B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

RALDSC ne!- DX.!Q%‘M"[

e ;tmumnmmmmm e

T el

Applications Integration for Manufacturing Control Systems
with particular reference to
Software Interoperability issues

by

Valdew Singh

A Doctoral Thesis
submitted in partial fulfilment of the requirements
for the award of
Doctor of Philosophy
of Loughborough University of Technology

September 1994

Dé?f)ir'tlgr_i‘er_lgof Manufacturing Engineering

Loughborough University of Technology

- o~
"

@ Copyright by Valdew Singh, 1994

e W ..

| P L P

Class

Dai: S ay

Lewnnaraugh University
¢ - ¢ Library

et bt P ——

- et ——————

RL T T

:ig.;' Moot 93

J $90 $4ud

To:

My wife, Magdalene, for her love, support and encouragement and our children
Sabrina and Sean for the constant joy they bring.

and

In loving memory of my late father, Banta Singh, who inculcated in me the belief in

the pursuit of knowledge for self fulfilment and self-realisation.

CONTENTS

ACKNOWLEDGEMENTS vi

GLOSSARY

LIST OF FIGURES

LIST OF TABLES

SYNOPSIS

CHAPTER 1

CHAPTER 2

vii
xi
x1ii

Xiv

Contemporary forms of Manufacturing Control Systems
and a perspective on Software Interoperability 1

1.1 Limitations of Contemporary forms of MCS 1
1.2 The Need for Software Interoperability 3
1.2.1 Coping with Legacy Software 5
1.2.2 Manufacturing Continuum Consideration 6
1.3 Applications Integration and Software Interoperability 9
1.4 Requirement Specification for Software Interoperability 13

Current “State-of-the-Art” Scenario 15

2.1 Introduction 15

2.2 Interconnection 15
2.2.1 “Pair-wise” Integration 15
2.2.2 Integrated Information Systems 18
2.2.3 Integrating Infrastructures 20

2.3 Information Reference Models 23

2.4 System Design and Development 25
2.4.1 Structured Design and Modelling Methods to support Life
Cycle Phases of an Integrated Manufacturing System 26
2.4.2 Entry Point for Integrated Life Cycle Support 29
2.5 Means of Controlling System Behaviour 29
2.5.1 Association between Functional and Information Entities 30
2.5.2 Model Enactment to formally describe System Behaviour 32

CHAPTER 3

CHAPTER 4

CHAPTER §

CHAPTER 6

Achieving Interoperability 33

3.1 Research Focus 33
3.2 Objectives 35
3.3 Production Planning as the Nucleus 35
3.3.1 Manufacturing Methods and Information Requirements 36

3.4 The need for MCS Interconnection and Interoperation 37
3.4.1 The CIM-BIOSYS Integrating Infrastructure 39

3.5 An Overview of the Methodology Derived 43

Information Architecture for MCS 46

4.1 General Considerations 46

4.2 MCS Specification 48
4.2.1 Characteristics of the Information Model 54
4.2.2 Reference Models for an Extended Application Domain 55

4.3 Application of Generic Reference Models -A Case Study 55

4.4 Design Criteria for a System-Wide Data Repository 60
4.4.1 A Logical Database Model of the Data Repository 63
4.4.2 The Future Development of Relational Database
Management Systems 65
4.4.3 The Need for Database ‘Drivers’ 67
4.4 .4 Development and Enhancement of Database ‘Driver’ 70
4.5 Summary 73

Integrating Infrastructure to underpin MCS
Interoperation 74
5.1 Functional Interaction Requirements in MCS 74

5.2 Contemporary Solution to enable Functional Interaction 76
5.2.1 Overview of Systems Integration Manager 176
52.2 Focus and Limitations 79

5.3 MCS Functional Interaction Management Module Subsystems

5.4 User Interface : Generic ‘Application Shell’ 87
54.1 Interface between MCS Functions and ‘Application Shell’

5.5 Enabling Distributed Functional Interaction Management 90
5.6 Summary 91

System Life Cycle Support 94

6.1 The Requirement for Integrated Life Cycle Support 94

6.2 Software Tools to Enact Function and Information Models 95
6.2.1 Information Model Enactment 98
6.2.2 MCS Functional Modelling 100
6.2.3 System Behaviour Enactment 102

6.3 Summary 108

80

89

i

CHAPTER 7

CHAPTER 8

PUBLICATIONS

REFERENCES

Use and Appraisal of the Methodology Derived 110

7.1 Proof-of-Concept MCS Implementation 110

7.2 MCS Software Interoperability Demonstration System 111
7.2.1 Implementation of the Demonstration System 114
7.2.2 Analysis and Discussion 123

Conclusions and Recommendations 126

8.1 Contributions to Knowledge 126
8.2 Further Recommendations 132

134

135

iii

APPENDIX I

APPENDIX IT

APPENDIX 111

APPENDIX IV

APPENDIX V

APPENDIX VI

APPENDIX VII

APPENDIX VLI

APPENDIX IX

APPENDIX X

APPENDIX XI

APPENDIX XII

APPENDIX XIII

APPENDIX XIV

APPENDIX XV

APPENDIX XVI

'APPENDIX XVII

Types of Logical Data Modelsoceveuevevcerceeivrnne.
Details of CIM Model Project (Publications)
Information MOdELScoricecviviinrieecessreseeereee s

Association between information models and information....

representations in MCC and ELMS CAPM packages

Database ‘Driver’ - Services Offered.uueeeeeueneeevcnann..
Mapping MCC data entities onto information models

Functional Interaction Manager -Service options
FIMM Configurator -Service ODIIORScccccoecvrvvvvveveareenne
MCS FIMM Database Schema eeeeereere et eneees e

Operational Characteristics and Services of MCS

FIMM offered through Generic ‘Application Shell’

Program listings for Communication Mechanism for

remote MCS FIMM services over LAN

Overview of IDEF § QA IDEF (X ...oovveeeesvoreeeeessssssrns v
Report on IDEF ;x Entity-Attribute relationship model

1. EXPRESS based information model schema

2. EXPRESS index datafile

3. EXPRESS model data dictionary

4. EXPRESS to SQL Compiler generated datafile

5. Example of relational database tables relationship

Report on IDEF px Entity-Attribute relationship

model (to be translated to EXPRESS schema)

Report on IDEF; Functionmodeloiveivnnn.

IDEF ;15 Parser user interfacesoccooeonovrcnnevncennncns

189

193

228

280

284

...... 294

298

302

324

..... 327

..... 336

iv

APPENDIX XVIII
APPENDIX XIX
APPENDIX XX
APPENDIX XXI

APPENDIX XX1I

Program listings for IDEF g;1x Parsercooeevcncnnccccas 338
Overview - MCC CAPM software packageucevenennne... 347
Program listings of ‘alien application shell’ for MCC 354
Services and Options offered via the User Interface 362

Communication between MCC and the User Interface 366

ACKNOWLEDGEMENTS

The author is grateful to Loughborough University of Technology for its financial sponsorship
and the Economic Development Board (EDB) of Singapore for its support and kind
understanding in granting study leave.

The author wish to express his sincere thanks to his supervisor Professor Richard H. Weston
for his invaluable supervision, encouragement and help throughout this research study. Thanks
must also be extended to my director of research Professor David J. Williams, and those staff
of the Department of Manufacturing Engineering who have been kind and helpful. The author
wishes to fully recognise the contributions, in terms of conceptual thinking of other members
of the Manufacturing Systems Integration (MSI) Research Institute at Loughborough
University of Technology. Particular thanks are due to Mike Leech, Paul Clements, Allan
Hodgson, Jack Gascoigne, Shaun Murgatroyd, Ian Coutts, Awalludin Mohamad Shaharoun,
Binglu Zhang, Marcos Aguiar and Frank Welz.

Finally, the author would also like to take this opportunity to express his gratitude to the
following :

» Professor Alan Mulhleman and David Halsall of Bradford University Management Centre
for offering case study material.

+ Mr. Nick Telepneff of Manufacturing Systéms Portfolio PLC (MSPL) for sharing his
technical expertise and for supporting the SIM PCID product.

» Mr. Jon Whelan of John Brown Systems PLC for his technical support and training in the
use of MCC production management application software.

+ Mr. Peter Yeomans of MicroMatch PLC for sharing his experience and imparting his
knowledge of the IDEF and IDEF, y software modeliling tools.

vi

GLOSSARY

ACME .
The Applications of Computers in Manufacturing Directorate of SERC (Science and
Engineering Research Council. -

Assemble-To-Order
A product where all components (bulk, semi-finished, intermediate, subassembly,
fabricated, purchased, packaging, eic.) used in the assembly, packaging, or finishing
process are planned and stocked in anticipation of customer order.

+ Bespoke system
A system designed and implemented specifically for a particular (one-off} application or
site.

CAD/CAM
Computer-Aided Design!/ Computer-Aided Manufacturing.

CAPM
Computer-Aided Production Management.

CAPP
Computer-Aided Process Planning.

CASE
Computer-Aided Software Engineering (tools) used to speed up and formulate the process
of software design. Such systems use a variety of representations such as data flow
diagrams, entity-relationship diagrams, and in some cases generate program code.

CIM-BIOSYS IIS
Loughborough University of Technology Manufacturing Systems Integration Research
Institute’s systems integrating infrastructure

CIM Model
A representation of a CIM system.

CIM-0OSA
Open Systems Architecture for CIM - the output of a major ESPRIT project (No. 5288 :
AMICE) which attempts to formalise the design, implementation and running of “open”
CIM systems.,

Configure-To-Order / Engineer-To-Order
Products whose customer specifications require unique engineering design or significant
customisation. Each customer order then results in a unique set of part numbers, bills of
material and routings.

« Database
It is a mechanised, formally defined, centrally controlled collection of data.

» Database management system (DBMS)
A software system which performs the functions of defining, creating, revising, and
controlling the database.

Database prototyping .
Technique used to discover the information requirements and to construct a data model.

vii

. Data integrity
The ability of the database to remain correct during operation.

Data Manipulation Language (DML)
Highly non-procedural languages associated with database system, e.g 4GL.

Data store
The set of data storage facilities containing the shared data.

DCE
Distributed Computing Environment.

. Distributed database
Database spread across a network of computers.

DNC
Distributed Numerical Control.

Driver
In the context of this thesis a driver is used to enable the CIM-BIOSYS IS 10 incorporate
proprietary devices and applications which have their own specific protocols.

ESPRIT
The European Strategic Programme for Research and @eve!opment in Information
Technology.

Essential model

A primary model or representation (of some aspect of manufacturing systems, objects or
process) at a generic level.

FIMM
FIMM (Functional Interaction Management Module) has been developed through this
research effort with the purpose of tying together a set of applications into a coherent
system to enable software interoperability. It controls and coordinates the interaction
between applications and also synchronises the flow of activities within the system to
support part manufacture.

IDEF
ICAM DEFinition methodology - a set of systems analysis and design tools.

. Information of common interest (shared information)
Information which is created by one function and is often processed and/or used by several
other functions within the enterprise.

» Integration
The aggregation of resources and applications into a synergistic whole.

Integration toolset

A set of complimentary software programmes to assist in or enable some aspect of the
development or management of CIM systems.

IRDS
Integrated Resource Dictionary System.

Life cycle
The specification, design, implementation and useful life of a system.

viii

. Legacy

The term legacy (systems, components and software) is used to refer to a previously
installed base of systems, components and software. Legacy elements will not normally
conform to the methods and standards which will be adopted in current generation
solutions.

Make-To-Order
A product which is manufactured after receipt of a customer order. Frequently long lead-
time components are planned prior to the order arriving in order to reduce the delivery
time to the customer. Where options or other subassemblies are stocked prior to customer
orders arriving, the term “assemble-to-order” is frequently used.

Make-To-Stock

A product which is shipped from finished goods, “off the shelf,” and therefore is finished
prior to a customer order arriving.

MCS
Manufacturing Control Systems: Specialised applications which exhibit discrete
Junctionality for the rationalisation, improvement, control and execution of activities in
support of part manufacture.

Model
A model can be defined as a tentative description of a system that accounts for properties
relevant to the intended purposes of the model.

Normalise

The decomposition of more complex data structures into flat files (relations). This forms
the basis of relational databases.

Open solution

A solution (to a CIM requirement) which does not constrain the user to specific
proprietary hardware, software or protocols.

Platform (of integration services)
A software system which provides a consistent set of integration services (interaction,
information and configuration) to manufacturing applications, to enable them to perform
as part of a CIM system.

Primary key (or tuple)
A key which uniquely identifies a record {(or data grouping).

Product introduction i
The activities associated with specification, design, analysis, process and resource
planning and other functions required to bring a product to the production stage.

- Proprietary
Belonging or under the control of a private organisation (e.g. AUTOCAD is a proprietary
package, SNA is a proprietary protocol).

RDA
Remote Data Access.

Relation

A two-dimensional array of data elements (implemented as a table in a relational
database).

Relational Database
A database made up of relations (as defined above). Its database management system has
the capability to form different relations thus giving great flexibility in the usage of data.

Schema
A structured description of the information available in a database.

SME
Small and medium sized enterprises.

Table

A collection of data (in a relational database) suitable for quick reference, each item being
uniquely identified either by a label or its relative position.

Turnkey
A turnkey system is one which is delivered and implemented by the supplier with little
effort on the part of the user. It is largely “pre-designed” (at least at the component level)
and the user sacrifices a close match to his own requirements in order to be able 10 be “up
and running” quickly.

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 2-1

Figure 2-2
Figure 2-3

Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1

Figure 4-2
Figure 4-3

Figure 4-4

Figure 4-5 .

Figure 4-6
Figure 4-7
Figure 4-8
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5

LIST OF FIGURES

Insularity of contemporary MCS solutions
Interoperation among MCS solutions
Continuum of discrete part manufacturing environments
Evolution of production management and manufacturing systems
Integration levels in the manufacturing enterprise
Hlustration of 1051081 seven-layer reference model
The standards continuum and a categorisation of their purpose
Interconnection between MCS applications through
“pair-wise” integration
“Pair-wise” integration via importiexport filters
Interconnection between MCS applications through
integrated database
Interconnection via an integrating infrastructure
Customising the production control area information need

“Y-CIM” model to promote integration of functions and information

Triple Diagonal modelling

Production planning information as the initial nucleus

Components of an Integrating Infrastructure

CIM-BIOSYS Integrating Infrastructure

Overview of the Methodology

Overview of the functional and information network within
the CIM Model

Overview of information flow and data dependency

Restructure ELMS database with reference to generic
information models

Grouping of data represented in ELMS database with reference
to information models

Mapping between information entities

- System-wide data repository

Approach for database access

Database ‘driver’ interfaces to data repository and I1S

Interoperation between applications enabled through SIM

Framework for MCS interoperation

Function-Information Association Table for MCS FIMM

Engineering Resource Manager

Overview of Functional Integration Manager management
of MCS activities

17
18

21
24

31
36
38
40
44
47

50
57

58

59
61
67
69
77
81
82
83
85

Xi

.Figure 5-6
Figure 5-7

Figure 5-8
Figure 5-9

Figure 6-1
Figure 6-2

Figure 6-3

Figure 6-4
Figure 6-5

Figure 6-6
Figure 6-7
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8

Figure 7-9

Figure 8-1

Structure of FIMM Configurator

‘Application shell’ to coalesce interoperating MCS components
and interface with MCS FIMM and CIM-BIOSYS IS

Communication interface via ‘application shell’

Communication mechanism to support MCS FIMM
in a distributed environment

Software toolset for integrated life cycle support

IDEF ;x entity-attribute relationship model representing
a compositr view of the information model

IDEF ;% entity-attribute relationship model modified for
translation to EXPRESS schema

IDEF function model (Context Diagram)

IDEF, function model to describe Production Planning and
inter-relationship with other MCS functions

IDEF, function model with detailed level of decomposition for
Planning for Manufacture activity within the
Production Planning domain

Methodology for function-information association

Demonstration system for MCS software interoperability

Overview of information flow and dependency between
information entities

IDEF 1y entity-attribute relationship model representing
the global schema

Grouping of product and process information represented in
MCC database with reference to information models

Grouping of schedule information represented in MCC database
with reference to information models

Mapping between information entities

Set of build tools to develop data repository

Configuration of MCS FIMM

‘Application shell’ configured to coalesce MCS components
and integrate with MCS FIMM and CIM-BIOSYS i1

Degree of Software Interoperability

86

89

90

97
99

101

103
104

105

107

112

113

115

116

117

118

119

121

122

131

Xii

Table 1-1
Table 2-1

Table 3-1

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 8-1

LIST OF TABLES

Characteristics of discrete manufacturers
Major commercial solutions with provision of an
integrating infrastructure

Summary of major commercially available solutions with
provision of an integrating infrastructure

Summary of literature review '

CAPM packages examined

Commonality of information

Information Models

Information requirement for resource scheduling in ELMS

Features of SIM

List of life cycle support tools developed

21

42

49
51
52
52
57
76
129

xiii

SYNOPSIS

The introduction and adoption of contemporary computer aided manufacturing control
systems (MCS) can help rationalise and improve the productivity of manufacturing related
activities. Such activities include product design, process planning and production
management with CAD, CAPP and CAPM. However, they tend to be domain specific and
would generally have been designed as stand-alone systems where there is a serious lack of
consideration for integration requirements with other manufacturing activities outside the area
of immediate concemn. As a result, “islands of computerisation” exist which exhibit
deficiencies and constraints that inhibit or complicate subsequent interoperation among typical
MCS components. As a result of these interoperability constraints, contemporary forms of
MCS typically yield sub-optimal benefits and do not promote synergy on an enterprise-wide
basis.

The move towards more integrated manufacturing systems, which requires advances in
software interoperability, is becoming a strategic issue. Here the primary aim is to realise
greater functional synergy between software components which span engineering, production
and management activities and systems. Hence information of global interest needs to be
shared across conventional functional boundaries between enterprise functions.

The main thrust of this research study is to derive a new generation of MCS in which
software components can “functionally interact’” and share common information through
accessing distributed data repositories in an efficient, highly flexible and standardised
manner. It addresses problems of information fragmentation and the lack of formalism, as
well as issues relating to flexibly structuring interactions between threads of functionality
embedded within the various components. The emphasis is on the :

» definition of generic information models which underpin the sharing of common
data among production planning, product design, finite capacity scheduling and cell
control systems.

» development of an effective framework to manage functional interaction between
MCS components, thereby coordinating their combined activities.

« “soft” or flexible integration of the MCS activities over an integrating infrastructure
in order to (i) help simplify typical integration problems found when using
contemporary interconnection methods for applications integration; and (ii) enable
their reconfiguration and incremental development.

Xiv

In order to facilitate adaptability in response to changing needs, these systems must also be
engineered to enable reconfigurability over their life cycle. Thus within the scope of this
research study a new methodology and software toolset have been developed to formally
structure and support implementation, run-time and change processes. The toolset combines
the use of IDEF (for activity based or functional modelling), IDEF;yx (for entity-attribute
relationship modelling), and EXPRESS (for information modelling).

This research includes a pragmatic but effective means of dealing with legacy! software,
which often may be a vital source of readily available information which supports the
operation of the manufacturing enterprise. The pragmatism and medium term relevance of the
research study has promoted particular interest and collaboration from software manufacturers
and industrial practitioners. Proof of concept studies have been carried out to implement and
evaluate the developed mechanisms and software toolset.

SCOPE

The author’s underlying philosophy, concepts, derived methodologies, and enabling
mechanisms have been conceived to (i) facilitate software interoperability and (ii) overcome
certain limitations and restrictions found when achieving applications integration in
contemporary forms of MCS. Such issues have been considered in chapters one to five of this
thesis. In chapter six the notion of a “model driven” methodology is introduced which has
been derived to formally structure and support change management in interoperating forms of
MCS. Here the concept of “enacting” functional and information models is examined to
provide consistent support over the MCS life cycle. Chapter seven focuses on the
implementation of a proof of concept MCS demonstration system to illustrate the application
of the research methodology adopted and developed by the author to enable interoperation of
MCS components.

