 0; /* Unset the flag. "/ 

/" SQL strnt #36 
EXEC SQL EXECUTE IMMEDIATE :sqUtatement; 
"/ 
( 
sqlstm.stmt = .... ; 

sqlstrn.iters = (unsigned short)l; 
sqlstrn.offset = (unsigned short)211; 
sqlstrn.cud = sqlcudO; 
sqlstrn.sqlest = (unsigned char ")&sqlca; 

Page 223 



sqlstm.sqlety = (unsigned short)O; 
sqlstm.sqhstv[O] = (unsigned char *)sql_statement; 
sqlstm.sqhsU[O] = (unsigned long)I024; 
sqlstm.sqindv[O] = (short *)0; 
sqlstm.sqphsv = sqlstm.sqhstv; 
sqlstm.sqphsl = sqlstm.sqhsU; 
sqlstm.sqpind = sqlstm.sqindv; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 
if (sqlca.sqlcode = 1403) golO end_selectjound; 
if (sqlca.sqlcode < 0) goto sql_error; 

J 

1* Tell user how many rows processed. *' 
#ifndef NOSTATEMENTS 
fprintf(stderr,"\n\n%d row%c processed."'", sq1ca.sqlerrd[2], 
sqlca.sqlerrd[2] = I ? "0' : 's'); 

#endif 
ora_state = I; 
sprintf(result_string,"s:%d",sqlca.sqlerrd[2]); 
return; 

1* ORACLE error handler *' 
fprintf(stderr,""''''%. 70s"''' ,sqlca.sqlerrm.sqlerrmc); 
if (parse_flag) 
( 
fprintf(stderr,"lnexecuted update statement: "'%s;"''' ,sqCstatement); 
fprintf(stderr, 
"The parse error was at character offset %d in the SQL statement."''', 
sqlca.sqlerrd[4 ]); 

J 

1* SQL stmt #37 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLLBACK WORK; 

*' ( 
sqlstm.iters = (unsigned short) I; 
sqlstm.offset = (unsigned short)226; 
sqlstm.cud = sqlcudO; 
sqlstm.sqlest = (unsigned char *)&sqlca; 
sqlstm.sqlety = (unsigned short)O; 
sqlcex(&sqlctx, &sqlstm, &sqlfpn); 

J 
ora_state = I; 
strcpy( res ult_ string, "f'); 
return; 

end_selectjound: 
ora_state = I; 
sprintf(resuit_string,"s:%d",sqlca.sqlerrd[2]); 
return; 

/**.***.** ••••••• ***** •••••••••••• ******* •••• ***.*****.******.*****************/ 
1* The function mw_delete executes a delete statement, defined by the object *' 
'* o_name and the additional where clause in where_string. It is restricted *' 

Page 224 



1* to objects, refering to only one database table. "' 
1* The used SQL·statement has the following format "' 
/* DELETE FROM actueCobject·>dtb_table", 
1* WHERE actuel_object·>where AND where_string", 
/** ••••••••••••••••••••••• *** •••••••••••••••••••••••••••••••••••••••••••••••••• , 

void mw_delete(o_name, where_string) 
char ·o_name; 
char "where_string; 
( int i; 

if (ora_state = 0) 
( 
fprintf(stderr, "'n not connected to oracle, delete not executed! "); 

strcpy(result_string, "f'); 
return; 
) 

if (actueCobject = NULL) 
( 
fprintf(stderr,"'n object not known"); 
strcpy(resulutring, "f,); 
return; 

1* build delete statement "' 
sprintf(sql_statement,"delete from %s ", 
actueCobject->dtb_table); 
append_whe~where_string); 

#ifndef NOSTATEMENTS 
fprintf(stderr,"'<,executed delete statement \o%s;\o" ,sql_statement); 

#endif 
1* Prepare the statement and declare a cursor. "' 
/* SQL strnt #39 
EXEC SQL WHENEVER SQLERROR GOTO sql_error; 

"' 
parse_flag = I; 1* Set a flag for sql_error. "' 
'" SQL strnt #40 
EXEC SQL PREPARE S FROM :sqUtatement; 

"' ( 
sqlstrn.iters = (unsigned short)l; 
sqlstrn.offset = (unsigned short)237; 
sqlstrn.cud = sqicudO; 
sqlstrn.sqlest = (unsigned char ")&sqlca; 
sqlstrn.sqlety = (unsigned short)O; 
sqlstrn.sqhstv[O] = (unsigned char ")sql_statement; 
sqlstrn.sqhstl[O] = (unsigned 10ng)I024; 
sqlstrn.sqindv[O] = (short ")0; 
sqlstrn.sqphsv = sqlstrn.sqhstv; 
sqlstrn.sqphsl = sqlstrn.sqhstl; 
sqlstrn.sqpind = sqlstrn.sqindv; 
sqlcex(&sqlctx, &sqlstrn, &sqlfpn); 
if (sqlca.sqlcode < 0) goto sql_error; 

Page 225 



parse_flag = 0; /* Unset the flag .• , 

/* SQL SUn! #41 
EXEC SQL EXECUfE IMMEDIATE :sql_statement; ., 
{ 
sqlsun.strnt = et,,; 
sqlsun.iters = (W1signed shOO)I; 
sqlsun.offset = (unsigned short)252; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlest = (unsigned char *)&sqlca; 
sqlsun.sqlety = (unsigned short)O; 
sqlsun.sqhstv[OI = (unsigned char *)sqCstatement; 
sqlsun.sqhst1[OI = (unsigned long) 1024; 
sqlsun.sqindv[OI = (shoo ')0; 
sqlsun.sqphsv = sqlsun.sqhstv; 
sqlsun.sqphsl = sqlsun.sqhst1; 
sqlsun.sqpind = sqlsun.sqindv; 
sqlcex(&sqlctx, &sqlsun, &sqlfpn); 
if (sqlca.sqlcode = 1403) goto end_selecUound; 
if (sqlca.sqlcode < 0) goto sql_error; 
} 

,. Tell user how many rows processed .• , 
#ifndef NOSTATEMENTS 
fprintf(stderr,",,.,\n%d row%c processed.\n", sqlcasqlerrd[21, 
sqlcasqlerrd[21 = I ? "0' : 's'); 

#endif 
ora_state = I; 
sprintf(result_string,"s:%d",sqlcasqlerrd[21); 
return; 

/* ORACLE error handler ., 
fprintf(s!derr,"',.,\n%. 70s\n" ,sqlca.sqlerrm.sqlerrmc); 
if (parse_flag) 
( 
fprintf(stderr,"\nexecuted delete statement \n%s;\n",sql_statement); 
fprintf(stderr, 
"The parse error was at character offset %d in the SQL statement.\n", 
sqlca.sqlerrd[4]); 
} 

/* SQL sunt #42 
EXEC SQL WHENEVER SQLERROR CONTINUE; 
EXEC SQL ROLL BACK WORK; 

*' { 
sqlsun.iters = (W1signed short) I; 
sqlsun.offset = (unsigned short)267; 
sqlsun.cud = sqlcudO; 
sqlsun.sqlesl = (unsigned char ')&sqlca; 
sqlsun.sqlety = (unsigned short)O; 
sqlcex(&sqlctx, &sqlsun, &sqlfpn); 
} 
ora_state = I; 

Page 226 



strcpy(resulcsU"ing,T'); 
return; 

end_selecCfound: 
ora_slate = I; 
sprintf(result_suing, "s:%d" ,sqlcasqleml[2]); 
return; 
) 

Page 227 



APPENDIX VI 

Mapping of proprietary MCC information entities 
to the information models in the system data repository 

Page 228 



Opel'lllica ID 
AlIcnWiw Opcn.tiaa ID ......... 
0pcratM:m tirim ........ 
~ ()pc:nOOo ID 
&.t Opc:ratim ID 

"'""""" 
""-,ID 
CompmyIN~ 

""""" 
"""'" """'" T ........ 
Pu 

Suwlic:r 

5uppia ID 
CompmyIN_ ........ 
eaua ........ 
T ........ 
Pu 

Page 229 



Program listings for mapping and population of the following data 
from MCC to data repository: 

1. Manufacturing resources and process plans (Create_process_file.c) 

2. Schedule (Create_schedule.c) 

3. WIP (Populate_wip.c) 

4. BOM (populate_born. c) 

Page 230 



Create_process _ file.c 

/** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
,. File: createJll'OCess_file.c ., 
,. This program creates a file with process infonnation, which is readable ., 
,. by the cell controler. Before the process infonnation can be·' 
,. put in a file with this program, the file with the schedule infonnation ., 
,. must be crealed. using the program create_schedule_file .• , 
,. Then this program extracts the process infonnation for all parts, ., 
,. which are in that schedule. ., 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

#include <stdio.h> 
#include "local_incl.h" 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
,. The string result_string is used to communicate with the functions of the ., 
,. program access_ora, with are used to access the oracle database .• , 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
extern char result_string[VERY _LONG_STRINGl: 

char help[LONG_STRINGl: 
char value[SMAL_STRINGl: 
FILE ·drive, ·drive2; 
char file_rest[FlLE_LINE_LENl: 

char temp_sel[MEDIUM_STRINGl: 
char process_data_fiIe[MEDIUM_STRINGl: 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
,. The function inicoracle connects to the MCC oracle database and sets ., 
,. values for temporal files and the file with the process data. ., 
,. The file with the schedule data is opened for writeing .• , 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void init_oracleO 
{ 
strcpy(temp_sel,"/home2!sandra!valdew/misc/temp''): 

strcpy(process_data_file, 
"/home/wayne/blzhang/iclceIVmessage/part-proc.data"): 

mw _connecl(umcc21 "."m". 
"/home2!sandra!valdew'oracle3'emhed_sqVconfilLtables...JlTOCess.txt''): 

if«drive = fopen(process_data_file,"w'') == NULL) 
printf('\nError, open %s.",process_data_fiIe): 

J 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••••• * •• , 
,. The function tenninate_oracle closes the process_data_file, commits all ., 
,. changes made in the oracle database and closes the connection to the *' 
,. oracle database .• , 
, •• *** •••• **.* ••• ****.********.*************.*** •••• *****.*****.*.******.*., 

Page 231 



void tenninate_oracleO 
( 
fclose(drive); 
mw_commitO; 
mw_disconnectO; 
printf(''In "); 

J 

/*** •••••••••• ** •••••••••••• **.** •••••••• *** ••••••••••••••••••••••••••••••• , 
1* The function write...J1l'OCess writes the process data to the file 0, 
1* process_data....file. for all parts in the current schedule. 0, 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void write...JlrocessO 
( 
char parcno[SMAL_STRING). process_id[SMAL_STRING); 
char pan_type[SMAL_STRING). operation_time[SMAL_STRING); 
char mflLoperation_id[SMAL_STRING); 
char asseUd[SMAL_STRING). assecnumber[SMAL_STRING); 
int operation_number; 

1* Write header to the process_data_liIe. 0, 
sprintf(help."Part Process Data File'n"); 
fputs(help.drive); 

1* The table help_assecnumber is used to generale machine numbers for 0, 
1* assets. relaled to the operations. As the cell controler only accepts 0, 
1* machine numbers between I and 4. the asseUd can't be used directly. *' 
1* This infonnation is stored pennanently in the database to be able to 0, 
1* inlerpret the feed back infonnation. produced by the cell controller. 0, 
1* correctly. *' 
mw _delele("help_asset_number_l" .~'); 
sprintf(help,"O. '0'''); 
mw _insert("help_asset_number_l" ,help); 

1* Retrieve all parts. which are produced by the current schedule. 0, 
1* The table help...Jlaruype is used for this purpos. because it contains *' 
1* the pan type for all parts. (See file creale_schedule_liIe for 0, 
1* details. *' 
mw_query("help...Jlaruype_1 ","parctype > 0 order by paruype".lemp_sel); 
if«drive2 = fopen(temp_sel."r"» == NULL) 
printf('''InError. open %s .... temp_sel); 
file_rest[O) = "i)'; 

while(liIe_reader(parcno. drive2. file_rest» 
( 

fileJeader(parctype. drive2. file_rest); 

,0 Print the header for a process mutto the process_data_file. *' 
1* The number of machines needed to produce the current pan is 0, 
1* set to 4 by default *' 
sprin tf(hel P." ---------------------------------------'n "); 
fputs(help.drive); 

sprintf(help."%s\t%d'n".part_type.4); 

Page 232 



fputs(help.drive); 

1* Get the process-plan_id for the current pan from the"' 
1* process-plan_id table. "' 

sprintf(help. "parcnumber='%s'" .part_no); 
mw _query("process-plan_id_1" ,help,""); 
nexc value(resulcstring.process_id,result_string); 

1* Get the first operation for the current paIl The first operation "' 
1* is identified by having no preceeding operation but having a next"' 
1* operation. If the part has only one operation. its process rout "' 
1* will not be exuacted correctly. In !he current version. "' 
1* alternative operations are not exuacted. "' 

sprintf(help."o.process-plan_id=%s and o.presc_mf8-operation_id IS NULL and o.nexcmf&...operation_id IS 
NOT NULL". process_id); 
mw _query("mf/Loperation_ass_l" ,help."''); 

operation_number = 0; 

while(nexC value(result_string.mf8-operation_id,resulcstring» 
( 
next_ value(result_string,operation_time,resulcstring); 
next_ value(result_string. asseUd. result_string); 
operation_number++; 

1* Get the machine number for the current asset "' 

sprintf(help,"asseUd = %s". asseUd); 
m w _query("help_asset_number_2" ,help,"''); 
if(!nexC value(result_string. asset_number, result_string» 
( 
1* Generate a new number for the current asset "' 

mw_query(Uhelp_assecnumber_3" , .. " ..... ); 
nexc value(result_string,asset_number,result_string); 
sprintf(help,"%s, '%s'" .asseUd, assecnumber); 
mw _insert("help_asset_number_l" ,help); 
) 

1* Write the operation details to the process_dala_file. "' 

sprintf(help ... %d\t%s'\t%s'\tCM".operation_number. asset_number. 
operation_time); 
fputs(help.drive); 

1* Get !he next operation. "' 

sprintf(help."o.process-plan_id=%s and o.presc_mf8-operation_id = %s". process_id. mf/Loperation_id); 
mw _query( .. mf/Loperation_ass_l ... help ..... ); 
) 

fputs("CM".drive); 
) 
fclose(drive2); 
) 

Page 233 



mainO 
( 
init_oracJeO; 
write-processO; 
tenninate_oracleO; 
) 

Meta-file definition 

Name of meta-file : config...tables_process.txt 

Definition of database-objects: (for access_ora) 

"help_parctype_l" "help_parctype" 
"part_no, part_type" "" 

"help_assecnumber_I" "help_assecnumber" 
"asset_id, asset_number" "" 

"help_assecnumbec2" "help_assecnumber" 
"asset_Dumber" '''' 

"help_assecnumbec3" "help_assecnumber" 
"(max(assecnumber) + 1)" "" 

"process_plan_id_I" "process_plan_id" 
"process_plan_id" "" 

"mfg...operation_ass_I" "rnfg...operation_ass 0, rnfg...facility_ass a" 
"o.rnfg...operation_id, o.operation_time, a.assecid" 
"a.rnfg...operation_id = o.rnfg...operation_id" 

Page 234 



Create schedule file.c 

/* ••••••••••••••••••••••••••••••••••••• ** ••••••••••••••• ** •••••••••• *** •••••••• , 
r File: =_schedule_file.c ./ 
r This program creates a file with scheduling infonnation, which is readable·/ 
r by Ihe cell controler. ./ 
/** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

#include <stdio.h> 
#include "locaUncl.h" 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
r The string resulcstring is used to communicate wilh Ihe functions of Ihe ./ 
r program access_ora, wilh are used to access !he oracle database .• / 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
extern char resulcstring[VERY _LONG_STRING); 

char help[LONG_STRING); 
char value[SMAL_STRING), resulcrest[VERY _LONG_STRING); 
FILE ·drive, ·drive2; 
char fileJest[FILE_LINE_LEN]; 

char temp_sel[MEDruM_STRING); 
char schedule_data_file[MEDruM_STRING); 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
r The function init_oracle connects to !he MCC oracle database and sets ./ 
r values for temporal files and Ihe file wilh Ihe schedule data. ./ 
r The file wilh the schedule data is opened for writeing. ./ 
/* ••••••••••••••••••••••••••••••••••••••••••••••• *.*** ••••••••••••••••••••• **.*/ 

void init_oracleO 
( 
strcpy(temp_sel, 
"/home2/sandra/valdew/misc/temp"); 

strcpy(schedule_data_file, 
"/home/wayne/hlzhang/iclceIVmessage/schedule.data"); 

mw _connect("mcc21" ,"m". 
"/home2!sandra!valdew/oracle_c/embed_SQVconfi&-.tables_schedule.txt"); 

if«drive = fopen(schedule_data_file,"w"» == NULL) 
printf("'nError, open %s." ,schedule_data_file); 
) 

/*** •• **** •••• * •••••• * •••••••• ** ••••••••••• ***** ••• ****.* •• ***** •• *********** •• / 

r The function terminate_oracle writes Ihe tail to Ihe schedule_data_file, ./ 
r commits changes made in Ihe oracle database and ends Ihe oracle session .• / 
/* •••• ** ••• ** ••••• * ••••••••••••• ****************.**************.*.*************/ 

void terminate_oracleO 
( 
sprintf(help,'''-lOO<M'' , value); 
fputs(help,drive); . 
sprintf(help," --------------------------------------.-----'In''); 

Page 235 



fputs(help.drive); 
fclose(drive); 
mw _commitO; 
mw _disconnectO; 
printf('"\n"); 
) 

/*.** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* The function write_schedule_header writes the header to the file of 
1* schedule_data_fiIe. of 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void write_schedule_headerO 
( 
sprintf(help,''-l Production Schedule\n"); 
fputs(help.drive); 
sprintf(help. " ----------------------------------------\n"); 
fputs(help.drive); 
mw _query('&date" ,n .. :"'); 

next_ value(result_stting. value,resuILrest); 
sprintf(help.·'-lOOI\t\t%s\n".value); 
fputs(help.drive); 
sprintf(help." --------------------------------------------\n "); 
fputs(hclp.drive); 
) 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• / 
1* The function generate"'parLtypes generates a unique part type for each of 
1* scheduled part. This is done because the cell controller feed back is of 
1* related only to part types and not to order numbers and part numbers. of 
1* To be able relate the feed back to orders and partS. the part types are of 
1* stored in the database table help"'part_type. A process rout has to be Of 
1* produced for each part type as well. The program create...J>fOCCss_file will Of 
1* do that job. Of 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void generate...Jlart_typesO 
( 
char mf/Lorder_no[SMAL_STRING]. part_no[SMAL_STRING]; 
char part_type[SMAL_STRING]; 

1* Initialise the table help...Jlart_type. Of 
mw _delete(Uhelp...Jlart_type_I" .... '); 

sprintf(help,"·O·. '0'.0"); 
mw _insen(uhelp...Part_type_I" ,help); 

1* Get all parts in the schedule. of 
m w _query("schedule_l"."" .temp_sel); 
if«drive2 = fopen(temp_sel."r'·)) == NULL) 

printf{''\nError. open %s .... temp_sel); 
file_rest[O] = '\0'; 

1* Generate a unique part type for each order and part. starting with Of 

fO the part type I. *f 
while(fiIe_reader(mf/Lorder_no. drive2. file_rest)) 
( 

file_reader(part_no. drive2. file_rest); 

Page 236 



mw _query(Unext-Part_type","", '"'); 
next_ vaJue(resulcslring, parCtype, resulcrest); 
sprintf(help,"%s, '%s', %s" ,mfl!.-order_no, part_no, part_type); 
mw_insert("help..Jlan_type_1 ", help); 
} 
fcIosc(drive2); 
} 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* The function write_schedule writes the schedule data to the file *' 
1* schedule_data_file. *' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void write_scheduleO 
( 
char mfl!.-order_no[SMAL_STRING], part_no[SMAL_STRING]; 
char part_type[SMAL_STRING], planned_quantity[SMAL_STRING]; 
iot schedule_order_number = 0; 

1* Get all pans in the schedule. *' 
mw_query("schedule_2","",temp_scl); 
if«drive2 = fopen(temp_sel,"r"» = NULL) 

printf('''InError, open %s.",temp_scl); 
file_rest[O] = '\D'; 

1* Write an entry for each scheduled pan to the file. *' 
whiIe(file_reader(mfl!.-order_no, drive2, file_rest» 
( 

schedule_order_number++; 
file_reader(pan_no, drive2, file_rest); 
tile_reader(pIanned_quantity, drive2, file_rest); 

sprintf(help,"mfl!.-order_no=%s and pan_no='%s"',mfl!.-order_no, pan_no); 
mw _query("help..Jlan_type]' ,help,""); 
next_ vaJue(resulcslring, pan_type, resuluest); 
sprintf(help,"IIOO%dIt\tOO%s\t\t%s'n" ,schedule_order_number, 
pan_type, planned_quantity); 
fputs(help,drive); 

fiIe_reader(vaJue, drive2, file_rest); 
fiIeJeader(vaJue, drive2, file_rest); 
} 
fcIosc(drive2); 
} 

mainO 
( 
init_oracleO; 
write_schedule_headerO; 
generate...Jlan_typesO; 
write_scheduleO; 
terminate_oracIeO; 
) 

Page 237 



Meta-file definition 

Name of meta-file : confi~tables_schedule.txt 

Definition of database-objects: (for access_ora) 

"help-paruype_l" "help-parctype" 
"mf~ordecno, parcno, part_type" '"' 

"help_part_type_2" "help_part_type" 
"part_type" "" 

"nexcpart_type" "help_parCtype" 
"(max(parctype) + 1)" .... 

"date''''dual'' 
"sysdate" "" 

"schedule_I" "schedule" 
"mf~order_no, pan_Do" "" 

"schedule_2" "schedule" 
"mf~ordecno, part_no, planned_quantity, priority, schedule_starCdate" 
"planned_quantity> 0 order by schedule_start_date, priority" 

Page 238 



Populate wip.c 

/*****.***.*** ••••••••••••••••••••••••••••••••••••• ** •••••••••••••••••••••••••• , 
/* File: popu1ate_wip.c "' 
/* This program populates the data repository wip. "' 
/* Any old data residing in this table is deleted. "' 
/* The data is read from the cell status file: "' 
/*' /home/wayne/bizhang/iclcell/message/ceIUtatus.data·. "' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

#include <stdio.h> 
#include "locaUncl.h" 

/** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
/* The string resulcstring is used to communicate with the functions of the"' 
/* program access_ora. with are used to access the oracle database. "' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
extern char result_string[YERY _LONG_STRING]; 

char wip_file[MEDIUM_STRING]; 
FILE "drive; . 

/** •••••••••••• ** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
/* The function iniCoracle connects to the MCC oracle database and opens "' '* cell status file. "' /* ••••••••••••••••••••••••••••••••••••••••••••••••••••• ************************/ 

void iniC oracleQ 
( 
strcpy( wip_file." /home/wayne/blzhang/ic!cell'message/ceIUtatus.data·'); 
if«drive=fopen(wip_file."r")) == NULL) 
printf(''lnError oper file: %s .... wip_file); 

mw _connect("mcc21" ."m", 
"/home2/sandra/valdew'oracle_c'embed_sqVconfi/Ltables_ wip_2.txt"); 
} 

/******************************************************************************/ 
/* The function terminate_oracle closes the cell status file. commits all "' 
/* changes in the database and ends the database session. "' 
/******* •• * ••••• *.** •••• ****** ••••••••• ** ••••• *** ••• *** •••• *.* •• * •• ** •••••• * ••• / 

void tenninate_oracleQ 
( 
fclose(drive); 
mw_commitO; 
mw_disconnectQ; 
printf('''''''); 
} 

/*** •• *.**********.************************.**********.********************* •• */ 
/* The function word_no retrieves the n'th word from a string. The words "' 
/* have to be seperated by blanks. "' 
/******.***********.**********************************.***************.*******./ 

char word_no(line. number. word) 

Page 239 



char ·line; 
int number; 
char·word; 
( 
char blank_state = I; 
int i = 0, start. end, accno = I; 

word[O) = "D'; 
while(line[i) = ' ')i++; 
if(!line[i]) retum(O); 
while(accno < number) 
( 

while«line[i) != ' ') && line[i])i++; 
while(line[i) = ' ')i++; 
if(!line[i]) retum(O); 

accnO++; 
} 
start = i; 
while«line[i) != ' ') && line[i])i++; 
end = i; 
strncpy(word, &line[start), end-start); 
word[end-start) = "D'; 
retum(l); 
} 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
/* The function pop_ wip reads from the cell staws file and puts some of the 0, 
/* data in the table wip. *' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void pop_ wipO 
( 
char file_string[Fll..E_LINE_LEN), file_string2[Fll..E_LINE_LEN); 
char blank_state = 0; 
int i; 
int cell, time; 
char order_no[SMAL_STRING), parcno[SMAL_STRING), type[SMAL_STRING); 
char quant[SMAL_STRING); 
char help2[SMAL_STRING), helpl[SMAL_STRING); 

/* Delete any old wip data. 0, 
mw _delete("wip" ,"',; 

printf('\n''); 

/* Read the first three lines. 0, 
for(i=O;i<3;i++) fgets(filcstring, FlLE_LINE_LEN, drive); 

/* Get the cell number and the actual time. 0, 
word_no(file_string, 3, helpl); 
cell = to_number(helpl); 
word_no(file_string, 5, help I); 
time = to_number(helpl); 
printf('\nCell: %d, Time: %d.",cell, time); 

Page 240 



,. Get the status and utilisation rate of the machines. *' 
for(i=O;i<5;i++) fgets(file_string. Fll.E_LINE_LEN. drive); 
fgets(file_string2. Fll.E_LINE_LEN. drive); 
for(i= I ;i<=eell;i++) 
( 

wonCno(file_string. i. helpl); 
wonCno(file_string2. i. help2); 
printf(''\nMachine %d. State: %s. Uti): %s." J. helpl. help2); 

J 

,. Get the status and utilisation rate of the AGV. *' 
word_no(file_string. 5. helpl); 
help I [strlen(helpl)-IJ = "{)'; 
word_no(file_string2. 5. help2); 
help2[strlen(help2)-IJ = "{)'; 
printf(''IoAGV State: %s. Util: %s.". helpl. help2); 

,. Get the number of pans in the raw part area. *' 
for(i=O;i<5;i++) fgets(file_string. FILE_LINE_LEN. drive); 
printf(''\nRaw Part Area:''); 
word_no(filcstring. I. helpl); 
while(strcmp(help I. "000'') 
( 
word_no(file_string. 2. help2); 
help2[strlen(help2)-IJ = "{)'; 

printf(''\nPart Type: %s. Number: %s." ,help I. help2); 
fgets(file_string. Fll.E_LINE_LEN. drive); 
word_no(file_string. I. helpl); 

J 

,. Get the number of pans in the finished part area and store that *' 
,. data in the wip table. *' 
for(i=O;i<3;i++) fgets(file_string. Fll.E_LINE_LEN. drive); 
printf(''lnFinished Part Area:''); 
word_no(file_string. I. helpl); 
while(strcmp(help I. ''000',) 
( 
word_no(file_string. 2. quant); 
quant[strlen(quant)-Il = ''0'; 

sprintf(type. "%d" .to_number(help I»; 
printf(''\nPart Type: %s. Number: %s." .type. quant); 

sprintf(helpl."part_type = %s".type); 
mw _query("help-llarctype" ,helpl ... ·'); 
next_value(result_string. order_no. result_string); 
next_ value(result_string. part_no. resulcstring); 
printf(''IoOrder_no: %s. Part_no: %s.".order_no. part_no); 
sprintf(helpl."%s. '%s·. %s".order_no. part_no. quant); 
mw_insert("wip". help I); 

fgets(file_string. Fll.E_LINE_LEN. drive); 
word_no(file_string. I. help I); 

J 
J 

Page 241 



mainO 
( 
init_oracJeO; 
pop_wiPO; 
terminate_orncJeO; 
) 

Meta-file definition 

Name of meta-file : confi~tables_wip_2.txt 

Definition of database-objects: (for access_ora) 

"help_parCtype" "help_parCtype" 
"mf~order_no, part_no" "" 

"wip" "wip" 
"mf~order_no, part_no, actuaLquantity _prod" "" 

Page 242 



Populate bom.c 

/* File: populate_bom.c "f 
/* This program populates the data repositories bom...Jlll!ent and born_child. "/ 
/* Any old data residing in those tables is deleted. "f 
/* The item_no's starting with 'LUT .. .' and Born name 'BOM' are chosen. "f 

#include <stdio.h> 
#include "locaUncl.hH 

t-••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
/* The string resulcstring is used to communicate with the functions of the "/ 
/* program access_ora, with are used to access the oracle database. "f 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
extero char result_string[VERY _LONG_STRING]: 

char terop_sel[MEDIUM_S1RING]; 
iot level_number; 

, .............................................................................. , 
/* The function inicoracle connects to the MCC oracle database and sets"f 
/* values for temporal files. "f 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **/ 

void init_oracleQ 
( 
strcpy(temp_sel, 
"/home2/sandra/valdewfmisc/temp"); 

mw _connect("mcc21" ,"m"'. 
"/home2/sandra/valdewforacle_c/embed_sql!confi&-tables_bom.txt"); 
} 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **/ 
/* The function tenninate_oracle commits all changes in the oracle database Of 

/* and ends the database session. "/ 
, •••••• ** •••••••••••••• ******** ••••• ******.***.**** •• ********* ••• **************/ 

void tenninate_oracleQ 
( 
mw_commitQ: 
mw _disconnectQ; 
printf("'nH); 
} 

/***********.*****************.************.**.***.********.***.*********.*****/ 
/* The function poP3hild populates the table born_child with data from the"f 
/* MCC table bill_oCmat_item. It puts the data specified by child_id in "/ 
/* the born_child table and calls pop_child for all children of this child. "f 
/**************************.***************************************************/ 

void pop_child(child_id,level) 
char "child_id; 
int level; 
( 
char help[LONG_S1RING]; 
FILE "drive; 

Page 243 



char fileJest[FILE_LINE_LEN]; 
char loc_file[MEDlUM_SlRING); 

char parencno[SMAL_SlRING). s_date[SMAL_SlRING). e_date[SMAL_SlRING); 
char child_no[SMAL_SlRING); 
char unit_nam[SMAL_SlRlNG).le3lUime[SMAL_SlRING); 
char sub_child_id[SMAL_SlRING); 
char chanlLno[SMAL_SlRlNG). sup..:ident[SMAL_SlRING). quant[SMAL_SlRING); 
int childs; 
char pritty ...J1rlnt[SMAL_SlRING); 
iot i; 

pritty...J1rlnt[O)="D·; 
for(i=O;i<level;i++) sprintf(pritty -print, "%s ".pritty-print); 

sprintf(loc_file."%s%d".temp_sel)evel); 
if(level > level_number) level_number = level; 
printf("'n%schild_id: %s .... pritty...J1rlnt,child_id); 

/* Get the data from the bill_oCmat table. 0, 
sprintf(help."b.ident = %s". child_id); 
mw _query("bom_child" ,help,""); 

nexc value(result_string. parent_no. result_string); 
nexc value(result_string. child_no. result_string); 
next_ value(resulcstring. s_date. resulcstring); 
nexc value(result_string. e_date. result_string); 
nexc value(result_string. unicnam. resulcstring); 
nexc value(result_string. lead_time. resulcstring); 
nexc value(result_string. chanlLno. result_string); 
nexC value(result_string. sup_ident, result_string); 
nexc value(resulcstring. quant. result_string); 

/* Set non existant values to NULL. 0, 
if(e_date[O]) sprintf(e_date ... ·%s·".e_date); else sprintf(e_date."NULL"); 
if(sup_ident[O]) sprintf(sup_ident, "·%s .. ·.sup_ident); 

else sprintf(sup_ident."NULL"); 
if(!lead_time[O)) sprintf{lead_time."NULL·'); 
if(!chanlLno[O]) sprintf(chang..:no."NULL"); 

/* Get all children. 0, 
sprintf{help."bilCoCmacitem_nn=·%s· and bill_oCmat_narn=·BOM· ... child_no); 
mw _query("bill_oCmaUtem_I" ,help.loc_file); 
if«drive=fopen{loc_file."r"» = NULL) 
printf("'nError oper file %s .... loc_file); 
file_rest[O)="D'; 
childs = 0; 

,0 Call poP3hild for all children (if any). 0, 
while(fileJeader(sub3hild_id. drive. file_rest» 
( 

pop_child(sub_child_id. (level+l»; 
childs++; 
) • 

Page 244 



fcloseCdrive); 

printfC",n%s%s. %s. %s. %s. %s. %s. %s. %s. %d. %s".pritly--print.parent_no. 
child_no. s_date. e_date. uniCnam. 
lead_time. chanlLnO. sup_ident. childs. quant); 

1* Insert row in the born_child table. "' 

sprintf(heJp,"'%s', "%5', '%s\ %8. '90s', 90s, 90s, 90s. %d, 90s", 
parent_no. child_no. s_date. e_date. unicnam. 
lead_time. chanlLnO. sup_ident. childs. quant); 
rnw _insert("born_child_I" .help); 
) 

/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
1* The function pop_born_head gets the data from the biU_oCmat table and "' 
1* puts it into the born--parent table. The function pop_child is call for"' 
1* all children of the specified part. "' 
/* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 

void pop_born_head(born_ident) 
char "born_ident; 
( 
char help[LONG_STRING]; 
FILE "drive; 
char file_rest[FILE_LINE_LEN]; 
char loc_file[MEDIUM_STRING]; 

char parencno[SMAL_STRING]. s_date[SMAL_STRING]. e_date[SMAL_STRING]; 
char unicnam[SMAL_STRING1. lead_time[SMAL_STRING1. child_id[SMAL_STRING1; 
int childs; 

sprintf(loc_file."%sO".ternp_sel); 

printfC"'nIdent %s .... born_ident); 
level_nurnher = 0; 

1* Get data from the bill_oCrnat table. "' 

sprintfChelp."b.ident = %8". born_ident); 
rnw _query("born_head" .help ..... ); 
nexc value(result_string. parencno. result_string); 
nexc value(result_string. s_date. result_string); 
next_ valueCresult_string. e_date. resulcstring); 
nexc value(result_string. unicnam. resulcstring); 
next_ valueCresult_string. lead_time. resulcstring); 

1* Get all children. "' 

sprintfChelp."bill_oCrnaUdent=%s".born_ident); 
rnw _query("bill_oCrnaUtern_l" ,help.loc_file); 
ifCCdrive=fapen(loc_file."r")) = NULL) 

printfC"'nError oper file %s."Joc_file); 
file_rest[O]= '\()'; 
childs = 0; 

1* Call pop_child far each child Cif any). "' 

Page 245 



while{file_reader(child_id. drive, file_rest)) 
( 

poPShild{child_id, I); 
childs++; 
) 
fclose{drive); 

1* Set non existant values to NULL. "' 

if{e_date[OJ) sprintf{e_date,"'%s'" .e_date); else sprintf{e_date,"NULL "); 
if{!leruUime[OJ) sprintf(leruUime,"NULL "); 

printf{'''vl%s, %s, %s, %s, %s, %d, %d" ,parent_no, s_date, e_date, unicnam, 
lead_time, childs, level_number); 

1* Inser row in the table bom..,parenl "' 

sprintf(help,"'%s', '%8', %5, "%S', %s. %d, %d", 
parencno, s_date, e_date, unicnarn, 
lead_time, childs, level_number); 
mw _insert{"bom,..parent" ,help); 
) 

/** ••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **/ 

1* The function start-POp_bom deletes all data in the tables bom.Jl3Cent "' 
1* and bom_child and get calls pop_bom_head for all parts with a bom name"' 
1* 'BOM' and an item_no like 'LUT%'. "' 
/** •••••••••••••••••••••••••••••••••••••••••••• *** ••••••••• *.*.* ••• **** •••••• **/ 

void stan-POp_bomO 
( 
char help[LONG_S1RING); 
FILE "drive; 
char file_rest[FILE_LINE_LEN]; 
char bom_ident[SMAL_S1RING); 

mw _delete("bomJW'ent" , .... ); 
mw _delete{"bom_child_I", "''); 

sprintf(help,"item_no LIKE 'LUT%c' and nam = 'BOM'",'%'); I*don't change"' 
mw _query{"bill_oCmaU" ,help,temp_sel); 
if«drive=fopen{temp_sel,"r'')) == NULL) 
( 

printf('''vlErmr oper file %s." ,temp_sel); 
return; 
) 
file_rest[O) = '\{I'; 
while{file_reader{bom_ident, drive, file_rest)) 

pop_bom_head{bom_ident); 
fclose{drive); 
) 

mainO 
( 
inicoracleO; 
start-POp_bomO; 
terminate_oracle(); 
) 

Page 246 



Meta-file definition 

Name of meta-file : confi~tables_bom.txt 

Definition of database-objects: (for access_ora) 

"bill_oCrnacl" "bill_oCmat" 
"ideot" "" 

"born_head" "bill_oCmat b, item_sourc_dat i" 
"b.item_no, b.efCfrom_dat, b.efCto_dat, b.unicnam, i.lead_tim" 
"b.item_no = i.item_no (+)" 

"bill_oCrnaCitem_l" "bill_oCmaCitem" 
"ident" "" 

"born_child" "bilCoCmacitem b, item_sourc_dat i" 
"b.bilCoCmacitem_no, b.item_no, b.efCfrom_dat, b.efCto_dat, b.unicnarn, i.lead_tim, 
b.en~chan~ident, b.sup_ident, b.quant" 
"b.item_no = i.item_no (+)" 

"born_parent" "born_parent" 
"parencpart_no, eff_start_date, efCend_date, unicoCmeasure, lead_time_offset, num
ber_oCchildren, numbecoClevels" "" 

"bom3hild_l" "born_child" 
"parent_part_no, part_number, eff_starCdate, efCend_date, unicoCmeasure,lead_time_off
set, en~change_no, phases_oucpart_no, numbecoCchildren, quantity_per_assembly""" 

Page 247 



APPENDIX VD ( 

MCSFIMM 

Functional Interaction Manager· Service Options 

Page 248 



Functional Interaction Manager 
Service Options Details 

Add New Part Registers a new part 10 be processed. The nwnber of the new part and 
its type must be given as an argumenl The pan number must be 
unique and is restricted 10 integers between 0 and 99999999. The type 
of a part can be any character string with a length of 3 alphanumeric 
characters. The status of all activities defined in the FIMM 
configuration data is set to pending ('P') for the new part and its 
instance is set 10 1. 

~ .... Change Status Change Slams: Changes the SIaIUS of a function for a given pan, .;; .. identified by its pan number. If the new Slatus of the function is .. 
rIl complete ('C') the instance of the part is changed as well. The 
c instance of the part will be set to the end inslance of the function, as .2 - defined in the FIMM configuration dala. When two or more functions 01 
'3 have defined the same end instance, the instance of the part is changed 
Q, 

only when all functions with the same end instance are completed. '= 01 Otherwise a function, waiting for the competition of two other 
~ functions could get a part number on its job load lis~ while one of 

thefunctions is stiU working on that part (see also get job load). 

Change Instance Changes the instance of a pan, identified by its part number. Using this 
service a function can indicate 10 the Functional Interaction Manager 
that it has reached a certain status for a pan, which might trigger other 
functions to start working on that pan. 

Get Parts Get Parts: Get information about parts, specified by four parameters. 
The first two parameters refer 10 the range of pan numbers, the 
retrieved parts must lie in. If no lowest or highest number is specified, 
the values 0 and 99999999 are assumed as range. The other two 
parameters specify a function and a slams value. The returned part 
nwnbers will only belong 10 parts which have the specified status for ., the given function. If no function is specified, all pans with numbers .. .... lying in the specified range are returned. A fifth parameter determines ,~ 

:- the format of the returned data. Either only the pan numbers, or the .. .. 
rIl complete status, instance and type information can be returned. 
>. .. .. Get Joh Load Get Job Load: Gets information about all pans, that have 10 be = Cl processed by a specified function. Besides the function, a range of part 

nwnbers can be specified, the retrieved parts should lie in. There are 
two conditions, that specify the returned parts. Firs~ the status of the 
parts must be pending ('P') for the specified function. Second, the start 
instance of the function must be greater or equal than the actual 
instance of the pan. The last parameter again determines the format of 
the returned dala. 

Page 249 



Program listings 
for 

Functional Interaction Manager & Engineering Resource Manager 

/* File: operator_functions.c"' 
/* The functions in this file perfonn tasks of the Functional internction Manager and 
Engineering Resource Manager).·' 

/* Functions include the following :"' 
/*new.Jl3l1O 
enters a new pan to be registered in the MCS FIMM. The status for all activities is set to 'P' for pending 
and the point of the pan is set to 1."' 

/*change_statusO 
changes the status of an activity for a given part. If the new status of the activity is 'C' for completed, 
the point of the part is set to the end point of the activity. The point is not changed. if there are other 

activities with the same end point and a status other than complete."' 

/*change-POintO 
sets the point of a given part to a new value."' 

/*add_en&.-resourceO 
adds the location of an engineering resource to the en&.-resource_table. If there was already a location given. 
the old value is overwritten."' 

'·geUobsO 
retrieves parts fulfilling a given condition.·, 

/*geUob_loadO 
retrives parts which are pending (,P') for a given activity and with point values greater or equal to the 
start point of the given activity."' 

/*gecen&-resourcesO 
retrieves the location of engineering resources."' 

/*get_resp_engO 
retrieves all engineering resources related to a given activity."' 

#include <stdio.h> 
#include "locaUncl.h" 

extern char result_string[VERY _LONG_STRINGl; 
char help[MEDIUM_STRINGl. help2[MEDIUM_STRINGl; 
char valI [SMAL_STRINGl. va12[SMAL_STRINGl. val3[SMAL_STRINGl; 
char value[SMAL_STRINGl. resuIt_rest[MEDIUM_STRINGl; 
FILE "drive. "drive2. "drive3; 
char file_rest[FILE_LINE_LENl. file_rest2[FILE_LINE_LENl; 
extern char temp_sel[MEDIUM_STRINGl; 
extern char temp_sel2[MEDIUM_STRINGl; 
extern char job_file[MEDIUM_STRINGl; 
extern char resource_file[MEDIUM_STRINGl; 

char new..,part(part_no. type) 
char "part_no; 

Page 250 



char "type; 
( 
iot part_number; 
char part_number_string[SMAL_STRING); 

!* part_no must be a number", 
strcpy(parcnumber_string. part_no); 
part_number = lO_number(part_no); 
sprintf(part_no."%d".part_number); 
if(strcmp(part_oo.part_number_string» retum(O); 

if«strlen(part_no»PAKI'_NO_LEN) 11 
(strlen(type»STATIJS_LEN) 11 (!part_no[O)) 11 (!type[O))) rerum(O); 

!* part_no must not exist "' 
sprintf(help."part_no=·%s· and type=·type·".part_no); 
mw_query("status_table".help.""); 
if(nexC value(result_string. value,resulcrest» 

retum(O); 
else 
( 

. sprintf(help,"·%s·. 'type'. ·%s .. ·.part_no.type); 
mw _insert("status_table" ,help); 
sprinlf(help,"'%s·. 'point'. 'I "'.part_no); 
mw _insert("status_table" ,help); 
mw _query("s_act ....... .temp_sel); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf("'\nError. open %s".temp_sel); 
file_rest[O) = "i)'; 
while(file_reader(vall. drive. file_rest» 
( 
sprintf(help,"'%s', '%s', .p .... parcno. va11); 
mw _insert("status_table" ,help); 
) 
fclose(drive); 
mw_commitO; 
retum(l); 
) 
) 

char change_status(part_no. activity. status) 
char "part_no; 
char "activity; 
char "status; 
( 
iot part_number; 
char part_numbecstring[SMAL_STRING); 

'" part_no must be a number"' 
strcpy(part_number_string. part_no); 
part_number = lO_number(part_no); 
sprintf(part_no. "%d".part_number); 
if(strcmp(part_no.part_number_string) retum(O); 

if«strlen(part_no»PART_NO_LEN) 11 
(strlen(activity»FIC_NAME_LEN) 11 
(strlen(status»STATIJS_LEN) 11 (!status[O))) rerum(O); 

Page 251 



,. pan_no must exist in the status_table" 
sprintf(help,"pan_no='%s' and type='type'",pan_no); 
mw _query("status_table" ,help,""); 
if(! next_ value(result_string,value,resulcrest» 

return(O); 

,. activity must be Imown ., 
sprintf(help2,"name='%s'" ,activity); 
mw_query("s_act",help2,""); 
if(!nexc value(resulcstring, value,result_rest» 

return(O); 
else 
( 

,. decide whether update or insert is needed ., 
sprintf(help,"pan_no='%s' and type='%S'",pan_DO, activity); 
sprintf(help2,"status='%s'",status); 
mw _query("status_table",help,""); 
if(nexC value(result_string, value,result_rest» 
mw _update("status_table" ,help2,help); 

else 
( 
sprintf(help,"'%s' • '%s I. '%s "',parcno,activity,status); 
mw _insert("status_table" ,help); 

J 
if(resulcstring[O] != 's') 
( mw _roUbackQ; return(O); J 
else 
( 

,. if status = C set point to end point of activity" 
if(!strcmp(status,"C'') 
( 
sprintf(help,"activity=' %s' and type=' e-p'" ,activity); 
mw _query("activity _info_info" ,help,""); 
if(next_ value(resuIt_string, value,result_rest» 
( 

'" check whether other activities have the same end point and are not "' 
,. in the status C "' 
sprintf(help,"statusl='C' and pan_no='%s' and type in(select activity from activity-info_table where informa
tion='%s' and type='e-p')", 
part_no,value); 
m w _query("status_table",help, ""); 
if(l next_ value(result_string, val I ,result_rest» 
( 
sprintf(help,"part_no= '%s' and type='point'" ,part_no); 
sprintf(help2,"status='%s'",value); 
.mw _update("status_table" ,help2,help); 

J 
J 
else 
( 
printf('\nCan't find end point for activity %sl",activity); 
mw _roUbackQ; return(O); 

J 
J 
J 
mw_commitQ; 
retorn(I); 

J 

Page 252 



char change...JlOint(pan_no, point) 
char *part_oo; 
char *point; 
( 
iot part_number; 
char part_number_string(SMAL_STRING]; 

1* part_no must be a number *' 
strcpy(parcnumber_string, part_no); 
pan_number = to_number(pan_no); 
sprintf(pan_no, "%d" ,pan_number); 
if(strcmp(pan_oo,parl_number_string» retum(O); 

if«strlen(pan_no»PART_NO_LEN) 11 
(strlen(poiot»STATUS_LEN) 11 (!point[O])) return(O); 

1* part_no must exist *' 
sprintf(help,"pan_no='%s' and type='point''',pan_no); 
sprintf(help2, "status:' %s'" ,point); 
mw _update("status_table" ,help2,help); 
if(strcmp(resulutring,"s: 1 "» 

return(O); 
else 
( 
mw_commitQ; 
retum(l); 
] 
} 

char add_en8-resource(pan_no, resource, location) 
char *pan_no; 
char * resource; 
char *location; 
( 
iot pan_number; 
char part_number_string[SMAL_STRING]; 

1* pan_no must be a number *' 
strcpy(pan_number_string, part_no); 
pan_number = to_number(pan_no); 
sprintf(pan_no,"%d",pan_number); 
if(strcmp(pan_no,pan_number_string» return(O); 

if«strlen(pan_no»PART_NO_LEN) 11 
(strlen(resource»FIC_NAME_LEN) 11 
(strlen(location»FIC_NAME_LEN) 11 (!location[O])) retum(O); 

1* pan_no must exist in the status_table *' 
sprintf(help,"pan_no='%s' and type='type''',pan_no); 
mw_query("status_table",help,""); 
if(! next_ value(result_string, value,resulcrest» 

return(O); 

1* resource must be known *' 
sprintf(hel p2,"name=' %s'" ,resource); 
mw _query("s_er" ,/lelp2,""); 

Page 253 



if(! next_ value(result_string. value,resuluest) 
retum(O); 

sprintf(help,"parcno='%s' and enlLresource=·%S·". pan_no. resource); 
mw_query("enlLresource_table". help. '.'); 
if(next_ value(resulcstring. value,result_rest» 
( 

sprintf(help2. "locatiOIl= '%s'" ,location); 
mw _update("enlLresource_table" ,help2.help); 
} 
else 
( 

sprintf(help.H'%S·,'%s·,'%s·",part_oo. resomce, location); 
mw_insert("enlLresource_table" ,help); 
} 
mw _commitO; 
retum(l); 
} 

void get.Jobs(parCDol.pan_no2.activity,status.fonnat) 
char "pan_no 1; 
char "pan_no2; 
char "activity; 
char * status; 
char "format; 
( 
int pan_number; 

1* pan_no must be a number", 
part_Dumber = to_number(part_Dol); 
sprintf(pan_Do 1. "%d" .pan_number); 

part_number = to_Dumber(part_Do2); 
sprintf(part_no2,"%d".pan_number); 

sprintf(help,"part_no>='%s' and part_no<=·%s .. •• 
part_no 1 [0] == '\(). ? "0" : part_nol. 
part_no2[0] == '\(). ? "99999999" : part_no2); 
if(activity[O]) 
( 

sprintf(help2,"%s and type='%s' and statuS=·%s .. •• 
help. activity. status); 
} 
else strcpy(help2,help); 
mw _query("status_table_numbers" ,help2.temp_sel); 
sprintf(help,"mv %s %s".temp_sel. job_file); 
if(format[O]) 

system(help); 
else 
( 

. drive3=fopenGob_file."w"); 
fprintf(drive3."\"%s\" \"%8\" I:'%s\"\o" ,"pan_no" ,"type". "point''); 
mw _query("s_act"."" .temp_seI2); 
if«drive2 = fopen(temp_sel2."r·') = NULL) 
printf('''InError. open %s.",temp_sel2); 
file_resa[O] = '\().; 
while(file_reader(val3. drive2. file_resa» 
( 

Page 254 



fprintf(drive3." \"%s\ "'<t". val3); 
) 
fprintf(drive3," \""'""); 
fclose(drive2); 
if«drive = fopen(lemp_sel. "r"» = NULL) 
printf{''lnError. open %s.".lemp_sel); 
file_rest[O) = "D'; 
while(file_reader(vall. drive. file_rest» 
( 
fprintf(drive3. "'<t\"%s\" ".vall); 
sprintf(help,"parcno='%s' and type=·type·". 
vall); 
mw _query{"status_table_slatus" ,help.""); 
nexc value(resulcstring. value,resulcrest); 
fprintf( dri ve3. "\"%51. "'<t" • value); 
sprintf(help,"part_no='%s' and type=·point·". 
vall); 
mw_query{"status_table_slatus" ,help,'~); 
next_ value(result_string. value,resultJest); 
fprintf(drive3."\"%s\" ".value); 
if«drive2 = fopen(temp_seI2,"r"» = NULL) 

printf{''lnError. open %s. ".lemp_se12); 
file_rest2(O) = '\0'; 
while(file_reader(val2. drive2. file_rest2» 
( 
sprintf(help,"parcno='%s' and type=·%s·". 
vall. va12); 
mw _query{"status_lable_slatus" ,help. ~'); 
next_ value(result_string. value,resulcrest); 
fprintf(drive3.·\"%sV'\n".value); 
) 
fprintf(drive3." \ ""\ "i; 
fclose(drive2); 
) 
fclose(drive); 
fclose(drive3); 
) 
) 

void get,job_load(parcno l.parcno2,activity,format) 
char "parcool; 
char "parcno2; 
char "activity; 
char "format; 
( 
int part_number; 

1* part_no must be a number"f 
part_number = to_number(part_nol); 
sprintf(part_no I. "%d" .part_number); 

part_number = to_number(part_no2); 
sprintf(part_no2,"%d".part_number); 

sprintf(help,"part_no>='%s' and part_no<=·%s .. •• 
part_no 1 (0) = '\0' ? "0": pan_nol. 
pan_no2!O) == '\0' ? "99999999" : part_no2); 
if(activity[OJ) 

Page 255 



sprintf(help2."%s and type='%s' and status=·P·". 
help. activity); 
} 
else strcpy(help2,help); 
mw _query("status_table_numbers" ,help2.temp_se12); 

sprintf(help."activity=·%s· and type=·S...Jl·" ,activity); 
mw _query("activity _info_info" .help. ""); 
if(!nexc value(result_string. va12,resuluest» 

printf(''\nError. can't get start point from activity %s" ,activity); 

drive2=fopen(temp_sel."wj; 
if«drive = fopen(temp_seI2."r"» = NULL) 

printf(''\nError. open %s.".temp_se12); 
file_restlO) = '\D'; 
while(file_reader(vall. drive. file_rest» 
( 

sprintf(help."parcna=·%s· and type='point' and status>=·%s·". 
vall. val2); 
mw_query("staws_table_status" ,help ... ·'); 
if(next_ value(result_string. value,resulcrest» 
fprintf( drive2." ~·%s~'\n". vall); 
J 
fclose(drive); 
fclose(drive2); 

sprintf(help."mv %s %s".temp_sel. job_file); 
if(formatIO)) 

system(help); 
else 
( 

drive3=fopenGob_file."w"); 
fprintf( drive3,"\"%s\,:' \U%s\" '''%s\''\n'' /'parcno", "type". "point"); 
mw _query("s_act" ...... temp_seI2); 
if«drive2 = fopen(temp_se12."r·') == NULL) 
printf(''\nError. open %s .... temp_se12); 
file_rest2[O) = ''0'; 
while(file_reader(va13. drive2. file_rest2» 
( 
Cprintf(drive3." \"%s~'\n". val3); 

J 
Cprintf(drive3," \"*\""); 
fclose(drive2); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf(''\nError. open %s .... temp_sel); 
file_rest[O) = ''0'; 
while(file_reader(vall. drive. file_rest» 
( 
Cprintf(drive3,''\n\"%s\" ".val!); 
sprintf(help."parcna=·%s· and type=·type .. •• 
vall); 
mw _query("status_table_status" ,help ..... ); 
nexc value(resulcstring. value,result_rest); 
fprintf(drive3.·"·%s\"\n".value); 
sprintf(help,"parcna='%s' and type=·point·". 
vall); 
mw _query("status_table_status" ,help ..... ); 

Page 256 



next_ value(resulcstring, value,resulcrest); 
fprintf(drive3, "I. "%!t\ "n" , value); 
if«drive2 = fopen(temp_sel2,"r"» = NULL) 

printf(''\nError, open %s.",temp_se12); 
file_rest2[O) = "l)'; 

while(file_reader(val2, drive2, file_rest2» 
( 
sprintf(help,"parcno='%s' and type='%s'", 
vall, vaI2); 
mw _query("status_table_stabJS" ,help,,",); 
next_ value(resulcstring, value,resuICrest); 
fprintf(drive3,"I."%!t\"n",vaIue); 

J 
fprintf(drive3'" \"*\""); 
fclose(drive2); 

J 
fclose(drive); 
fclose(drive3); 

J 
J 

void gecen~resources(parcnol,parcn02,resource,fonnal) 
char *parcnol; 
char *parcn02; 
char *resource; 
char *fonnal; 
( 
iot part_number; 

1* part_no must be a number */ 
part_number = lO_number(part_nol); 
sprintf(part_no I, "%d" ,parcnumber); 

part_number = lO_number(part_n02); 
sprintf(part_n02,"%d",part_number); 

sprintf(help,"part_no>=' %s' and part_no<=' %s "', 
part_no I (0) = .. "l)'? "0": part_nol, 
par!_no2[O) = "l)' ? "99999999" : part_n02); 
. if(resource[OJ) 
( 

sprintf(help2,"%s and en~resource='%s'", 
help, resource); 
drive3=fopen(lemp_sel, "WO); 
fprintf(drive3,'\,'%s\'''n'' ,resource); 
fclose(drive3); 

J 
else 
( 

mw _query("en~resource_table_res" ,help,temp_sel); 
strcpy(help2,help); 

J 
mw_query("en~resource_table_numbers" ,hclp2,temp_seI2); 

drive3=fopen(resource_file,"w"); 
if(!fonnat[OJ) 
( 

fprintf( dri ve3, '\" %s\'''n'' , "part_no''); 

Page 257 



APPENDIX VllI v 

FIMM Configurator - Service options 

Page 259 



FIMM Configurator 
Service Options Details 

Add MCS runction Registers a new MCS function to be managed. The user will be asked 
to enter the start and end instance and the relations to the existing 
infonnation models and engineering resources for the newly 
registered function. 