Chapter 1 : The need for software interoperability and the issues which affect integration
between software applications are discussed. Some of the major considerations are examined
to develop pragmatic and viable interoperable systems. Also outlined are :

- the nature and scope of software interoperability;
- a requirement specification to effectively enable interoperation between MCS
components.

I. The term legacy (systems, components and software) is used to refer to a previously installed base of
systems, components and software. Legacy elements will not normally conform to the methods and
standards which are adopted in current generation solutions.

XV

Chapter 2 : Inherent constraints and limitations which inhibit or complicate interoperation
between contemporary forms of MCS are identified and examined. A literature review on
contemporary approaches and methodologies available to tackle particular aspects of the
interoperability problem(i.e. interconnection, system design and development, reference
models and system behavioural issues) is conducted. Based on the review, some of the
outstanding issues and “gaps” in knowledge are highlighted in terms of advancement goals for
the author to achieve and address in order to effectively facilitate software interoperability.

Chapter 3 : The focus and perceived objectives of this research study are specified. The
need for a reference information model, which can be widely applicable across the
manufacturing continuum to promote interoperability between MCS functional activities, is
highlighted. The components of an integrating infrastructure (IIS) and the important role of
the CIM-BIOSYS IIS, which has been developed by the Manufacturing Systems Integration
Research Institute at Loughborough University of Technology and used in the author’s
research study to enable interconnection between MCS components, are described. Also
provided is an overview of the overall research methodology conceived by the author as part
of this doctoral study to enable software interoperability.

Chapter 4 : An information architecture which can support software interoperability is
discussed. It includes the specification of reference models, which describe information
entities of common interest shared between production planning, product design, process
planning, finite capacity scheduling and cell control systems. Included is a case study carried
out in collaboration with the University of Bradford Management Centre to demonstrate the
application of the generic reference models identified and described by the author. The design
criteria for the system data repository are specified. The mechanisms (such as the database
‘driver’) developed to enable open information access in a consistent and reliable manner
from the system data repository are also described.

Chapter 5 : The emphasis in this chapter is on system behavioural issues. The methodology
adopted, mechanisms developed and system management tools required to formally structure
and facilitate functional interaction (among distributed interoperating MCS components
during run-time) are discussed. The MCS Functional Interaction Management Module
(FIMM), which has been developed as part of this research sludg} to enable effective functional
interaction, is also explained. The functional capabilities and level of effectiveness of the MCS
FIMM in facilitating interaction is compared against a contemporary commercial software
application, namely Systems Integration Manager, which is designed to tie together a disparate
set of MCS software applications into a coherent system.

xvi

Chapter 6 : A “model driven” methodology conceived by the author in this research study
to provide life cycle support of integrated manufacturing systems is highlighted. The software
toolset developed, which is coupled closely with IDEF,, IDEF,x, and EXPRESS modelling
tools, to formalise and support implementation, run-time and change processes is described.
The exploitation and enactment of function and information models by the software toolset to
structure downstream life cycle processes is also discussed.

Chapter 7 : In this chapter a proof of concept MCS implementation study has been carried
out in order to illustrate the application and ascertain the level of effectiveness of the
methodology derived in this research study, which seeks to enable interoperability among
MCS components.

Chapter 8 : A summary of the research work carried out is provided. In order to enhance
the software interoperability methodology described in this thesis, future work is
recommended to address some existing deficiencies. Expected future major areas of
interoperability development are also highlightecf.

xvii

Chapter 1

Contemporary forms of Manufacturing Control Systems
and a perspective on Software Interoperability

“He who does not think far ahead, is certain to meet troubles close at hand.”
Confucius, Born 551 BC

1.1 Limitations of Contemporary forms of MCS

Advances in technology have led to the widespread use of information technology in
manufacturing but have mainly generated islands of computerisation [Hars 1990]. This
phenomenon can in part be attributed to the dominant influence of Taylorism [Pugh and
Hickson 1989, Taylor 1947], which places emphasis on specialisation and distinct division of
responsibility. Traditionally this has led to a compartmentalization of business, engineering
and production activities, all of which are required to support the product life cycle.
Consequently, there has been a proliferation of computer-aided software applications where
each has been designed with Tayloristic principles in mind, this to address some focused
aspect of the manufacturing domain {Scheer 1988].

Contemporary software applications are used to facilitate product introduction and planning
processes. They also enable the control of manufacturing activities and processes on the shop
floor. They are implemented in a variety of forms and serve different purposes, many of which
are typically classified under the general headings of PPC, CAD, CAM, CAE, CAPP, CAQ,
DNC, SFC, etc.) [Rembold et al. 1993, Scheer 1991]. Thus typical components of
contemporary McCs! (Manufacturing Control Systems) are implemented in the form of stand-
alone software packages, each focused on enabling localised efficiency and productivity
improvements with respect to different aspects of a manufacturing enterprise. Computer-aided
software applications of this type are conceived, implemented and supplied from various
sources, this leading to significant heterogeneity in terms of the computer hardware, systems
software, systems management and communications systems they employ [ITAP 1990,
Weston er al. 1988]. This is accentuated by the fact that they are conceived and implemented
in the absence of an overall company wide strategic plan [Waterlow and Monniott 1986] of
how MCS should be implemented and how the integration requirements of other software

1. MCS - Specialised applications which exhibit discrete functionality for the rationalisation,
improvement, control, and execution of activilies in support of part manufacture will be
viewed as typical components of MCS,

Page 1

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

applications, outside the area of immediate concern, can be met. Driven by myopic
departmental considerations, end users freely mix and match hardware and software
requirements to best suit their needs, from the plethora of systems that are currently available.

As a result, contemporary MCS solutions offer little or no interworking between constituent
software applications, particularly those associated with different functional areas of the
enterprise, and do not promote synergy on an enterprise-wide basis [Moerman 1991]. This
results in specialised departmentally-determined data organisation and contributes to data
hoarding by individual departments and applications, each with its own restricted and
incomplete view of enterprise goals [DTI 1993). Companies are often in a dilemma when they
need to :-

» accrue and consolidate fragments of information of common concern which are
distributed and also duplicated among the various MCS applications; and
+ facilitate information sharing and transfer between islands of computerisation.

This can be attributed mainly to the insular nature of contemporary MCS solutions where their
interconnections (to facilitate transfer and sharing of information) are severely constrained by
their proprietary nature and the level of heterogeneity exhibited by them [Singh and Weston
1993, Weston et al. 1988). Hence there is much reliance on users to establish informal links to
(i) convey messages and information, and (ii) co-ordinate transactions between specialised
departments and applications, as illustrated in Figure 1-1. Consequently, significant delays
and errors in transactions normally occur, thereby promoting opportunities for
misunderstandings and conflicts [Lars 1990]. This undoubtedly hampers the productivity and
operational efficiency of the enterprise concerned.

Customer demands

Finished goods

Market forces

Design to manufacture

Figure 1-1 : Insularity of contemporary MCS solutions

Page 2

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

1.2 The Need for Software Interoperability

With a growing demand for consumer-oriented flexibility, there is increasing pressure on
companies to improve their responsiveness and to achieve better (*more informed’) decision-
making through effective dissemination and sharing of information and knowledge [Pheasey
1992, Weinberg 1989}, These needs have been identified and are strongly reflected in the
following emerging trends [Fry and Baker 1993, Peters 1989] :

+ Inter- and intra-organisation integration to realise greater functional synergy
where conventional boundaries between enterprise functions, which span
engineering, production and management activities and systems, are traversed to
allow information of global interest to be shared within the organisation and
externally, such as with vendors and suppliers.

+ Time-based competition where the drive is towards achieving shorter design to
manufacture lead time in order to be highly responsive to customers’ demands and
changes in other market forces so as to enable exploitation of market potential and
capitalisation of existing business opportunities.

« Customisation of manufacturing activities and systems where they need to be
configured and geared specially to cater for the individual requirements and
idiosyncrasies of the company concerned.

Therefore, it is no longer reasonable to expect a single software application to fulfil its
purpose without support or reference to data and events which are handled by other closely
related application systems. This would require the linking up of the various islands of
computerisation, for example : ‘

 Product Design
Companies are under constant pressure to (i) deliver better quality products, and (ii)
dramatically reduce design-to-manufacture lead times so as to capitalise on market
opportunities by being “first to market™ [DTI 1993]. Therefore, not only must there be
prompt responses to design requirements and changes but there must also be the use of
decision support systems based on information gathered from various parts of an
enterprise [DTI 1993, Schnur 1987]. For example, to aid product design, product

specifications should consider the availability of manufacturing resources [Singh 1991,
Lars 1990].

Page 3

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

 Process Planning
This serves as a technological bridge between engineering and manufacturing and
provides a blueprint for part manufacture [Ssemakula 1987, Logan 1986, Chang 1985]. It
defines the sequence of operations required to manufacture a product and selects the
manufacturing resources (including machines, toolings, fixtures) to carry out material
processing. According to a recent report [Halevi and Weil 1992] process planning
systems should be able to communicate with other company functions, especially

production planning and product design, in order to achieve significant benefits in co-
ordinating manufacturing activities.

» Cell Control
Shop and cell control systems have responsibilities for a segment of the shop floor and
are required to despatch planned orders (which are generated from production planning
systems), coordinate, control and monitor the operation of the components of a shop or
cell [Bauer 1991]. They will also be responsible for shop floor data acquisition, thereby

enabling production status feedback to the production planning system [Williams and
Rogers 1991].

Thus it is necessary to coordinate and control the interoperation of various types of software
component; this involves a need to provide and control access to commonly used engineering,
manufacturing and management information (see Figure 1-2). For example, bill of materials
(BOM) and process planning information are common information entities viewed from
different perspectives by CAD/CAM [CIM Strategies 1991, Lang-Lendroff and Unterburg
1989, Bohse and Harhalakis 1987] and CAPP [Ssemakula 1987, Logan 1986].

Customer demands

Finished goods)

Common Information,

Market forces

Figure 1-2 : Interoperation among MCS solutions

Page 4

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

As illustrated in Figure 1-2, the users, on the other hand, would now require

(i) accessibility and a coherent as well as up-to-date view of information of common concern,
this to support their decision-making in a more timely and accurate manner; and

(i) a global perspective of their work domain, so as to have a better appreciation and
understanding of its impact on and close association with other activities in the enterprise.

This would undoubtedly help to avoid errors and delays in and between transactions as well as
alleviate potential conflicts and contentious situations.

However, the following should be considered and addressed before any solution derived can
be deemed as practically acceptable :

+ dealing with legacy software, this to enable interoperability among the existing installed
base of MCS components.

» ensuring generic applicability of interoperable solutions across the manufacturing
continnum which typically range from ‘Project Manufacturing’ to ‘Repetitive
Manufacturing’ [Dinitz 1990].

1.2.1 Coping with Legacy Software

Contemporary MCS are normally designed and implemented to address a set of problems
prevalent in current company situations. Once installed, inevitably any solution is at a risk of
becoming obsolete if it is incapable of coping with situations other than those for which it has
been designed. Hence MCS solutions are required to (i) adapt to changes in business needs,
and (ii) conform to methods and standards adopted in current generation solutions. When
obsolescence occurs, one of the following actions will normally be required :

(a) modification or enhancement in functionality so as to upgrade and make them
functionally effective again.

(b) to retrieve its existing information which can be a vital resource in support of the
operation of the manufacturing enterprise.

(c) discarding them entirely and replacing them by a viable alternative when there is
neither any chance nor need for (a) and (b).

With a previously installed base of a software, which is referred to as legacy (or “as is™)
software, the possibility of performing (a) may be remote. Often this is due to a lack of
proprietary knowledge, support and expertise to carry out necessary changes (such as
amendments to the required source programs), thereby making the task arduous indeed [Singh

Page’5

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

and Weston 1993]. Furthermore, it is uncommon for software manufacturers to reveal and
release information pertaining to the source programs of their developed applications.
Understandably, this is to protect their vested commercial interest and rights to intellectual
property embodied in their products.

Hence in seeking to facilitate information sharing, generally speaking (b) seems to be a more
workable and pragmatic means of dealing with legacy software than (a). However, in order to
achieve an acceptable level of interoperability among MCS components, often the following
prerequisites are essential :

+ that the information source (which forms part of the legacy element) can be
independently accessed; and

+ that the information architecture and schema used by the legacy component are clearly
understood in terms of their structure and composition [Hodgson and Weston 1993].

1.2.2 Manufacturing Continuum Consideration

Typically, the production planning methods and systems employed today are likely to have
been chosen after having considered particular characteristics of the manufacturing
environment concerned, i.e. the type of products, production volume, demand fluctuations,
manufacturing technology, markets involved, etc. [Z&pfel and Missbauer 1993]. Indeed there
is a spectrum of discrete parts manufacturing which can be viewed as ranging from ‘Project
Manufacturing” to ‘Repetitive Manufacturing’ [Dinitz 1990] (see Figure 1-3). Not surprisingly
therefore there is considerable diversity and lack of uniformity among production planning
methods and systems.

Custom Products
$
Configure-To-Order Standard Products
¥

Engineer Make |Assemble Make-To-Stock
to Order |to Order to Order

Project Repetitive

Manufacturing Manufacturing

_ Discrete Manufacturers ﬁ

Figure 1-3 : Continuum of discrete part manufacturing environments [Dinitz 1990]

Page 6

Contemporary forms of Manufacturing Control Systems

Chapter 1 and a perspective on Software Interoperability

Clearly, the environment required for each class of manufacture (be it ‘engineer-to-order’,
‘make-to-stock’, etc.) will require its own distinct set of operating characteristics [Goyal er al.
1993], as illustrated in Table 1-1.

Manufacturing Environment
Engineer-To-Order | Make-To-Stock
Production Complexity High Low/Medium
Capacity/Material Driven Material Capacity/Material
WIP Value High Low/Medium
Push/Pull Pull Push
Schedule vs Orders Orders Schedule
Forecast Stability Low Medium/High
Direct Issue vs Backflush Direct Backflush
Shop Floor Organisation Work Centre Line/Cell
Manufacturing operations Staff High Low/Medium
Labor Content High Low/Medium
Overhead Basis Labor §, Labor $,
Labor Hrs, Labor Hrs,
Machine Hrs Machine Hrs
Performance Goals Operation Schedule
Efficiency Auainment

Table 1-1 : Characteristics of discrete manufacturers [Goyal ez al. 1993]

Hence suitable manufacturing methods have to be adopted to satisfy and address the specific
needs of each class of manufacture. They govern the formulation and determine the nature and
extent of MCS functionality, particularly with regard to production planning and control,
Common manufacturing methods adopted include MRP II, JIT, OPT or possibly a hybrid of
them [Z&pfel and Missbauer 1993, Larsen and Alting 1993, Struedel and Desruelle 1992,
Higgins et al. 1991, Jones and Roberts 1990, Goldratt 1988, Wight 1984] where

- MRP II operates on forecasts, ime-phased resource planning and fixed lead times. It is
suitable for discrete part manufacture of standard products for the ‘make-to-stock’
environment. However, it does not include functionality to support short term scheduling of
orders under the constraints of the real availability of resources. This can make the use of

Page 7

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

MRP II inflexible, capacity insensitive and not responsive enough to changes and short term
demands imposed by, for example: the ‘configure to order’ environment, which is
characterised by small batch quantities and large product varieties.

- OPT (Optimised Production Technology) is based on the insight that the flow of materials
and goods, -consequently affecting the performance of the manufacturing system, is

~ determined by properties of its bottlenecks, such as limited capacity, demand and
availability of raw materials.

- JIT (Just-in-Time) methods are not only used to reduce inventories but also for continual
improvement of the production process. This approach requires a reorganisation of the
logistic chain to provide sufficient flexibility and reliability to closely match resources and
capability to customer demand.

The strength of MRP 1I lies in its mid- to long-term global planning whereas the strengths of
JIT and OPT are in the short term execution of planned needs. Each has proved to be
successful in certain production environments and each has demonstrated disadvantages under
certain conditions. It is beyond the scope of this research to discuss further these paradigms
and as each of them is sufficiently complex, no attempt will be made here to elaborate upon
the various philosophies which they embody. Instead, the reader is directed to one of the
references given.

However, bearing in mind the following realities, there is a need to scrutinize the (information
and functional)} requirements of the various manufacturing methods so as to identify amongst
them (i) essential information of prime concern, and (ii) the existence of common threads of
functionality .

» In practice companies do not necessarily stop at the boundaries of one manufacturing
method but cross and mix ideas to extract what makes sense for that particular company
[Van Donselaar 1992, De Vaan 1992, Ptak 1991, St. Charles 1987, Luscombe].

» Any choice of manufacturing method depends upon various drivers (for example, the nature
of the management style, organisation, information technology and manufacturing
technology), each of which will inevitably change and evolve, as illustrated in Figure 1-4.

Quite importantly, such generalisation would alleviate any bias towards specific
manufacturing methods, thereby effectively breaking free from the restrictive bounds of the
manufacturing methods adopted. In addition, commonality in information requirement and
functions would indeed help overcome the considerable diversity among production planning
methods and systems, currently existing across the manufacturing continuum, which serve to
inhibit the achievement of interoperable solutions.

Page 8

Contemporary forms of Manufacturing Control Systems

Chapter 1 and a perspective on Software Interoperability
‘ CAE Concurrent
Order Shop floor CAD/CAM Engineering
Manufacturing Systems Controt TQC Integrated
Systems & Simulation Enterprises
Production MPS DNC CcIM
Management OPT)
Inventory T Enterprise Resource Planning
.‘r’:g:','('lﬁa MRP MRPII Distributed Resource Planning
High Volume
Cost Reduction
Product Focus
. Functional Integration
Manufacturing Closed Loopc o
Process Con
Strategy Material Velocity
Overhead Cost
New Product Introduction
Speed & Responsiveness
Organizational Structure
Globalization
Customlsation
Total Integration
. Market
Competitive Quality
T
Thrusts e Plexibility
Customlsation
19305 1950y 19705 1930s 1990s ’
Chronology of Manufacturing Trends
Figure 1-4 : Evolution of production management and manufacturing systems

1.3 Applications Integration and Software Interoperability

As illustrated in Figure 1-5, the AMICE CIM-OSA Consortivm classified integration in the
manufacturing enterprise within the following three levels [ESPRIT 1989, CIM-OSA 1989] :

+ Business Integration

At this level, enterprise goals and strategic business issues are considered.

« Application Integration

Integration at this level is defined as concerning interoperation between applications,

this to facilitate data sharing and information exchange.

+ Physical Integration

According to CIM-OSA, physical integration is mainly concerned with data and
inter-process communication issues. It expects this level of integration to be provided
by current information technology concepts and standards (such as the ISO/OSI
seven-layer reference model [DATAPRO 1992}, as illustrated in Figure 1-6). CIM-
OSA will use the relevant services as defined.

Page 9

Contemporary forms of Manufacturiog Control Systems
Chapter 1 and a perspective on Software Interoperability

* Knowledge Based Decislon Support
for Business Coatrol

* Automated Business Process Monitoring

BUSINESS INTEGRATION

* Productiots & Process Simulation

APPLICATION INTEGRATION

IT
APPLICATIONS
EVOLUTION
* Inter System Communlcations/
PHYSICAL INTEGRATION Network Configuration & Management
* Data Exchange Rules and Conversions
* Physical System Interconnection
CIM EVOLUTION —_—

Figure 1-5 : Integration levels in the manufacturing enterprise [CIM-OSA 1989]

i:L— Interface —jp

- Co-ordination —Jast-

Data packet
il lrln';fer -

Physical Physical

Figure 1-6 : Illustration of ISO/OSI1 seven-layer reference model

Page 10

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

Within the context of computer integrated manufacturing (CIM), the term *‘software
interoperability” has been used to imply the ability of separate software applications to
functionally interact so as to meet collective goals [Pheasey 1992, Scheer 1991, CIM-OSA
1989]. Bearing in mind the CIM-OSA classifications, therefore software interoperability is
aimed at the application integration level of enterprise wide integration.