Add inrormation model Registers a new information model. which is necessary to support pan 
manufacture. TIle user will have to enter the I/O relations of the new 
information model to the existing functions. 

Add engineering resource Registers a new engineering resource to the system. The user will be 
asked to enler a function which is accountable for the newly regislered 
engineering resource. 

Delete MCS runction Deregisters an existing MCS function and purges all its relaled 
information. which includes configuration data about the function as 
well as all dynamic data concerning the status of the function with 
regard to processing the parts for manufacture. 

Delete inrormation model Deregisters an existing infonnation model and purges all related 
information from the system. 

Delete engineering resource Deregisters an existing engineering resource and purges all relaled 
configuration data from the system. Dynamic data about that 
engineering resource (i.e. the location of the resource for a specific 
part to be manufactured) will. however. not be deleled. 

Change start/end instance Changes the start and end instance for a function. The start instance is 
used. when the MCS function is ready to receive the job for part 
processing. The end instance is used to indicate the completion of the 
job by the function ,concerned. 

Change Input/Output (I/O) Changes the I/O association relationship between MCS functions and 
association infonnation models. The user can choose to alter the following: 

• Single I/O relation between function and information model. 
• All I/O relations of a function to the information models. 
• All I/O relations of an information model to the functions. 

Change accountability Changes the accountability of MCS function for an engineering 
resource, Note that a function can be accountable for more than one 
engineering resource. 

Display MCS runctions List all existing MCS functions. 

Display inrormation models List all existing information models. 

Display engineering resources List all existing engineering resources. 

Display I/O association The following choices are available: 
• All I/O relations of a function to the infonnation models. 
• All I/O relations of an information model to the functions. 

Display status Display status of functional interaction manager with regards to parts 
being processed. 

Page 260 



Program listings FIMM Configurator 

1* File: engineer.c *1 
1* Functions for FIMM Configurator *1 
1* This program has to be started on the host wayne (location ofFIMM database). *1 
1 
#include <stdio.h> 
#include "locaUncl.h" 

mainO 
( 
int ij,k; 
char command[SMAL_STRINGl; 
char vall[SMAL_STRINGl. val2[SMAL_STRINGl. val3[SMAL_STRINGl; 
char val4[SMAL_STRINGl. help[MEDIUM_STRINGl. help2[MEDIUM_STRINGl; 
char value[SMAL_STRINGl. resuluest[MEDIUM_STRINGl; 
FILE *drive. *drive2; 
char file_rest[Fll..E_LINE_LEN]. file_rest2[Fll..E_LINE_LEN]; 

char file...Jlath[MEDIUM_STRINGl; 
char temp_sel[MEDIUM_STRINGl; 
char temp_seI2[MEDIUM_STRINGl; 

strcpy(file...Jlath."/home2/sandra/valdew/misc·'); 
sprintf(temp_sel. "%s!temp_sel".file...Jlath); 
sprintf(temp_se12."%s!temp_seI2".file...Jl3th); 

mw _connect("mcc2l" ."m"." /home2/sandra/valdew/oracle_c/fim/confi&...tables.txt,,); 

printf('''InEnter command (press RETURN for command list): "); 
gets(command); 
while«strcmp(command. "quit"»&&(command[Ol!='q'» 
( 
if«command[Ol = 'n')&&(command[ll=='a'» 
( 

printf('''InEnter activity name: "); 
gets(vall); 
sprintf(help."name=· %s·". vall); 
mw _qUery("S_3Ct" ,help .... '); 
if(next_ value(result_string. value,result_rest» 
printf("'nActivity %s exists allready .... vall); 
else 
( 
sprintf(help,"'3Ct' .·%s .. ·.vall); 
mw_insert("Ulat" ,help); 
mw _query("s_dm" ."" ,temp_sel); 
if«drive = fopen(temp_sel,"r'') == NULL) 

printf(,"InError. open %s .... temp_sel); 
file_rest[Ol = ~'; 
while(file_reader(val2. drive. file_rest» 
( 
printf('''InEnter role of %s for %s (i. o. i/o. -): ". 
val2. vall); 
gets(va13); 

Page 261 



sprintf(help,"·%s·. '%s·. '%s·".vall. val2, vaI3); 
mw_insen("in_ouuable" ,help); 
) 
fcIose(drive); 
printf('\nEnter Slart point "); 
gets(va12); 
sprintf(help,tt'%s·. ~s-p·. '%s'" .val) ,va12); 
mw _insen("activity _info_lable" ,help); 
printf(,'lnEnter end point: "); 
gets(va12); 
sprintf(help,"·%s·. 'e-p·. '%s·".vall,val2); 
mw _insen("activity _info_lable" ,help); 
m w _query("s_er"."" .temp_sel); 
if«drive = fopen(temp_sel,"r") = NULL) 

printf(''lnError. open %s.".temp_sel); 
file_rest[O] = '\0'; 
whiIe(file_reader(val2. drive. file_rest» 
[ 
printf("'nIs %s responsible for %s (Y,n): ". 
vall. va12); 
gets(vaI3); 
if( val3[O] == 'y') 
[ 
sprintf(help ... ·%s·. 'e_r'l '%s'" .vall.val2); 
mw _insen("activity _info_lable" ,help); 
) 
) 
) 
) 
else if«command[O] == 'd')&&(command[l]='a'» 
[ 

printf("'nEnter activity name: "); 
gets( vall); 
sprintf(help. "name:' %s .. •• vall); 
mw _query("s_act" ,help ..... ); 
if(! next_ value(result_string. value,result_rest» 
printf(,,'nActivity %s not known.". vall); 
else 
[ 
sprintf(help."type=· act' and name='%s .... vall); 
mw_delete("Ulat" ,help); 
sprintf(help ... type=·%s .. ·.vall); 
mw _delete("slalUs_table" ,help); 
sprintf(help. "activity=' %s·". vall); 
mw _delete("in_out_table" .help); 
mw _delete("activity _info_lable" ,help); 
) 
) 
else if«command[O] == 'p')&&(command[I]='a'» 
[ 

printf("'n'ln'lnThe following activities are defined:'In"); 
printf('''In'lt [Activity),,); 
printf('''In'lt "); 
mw _query("s_act" t ..... temp_sel); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf('''InError. open %s." .temp_sel); 
file_rest[O] = '\0'; 
whiIe(file_reader(vaII. drive. file_rest» 

Page 262 



printf(''\n\t%s", vall); 
prin tf(''\n\n"); 
fclose(drive); 
) 

else if«command[O] = 'a')&&(command[1]='s'» 
( 

printf(''\n\n\n1be following new activities are defined:\n"); 
printf(''\n\t(Activity· IDEFO)"); 
printf(''\n\t "); 
mw _qllery("S_act_SlalllS".~ ,temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(''\nError, open %s.",temp_sel); 
file_rest[O] = "D'; 
while(file_reader(vall, drive, file_rest» 
printf(''\n\t%s", vall); 
printf(''\n\n"); 
fclose(drive); 
) 

else if«command[O] == 'p')&&(command[1]='r'» 
( 

printf(''\nThe following engineering resources are defined:"); 
mw_query("s_er",m',temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(''\nError, open %s.",temp_sel); 
file_rest[O] = "D'; 
while(file_reader(vall, drive, file_rest» 
printf(''\n\t %s" ,vall); 
fclose(drive); 
) 
else if«command[O] = 'p')&&(command[1]='d'» 
( 

printf(''\n\n\nThe following data models are defined:\n"); 
printf(''\n\t (Oata Model) "); 
printf(''\n\t "); 
row _query(Us_dm". om .temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(''\nError, open %s.",temp_sel); 
file_rest[O] = '~'; 
while(file_reader(vall, drive, file_rest» 
printf(''\n\t%s'', vall); 
prin tf(''\n\n''); 
fclose(drive); 
) 

else if«command[O] = 'd')&&(command[I]='s'» 
( 

printf(''\n\n\n1be following new data models are defined:"'''); 
printf(''\n\t(Oata Model· IDEFIX)"); 
printf(''\n\t "); 
mw_query("s_dm_status",,,tt .temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(''\nError, open %s. ",temp_sel); 
file_rest[O] = "D'; 
while(file_reader(vall, drive, file_res!) 
printf(''\n\t %s", vall); 
prin tf(''\n'" "); 

Page 263 



fclose(drive); 
) 

else if«command[O) = 'n')&&(command[l)='d'» 
{ 

printf(''\nEnter data model name: U); 
gets( vall); 
sprintf(help."name=·%s·".vall); 
mw _query(Us_dm" .help. =); 
if(next_ value(result_string. value.resuICrest» 
printf(''lnData model %s exists aIlready.". val1); 
else 
{ 
sprintf(help,"' dm·. ·%s·". vall); 
mw_insen(uUlat" ,help); 
mw _query("s_act". - .temp_sel); 
if«drive = fopen(temp_sel,"r") = NULL) 
printf(''\nError. open %s." .temp_sel); 
fileJest[O) = "D'; 
while(file_reader(val2. drive. file_rest» 
{ 
printf(''\nEnter role of %s for %s (i. o. i/o. _): u. 
vall. val2); 
gets(val3); 
sprintf(help ... ·%s·, '%s', '%s·",va12. vall. val3)~ 
mw _insen(uin_out_tahle" ,help); 
) 
fclose(drive); 
) 
) 
else if«command[O) == 'd')&&(command[1)='d'» 
{ 

printf(''\nEnter data model name: U); 
gets(vall); 
sprintf(help. "name= ·%s· ... vall); 
mw_query(Us_dm".help.~·); 

if(! nexc value(result_string. value,result_rest» 
printf(''\nData model %s not known .... vall); 
else 
{ 
sprintf(help."type=·dm· and name=·%s·".vall); 
mw _delete(uUlat" ,help); 
sprintf(help."data_model= '%s'" .val!); 
mw _delete(uin_out_table" .help); 
) 
) 
else if«command[O) == 'n')&&(command[l)='r'» 
{ 

printf(''\nEnter engineering resource name: U); 
gets( vall); 
sprintf(help. "name=' %s·". vall); 
mw_query(Us_er".help,""); 
if(next_ value(result_string. value.result_rest» 
printf(''\nEng. resource %s exists aIlready .... vall); 
else 
{ 
sprintf(help,"' er'. '%s .. •• vall); 

Page 264 



mw_insen("UlatH ,help); 
printf('\nWhich activity is responsible for %s: ".vall); 
gets(vaJ2); 
sprintf(help. Hname=·%S·H. val2); 
mw _query("S_actH .help. ~); 
while«vaJ2[O]!=~l') && 
(!nexcvalue(result_string.value,result_rest)) 
( 
printf(''\nActivity %s is not known."); 
printf(" Try again or enter 'RETURN' to abort. H); 
printf('\nWhichactivity is responsible for %s: ".vall); 
gets(vaJ2); 
sprintf(hclp. Hname= ·%S·H. val2); 
mw _query("s_actH .help. H .. ); 
} 
if(val2[O)!=~l') 

( 
sprintf(help,"·%s·.·e3· .·%s·H.val2.vall); 
mw _insen("activity _info_tableH ,help); 
} 
} 
} 
else if«command[O) == 'd')&&(command[l]='r'» 
( 

printf('''IoEnter engineering resource name: "); 
gets(vall); 
sprintf(help. Hname=' %s 'H. vall); 
mw _query("s_erH ,help.""); 
if(! nexc value(result_string. value,result_rest» 
printf('''IoEng. resource %s not known.H.vall); 
else 
( 
sprintf(help,"type='er' and name=·%s·H,vall); 
mw_delete("Ulat" ,help); 
sprintf(help,"type='e3' and information=·%s· ... vall); 
mw _delete("activity _info_table" ,help); 
} 
} 
else if«command[O) == 's')&&(command[l)='a'» 
( 

printf('''IoEnter activity name: "); 
gets( vall); 
sprintf(help. Hname: ·%S'H. vall); 
mw _query("s_actH ,help."I()H); 
if(!next_ value(resuIUtring. value,result_rest» 
printf(''\nActivity %s not known .... vall); 
else 
( 
printf('\nlnput data for activity %s:".vall); 
mw_query("s_dmH."H.temp_sel); 
if«drive = fopen(temp_sel."r"» == NULL) 

printf('''IoError. open %S.H .temp_sel); 
file_rest[O) = 'ID'; 
while(file_reader(val2. drive. file_rest) 
( 
sprintf(help."activity=·%s· and data_model ='%s'" 
.vall.va12); 
mw _query("in_ouUnfoH ,help ..... ); 

Page 265 



if(next_ vaIue(resulcstring. vaIue,result_rest)) 
if(vaIue[O) = 'i') 

printf(''\n\t%s".va12); 
) 
fclose(drive); 
printf(''\n'nOutput data for activity %s:".vall); 
mw_query("s_dm"."".temp_sel); 
if«drive = fopen(temp_sel."rj) = NULL) 

printf(''\nError. open %s." .temp_sel); 
file_rest[O) = "0'; 
while(file_reader(vaI2. drive. file_rest)) 
( 
sprintf(help."activity=·%s· and data_model ='%s'" 
• vaI I. va12); 
mw_query("in_ouUnfo" ,help.""); 
if(nexc vaIue(resulcstring. vaIue,result_rest)) 
if«vaIue[O) = 'o')II(value[I) = 'n) 

printf(''\n\t%s",va12); 
} 
fclose(drive); 
} 
} 
else if«command[O) == 's')&&(command[I)=='d')) 
( 

printf(''\nEnter data model name: "); 
gelS(vaI I); 
sprintf(help. "name:' %s' ... vall); 
mw _query("s_dm" ,help.""); 
if(! nexc vaIue(result_string. vaIue,resulcrest)) 
printf(''\nData model %s not known .... vaIl); 
else 
( 
printf(''\nActivities gelling input from %s:".vall); 
mw _query("s_act",'no ,temp_sel); 
if«drive = fopen(temp_sel,"r'')) == NULL) 

printf(''\nError, open %s.",temp_sel); 
file_rest[O) = "0'; 
while(file_reader(vaI2. drive, file_rest)) 
( 
sprintf(help,"activity='%s' and data_model ='%s'" 
, va12, vaI I); 
mw _query("in_ouUnfo" ,help ..... ); 
if(nexC vaIue(result_string. value,result_rest)) 
if(vaIue[O) = 'i') 

printf(''\n\t%s''.vaI2); 
} 
fclose(drive); 
printf(''\n'nActivities producing output for %s:".vall); 
mw _query("s_act", "" .temp_sel); 
if«drive = fopen(temp_sel,"r'')) == NULL) 

printf(''\nError. open %s." .temp_sel); 
file_rest[O) = "0'; 
while(file_reader(vaI2. drive. file_rest)) 
( 
sprintf(help."activity=·%s· and data_model ='%s'" 
,va12.vaIl); 
mw_query("in_ouUnfo" ,help, .... ); 
if(next_ value(result_string, value.resuIUest)) 

Page 266 



if«value[O) = 'o')II(value[I) = 'f» 
printf(''\n\t%s". va12); 
) 
fc1ose(drive); 
) 
) 
else if«command[O) = 'c')&&(command[l)='a'» 
( 

printf(''\nEnter activity name: "); 
gelS( vall); 
sprintf(help. "name=' %s·". vall); 
mw _query("s_act" ,help,"''); 
if(! nexc value(result_string. value,resu1crest» 
printf{,"InActivity %s not known.". vall); 
else 
( 
sprintf(help."status=·used·"); 
sprintf(help2."name= ·%s·". vall); 
mw _update("UlaUtatus".help.help2); 
mw _query("s_dm". "".temp_sel); 
if«drive = fopen(temp_sel,"r''» = NULL) 

printf{''\nError. open %s." .temp_sel); 
file_rest[Oj = "0'; 
while(file_reader(val2. drive. file_rest» 
( 
printf(''\nEnter role of %s for %s (i. 0. i/o •. ): u. 

val2. vall); 
gelS(val3); 
if(val3[Oj != ''D') 
( 
sprintf(help,"activity='%s' and data_model='%s'" 
• vall, val2); 
mw_query("in_ouuable" ,help'"j; 
if(nexC value(resulcstring.vaIue,resulcrest» 
( 
sprintf(help2, "relation=' %s ''', val3); 
mw _update("in_out_table" ,help2,help); 
) 
else 
( 
sprintf(help,H·%s'. '%s', '%s·H,vall. vaI2, val3); 
mw _insert("in_ouCtable" ,help); 
) 
J 
J 
fc1ose(drive); 

J 
) 
else if«command[O) == 'c')&&(command[l)=='d'» 
( 

printf(''\nEnter data model name: U); 
gelS(vall); 
sprintf(help. "name=' %s .... vall); 
mw _query("s_dm" .help.~·); 
if(!next_ value(result_string. value,result_rest» 
printf{'''InData model %s not known.". vall); 
else 
( 

Page 267 



sprintf(help,"stalus='used'"); 
sprintf(help2, "name=' %s"', vall); 
m w _update("Ulacstatus" ,help,help2); 
mw_query("s_act",-,temp_sel); 
if«drive = fopen(temp_sel,"r") = NULL) 

printf{''\nError, open %s.",temp_sel); 
file_rest[O) = ~'; 
while(fiIe_reader(val2, drive, file_rest» 
{ 
printf{''nEoter role of %s for %s (i, 0, i/o, -): ", 
vall, vaI2); 
gets(val3); 
if(val3[O) != ~') 
{ 
sprintf(help,"activity='%s' and data_model='%s'" 
,val2,vaIl); 
mw_query("in_out_table" ,help,""); 
if(nexC value(resuICstring, value,result_rest» 
{ 
sprintf(help2, "relation= '%s '", val3); 
m w _update("in_out_table" ,help2,help); 
) 
else 
{ 
sprintf(help,"'%s·. '%s', '%s"',val2, valI, val3); 

mw _insen("in_ouCtable" ,help); 
) 
) 
) 
fclose(drive); 
) 
) 
else if«command[O) == 's')&&(command[I)=='s'» 
{ 

printf(''\n%65s".''<----Stan and end points--->"); 
printf(''\n% 15s: "," Activities"); 
for(i= I ;i<20;i++) printf("1%2d".i); 
row _query(Us_act" ,"" ,temp_sel); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf{,"InError. open %s. ".temp_sel); 
file_rest[O) = ~'; 
while(file_reader(valI. drive. file_rest» 
{ 
printf(''\n%15s: ".vall); 
sprintf(help,"activity='%s' and type=·s..Jl .... vall); 
mw _query("activity _info_info".help.""); 
next_ value(resulcstring. value.resulcrest); 
i=tn_number(value); 
for(j=I;j<i;j++) printf("I"); 
sprintf(help."activity=·%s· and type=·e..Jl .... vall); 
mw _query("activity _info_info" .help.""); 
next_ value(result_string. value.resulcrest); 
k=tn_number(value); 
i=k·i; 
for(j=O;j<i;j++) printf("I""); 
for(j=k;j<20;j++) printf("I"); 
) 
fclose(drive); 

Page 268 



printf('"'v\\n "); 
) 
else if«command[O] = 's')&&(command[I]='r'» 
( 

printf(''lnResponsibility for engineering resources:\n"); 
printf('"'v\% 16s %s"," Activities:" ."Engineering resources:\n"); 
mw _querye's_act" 9 .... ,temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(''\nError. open %s.".temp_sel); 
file_rest[Ol = "D'; 
while(file_reader(vall. drive. file_rest» 
[ 
printf(·"'v\% 15s: ... vall); 
sprintf(help,"activity='%s' and type=·eJ·".vall); 
mw _query("activity _info_info".help.temp_sel2); 
if«drive2 = fopen(temp_seI2,"r"» = NULL) 

printf(''\nError. open %s.".temp_sel2); 
file_rest2[O] = ''0'; 
while(fileJeader(val2. drive2. file_rest2» 
( 
printf( .. %IOs ".va12); 
) 
fclose(drive2); 
) 
fclose(drive); 
printf('"'v\\n .'); 
) 
else if«command[O] == 's')&&(command[I]=='i'» 
( 

printf('"'v\\t\t\l\t\t\tData Model assignment\n''); 
printf(''\t\t\t\t\t\t .. ); 
mw _query( .. s_dm", .... ,temp_se12); 
if«drive2 = fopen(temp_sel2."r") = NULL) 
printf(''\nError. open %s." .temp_sel2); 
file_rest2[O] = "D'; 
i=O; 
while(file_reader(va12. drive2. file_rest2» 
( . 
++i; 
printf('"'v\\t\t\t\t\t\t%4d<-->%s".i. vaI2); 
) 
fclose(drive2); 
printf('"'v\\n\n%50sIn/OUtpUl Table''); 
printf('"'v\%21s"," Activity/Data Model:',); 
mw_query( .. s_dm" ...... temp_seI2); 
if«drive2 = fopen(temp_sel2."r·') == NULL) 
printf(''\nError. open %s.".temp_sel2); 
file_rest2[O] = ''0'; 
i=O; 
while(file_reader(va12. drive2. file_rest2» 
( 
++i; 
printf("%4d".i); 
) 
fclose(drive2); 
mw_query("s_act"."".temp_sel); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf(''\nError. open %s." .temp_sel); 

Page 269 



file_rest[O) = '\0'; 
while(fiIeJeader(vall, drive, file_rest» 
( 
printf("'n%20s:", vall); 
if«drive2 = fopen(temp_seI2,"r"» = NULL) 

printf("'nError, open %s." ,temp_sel2); 
file_rest2[O) = '\0'; 
while(fiIe_reader(val2, drive2, file_rest2» 
( 
sprintf(help,"activity='%s' and data_model='%s'", 
vall, vaI2); 
mw_query("in_ouUnfo" ,help, j; 
nexc value(result_string, value,resulcrest); 
printf("%4s" ,value); 
} 
fclose(drive2); 
} 

printf("'n'ln "); 
fclose(drive); 
} 
else if«command[O) == 's')&&(command[l)='t'» 
( 

printf(,"InStaning at part_DO: "); 
gets(vall); 
printf("'nEnding at part_no:"); 
gets(val2); 
printf("'nStatus table:'In"); 
printf('''In% 16s" ,"Part No:"); 
sprintf(help, "part_no>= '%s' and part_no<= '%s''', 
vall[O] == '\O'? "0": vall, 
val2[O) == '\0' ? "99999999" : val2); 

mw _query("status_table_Dumbers" ,help,temp_sel); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf('''IoError, open %s.",temp_sel); 
file_rest[O) = '\0'; 
while(file_reader(va13, drive, file_rest» 
( 
printf("%5s",val3); 
} 

fclose(drive); 
prin tf('''In'ln % 16s" , "Type: ''); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf(,"IoError, open %s.",temp_sel); 
file_rest[O) = '\0'; 
while(file_reader(vaI3, drive, file_rest» 
( 
sprintf(help, "part_no: '%s' and type: 'type '", 
val3); 
mw _query("status_table_status" ,help,""); 
nexc value(result_string, value,result_rest); 
printf("%5s" ,value); 
} 

fclose(drive); 
printf('''In% 16s" ,"Point: "); 
if«drive = fopen(temp_sel,"r"» = NULL) 
printf('''IoError, open %s.",temp_sel); 
file_rest[O) = '\0'; 
while(file_reader(va13, drive, file_rest» 