Software interoperability is widely conceived as requiring data integration as well as
functional integration [Singh and Weston 1994a, Anscombe 1992, Hars 1990, Scheer 1989,
Solberg 1989, Fritsch 1989, Weinberg 1989, DTI 1987] with the resultant effect of linking and
synchronising the behaviour of processes in different subsystems of an enterprise. The
underlying interaction processes will involve an exchange of messages and the sharing of
information of common interest between a group of software applications so that the
applications behave (both individually and collectively) in an effective manner whilst realising
system-wide goals.

Drucker, in his assessment of the factory of the future, expresses the importance of such a need
as being :

“ The factory of the future will be an information network. Sectors and departments will
have to think through what information they owe to whom and what information they need
from whom. A good deal of this information will flow sideways and across departmental
lines, not upstairs as with traditional plant...” [Drucker 1991]

Over the last decade significant progress has been made towards improving the ‘hardware
portability” of MCS software building blocks where software vendors have sought to adopt the
use of de jure and de facto computer networks, operating systems, databases, fourth generation
languages, and graphical user interface standards [Evans et al. 1993, DATAPRO 1992]; as
illustrated in Figure 1-7.

This trend towards hardware portability has enabled the functionality implemented by any
particular piece of application software to be separated from (i) the computer hardware on
which it is run and (ii) the data on which it operates. The result is that certain problems
associated with installing, using, and changing individual MCS software building blocks can
- be alleviated [Evans et al. 1993, AMR 1991]. However, in seeking significant enhancement in
the level of interoperability achieved between chosen MCS software building blocks (where
information exchange is a key requirement) common function and information models, which
encapsulate key general attributions of various forms of MCS, are also required [Hodgson and
Weston 1993, ISO 1991, Barkmeyer 1989, Weber and Moodie 1989]. Currently, there is an
absence of such models.

Page 11

Contemporary forms of Manufacturing Control Systems

Chapter 1 and a perspective on Software Interoperability
Standards
Requirements De Jure De facto Functions
. X-Window System
Windowing OSF/Matif Y Consistent User
Interface
. GKS-3D
Graphics PHIGS
IGES
] Access 1o
Openating (IEEE POSIX 1.003.1, System Serviczs
System Inerface Emerging 1.003.n)
Database SQLé
DefiniticnfAccess Emerging SQL Access
& Remote Data Accezs (RDA) Information &
Enteror) Resource Sharing
Repolspilomr; Emerging IRDS, ATIS
File Shari Network File Sysiem (NFS) | 1cp
nng Emerging OSF DCE AFS P
Mail X.400
EDI ANSI X.12, EDIFACT EDIF
. Enterprise
RPC Emerging OSF DCE Communications
Plani Floor
Communications MMS RS-232

Figure 1-7 : The standards continuum and a categorisation of their purpose

Thus as an initial step, there is an important need to define the nature and form of a suitable
information model which can be used and advanced to a point where it can serve as a
generalised reference model, thereby facilitating data exchange between MCS components
{ISO 1991, Barkmeyer 1989]. The benefits of using this reference model need to be quantified
and widely published. Subsequently it would be necessary for the reference model to be
adopted by vendors and users of MCS where it is likely that significant additional benefits
would accrue as its applicability and adoption are widened [Singh and Weston 1994b]. Such a
model will need to describe information of common interest to the components of a typical
MCS, thus effectively serving as a precursor to their interworking. It should reference shared
information and possibly consolidate them in a data repository so as to enable data sharing
within the enterprise. Potentially using such an approach, boundaries between enterprise-wide
functions can to some extent be overcome, a key requirement as advocated by Anscombe
[Anscombe 1992].

Page 12

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

1.4 Requirement Specification for Software Interoperability

We can conclude that ideally software interoperability should imply an uninhibited
functional interaction and intercommunication amongst CIM components through a
free exchange of shared information. This also implies a need to standardise the interfaces
between the software components of CIM systems, especially conceming the control of
information exchange between the components. Therefore, it is clear that the concept of
software interoperability extends beyond that of software portability, i.e. interoperation is
required over different hardware platforms, operating systems and information access and
storage systems.

Hence in summary, the following requirements need to be satisfied to enable software
interoperability in an effective manner which overcomes (i) limitations inherent in
contemporary MCS components and solutions; and (ii) associated and inherited difficulties
and problems involved in achieving their interoperation :

* Information sharing requirements
+ Generic reference models which describe information of common concern to various
components of MCS.

+ An information architecture which establishes structure and uniformity whilst enabling
sharing and transfer of information between MCS components.

* Interconnection facilities
* An integrating infrastructure which simplifies and structures interconnection by (i)
separating integration and application issues; (ii) providing inter-process communication
services; and (iii) mapping of distributed processes (embodied in MCS components) on
the physical resources contained within a target manufacturing system.

* User interface capability
+ Ability for users to access MCS related functions in a manner which provides a global
perspective and intra-organisation support for their tasks.

* Control of system behaviour
«» Capability for controlling and co-ordinating the sequence of (run-time) activities carried
out by an MCS, this based on their functional dependencies, information needs and
availability. '

Page 13

Contemporary forms of Manufacturing Control Systems
Chapter 1 and a perspective on Software Interoperability

* System design and development capability
* Provision for a more formal and structured approach to
- engineering MCS solutions; and
- supporting them over their useful life.
This is to facilitate ease of development and change management, in view of the need for
next generation forms of MCS to be adaptable and responsive.

Page 14

Chapter 2

Current “State-of -the-Art” Scenario

2.1 Introduction

There are various methods currently used which attempt to resolve and overcome (i) certain
limitations inherent in contemporary MCS components and solutions, and (ii) difficulties and
problems associated with achieving a degree of software interoperability. In this chapter, the
nature and status of these methods is discussed. The discussion is structured with reference to
certain aspects of the requirements specification identified in Section 1.4, namely with respect
to commonly used ways of providing :

+ Interconnection facilities

Information reference models

System design and development capabilities

*

Means of controlling system behaviour

2.2 Interconnection Facilities

In this context interconnection can be viewed as establishing electronic data interchange
between the various islands of computerisation [Rembold et al. 1993, DATAPRO 1992]. Here
components of an MCS are interconnected to provide a low level data inter-communication
and information transfer facility for the software applicatibns (or components) which form the
MCS. Three broad classes of approach can be identified which will herein be referred to as :

+ “Pair-wise” integration
+ Integrated information systems
+ Integrating infrastructure

2.2.1 “Pair-wise” Integration

As explained by Rui in his PhD thesis [Rui 1989], in industry a *“pair-wise” integration
approach is frequently adopted to interconnect the components of an MCS, thereby enabling
information transfer between software applications (or components) of such systems. This
approach can be characterised as follows :

Page 15

Chapter 2 Current “State-of-the Art” Scenario

» Requires the development of bespoke interfaces, as illustrated in Figure 2-1. These
interfaces will normally need to be custom designed (each at a relatively high cost) to
realise a level of integration between interoperating pairs of application software. The
complexity of such systems will grow substantially (theoretically in a square law fashion)
as the number of interconnected applications grows [Weston 1993]. This implies that for a
set of n different systems which need to be linked, n(n-1) different interfaces may need to
be developed; what is worse is that potentially 2(n-1) interfaces need to be adapted
whenever a single application system is changed.

Application 1 - Application 2 4= | Database
pplication .
“ Bespoke interfaces

Figure 2-1 : Interconnection between MCS applications through “pair-wise” integration

Typically this approach results in the incorporation of knowledge (concerning the need to
interoperate) into individual application software and its associated ‘drivers’ [Rui 1989].
This will include knowledge of other application software, data sources, data access
mechanisms, communication protocols, communication channels, data formats, and data
structures [Kaul er al. 1989]. This results in inflexible, application-specific and rigid
solutions which can be classified as “hard” integration” [Rui 1989]. Such solutions will
not be easily supported (in terms of available technical expertise) and the understandable
reluctance of vendors to release detailed product specifications (as this may embody
knowledge which provides them with a competitive advantage) will often lead to sub-
optimal interworking between components. Furthermore, the cost (in terms of resources and
time) of subsequent modification may be so great as to render the solution obsolete as soon
as requirements change significantly. '

Page 16

Chapter 2 Current “State-of-the Art” Scenario

+ Utilisation of import and export filters. For some software packages, export filters are
provided as a built-in utility to enable the user to have independent access to its proprietary
data [Preece 1993, DATAPRO 1992]. The filters assume responsibility for pre- and post-
processing of data which is specifically selected by the software manufacturer to be made
available to the user. Here some restrictions are necessary in order to maintain data security
and integrity through controlled access. The data will be automatically converted, via the
filters (see Figure 2-2), to conform with a required database or file format supported by the
software package. Generally the file formats adopted here will either be :

- a compatible format to enable direct data transfer between software packages; or

- a neutral format, such as in the form of a flat file, to allow intermediate data transfer
(in the absence of any compatible database or file format) between software
packages. In this case, further overhead processing will be required to retrieve,
manipulate and store the relevant data.

As explained by Lim [Lim 1992], data conversion and data transfer is normally performed
in a batch mode processing.

cppansschtses s T o e . . Direct transfer

G _;;
Application 2
| Intermediate transfer §

R

Neutral format

Figure 2-2 : “Pair-wise” integration via import/export filters

The main limitations of using filters are (i) that they provide only restricted access to
selected data, and (ii) the details of data format and structure can be lost in the transfer
process [Preece 1993]. '

With such contemporary “pair-wise” methods of interconnection, each software application
manages its own data and this can result in significant access times and data transfer times, this
as a result of the inherent mechanisms used to retrieve and make data available to other
applications [DATAPRO 1992, Scheer 1991]. As a result of such delays there is no guarantee
that data will be sufficiently up-to-date to support other dependent applications.

Page 17

Chapter 2 - Current “State-of-the Art” Scenario

2.2.2 Integrated Information Systems

There is a growing emphasis on the development of integrated information systems based on a
data integration approach. This approach can help prevent cumbersome information transfer
(as illustrated in Figure 2-1) and can also reduce delays in information transfer times
[Muhlemann et al. 1991, DTI 1989]. The underlying principle of integrated information
systems is that they consolidate information into a data repository (or common pool), this by
seeking to closely map common data to be exchanged and shared between applications into
that pool [Jeng and Chao 1992, Martin 1988]. Generally speaking, each application is required
to support a capability to export and import schema to this data repository for which a global
schema of common data models is defined (refer to Figure 2-3 for illustration). Potentially this
approach should enable information of common concern (which typically will accrue at one
stage in the production chain) to be included in the data repository, thereby making it
accessible to application software used at other stages in the chain.

TS S
Datab “ Application 3
Database atabase

. \ ExportflmPOV
schema

Application 1

Commonly shared
information

Application 2

Figure 2-3 : Interconnection between MCS applications through integrated database

Page 18

Chapter 2 Current “State-of-the Art” Scenario

This approach has been realised industrially (at least to some extent) in recent years and has
led to a degree of rationalization within divisions of some enterprises. For example,
rationalisation spanning accounts, production planning and order handling have led to a
reduction in administrative order handling times from 3 weeks to 3 days [Scheer 1991, Hars
1990].

However, as described below major practical problems remain with regard to the
development, enhancement and maintenance of integrated manufacturing systems which
impede the wide-spread adoption of integrated information systems and may generally restrict
interoperation among MCS functions [Singh and Weston 1993, Kochhar et al. 1987]. Many of
these problems arise from :

o The tight-coupling that normally exists between MCS functions and their associated
information. This (i) makes information access difficult or even impossible; and (ii) leads
to unintended propagation of the effect of changes made, i.e. change to individual
applications (comprising software processes and their associated systems) can have
significant effect on the operation of other applications [Weston et al. 1988].

* A lack of adherence to standard architectural models of functionality and information.
Rather, contemporary software components of MCS are designed using proprietary models
of function and information which are determined by the manufacturer [Singh and Weston
1994b, Fritsch 1989, Solberg 1989]. The main disadvantage is that information of common
concern to softwarc applications is often duplicated, translated, and re-interpreted by
different software applications. This gives rise to problems of data integrity and
consistency as well as significant database management problems [Lim 1992].
Furthermore, semantic integrity has to be ensured and maintained between valid
combinations of data items fragmented across various databases [Kaul ez al. 1989].

« Heterogeneity in database systems, particularly with regards to their logical data model. As
elaborated below, there are the following three logical data models most commonly
supported by database management systems [Beeri 1993, Wilkinson and Winterflood 1987,
Date 1986, Martin 1980] :

(i) Hierarchical model
Data is represented in a hierarchical or tree structure. Tree structures provide a
natural way of modelling truly hierarchical real world relationships where one-to-
many segment types can be defined to represent successive levels in a tree structure
in order to relate entities to one another.

Page 19

Chapter 2 Current “State-of-the Art” Scenario

(ii) Network model
In the network model data is represented in a network (or plex) structure where any
node can be connected to any other node represented in the structure. Network
structures offer a greater scope to represent data relationships than hierarchical
structures, albeit at the expense of simplicity (at least with respect to physical
storage structure).

(iii) Relational model
In a relational model entities, relationships and attributes are represented in the
form of two-dimensional tables known as relations. Records are assimilated to the
rows of the table and each set of attributes forms a column.

(Please refer to Appendix I for further details on the various types of logical data models).
Thus there are major difficulties involved in attempting to interconnect heterogeneous
database systems. As a result of non-uniformity in their database management systems and
physical storage structures, there are serious concurrency problems related to transactions
and controlled data access. In addition, the following must also be reconciled :

- differences in database schema;
- semantic differences among data items.

There is considerable academic and industrial interest in integrating heterogeneous
distributed database systems, with extremely large numbers of publications in the area
[Breitbart et al. 1993, Bright et al. 1992, Thompson ef al. 1990, Motro 1987, Batini ez al.
1986] indicated in the literature. The reader is directed to one of the references given for
further appreciation of the difficulties involved.

2.2.3 Integrating Infrastructures

An increasing number of CIM tools [Gould 1992, AMR 1991, CIM Strategies 1990, Metz
1990] which are appearing on the market claim to allow applications to “functionally interact”
(see Table 2-1 for summary). The main purpose of these integrating infrastructures (which will
be referred to by the acronym IIS) is to structure, service, and where possible simplify
interconnection between the component elements of software systems.]

As illustrated in Figure 2-4, an IIS can be charged with resolving differences in a physical
system relating to heterogeneity, distribution and data fragmentation [Weston 1993]. It can
assume responsibility for maintaining a knowledge of integration details (such as the networks
used, the hardware and operating systems that software components are run on, the location of
an information fragment, etc.) so that software components (such as MCS components)

Page 20

Chapter 2 Current “State-of-the Art” Scenario

Vendor Product Remarks
IBM PlantWorks/DAE | * Need compliance (o IBM’s SAA based
strategy of a CIM repository.

* Runs only on IBM computer systems.
DAZ - Distribgted Automatien | * Qperating system is OS/2 based.

- Lacks third party support for PlantWorks/DAE,

* VAX based hardware.
* Operating system is VMS based only.
DEC Consillieum/ . g y- . . y
BascStar - Limited vertical integration between BaseStar,

which enables applications at the shop floor level,
and the planning and management activites,

- Lacks third party support.

- Geared only for shop floor software

development.
Hewlett | Industrial Precision i)
Packard Tools (IPTs) - No current integration between IPTs and
third parties.

- No vertical integration available yet between

shop floor applications and the planning and
managemen! activities.

Table 2-1 : Major commercial solutions with provision
of an integrating infrastructure [AMR 1991]

Interconnection between conformant applications

s

Integrating Infrastructure

Information resource

Data repository

Figure 2-4 : Interconnection via an integrating infrastructure

Page 21

Chapter 2 Current “State-of-the Art” Scenario

themselves need only have knowledge of how to use the IIS (i.e. NOT OF EACH OTHER).

An IIS is usually supported by software tools to help alleviate the complexities inherent in
most systems integration projects [Timon et al. 1990, Hughes 1988]. A range of development
tools for programmers and third party developers can be offered and may provide

+ Structured access to common integration services for
- inter-process communication;
- information sharing and management via a data repository.

« Consistent user and device interfaces to allow interaction over theIIS.

Potentially, the use of an IIS

(1) makes programming easier by insulating application software from complexities
associated with managing of system resources. This improves portability of application
programs. For example, an application can run on different network types and can be
referred to in a manner which is independent of physical location (i.e. it does not matter
where that application resides).

(i) provides a data communication system that allows the building of an integrated system,
comprising distributed software applications. Once this system is built, the IIS enables the
distributed applications to access the hardware resources in the system {which includes
data repositories).

However, existing forms of IIS offer a restricted set of integration services and tools and are
proprietary in nature. Here the IIS can enable a flexible mapping of software applications onto
the physical resources of a system. This is of major advantage with respect to enabling change,
the incremental extension of a system and providing a migration path from the use of legacy
software and resources towards more interoperable components. They offer a view of the
world and integration needs held by a particular system supplier. As a result, they provide a
limited ‘de facto standard’ interface capability where so called conformant software
applications (which are strictly compatible to the 11S) will be supported. Currently this limits
the potential advantage gained from proprietary forms of 1IS and is particularly limiting with
respect to the inclusion of legacy systems [Singh and Weston 1993].

Furthermore, presently available forms of IIS do not treat application functions and
information independently and separately. Thus changes to either function or information will
inevitably affect both because of their close dependency. Indeed the task to effect the changes
can be very demanding and disruptive to normal operations because careful consideration for
enterprise-wide implications of such changes has to be given. This is due to the encompassing
nature of the IIS towards promoting intra-organisation integration.

Page 22

Chapter 2 Current “State-of-the Art” Scenario

2.3 Information Reference Models

It is important to model or represent manufacturing enterprises [Lopes 1992, Zhang and
Alting] in ordér to describe in a formal manner the ideal situation with regard to (i)
information requirement and flow; and (ii) dependencies between activities. However, there is
much diversity in the ideal situation in individual companies (even though they may be in the
same industrial sector), in relation to the organisation structure adopted, operations carried
out, manufacturing processes used, etc. Hence no two companies can be expected to be
identical, each having idiosyncrasies and specific functional and information needs to realise
its own business goals [St. Charles 1987]. As a result, it is recognised that manufacturing
information is notoriously difficult to standardise. Notwithstanding these differences reference
models are necessary to promote good practice and a certain degree of standardisation which
can promote interoperation on an inter- or intra-company basis. Where possible these
reference models should capture and describe generic properties related to ‘good practice’
which are widely applicable. But they will need to be open to changes to allow modification
and expansion to cater for customised needs [Evans et al. 1993].

The reference model approach has been advocated and benefits demonstrated in previous
research projects [Hars et al. 1992, Scheer 1991, Muhlemann et al. 1991], which include the
ESPRIT project CODE (COmputer supported enterprise-wide Data Engineering). However,
lo-date reference models reported in the literature have been specific and functional in nature,
in as much that their use has been focused relatively sharply on a specific application domain,
such as integrated production planning development. For example, the use of a family of
reference models was postulated by Scheer er al. {Scheer 1991, Hars et al. 1992, Hars 1990]
which characterised specialised functions such as order entry, resource planning, management
and scheduling. The models proposed were used successfully in facilitating requirement
elicitation (this involving the identification and modelling of customisation requirements for
applications) as well as enabling data re-engineering to suit specific user needs, as exemplified
in Figure 2-5. Here the aim was to derive integrated production planning systems which are
modular and reconfigurable in nature. Generally the reference models were not conceived with
an extended application domain in mind to characterise interoperation across conventional
boundaries.