Page 270 



sprintf(help."parcna=·%s· and type=·point'". 
val3); 
mw _query("stalus_table_status" ,help. -); 
nexc value(result_string. value,result_rest); 
printf("%5s" .value); 
} 

fdose(drive); 
printf("'n"); 
mw _query("s_act"."" .temp_seI2); 
if«drive2 = fopen(temp_sel2,"r"» = NULL) 
printf("'nError. open %s.".temp_sel2); 
file_rest2[O) = "0'; 
while(file_reader(val3. drive2. file_rest2» 
( 
printf(''\n% 15s:". val3); 
if«drive = .fopen(temp_sel,"r"» == NULL) 

printf(''lnError. open %s." .temp_sel); 
file_rest[O) = "0'; 
while(fiIeJeader(val2. drive. file_rest» 
( 
sprintf(help."parcna=·%s· and type=·%s .. •• 
val2. val3); 
mw _query("stalus_table_status" ,help •• ~); 
nexc value(resulcstring. value,resulcrest); 
printf("%5s".value); 
} 
fdose(drive); 
} 

fdose(drive2); 
printf('''\n\n .'); 
} 
else if«command[O) == 's')&&(command[l)=='e'» 
( 

printf(''\nStarting at pan_no: "); 
gets( vall); 
printf(''lnEnding at pan_no:''); 
gets(val2); 
printf(''\nengineering resource table:''); 
printf(''\n% 1 Os". "pan_no''); 
sprintf(help,"pan_no>='%s' and pan_no<=·%s .. •• 
vall[O) = "0' ? ''0": vall. 
val2[O) = '~. ? ''99999999'' : val2); 
mw _query("enILresource_table_res" .help.temp_sel2); 
if«drive2 = fopen(temp_sel2."r·') == NULL) 
printf(''lnError. open %s .... temp_sel2);. 
file_rest2[O) = "0'; 
while(file_reader(val3. drive2. file_rest2» 
( 
printf("% IOs". val3); 
} 
fclose(drive2); 
mw _query("enILresource_table_numbers".help.temp_sel); 
if«drive = fopen(temp_sel."r"» = NULL) 
printf(''lnError. open %s .... temp_sel); 
file_rest[O) = '~'; 
while(file_reader(vall. drive. file_rest» 
( 

Page 271 



printf(''n%9s:". val I): 
if«drive2 = fopen(temp_se12."r"» = NULL) 
printf(''\nError. open %s." ,temp_se12): 
file_rest2[O) = "0': 
while(file_reader(val2. drive2. file_rest2» 
( 
sprintf(help."part_no:·%s· and en&...resource=·%s·". 

val I. vaI2): 
mw_query("enlLresource_table_location" ,help.""): 
nexI_ value(resulcstring. value,resull_rest): 
printf('·% 109" .value): 
) 
fclose(drive2): 
) 
fclose(drive): 
) 
else if«command[O) == 'c')&&Ccommand[l)=='p'» 
( 

printf(''\nEnter part number. "): 
getsC val I): 
printf(''\nEnter activity name. 'Iype' or 'point': "): 
gets( val2): 
printf(''\nEnter new value: "): 
gets(val3): 
sprintf(help."part_no:·%s· and type=·%s· ... vaIl .vaI2): 
sprintf(help2."stalUS= '%s'" .val3): 
mw _query("status_table" ,help.""): 
ifCnexl_ value(resull_string. value,resuluesl» 
mw_update("stalus_table".help2.help); 

else 
printfC''nEntry doesn'l exist. Nothing changed .• '): 
) 
else if(Ccommand[O) = 'c')&&(command[1)='r'» 
( 

printf(''\nEnter part number: "): 
gets( val I): 
printf(''\nEnter engineering resource name: "); 
getsC val2): 
printf(''\nEnter new value: "): 
getsCval3): 
sprintf(help. "part_no:' %s' and en&... resource=' %s· ... val I • vaI2): 
sprintfChelp2."location=·%s·".val3): 
mw _queryC"en&...resource_table" ,help ..... ): 
ifCnexl_ value(resulcstring. value.resuluest) 
mw _update("en&...resource_table" ,help2,help): 

else 
printf(,'nEntry doesn'l exist. Nothing changed."): 
) 
else ifCCcommand[O) == 'c')&&Ccommand[l)=='s'» 
( 

printf(,'\nEnter activity name: "): 
getsCvall): 

. sprintf(help."name=·%s .. ·.vall): 
mw _queryC"s_acl" ,help.""): 
ifC!nexc value(resulutring.value,resulcrest» 
printf(,'\nActivity %s nOI known.". vall): 
else 
( 

Page 272 



printf('\nEnter new start point "); 
gelS( val2); 
sprintf(help,"activity='%s' and type='S...Jl"',vall); 
sprintf(help2,"infonnation='%s''',val2); 
if(to_number(val2» 
mw _update("activity _info_table" ,help2,help); 
printf("'nEnter new end point "); 
gelS(val2); 
sprintf(help,"activity='%s' and type='e...Jl''',vall); 
sprintf(help2, "information= '%s''', val2); 
if(to_number(val2» 
mw _update("activity _info_table",help2,help); 
) 
) 
else if«command[OJ = 'c')&&(command[lJ=='e'» 
( 

printf('\nEnter activity name: ''); 
gets( vall); 
sprintf(help, "name=' %s "', vall); 
mw _query("s_act" ,help,""); 
if(! next_ value(result_string, value,resulcrest» 
printf(,'l<JActivity %s not known.", vall); 
else 
( 
printf('\nEnter eng resource that must be provided by %s: ", 
vall); 
gelS(val2); 
sprintf(help,"name='%s''',val2); 
mw _query("S3r" ,help,""); 
if(! next_ value(result_string, value,resulcrest» 

printf('\nEng. resource %s not known.", val2); 
else 
( 
sprintf(help," I %s· .. e _r· .. %s· ... vat1, val2); 
m w _insen("activity _info_table" ,help); 
) 
) 
) 
else if«command[O] = 'd')&&(command[IJ='e'» 
( 

printf('\nEnter activity name: "); 
gelS(vall); 
sprintf(help, "name=' %s "', vall); 
mw _query("s_act" ,help,"',); 
if(!next_ value(result_string, value,result_rest» 
printf(,'l<JActivity %s not known.", valI); 
else 
( 
printf("'nEnter eng resource that must not be provided by %s: .. 
,vall); 
gelS(val2); 
sprintf(help,"name='%s''',val2); 
mw _query("s_er" ,help,"''); 
if(! next_ value(result_string, value,result_rest» 

printf('\nEng. resource %s not known.", val2); 
else 
( 
sprintf(help,"activity='%s' and type='e_r' and information='%s'" 

Page 273 



,vall,va12); 
mw _delete("activity-info_table" ,help); 
} 
} 
} 
else if«command[O} = 'c')&&(command[1}='t'» 
( 

mw_commitO; 
) 
else if«command[O} = 'r')&&(command[I}='b'» 
( 

mw _mllbackO; 
) 
else 
( 
printf('\l4'nAvailable commands are:"); 
printf(' ...... 'pa' print activities"); 
printf(" 'as' new activity - IDEFO''); 
printf\' 'na' register new activity"); 
printf(" 'da' delete activity"); 
printf("'n 'pd' print data models"); 
printf(" 'ds' new data model - IDEFIX"); 
printf(" 'nd' register new data model''); 
printf(" 'dd' delete data model''); 
printf(· ...... 'n 'pr' print engineering resource"); 
printf(· ...... 'or' new engineering resource"); 
printf(" 'dr' delete engineering resource"); 
printf(· ...... 'n 'sa' show i/o for activity"); 
printf(" 'sd' show i/o for data model"); 
printf(· ....... si' show inlout table"); 
printf(' ...... 'ca' change i/o for activity"); 
printf(" 'cd' change i/o for data model"); 
printf(· ...... 'n 'ss' show start/end points"); 
printf(' ...... 'cs' change start/end points for activity''); 
printf(· ...... 'n 'sr' show responsibity for resource''); 
printf(· ...... 'ce' add responsibitity for activity"); 
printf(· ...... 'de' delete responsibity for activity"); 
printf(· ...... 'n 'st' show status table"); 
printf(" 'cp' change status table"); 
printf(· ...... 'n 'se' show engineering resource table''); 
printf(· ...... 'cr' change engineering resource table"); 
printf(· ...... 'n 'ct' commit"); 
printf(· ...... 'rb' rollback''); 
printf(· ...... 'q' commit & quit"); 
printf(· ...... Command (%s) unknown. Try again.'n",command); 
} 
printf(· ...... Enter command (press RETURN for command list): "); 
gets(command); 
} 
printf(' ...... 'n"); 
mw_commitO; 
mw _disconnectO; 
} 

Page 274 



Meta-file definition 

Name of meta-file : confilLtables.txt 

Definition of database-Qbjects: (for access_ora) 

"s_act" object name"ftauable" table name 
"name"fields"type = 'act'" where condition 

"s_act_status" object name .. ftaCtable" table name 
"name"fields"(Iype, status) = «'act', 'new')}" where condition 

"s_dm" object name .. ftat_table" table name 
"name"fields"type = 'dm'" where condition 

"s_dm_status" object name"Oat_table" table name 
"name"fields"(type, status) = «'dm', 'new')}" where condition 

"s_er" object name .. ftactable" table name 
"namenfields"type = 'er'" where condition 

"i_Oat" object name .. ftactable" table name 
"type. name"fields .... where condition 

"i_Oat_status" object name"Oactable" table name 
"statllS. name"fields""' where condition 

"status_table" object name"status_table" table name 
"part_no, type, status"fields'·' where condition 

"status_table_status" object name"status_table" table name 
"status"fields"" where condition 

"status_table_numbers" object name"status_table" table name 
"distinct parcno"fields'·' where condition 

"enlLresource_table_location" object name"enlLresource_table" table name 
.. Iocation .. fields .... where condition 

"enlLresource_table" object name"enlLresource_table" table name 
"part_no. en&-.resource. location"fields"u where condition 

"enlLresource_table_numbers" object name"enlLresource_table" table name 
"distinct part_no"fields'·' where condition 

"enlLresource_table_res" object name"enlLresource_table" table name 
"distinct en&-resource .. fields .... where condition 

"in_out_table" object name"in_ouCtable" table name 
"activity, data_model, relation"fields'·' where condition 

"in_out_info" object name"in_ouctable" table name 
.. relation"fields .... where condition 

"activity _info_table" object name"activity _info_table" table name 
"activity, type, information"fields .... where condition 

Page 275 



"activity _info_info" object name"activity _info_table" table name 
"infonnation"fields'·' where condition 

"born" object name"bilCoCmat" table name 
"ident"fields'''' where condition 

"rout" object name"rout" table name 
"ident"fields'''' where condition 

"dem" object name"dem" table name 
"ident"fields'''' where condition 

"ord" object name"ord_lin" table name 
"int_onCno"fields'·' where condition 

"born_item" object name"biU_oCmat" table name 
"item_no"fields'''' where condition 

"rouUtem" object name"rout" table name 
"iteffi_Do"fieJds''''' where condition 

"dem_item" object name"dem" table name 
"item_flo"fields"" where condition 

"ord_item" object name"ord_lin" table name 
"item_no"fields'"' where condition 

"mcc_reference""mcc_reference" 
"part_no. bill_oCmaUdent, rouUdent, dem_ident, order_no" .... 

"geCbom""mcc_reference. bilCoCmat born" 
"bom.item_no. bom.nam"'mcc_reference.bill_oCmaUdent = bom.ident" 

.. get_rout .... mcc_reference. rout rot 
"r.item_no. r.nam''''mcc_reference.rouCident = r.ideot" 

"geCdem''''mcc_reference m. dem dot 
"d.ident. d.sch_ident"'m.dem_ident = d.ident" 

"gecord''''mcc_reference rn. oRelin 0" 
"o.item_flo, o.int_ord_flo,u'm.order_flo = o.inconCno" 

"gecschjob"'mccJeference m. schjob s" 
"s.sch_ident. s.schjob_no .... m.dem_ident = s.dem_ident" 

"costed_bom" Object name"costc<Lbom" table name 
"item_no, quant, unit_nam, bill_oCmaUdent, typ, no_oUtems" fields 
.... where condition 

"costed_bom_info"'costed_bom" 
"quant. no_oC_items" .... 

"rout_bom_ident"'rout r, bill_oCmat b" 
"r.biICoCmacident, r.item_no, b.nam" "r.bill_oCmat_ident = b.ident" ~ 

"bill_oCmat_info"'bill_oCmat" 
"ideot. quaDt"''''' 

Page 276 



"bill_oCmaUtem_info-'bill_oCmal_item" 
"item_no. quan!, unit_nam, typ" .". 

"dual" "dual" 
"sysdate" .u. 

Page 277 



APPENDIX IX 

MCSFIMM 

Database Schema 

Page 278 



SQL tables 
which constitute the 
MCS FIMM database 

SQLTable 

flauable 

in_ouCtable 

activity_info_table 

status_table 

en/Lresource_table 

MCSFIMM 
Database 

Hat table .-----i--table name 
(name, type attributes 

... - .. ~ in out ta""":b:-:I-e -----~ 
(function, information_model, relation) 

activity _info _table 
(function, type, information) 

status table 
(part_Do, type, status) 

eng resource table 
(par(no, eng::'resource, location) 

Stored data 

Functions to be managed, information entities and engineering resources. 

Relations between functions and information entities. 

Start and end instance of functions and its accountability for engineering resources. 

Dynamic information on status of functions for each and every part processed or 
being processed for manufacture. 

Engineering resources and their location in relation to the pans being processed 
for manufacture. 

Page 279 



APPENDIX X 

Operational Characteristics and Services of MCS FIMM 

offered through 

Generic' Application Shell' 

Page 280 



User Interface Operation and Services of MCS FIMM 

(New Part) ( Enquire) (Change) Active Group: Enquire 

( Get Parts) (Get Job Load ) ( Get Location) (Get Accountabmty ) 

Default Values 

Functionhpp>1 Resource: IRI ttl Part Number: 19s0t;;! • 1;;;10051 

Command: ~ ~K)) (~:)( J ) 00 
( Left) (Right) ( Scroll Up) (Scroll Down ) 

Job load. 4 rows 

part no type instance PP CAD CAPP 

100 N 3 WIP WIP P 

Display for part manufacture status 

Procedure for service request 

CELL 

P 

FCS 

P 

1. Chose a service group. This will present all available services in this group to the 
user. 

ii. Chose the actual service. 

iii. Enter all required parameters in the entry field as displayed in the command line. 
Press the 'OK' button to confirm your entry or 'ABORT' to choose another service. 

iv. After entering the last parameter, the selected service is requested from the operation 
module. 

v. The result of the service is displayed in a text field. Now the next service can be 
selected. 

Default values are provided for function names, engineering resource names, part 
numbers ranges and single part numbers. For single part number, however, the default 
values are those of the first displayed part number retrieved from status or resource 
information normally displayed to the user. 

Page 281 



Service groups available 
oNewPan 

This group consists of only one service which allows the user to register new pans 
to be processed for manufacture. 

oEnquiry 
This group comprises all query services. They retrieve and display to the user status 
and engineering resource infonnation from the FIMM database. 

oChange 
These services allow the user to change status and instance data for specified pans 
and to enter engineering resource locations. 

The following are details on the services available to the user: 

New Part: This service requires two parameters and both cannot be chosen as default values. 

First the pan number must be entered. This pan number must be unique and not exist in the 

FIMM database. The second parameter is the type of the new pan. The user can enter this 

value either by pressing one of the buttons 'N' for a 'new' or 'R' for a 'repeated' type, or 

enter any other type value in the entry field and press 'OK' afterwards. 

Get Parts: There are four parameters that detennine which pans are retrieved. The lower and 

upper boundary for the range of pan numbers is taken from the default fields. If no default 

values are entered in those fields, the maximum range is chosen automatically. This is done, 

wherever a pan number range is necessary for a service parameter and the user will never 

be asked to enter values for that range. The other two parameters refer to a function and a 

status value. When a function is entered in the default field the user will be asked to enter a 

status value. The retrieved pans will then have the specified status value for the default 

function. If no·default function is given, all parts in the specified range are retrieved. The 

status value can either be entered by the entry field or by using one of the buttons 'P', 

'WIP', 'e', 

Get Job Load: The range of pan numbers for the job load is again specified by the default 

values, like in the service 'get parts'. The remaining parameter refers to an activity. If no 

default value is given, the user will be asked to enter a function name. 

Get Location: The range of pan number is specified as before. If a default value for an 

engineering resource is entered in the appropriate field, only locations for that engineering 

resource are retrieved by this service. If no default engineering resource is available, the 

user is asked to enter one, or he/she can press the 'OK' button without entering a value to 

retrieve the location of all engineering resources for the specified part number range. 

Page 282 



Get Accountability: To retrieve all engineering resources that a function is accountable for, 

the user can either enter a default value for a function before requesting this service or enter 

a function name in the entry field. 

Change Status: This service requires three parameters. Two of them, the function name and 

the part number are taken from the default fields if available. The last parameter is the new 

status value of the function for the actual part. This value can either be entered by the entry 

field or by using one of the buttons 'P', 'W!P', 'C'. 

Change Instance: The part for which the instance should be changed is again taken from the 

default field. The new Instance must be entered by the user via the entry field. 

Store Location: The engineering resource name and the part number are taken from the 

default fields as before. The user will be asked to enter the location for the specified 

engineering resource. 

If one of the fields for the default values is empty and the value is required by a service,' the 

user will be asked to enter the appropriate value in the entry field. When the user enters the 

required parameter values for the service requested, and subsequently decides not to execute 

this service, the 'ABORT' button can be use to cancel. While a requested service is executed 

by MCS FIMM, the line 'Working .. .' is displayed in the command field. During this time, no 

service can be requested. 

Finally, the buttons 'Left', 'Right', 'Scroll Up' and 'Scroll Down' are used to move through 

the retrieved information. 

Page 283 



APPENDIX XI 

Program listings for Communication Mechanism 

for remote MCS FIMM services over LAN 

Page 284 



/* File: new_mcc_remote_side.c"' 
/* The Functions in this file communicate with a remote process on the host wayne 
(where FIMM database resides)"' 

/* Functions include :"' 
/*inicremote_new _mccQ 
starts the remote process on the host wayne(location of FIMM database)."' 

/*quicremote_new_mccQ 
stops the remote process and removes the notifier object new_client from the notifier."' 

/*new..JlOpenQ 
creates two pipes and a child process. The two pipes are used as stdin and stdout by the child process."' 

/*new...JlClose() 
closes the two pipes new"'p I and new "'p2."' 

/*new_inpuChandlerQ 
It is called by the notifier, whenever the remote process sends an output to the stdout. 
Depending on the function_state, a return function is called, with the received string as an argument. 
All other functions check the length of their arguments and send a command string to the remote process. 
The variable function_state is set to the apropriate value."' 

#include <stdio.h> 
#include <sunwindow'notify.h> 
#include "locaUncl.h" 

static inblew..JlOpen"'pid; 
static int new"'p 1[2]; 
static int new"'p2[2]; 

static char new_cliencobject; 
static Notify-client new_client; 

void new...J>openO; 
void new...JlClose(); 

Notify_value new _input_handlerQ; 

char function_state[3]; 
char send_string [LONG_STRING]; 
int send_strinlLlen; 

void init_remote_new_mcc(cimbios) 
char "cimbios; 
( 
int i; 
char "fiIe...Path_exe; 
char help[MEDIUM_STRING]; 

char "getenvQ; 

function_state[O] = ''l)'; 

Page 285 



sprintf(help,"%s/new_mcc_ora_side",fiIe-Jl3lh_exe); 
new _popen(help); 

strcpy(function_state, "in"); 

if(!cimhios[O]) 
( 

notify _slart(); 
new -pclose(); 
} 
} 

void quiuemote_new_mcc(cimhios) 
char *cimbios; 
( 
write(new-p1 [1]:\11",1); 

if(cimhios[O]) 
( 

new -pcloseO; 
notify _remove(new _client); 
} 
else 
( 

new _pcloseO; 
notify_sIOPO; 
) 
} 

void new -POP"n(cmd) 
char*cmd; 
( 
if (pipe(new-pl) < 0) 
printf('\nnew-p1 not created!!"); 
if (pipe(new-p2) < 0) 
printf('\nnew-p2 not created!!"); 
if «new-POpen-pid = forkO) = 0) 
( 
c1ose(new-pHI]); 
c1ose(O); 
dup(new-p I [0]); 
c1ose(new -p HO]); 

c!ose(new-p2[0]); 
c1ose(I); 
dup(new-p2[1]); 
c1ose(new-p2[1]); 

execl("/usr/uch/rsh", "wayne", cmd, 0); 

_exit(l); I*disaster*/ 
} 
if (new-POpen-pid == ·1) 
printf('\I1child process not created!!!"); 

close(new-pI[O]); 

Page 286 



cIose(new-p2[1)); 
} 

void new -pcloseO 
( 
cIose(new-pI[I)); 
cIose(new-p2[O)); 
} 

Notify_value new _inpuChandlerQ 
( 
send_string[OI = "D'; 
send_string..Jeo = 0; 
read(new-p2[OI,&send_string[send_string..Jeo++I,I); 
while(send_string[send_string..Jen-11 != '\n ') 

read(new -p2[OI,&send_string[send_stringJen++ 1,1); 
send_string[send_strinlLlen-11 = "D'; 

if(!strcmp(function_state,"gj"» 
( 

function_state[OI = "D'; 
return...get.jobs(send_string); 
} 
else if(!strcmp(function_state,"np'') 
( 

function_state[OI = "D'; 
return_new _parl(send_string); 
} 
else if(!strcmp(function_state,"cs'') 
( 

function_state[OI = ''0'; 
return_change_status(send_string); 
} 
else if(!strcmp(function_state,"cp"» 
( 

function_state[OI = "D'; 
return_change-POint(send_string); 
} 
else if(!strcmp(function_state,"ar"» 
( 

function_Slate[OI = "D'; 
return_add_enlLresource(send_string); 
} 
else if(!strcmp(function_state,"in"» 
( 

function_state[OI = ''0'; 
resulUnicnew _mccO; 
) 
else if(!strcmp(function_state,"gr'') 
( 

function_state[OI = ''0'; 
return...gecenlLresources(send_string); 
} 
else if(!strcmp(function_state,"gl") 
( 

function_state[OI = ''0'; 
return...get.job_load(send_string); 
} 

Page 2&7 



else if(!strcmp(function_state,"ge"» 
( 

function_state[OI = "0'; 
return-&euesp_eng(send_string); 
) 
else if(!strcmp(function_state,"sb"» 
( 

function_state[OI = "0'; 
return_set_bom(send_string); 
) 
else if(!strcmp(function_state,"gb") 
( 

function_state[OI = "0'; 
return-&ecbom(send_string); 
) 
else if(!strcmp(function_state,"st") 
( 

function_state[OI = "0'; 
return_set_rout(send_string); 
) 
else if(!strcmp(function_state,"gt'') 
( 

function_state[OI = "0'; 
return-&et_rout(send_string); 
) 
else if(!strcmp(function_state,"sd"» 
( 

function_state[OI = "0'; 
return_set_dem(send_string); 
) 
else if(!strcmp(function_state,"gd'') 
( 

function_state[OI = "0'; 
return-&et_dem(send_string); 
) 
else if(!strcmp(function_state,"so"» 
( 

function_state[OI = "0'; 
return_secord(send_string); 
) 
else if(!strcmp(function_state,"go"» 
( 

function_state[OI = ''0'; 
return-&ecord(send_string); 
) 
else if(!strcmp(function_state,"gs"» 
( 

function_state[OI = ''0'; 
return-&et_schjob(send_string); 
) 
else if(!strcmp(function_state,"rs"» 
( 

function_state[OI = ''0'; 
return_create_filesO; 
) 
else if(!strcmp(function_state."rw"» 
( 

function_state[OI = ''0'; 

Page 288 



retum_read_ wiP(); 
) 
else 
( 

printf("'nEnor(new _mcc_remote_side)."); 
printf("'nGot message(%s) in function_slate: (%s)!!",send_string, 
function_state); 
) 

return (NOTIFY _DONE); 
) 

char get..,iobs(part_nol, part_no2, activity, status, format) 
char ·pan_nol; 
char ·part_1lO2; 
char ·activity; 
char ·status; 
char ·format; 
( 
if(function_state[OIIl (strJen(pan_nol»PART_NO_LEN) 11 

(strlen(pan_no2»PART_NO_LEN) 11 
(strlen(activity»F1C_NAME_LEN) 11 
(strlen(status»STATUS_LEN» retum(O); 

strcpy(function_state,"gj''); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s:%d:%s:%d:%sln",function_state, 
strlen(part_nol), pan_nol, strlen(pan_no2), part_no2, 
strlen(activity), activity, strlen(status), status, 
strlen(format),format); 
write(new"'p I [Il,send_string,strlen(send_string»; 
retum(I); 
) 

char geUob_load(part_nol, part_no2, activity, format) 
char ·pan_nol; 
char ·parcno2; 
char ·activity; 
char ·format; 
( 
if(function_state[OIIl (strlen(pan_nol»PART_NO_LEN) 11 
(strlen(pan_no2»PART_NO_LEN) 11 
(strlen(activity»F1C_NAME_LEN» retum(O); 

strcpy(function_state, "gl"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s:%d:%sln".function_state, 
strlen(pan_nol), pan_no I , strlen(part_no2), pan_no2, 
strlen(activity), activity, strlen(format),format); 
write(new...P I [Il,send_string,strlen(send_string»; 
return(I); 
) 

char get_resp_eng(activity) 
char "activity; 
( 
if(function_state[OIIl (strlen(activity»F1C_NAME_LEN» retum(O); 

Page 289 



strcpy(function_state, "ge"); 

sprintf(send_string, ":2:%s: %d:%s'n" ,function_state, 
strlen(activity), activity); 
write(new...JlI I IJ,send_string,strlen(send_string»; 
return(l); 
) 

char gecen8-resources(part_nol, part_no2, resource, format) 
char ·part_nol; 
char • parI_no2; 
char ·resource; 
char ·format; 
( 
if(function_stateIOJII (strlen(part_nol»PART_NO_LEN) 11 
(strlen(parcno2»PART_NO_LEN) 11 
(strlen(resource»FIC_NAME_LEN» return(O); 

strcpy(function_state,"gr''); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s:%d:%s'n",function_state, 
strlen(parcnol), part_nol, strlen(parcno2), part_no2, 
strlen(resource), resource, strlen(format),forrnat); 
write(new...JlI I IJ,send_string,strlen(send_string»; 
return(I); 
) 

char new...Jlart(part_no, type) 
char ·part_no; 
char ·type; 
( 
if(function_stateIOJII (strlen(part_no»PART_NO_LEN) 11 

(strlen(type»STATUS_LEN) 11 (!part_noIO)) 11 (!typeIO))) return(O); 

strcpy(function_state,"np''); 

sprintf(send_string,":2:%s:%d:%s:%d:%s'n",function_state, 
strlen(part_no), part_no, strlen(type),type); 
write(new...Jl1 I IJ,send_string,strlen(send_string»; 
return(l); 
) 

char change_status(part_no, activity, status) 
char ·part_no; 
char ·activity; 
char • status; 
( 
if(function_stateIOJII (strlen(part_no»PART_NO_LEN) 11 

(strlen(activity»FIC_NAME_LEN) 11 
(strlen(status»STATUS_LEN) 11 (!statusIO))) return(O); 

strcpy(function_state,"cs''); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s'n",function_state, 
strlen(part_no), part_no, strlen(activity), activity, 
strlen(status), status); 
write(new...JlI [lJ,send_string,strlen(send_string»; 
return(I); 

Page 290 



char change-POint(part_no, point) 
char 'part_no; 
char 'point; 
( 
if(flDlction_state[OJII (strlen(pan_no»PART_NO_LEN) 11 

(strlen(point»STATIJS_LEN) 11 (!point[O])) return(O); 

strcpy(function_state, "cp"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s\n",function_state, 
strlen(pan_no), part_no, strlen(point), point); 
write(new -pI [IJ,send_string,strlen(send_string»; 
return(I); 
) 

char add_en&-resource(part_no, resource, location) 
char ·part_no; 
char ·resource; 
char ·Iocation; 
( 
if(flDlction_state[OJII (strlen(part_no»PART_NO_LEN) 11 

(strlen(resource»FIC_NAME_LEN) 11 
(strlen(location»FIC_NAME_LEN) 11 (!location[O])) return(O); 

strcpy(function_state,"ar"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s'n" ,function_state, 
strlen(part_no), pan_no, strlen(resource), resource, 
strlen(1ocation),location); 
write(new -pI [Il,send_string,strlen(send_string»; 
return(I); 
) 

char set_bom(part_no, item_no, bom_nam) 
. char ·pan_no; 

char ·item_DO; 
char ·bom_nam; 
( 
strcpy(function_state,"sb"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s'n" ,function_state, 
strlen(part_no), part_no, strlen(item_no), item_no, 
strlen(bom_nam), bom_nam); 

write(new -pI [Il,send_string,strlen(send_string»; 
return(I); 
) 

char get_bom(pan_no) 
char ·part_no; 
( 
strcpy(function_state,"gb''); 

sprintf(send_string,":2:%s:%d:%s'n",function_state, 
strlen(part_no), part_no); 

Page 291 



write(new -pI [I),send_string,strlen(send_string»; 
return(I); 
} 

char set_rout(part_no, item_no, IOUt_nam) 
char "part_no; 
char "item_no; 
char *rollt_nam; 
( 
strcpy(function_state, "sI"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s:%d:%s'n" ,function_state, 
strlen(pan_no), pan_no, strlen(item_no), item_no, 
strlen(roucnam), roucnam); 

write(new -pI [I),send_string,strlen(send_string»; 
return(l); 
} 

char get_rout(pan_no) 
char "pan_no; 
( 
strcpy(function_state, "gt"); 

sprintf(send_string ,":2: %s: %d:%s\n" ,function_state, 
strlen(pan_no), pan_no); 

write(new-pI[I),send_string,strlen(send_string»; 
return(I); 
} 

char set_dem(pan_no, ident) 
char "pan_no; 
char "ident; 
( 
strcpy( function_state," sd"); 

sprintf(send_string,":2:%s:%d:%s:%d:%s\n",function_state, 
strlen(pan_no), pan_no, strlen(ident), ident); 

write(new -pI [I),send_string,strlen(send_string»; 
return(I); 
} 

char get_dem(pan_no) 
char 'pan_no; 
( 
strcpy( function _state," gd"); 

sprintf(send_string, ":2:%s:%d: %s\n" ,function_state, 
strlen(pan_no), pan_no); 

write(new -pI [I),send_string,strlen(send_string»; 
retum(I); 
} 

Page 292 



char ·pan_no; 
char • idem; 
( 
strcpy(function_state,"so"); 

sprintf(send_string, ":2:%s: %d: %s:%d:%s'n" ,function_state, 
strlen(pan_no), pan_no, strlen(ident), idem); 

write(new Jll [ll,send_string,strlen(send_string»; 
retum(l); 
) 

char get_ord(pan_no) 
char ·pan_no; 
( 
strcpy(function_state,"go"); 

sprintf(send_string, ":2:%s:%d: %s'n" .function_state, 
strlen(pan_no), pan_no); 
write(new Jll [ll,send_string,strlen(send_string»; 
retum(l); 
) 

char gecsch..job(pan_no) 
char ·pan_no; 
( 
strcpy(function_state,"gs"); 

sprintf(send_string,":2:%s:%d:%s'n" .function_state, 
strlen(pan_no), pan_no); 

write(new Jll [ll,send_string,strlen(send_string»; 
retum(1); 
) 

char create_filesO 
( 
strcpy(function_state,"rs"); 

sprintf(send_string,":2:%s'n" .function_state); 

write(new Jll [ll,send_string,strlen(send_string»; 
retum(1); 
) 

char read_ wipO 
( 
strcpy(function_state,"rw"); 

sprintf(send_string,":2:%s'n",function_state); 

write(new Jll [ll,send_string,strlen(send_string»; 
retum(l); 
) 

Page 293 



APPENDIX XII 

Overview ofIDEFo and IDEFlX 

Page 294 



IDEFo 

IDEFo is the technique for modelling functions or activities of the enterprise. It is a descendant 

of the Structured Analysis and Design Technique (SADT) developed by Ross [Ross 1977]. 

As illustrated, the building block of this modelling approach is the activity box. The activity 

box defines an activity, or function in the enterprise that is being modelled. The activity may 

be a decision making, or information conversion activity, or it may be a material conversion 

activity, or both. Inputs to the activity are shown at the left of the box. Inputs are items 

(material, informational) that are transformed by the activity. Outputs of the activity are shown 

at the right of the box. Outputs are the results of the activity acting on the inputs. Controls are 

shown entering the activity box from the top. A control is a condition that governs the 

performance of the activity. For example, a control may be a set of rules governing the activity 

or a condition that must exist before the activity can be done. Mechanisms enter the activity 

box from below. A mechanism is the means by which an activity is realised. For example, a 

mechanism may be a machine, a worker or any enabling element. Refer to Figure A for 

illustration. 

Inputs(I) __ .... ~ 

Controls(C) 

t 
Manufacturing t---.-Outputs(O) 
. Activity 

t . 
Mechamsms(M) 

Figure A : The activity box ICOMs 

IDEFo is applied using top down hierarchic decomposition. At the top of the hierarchy is the 

overall purpose of the model; it is the global activity that is the subject of the model. The 

overall activity is decomposable into components that, when taken together, comprise the 

global activity. This is the second tier of the architecture. Similarly, the second tier activities 

may be funher decomposed into component activities. The decomposition process continues 

until there is sufficient detail 10 serve the purpose of the model builder. Refer to Figure B for 

illustration. 

Page 295 



Decomposition 
of functions 

Parent 

(} 
More General Child 

More Detail 

Child 

Figure B : Hierarchical decomposition of IDEFO model 

Page 296 



IDEF IX is an extension of IDEFI and is for diagramming the information architechure. It is a 

semantic data modelling technique that defines the meaning of data within the context of its 

interrelationship with other data. IDEFIX uses the entity relationship approach based on the 

ER technique developed by Chen [Chen 1977]. A completed IDEFIX diagram is a static 

structure that defines information groupings and relationships among groupings. 

As illustrated Figure C, the basic diagrammatic structure comprises boxes, which are used to 

represent entities. An entity is a set of real or abstract things (people, object, events) which 

have common attribute or characteristic. An attribute of an entity set, for which each instance 

must have a unique value is called a key attribute for that entity. 

ASSET ID 

AssrrID 
SUPPUERID 

........, .. ,. 
RelaUoJUblp cardluJlty betwftllltlltlt}' teb 

RES CEID 

SUPPLIER ID 

Figure C : IDEFIX Entity-Attribute relationship 

Attrlbutu 

In the IDEFIX diagram, entity attributes are listed with the box representing the entity. The 

key attribute is known as the primary key of a given entity and are separated from the rest of 

the attributes by a line that goes across the box. Relationships may exist between entities. A 

key attribute that provides the linkage between entities is called a foreign key. A relationship 

has cardinality which specifies the number of instances of an entity with which a given entity 

is associated through the relationship. There are the following possible relationships: 

* One-to-One 

* One-to-Many 

* Many-to-Many 

Each of the entities becomes a tableiIl~the database i~plementation. The set of attributes of 

each entity becomes an attribute field (or record field) of the entity table. 

Page 297 



APPENDIX XIII 

Report on 
IDEF1X Entity-Attribute relationship model 

Page 298 



(ENTITY, IEI, ORDER ENTRY, (MFG ORDER NUMBER,CUSTOMER ID,PARENT PART NUMBER), 

(Preceeding Mfg Order Number,Description,Product Effectivity Start Dale,Product Effectivity End DaIe,Type, 

Due DaIe,Unit of Measure,Unit Price,Order Quantity) ) 

(ENTITY, IE2, PART MASlER-BOM, (PARENT PART NUMBER,); (Effectivity Start DaIe,Effectivity End 

Dale,Unit of Measure,Engineering,Change Notice,Change Effecled by,Da1e of Change,Phases out Part Number, 

Phased out by Part Number,Number of Levels,Number of components (children») ) 

(ENTITY, IE4, PROCESS PLAN, (PROCESS PLAN ID,PART NUMBER,MFG CELL GROUP ID), (Process 

Description,) ) 

(DEPENDENT ENTITY, DE21, BOM CHILD, (PARENT PART NUMBER,PART NUMBER), (Number of 

components (children),Part Type,Quantity per Assembly,Effectivity Start Dale,Effectivity End Dale, Unit of 

Measure,Lead Time Offset,Engineering Change Notice,Change Effecled by,Change Dale, 

Phases Out Part Number,Phased Out by Pan Number) ) 

(DEPENDENT ENTITY, DE41 ,MFG OPERATION ASSIGNMENT, (PROCESS PLAN ID, 

MFG OPERATION ID), (Mfg Operation Description,Preceeding Mfg Operation ID,Next Mfg Operation ID, 

Allernative Mfg Operation ID,Setup time per ilem,Machining time per item,Handling time per item, 

Operation time per ilem,Scrap rate" ) ) 

(DEPENDENT ENTITY, DE43 , RESOURCE ASSIGNMENT, (MFG OPERATION ID,RESOURCE ID), 

(Resource Type,Quantity Required,Unit of Measure) ) 

(DEPENDENT ENTITY, DE42, MFG FACILITY ASSIGNMENT, (MFG OPERATION ID,ASSET ID), 

(Feed,Speed,Depth of cut,Number ofpasses,Remarlcs)) 

(ENTITY, IES, MFG CELL CONFIGURATION, (MFG CELL GROUP ID,ASSET ID), 

(Number of Mfg Stations)) 

(ENTITY, IE6, RESOURCE, (RESOURCE ID,SUPPLIER ID), (Resource Type, Description,Location, 

Account Number,Unit of Measure,Unit Price,Buy/Make/Supply Code, Catalogue Order Number, Purchasing 

Lead Time, Last Order Date,Quantity Ordered, Effectivity Start Dale,Effectivity End Date,Stock on

hand,Allocated/Reserved Stock,Scrap Value,Unit of Measure for Scrap)) 

(ENTITY, IE3, ENGINEERING RESOURCE, (PART NUMBER), (Engineering Resource, Location)) 

(ENTITY, IE7, CUSTOMER, (CUSTOMER ID), (Company/Name,Address,Contact 

Person,Telephone,Fax) ) 

(ENTITY, IE8, SCHEDULE, (MFG ORDER NUMBER,PART NUMBER), (Priority,Order Status, Planned 

Quantity,Unit of Measure,Schedule Start Dale,Schedule End Date) ) 

Page 299 



{ENTITY, 1E9, SHOP FLOOR STATUS, (MFG ORDER NUMBER,PART NUMBER), 

(Actual Quantity Produced,Work Centre/Cell Utilisation Rate,Actual Capacity Utilised)) 

{ENTITY, 1E1O, MANUFACTURING FACILITY, (ASSET ID,), (Description, Location, Working 

Capacity,Labor Cost per hour,Handling Cost per hour,,) ) 

{ENTITY, IEH, SUPPLIER, (SUPPLIER ID), (Company/Name,Address,Contact Person,Telephone,Fax)) 

{DEPENDENT ENTITY, DE 101, PERSONNEL, ( ASSET ID), (Personnel ID,Name, Address, Telephone, 

Sa1ary,Skill,SkiD level,Remarks) ) 

{DEPENDENT ENTITY, DEI02, MACHINE, (ASSET ID,SUPPLIER ID), {Last Service/Maintenance Date, 

Repaired on,Repair Work Order Number,Max. job size accommodated - X/Y rz axes,Accuracy,Machining Cost 

per hour,Horse Power,Speed Range (MaxJMin.),Feed Range,Payload, Working Envelope - X/Y{Z/A/B 

axes,Setup Time,Tool Change Time,Feed Change Time,Table Rotation Time, Tool Adjustment TIme,Rapid 

Tranverse Rate) ) 

{CATEGORIZATION, CRI" COMPLETE, (IEIO), (DEIOl,DEI02) 

(RELATION,RLI, ,NON-SPECIFIC, IE2, DE21,OM) 

(RELATION, RL2, ,NON-SPECIFIC, 1E4, DE21, 0) 

(RELATION, RL3, ,NON-SPECIFIC, DE41 ,DE43, OM) 

(RELATION, RL4, ,NON-SPECIFIC, 1E1, 1E2, 0) 

(RELATION, RL5" NON-SPECIFIC, IE4, DE41 ,0) 

(RELATION, RL6" NON-SPECIFIC, DE41 ,DE42, OM) 

(RELATION, RL7, ,NON-SPECIFIC, DE43, 1E6, 0) 

(RELATION, RL8, ,NON-SPECIFIC, IEI, 1E7, 0) 

(RELATION, RL9, ,NON-SPECIFIC, IE8, 1E9, 0) 

(RELATION, RLIO, ,NON-SPECIFIC, 1E9, DE21, 0) 

(RELATION, RLH, ,NON-SPECIFIC, 1E8, DE21, 0) 

(RELATION, RLI2" NON-SPECIFIC, 1E4, 1E5, ZOM) 

Page 300 



(RELATION, RLI3" NON-SPECIFIC, IE3,IE4, O) 

(RELATION, RLI4, ,NON-SPECIFIC, IEI, IE8, OM) 

(RELATION, RLI5" NON-SPECIFIC, IEI, IE9, OM) 

(RELATION, RLI6, ,NON-SPECIFIC, IE5, IEIO, OM) 

(RELATION, RLI7, ,NON-SPECIFIC, IEII, IE6, OM) 

(RELATION, RLI8, ,NON-SPECIFIC, DEI02, IEII, O) 

(RELATION, RLI9, ,NON-SPECIFIC, DE21, IE3, OM) 

(RELATION, RL20, ,NON-SPECIFIC, DE42, lE 10, O) 

Done. 

Page 301 



APPENDIX XIV 

1. EXPRESS based information model schema 

2. EXPRESS index datafile 
(assignment of unique identifier to entities in EXPRESS model) 

3. EXPRESS model data dictionary 

4. EXPRESS to SQL Compiler generated datafile 
(SQL commands to enable creation of relational database tables) 

5. Example of relational database tables relationship 
(via the datafile generated by EXPRESS to SQL Complier) 

Page 302 



SCHEMA INFORMATION_MODELS; 

TYPE 
type_class = enumentioo of (repeacOl'der. onc_off); 
END_TYPE; 
TYPE 
pan_class = enumeration of (normal. pmntom, resource, co-produc:t.1001. lOOClWlm_item); 
END_TYPE; 
TYPE 
resource_clul = emuneration of (1001. tool_assessorics, materials, fixtures, 
6xture_useJlOrics, misccllaneous); 
END_TYPE; 
TYPE 
order_category = enumcratiOll of (quote3orecast. open3,rdc.r. ooofinncd_order, 
c1osed_order...,procecd..order_axnplete. closc(Cordecarchivc. order~rge. order_hold); 
END_TYPE; 
TYPE 
product_code = enumeration of (make, buy, supply); 
END_TYPE; 

ENTITY ORDER-ENlRY; 
ha._PART_MASTER-BOM, PART_MASTER-BOM; 
ha._CUSTOMER ,CUSTOMER; 
has_SCHEDULE, UST (1,1] OF SCHEDULE; 
ha._SHOP _FLOOR_STATUS, UST (1,1] OF SHOP _FLOOR_STATUS; 

Mf&-OrdcrYumber ,INTEGER(7); 
PreceedinLOrdcrYumber ,INTEGER(7); 
Description, STRING(60); 
Effectivity_Start_Datc : date; 
Effectivity_Fnd_Datc : date; 
Type : type_claSl; 
Due_Date: dale; 
Unit_oCMeasure : STRING(4); 
Unit_Price: REAL; 
Order_Quantity, INTEGER(9); 
END_ENTITY; 

EN1ITY PART_MASTER-BOM; 
ha._BOM_CHILD, UST (1,1] OF BOM_CHIID; 
Parent-P"n_numbcr ,STRlNG(IS); 
Effectivily_Start_Date : date; 
Effectivily_End_DaIe , dale; 
Unit_oCMcasure : S1RING(4): 
Enginee~L<l1ange_Noti~ : INTEGER(1); 
Change_Effettcd_by , STRlNG(20); 
Date_oCChange : date; 
Phase5_out_Part~wnber: S1R1NG(l5); 
Phased_out_by]an_Number' STRlNG(IS); 
NumbecoCLeve1. : INTEGER(2); 
Numbe,-oCcomponcnts , INTEGER(3~ 
END_EN1ITY; 

ENTITY PROCESS]LAN; 
ha._BOM_ClllLD , BOM_CHILD; 
ha._MFG_OPERATION~ASSIGNMENT , MFG_OPERATION_ASSIGNMENT; 
ha._MFG_CEll_CONFIGURATION ,MFG_CEU_CONFIGURATION; 
Procell-plan_ID' INTEGER(7); 
Proce.U>=ription , STRING(60); 
END_ENTITY; 

Page 303 



ENTITY HOM_CHilD; 
ha._ENGINEERlNG_RESOURCE: UST [1:1J OF ENGINEERING_RESOURCE; 
Put_number: 51RING(15); 
Numbtt_oCcomponenlJ : INTEGER(3): 
Part_Type: part_cla .. ; 
Quantity~r_AIsc:mbly: REAl...; 
EffectiviIy_Sta.CDatc : dale; 
Effectivity_End_Date : date; 
Unit_oCMeasure : S1RING(4); 
Lead_Tunc_Off ... : INTEGER(9); 
Engincerina....~c.Jllotia: : INTEGER(1); 
Changc_Effeeted_by : 51RING(20); 
Changc_Date : date; 
Pha"UlUl_Pan_Number: S1RING(15); 
Ph ... cUlut_by]alt_Number: S1RING(IS); 
END_ENTITY; 

ENTITY MFG_OPERATION_ASSIGNMEN'r, 
has_RESOURCE_A55IGNMENT: UST [1:1J OF RESOURCE_ASSIGNMENT; 
ha,_MFG_FAClllTY_ASSIGNMENT: UST 11:1J OF MFG_FACIllTY_ASSIGNMENT; 
Mfa....Opcmioo_ID : INTEGER(1); 
Mfa....Opcratic"dlescriptiClll : STRING(60); 
P=eecCMfa....OpcratiClll_ID : INTEGER(1); 
Next_Mfa....OpcratiClll_ID : INTEGER(1); 
Altemate_MfLOpcratioo_ID: INTEGER(1); 
Setup_timc~_item : REAL; 
Machinin8-timc....,per_ilem : REAL: 
HandlinLtimc...,per_ilem : REAL; 
Operatioo_timc....,per_item : REAL; 
Scrap_l1ltc : REAL: 
END_ENTITY; 

ENTITY RESOURCE_ASSIGNMENT; 
has_RESOURCE: RESOURCE; 
ResOUfCC_ 'JYpe : resource_class: 
Quantity _Reqnited : REAL; 
Unit_oCMeasure : STRING(4); 
END_ENTITY; 

ENTITY MFG]AClllTY_ASSIGNMENT; 
ha._MANUFACI1JRING]ACIUTY : MANUFACTURlNG]ACIllTY; 
Feed: INTEGER(4); 
5peed : INTEGER(6); 
Deplh_oCCUl : INTEGER(3); 
Number_or~sses ; INTEGER(S); 
Remarlt. : STRING(60); 
END_ENTITY; 

ENTITY MFG_CELL_CONFIGURATION; 
h .. ...MANUFACI1JRING]ACIllTY: UST [1:1J OF MANUFACTURlNG]AClLlTY; 
Mfa....Cell_Groop_ID : INTEGER(2); 
Number_oCMfLSutiona : INTEGER(2); 
Mfa.....tatiClll_I : INTEGER(1); 
Descriptioo_,tatiClll_I : 51RING(60); 
MfL.tatiClll_2 : INTEGER(1); 
Description_statioo_2 : STRING(60); 
MfLstatioo_3 : INTEGER(1); 
De.cription_.tatioo_3 : 51RING(60); 
Mfa....statiClll_ 4 : INTEGER(1); 
DeICription_ltatiOO_ 4: STRING(60); 
Mfa.....tatiClll_S : INTEGER(1); 
Descriptioo_,tatiClll_5 : 51RING(60); 
END_ENTITY; 

Page 304 



ENlITY RESOURCE; 
ResouraUD : STRING(I5); 
Resource_1YPc: rcsourcc:_class; 
Descriptioo : STRING(60); 
Location: STRING(1S); 
AcxountYwnber: INTEGER(IS); 
Unit_oCMeuu .. : STRING(4); 
Unit_Price: REAL; 
Ruy_Makc_Supply_Code: product_code; 
Catalogue_Order_Nwnber : STRING(3O); 
PurdIa.in&.J ..... CTune : INTEGER(7); 
Last_Order_Datc : date; 
Quantity_Ordered: INTEGER(9); 
Effectivity_Start_Date : date; 
EffectivitLEnd_Datc : date; 
Stock_oo_hand : INTEGER(9); 
Allocalc,CRese.vcd_Stock : INTEGER(9); 
Scrap_Value: REAL; 
SCnp_unU_oCM ...... : STRING(4); 
END _ENlITY; 

ENlITY ENGINEERINGJUlSOURCE; 
ha._PROCESS_PLAN : PROCESS_PLAN; 
EngincerinLRcwura: : STRING(IO); 
Location: STRING(10); 
END_ENlITY; 

ENTITY CUSTOMER; 
Cu'tomcCID : INTEGER(7); 
Canpany-Narnc : S1RJNG(40); 
Add", .. : S1RJNG(60); 
CootaccPenon : STRING(2S); 
Te1cphooc : STRING(20); 
Fax: S1RJNG(20); 
END_ENlITY; 

ENTITY SCHEDULE; 
has_SHOP _FLOOR_STATUS: SHOP _FLOOR_STATUS; 
has_ROM_CHILD : ROM_CIllLD; 
Priority: INTEGER(3); 
Order_Status: ordeccategory; 
Planned_Quantity: INTEGER(9); 
Unil_oCM .. ,u", : STRING(4); 
Schedulc_Stan_DaIe : dale; 
Schedule_End_Date : date; 
END_ENlITY; 

ENlITY SHOP ]LOOR_STATUS; 
h,,_ROM_CIllLD: ROM_CHILD; 
AClUal_Qu8lltily]roduccd: INTEGER(9); 
Station_Utilisation_Rate : REAL; 
ActuaCCapacily_Utiliscd: REAL; 
END_ENlITY; 

ENTITY MANUFACTURlNG]ACIUTY 
SUPERTYPE OF (ONEOF(PERSONNEL, MACHINE»; 
Asset_ID: INTEGER(7); 
l)e,eriptioo : STRING(60); 
Locatioo: STRING(IS); 
WOOOnLCapacilY : INTEGER(3); 
Lab(lr_Cost-J>Cr_hour: REAL; 
HandlinLCosl-JleChour : REAL; 
END_ENlITY; 

Page 305 



EN1ITY SUPPllER; 
has_RESOURCE: usr [I :1) OF RESOURCE; 

Supplier_ID: 1NfEGER(7t, 
Company_Name: STIUNG(4O); 
Add", .. : STIUNG(60t, 
Contact]enon : STIUNG(2S); 
Telephone: STIUNG(20t, 
Fax: STIUNG(20t, 
END _EN1ITY; 

EN1ITY PERSONNEL 
SUBTYPE OF (MANUFACTURING_FACIlITY); 
Penonnel_ID: STIUNG(IS); 
Name: STRING(30t, 
Addn: .. : S1RING(60); 
Telephone: STRING(20t, 
Salary: REAL; 
Skill : STRING(30t, 
Skill_mvel:1NfEGERO~ 
Rcmarl" : STRING(60t, 
END _ENlTfY; 

ENTITY MACHINE 
SUBTYPE OF (MANUFACTURlNG_FACIllTY); 
has_SUPPUER : SUPPllER; 
Last_Servicc_Maintenancc_Date : date; 
RepaiJe,Con : da .. ; 
RepaU_ Work_OrdecNumber : 1NTEGER(7); 
Maxjob_sim_X_axU : REAL; 
Maxjob_lizc_Y_ws :REAL; 
Maxjob_lizc_Z_axis : REAL; 
Accuracy: REAL; 
Machinin&-Cosl-.,peT_hour : REAL; 
Hone_Power: INTEGER(7); 
Speed_Rangc_Min : 1NfEGER(6); 
Speed_R",gc~ax : 1NfEGER(6~ 
FeaCRangc_Min: 1NTEGER(4); 
Fced_Range_Max : JNTEGER(4); 
Payload: 1NfEGER(S); 
Worl<inLEnvelopc_X_axis : REAL; 
Worl<inLEnvelopc_Y_axis : REAL; 
Worl<inLEnvelopc...z_axU : REAL; 
Worl<inLEnvelopc_A_axi. : REAL; 
Workin&..Envelopc_B_axU : REAL; 
Sctup_ Tune: REAL; 
TooI_Oumgc_Tune: REAL; 
Feed_Otangc_limc: REAL; 
Tablc_Raatioo_Tune: REAL; 
TooI_Adjustment_Tune: REAL; 
Rapid_ Tranversc_Rate : REAL; 
END_EN1ITY; 

ENTITY date; 
day : 1NfEGERO~ 
mooth : 1NfEGERO); 
year: 1NfEGERO); 
END _ENlITY; 

Page 306 



cl ,ORDER_ENll!.Y, 

e2,ORDER_ENll!.Y_ha'_PART_MASTER-BOM, 

e3,ORDER_ENll!.Y_hu_CUsroMER, 

e4,ORDER_ENll!.Y_has_SCHEDULE' 

.s,ORDER_ENll!.Y _hu_SHOP _FLOOR_STATUS, 

e6,ORDER_ENll!.Y_Etrectivity_Start_Date, 

e7,ORDER_ENll!.Y _Etrectivity_EruCDate, 

eS,ORDER_ENll!.Y _Type, 

e9,ORDER_ENll!.Y _ Type, 

eIO,oRDER_ENll!.Y_llue_Da"" 