Conversely, this thesis is focused on interoperation across functional boundaries where there
is a need for reference models which comprise information of common interest to different
functional areas and which can be shared by components of an MCS to enable them to
Sunctionally interoperate. Indeed the need for reference models which focus on interoperation
across functional boundaries is becoming more widely recognised, where a noteworthy

Page 23

Chapter 2 Current “State-of-the Art” Scenario

Reference Model E:> Customised Model

Pant Pan

Operation
Work Schedule Operation Sequence Amllemmﬁo;e
Technical Process Operation Aliemnative
assignment assignment
Tool use/ Equipment Group
Par/Toal Tool
. assignment
Grouping
Toal
Equipment
Personnel
assignment Personnel Employee
Operator Foreman Chargehand

Figure 2-5 : Customising the production control area information need [Hars er al. 1992]

Page 24

Chapter 2 Current “State-of-the Art” Scenario

standardisation initiative known as MANDATE (MANufacturing DATa Exchange) has been
recently setup to address the issues listed below (MANDATE [ISO 1991] is a working group
of ISO’s TC 184 namely ISO/TC184/SC4/WG8) :

* Model, form, and attributes of data exchanged between an industrial manufacturing
company and its environment.

« Data to be used by manufacturing management for the purposes of managing the
manufacturing company.

+ Data controlling and monitoring the flow of materials within the company from a
manufacturing management viewpoint,

Essentially information models of the MANDATE ilk promise to offer a degree of
standardisation which can enable components of an MCS to functionally interoperate.
However, standardisation efforts in this arena are in their infancy and will involve much
discussion, investigation and deliberation before any consensus on standards emerge. Hence
there is an immediate need for potential solutions to be capable of satisfying and to meet a
representative set of needs which can feed into this standardisation work. Thereby it can
further advanced as wider or complementary standardisation efforts mature.

2.4 System Design and Development

In reality integrated manufacturing systems must adapt and respond to changing needs.
Further integration with other functions and re-engineering of existing functions will be
inevitable for future enhancement or upgrading, as required, to refocus a business. Where
possible, enhancement and modification of manufacturing systems should be enabled during
each of the following life cycle phases with which system designers and builders, managers,
engineers, operators and maintenance personnel are involved [Aguiar and Weston 1993b] :

+ Conceptual Design
In this life cycle phase the prime focus is deciding what a system should do. This can be
achieved by analysing “as-is” (present) and “to-be” (potential) situations in order to
identify means of achieving a set of improvement goals.

» Detailed Design and Implementation
This involves specifying how the global requirements defined during conceptual design
can be realised in terms of building the required solutions. Typically step-by-step
implementation is achieved, with debugging of sub-systems carried out at each step.

Page 23

Chapter 2 Current “State-of-the Art"” Scenario

« Operation and Maintenance
This characterises the working life of the installed solution, as well as necessary
adjustments and repair during the operational lifetime of the system. Generally
speaking any major change will involve other upstream life cycle phases.

Commonly each life cycle phase is distinct in the sense that :

(i) normally different types of personnel with various perspectives and goals are responsible
for each phase.

(ii) various methods and tools can be employed at each stage but seldom will their use be
connected through common paradigms and system models [Motro 1987, Batini er al.
1986].

(tii) in view of (i) and (ii) “over the fence” system engineering is a common phenomenon with
major discontinuities and misunderstandings as specifications and requirements for
change traverse life cycle boundaries. '

Thus current approaches to system design much reduces the opportunity to share and channel
usable results and data produced in other phases. Consequently, realising life cycle support
for an integrated system progressively through its design, implementation and run-time phases
is by no means trivial, especially as the complexity of a given system grows. Many of the
difficulty facing system designers and builders can be attributed to the absence of a structured
approach to creating systems which uses common formalisms to straddle the various life cycle
phases [Czernik and Quint 1992].

2.4.1 Structured Design and Modelling Methods to support Life
Cycle Phases of an Integrated Manufacturing System

There are various structured design methods available which can support different life cycle
phases of integrated manufacturing systems. Typically, they structure and represent certain
aspects of the system under consideration; i.e. they provide a view or views of a system,
related for example to function, information, behaviour, etc. [Orr er al. 1989]. Common used
structured design methods include : °

+ Entity-Relationship (E-R) Modelling. This methodology was conceived to enable
information modelling [Orr et al. 1989] and can systematically convert user
requirements into a set of entity-relationship models [Jain er al. 1992]. Subsequently
the E-R models defined can be used as the underlying model for a database
management system. This can help facilitate information sharing in a more structured

Page 26

Chapter 2 Current “State-of-the Art” Scenario

manner where the information model may encompass information which resides in a
variety of data sources.

Yourdon is a widely used process oriented methodology for designing software
systems. It prescribes methods based on a set of diagrams (context, data flow, entity-
relationship and state-transition) each of which illustrates a single perspective of the
system [Weymont and Honeyager 1987]. Yourdon’s structured design method has
been used in a variety of applications. Also Yourdon and extensions to it have been

combined with other software tools and used to design integrated systems [Savolainen
1991].

SSADM (Structured System Analysis and Design Methodology) is a methodology
originally conceived for software design [Cutts 1991]. It is widely used in commercial
applications [Maji 1988]. The complete methodology encompasses six stages of a
software project, viz: analysis, specification of requirements, selection of system
options, logical data design, logical process design and physical design. To improve
the input/output facilitates available to a system designer, it uses graphical modelling
in the form of data flow diagrams and entity models.

-

IDEF (U.S. Air Force ICAM - Integrated Computer Aided Manufacturing Definition)
is a methodology derived from SADT (Structured Analysis and Design Technique)
which has been more specifically tailored for use in manufacturing domains [ICAM
1985]. Currently IDEF comprises a suite of methods which essentially can be
considered under one of the following main sub-divisions [Meta Software 1990] :

IDEF, - This is used to produce functional (or activity based) models of
manufacturing systems or their sub-systems.

IDEF,x - This is a data modelling methodology used to describe entities and
relationships between entities.

IDEF, - This is a dynamic modelling methodology that describes the time-
variant behaviour of function blocks and information entities of a
manufacturing system.,

IDEF has been very widely used in a large number of indusirial cases. It is used as a
conceptual design modelling approach in many consultancy businesses around the
world [Colquhoun er al. 1993]. A set of methods is currently under development
[Mayer and Painter 1991], which includes Process Description Capture, Design
Rationale Capture, Implementation Architecture Modelling, Organisation Modelling,
and Three Schema Mapping Design. These new methods will further extend the scope
of IDEF and hence its coverage of the life cycle of manufacturing systems.

Page 27

Chapter 2 Current “State-of-the Art” Scenario

» GRAI (Graphe 4 Résultats et Activités Interliés) is a methodology which was
conceived to analyse and design production management systems [Akif and
Documeings 1991}. It models function, structure and behaviour with the purpose of
describing the flow of information, material and decisions in systems. It includes
modelling views which represent time scales in the form of planming horizons and
periods. On applying the methodology to a system, a graphical model is produced
which relates activities, their time frame of operation, the decisions made and the
information and resources required and used.

« OOADM (Object Oriented Analysis and Design Methodologies) is a collection of
relatively new systems design methods which are based on the object oriented
paradigm [Halladay and Wiebel 1993, Rumbaugh et al. 1991]. Already in many
applications they have promised to replace conventional process oriented
methodologies. Many object oriented design methods are reported in the literature that
address one or more aspects of system design (either alone or combined with other
methods) [Sanders et al. 1991, Hind et al. 1990, Schiel and Mistrik 1990, Jochem
1989, Terry and Matz 1989]. The main advantage of OOADM over process oriented
approaches is the closeness of the object representation to the physical system being
modelled [Bailin 1989], along with its orientation towards enabling simulation.

« CIM-OSA (Open Systems Architecture for CIM) has been proposed by AMICE
(European CIM Architecture) consortium within the ESPRIT I and ESPRIT II
programmes [Kosanke 1991, Jorysz and Vernadat 1990]. CIM-OSA comprises a
methodology and a framework which embraces the specification of an integrating
infrastructure {Aguiar and Weston 1993b]. It is suggested by certain authors that CIM-
OSA ‘goes far beyond previous modelling methodologies” and aims to support the
design of CIM systems from their requirements definition (early stages of Conceptual
Design) to their operation and maintenance [CIM-OSA 1989]. With CIM-OSA it is
also claimed that a processable model of the CIM system can be produced as opposed
to SADT-based methods which only produce static models and lack a dynamic
modelling capability.

Various studies are reported in the literature which compare the capabilities of different
modelling methodologies. To date, no one methodology includes capabilities for modelling
the functional, information, dynamic and decision-making aspects of systems [Wyatt and Al-
Maliki 1990, Wood and Johnson 1989]. As a result, independent and separate use of a number
of methods will be required if the formal modelling of systems is required on a comprehensive
basis.

Page 28

Chapter 2 Current “State-of-the Art” Scenario

2.4.2 Entry Point for Integrated Life Cycle Support

In summary, the application of most currently available design and modelling methodologies
is primarily confined to the conceptual design phase, with a few extended to include limited
support for the implementation phase as well. Functional, information and behaviour analysis
is carried out with the aim of meeting a set of previously defined requirements and goals for
the system concerned. Typically the static functional and information models generated using
these methods will include formal definition and representation of (i} dependency
relationships, and (ii) configuration and composition (e.g. database schema representation and
entity-attributes, resource requirements to achieve the required functions). Having obtained
models of the system the effect of changes and variations can be scrutinized. Thus possible
system enhancements can be identified and represented by the models.

Hence the formal modelling of systems can provide an entry point for supporting the life cycle
of manufacturing systems where the models created (of function and information aspecis) can
serve as a source of knowledge during different life cycle phases. However, in realising this
potential it is necessary to :

» Develop additional life cycle support tools coupled closely to the modelling tool.
Such a software toolset should exploit the knowledge contained within the model in
order to ensure compatibility and continuity between life cycle phases, i.e. maintain
consistency between the models produced and used during each life cycle phase
[Singh and Weston 1994b].

2.5 Means of Controlling System Behaviour

In an integrated system, functions are coupled together through sharing of common
information. Formal definition of interaction between the functional components of an
integrated system requires clear and accurate descriptions of (i) the flow of information
between function blocks and (ii) the form and type of information, which should be made
available to support and drive those functions so that they can realise their assigned tasks
[Singh and Weston 1994a]. Any lack of clarity very often gives rise to serious problems during
system design, development, operation and changes. Hence when designing and implementing
an integrated system, association between functions and information as well as functional
dependencies must be well defined and clearly captured. If this can be achieved, the
relationships defined can be used to determine and govern the manner in which the system
behaves, particularly during run-time.

Page 29

Chapter 2 Current “State-of-the Art” Scenario

2.5.1 Association between Functional and Information Entities

As indicated in the literature there is a need to formally maintain an association between the
functions carried out in a manufacturing system and the information entities they generate,
access and manipulate [Scheer 1991, Shunk et al. 1986]. However, in manufacturing systems
such associations are only formally maintained during the requirements definition and design
stages of systems specification which in the software design process correspond to early
phases of the development life cycle. To address this deficiency the following research
proposals have been advanced :

« The “Y-CIM™ model proposed by Scheer [1991], as illustrated in Figure 2-6, provides an
integral organisational view of the different subystems of the enterprise. From such a view,
the necessary links to be established between the different isolated subsystems making the
exchange of information possible can be derived. Hence the model attempts to capture and
represent the information needs of associated functions.

Production Tansing \ i / CAD/CAM
\YOC’:G?;E XS\\‘ Z Product outline // CAE/
Master production

Material
management Process planning w
g p : CAPP £
< Capacity requircment g
§ planning k|
E -
\Cepacity adjustmens \ NC progrmming
. Order release
- . Contro] of NC, CNC,
= Producuon control DNC machines
and robots =
-]
'§ C 1 5 3
tional data anveyance contro) 2
g P ealecion ;
£ Inventory control E
2 4
& E
£ Control Assembly control -
Mainienance

Dispatch control o

Quality assurance <

o

|
Figure 2-6 : “Y-CIM” model to promote integration of functions and information [Scheer 1991}

Page 30

Chapter 2 Current “State-of-the Art” Scenario

» The Triple Diagonal concept [Shunk er al. 1986], which is based on the use of IDEF,,
proposes a modification to the functional modelling approach and this includes a definition
of information, control and material flows. Components of a manufacturing enterprise are
classified and related to each other via a defined layered architectural relationship. Thus by
including a definition of information resource requirements as well as material, information
and control flows into the IDEF, functional model, a formal association between functions
and information can be defined, with the input and output of information from associated
functions being clearly identified, as illustrated in the example model of Figure 2-7.

Job Operation Status and Performance
Process Plan Performance/

é Discrepancies
CREATE
PROCESS PLAN —|

Process Plans

i i Daily Production Schedule Perf)
Dnslih l:drf;m o oL bosssssnsscnie Daily uction ormance

| SHOPFLOOR ~=is Inventory Status

Operation Sequences (Daily Production Schedple)

Pillp| DELIVER
PARTS
RECEIVE l
PARTS
Key Y
ssmmeem Material Flow BUILD
Panus
Controls SUBASSEMBLIES)|
e Feedback
PERFORM |
Assembly FINAL
ASSEMBLY
TEST
SYSTEMS
Finished
Assembly

Figure 2-7 : Triple Diagonal (Material Flow/Controls/Information Integration)
modelling {Shunk er al. 1986]

These formally defined associations can be made available for use in downstream life cycle
phases of a system. However, use of an appropriate modelling method alone is insufficient to
ensure that a particular function or information entity exists as part of an integrated system.
This is because function and information entities are normally viewed separately, thus making
it rather difficult to consider their close associations and dependencies. Thus there is a need to
establish and maintain an association between the function and information model streams, in
a way that can aid system design and development (see section 2.4).

Page 31

Chapter 2 Current “State-of-the Art” Scenario

2.5.2 Model Enactment to formally describe System Behaviour

It is recognised that formal specifications produced during system design, leading to a
conceptual (functional and their associated information) requirements specification, can prove
useful in determining and realising the required behaviour of a system. Thus it is necessary to
[Singh and Weston 1994a]

(a) unify the perspectives of functional and information modelling; and

(b) facilitate the sharing and channelling results obtained during conceptual requirement
definition so that they are useful for downstream life cycle processes, for example,
to aid implementation and configuration with relation to the co-ordination and
control of functional interaction between a given set of manufacturing components.

If such a capability can be formally realised using a modelling method coupled closely with a
system design tool or set of tools, it will ensure consistency of results between life cycle stages
(i.e. between system design and implementation stages). Such a capability can be referred to
as model enactment where a conceptual functional requirements definition is used as a
framework for more detailed behavioural modelling and implementation of that behaviour in a
running system. This can be viewed as the process of enacting functional models. Such an
enactment capability should inherit the following benefits :

(i) an appropriate formal definition of interactions between functional components
based on
- functional dependencies derived from higher level system descriptions; and
- a description of data requirements to support the functions concerned.

(ii) defined means of supporting functional interaction management based on
definitions and relationships established at a higher level, thereby facilitating
control system behaviour (via suitable mechanisms) by providing a description of
how run-time activities can be effectively coordinated.

However, in the following sections focus will only be on issues related to (a). Thus there is a

need to enable both (a) and (b) via some methodology, which as later explained, could take the
form of a software tool or tools.

Page 32

Chapter 3

Achieving Interoperability

3.1 Research Focus

The author recognises that the sharing of common data, to enable a bonding between MCS
components, constitutes one step towards fully achieving software interoperability [Singh and
Weston 1993, Hars 19901. In order that the benefits of software interoperability can be more
Sfully realised, the next crucial step is to address problems of functional interaction (and the
underlying issues of behavioural interaction) between MCS components. Thus the
processes of co-ordinating and synchronising functional interdependencies and association
between MCS components (with accountability for the shared data) need to be carefully
managed and controlled. In practice, this is necessary to ensure and maintain discipline and
harmony, to enable cooperation among interoperating software components [Hars 1990] and
to establish well defined communication channels which can collectively promote and
enhance intra-organisation interaction and co-ordination of activities [Scheer 1991].

In this thesis a novel approach 1o achieving software interoperability is conceived and
advanced which offers means of (i) overcoming various inherent deficiencies and constraints
which would severely inhibit or complicate MCS functional interaction, and (ii} tackling in a
structured way integration problems associated with current forms of MCS and their
component elements. A particular focus is on seeking an innovative methodology which can
improve the reconfigurability of interoperating MCS software over the life cycle of such
systems, thereby facilitating their adaptability in response to changing needs (for example,
further integration with other functions and re-engineering of existing functions in order to
modify and enhance the system’s functionality). Through improving the adaptability of an
MCS it should become possible to mitigate against early obsolescence and allow it to be more
universally applied.

The eight years of industrial experience gained by the author, particularly in the precision
machining industry has provided an important backcloth to this work. They have provided
invaluable insight to (a) the practical problems faced by companies in trying to achieve
applications integration, and (b) an understanding of “gaps” in technology and “know-how”
which need to be filled to resolve such problems. This experience has been gained as follows :

Page 33

Chapter 3 Achieving Interoperability

» Between 1983 to 1986, as a practising manufacturing engineer the author was responsible
for production work at ASEA Brown Boveri in Singapore. This is a medium sized company
manufacturing tool and die components as well as plastic injection moulds. Shop floor
experience was gained during this period of time as a CNC programmer and machinist,
production and process planner, and production supervisor.

« Between 1989 to 1992, served as the Head of the Manufacturing Software Section of the
Singapore Economic Development Board. The author was responsible for applied research
and development activities, this to promote the general adoption of automation and
computerisation in Singapore’s manufacturing industry; particularly in relation to CIM,
FMS, robotics and the application of expert and knowledge based systems [Singh 1992,
Foong et al. 1992, Singh 1991]. This activity was centred on consultancy, manpower
training and joint collaboration with local manufacturing companies and vendors.

Thus this research study has sought to adopt a mixture of pragmatic and formal approaches to
resolving software interoperability issues. Focus is on enabling software interoperability in the
arena of production planning which is defined as encompassing the management of flows of
materials and goods as well as seeking to ensure capacity utilization based on customer orders
and/or demand forecasts [Vollmann et al. 1988]; this includes order entry, resource planning
and management as well as scheduling functions. However also considered are
interoperability issues concerning MCS applications in other related manufacturing domains,
which include the following :

+ Product Design

 Process Planning

« Finite Capacity Scheduling
 Cell Control

MCS applications in the arena of finite capacity scheduling are responsible for the short term
planning of manufacturing orders in a manner which optimises manufacturing operations on
the shop floor. The need to improve interoperation via use of semi-automated and
computerised cell control and production planning systems is considered essential in this
study because of the current lack of uniformity normally found between proprietary systems
used for production planning and those responsible for facilitating execution of plans; this is
necessary to ensure that appropriate plans are effectively translated into actual production
cycles. This lack of conformity has presented major problems for manufacturers, particularly
in not encouraging a coherent view of both planned and actual information (derived from shop
floor feedback) throughout the enterprise [Waterlow and Monniott 1986].

Page 34

Chapter 3 Achieving Interoperability

However, this research study is not aimed to place in the foreground details of necessary
functional improvements to individual MCS functions. Rather it has sought to amplify the
importance of applications integration and hence software interoperability. However, at times
it does elaborate on the implications of these principles with respect to functional demands on
individual components.

3.2 Objectives

Hence the overall objectives of the author’s PhD study have been :

« to identify and specify architectural models of system functionality and information
which themselves are based on studies of the inter-dependency of functions and
commonality of information shared between production planning, product design,
process planning, finite capacity scheduling and cell control processes.

» to address key issues of managing functional interaction, i.e. to study means of co-
ordinating and synchronizing MCS functions. This by enabling and managing the
interoperation of associated software applications in a flexible manner.

* to provide a formalised and structured methodology which can cope with high levels of
complexity and change, straddling design, implementation, run-time and maintenance
life cycle phases of interoperable systems. This to enable overall system
reconfigurability, more optimal system design and operation and a reduction in the time
and effort involved in creating such systems.

The emphasis of the study is on providing means of building “soft” rather than “hard”
integrated solutions. Key to the methods derived will be a structuring of implementation
processes based on the use of an integrating infrastructure which embodies common
integration services. These common services will facilitate data management, access,
manipulation and presentation, and support inter-process communication between conforming
applications.