..o,PART_MASTER-BOM, 

ell,pART..MASTER-BOM_ha._BOM_CHIUJ, 

e12:PART_MASTER·SOM_Effect.ivilY_Start_Date: 

eI3,pART_MASTER-BOM_Effeetivity _End_Oa'", 

eI4'PART_MASTER-BOM_0a1C_of_Otange: 

eIS,PROCESS_PlAN, 

eI6,PROCESS]lANJ>.,_BOM_CIllLD, 

eI7,pROCESS]lAN_ha,_MFG_OPERA1l0N_ASSIGNMENT, 

eIS,PROCESS_PlAN_h •• _MFG_CELL_CONAGURA1l0N, 

..s,BOM_CIllLD, 

eI9,BOM_CIllLD_ha._ENGINEERING_RESOURCE, 

e20'BOM_CIllLD_Part_Type, 

e21 :BOM_CHILD_Effectivity _Start_Date: 

e22:BOM_OlILO_Effectivity_End_Date: 

e23:BOM_CHILD_Changc_Dale: 

en6MFG_OPERA1l0N_ASSIGNMENT, 

e24,MFG_OPERA1l0N_ASSIGNMENT _has_RESOURCE_ASSIGNMEm 

e25,MFG_OPERA1l0N_ASSIGNMENT_h .. _MFG]ACILITY~SSIGNMENT, 

en9,RESOURCE_ASSIGNMENT, 

e26,RESOURCE_ASSIGNMENT_ha,_RESOURCE, 

. e27'RESOURCE_ASSIGNMENT_Resoora:_Type, 

e28,RESOURCE_ASSIGNMENT_Re,oura:_Type, 

enIO,MFG_FACILITY_ASSIGNMENT, 

e29MFG_FACILITY_ASSIGNMENT_ha,_MANUFACTURlNG_FACILITY, 

en7MFG_CELL_CONAGURA1l0N, 

e30,MFG_CELL_CONAGURA1l0N_has_MANUFACTURING]ACILITY, 

en 11 :RESOURCE: 

e31,RESOURCE_Reso",,,,_ Type, 

e32,RESOURCE_Buy_Make_Supply_Cude, 

e33:RESOURCE_Last_Order_Datc: 

e34:RFSOURCE_Effectivity_Start_Date: 

e3S,RESOURCE_Etrectivi'Y_End_Da .. , 

enS£NGINEERING_RESOURCE, 

eJ6,ENGINEERING_RESOURCE_ha,_PROCESS]LAN, 

en I ,CUsroMER, 

en2,SCHEDULE, 

Page 307 



e37,SCHEDULE_has_SHOP _FLOOR_STATUS, 

e38,SCHEDULE_h .. _BOM_CHILD, 

e39:SCHEDULE_OrdecStatu.: 

e40:SCHEDULE_Order_Status: 

e41,SCHEDULE_Sehedule_SwU>a .. , 

e42,SCHEDULE_Sehedule_Fnd_Da .. , 

en),SHOP _FLOOR_STATUS, 

e43,SHOP _FLOOR_STATUSJ>,,,_BOM_CHILD, 

enI2~ANUFACTURlNG_FACIUTY, 

e44,SUPPUER, 

e4S,SUPPUER_ha,_RESOURCE, 

e46,PERSONNE[" 

047 ~AClllNE, 

e48,MAClllNE_ha,_SUPPUER, 

e49:MACHINE_LascScrvicc_Maintenancc_Date: 

eSO~AClllNE_Repaired_on, 

en4:date: 

t1 :type_c1ass: 

t2:part_c1ass: 

t3:resource_class: 

t4:order_category: 

15 :product_code: 

Page 308 



DaliJ!ormal in dictionary 
.---------------------- Table in which attribute is located 

Mandatory requirement 

Attribute classir""oon 
i.e. entity. array and enumeration (fIXed assigned values) 

hasYART_MASTER-BOM el m entity enO aO 
has_CUSTOMER el m entity enl al 
has_SCHEDULE el m LIST 1 # en2 a2 
has_SHOP _FLOOR_STATUS el m LIST 1 # en3 a3 

Mfg_Ortler_Number el m 1 7 INTEGER a4 
Preceedill9-Order_Number el m 1 7 INTEGER as 
Description elm 1 60 STRING as 
Effectivity_Start_Date 01 m entity en4 87 
Effectivity_End_Date el m entity en4 a8 
Type 91 m enumeration t1 a9 
Type el m entity 11 al0 
DUB_Date 91 m entity en4 all 
UniCoCMeasure 01 m 1 4 STRING 812 
Unit_Price el m REAL a13 
Order_Quantity el m 1 9 INTEGER a14 

ParenLParLnumberenO m 1 15 STRING a16 
Effectivity_Start_Date enO m entity en4 a17 
Effectivity_End_Date enO m entity en4 a18 
UniLoLMeasure enO m 1 4 STRING a19 
Engineering_Change_Notice enO m 1 7 INTEGER a20 
Change_Effected_by enO m 1 20 STRING a21 
Date_ol_Change enO m entity en4 a22 
Phases_ouLPart_Number enO m 1 15 STRING a23 
Phased_ouLby-Part_Number enO m 1 15 STRING a24 
Number_o,-Levels enO m 1 2 INTEGER a25 
Number_oCcomponents eoO m 1 3 INTEGER 826 

Range for attribute's foeld size 

Attribute type (i.e. integer, string) 

Unique K:lentiUer for attribute 

ORDER ENTRY 

PART MASTERlBOM 

has_BOM_CHILD e15 m entity enS a27 
has_MFG_OPERATION_ASSIGNMENT e15 m entity en6 a28 
has_MFG_CELL_CONFIGURAnON e15 m entity en7 a29 

PROCESS PLAN 
Process.JllanJD e15 m 1 7 INTEGER a30 
Process_Description e15 m 1 60 STRING a31 
Part_number enS m 1 15 STRING a33 

Page 309 



has_ENGINEERING_RESOURCE enS m LIST 1 # enB a32 

Number_oLcomponenls enS m 1 3 INTEGER a34 
ParC Type enS m enumeration 12 835 
OuantilyJ"lr_Assembly enS m REAL a36 
Effectivity_SIart_Data enS m entily eM a37 
Effectivily_EncLData enS m entily en4 a38 
UniLoLMeasure enS m 1 4 STRING a39 
Lead_Tune_Offselen5m 191~TEGERa40 
Engineering_Change_Notice enS m 1 7 INTEGER a41 
Change_EffecIBd_by enS m 1 20 STRING a42 
Change_Data enS m entily en4 a43 
Phases_Out..ParLNumber enS m 1 15 STRING a44 
Phased_Q,Lby_Part_Number enS m 1 15 STRING a45 

has_RESOURCE_ASSIGNMENT en6 m LIST 1 • en9 a46 
has_MFG_FACIUTY_ASSIGNMENT enS m LIST 1 # enl0 a47 

Mfg_Operation_ID enS m 1 7 INTEGER a48 
Mlg_Operation_Description enS m 1 60 STRING a49 
Preceed_MfILOperalion_ID en6 m 1 7 INTEGER a50 
Nexl_Mfg_Operetion_ID enS m 1 7 INTEGER a51 
Altarnata_MIILOperation_1D enS m 1 7 INTEGER a52 
SelUp_time...PSUlem en6 m REAL a53 
Machining_timeJ"lUtam enS m REAL a54 
HandlinlLtimeJ"lUtam enS m REAL 855 
Operation_tima.J)erjtem en6 m REAL ass 
Scrap_rata en6 m REAL 857 

has_RESOURCE en9 m entily enll ass 

BOM-CHILD 

MANUFACTURING 
OPERATION 

ASSIGNMENT 

Resource_Type en9 m enumeration t3 859 
Resource_Type en9 m entity 13 a60 
Quantily_Required en9 m REAL aSl 
UniLoLMaasure en9 m 1 4 STRING aS2 

RESOURCE ASSIGNMENT 

has_MANUFACTURING_FACILlTY enl0 m entily en12 aS3 
Feed enl0 m 1 4 INTEGER a64 
Speed enl0 m 1 SINTEGER a65 
Deplh_oU.JI enl0 m 1 3 INTEGER a66 
Number_of.J)asses enl0 m 1 5 INTEGER aS7 
Remar1<s enl0 m 1 60 STRING a68 

has_MANUFACTURING_FACILITY en7 m LIST 1 # en12 aS9 

Mfg_CeILGroup_ID en7 m 1 2 INTEGER a70 
Number_oLMfg_Slations en7 m 1 2 INTEGER a71 
Mfg_slation_l en7 m 1 7 INTEGER e72 
Description_slation_l en7 m 160 STRING a73 
Mfg_8Iation_2 en7 m-I 7 INTEGER a74 
Description_81aIion_2 en7 m 1 60 STRING a75 
Mfg_slation_3 en7 m 1 7 INTEGER a7S 
Description_slation_3 en7 m 1 SO STRING a77 
Mlg_slalion_ 4 en7 m 1 7 INTEGER a78 
Description_slation_ 4 en7 m 1 SO STRING a79 
Mfg_slation_5 en7 m 1 7 INTEGER aBO 
Descriptioo_slation_5 en7 m 1 60 STRING a81 

MANUFACTURING 
FACILITY 

ASSIGNMENT 

MANUFACTURING 
CELL 

CONFIGURATION 

Page 310 



ResouraUD enll m 1 15 STRING aS2 
Resource_Type en11 m enumeration t3 883 
Description enll m 1 60 STRING a84 
Location enll m 115 STRING a85 
Acc:ounLNumberenll m 115INTEGERa86 
UniLof_Mess"", enll m 1 4 STRING aS7 
UniLPrioe en 11 m REAL a88 
Buy-Make_s..pply_Code en11 m enumeration t5 aS9 
CataJogue_Order_Numbar onll m 1 30 STRING a90 
Purchasirl\LLeed_ Tune en11 m 1 7 INTEGER &91 
LasL Order _Data en 11 m entity en4 a92 
Quantity_Ordered en11 m 1 9 INTEGER a93 
Effectivity_Stan_Data en11 m entity en4 a94 
Effectivity_End_Data enll m entity en4 895 
Stock_on_hand en11 m 1 9 INTEGER a96 
Alloeata'Ulesorve'LStocI< enll m 1 9 INTEGER 897 
Scrap_Value enll m REAL 898 
Scrap_uniCoCMeasure enl1 m 1 4 STRING a99 

MANUFACTURING 
RESOURCE 

{ 

hss_PROCESS_PLAN enS m entity 015 al00 

EngineerilllLResouroe enS m 1 10 STRING al0l 
Location enS m 1 10 STRING 8102 } 

ENGINEERING 
RESOURCE 

CustomeUD enl m 1 7 INTEGER 8103 
Company-Name en 1 m 1 40 STRING 8104 
Address enl m 1 60 STRING al05 
ContacLPerson enl m 1 25 STRING al06 
Telephone enl m 1 20 STRING a 107 
Fax enl m 1 20 STRING al08 

has_SHOP _FLOOR_STATUS en2 m entity en3 al 09 
has_BOM_CHILD en2 m entity enS all0 

Priority en2 m 1 3 INTEGER a111 
Order_Status en2 m enumeration t4 8112 
Order_Status en2 m entity t4 a113 
Planned_Quantity en2 m 1 9 INTEGER a114 
UniCof_Measure en2 m 1 4 STRING a115 
ScheduIe_StarCData en2 m entity en4 a116 
Schedule_End_Data en2 m entity en4 a117 

1 
has_BOM_CHILD en3 m entity enS a118 

Actual_Quantity_Produoed en3 m 1 9 INTEGER a119 
Station_Utilisation_Rate en3 m REAL 8120 
Actual_Capacity_Ulilised en3 m REAL a121 

AsseUDen12m 171NTEGERa122 
Description en12 m 1 60 STRING 8123 
Location en12 m 115 STRING 8124 
Working_Capacity en12 m 1 3 INTEGER a125 
Labor_Cos1..Jl9r_hourenI2 m REAL a126 
Handling_CostJlOf_hour en12 m REAL a127 

CUSTOMERS 

SCHEDULE 

} SHOP FLOOR STATUS 

MANUFACTURING 
FACILITY 

Page 311 



has_RESOURCE e44 m LIST 1 • enll a128 

SupptieUD e44 m 1 7 INTEGER al29 
Company-Name e44 m 1 40 STRING a130 
Address &44 m 1 60 STRING a131 
ConlaCl_Person e44 m 1 25 STRING a 132 
Talephone e44 m 1 20 STRING a 133 

SUPPLIERS 

Fax &44 m 1 20 STRING al34 

PersonneUD e46 m 1 15 STRING al35 
Name a46 m 1 30 STRING a 136 
Address &46 m 1 60 STRING a 137 
Telephone e46 m 1 20 STRING al36 
Salary a46 m REAL a139 PERSONNEL 
Skill e46 m 1 30 STRING a140 
SkilUevele46 m 1 2 INTEGER 8141 
Ramar1<s &46 m 1 60 STRING a142 

has_SUPPLIER e47 m entity e44 a143 

LasCSelVice_Maintenance_Oate 947 m entity en4 a144 
Repaired_on 947 m entity en4 8145 
Rapair_Work_Ordat'_Number &47 m 1 7 INTEGER al46 
Maxjob_size_X_ruUs &47 m REAL a147 
Maxjob_size_Y_axis &47 m REAL al46 
Maxjob_size_Z_axis &47 m REAL a149 
Accuracy e47 m REAL al50 
Machining_Cost'p'''_hour e47 m REAL a151 
Horse_Power e47 m 1 7 INTEGER a152 
Speed_Range_Min &47 m 1 6 INTEGER al53 
Speed_Range_Max &47 m 1 6 INTEGER al54 
Feed_Range_Min e47 m 1 4 INTEGER a155 
Feed_Range_Max e47 m 1 4 INTEGER 8156 
Payload &47 m 1 5 INTEGER 8157 
Working_Envelopa_X_axis &47 m REAL al58 
Working_Envelope_Y_axis &47 m REAL a159 
Working_Envelope_Z_sxis e47 m REAL a 160 
Working_Envelope_A_sxis &47 m REAL a161 
Working_Envelope_B_axis &47 m REAL a162 
Setup_TIme &47 m REAL al63 
TooLChange_TIme &47 m REAL 8164 
Feed_Change_TIme &47 m REAL a165 
Table_Rolation_TIme &47 m REALal66 
TooLAdjustmenL TIme &47 m REAL a167 
Rapid_ TranvelSe_Rate &47 m REALal68 

{

day en4 m 1 2 INTEGER a169 
month en4 m 1 2 INTEGER 8170 
year en4 m 1 2 INTEGER a171 

} DATE 

MACHINING 
FACILITY 

Page 312 



create table index_table ( 
sys_Dame c:hu(IO). 
entity-name char(SO) 
); 

create table data_diet ( 
attribute_name char(SO). 
table_name chat(IO), 
man,Cop< chat(l), 
cia" char( 10), 
indClU chat(IO), 
indea_2 char(1O), 
type char(IO), 
auribute_token char(SO) 
); 

create table logical 
( 
logical_id numbel( 10), 
logical_type char(lO) 
); 

msen into logical (logica.l_id,logical_type) 
values (0, 'FALSE' 
); 

msen into logical (logical_id, logical_type) 
values (I, 'TRUE' 
); 

msen into logical (logical_id,logical_type) 
values (2, 'UNKNOWN' 
); 

create table types 
( 
type_name chat(80), 
opl chat(80), 
class char(lS) 
); 

create table id_table 
( 
table_name char(80), 
column_name char(SO) 
); 

create table e2 

el_id number(lO), 
enO_id number(IO) 
); 

create table e3 
( 
el_id number(lO), 
en Ud numbet(lO) 
); 

create table e4 
( 
el_id number(IO), 
en2_id numbet(IO), 
e4_id number(lO) 
); 

Page 313 



create table e4~ 
( 

.4...P • ...Pred "Dnber(IO), 
e4...,ps_succ nmnbe:r(lO) 
~ 

create table cS 
( 
.Ud Dwnber(IO), 
.,'Ud number(IO), 
cS_id number(lO) 

~ 

create table cS~ 
( 
eS...,ps...,pred numbe:r(10), 
eS...,ps_succ numbe:r(IO) 
); 

create table c6 
( 
el_id numbcr(IO), 
en4_id number(lO) 
); 

create table e1 
( 
el_id numbcr(IO), 
en4_id nwnber(lO) 
); 

create table eS 

cl_id numbcr(lO), 
ll_id number(lO) 
); 

create table e9 

el_id numbcr(IO), 
tUd number(lO) 
); 

create table e 10 
( 
el_id number(IO), 
en4_id number(lO) 
); 

create table e I 
( 
cUd number(IO), 
el_MfLOrder_Nwnbernwnbe:r(7), 
el_PrececdinLOrder...Number number(7), 
.UJe.cription char(60), 
el_Unit_oCMeasurc char(4), 
el_ Unit_Price nmnbcr(7,2), 
el_OrdecQuantity number(9) 
); 

create table ell 

enO_id number(IO), 
enS_id number(IO), 
cl Ud number(lO) 
); 

Page 314 



create table ell...,ps 
( 

ell-P'-i=1 nwnbe«IO), 
ell-P'_IUCC nwnbe«IO) 
); 

create table e 12 
( 
onO_id nwnbe«IO), 
en4_id nwnbe«IO) 
); 

creale table e 13 
( 
onO_id nwnbe«IO), 
en4_id nwnbe«lO) 
); 

create table e 14 
( 
onO_id nwnbe«IO), 
en4_id nwnbe«lO) 
); 

create lable enD 

onO_id nwnbe«IO), 
enO_Parent-P8n_numbcr cltar{lS), 
cnO_Vnit_oCMcasurc char(4), 
cnO_Enginccrin&-Change_Notice number(1), 
enO_o,ange_Effecte,Cby char(20), 
enO_Phascs_oul_ParcNumbcr char(1 S), 
cnO_Phase(Coucby_Part_Number char(IS), 
enO_Numbcr_of_Lcvels numbcr(2), 
enO_Number_of_COIOponcnts numbcr(3) 
); 

create table e16 
( 
eIS_id nwnbe«IO), 
enS_id nwnbe«lO) 
); 

create table el7 
( 
eIS_id nwnbe«IO), 
en6_id ntonbe«lO) 
); 

creale table e 18 
( 
eIS_id numbe«IO), 
en7 _id number{IO) 
); 

create table et5 
( 
eIS_id numbe«IO), 
eIS_Process-plan_ID number(1), 
eI5_Process_Description char(60) 
); 

create table e 19 
( 
enS_id numbe«IO), 
enS_id number(IO), 
el9_id numbe«lO) 
); 

Page 315 



cn:ate table e 19 --PI 
( 
019..J>S..JHOd nwnber( 10), 
e19-ps_lucc rwmber(IO) 
~ 

crea1e table e20 
( 
mUd nmnbe«IO), 
';Ud nmnbe«IO) 
); 

creale table ell 
( 
enS_id nmnbe«IO), 
en4_id nmnbe«lO) 
); 

create table ell 
( 
enS_id nmnbe«IO), 
en4_id nmnbe«lO) 
); 

create table e23 

enS_id DlDDbe«IO), 
en4_id nmnbe«lO) 
); 

create table enS 
( 
enS_id nmnbe«IO), 
enS ]an_nlDDber cha«IS), 
enS_Number_oCcomponents number(3), 
enS_Quanti'Y..,per~ .. embly DlDDber{1.2), 
en5_Uni,-oCMcuure clulJ(4). 
en5_Lcad_Tune_OffICl number(9), 
enS_EngineerinLChange_Notice number(7), 
enS_OIango_EffeCled_by cha«20), 
en5_Phases_Out_Pan.-Number char(lS), 
enS_Phased_Out_by _Pan_Number char(lS) 
); 

create table e24 
( 
en6_id DlDDbe«IO), 
en9_id DlDDbe«IO), 
e24_id nmnbe«lO) 

~ 

create table e24...,ps 
( 
e24..J>S-pred number(IO), 
e24...,ps_lucc number(lO) 
); 

create table e25 

en6_id number(IO), 
enlD_id number(10), 
e25_id number(IO) 
); 

create table e25...,ps 
( 
e2S..J>S-pred number(IO), 
e25..P1_succ number(lO) 
); 

• 

Page 316 



create table en6 
( 
eOO_id nmnbe«IO), 
en6_MfgJlperatial_ID nwnber(1), 
en6_Mf&-Operatial_Descriptioo cba«60), 
eOO_Preceed_Mf&-Opentioo_ID Dlnnber(1), 
eOO_Next.JIM&-Opentioo_ID number(/), 
eOO_Ahemate.JIM&-Ope .. tioo_ID nmnber(1), 
en6_Setup_time~r_i1em number(] ,2), 
en6_MadUnin&-bme ... I",,_drm nwnber(/,2), 
en6_HandIin&...time..J>C,_drm nwnber(1,2), 
eOO_Opential_time..J>C'_drm number(1,2), 
eOO_Scrap_ .. te number(/,2) 
); 

create table e26 
( 

en9 _id nmnbe« 1 0), 
coli_id numbcr(IO) 
); 

create table eV 
( 
en9_id number(lO), 
t3_id nmnbe«lO) 
); 

create table e28 

en9_id Dlnnber(lO), 
t3_id nwnbe«lO) 
); 

create table cn9 

en9_id number(IO), 
en9_Quantity_Required nwnber(/,2), 
en9 _ Unit_oCMeasure char(4) 
); 

create table e29 
( 
enlO_id number(lO), 
enl2_id number(10) 
); 

create table enlO 
( 
cnlO_id number(10), 
enlO_Feed number(4), 
enlO_Speed nwnbe«6), 
enlO_Dep<h_of_cut DlDnber(3), 
enlO_Number_of...,passes number(S), 
enlO_Remarks char(60) 
); 

create table e30 
( 
en7 _id number(lO), 
enl2_id number(10), 

. e30_id nmnbe«lO) 
); 

create table e30-ps 
( 
e30-l""'pred numbe«lO), 
e30.....ps_succ number(lO) 
); 

Page 317 



create table en? 
( 
aa_id number(IO), 
en7_Mf8-CelCGroup_ID number(2), 
en?_NumbecoCMf&-Stations number(2}, 
en? _MfLstation_l number(7), 
en7 _Descriptio'ulAtioo_1 char(60), 
en7 _Mf8-swioo...z number(7), 
en7 _Descriptioo_swioo_2 char(60), 
en7 _Mf8-swinn3 number(7), 
en7 _Descriptinn_swioo_3 char(60), 
en? _MfLstation_ 4 number(7}, 
en? _Description_llatioo_ 4 mar(60}, 
en? _MfLmtion.....S number(7}, 
en7 _Description_statioo_S dlar(60} 
); 

create table e31 
( 
enl Ud number(IO), 
t3_id number(lO) 
); 

create table e32 
( 
enl Ud number(IO), 
IS_id number(lO) 
); 

create table e33 
( 
colI_id numbc:r(tO), 
en4_id number(tO) 
); 

create table e34 
( 
enll_id number(lO), 
en4_id nwnber(lO) 
); 

create table e3S 
( 
enll_id number(IO), 
en4_id number(tO) 
); 

create table co 11 

enl Ud number(IO), 
enl !J{e,ource_ID char(15), 
enl U)e,cription char(60), 
enl U.ocation char(15), 
enll_Account_Numbernumber(15}, 
enll_Unit_oCMeasure char(4), 
enll_Unit_Price nwnber(7,2), 
en 11_Catalogue_Order_Number char(30), 
enll_Purchasing .. J .. ead_Time number(7), 
enll_Quantity_Ordered nwnber(9), 
enll_Stock_on_hand nwnber(9), 
enl1_Allocated_Reserved_Stock number(9), 
enll_Scrap_ Value number(7,2), 
enl1_Scrap_uoit_oCMeasure char(4) 
); 

Page 318 



create table e36 

en8_id mDnber(IO), 
e15 _id number(lO) 
~ 

create table enS 
( 
en8_id number(IO), 
cn8_EngincerinILRcsource char(IO), 
en8_Loc:alion char(lO) 
); 

create table en I 
( 
enl_id number(IO), 
enl_Customer_ID number(7), 
enl_Company_Name char(40), 
enl_Addre .. char(60), 
enl_Contact_Penoo char(2S), 
en 1_ Tclephooe char(20), 
enl]ax char(20) 
); 

create table e37 
( 
en2_id number(IO), 
en3_id number(IO) 
); 

create table e38 
( 
en2_id number(IO), 
enS_id number(lO) 
); 

create table e39 
( 
en2_id number(IO), 
t4_id number(lO) 
); 

create table e40 

en2_id number(IO), 
t4_id number(lO) 
); 

create table e41 

en2_id number(IO), 
en4_id number(lO) 
); 

create table e42 
( 
en2_id number(IO), 
en4_id number(lO) 
); 

create table en2 
( 
en2_id number(IO), 
en2]riority number(3), 
en2_Planned_Quantity number(9), 
en2_Unit_oCMeasure char(4) 
); 

Page 319 



create table e43 
( 
en3_id nlDDber(IO), 
enS_id nlDDber(lO) 

~ 

create: table en3 
( 
en3_id nlDDber(IO), 
en3_AClu,U~u .. tity_Produced nlDDber(9), 
en3_Statioo_Utilisation_RaIe number(7,2), 
en3_Actual_Capacity _UtiliS<:d number(7.2) 
); 

create: table en 12 

enl2_id nwnber(IO), 
en12_AsseUD number(7), 
enl2_Descriptioo char(60), 
en12_Locatioo char(IS), 
enl2_WoOOnLCapacity number(3), 
enI2_LabocCosl-J'Cr_hour number(1,2), 
enI2_HandlinLCosl-PCl'_hour number(7,2) 
); 

create table e45 
( 
e44_id number(lO), 
enl Ud number(IO), 
e45_id number(lO) 
); 

create table e45-ps 
( 
e4S-"''''pred number(IO), 
e45-ps_succ number(IO) 
); 

create table e44 

e44_id nlDDber(IO), 
e44_Supplier_ID number(7), 
e44_Company_Name char(40), 
e44_Address char(60), 

e44_Comact]enoo char(2S), 
e44_Telephooe char(20), 
e44_Faa char(20) . 