3.3 Production Planning as the Nucleus

In this study, the choice of production planning information as the initial nucleus of a model
manufacturing information is a pragmatic one. It is viewed as providing a comprehensive
information system that offers a large pool of manufacturing and logistical data which bears
varying degrees of commonality, interdependency and close association [Hodgson and
Waterlow 1992, Singh 1991, Harhalakis et al. 1990, Schnur 1987, Saxe 1985] to that of other
applications. For example, bill of materials (BOM) and process planning information are

Page 35

Chapter 3 Achieving Interoperability

Finite Capacity
Scheduling

Cell Control

Manyfacturing Schedule/

Orders

Route

Process Planning

Figure 3-1 : Production planning information as the initial nucleus

common information entities viewed from different perspectives by CAD/CAM [CIM
Strategies 1991, Lang-Lendroff and Unterburg 1989, Bohse and Harhalakis 1987] and CAPP
[Ssemakula 1987, Logan 1986] (see Figure 3-1). This provides a basic means of establishing
data repositories to facilitate information sharing with other functional areas within a given
company.

3.3.1 Manufacturing Methods and Information Requirements

It is interesting to note that the information requirements of adopted manufacturing methods,
which include MRP II, OPT and JIT, demonstrate many similarities [Singh and Weston 1993,
Bond 1993, Plenert 1993, Lee 1993), differing mainly in their emphasis and degree of focus on
the activities concerned. This is illustrated in the following :

* - OPT is a computerised scheduling system which employs a standard MRP style database of
BOM (bill of materials), resources, routes (including data on setup and operation times),
inventory (raw material, WIP and finished product) and demand (specified by due date and
quantity required).

- JIT, with its cellular manufacturing approach and the use of a ‘demand pull’ concept to
control the production and movement of parts through the production process, requires
information on production schedules (specified by start and finish dates on a daily basis),
BOM, inventory (specified by lead-time for raw material and components delivery), routes
(includes data on cell output, setup, process and cycle times) and capacity (specified by
available working capacity for loading parts for manufacture).

Page 36

Chapter 3 Achieving Interoperability

The manufacturing method adopted in a given company will significantly influence the
functional requirements of an MCS. Similarly characteristic properties of each manufacturing
environment will directly influence these needs. This gives rise to considerable diversity
among the functional properties of different production planning methods and systems which
currently exist to support the manufacturing continuum (as highlighted in section 1.2.2).
Hence when looking for similarities, it is more appropriate to consider and focus on
similarities between different forms of MCS with regard to their information requirement (as
indicated previously).

Indeed in this study an information model which represents information entities and their
inter-relationships of common interest to different MCS functions, is identified and specified.
This has been conceived to constitute essential production planning information of prime
concern.

3.4 The need for MCS Interconnection and Interoperation

MCS software components are required to be interconnected in an effective manner before
their interoperation can be enabled. Thus interconnection and interoperation between MCS
software components are closely linked. A low level data inter-communication and
information transfer facility (which facilitates data transfer between MCS components over a
digital link) is an important prerequisite to efficiently interconnect MCS software components.
However, generally such a digital data transfer capability needs to be built upon in order to
facilitate interoperation in a controlled and deterministic manner.

This enhancement can be realised through the use of an integrating infrastructure (IIS) whose
purpose is to provide structured access to information services in a way which simplifies
interconnection between the component elements of software systems (see section 2.2.3 for
further details). Ideally an IIS should comprise the following two levels of integration
mechanisms and tools [Weston 1993] :

» Low level
This can encompass a number of general purpose means of accomplishing the
integrated operation of computer software processes (or software applications). In
manufacturing enterprises (as in many other computational systems) software
applications will be embedded in equipment and computer systems. Hence the low
level mechanisms need to resolve differences arising from heterogeneity in computer
processing hardware, software, operating systems, networks, human interface systems
and data sources supported. They will be required to support appropriate low level
protocol between interacting software applications as well as to resolve differences in

Page 37

Chapter 3 Achieving Interoperability

representing and storing information.

* High level .

This includes high level integration mechanisms and system management tools to more
directly facilitate the interoperation of MCS software components (which is one of the
primary issues being addressed in this research study). They embody domain
knowledge (relating more specifically to manufacturing systems integration) to ¢nable
the integrated operation of manufacturing applications and their internal threads of
application functionality. However, the high level mechanisms need to be built upon
their low-level counterparts [Weston 1993].

Figure 3-2 generalises the distinction between low level IIS mechanisms and tools and their
high level counterparts.

% HIGH LEVEL

Z .y . 5

< Definition & Management Integration Mechanisms b !

Tools _

] to define, structure and when required to provide a means of achieving § }S gfca:‘gfla]ﬁgln nt_%on
1] to change the way in which behavioural | | defined behavioural interaction and [} [7 gra
interaction and information sharing information sharing beiween [

%2 occurt in an inicgrated sysiem. distribmed and heterogeneous

%a— manufacturing applications.

b R R ‘

2

i
2

?%\\;. SRR

{ Definition & Management Integration Mechanisms |
= Tools
| 0 define and manage the flexible | | o provide primitive mechaniems g
:' interoperation of sofiware processes, which achieve inter-process b

thereby enabling their maintenance
and change.

TS
o '-&‘{;" S

commumication, interaction and data
sharing.

Y
S

-]

. Y,
Flexibly defining and
managing the integration

achieving integrating
during runtime

> Software process
mntegration

Figure 3-2 : Components of an Integrating Infrastructure [Weston 1993]

A key aspect of this research study has been a structuring of MCS implementation processes
based on the use of an IIS.

Page 38

Chapter 3 Achieving Interoperability

3.4.1 The CIM-BIOSYS Integrating Infrastructure

Since 1986, the general requirements of integrating infrastructures for manufacturing systems
integration have been studied by researchers of the MSI! Research Institute at Loughborough
University of Technology. The author’s research has also contributed to this study. In 1990,
MSI research led to the development of the CIM-BIOSYS (CIM-Building Integrated Open
SYStems) IIS (Integrating Infrastructure) which, as depicted in Figure 3-3, achieves a
unification of general purpose computational integration mechanisms and tools and has been
used to create a variety of ‘proof-of-concept’ and ‘live industrial’ integrated systems [Weston
1993]. It is configured to operate in a distributed manner under the UNIX environment over a
network of SUN computer workstations, This IIS provides a means for structuring,
decomposing and simplifying solutions and supporting their run-time execution and change.
Of particular importance has been an implicit ability to build and modify systems (including
systems of very wide scope) on an incremental basis. The use of the CIM-BIOSYS IIS has
demonstrated significant savings in the cost and time involved in manufacturing integration
projects [SI Group 1994).

CIM-BIOSYS 1 offers important advantages over contemporary turnkey and custom built
integration methods, in that inherently it :

+ Deals with complexity
Applications only need knowledge of how to access the platform, rather than how to
access ‘n-1" other applications within the integrated system. This results in a vitally
important means of coping with increased complexity as the system complexity will
grow in proportion to the number of applications rather than the square law fashion
found using contemporary approaches.

+ Copes with change
It removes integration knowledge from interacting applications concerning the actual
structural relationships, interaction mechanisms, information structures, data
formats and communication protocol; the integrating infrastructure deals with such
issues. This knowledge is placed in the form of configuration data which can be used
in a systematic way to enable and support change.

+ Promotes standardisation
This is achieved by specifying a consistent interface between the services of the
integrating infrastructure and the applications which use them. Also the integrating
infrastructure is itself decomposed into more manageable sub-systems which can be

[

. MSI - Manufacturing Systems Integratior{ Research Institute based at Loughborough University.

Page 39

Chapter 3 Achieving Interoperability

(a) Functional view of CIM-BIOSYS IIS

SOFTWARE APPLICATIONS

SERVICE MANAGER

INFORMATION | INTERACTION | COMMUNICATION
SERVICES SERVICES SERVICES

CON-FIGURA.HON T I I e T e I e D e bl
| CONFIGURATION MANAGE RUNTIME MANAGER
SYSTEM DRIVER MANAGER
CONFIGURATION DATA

ALIEN APPLICATION SHELLS
AND ‘DRIVERS'
(b) Operational Use of CIM-BIOSYS IIS
Software Operator
Applications Interface MCS
Alien application Function
shell 1o enable ,
conformance to IS |.
Conformant spplication
CIM-BIOSYS IIS
COMMON INTEGRATION SERVICES
Inter-process Information Data |
communication management | presentation
égg £
‘Driver’ ‘Driver’
%ﬁ Y %g

Figure 3-3 : CIM-BIOSYS Integrating Infrastructure

Page 40

Chapter 3 Achieving Interoperability

standardised or built on existing standard mechanisms and services. Thus
applications can be treated essentially as open applications and as such they
themselves can become standard building blocks of systems.

MSI researchers had also previously identified and produced methods and software tools for
dealing with certain classes of non-conformant (or alien) applications. Here the term ‘alien’ is
used to imply that the application component (which may be a software package or software
embedded in a machine control system) is not inherently compatible with the CIM-BIOSYS
IIS architecture. ‘Drivers’ and ‘alien applicaticn shells’ represent the particular software tools
referred to here which respectively provide MCS resources (such as databases and datafile
systems) and legacy application components with sufficient capability that they can use the
integration services of the CIM-BIOSYS TIS. These methods and tools are essential in order to
allow for the inclusion of embedded legacy systems thus helping to safeguard the user’s
existing investment in computer systems [Hollyman and Anderson 1991]. A summary of some
of the major differences and similarities between CIM-BIOSYS IIS and other commercially
available solutions with provision of an IIS is provided in Table 3-1.

It must be stressed at this juncture that CIM-BIOSYS IIS includes only low level integration
mechanisms and tools, as depicted in Figure 3-2. It embodies common integration services.
These common services facilitate data management, access, manipulation and presentation,
and support inter-process communication between MCS software components. Thus the CIM-
BIOSYS IIS was chosen as a primary building block in this research study, thereby providing
a foundation for implementing and evaluating high level integration mechanisms and tools
that have been developed in this research study to facilitate software interoperability. In
isolation, the CIM-BIOSYS IIS can only facilitate bottom-up system build; hence by building
the high level mechanisms upon its low level counterparts, top-down system design and
construction can be more readily facilitated.

Page 41

Comparison to CIM-BIOSYS IIS

Vendor Product Remarks Similarity and common emphasis Limitations of commercial solutions
IBM PlantWorks/DAE | - Proprietary in terms of the following : L) Provision of tools to facilitate integration | 1) Function & information coupling
* Need to comply with IBM’s SAA based A range of development tools for Functions and information are not
strategy of a CIM repository. programmers and third party developers to decoupled and treated separately
DAE - Distribated Autommtion | Runs only on IBM computer systems. facilitate integration of MCS software which creates the following
* Operating system is OS/2 based. talpllilic:g!tions are nomnally offered for the difficulties :
ollowing : <Information Access

- Lacks third party support for PlantWorks/DAE.

DEC

Consillieum/
BaseStar

- Proprietary in terms of the following :
* VAX based hardware,
* Operating system is VMS based only.

- Limited vertical integration between BaseSiar,
which enables applications at the shop floor level,
and the planning and management activites.

- Lacks third party support.

Hewlett
Packard

Industrial Precision

Tools (IPTs)

- Geared only for shop floor software
development.

- No current integration between IPTs and
third parties.

- No vertical integration available yet beiween
shop floor applications and the planning and
management activities.

«Consistent user and device interface.

*Access to common integration services.
- Information sharing and management
- inter-process communications

21 ing inf

« to simplify, structure and service
interconnection between MCS software
applications.

= to provide structured access to common
integration services for communication
and information management.

Information is embedded and exists
exclusively for the sole use of the
specific application.

-Function & inf ion ol

Any changes to either function or
information will inevitably affect

both because of their close
dependency.
2) 8 7 ; licati.

Only conformant applications which
are strictly compatible 0 the
integrating infrastructure are
supparted. This poses serious
problems for inclusion of *“as is™ (or
legacy) systems.

Table 3-1 : Summary of major commercially available solutions with provision of an integrating infrastructure.

Chapter 3 Achieving Interoperability

3.5 An Overview of the Methodology Derived

A meta-level overview of the methodology adopted and developed by the author during this
research study to enable interoperation of MCS components [SI Group 1994] is depicted in
Figure 3-4. This methodology comprises five inter-related and consistent sub-methods which
collectively structure and support key aspects of MCS design, build, operation and change
management. One of the underlying concepts adopted in the methodology is (as far as
possible) to decouple MCS functions from their information repositories so as to enable the
information to be treated independently from the functional capabilities realised by software
applications. This not only enables easier access to information but also decouples changes to
application processes from those associated information systems. The purpose of the sub-
methods are outlined as follows :

(I MCS Specification
A set of high level modelling methods, based on a set of generic reference models, is used to

facilitate MCS design. The output consists of particular models of ‘MCS functions’ and *“MCS
information entities and their interrelationships’.

(I1) Means of Enacting Function Models

A set of build tools are used to create executable descriptions of the system behaviour where
the descriptions are consistent with the MCS function models generated by (I). The output
descriptions can be used to control the way in which MCS components interact during system
run-time [Singh and Weston 1994a].

{ITD Means of Enacting Information Models

A second set of build tools are used to create and populate information models in a form which
structures and enables control of information shared between MCS components during system
operation [Singh and Weston 1994b]. The output descriptions are consistent with the MCS
information models created in (I) and with the outputs generated from (II).

(V) Use of an Integrating Infrastructure (IIS)

This facilitates MCS run-time operation in a flexible data-driven manner, mapping distributed
software solutions onto physical resources. Here the integrating infrastructure (IIS) is charged
with resolving differences in the physical system relating to heterogeneity, distribution and
data fragmentation [Weston 1993). Indeed the use of the IIS is the key to the methodology. As
the TIS assumes responsibility for maintaining knowledge of integration details (such as the
networks used, the hardware and operating systems on which an MCS component is run, the
location of an information fragment, etc.), the MCS components themselves need only have

Page 43

Chapter 3 Achieving Interoperability

11 Specification of MCS

Generic
Reference
Models

Functional B In ormation

Madellmg odellmg /
2| Enactment of Function Mod® 3| Enactment of Information Modea

9. il

. . Information Models
\ Function Models) \ j

¥ d

4| Use of an Integrating Infrastructure (IIS) \

VAVAVIVAY
VY Y Y

Integrating Infrastructure

. 4

/5 Interfaces to Physical Resources

'UUUUﬁ

Y_ % ¥ W Y

Integrating Infrastructure

Application ghell
for non-conformant
MCS function

Data
Repositories

Figure 3-4 : Overview of Methodology

Page 44

Chapter 3 Achieving Interoperability

knowledge of how to use the IS (i.e. NOT OF EACH OTHER). Essentially this leads to a
linear relationship between system scope (in terms of the number N of MCS components) and
complexity as opposed to the square law relationship inherent in pair-wise integration
methods.

(V) Interfaces to Physical Resources

An essential element of this methodology is the ability to flexibly map software applications
onto system resources, i.e. databases and computer hardware. ‘Drivers’ and ‘alien application
shells’ represent the software tools created to bring MCS resources and components (which
include proprietary software packages, database and datafile systems) to a level of
conformance which enables interoperation over an I1S. This provides a migration path towards
more ‘open’ components at a later stage.

Page 45

Chapter 4

Information Architecture for MCS

4.1 General Considerations

It is important to model or represent manufacturing enterprises [Lopes 1992, Zhang and

Alting] in order to :

+ Well define (i) functions and activities in terms of their associated inputs and outputs, (ii)
inter-dependencies and close relationships between functions, and (iii) information
requirement and flow as seen from the view point of a systems designer.

» Accurately capture the reality of business goals and their relationships with manufacturing
tasks.

The author’s previous experience in the successful development of a working CIM model,
which is still used to provide a technological showcase for the precision machining industry
for discrete part manufacture [Singh 1992, Foong et al. 1992, Singh 1991], served as a useful
and valuable source of reference, insight and input to this research work. The CIM model
project involved close collaboration between vendors and industrial end users. It captured
many of their key needs and led to an accepted and intrinsic representation of activities to
support part manufacture. This can be universally useful in understanding important aspects of
interoperability in a manufacturing enterprise. In particular it has served to

+» Identify a functional model which is representative of precision machining enterprises.

+» Globally specify information inputs and outputs for MCS functions.

+ Ascertain which computer-aided tools are available and which must be tailored or developed
to enable and enhance integration processes.

The reader can refer to Figure 4-1 for an overview of the functional properties and information
entities of this CIM model and Appendix II for further details.

There have been a number of alternative models conceived to define the functionality of CIM
systems where often the studies have taken different modelling perspectives [Paranuk 1988,
Yeomans 1986]. The ESPRIT CIM-OSA (CIM-Open System Architecture) consortium [CIM-
OSA 1989] defined a standard for CIM implementation, offering an ‘enterprise wide
framework’ which can structure interactions between people and machines as well as define
relationships with traditional data processing systems. The CIM-OSA “top-down” approach to
enterprise integration can work well at the conceptual design level of integration projects, i.e.

Page 46

Chapter 4 Information Architecture for MCS

CUSTOMER REQUEST & MARKET TREND

In
PRODUCT & Routing oM
MUCAPABILITY.
A
ASSESSMENT Manufacturing
Rescurces ;.
- Ensure feasibility of Tnventory
prodoct for manufacture

TOOL, FIXTURE
& MATERIAL
MANAGEMENT

- Resource availability
& status check

venmry Conl.ro

Manufacturing T gnmu:e
Orders roductlon Enqulry qulry
(1o be ld:ednhdl Status Feedback BIll of Materials

PROBABLISTIC
SIMULATION CAPACI’I'Y
- modelli SCHEDULER . p,%,‘;’““ ;o‘::.
Mmufacmnng Process - Day to day scheduling . p[;)cmg“ & Modelling | |- Fixturi : Program
for job load balancing of work ordens genbraton turing gencration
and analysis - Shopfloor status i.e
) capacity availability
| Neutral Product Format (1IGESDXF)
Shop Floor Status
NC Programs & Englneering Drawings

DISTRIBUTED NUMERIC CONTROL, (D]
MANAGER
- NC program management
- CNC machine meniloring & shopfloor data capture

Flexible Machining Cell (FMC) :

CNC Machining Cell for
pant manufacture

0| B Flexible Assembly Cell (FAC)
g Robotic Cell for component
assembly and inspection

Transfer Mechanlsinesp
«4m Docking Stations

#40)

N

Automated Gulded
Vehicte (AGY)

N CNC Coordinate Measuring Machine (CMM)

Automated Storage & Retrieval System
(ASRS)

Figure 4-1 : Overview of the functional and information network within the CIM Model

Page 47

Chapter 4 Information Architecture for MCS

where ‘what needs doing’ is determined. The strategy maxims CIM-QOSA offer can ultimately
lead to support of the complete life-cycle of manufacturing enterprises, including their
component MCS [Aguiar and Weston 1993a, Schonewolf et al. 1992]. This research adopts a
more pragmatic approach to system design but it builds upon the CIM-OSA concept of partial
models which embody knowledge concerning ‘good practice’ or ‘good solutions’ within an
enterprise. These partial models can be reused in building and updating various new systems,
thereby reducing the time involved and improving the quality of the resulting manufacturing
system.