); 

create table e46 
( 
e46_id nlDDber(IO), 
enl2_id number(lO), 
e46]enonneUD char(IS), 
e46_Name char(30), 
e46_Addres. char(60), 
e46_Te1ephooe char(20), 
e46_Salary number(7.2), 
e46_Skill char(30), 
e46_SkilClevcl number(2), 
e46_Remarb char(60) 
); 

create table e48 

e47 _id number(lO), 
e44_id nlDDber(lO) 
); 

Page 320 



CJUle table e49 
( 
e47 _id number(IO), 
cn4_id number(lO) 
); 

=ate lable e50 
( 
e41_id number(IO), 
cn4_id number(lO) 
); 

crca1e table rK1 
( 
e41_id number(IO). 
enl2jd number(IO), 
e47 _Repaic Work_Order_Number number(7), 
e41_Max...iob_size.J(_axis number(1,2), 
e41~...iob_size_Y_axis number(1,2), 
e41_Max...iob_sizeJ;_axis number(1,2), 
e47 _Accuracy number(7,2), 
e47 _MachininL Cost~r_hoor number(7.2), 
e47 _Hone_Power number(7), 
e41_Spee<Uunge_Min number(6), 
e41_Speed_Range_Max number(6), 
e41_Feed_Range_Min number(4), 
e41_Feed_Range_Mu number(4), 
e41 ]ayload number(S), 
e41_ Workin&.-Envelope_X_axis number(1,2), 
e47 _ WorkinLEnvelope_ Y_axis number(7,2), 
e41_ Workin&.-EnvelopeJ;_axi. mDnber(1,2), 
e47 _ Workin&-Envelope_A_axis number(7,2), 
e41_ Workin&.-Envelope_B_axis number(1,2), 
e47 _Setup_Tune numbc.r(7,2), 
e47 _ TCX1I_Qange_ Tune number(7.2), 
e47_Fee(COiange_Tune number(7.2), 
e47 _ Table_Rotation_Tune munber(7.2), 
e47 _Tool_Adjustment_Tune number(7.2), 
e47 _Rapid_ Tranvene_Rate number(7.2) 
); 

create table en4 
( 
cn4_id number(IO), 
cn4_day number(2), 
cn4_moolh number(2), 
en4....)'ear number(2) 
); 

create table tl 

'Ud number(IO), 
tl_name char(12) 
); 

create table t2 
( 
a_id number(IO), 
a_name char(16) 
); 

create table t3 
( 
t3_id number(IO), 
t3_name char(19) 
); 

Page 321 



cteale table t4 
( 
t4_id number(lO). 
t4_name chu(20) 

~ 

=ale table IS 
( 
IS_id number(IO), 
IS_name chu(6) 
); 

Page 322 



en5 

en5_id 

en5_Part_number 

en5_Number_oCcomponents 

en5_ Quantity .:.)JecAssembty 

NTRY en5_Unit_oCMeasure B OM-CHILD 
en5_Lead_TIme_Offset 

en5 _Engineerin~ Change_Notice 

en5_Change_Effected_by 
ell en5]hases_OuCPart_Number 

enO id en5_Phase'COut_by_Part_Number 
~ en5_id 

ell_id en 11 - enlt id 

enll_Resource_ID 

en I U)escription 

en It_Location 

STER/BOM enll AccouncNumber 

entl_Unit_oCMeasure RESOURCE 
enll_Unit_Price 

enlt_CataIogue_Order_Number 

en II_Purchasin~Lead_l"'me 
enll_Quantity _Ordered 

enlt_Stock_on_hand 

en It_Allocated Reserved Stock 

enlt_Scrap_ Value 



APPENDIX XV 

Report on 
IDEFlX Entity-Attribute relationship model 

(to be translated to EXPRESS schema) 

Page 324 



(ENTITY, 1EI, ORDER ENfRY, (MFG ORDER NUMBER,), (Preceeding Mfg Order Number, Description, 
Product Effectivity Stan Date, Product Effectivity End Date, Type, Due Date,Unit of Measure,Unit Price, 
Order Quantity) } 

(ENTITY, IE2, PART MASTER-BOM, (PARENT PART NUMBER,), (Effectivity Start Date, Effectivity End 
Date, Unit of Measure,Engineering Change Notice,Change Effected by,Date of Change,Phases out Part Number, 
Phased out by Part Number, Number of Levels, Number of components (children)) } 

(ENTITY, IPA, PROCESS PLAN, (PROCESS PLAN ID,). (Process Description,)} 

(DEPENDENT ENTITY, DE2l, BOM CHILD, (PART NUMBER,). {Number of components (children),Part 
Type, Quantity per Assembly,Effectivity Start Date,Effectivity End Date,Unit of Measure,Lead l1lTIe Offset, 
Engineering Change Notice, Change Effected by,Change Date,Phases Out Part Number,Phased Out by Part 
Number)) 

(DEPENDENT ENTITY, DE41 , MFG OPERATION ASSIGNMENT, (MFG OPERATION ID,), 
(Mfg Operation Description, Preceeding Mfg Operation ID,Next Mfg Operation ID, Alternative Mfg Operation 
ID, Setup time per item,Machining time per item, Handling time per item,Operation time per item, Scrap rate .. ) } 

(DEPENDENT ENTITY, DE43, RESOURCE ASSIGNMENT, (.), 
(Resource Type,Quantity Required,Unit of Measure) } 

(DEPENDENT ENTITY, DE42, MFG FACILITY ASSIGNMENT, (), 
(Feed,Speed, Depth of cut,Number of passes, Remarks) } 

(ENTITY, 1E5, MFG CELL CONFIGURATION, (MFG CELL GROUP ID,). 
(Number of Mfg Stations) } 

(ENTITY, IE6, RESOURCE, (RESOURCE ID,), (Resource Type, Description, Location, Account Number, 
Unit of Measure, Unit Price,Buy/Make/Supply Code,Catalogue Order Number,Purchasing Lead Time, 
Last Order Date, Quantity Ordered,Effectivity Stan Date,Effectivity End Date,Stock on-hand, 
AllocatedlReserved Stock,Scrap Value, Unit of Measure for Scrap) } 

(ENTITY, 1E3, ENGINEERING RESOURCE, (), (Engineering Resource,Location)} 

(ENTITY, 1E7, CUSlOMER, (CUSlOMER ID). 
(Company/Name, Address, Contact Person,Telephone,Fax)} 

(ENTITY, lEg, SCHEDULE, (), (Priority,Order Status,Planned Quantity,Unit of Measure, Schedule Start Date, 
Schedule End Date) } 

(ENTITY, 1E9, SHOP FLOOR STATUS, (), (Actual Quantity Produced,Work Centre/Cell Utilisation Rate, 
Actual Capacity Utilised)} 

(ENTITY, IEJO, MANUFACTURING FACILITY, (ASSET ID,). (Description,Location,Working Capacity, 
Labor Cost per hour,Handling Cost per hour .. )} 

(ENTITY, IEll, SUPPLIER, (SUPPLIER ID), (Company/Name, Address, Contact Person, Telephone,Fax)} 

(DEPENDENT ENTITY, DElOI, PERSONNEL, ( ). 
(Personnel ID,Name,Address,Telephone,Salary,Skill,Skilllevel,Remarks) } 

(DEPENDENT ENTITY, DElO2, MACHINE, (), (Last Service/Maintenance Date,Repaired on, 
Repair Work Order Number,Max. job size accommodated - X/Y rz axes,Accuracy,Machining Cost per hour, 
Horse Power,Speed Range (Max./Min.),Feed Range,Payload,Working Envelope - X/Y mAIB axes,Setup Time, 
Tool Change Time,Feed Change Tune,Thble Rotation Time, Tool Adjustment Time,Rapid Tranverse Rate)} 

Page 325 



(CATEGORIZATION, CRI" COMPLETE, (1EIO), (DEIOI,DEI02) 

(RELATION, RLI" NON-SPECIFIC,1E2, DE21, OM) 

(RELATION, RL2" NON-SPECIFIC,1E4, DE21, 0) 

(RELATION, RL3" NON-SPECIFIC, DE41 ,DE43, OM) 

(RELATION, RL4" NON-SPECIFIC,IEI,1E2, 0) 

(RELATION, RL5, ,NON-SPECIFIC,1E4, DE41 ,0) 

(RELATION, RL6, ,NON-SPECIFIC, DE41 ,DE42, OM) 

(RELATION, RL7, ,NON-SPECIFIC, DE43,1E6, 0) 

(RELATION, RLS" NON-SPECIFIC,IEI,1E7, 0) 

(RELATION, RL9, ,NON-SPECIFIC,IES,1E9, 0) 

(RELATION, RLIO" NON-SPECIFIC,1E9, DE21, 0) 

(RELATION, RLll" NON-SPECIFIC,IES, DE21, 0) 

(RELATION, RLI2, , NON-SPECIFIC,1E4,1E5, ZOM) 

(RELATION, RL13" NON-SPECIFIC,1E3,1E4, 0) 

(RELATION, RLI4" NON-SPECIAC,IEI,IES, OM) 

(RELATION, RLI5, , NON-SPECIFIC,IEI,1E9, OM) 

(RELATION, RLI6, , NON-SPECIFIC,IE5,IEIO, OM) 

(RELATION, RLI7, , NON-SPECIFIC,lEll,1E6, OM) 

(RELATION, RLlS, ,NON-SPECIFIC, DEI02,lEll, 0) 

(RELATION, RLl9, ,NON-SPECIFIC, DE21,lE3, OM) 

(RELATION, RL20" NON-SPECIFIC, DE42,lElO, 0) 

Done. 

Page 326 



APPENDIX XVI 

Report on 

IDEFo MCS function model 

) 

Page 327 



[Diagram: A-O) 

Activity: [AO) Part manufacture with MCS 

Arrow: Product Order 

Input From: Product Order 

Input To: [AO) Part manufacture with MCS 

Arrow: Shop Floor Status Report 

Input From: Shop Floor Status Report 

Input To: [AO) Part manufacture with MCS 

Arrow: Customer Order Enquiry & Request 

Control From: Customer Order Enquiry & Request 

Control To: [AO) Part manufacture with MCS 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [AO) Part manufacture with MCS 

Arrow: Enterprise Manufacturing Capability 

Control From: Enterprise Manufacturing Capability 

Control To: [AO) Part manufacture with MCS 

Arrow: Engineering Resources 

Output From: [AO) Part ~anufacture with MCS 

Output To: Engineering Resources 

Arrow: Schedules 

Output From: [AO) Part manufacture with MCS 

Output To: Schedules 

Arrow: Process Plans 

Output From: [AO) Part manufacture with MCS 

Output To: Process Plans. 

Arrow: Shop Floor Status 

Output From: [AO) Part manufacture with MCS 

Output To: Shop Floor Status 

Arrow: Order Acknowledgement 

Output From: [AO) Part manufacture with MCS 

Output To: Order Acknowledgement 

Page 328 



Arrow: Finished Products 

Output From: [AO] Pan manufacture with MCS 

Output To: Finished Products 

Arrow: Rejects/Scrap 

Output From: [AO] Pan manufacture with MCS 

Output To: Rejects/Scrap 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [AO] Pan manufacture with MCS 

Arrow: Manufacturing Cell 

Mechanism From: Manufacturing Cell 

Mechanism To: [AO] Pan manufacture with MCS 

Arrow: Procurement of Manufacturing Resources 

Output From: [AO] Pan manufacture with MCS 

Output To: Procurement of Manufacturing Resources 

Arrow: Tansaction Report for Progress/Delays & Resources Shortfall 

Output From: [AO] Pan manufacture with MCS 

Output To: Tansaction Report for Progress/Delays & Resources Shortfall 

Arrow: Allocation of Manufacturing Resources & FacilitieslPicklist 

Output From: [AO] Pan manufacture with MCS 

Output To: Allocation of Manufacturing Resources & Facilities/Picklist 

Arrow: Production Report 

Input From: Production Report 

Input To: [AO] Pan manufacture with MCS 

Arrow: Manufacturing Resources & Facilities Requisition 

Input From: Manufacturing Resources & Facilities Requisition 

Input To: [AO] Pan manufacture with MCS 

[Diagram: AO] Pan manufacture with MCS 

Activity: [AI] Pre-Planning 

Activity: [A2] Planning for Manufacture 

Activity: [A3] Manufacturing Control 

Page 329 



Arrow: Customer Order Enquiry & Request 

Control From: Customer Order Enquiry & Request 

Control To: [AI] Pre-Planning 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resowces & Facilities 

Control To: [AI] Pre-Planning 

Arrow: Confirmed Orders 

Output From: [AI] Pre-Planning 

Input To: [A2] Planning for Manufacture 

Arrow: Order Acknowledgement 

Output From: [AI] Pre-Planning 

Output To: Order Acknowledgement 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A2] Planning for Manufacture 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A3] Manufacturing Control 

Arrow: Finished ProdUCIS 

Output From: [A3] Manufacturing Control 

Output To: Finished ProduclS 

Arrow: Rejects/Scrap 

Output From: [A3] Manufacturing Control 

Output To: Rejects/Scrap 

Arrow: Shop Floor Status Report 

Output From: [A3] Manufacturing Control 

Output To: Shop Floor Status 

Arrow: Product Order 

Input From: Product Order 

Input To: [AI] Pre-Planning 

Arrow: Shop Floor Data Acquisition 

Mechanism From: Shop Floor Data Acquisition 

Mechanism To; [A3] Manufacturing Control 

Page 330 



Arrow: 

Output From: [A2] Planning for Manufacture 

Output To: Process Plans 

Arrow: 

Output From: [A2] Planning for Manufacture 

Output To: Schedules 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [AI] Pre-Planning 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [A2] Planning for Manufacture 

Arrow: Procurement of Manufacturing Resources 

Output From: [A2] Planning for Manufacture 

Output To: Procurement of Manufacturing Resources 

Arrow: Production Report 

Output From: [A2] Planning for Manufacture 

Output To: Tansaction Report for Progress/Delays & Resources Shortfall 

Arrow: 

Output From: [A2] Planning for Manufacture 

Output To: Allocation of Manufacturing Resources & Facilities/Picklist 

Arrow: 

Output From: [A2] Planning for Manufacture 

Output To: Engineering Resources 

Arrow: Schedules 

Output From: [A2] Planning for Manufacture 

Input To: [A3] Manufacturing Control 

Arrow: Process Plans 

Output From: [A2] Planning for Manufacture 

Input To: [A3] Manufacturing Control 

Arrow: Allocation of Manufacturing Resources & FacilitieslPicldist 

Output From: [A2] Planning for Manufacture 

Input To: [A3] Manufacturing Control 

Page 331 



Arrow: Engineering Resources 

Output From: [A2) Planning for Manufacture 

Input To: [A3) Manufacruring Control 

Arrow: Manufacruring Cell 

Mechanism From: Manufacturing Cell 

Mechanism To: [A3) Manufacturing Control 

Arrow: Shop Floor Status Repon 

Output From: [A3) Manufacturing Connol 

Input To: [A2) Planning for Manufacture 

Arrow: Entelprise Manufacturing Capability 

Control From: Entelprise Manufacruring Capability 

Control To: [A2) Planning for Manufacture 

Arrow: Entelprise Manufacturing Capability 

Control From: Enterprise Manufacruring Capability 

Control To: [A 1) Pre-Planning 

Arrow: Production Repon 

Output From: [A2) Planning for Manufacture 

Output To: [A2) Planning for Manufacture 

Arrow: Manufacruring Resources & Facilities Requisition 

Input From: Manufacruring Resources & Facilities Requisition 

Input To: [A2) Planning for Manufacture 

[Diagram: A2) Planning for Manufacture 

Activity: [A21) Production Planning 

Activity: [A23) Process Planning 

Activity: [A24) Product Design (CAD/CAM) 

Activity: [A22) Finite Capacity Scheduler 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A23) Process Planning 

Page 332 



Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A24) Product Design (CAD/CAM) 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A22) Finite Capacity Scheduler 

Arrow: Confirmed Orders 

Input From: Confirmed Orders 

Input To: [A2I) Production Planning 

Arrow: Process Plans 

OU!put From: [A23) Process Planning 

OU!put To: Process Plans 

Arrow: Allocation of Manufacturing Resources & Facilities/PickIist 

OU!put From: [A2I) Production Planning 

OU!put To: Allocation of Manufacturing Resources & FacilitieslPickIist 

Arrow: Procurement of Manufacturing Resources 

OU!put From: [A2I) Production Planning 

Ou!put To: Procurement of Manufacturing Resources 

Arrow: Production Repon 

Input From: Production Repon 

Input To: [A2I) Production Planning 

Arrow: Process Plans 

OU!put From: [A2I) Production Planning 

OU!put To: Process Plans 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [A23) Process Planning 

Arrow: Schedules 

OU!put From: [A22) Finite Capacity Scheduler 

OU!put To: Schedules 

Arrow: BOM 

OU!put From: [A24) Product Design (CADICAM) 

OU!put To: BOM 

Page 333 



Arrow: Engineering Resources 

Output From: [A24) Product Design (CAD/CAM) 

Output To: Engineering Resources 

Arrow:BOM 

Output From: [A2I) Production Planning 

Output To: BOM 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [A2I) Production Planning 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [A24) Product Design (CAD/CAM) 

Arrow: Continued Orders 

Input From: Continued Orders 

Input To: [A23) Process Planning 

Arrow: Continued Orders 

Input From: Continued Orders 

Input To: [A24) Product Design (CADICAM) 

Arrow: Manufacturing Resources & Facilities Requisition 

Output From: [A23) Process Planning 

Input To: [A21) Production Planning 

Arrow: Manufacturing Resources & Facilities Requisition 

Output From: [A24) Product Design (CADICAM) 

Input To: [A2I) Production Planning 

Arrow: Transaction Report for Progress/Delays & Resources Shortfall 

Output From: [A2I) Production Planning 

Output To: Transaction Report for Progress/Delays & Resources Shortfall 

Arrow: Shop Floor Slatus Report 

Input From: Shop Floor Slatus Report 

Input To: [A2I) Production Planning 

Arrow: Shop Floor Slatus Report 

Input From: Shop Floor Slatus Report 

Input To: [A22) Finile Capacity Scheduler 

Page 334 



Arrow: ManufaclUring Orders (Unscheduled) 

Output From: [A2I] Production Planning 

Input To: [A22] Finite Capacity Scheduler 

Arrow: MCS Functions 

Mechanism From: MCS Functions 

Mechanism To: [A2I] Production Planning 

Arrow: Enterprise Manufacturing Capability 

Control From: Enterprise ManufaclUring Capability 

Control To: [A2I] Production Planning 

Arrow: Enterprise Manufacturing Capability 

Control From: Enterprise ManufaclUring Capability 

Control To: [A23] Process Planning 

Arrow: Enterprise Manufacturing Capability 

Control From: Enterprise ManufaclUring Capability 

Control To: [A22] Finite Capacity Scheduler 

Arrow: Enterprise Manufacturing Capability 

Control From: Enterprise ManufaclUring Capability 

Control To: [A24] Product Design (CAD/CAM) 

Arrow: Availability of Manufacturing Resources & Facilities 

Control From: Availability of Manufacturing Resources & Facilities 

Control To: [A22] Finite Capacity Scheduler 

Done. 

Page 335 



APPENDIX XVII 

IDEF0/1X Parser user interfaces 

Page 336 



(A) User interface for selection of functions defined in IDEFO functional model 

= IDEFo - FIMM PARSER EDITOR = 

FUNCDON ID: IrSI':.CTRLiSftl 

Char Mode: Replace Page I Count: '0 

(B) User interface for selection of information entities defined in IDEFIX infonnation model 

== IDEF1X - FIMM PARSER EDITOR === 

INFORMATION :1 }1J<:lQI~PI!:~I'.:NT.~Y'·J..i.;.·.tl ACCEPT (Y/N) Ifyl 
MODEL 

Im.· .. I) •. •• ··········.···.tir··.· ... /.rt?··.;· ..... : .... ·.·.. .... ..................................................................................................... ....... ·)i·i( •• :i······· •.•.•..•••.••.•• ;,). mm.'.), I 

Char Mode: Replace Page I Count ·0 

Page 337 



APPENDIX XVIII 

Program listings for IDEF O/lX Parser 

1. Program structure for IDEFo/1X Parser 

2. Program listing for idefO _act 

3. Program listing for idef1x ent 

4. Listings for idefO out 

5. Listings for idef1x out 

6. Program listing for idef fimm.c 

Page 338 



idejD.txt 
IDEFOrepon 

FIMM 
Database 

idefix·txt 
IDEF\X repon 

Page 339 



%% 
int space30unt = 1; 
int field30unt = 0; 
int ch=0x22; 
Activity:+[ ] {space30unt = 1; 
++field30unt; 
J 
Arrow: field_count = 0; 
Diagram: field_count = 0; 
\n {++space30unt ; 
if (space_count =2) 
printf("%c\n%c",ch,ch); 
J 
\!field_count = 0; 
[A]{if(field_count> 0 ) 
printf("%s",yytext); 
J 

Page 340 



%% 
int field30unt = I; 
int space30unt = 1; 
int ch=Ox22; 
[,1+[ 1 (++field30unt; 
if(field30unt=3) 
printf(" "); 
) 
ENTITY (field30unt = 1; 
space_count = 1; 
) 

\n ( ++space30unt ; 
if (space_count ==2) 
printf("%c\n%c",ch,ch); 
) 
["1 (if(field30unt > 1 && field30unt < 4) 
printf("%s" ,yytext); 
) 

Page 341 



" 
"[AO] Part manufacture with MCS " 
"[AI] Pre-Planning" 
"[A2] Planning for Manufacture" 
"[A3] Manufacturing Control" 
"[ A21] Production Planning" 
"[A23] Process Planning" 
"[A24] Product Design (CAD/CAM)" 
"[A22] Finite Capacity Scheduler" 
" 

" 
"IEI ORDER ENTRY" 
"IE2 PART MASTER-BOM" 
"IE4 PROCESS PLAN" 
"DE21 BOM CHILD" 

········-·-·N··· _- .. 

it;'§:l,~~§!IDg;fQ~Ij~~l!IQyt;;; 

"DE41 MFG OPERATION ASSIGNMENT' 
"DE43 RESOURCE ASSIGNMENT' 
"DE42 MFG FACILITY ASSIGNMENT" 
"IE5 MFG CELL CONFIGURATION" 
"IE6 RESOURCE" 
"IE3 ENGINEERING RESOURCE" 
"IE7 CUSTOMER" 
"IE8 SCHEDULE" 
"IE9 SHOP FLOOR STATUS" 
"IElO MANUFACTURING FACILITY" 
"IEIl SUPPLIER" 
"DEIOI PERSONNEL" 
"DE 102 MACHINE" 
" 

Page 342 



!* Populating extracted infonnation from IDEFo & IDEF1X into FIMM database"1 

#include <stdio.h> 
#include "locaUncl.h" 

FILE "temp_file; 
char column[401; 
char file_line[l321; 
char file_name[601; 

mainO 
( 
int ij,k; 

char command[SMAL_STRING1; 
char vall [SMAL_STRING1. val2[SMAL_STRING1; 
char help[MEDIUM_STRING1. help2[MEDIUM_STRING1; 
FILE "drive; 
char fileJest[FlLE_LINE_LEN]; 

char file-path[MEDIUM_STRING1; 
char temp_sel[MEDIUM_STRING1; 
char temp_seI2[MEDIUM_STRING1; 
char idefO[MEDIUM_STRING1; 
char ideflX[MEDIUM_STRING1; 

strcpy(file-path."/home2lsandra/valdew/oracle_c/fim/idef'); 
sprintf(temp_sel."%s/idefO_ouuemp" ,file-Path); 
sprintf(temp_sel2."%s/idefl x_out_temp" ,file_path); 
sprintf(idefO."%s!idefO_out".fiIe...Path); 
sprintf(idefl X. "%s!ideflx_out" ,file_path); 

mw _connect("mcc21". "m". "/home2/sandra/valdew/omcle_c/fim/idef/objects_idef.txt"); 

printf(''\nEnter command (press RETURN for command list): "); 
gets(command); 
while«strcmp(command. "quit"»&&(command[Ol!='q'» 
( 
if«command[Ol = 'f')&&(command[ll='O'» 
( 

!* Insen functions derived from IDEFO into FIMM"I 
system("clear"); 
printf(''\n\n\n\n''); 
printf("Popuiating FIMM Database (IDEFO functions)\n\n"); 
mw _query( .. idefO_ouCtable ........ temp_sel); 
if«drlve = fopen(temp_sel."r") == NULL) 

printfC'\nError. open %s." .temp_sel); 
fileJest[Ol = "i)'; 

Page 343 



while(file_reader(vaI2. drive. file_rest» 
( 
printf('\n ----> %s".vaI2); 
sprintf(help,"'act' ,'%s' :new'",val2); 
mw_insert("lIaUdefO" ,help); 
sprintf{help,"'%s' :s.....P·: '".va12); 
mw_insert("acUdefO_sp".help); 
sprintf(help2,"'%s·. 'e-p' t' In ,val2); 
mw _insert("acUdefO_ep" .help2); 
m W _update("idero_fimm». "answer= ' •. H ,"''); 

} 
fclose(drive); 
mw_commilO; 
printf('\n'n'n "); 
} 
else if«command(O] == 'f')&&(command[l]='I'» 
( 

1* Insert entities derived from IDEFIX into FlMM "' 
system("clear"); 
prin tf('\n'n'n'n .'); 
printf("Populating FlMM Database (IDEFIX entities)'n'n"); 
mw _query("idefl X_oUl_table" ...... temp_sel); 
if«drive = fopen(temp_seI2."r'·» == NULL) 
printf('\nError. open %s .... temp_seU); 
fileJest[O] = "D'; 
while(file_reader(vaI I. drive. file_rest» 
( 
printf('\n ----> %s".vaIl); 
sprintf(help,"'dm' :%s·. 'new'" ,vall); 
mw_insert("lIaUdeflX" ,help); 
mw_update( .. idef1X_fimm ... ·'answer=··· .. , ... '); 
} 
fclose(drive); 
mw_commitQ; 
printf('\n'n'n"); 
} 

else if«command[O] == 'r')&&(command[I]='O'» 
( 

system("clear"); 
printf('\nPlease Wait ........ ); 
printf('\n\tIDEFO ---> FlMM Parser is working'n'n''); 
system("runlexO"); 
1* Insert functions derived from IDEFO into IDEFO_OUT Table"' 
if«drive = fopen(idefO."r·') == NULL) 
printf('\nError. open %s .... idefO); 
file_rest[O] = "D'; 
while(file_reader(vall. drive. file_rest» 
[ 
sprintf(help. "'%s'" .vall); 
m w _insert("idefO" .help); 
} 
fclose(drive); 
mw_commitQ; 
printf('\n'n'n .'); 
} 
else if«command[O] == 'e')&&(command[l]=='O'» 
[ 

system("clear"); 

Page 344 



system("runfonn IDEFO_FIMM mcc21/m"); 
mw_commitO; 
sprintf(help. ~); . 
mw _delete("deUdelO_out" .help); 
mw_commitO; 
} 
else if«command[O] = 'r')&&(command[l]='I'» 
( 

system("c\ear"); 
printf("\nPlease Wait ...... "); 
printf("\n\tIDEFIX ---> FIMM Parser is worlcing\n\n"); 
system(''runlex Ix"); 
r Insen functions derived from IDEFIX into IDEFIX_OUT Table */ 
if«drive = fopen(idefIX,"r") == NULL) 
printf('"InError. open %s." ;defI X); 
file_rest[O] = "D'; 
while(file_reader(vall. drive. file_rest» 
( 
sprintf(help."·%s .... vall); 
m w _insen("idcfl X" .help); 
} 
fclose( drive); 
mw_commitO; 
printf("\n\n\n .'); 
} 
else if«command[O] == 'e')&&(command[I]=='I'» 
( 

system("cIear"); 
system("runform IDEFIX_OUT mcc2I/m''); 
mw_commitO; 
sprintf(help ..... ); 
mw _delete("deUdefI X_out" .help); 
mw_commitO; 
} 
else if«command[O] == 'c')&&(command[I]=='t'» 
( 

mw_commitO; 
) 
else if«command[O] == 'r')&&(command[l]='b'» 
( 

mw JollbackO; 
) 
else 
( 
printf('\14\nAvailable commands are:''); 
printf('\n 'rO' IDEFO --> FIMM Parser"); 
printf('\n 'eO' IDEFO-FIMM Parser Editor"); 
printf('\n '10' Populate IDEFO function(s) into FIMM database"); 
printf('\n\n 'rl' IDEFIX --> FIMM Parser''); 
printf('\n 'el' IDEFIX-FIMM Parser Editor"); 
printf('\n 'f!' Populate IDEFIX entities into FIMM database"); 
printf('\n\n 'ct' commit"); 
printf('\n 'rb' roUback"); 
printf('\n 'q' commit & quit"); 
printf('\nCommand (%s) unknown. Try again.\n".command); 
} 
printf('\nEnter command (press RETURN for command list): "); 
gets(command); 

Page 345 



) 
printf(''\n\n "); 
mw_commitO; 
mw _disconnecIO; 
) 

Meta-file definition 

Name of meta-file : objects_idef.txt 

Definition of database-objects: (for access_ora) 

"flaCidefO" object name"flactable" table name 
"type, name, status"fields .... where condition 

"idefO" object name"idetU_out" table name 
"activity"fields"" where condition 

"deCidefO_out" object name"idetU_out" table name 
"activity, answer, accid"fields"answer='N'" where condition 

"idefO_out_table" object name"idetU_out" table name 
"accid"fields"answer='Y'" where condition 

"idetU_fimm" object name"idetU_out" table name 
"answer, accid"fields"answer='Y'" where condition 

"flat_idefO" object name"flaCtable" table name 
"type, name, status"fields"" where condition 

"ideflX" object name"ideflX_out" table name 
"activity"fields"" where condition 

"ideflX_ouctable" object name"idefIX_out" table name 
"activity"fields"answer='Y'" where condition 

"deUdeflX_out" object name"idefIX_out" table name 
"activity, answer, accid"fields"answer='N'" where condition 

"ideflX_fimm" object name"ideflX_out" table name 
"answer"fields"answer='Y'" where condition 

"flacideflX" object name"flactable" table name 
"type, name, status"fields"" where condition 

"acUdetU_sp" object name"activity _info_table" table name 
"activity, type, information"fields"" where condition 

"acUdetU3P" object name"activity _info_table" table name 
"activity, type, information"fields"" where condition 

Page 346 



APPENDIX XIX 

Overview 
MCC CAPM software package 

Page 347 



MCC 

MCC (Manufacturing Control Code) is a commercially available computer aided production 

management application software supplied by John Brown Systems PLC. It is for the control 

of production, especially of material movement. The control is achieved by utilising a realistic 

model of the production process. The model focuses on the shop floor, and covers the 

resources available (labour and machines), and the production process (what operations must 

be performed, their order, how they are linked together, their standard times etc.). This model 

can be loaded with a combination of orders and forecasts of expected future demands. 