Within the scope of this research study, information models have been defined which
encompass essential information of common interest and can be used as a generalised resource
in many discrete parts manufacturing environments (discussed later, in section 4.2).
Hopkinson, in his analysis of user needs relating to information standards, strongly stressed
the point that :

“ What matters most of all for the user is the information the system holds; the way in which
it is held and accessed, and what can be done with it, are also important but the means are
of no value if the information itself is not what is needed ” [Evans et al. 1993]

The models defined in this study represent shared information which are “items of
knowledge”. These have global interest to the MCS system concerned, ie. they can be
considered to be CIM-OSA partial models. The use of partial models is essential as earlier
studies [Lars 1990] have shown that in order to manufacture in a more rational, timely and
cost effective manner, it is vital to capture and disseminate knowledge about the
manufacturing enterprise. For example, a fundamental requirement during many Product
Design processes is to ensure the manufacturability, ease of assembly and testability of the
product. Therefore, it is necessary for the designer to have access to accurate information
about the manufacturing process, with due consideration to constraints such as the availability
and type of resources (e.g. material, toolings and fixtures) and orders which exist for the
product. For example, information stored in conformance with the partial models will be
useful in matching product specifications and requirements to the capabilities available in the
enterprise. However, this fundamental requirement is not usually provided for, this being a
major cause of a fairly large proportion of engineering changes and discrepancies in
manufacturing enterprises today [Singh 1991, Lars 1990].

Page 48

Chapter 4 Information Architecture for MCS

4.2 MCS Specification

For manufacturing information to be shared between MCS applications in an effective way,
ideally it is necessary to make available a pool of most of the information entities that are
commonly shared between two or more applications. In order to achieve this an information
model is required which identifies real world objects, their key attributes and inter-
relationships.

A detailed analysis of production planning functions, with regard to their commonality of
information and functional inter-dependency with Product Design, Process Planning, Finite
Capacity Scheduling and Cel! Control processes, was carried out by the author. This involved
the following areas of study and analysis :

(i) A review of the literature and current practice with regard to the techniques used to

accomplish integration of production planning, CAD/CAM, CAPP and cell control
systems. Some of the findings of this work are as summarised in Table 4-1.

Relevant references

Integrated systems

Commonality of
Information

Functional Purpose
& Dependency

Halevi and Weil 1992
CIM Strategies 1991
Scheer 1991

Singh 1991

Harhalakis et al. 1990
Lang-Lendroff ez al. 1989
Scheer 1989

Schnur 1987

Bohse and Harhalakis 1987
Ssemulaka 1987

Logan 1986

Saxe 1985

Zipfel and Missbauer 1993
Lee 1993
Muhlemann et al. 1991

Scheer 1991
Ptak 1991

Waterlow and Monniott 1986
- Luscombe 1991

Integration of
Production Planning
with
- CAD/CAM
- CAPP

- Shop floor control
systems

Integrated
Production Planning
with modularised

functions

Bill of Materials (BOM)
Inventory & resources
Process plans/Routes

Schedules

Shop floor status
feedback

1, Product hierarchical decomposition
into sub-components to aid
i) resource planning;
ii) sub-components manufacture; and
ili) standard components procurement.

2. Material requirement planning

and allocation for part manufacture

(e.g. raw material, toolings, fictures,
manufacturing facilities, etc.)

3. Sequencing of manufacturing
actitivites for part manufacture.

Material requirement planning
Resource allocation and scheduling
Order entry

Routing

Capacity planning

Inventory management

Shop floor status monitoring &
acquisition

Table 4-1 : Summary of literature review

Page 49

Chapter 4 Information Architecture for MCS

(ii) By building on insights gained from the CIM model project [Singh 1992, Foong et al.
1992, Singh 1991]. In particular it has served to
+ Globally specify common information inputs and outputs for MCS functions.,
» Identify close relationships and dependencies among typical MCS components.
» Define data mapping requirements based on functional relationships.

A general overview of information shared between MCS functions and their information
dependencies is illustrated in Figure 4-2. As a result of close collaboration with end users,
the CIM model project was successful in capturing and reflecting their practical
requirements, this in terms of shared information requirements between typical MCS
components to facilitate their interoperation. This consideration (of the end users
viewpoint) is very important in helping to validate the findings derived from (i), this being
important in order to achieve a pragmatic and industrially acceptable solution.

PART MASTER/
ORDER ENTRY BOM
(Parent component)
‘ A ‘ ; PROCESS PLAN
MANUFACTURING
CUSTOMERS SCHEDULE CELL
ENGINEERING
RESOURCE
WIP
(Shop Roor status) RESOURCE MANUFACTURING
_ FACILITY

BOM
(Sub-components)

SUPFLIERS

Figure 4-2 : Overview of information flow and data dependency

(iii) Through the examination of generic features and common attributes among representative
commercially available computer-aided production management (CAPM) packages
[Buyer’s Guide Supplement 1990]. Those selected are listed in Table 4-2. The choice of
CAPM products was made on the basis that (a) collectively they encapsulate the generic
working knowledge of a number of vendors which itself reflects the perceived needs of
many manufacturing user organisations; and (b) the technical support offered by the
vendors concerned in understanding the information and functional properties of their
products.

Page 50

Chapter 4 Information Architecture for MCS

CAPM Products

EZ_MRP
< | NN 4| |&] ELMS

Capacity Requirement Planning
Master Production Schedule
BOM

Manufacturing order management

Planning

Routing

Material Requirement Planning
Inventory Control

Scheduling

Shop floor control

Sales Order Processing
Purchasing

Financials

J Mznagemen! reporting
Costing

¢ |8 INe] || McC

Inventory Mansgement

Scheduling
Shop Floor

CAPM Subsystems
RINPOIY Aqeury

N

Manufacturing Support
services

NSRRI SIS IS S

o SN

o aln oo QN NNS]| MFGPRO
ool /nlalede | &[S K[[< | Fourth Shirt

A oSNNS QI SIS|S) MANMAN
<« J dunlaela] N s el s amm
J Sl << [e, | coMmET

Table 4-2 : CAPM packages examined

However, the author experienced inherent difficulties in formally evaluating and
analysing these candidate systems on a common basis because of major differences in
their underlying philosophies and their implicit understanding of the activities within a
factory and how they should be controlled. This is further complicated by the
proliferation of names used to refer to essentially similar and basic functional capabilities
which collectively enable production management. Also in different systems different
functions can be included under the same name. Thus the CAPM systems analysed were
compared and classified with reference to the following subsystems [Maull and Childe
1993, Timon et al. 1990, De Toni er al. 1988]; this in order to gain a more structured and
uniform understanding of the functions offered :

+ Planning

Inventory Management

Scheduling

Shop Floor

Manufacturing Support services
Following this analysis common classes of MCS application module and information entity

were identified, as listed in Table 4-3. As a result information models were identified and
defined to satisfy generic requirements, these models being listed in Table 4-4.

Page 51

Information Architecture for MCS

Chapter 4
Production Planning
. * Inventory / Part master records
Product Desi X
gn * Bill of Materials (BOM)
. *
Process Planning Process plans / Routes
* Manufacturing facility records
Finite Capacity * Manufacturing orders
Scheduler * Bill of Materials (BOM)
* Work centre capacities
* Scheduled manufacturing orders
Cell Control * Shop floor production and
status feedback
Table 4-3 : Commonality of information
Manufacturing| Information on manufacturing support facilities with dawa on
Facility manufacturing capabilities and specification.
Part Master/ | proguct structure according to its sub-components relationship.
BOM
Inventory record and status for raw materials, fixtures and tools
Resource . . e
inclusive of labour and facilities, i.e. work centres and processes.
Process Routing for part manufacture. It includes the sequence of operation
Plan for planned and altermative processes and manufacturing resource
requirement.
Order Order registration for order type, quantity, batch size and due date.
Entry
Schedule Production time-table where manufacturing orders are scheduled
according to order commitment and availability of resources.
WIP Shop floor status feedback, actual to planned comparison, and
work centre utilisation rate.
Engineering | 1t includes resources related to or are assigned for part
Resource manufacture, e.g. engineering drawings and NC programs.
Manufacturing | Grouping of manufacturing stations for manufacture of a family of
Cell products,

Table 4-4 : Information Models

Page 52

Chapter 4 Information Architecture for MCS

The reader should refer to Appendix III for further details on the information entities and
attributes represented in the information models. Examples of associations between these
information models and specific information models which form the basis of the MCC [MCC
1989] and ELMS [ELMS 1990] proprietary software packages are included in Appendix IV. A
case study (discussed in detail in section 4.3) has been carried out in collaboration with the
University of Bradford Management Centre to validate the applicability of the generic
information models. In this case study, the ELMS CAPM software package has been re-
engineered with reference to the generic reference models to facilitate its ease of further
development to enhance its existing functionality.

As part of the author’s research study, system design and modelling tools have been used to
form;ﬂly represent and structure the function and information models defined in tables 4-3 and
4-4. IDEF was used to identify and define dependencies and inter-relationships between the
common classes of MCS applications identified. In addition, IDEF,x was used to represent
entity-attribute relationships for information models and the data modelling language
EXPRESS was used for information modelling. The choice and application of these software
tools is further discussed in chapter 6.

It is important to stress at this juncture that the generic information models identified and
formally defined as part of this research study provide an important comerstone of the
author’s overall approach to enabling software in[e;operability in the MCS domain.
Furthermore, the author is confident that the components of those models and their
interrelationships are appropriate, certainly with respect to their use for the forms of MCS
investigated here. However, it is not argued that the models are sufficiently definitive or
complete to form the basis of a standard model, but as illustrated in this thesis, they are
sufficiently definitive and complete to contribute towards an important advance in creating
more open and configurable forms of MCS and as such can provide a reference model of good
practice which can be refined and enhanced, possibly until it reaches the status of a standard.
Also later in this thesis it will become clearer that a second cornerstone of the author’s
approach is the use of model enactment to guide MCS life cycle processes (this being outlined
in section 2.3). Indeed through the use of formal models and a set of tools which can
manipulate and transform those models, improved opportunities exist to refine and enhance a
reference model until it becomes more widely accepted and used.

Page 53

Chapter 4 Information Architecture for MCS

4.2.1 Characteristics of the Information Model

The information models identified incorporate essential data (i.e. data of prime concern) that
will very commonly be used in any discrete part manufacturing environment. Thus they can
serve as a foundation upon which the rest of the enterprise data can be built. Together, these
information models can provide the enterprise with a single coherent view of engineering,
production and management information which will be in common usage throughout the
product life cycle. MCS data will need to be stored with reference to these generic models and
in a practical system will be stored in distributed data repositories to enable common access
and usage by MCS components.

It is recognised that information is notoriously difficult to standardize [Evans et al. 1993].
Therefore, as outlined above the choice of information models is not meant to be fixed and
exhaustive in nature, rather they have been chosen to serve as generic reference models which
are open to changes and can be modified and expanded when necessary. Bearing these

restrictions in mind the information models can be considered to possess the following
characteristics:

+ Wide applicability
They conform to the requirements of many potential users and are not structured or
geared towards a particular enterprise but rather for a set of enterprises. In this study
the reference models where chosen to support the precision machining industry but
they could well have an essential form which can constitute the basis of reference
models for other industrial sectors.

« Flexibility
They are adaptable and can be customised to specific needs of a user. The flexibility is
attained as a result of their formalism in a computer readable form offering
opportunities to manipulate their underlying data structures.

Also collectively these information models can serve as partial models which can be further
expanded or coupled with specific information models that contain information which is
unique to the manufacturing environment concerned. Certainly before the proof-of-concept
models advanced here could form the basis of any standard it would be necessary to consider
the extent to which a reference model should aim to be complete, as the inclusion of entities
seldom used will inevitably lead to some overheads in terms of required data storage and
processing capabilities.

Page 54

Chapter 4 Information Architecture for MCS

4.2.2 Reference Models for an Extended Application Domain

The reference model approach adopted in this research study has an extended application
domain in mind which crosses conventional product boundaries and indeed crosses common
organisational boundaries found in many manufacturing enterprises. Thus the reference
models specified in this research comprise information shared by several functional areas and
effectively serve as a precursor to enable components of an MCS to functionally interoperate.
In comparison, the approaches advocated and validated in previous research projects [Hars et
al. 1992, Scheer 1991, Muhlemann ez al. 1991] have been specific in nature, in as much that
tlicy have focused relatively sharply on an application domain, such as integrated production
planning development (as highlighted in section 2.3).

The perspective and inputs gained from on-going standardisation initiatives, such as
MANDATE [ISO 1991] to model manufacturing information (see section 2.3 for details), will
undoubtedly help to further advance the generic reference models identified in this study.
These reference models aim to provide an effective solution capable of satisfying current
needs.

4.3 Application of Generic Reference Models - A Case Study

In 1990 the University of Bradford Management Centre (UBMC), under the sponsorship of
ACME, was responsible for the dcveldpment of generic CAPM software which seeks to
address the key production management needs of SMEs [Afferson et al. 1992, Muhlemann et
al. 1990]. The microcomputer-based prototype solution has since been successfully translated
into a commercial product which is known as ELMS (EMM Lane Manufacturing Software)
[ELMS 1990].

ELMS was devclobcd as a set of integrated software templates which comprise the following
“core” or principal preduction management functions [Muhlemann et al. 1991] :

/~ “Core” Production Management functions

1. Production Planning

* Material Requirement Planning
2. Production Progressing
3. Materials Management

_ 4. Costing /

Page 55

Chapter 4 Information Architecture for MCS

The ELMS software application has been developed based on the use of a proprietary
relational database, namely DP4, and a fourth generation language, namely Datafit, to aid data
manipulation, representation and access. It basically consists of a group of executable
programs which operate on the database in order to realise the functionality of the “cores”.

Further research work is currently being carried out at UBMC to enhance the basic
functionality of ELMS to provide a resource scheduling capability [Halsall er al. 1993]. The
work entails the development and incorporation of the required scheduling capability where
its information needs could be satisfied and derived from the existing underlying database.
However, due to the proprietary nature and lack of understanding of the database structure (in
terms of the information entities represented and their dependency and interrelationship
defined within the database), the task of identifying the relevant information necessary to
support resource scheduling has proven to be very difficult and demanding. This problem is
typical for such “as is” software systems, a property which can severely inhibit their future
development.

Thus as an initial step towards facilitating ease of further development to incorporate resource
scheduling capability in ELMS (and indeed future functional enhancements as required), work
has been carried out at UBMC to restructure the ELMS database with reference to the generic
information models proposed by the author in Section 4.2. As illustrated in Figure 4-3, this
research has involved the following activities:

(1) Identification of specific information entities from the ELMS proprietary database
which correspond closely to those represented in the generic information models (refer
to Figure 4-4 for illustration).

(ii) Establishing a mapping between those closely associated information entities. Please
refer to Figure 4-5 for illustration.

(iii) Populating with data the mapped information entities (contained in the generic
information models) with relevant physical data from the existing ELMS database.

Based on this restructuring, the information entities required for resource scheduling (which
are stored with reference to the generic information models) are listed in Table 4-5.

This case study clearly demonstrates the ability of the generic reference models (identified by
the author in this research study) to

+ provide clarity in the database schema where information entities and their attributes are
clearly defined so that they may be well understood within the enterprise.

Page 56

Chapter 4 Information Architecture for MCS

Generic reference models

G

Mapping from proprictary
to generic information

models

ELMS application functions
operate on information stored
with reference to information models

Proprietary
Information representation

Figure 4-3 : Restructure ELMS database with reference to generic information models

Information models ¢ Proprietary information
Customer Order
Order Entry Work Order Usage
Schedule Work Order Item
- Part quantity required QOperation Process
| - Production due date Process Plan Item Qperation
| - Suppliers lead times
|- Operation sequence Resource Item
| - Work groups or cells
i| - Stock level Part Master/BOM BOM
Manufacturing Process
Facility
Manufacturing Cell Work Group

Table 4-5 : Information requirement for resource scheduling in ELMS

Page 57

Customers Data

Order Entry /4
Schedule

)

WORKS_ORDER_USAGE

WORKS _ORD_KEY
ITEM_KEY
QUANTITY

DATE

LOCATION
1SSUB_TO

WORKS_ORDER_[TEM

WORKS _ORD_KEY

Urdaer Linry

SUPP_KBY
{ suppxr
SUPP_NAME
SUPP_ADDRESS
SUPP_TEL
SUPP_CONTACT
SUPP_STATUS

Suppliers Data /
Resources

ShdobbtSol ol

ITEM/RESOURCES

oottt

ITEM_KEY
ITEM_ID
ITEM_CLASS
ITEM _NAME

ITEM_DESCP
ITEM_UNIT
ITEM_MAX_STOCK
ITEM_MIN_STOCK

{ ITEM_STOCK_ORDERS

| ITEM_STOCK_ALLOCATED
ITEM_STOCK_WIP
ITEM_STOCK_REQUIRED
{ ITEM_STOCK_PLAN
ITEM_COST

% ITEM_LEADTIME

| ITEM_PRICE
] STORE_LIFE

1 ITEM_SPEC_NR

T

o
o

SN

&
£

=

Resources

Part Master / BOM

Figure 4-4 : Grouping of data represented in ELMS database with reference to information models

Resources/

Process Plan /
Manufacturing
cell configuration

Information Architecture for MCS

Chapter 4
ELMS Database
Proprietary data is mapped with reference
to the information models
BOM Customer_ Order
e key(madnfusd, r cun_ond_tx
_ A Order Eatry y
wl.rw! ozt 2 > Part Master/BOM Mg Order Nomber L‘fﬂ?
Ey, oot 1 Custoener ID & 3
lovel Lo i."Pumth Peent Pert Namber —
] Part Mot Description z Work_Order_Usege
Quareity po asscably Duo Dato OO
Hem/Resources : it b by Unit Price ,g% o, | wark_arder_koy
4 Load Tiro Offmt Order Quantiry 2 o kmy
quantity |
daw
Customer
Custorraer D
Corpuny/Name
Addeess
Contact Person
Telephona
———
Supplier
Sapplice [D
Company/Nune
Address
Contact Person
Process Plan Header Telephoes
Part Number
Proccss Plan [D
MIg Operation
> Assigninent
] Process Plan D

Figure 4-5 : Mapping between information entities

Chapter 4 Information Architecture for MCS

« increase the flexibility of the database so as to enable information required by the functions
concerned to be made easily and quickly available (with flexible association between
information entities).

+ transform from a proprietary database schema to a more widely applicable and formally
structured schema for which future change can be more readily supported.

One of the major benefits of the approach adopted is an enhancement of ELMS from a stand-
alone “as is” CAPM software application to one which now has the potential to more readily
interoperate with various other MCS applications. This is made possible because the
information stored with reference to the generic information models in the underlying
database constitutes information of common interest which is typically shared between
various other MCS applications concerned (such as pro'duct design, cell control and process
planning systems). Although the results of a single case study are reported here the author is
confident that the information model and the method used to transform between proprietary
and neutral representation could also be used to achieve enhancement to many CAPM
software packages of similar structural design.

4.4 Design Criteria for a System-Wide Data Repository

As part of the information architecture proposed by the author, a new approach to
consolidating MCS data is offered. The approach was conceived after having recognised the
need for solutions in the following problem areas (as highlighted in section 2.2.2) :

(A) Lack of adherence to any standard architectural models of information, which
undermines the semantic integrity of shared information, can result in invalid
combinations of data (this as a consequence of incompatibility and inconsistency in
data definition and format).

(B) Multi-database concurrency problems, related to database transactions and
concurrency control and a means of consistently handling data access, transfer and
presentation issues, for data which is normally fragmented and distributed across
various databases. This includes

- independent and transparent data access, i.e. access without having to specify
or know where the data is stored.

- support for multi-user access where appropriate in-built system mechanisms
ensure that competing applications wishing to access data entries do not
endanger the integrity of the data repositories.

Page 60

Chapter 4 Information Architecture for MCS

The data repository comprises a directory of shared elements where common data definitions
are recognised throughout the enterprise as global data elements; i.e. they have globally
understood inter-relationships. The system-wide data repository would serve as the focal point
Jor access of shared data and provides users and software applications with a consolidated
view of information - one that is independent of physical media or data location; refer to
Figure 4-6 for an illustration of the concepts involved here.