Running the production simulator produces a schedule taking into account all the production 

constraints, material requirements remain associated with resource capacity. On this basis 

MCC produces at a single pass, realistic production and material requirement plans, as 

illustrated below. 

Forecasts 
& 

Orders 

___ ~ Shop Floor 

Schedule 

MCC comprises the following six major modules which use data residing in a common 
ORACLE ROBMS : 

Base Module 

ORACLE RDBMS 

The central module SCC is the production simulation module, and provides a tool for finite 

capacity planning and shop floor scheduling. The module details facility and resource 

availability, shift patterns, and the job load. 

Page 348 



Details of bills of material, product routings, and production resources are maintained in the 

engineering control module (ECC). 

The purchasing functions covering stock, non-stock, and service orders are controlled by the 

purchasing control module (pCC). 

Sales and order processing functions are to be carried out using the customer control code 

module (CCC) whilst the inventory control code module (ICC) maintains stock and material 

requirement data across multiple stores and their multiple locations. 

The system is tied together by software which controls the database tables, report functions, 

menu systems, and user authority codes. 

User Interface 

The proprietary user interface of MCC is written in ORACLE RDBMS based SQL*Forrns, 

which is an application development environment package. A form is a fill-in-the-blanks 

template displayed on a computer screen that allows the user to enter, update and query 

information in a database. As illustrated in the example below, forms are composed of blocks, 

records and fields. 

Description 1,.·· •• }EX~CE··~ART;CEVEI;OI;..;tkmn I'Itr;1 

Qty It·' UoM IEAClIl Efr. from 129\O(rr;921 To If I Priority [±!j 

Comments ItJ...nWt:nMWn:kTWTEinn....Hk elm ; .:9k:? I 
BIlL OF MATERIAL DETAILS 

Item No Description Qty UoM' Type 

I.·.'.·>.'. i·.·.'.·"""""" .. ' .' ..................................................................................................................................... ······················.··\/·...i··.? .. ·.·· .. ·}· .. · .•... ·.·.·.·....nr··Ii·.i·i? I 
Char Mode: Replace Page 1 Count: '2 

MCC form for its BiD of Materials option - ECSBM 

Block: A group of related fields on a form. 

Record: The data from a row in a database or non-database table. 

Page 349 



Field: An area on the screen that can display a value or accept an input value. A field normally 

represents a column form a database table. 

In general, MCC is written in SQL*Forms and it consists of several forms and program 

routines. 

Page 350 



INFORMATION REQUIREMENTS OF MCC 

Usage t.. IWork in Progress 

Job Numbers Job Links 



Operational Steps in MCC 

Module 

MCSIM 

ECSBM 

• if any changes use ECSEC: 
password· Damian 
Type-N 
Origin - Anything 

Description 

Items registration : 
- Components/raw materials/tools 

sulH:om.pooents 

Bill of marerials (2 levels build up) 

Changes &: updates to HOM 

• for queries use ECSIB which Query on BOM 
shows indenetcd DOM 

ECSRT Entry & update on routing 

• Call ECSOR within ECSRT Page 2 (or BOM assigmnent 
(Bsc 8) for operations 
requirement maintainance. 

ECSRM 

SCSSM 

SCSAR 

SCSAM 

SCSGM 

SCSCA 

SCSCM 

SCSCL 

... SCSDM 

SCSCJ 

SCUCJ 

SCSJM 

SCURS 

SCCSM 

... ~ SCMSR 

SCSWP 

Item sourclng 

Resource maintenance 

Create Schedule &: Parameter setting for schedule run 

Asset register 

Schedule Asset maintenance - Resource to Asset 
allocation for schedule. 

Asset grouping 

Calendar allocation to schedule 

Calendar definition 

Calendar closure maintenance 

Demand maintenace 

Create job from demand 

Create job links. 

Schedule job maintenace 

Run calendar preprocessor. 

Schedule run. 

Simulation report. : SCRJL & SCRWL 

Record work: in progress. 

PCSIS 
MCSOE 
CHSOR 

.. External Organization Infonnation 
Sales Order 

Remarks 

To get indented DOM report call ECRIB 

Need to build "boucm-up" 
Run proc _routes for routing report 

Note the series must be assigned. 

Real machines with inventory no. 

Resources need general grouping. 

Block off period e.g. machine maintenance &: tabor 
availability. 
Need 10 run this module if changes are done to the 
calendar. 

Akin to schedule log. 

Assign routing to job. 

Oieck for corresponding links. If don '( exist delele 
SQI> Update sch JOb set slat = NULL where 

schJdent = 1361 andschjob_no = 67S8and 
schjob_ser_name = 'Swivel'; Commit; 

Also to query on assigned routing. 
Can block off unwanted jobs by changing status 10 

'y' (non-Schedulable) 

If schedule need to be adjusted go to SCSSM to 
change SCH_PERIOD in parameter. Further 
modifications can be done in ECSRT by changing 
contigOU8 (MC) to non-contigous (MN) e.g. those> 
10 hrs of opel1ltioo in the schedule . 

Page 2 for further details. 

Page 352 



STEPS TOWARDS RUNNING MCC 

ECSRT 
schedule routing changes 

i 

y SCSAM 
schedule asset maintenance 

i 

mnlS 

SCSAR 
schedule asset register 

SCSCM 
schedule calender maintenance 

I 

~CSSM 
scheduTe mamtenance 

SCSCL 
schedule closures 

SCURS 
'e-Drocessor & simulator 

y 

ECSRM 

y 

SCSGM 

y 

SCSDM 
schedule demand maintenance, 

I 

SCUCJ 
schedule jobs from demand 



APPENDIX XX 

Program listings of 'alien application shell' for MeC 

Page 354 



/*Program :new_mcc_mw_l.c·' 
/*Created:l1 - 06 - 93·, 

'Alien application shell' for MCC 

/*MCC & CIM-BIOSYS application Main Interface.·' 

/* Functions: 
mw_dieO Terminates the CBS-Application, MCC and the process connected to Oracle. 

mw_quit() Calls mw _dieO if no MCC-Option is active. 

mw_tick_tockO Displays visible clock. Also used to 
Start MCC and a process connected to Oracle. 
Displays the cursor in the MCC screen. 
Count the slow _down_count variable. 
Initialise the message buffer. 

app_usecdisp_dataO 
app_user_disp_reqO 

copy _mess(to_mes, from_mess) 
Copies a message of the type mess_data. 

init_mes_bufO Initialises the message buffer. 

pucmes(mes) Copies the message mes in the message buffer. If the message buffer is full, the message is not 
copied and the result of the function is O. Otherwise the result is 1. 

get_mes(message) Gets the next message from the message buffer. If the message buffer was empty, the result of 
the function is O. Otherwise the result is 1. 

nexcmessageO Starts the processing of the next message. 

receiv _messageO Decides if the received message can be processed or if it has to be stored in the message buffer . . , 
#define PERMITOx7fff 

#include "locaUncl.h" 
#include<string.h> 
#include"globaCinc.def"/* Defs for all modules .• , 
#include"wind_inc.def"/* Defs for window interface modules·' 
#include"new_mcc_wind_inc.def'/* Defs for window modules.·' 
#include"app_user_inc.def'/* Defs for user application modules.·, 
#include"app_serv_inc.def'/* Defs for app_serv task modules.·' 
#include"use_mcc_special.def'/* Defs for use_mcc ., 
/* and run_mcc only·' 
#include"demo_comm.def"/* Defs for communication .• , 

#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 

#ifndef NULL 

Page 355 



#define NULL 0 
#endif 

char state_stan = 0; 
extern char cursor_state; 
extern char slow _down_count; 

extern int main_state; 
extern int mcc-p 1[2); 

struct mess_data message_bulIer[MES_BUF _LEN]; 
int mcc_busy _state_1 = 0; 
int poinUD_ write, point_to_read; 
struct mess_data cbs_message; 
struct mess_data accmessage; 
int mess_data_Ien; 

void inicmes_bufO, copy _messO; 
char pucmesO, get_mesO; 
void nexcmessageQ, receiv _messageQ; 

/*Functions external to this module."' 

,"Variables external to this module."' 
externstruclS_frame_desc"wind_data[NO_ WINDOWS) ; 
struclS_app_link 
(chamame[2l) ; 
} 

extern app_Iinks[MAX_APP _LINKS) ; 

"Functions internal to this module"' 
intmw _dieQ ; 

long intnow ; 
struct S3bs_relLdatacbs_relLdata ; 

/*voidmw_quitO"' 
/*----------------"' 
/*Panel button routine to quit the application. "' 
/*retum value"' 
/*void."' 

voidmw _quitO 
(register intresult ; 
charbuffer[8l) ; 
if(no_option_activO) 
( 

pUeg..Junc(mw_die,5) ; 
sprintf(buffer,"%s TERMINATING In 5 SECS." ,gJJTOC_tiUe) ; 
window_set( wind_data [M_ WINDOW] ->frame,FRAME_LABEL,bulIer,O) ; 
} 
else 
wi.Jlucslr_mess(M_ WINDOW,MW _DEF _LA YOUT,MW _ANW, 
"Exit current screen before leaving MCC."); 

Page 356 



l"intmw_dieO"' 
I" ---------------"' 
I"Terminates the current process."' 
I"return value" 
I"FALSEto stop the pulling of this function" 

intmw_die(ccount) 
. inll_count; 

[register intresult ; 

quit_mccO; 
quit_remote_new _mcc(" I "); 

result = ictenn_this...JlrocO ; 
return(FALSE) ; 

J 

l"intmw_tick_lOCk(ccount)" 
1"----------------------., 
I"Display a visible clock tick in the main interface window and times" 
I"out the window if necessary" 
I"inu_countcurrent tick count" 
I"return value" 
I"TRUEso that polling of this function continues" 

intmw_tick_tock(t_count) 
iot t_count; 
[register inttmp,idx ; 
staticstat_count = I ; 

if(!state_Starl) 
[ 
state_Starl++; 
starCmccO; 
starcnew_mcc_oraO; 
init_mes_bufO; 
mess_data_Ien = sizeof(struct mess_data); 

J 

if(cursor_state) cursor_state = 0; else cursor_state = I; 
mcc_cursorO; 

I"put a tick/tock message into appropriate field." 

return(TR UE) ; 

J 

l"intapp_usecdisp_data(cmd_flag,user_cmd_data...JlIr)·' 
1"--------------------------------------------------"' 
I"Display the contents pointed by user_cmd_data...Jl1r either as a received"' 

Page 357 



{*command or response according 10 cmd_flag.·, 
{*intcmd_flag* , 
{*command flag (TRUE for command, FALSE for response)·' 
{*struct s_cbs_cmd_data·user_cmd_data...Jltr ;., 
{*pointer 10 user command data·' 
{*return value·, 
{*OK.·, 
{*When cmd_flag = TRUE. the stan_copmmand function is called .• , 

inrapp_useulisp_data(cmd_flag.user_cmd_data...Jltr) 
intcmd_flag ; 
struct s_cbs_cmd_data·user_cmd_data...Jltr ; 
(register inttrnpJdx,resultJen.cnt; 
charbuffer[81].·name...Jltr ; 
long intnow ; 

result = OP _FAILED; 
now = time(NULL) ; 

if ( cmd_flag = 0 ) 
( 
name...Jltr = user_cmd_data...Jltr->sargl ; 
] 

else 
( 
name...Jltr = user_cmd_data...Jltr->sarg2; 
) 

if (cmd_flag) 
( 
copy _mess(&cbs_message. user_cmd_data...Jltr->data...Jltr); 
receiv _messageO; 
} 

if ( user_cmd_data...Jltr->cmd_code== CBS_EST_LINK && 
user_cmd_data...Jltr->status = 0 ) 
( 

trnp = sUind_link_entry(name...Jltr) ; 
if (trnp == NOT_FOUND) 
(trnp = sUind_link_entry( .... ) ; 

if (trnp!= NOT_FOUND) 
(sprintf(app_links[trnp ].name. "%.20s" .name_ptr) ; 
} 
} 
} 

if ( user_cmd_data...Jltr->cmd_code = CBS_ TERM_APP ) 
(trnp = sUind_link_entry(name...Jltr) ; 

if (trnp!= NOT_FOUND) 
( 

sprintf(app_links[trnp].name ... %.20s ....... ) ; 
} 
} 

if ( usersmd_data...Jltr->cmd_code = CBS_SEND _APP && 
cmd_flag == FALSE && 
user_cmd_data...Jltr->status != 0) 
(trnp = sUind_link_entry(name...Jltr) ; 

Page 358 



if( unp!= NOT_FOUND) 
( 
sprintf(app_links[unp].name,"%.20s",~) ; 

) 
) 

sprintf(buffer, "Links: None.") ; 
len = 8; 
for ( idx = O,cnt = 0 ; (idx < MAJCAPP _LINKS) && (cnt < 4) ; idx++ ) 
(if (app_links[idx].name[O] != 0) 
(sprintf(buffer + len,"%-IO.IOs" ,app_links[idx].name); 
cnt++ ; 
len+= 10; 
) 
) 

wi..jlucstr_mess(M_ WINDOW,MW _DEF _LAYOUT,MW _M_LINKS,buffer) ; 
if (cnt == 0 && strcmp(s..Proc_title,"tom'') != 0) 
( 

pUeg..Junc(mw _die,5) ; 
sprintf(buffer,"%s TERMINATING In 5 SECS.",!LJlroc_title) ; 
window_set(wind_data[M_ WlNDOWJ->frame,FRAME_LABEL,buffer,O) ; 
) 

result = OK; 
retum(result) ; 
} 

'*intapp_user_dispJeq(cbs_re<Ldata..jltr)*' 
/* ------------------------------------------*' 
/*Display the contents of a CMBSYS request from us to ASP.*, 
,*struct s_cbs_re<Ldata*cbs_re<Ldata..jltr ;*' 
'"pointer to CMBSYS request"' 
/*return value*' 
/*OK.*' 

intapp_usecdisp_req(cbs_Te<Ldata_ptr) 
struct s_cbs_Te<Ldata*cbs_re<Ldata..jltr. 
(register intidx,unp,result; 
charbuffer[201] ; 
long intnow ; 

now = time(NULL) ; 

cbs_re<Ldata..jltr->data..jllr[cbs_re<Ldata..jllr->data_len] = 0 ; 
retum(OK) ; 
} 

void copy_mess(to_mes, from_mes) 
char *to_mes; 
char *from_mes; 
( 
iot i; 

for(i = 0; kmess_data_len; i++) 
to_mes[i] = from_mes[i]; 
} 

void init_mes_bufO 
( 

Page 359 



int i; 
for(i=O;i<MES_BUF _LEN;i++) 
( 

message_buffer[i].sender[O] = '\0'; 
) 
point_ID_ write = 0; 
point_ID_read = 0; 
) 

char pucmes(mes) 
struct mess_data "mes; 
( 
if(! message_buffer(poinCID_ write ].sender[O]) 
( 

copy _mess( &message_buffer[poinCID_ write], mes); 
poinCID_write = (++poinuo_write)%MES_BUF _LEN; 
return(l); 
) 
else return(O); 
) 

char gecmes(message) 
struct mess_data "message; 
( 
if(message_buffer[poinuo_read].sender[O]) 
( 

copy_mess(message, &message_buffer[poinCtoJead]); 
message_buffer[point_to_read].sender[O] = "'i)'; 
poinuo_read = (++point_to_read)%MES_BUF _LEN; 
return(l); 
) 
else return(O); 
) 

void nexcmessageO 
( 
struct mess_data help; 

if(get_mes(&help» 
[ 

process_message(&help); 
) 
else 
( 

accmessage.sender[O] = '\0'; 
mcc_busy_state_l = 0; 
) 
) 

void receiv _messageO 
( 
printf('"lnMessage received. ''); 
help-print(&cbs_message); 

if(cbs_message.sender[O]) 
( 

Page 360 



if(mcc_busy _state_I) 
pucmes(&cbs_message); 
else 
( 

process_message(&cbs_message); 
) 
) 
) 

Page 361 



APPENDIX XXI 

Services and Options offered via User Interface 

Page 362 



CIM.BIOSYS lIS Production Planning Interoperatlng 
services (MCC) related functions MCS fundlons Functional Interaction Management sen'lces 

~==~. ·j=····.O ....... N"""""·'O.,.Oi&J 
'"""= ~ Giftb 0 CD 
~ ~ [SadJOownI 

Joblo.d.4_ 
Jm'UID type imtmco pp CAD CAPP CEU. pes 

lOON 3WIPWIPP PP 

1·.OMSWJ.vm;lS:gSBM •• ·)t.·· •• ·i ••• ·ii·.·i~j)J"f·MateJiaI$;I!Il.ll;.!)ata·J:lntr}'.·../· ••.• i •• ·.···.·Pagci··loC·4··1 

Description 1 ••••. \S.WIYEC.Sl'Ol'l'ER;·.LJ:lvm;o •• ·••••· .• ··.···.·>ii···/··.····.·.· ... ·.· .... ··.·.·.· ...... ·iU.·i·il 
Qty III UoM IEACHI Efr. from 129'OCT-921 To 1/\1 Priority [2!d 

Comments I •• ··.·•············ .......................................................................... · •.• •· •• ··· .•. ·•····.·•··• ..... /· •. i ••. ·· •• ·· ....... · .... · ...... ··············.· •• 1 

BILL OF MATERIAL DETAILS 

Item No Description Qty UoM Type 

1.·.·.~~~~.·II~!il 
n.······ ........................... } .... . . .................................................. } ....... } ................................................ ········.}.·.·I 

Char Mode: Replace Page I Count: *2 

Display 
window 

The user interface consists of an input! output display window, an entry field and several 

specially configured buttons. The window displays the output of MCC to the user. It has the 

same format as the original output of MCC. Only a flashing ,*, was added to mark the current 

cursor position. 

The functions of the buttons can be divided in three groups: 

• MCC functions to edit a form or commit changes. 

• Call a MCC option. 

• Cross reference MCC data with FIMM data. 

If the user wants to enter data in the MCC forms, the entry field is used instead of entering the 

data directly in the form. This data input will be sent to MCC when one of the MCC function 

buttons is pressed. 

Page 363 



The buttons for the MCC function offer only those functions which are used frequently when 

working with MCC. They include buttons for moving around in a form, committing changes 

and leaving a form. As there are 44 functions offered by MCC, they can't all be offered via 

buttons. To call a function which is not directly offered by a button, the user can enter the 

name of the desired function in the entry field and press the button 'Do Function'. The button 

'Show Functions' will display a list of all available functions. Note that the list of available 

functions depends on the actual form and field. 

The buttons to call MCC options make easier access to some of the MCC options. Instead of 

going through the menu structure of MCC, those options can be selected directly by pressing 

the appropriate button. The offered options are sufficient to build a production simulation 

module, enter product information and orders and to produce schedules by running the 

production simulator. 

The options are divided into five groups: 

• Bill of material 

The options of this group allow to define a bill of material that contains all the stock items 

required to produce a manufactured item. 

• Routings 

These options are used to create and maintain information about the method of manufacture 

for an item. 

i. The required operations to produce the item. 

ii. The order these operations are executed in order to ensure that the item is made in the 

correct sequence. 

iii. The requirements of these operations, in terms of resource and stock items. 

• Schedule Model 

The shop floor model for the simulation is build with these options. They allow to specify 

the availability of machines and labour. 

• Schedule Run 

The workload, described as a number of jobs is defined with the options in this group. In 

addition, they allow to run the simulator and to feed back data about completed operations 

and jobs. 

• Extra 
The options in this group are very specific to MCC, but they are needed to build and run a 

production simulation. They allow to enter general information like available assets of 

employees without relating them to the production simulation model. 

Page 364 



The last group of buttons are provided to relate data FIMM to data in MCC. Each part can be 

related to bill of material, routing and schedule job information. To assign information to 

parts, the status of that part must be displayed in the FIMM output field and the MCC data 

must be displayed in the MCC screen. The button 'Set Id' relates the information together. 

Buttons have also been specially configured to activate and interact with the Cell Controller 

and the Cost Modeller through the user interface. 

Page 365 



APPENDIX xxn 

Communication between MCC and the User Interface 

Page 366 



MCC expects input consisting of readable character strings and esc sequences, as illustrated 

below, The character strings are used to enter data in the fields of a form, The esc sequences 

invoke special functions e,g, to edit a form or to retrieve values or to commit changes, The 

output of MCC consists of character strings and esc sequences too, The character strings 

contain the text, displayed on the screen and the esc sequences specify the format and the 

location of that text. 

The information about the meaning of those esc sequences is stored in a special file, called 'en 

file' (please refer below for illustration) [ORACLE RDBMS 1991], By using different en 

files, it is possible to run SQL *Forms applications like MCC on different terminals, To make 

the interpretation of the MCC output easier, a special en file was created, It contains esc 

sequences with format specifications which can be represented in the input/output display 

window of the user interface over CIM-BIOSYS lIS, It is also necessary to know the structure 

of those options and the related forms, For example the number of blocks in a form, the 

sequence of fields and the error messages which can occur, when entering data in a field, 

-
INSERT INTO en VALUES ('MCC220' ,'CHAR' ,NUL!.,'I' ,NULL,24,80,23,24,''<:[2J', 
'\1)10', "e[1 C', "e[\y;\XH', "e[2K', 
"e[62; I oople>'<:[1IlIe[761'e(ll'e)(NJI1' ,"e[62; loop', 'Ie[4m', "e[ 4m', "e[7m' , Form Layout 
"e[Om ' , "eI'<;\br' ,"eD', "eM' , '\I) 16' , '\I) 17' ,NU LL,NULL, 
"e[K', "e[lA', "e[lB', "e#3', 'Ie#4' ,NULL, "e[lm'<:[7m', 
"e[7m', "e[ Im'<:[Sm'<:[7m', "e[lm', "e[Sm', 'Ie[7m', "e[4m'); _ 

insen into esc values ('lAP', 'MCC220·. 'cr'. '\e[29-' ,'00'); 
insert into esc values ('lAP', 'MCC220', 'CA', "'c[31-','P17'); 
insert into esc values ( 'lAP'. 'MCC220·. 'CB'. "\t132-','FIS'); 
insert into esc values ( 'lAP'. 'MCC220'. 'RR·. "\el33-' ,'P19'); 
insert into esc values ( 'lAP'. 'MCC220', ·CP'. '\e[34-', 'F2Q'); 
insert into esc values ( 'lAP'. 'MCC220', 'Q'. "e[1-','Find'); 
insert into csc values ( 'lAP'. 'MCC220·. 'EQ'. "'Ic{4-' ,'Select'); 
insen into esc values ( '!AP'. 'MCC220', 'CR'. "\e[2--' ,'Insen Here'); 
insert into esc values ( 'lAP'. 'MCC220', '0'. "\e[3-,,'Rcmovc'); 
insert into esc values ( 'lAP', 'MCC220', 'PB', "'Ic[5-' ,'Prev Screen'); 
insert into esc values ('lAP', 'MCC220', 'NB', '\e[6-','Ncxt Screen'); 
insert into esc values ('lAP', 'MCC220', 'CM', "'Ic126-' ,'FI4'); 
insert into esc values ('lAP', ' , 'OE',"\dJR ','PF3'); 
in!ert into esc values ('IAP-:~CC220)CQ" '\e(l9-','FS'): 

~ name of 'en file' used 

Function 
Function Description Escape Sequence Code 

CT Canmit Transaction '<:[29-

CA Clear Fonn I RoUbac1t '<:[31-

CB Clear Bloek '<:[32-

RR QearRecord '<:[33-

CF Qear Field '<:[34-

Q Execute Query '<:[1-

EQ Enter Query '<:[4-

CR Create Record '<:[2-

D Delete Record '<:[3-

PB Previous Block '<:[S-

NB Next Block '<:[6-

CM Insert I Replace '<:[26-

DE Display Error \cOR 
CQ Coont Query Hits '<:[19-

-

-

Defllution of functions 
& 

Keyboard mapping 

Comments 

Do 
FI7 
FIB 
FI9 
1'20 
FInd 
Select 
Insert Here 
Remove 
Previous Screen 
Next Screen 
FI4 
PF3 
F8 

Page 367 



With knowledge of the cn file. MCC functions can be offered through the user interface over 

CIM-BIOSYS ns. The user can enter text in an entry field which is send to MCC. Specially 

configured buttons are provided to invoke the special functions for editing a fonn and 

committing changes. The output of MCC is scanned for the esc sequences that specify the 

fonnat and location of the text strings. This infonnation is used to display the MCC forms 

through the user interface over CIM-BIOSYS ns via the input/output display window 

provided. Through this interface. the complete functionality of MCC is made available to 

users. 

Page 368 