It should be noted that data which will always be unique to an application can remain in its
own private local database, this to realise efficient processing. By restricting the number of
information entities made globally available there will be a diminution in the amount of data
exchanged, thereby reducing network traffic and bottlenecks relating to data access.

|
Product
Pﬁlﬂﬁﬁﬁ" ..-" > External schema

Capacit
de%dulgr

' PMaPart Matwer 1
PNaPart Number

MO=M{fg Orders

Data definltions

User views

()
s et

of common interest
\ Information models]

} Global schema

Mapping of commonly shared data available > Internal schema
in local databases to data repository with
reference to generic reference models.

Figure 4-6 : System-wide data repository

Page 61

Chapter 4 Information Architecture for MCS

The data unification mechanisms of the information architecture conceived by the author in
conjunction with other MSI researchers unifies the use of a distributed set of data repositories
which will be located over several computer nodes connected over a local area network.

As part of this research study, the following techniques were proposed and advanced to help -
overcome the problem specified in (A) :

« Apply the generic reference models identified and defined by the author (as described
in section 4.2) to offer a degree of formalism in terms of recognising information of
common concem over an extended domain.

» Adopt a suitably defined logical data model (to be further discussed in section 4.4.1)
to represent information entities and attributes in a uniformed manner where these
entities comprise information fragments within distributed data repositories. This
can

- alleviate problems of incompatibility and inconsistency in data definition and
format;

- facilitate required changes to the data model and physical data.

The CIM-BIOSYS IIS was utilised in this study to address some of the inherent ﬁroblcms
referred to in (B). It provides software applications with structured access to common
integration services for communication and management of data stored in distributed data
respositories (see section 3.4.1 for details). Database ‘drivers’ have been developed by other
MSI researchers {Leech 1993] to enable the following capabilities to be offered via the 11IS :

- connection and direct communication with a number of proprietary databases {(in
a manner which is independent of the physical location of the information
fragments involved); and

- a means of accessing information held in the databases.

However, the previously available database ‘drivers’ (created by MSI researchers) were
originally designed to provide low level services where the communication protocol adopted
by the ‘drivers’ can only handle packets of data of limited size. Thus in their original form the
available database ‘drivers’ were only capable of providing support for simple database
queries with limited information access. As a result, they were found to be relatively
ineffective in supporting data-intensive activities which require large amounts of data to be
accessed, transferred and processed. Thus as part of this research study, it was necessary for
the author to further develop the capabilities of database ‘drivers’ (as discussed in section
4.4 4) so that they incorporate an enhanced SQL capability which offers extended and more

Page 62

Chapter 4 Information Architecture for MCS

flexible functions that can satisfy varying needs ranging from file transfer to complex database
queries.

4.4.1 A Logical Database Model of the Data Repository

A relational data model has been used as an underlying structure for accessing information
fragments from the distributed data repository. In a relational model entities, relationships and
attributes are represented in the form of two-dimensional tables known as relations. Records
are assimilated into the rows of the table and each set of attributes forms a column. In a
relational database entities are stored lotally independently; i.e. the existence of a relation is
not dependent on any other relation. Logical associations among the stored data are exploited
through relational operations such as select, project and join which can be used to create new
tables. Any number of operators and relations can be combined in a ‘relational expression’ and
used to answer almost any query. The entities, artributes and relationships of the conceptual

data model can often be modelled directly as relations in a relational database model {Martin
1980].

The use of the relational model rather than hierarchical or network models has been claimed to
demand less of a compromise when representing and transforming real-world data

relationships [Wilkinson and Winterflood 1987, Date 1986, Martin 1980]. This claim is
because of the following :

(1)) In many real life situations, relationships cannot naturally be represented by a
hierarchical mode! (where normally one-to-many segment types are used to
represent successive levels in the hierarchy, thereby relating entities to one another).
It is not casy, for example, to directly represent relationships among segment types
at the same hierarchical level nor is it possible, without introducing data duplication,
to represent many-to-many relationships between entities [Martin 1980].

(ii) Network structures offer greater scope in representing data relationships when
compared with hierarchical structures, albeit at the expense of simplicity. This is
certainly true of their underlying physical storage structure. The need to transform
many-to-many relationships by the construction of a network model resuits in the
need to make more or less irreversible decisions about the nature of relationships
between entities when the data model is designed [Taylor and Frank 1976]. It
should be noted that the network model, whilst permitting means of representing
many-to-many relationships without introducing duplication of record occurrences,
does make retrieval of data a laborious process [Olle 1978].

Page 63

Chapter 4 Information Architecture for MCS

Please refer to Appendix I for further details on the relational, hierarchical and network data
models.

The importance of the relational model is widely acknowledged and the development of
relational database management systems (RDBMS) is progressing rapidly {Golberg 1993,
Beeritbart 1993, Wilkinson and Winterflood 1987]. Potentially, the relational data model
offers the following advantages :

» Ease of use. Visualisation and clarity of data, which are represented in two-dimensional
tables, is better for both programming and non-programming users.

» Simplicity. Here all data is viewed in the form of relations (tables), thereby allowing easy
data manipulation and query via SQL (Structured Query Language).

« Flexibility and relatability. With relational operations a standardised and effective way of
decomposing and recomposing relations [Rusinkiewicz and Czejdo 1987] is provided. This
approach enables the incremental building of larger systems module by module.

» Securify. Security controls can be easily implemented where security authorization will
relate to relations to protect company sensitive attributes.

» Data independence. There will be a need for most databases to grow by adding new
attributes and new relations and also for data to be used in new ways. The relational model
supports dynamic reorganisation (i.e. extension and modification to the structure) of the
database without affecting existing applications [Maude and Willis 1991]. This is important
because of the excessive and growing costs of maintaining the software applications of an
enterprise and its data from the disruptive effects of database growth.

» Data manipulation language (DML). One of the strengths of the relational model is that it
is generally supported by high level non-procedural, set-oriented languages, such as 4GLs
(fourth generation languages), to enable flexible access, management and presentation of
data stored in the database [Martin 1980].

As illustrated in Figure 4-6, within this study the “three-schema” architecture [Hodgson 1993,
Hodgson er al. 1988, Date 1986] was adopted in order to map from the logically integrated
relational model to the physically distributed databases in which the actual data is stored. The
three schema approach requires definition of the following information schema :

Page 64

Chapter 4 Information Architecture for MCS

+ Internal schema
This represents the physical organisation and storage of the information.

+ Global (or Conceptual) schema
This represents a composite view of a common pool of shared data. The objective is
to provide a consistent definition for meanings and inter-relationships between data
entities in order to aid information management.

« External schema (or Local viewpoint)
This describes the use of information, i.e. the information required by a user or an
application. Objects in the external schema are automatically mapped onto
information attributes in the internal schema via reference to the global schema.

In this study the shared elements represented by the global schema correspond to information
entities and attributes which are defined and specified in the generic reference models (as
described in section 4.2)., Hence with the three schema approach all commonly shared
physical data which is fragmented across the various local databases of the data repository can
be flexibly mapped and associated through established object relations. Thus each software
application only requires one interface to the global schema, thereby enabling access to a
common pool of information. Similarly, each local data source only requires one interface.
Changes are required to the global schema if new data entities are provided or old entities are
removed. In the event of a physical restructuring of the database, reorganisation only affects
the internal schema and a single mapping between the global schema and the internal schema.
Mappings between the external schema and the global schema remain unaffected.

Hence the three schema approach provides a greater degree of data independence when
compared with two or single schema approach where information is typically embedded
causing them to be exclusive in nature with regard to the functions concerned, thereby making
it rather difficult to separate and access them. Thus the use of a three schema database
architecture leads to improved flexibility where changes can be made without the need to
modify applications. Hence individual local databases can retain their autonomy, with a focus
on serving their éxisting customer set.

4.4.2 The Future Development of Relational Database
Management Systems

It is the intention of the author at this stage to provide some insight into future development of
relational database management systems (RDBMS). This provides a justification for choosing

Page 65

Chapter 4 Information Architecture for MCS

the relational model as a viable long term basis for manufacturing systems integration which
can be expected to cope with advances in application requirements and database technology.

Traditionally, RDBMSs have lacked adequate data types to fully represent engineering data
Jain et al. 1992, Buchman 1984, Koriba 1983]. In a typical manufacturing company,
engineering data will include CAD/CAM generated product models, part drawings and tool
paths (used for generation of CNC programs). This engineering data is highly complex, where
for exafnple, relationships between the lines and angles of their vector graphics must be
effectively represented and preserved. Within the literature, it is strongly advocated that such
data be best handled and supported by some form of object orientation [Chaudhri and Revell
1994, Chaudhri 1993, Codd 1992, Maier 1989].

Progress is being made within the database research community towards extended RDBMS so
as to provide increased functionality and support for object concepts. Examples include
Intelligent SQL [Khoshafian et al. 1990], Objects in SQL [Beech and Ozbutun 1990], and
current efforts of the ANSI X3H2 committee (SQL3) [Himes 1993, Hayes 1992]. Indeed
major RDBMS manufacturers such as ORACLE, Sybase, Informix, Borland and Ingres have
begun to add extensions to their products {Golberg 1993, Computing 1991], which can handle
simple forms of object orientation, this to support complex and user defined data types which
include :

+ provision of large data fields that can store binary data;

« inclusion of stored procedures and triggers which allow for the storage of data along
with programs and procedures that apply to them [Golberg 1993].

The reader is directed to one of the references given for details of the underlying concepts of
the extended relational model. Hence choice of relational technology should provide a
foundation for the future adoption of developed and enhanced forms which can also benefit
from its inherent simplicity (which has been recognised as one of the great strengths of the
relational model) [Chaudhri 1993]. Within the current scope of this research study, only non-
engineering data, which is generally alphanumeric in nature and can be represented by the
generic reference models identified and described in section 4.2, will be considered. However,
in the long term there exists the prospect of managing both engineering and non-engineering
data as object-oriented relational database technology matures and becomes readily available.
Such requirements have been identified and considered in specifying the conceptual solutions
proposed in this research study (see section 5.3 on management of engineering resources).

Page 66

Chapter 4 Information Architecture for MCS

4.4.3 The Need for Database ‘Drivers’

Depending on the class of user interacting with a database management system, two access
approaches can be adopted for relational databases [Davis and Olson 1987] as illustrated in
Figure 4-7 :

Database Query Languag
Facility

Database Programming
Language Interface

Programming user
Figure 4-7 : Approach for database access

(I) Database Query Language Facility

Relational Database Management Systems (RDBMS) essentially adopt a table based
organisation of data. The user must establish links from table to table, thereby making tables
behave temporarily as relations. This can be done through the provision of fourth generation
database query languages such as SQL (Structured Query Language). SQL in various forms is
offered by different database manufacturers, for example ; Query DL/1 for DL/1 (IBM); SQL
for DB2 (IBM); SQL for ORACLE (Oracle); NATURAL for ADABAS (Siemens); SQL for
Ingres (Ingres); and so on. Via the help of a basic structure, based on the following three key
words, SQL allows complex queries to be made :

SELECT Fields (columns) to be displayed;
FROM Relatjons (files) containing the fields;
WHERE Conditions (giving the selection criteria).

The use of SQL is appropriate for non-programming users as it enables independent access to
information necessary for the particular area of application concerned.

(II) Database Programming Language Interface

This approach is well suited for the programming user. Special database interface instructions
(i.e. embedded SQL), which are normally offered as a set of readily available program
functions, are incorporated into the application program to enable access to the database
through the database management system. However, when using this approach, if changes to
data access, manipulation and presentation are required, it would require a change in the

application program(s).

Page 67

Chapter 4 Information Architecture for MCS

Despite the widespread commercial and industrial use of SQL two major technical barriers
currently exist with respect to data access across multi-vendor RDBMS [Krishnamurthy et al.
1991]. These two barriers are considered below :

(A) SQL language differences.
In reality each vendor has their own SQL *dialect” where each is peculiar to the
RDBMS it supports. It has been estimated that approximately 80% of the SQL
syntax and semantics is identical between dialects [Himes 1993]. However, the
remainder includes subtle differences which make it extremely difficult to convert
from one SQL dialect to another.

(B) Differences in message formats and communication protocol.

" In practice different RDBMS vendors have targeted the use of their products at
different hardware platforms and operating systems. As a result there exist distinct
differences in the message formats and communication protocols of the different
RDBMS which can further accentuate the heterogeneity of integrated systems. This
undoubtedly causes interconnection problems between multi-vendor RDBMS.

A novel approach to accomplishing access to a distributed and heterogeneous set of data
repositories, which has been used and is reported here, has been conceived by MSI researchers
and advanced by the author in this research study by providing mechanisms in the form of
specially developed database ‘drivers’ based upon SQL. As illustrated in Figure 4-8, the
database ‘driver’ brings the database system up to a level of conformance which allows it to
utilise the integration services of an IIS. The ‘driver’ is required to operate at the interface
between the IIS and the database system. It provides a set of services to link the IIS and
database system; it handles the IIS service requests and the inherent complexities of the
database system concemned to access the information required.

In the implementation the CIM-BIOSYS IIS is utilised to provide distributed software
applications with structured access, via common integration services for communication and
management of data, to fragments of information stored in distributed data respositories. Here
‘drivers’ are generic in nature and are configurable, thereby enabling a degree of tailoring to
account for the idiosyncrasies of the relational database management system to which they
interface. Whilst efforts in SQL standardisation are progressing, which will ulimately make it
easier to connect RDBMS from different vendors [Himes 1993, White 1993, Hayes 1992,
Perkovic 1991, Van der Lans 1989], in the interim the database ‘driver’ provides a migratory
path towards more open systems which enable wider information access. Thus the ‘driver’
acts as a standard interface to a relational database where its underlying services can be
utilised by any MCS functions requiring access to the database via the IIS. To-date a number
of database ‘drivers’ have been developed by MSI researchers to enable information

Page 68

Chapter 4 Information Architecture for MCS

Interoperating MCS functions

IS

sl) []
Y Y

s

Information services

gDaubuc Interface Mndua (Dmbm Interface Mndul.-e)

‘Driver’

Data
<hda» < @ repositories

ORACLE Ingres Progress

C

Figure 4-8 : Database “driver’ interfaces to data repository and IIS

access from a number of commercial RDBMSs [Leech 1993]. These include ORACLE
version 6.0 [ORACLE 1992], Progress version 6.2 [Progress 1990], and Ingres version 6.4
[Ingres 1991]. All three databases provide an SQL user interface as well as some form of
embedded SQL capabilities, and various forms of higher level 4GL programming language.

It should be stressed at this juncture that the database ‘driver’ developed in this research study
is an improvement on an earlier version developed by other MSI researchers [Leech 1993]. In
the earlier version, use of the ‘driver’ was restricted as it was capable of only handling fixed
maximum length packets of data (limited up to 1500 characters only). This limitation was
primarily attributed to the communication protocol adopted which involved UNIX based
sockets responsible for handling and transmitting data packets over the local area network
(this being Ethernet for the systems implemented during this study). Thus in its original form
the ‘driver’ was only capable of supporting simple database queries. This limited information
access involved laborious and time consuming overhead processing in terms of

- fragmenting the required data into the necessary packet size;
- handling the sequential transfer of these data packets; and
- reassembling the data from the data packets transferred.

As a result the earlier version of database ‘driver’ proved to be ineffective and inefficient in
supporting data intensive activities which normally require large amounts of data to be
accessed, transferred and processed.

Page 69

Chapter 4 Information Architecture for MCS

4.4.4 Development and Enhancement of Database ‘Driver’

The ‘driver’ developed by the author in this research study is aimed at enabling consistent,
reliable, transparent and open access of information stored in the database system concerned
by the distributed software applications via the IIS. It is developed as a set of ANSI-C program
functions. The ‘driver’ is structured in a modular manner and comprises the following (see
Figure 4-8) :

« IIS Interface Module to provide an interface to the IIS to bring the database system serviced
to a level of conformance which facilitates utilisation of the common integration services
(i.e. information management and access) offered by the IIS. This is to enable transparent
access to information (which is held in the distributed data repositories) from MCS
functions via the IIS embedded communication protocol.

 Database Interface Module to provide an interface to specific database system, configured
to translate between IIS and proprietary (i.e. specific to the database system concerned),
message and data formats as well as SQL dialect requirements. Here the database
programming language interface of a given RDBMS (i.e. embedded SQL) is used to access
the database system. It incorporates standard SQL capabilities and in combination with the
IIS the following services are provided :

Data Definition:
*CONNECT: Start a database session with the specified database.
+«DISCONNECT: End a database session.

Retrieve Data:
+SELECT: Retrieve rows that meet a given search condition.

Data Manipulation:

*INSERT: Insert a new row in a database table.

*UPDATE: Modify rows that meet a given search condition.

*DELETE: Delete rows in a database table specified by a search condition.

Transaction Processing:
+COMMIT: Make permanent all changes performed in the current transaction.
«ROLLBACK: Undo the work done in the current transaction.

The reader should refer to Appendix V for further details on the information services
offered by the database ‘driver’. Program listings for the relevant services are also included.

Due to the modular structure and generic feature of the ‘driver’, the task of creating ‘drivers’

for different database systems is simplified considerably. It is only required to modify the
Database Interface Module to suit the specific requirements of the database system concerned.

Page 70

Chapter 4 Information Architecture for MCS

For example, the ORACLE RDBMS ‘driver’ was created by taking the completed Ingres
database ‘driver’ and replacing its Database Interface Module after modifying it to suit
ORACLE RDBMS.

The operation of the ‘driver’ is initiated by the IIS to perform the set of tasks listed below :
- Establish connection to the database system concerned.

- Route information access requests received from MCS functions (via the IIS) to the database
system. These requests are converted and conform to the SQL compliant services provided
by the ‘driver’, i.e. SELECT, INSERT, UPDATE, and DELETE data objects.

- Receive the requested information from the database, re-format it and send it back to the
MCS function which requested the information.

- Report and recover from errors which may occur.

During its operation the ‘driver’ references a set of meta-files which describe data access
objects. A data access object is uniquely identified and consists of one or more of the database
table names from which data is to be accessed, a list of field names and an optional search
condition. The data access objects are predefined and can be altered easily in the meta-file

~ (even during run-time if required) to suit specific information needs. This object oriented
approach helps to avoid the tedium of modifying the database ‘driver’ whenever changes
occur. Please refer overleaf for illustration of the use of data access objects by the database
‘driver’. The notion of data access objects

» makes manipulation and query services simple, flexible, fast and easy to use, as it is not
necessary to repeatedly reconstruct syntactically correct SQL statements from scratch
every time a service is requested.

« simplifies and enables mapping between the data representation used in the physically
distributed databases and that used in the logical integrated relational data model of the
data repository. This in essence represents the link between the internal and global
schema respectively in relation to the three schema architecture (as discussed in section
4.4.1). Please refer to Appendices IV and VI respectively for an illustration of the way in
which this mapping was established between the generic reference models (described in
section 4.2} and specific information models of two proprietary software packages used
in this study, namely MCC [MCC 1989] and ELMS [ELMS 1990]. The program source
code designed and developed by the author to populate the data repository with shared
data from MCC is also included in Appendix VI for reference.

Page 71

Chapter 4 Information Architecture for MCS

Illustration of the use of data access objects

delete(“object1”, “item_descr”="Drill Plate’); |
query(“objec12”); ;

ooooooo

Data access object definition

1+object1” object name “ITEM, BOM" table name “item_descr, item_no™ columns “item_no = bom_no” where clause
| “object2” object name “ITEM" table name “item_no” columns “item_no = 223356" where clause -

« The ‘driver’ is invoked and operates on data access objects. In the example given,
a data access object called objectl leads to the deletion of all data satisfying the
search condition “item_descr” = ‘Drill Plate’

+ objectl is defined in the meta-file. It provides a composite description of a data
access to the SQL tables ITEM and BOM which in tum involves attributes
“item_descr” and “item_no™ and the need to satisfy the search condition
“item_no = bom”

Page 72

;A

Chapter 4 " Iaformation Architecture for MCS

Hence the database ‘driver’ developed in this research study is an improvement on an earlier
version developed by other MSI researchers. It incorporates standard SQL capabilities and
offers extended and more flexible functions to support data intensive activities which range
from file transfer to complex database queries via the IIS.

4.5 Summary

In relation to the overall methodology conceived in this research study to enable
interoperation of MCS components (as described in section 3.5), the work described in this
chapter has a direct bearing on following three sub-methods :

« MCS specification
A set of widely applicable generic reference models representing prime information
of common concern among MCS components has been identified and described in
order to help structure and facilitate MCS design.

+ Use of an 118
The CIM-BIOSYS IIS, which assumes responsibility for maintaining knowledge of
integration details, is used to simplify problems of realising interconnection between
MCS components. It resolves differences in the physical system relating to
heterogeneity, distribution and data fragmentation.

+ Interfaces to physical resources
An SQL based database ‘driver’ has been specially developed to effectively support
data intensive activities. The ‘driver’ enables the following :

- brings MCS components to a level of conformance which enables
interoperation over the CIM-BIOSYS IIS, and hence allows practical
application with regard to existing custom designed database
components.

- flexibly maps software applications onto system resources, i.e. achieves a
mapping between physically distributed databases and the logically
integrated relational data repository which corresponds to the ANSI
SPARC “three schema” architecture.

Page 73

Chapter 5

Integrating Infrastructure to underpin MCS Interoperation

5.1 Functional Interaction Requirements in MCS

The author recognises that the identification and specification of generic reference models (as
described in section 4.2), to enable a bonding of MCS components through shared
information, is merely an entry point towards achieving software interoperability [Singh and
Weston 1993]. In order that the benefits of software interoperability can be more fully realised,
the next crucial step is to address problems of functional interaction between MCS
components [Hars 1990]. In practice, this demands cooperation among interoperating
software components to establish well defined communication channels which collectively
promote and enhance intra-organisation interaction and co-ordination of activities [Singh and
Weston 1994a). Hence an inherent capability to control system behaviour is essential. Indeed
this is one of the requirements (as stated in section 1.4) which need to be satisfied to enable
software interoperability in an effective manner.

A primary objective of this research study is to provide a generalised and flexible way of
enabling functional interaction between the components of integrated manufacturing systems.
Hence a framework is required which formally structures and manages functional interaction
between MCS components. In this way a group of normally autonomous MCS components
can function as a co-ordinated whole, with means of maintaining discipline among them
[Singh and Weston 1994a). The following requirements are identified as being necessary to
enable and support functional interaction :

(I) Establish formal association between MCS functions and their required information.
Typically in a manufacturing company, the sequence of activities necessary to perform
part manufacture in progressive stages, relies heavily on their functional dependencies
and on information needs between the different stages. Generally, the association
between functions and their required information is not formally and clearly defined,
particularly across different functional domains, and much depends on the users to
ensure control and co-ordination of the system [Lars 1990). Consequently, this
contributes to significant delays in transactions as well as misunderstandings and
conflicts. Hence the existence of a formal association, established between MCS
functions and their required information, is viewed to be highly beneficial in terms of
providing means to structure and govern systemn behaviour (during run-time), where

Page 74

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

associated preceeding and succeeding activities and consideration for their shared
information needs (as defined by the generic reference models in section 4.2) have to be
taken into full account.

In addidon, any associations established between MCS functions and information must
be configurable in nature. This is necessary to suit both specific and changing user
functional and information needs.

(IT) Capability for controlling and co-ordinating the sequence of MCS activities.
Consideration needs to be given to the availability of shared information necessary to
satisfy and support each of the (run-time) activities carried out by an MCS. This needs to
be done with close reference to associations established between MCS functions and
their required information, as stipulated in (I). Mechanisms will be required to closely
monitor the availability of such information (held in the data repository), and to initiate
or trigger appropriate functional activities in need of that information for further
processing.

(IIT) Means to effectively coalesce all interacting MCS components.
It is necessary to provide easy user access to associated functions which may be
distributed across the local area network so that human centred tasks can be
appropriately supported. Such an approach can provide users with a global perspective
when conducting their specific tasks so as to ensure better and more informed decision-
making.

(IV) Means to manage engineering data.
Normally in a manufacturing company, some engineering data, which includes part
drawings, is frequently referenced to help determine resource requirements (for example
toolings, fixtures, etc.), plan route for part manufacture, part inspection routines and so
on. Controlled access to this engineering data can prove very useful and can effectively
contribute globally towards more informed decision-making and planning. Thus it
would certainly be helpful to have knowledge of the existence of such data and where it
can be accessed or requested within the system. As RDBMSs which manage both
engineering and non-engineering data are not currently available {as discussed in section
4.4.2), a means is, therefore, required to manage such useful engineering data where the
user can at least be informed of its availability and physical location over the local area
network.

Page 75

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.2 Contemporary Solution to enable Functional Interaction

As indicated from the author’s academic and product literature survey, there are very few
solutions available which have been designed with the purpose of tying together a set of
software applications into a coherent system (i.e. to facilitate functional interaction). SIM
(Systems Integration Manager) [SIM 1993], which is a commercial software package from
Manufacturing Systems Portfolio PLC (based in Windsor, UK), is one of the few
contemporary solutions available. To help assess the capabilities of contemporary commercial
solutions to the functional interaction problems, based on the author’s working experience of
SIM, its scope of functionality and level of effectiveness in facilitating functional interaction
(with relation to the requirements identified in section 5.1) was explored. This case study was
beneficial in terms of providing a general indication of the focus and usefulness of a class of
contemporary solutions aimed at enabling and supporting functional interaction.

5.2.1 Overview of Systems Integration Manager

. Messages are the core of the SIM system and interoperation between applications is achieved
through message passing. SIM provides the following features listed in Table 5-1 [SIM 1993] :

Features Description
MESSAGE PASSING The routing of messages between applications.
MESSAGE HANDLING The definition and validation of messages.

EVENTS AND ACTIONS | The specification of the occurrences of conditions such as the receipt of
a given message and the action to be taken.

PROCESS CONTROL The administration of applications.
FILE TRANSFER The transfer of text files between computers.
STATISTICS

SIM maintains statistics on the frequency of service requests.

PRINTING The printing of files.

Table 5-1 : Features of SIM

All these features are available as a set of ANSI-C program functions and need to be
incorporated into newly developed and existing applications in order to enable an interface to
SIM to be established, thereby enabling use of the facilities it provides to allow interoperation.

The behaviour of SIM is described, defined and governed through a set of configuration tables,

as illustrated in Figure 5-1. In order to be valid and accepted by SIM, the configuration tables
comprise the following :

Page 76

Chapter § Integrating Infrastructure to underpin MCS Interoperation

SIM Interface

Applications messages
Input queue

"

Figure 5-1 : Interoperation between applications enabled through SIM

Page 77

Chapter 5§ Integrating Infrastructure to underpin MCS Interoperation

 Registration of applications which includes assigning a unique identifier to each application
and specifying its actual physical location for direct access.

Example
Event ID 21
Message Receipt = 5
Action ID 10

File Transfer Request ID 260

» Predefinition of the structure of messages (which includes its type, length and assigned
identifier) and a specification of its targeted destination.

Example

Action ID 10
Application Loaded 12 --— Application ID

Application Unloaded 16

Application Terminated 14

 Specification of “events” which can be described as some expected happening. For
example, receipt of a message or the transfer of a file.

Example
Application ID 12
Machine Address tracey ~af— Logical name assigned 1o machine

Application Name/usr/SIM/tools/apply] ~— Application full path

+ Definition of “actions” that should be performed when “event” happens.

Example

Message Type ASCII
Message Text Generate Schedule report
Message length 52
Destination Application ID 12
Message ID 5

As illustrated in Figure 5-1, during normal operation incoming messages from applications are
received and queued by SIM. They will be validated and processed with reference to the
configuration tables. In response to the input received, predefined “actions” and corresponding

output messages will be activated and delivered respectively by SIM to trigger off targetted
applications.

Page 78

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.2.2 Focus and Limitations

In relation to the requirements identified for functional interaction (as described previously in
section 5.1), the following highlights the characteristics of the contemporary solution studied :

+ Event driven to control and co-ordinate a sequence of activities

It is basically event driven and is loosely based on predefined message passing between
applications. It does not take into account information resources required to drive and
support the various activities within the system. Thus association between functions and
information is not considered and availability of required information is not monitored
when attempting to validate and control the sequence of activities. Rather, system
behaviour control (during run-time) is achieved merely through management of
messages. '

» No effective means of coalescing interacting applications

No front-end user interface capability is provided to coalesce interworking among the
various interacting applications. Instead all applications need to directly incorporate
special routines within themselves so that they can utilise the interaction facilities and
services provided. Hence the applications concerned are rigidly configured as the
interaction knowledge they require will be embodied within each one of them. Thus such
solutions will face similar problems to “pair-wise” integration (as mentioned in section
2.2.1), where the complexity of such systems will grow substantially (theoretically in a
square law fashion) as the number of interconnected applications grows. As a result, it
will be tedious and cumbersome to manage changes to any of the interacting
applications within the system, and it may not be practical to give due consideration to
the full implication of changes to the system as a whole.

In view of the above mentioned limitations, the following requirements are evidently
necessary to facilitate and support functional interaction in a more effective manner :

» Control and co-ordination of the sequence of activities (i.e. system behaviour during
run-time) should be data driven. This is to ensure that the use of information resources,
particularly those sharing common information, are considered during functional
interaction. This is essential in order to properly and accurately validate and co-
ordinated the sequence of activities in relation to the availability of information set in the
context of realising more global goals.

o Simplify interconnection between interacting applications via an IIS. This is to provide
common integration services to all conforming applications, via use of common
integration services provided by an infrastructure.

Page 79

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

5.3 MCS Functional Interaction Management Module Subsystems

In order to meet the identified requirements for functional interaction, an MCS Functional
Interaction Management Module (FIMM) was designed and developed as part of this research
study. The MCS FIMM serves as an application enabler to help formally structure and
facilitate MCS functional interaction in a controlled and deterministic manner [Singh and
Weston 1994a, Welz 1993]. As illustrated in Figure 5-2, it comprises the following sub-
systems which collectively can be viewed as constituting high level integration mechanisms
and tools of an IIS (as defined in section 3.4) :

* Function-Information Association Table
This represents an association, formally established and clearly defined, between MCS
functions and their required information. It is referenced (during run-time) to govern
system behaviour. Software tools have been developed in this research study to
establish and configure such association between functions and information held in the
Function-Information Association Table; the purpose and construction of these
tools will be considered further in the next chapter.

+ Functional Interaction Manager
This is responsible for controlling and co-ordinating a required sequence of MCS
activities where mechanisms are provided to
- closely monitor the availability of shared information (held in the data repository).

- initiate or trigger appropriate functional activities in need of that information for
further processing.

+ Engineering Resource Manager
This serves as an archive for engineering data which includes part drawings and NC
programs necessary to support part manufacture.

» FIMM Configurator

This serves as a tool to enable configuration of the MCS FIMM to suit specific user
needs.

The MCS FIMM builds upon the low level, general purpose integration services and tools of
the CIM-BIOSYS IIS [Weston 1993] which provide standard data inter-communication and
information transfer facilities to interconnect MCS software components. Program listings for
the MCS FIMM are included in Appendix VII.

Page 80

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

Software Operator
Applications Interface

|

MCS
Function

database ?
- Functional Interaction Manager » MCS FIMM
Working “ Engineering Resource Manager (High level services)
parameters
FIMM Configurator
Function-Information

Association Table

CIM-BIOSYSIIS (Low level services)

COMMON INTEGRATION SERVICES

Inter-process

Information Data
communication

management presentation

Figure 5-2 : Framework for MCS Interoperation

Page 81

Chapter 5 Integrating Infrastructure to underpin MCS Intempeﬁtion

(I) Function-Information Association Table

As illustrated by Figure 5-3, the relational Function-Information Association Table identifies
predefined relationships between entities of the information model and related MCS functions
(i.e. it associates information entities to MCS functions designating them as either an input or
output requirement or both). The information model, which encodes relationships between
information entities, corresponds to the generic reference model (as identified and described in
section 4.2). The Table will be referenced (during run-time) in a way which governs system
behaviour in a controlled and co-ordinated manner, i.e. in accordance with predefined
relationships established between the information entities and MCS functions. Use of this
table driven approach offers the following benefits :

« information input/output requirement analysis with regard to the MCS functions; and
- information association, traceability and accountability to MCS functions.

This table can also serve as an intermediary storage and representation facility which can be
populated with data generated from design models and information. Details of a methodology
and software tools which have been specially developed and used to enact information and
function models in this way are included in later chapters. This approach was conceived in
order to establish and configure necessary run-time associations, as identified and represented
by the Function-Information Association Table, in a highly flexible manner.

Function-Information Association Table

nformation | orpER

Function P v ROUT RESOURCE|SCHEDULE
MFG PLAN I
DESIGN 1
MCS function PROCESSV PLAN
;Trﬁmlll];ln - CHEDULER
OTrimnal
requirements [/ | CELL CONTROL
nformaton) MCS Function g Information
ORDER ENTRY S O = Output
BOM I' SCHEDULE
ROUTE S hcd 1 Information input/output
RESOQURCE cheduler to MCS functions
R
Input to Function Information Output from Function
MFG PLAN T
PROCESS PLAN BOM DESIGN
SCHEDULER
CELL CONTROL

Figure 5-3 : Function-Information Association Table for MCS FIMM

Page 82

Chapter 5§ Integrating Infrastructure to underpin MCS Interoperation

(II) Engineering Resource Manager

The Engineering Resource Manager offers a means of managing engineering data which
includes part drawings and NC programs. It does not physically process this engineering data
but effectively serves as an archive where these resources are registered in the FIMM database
and cross referenced based on part number, as illustrated in Figure 5-4 below. Via the
Engineering Resource Manager the user can be informed of availability and physical location
of part drawings and NC programs, distributed across a number of computer systems.

The Engineering Resource Manager facilitates the following services :

+ Registering the location of engineering resource.
+ Search facility with reference to part number.
+ Locate engineering resource with reference to the function responsible for managing it.

The author created Engineering Resource Manager software to meet the requirements
highlighted above, program listings being provided in Appendix VII.

Product design

Engineering resources archive

Drawing Location

m IOINT.DWG tracey JOINTNC

4;;9" w.| 222 | PLATEDWG | wayne I PLATENC
Engineering Resource Manager 1

113 BRACE.DWG| derek BRACENC | tracey

MCS FIMM

Logical names
assigned to computer nodes over LAN

Figure 5-4 : Engineering Resource Manager

Page 83

Chapter § Integrating Infrastructure to underpin MCS Interoperation

(IIT) Functional Interaction Manager

The Functional Interaction Manager serves as the run-time driver of the MCS FIMM and is
responsible for sequencing and co-ordinating activities of the various distributed MCS
functions via status management and transaction control. Transactions which involve (i)
initiation of interoperating functional activities, and (ii) request and exchange of shared data
between interoperating MCS components are closely monitored with reference to the
Function-Information Association Table (during run-time), this in order to validate

« that the required sequence of functional activities has been performed;

« appropriate association between MCS functions and their required information is
maintained; and

« that the integrity of shared data in the system repository is maintained.

Status markers and triggers were implemented to provide a mechanism to control and co-
ordinate functional interaction. Here, status markers are either assigned automatically or
interactively by the operator (in response to certain system requests to alter them during
normal operation), where they are subsequently used by the system to trigger or block further
transactions between interoperating MCS components.

To enable concurrency, i.e. parallel operation of MCS components, the operational status of
the threads of functionality embedded within each MCS function is monitored closely, for
example : order registration and resource management activities which constitute the MCS
manufacturing planning function. Status markers are also used to reflect changes of the
activity instance, thereby effectively controlling and coordinating the start-up and shutdown of
subsequent and dependent activities.

The Functional Interaction Manager facilitates the following services :
+ Registering new orders received.

Altering the processing status of MCS functions, i.e. to reflect whether work is in progress,
completed or pending.

L]

Updating instance to reflect the processing phase at which the part is currently at.

Search facility which references part number to indicate status and instance for the part(s)
being processed.

L]

Job load indication for the MCS function concerned.

Please refer to Figure 5-5 for an illustration of the operational view of the Functional
Interaction Manager and Appendix VII for further details on the services offered by
Functional Interaction Manager. Program listings for the Functional Interaction Manager are
also included in Appendix VII.

Page 84

Chapter § Integrating Infrastructure to underpin MCS Interoperation
Function-Information Association Table
—_—
Information | ORDER | g oyre | Bom | RESOURCE
Function ENTRY RESOURCE|SCHEDULE
MFG PLAN I . I I 10
DESIGN 1 I O 1 -
PROCESS PLAN - (8] I I I
SCHEDULER I I I I 5)
CELL CONTROL - I I I I

referenced during runtime

Part No

Activity
Instance

DESIGN

SCHEDULER

CELL CONTROL

m

P

P

P

222

Cc

WwIP

Qperational status moniloring

MCS Activity Monitoring Table

Activity Instance

MCS Functlon

0

1

2

3 4

MFG PLAN
PROCESS PLAN

DESIGN

SCHEDULER

CELL CONTROL

Figure 5-5 : Overview of Functional Interaction Manager management of MCS activities

Page 85

Chapter § Integrating Infrastructure to underpin MCS Interoperation

(IV) FIMM Configurator

A FIMM Configurator tool was conceived and implemented by the author to enable
configuration of the MCS FIMM to suit specific user needs. It facilitates the addition, deletion,
and display of MCS functions, which are to be managed by the FIMM, as well as enabling the
attribution of data to entities in the information model (which corresponds to the reference
model as described in section 4.2). In addition, it allows relations between the functions,
information entities, engineering resources and activity instances to be altered quite easily
through its editing services. Please refer to Annex VIII for further details on the services
provided and program listings.

The FIMM Configurator is menu driven so as to be user friendly. Its functional structure and
scope is illustrated in Figure 5-6.

MCS Functions

Information Entities

Engineering
Resources

Add Function

Add Information Entity

Delete Function

Delete Information Entity

Add Engineering
Resource

Change Input/Outpu

Change Input/Cutput

Delete Engineering

Relation Resource

Displa Change
Information Entities Acoountability

Display Engineering
Accountability Resources

:| Display Functions :

One Relation

All Input/Output
‘ Relations for a Function
All Input/Qutput

Relation for an
Information En

Figure 5-6 : Structure of FIMM Configurator

The configuration information describes the working parameters necessary to drive and
control the MCS FIMM; during system run-time this information is referenced by the
Functional Interaction Manager and the Engineering Resource Manager. Any alteration or
reconfiguration carried out by the FIMM Configurator is done only when the MCS FIMM and
all functional activities managed by it are inactive. This is to ensure consistency and integrity
of the required configuration.

Page 86

Chapter § Integrating Infrastructure to underpin MCS Interoperation

The following data which is relevant to the normal operation of MCS FIMM is stored locally
in a relational database, namely the ORACLE RDBMS :

« attributes of the MCS functional activities and information entities to be managed;

« type and nature of relationship between MCS functional activities and information entities;

+ operational status of MCS functional activities supporting part manufacture; and

+ a description of the logical links to the engineering resources based on their designated call
names.

The reader should refer to Appendix IX for further details on the MCS FIMM database
schema.

The FIMM Configurator also provides error recovery facilities to help troubleshoot and
recover from possible error situations. Further details on the use of the FIMM Configurator
tool is provided in the next chapter.

5.4 User Interface : Generic ‘Application Shell’

As part of the working framework conceived by the author to enable functional interaction
among MCS components, the need for a highly reconfigurable and hence widely applicable
‘application shell” was perceived to be required. As illustrated in Figure 5-7, this ‘application
shell’ effectively serves as a front-end user interface for MCS interoperation over the IIS, to
provide easy access to associated MCS functions which are normally distributed within the
complete MCS system. Through the “application shell’ operations such as start, stop, status
update and queries (for both the MCS functions and MCS FIMM components) are performed
in a standardised way irrespective of which MCS components are used. Common integration
services, such as inter-process communication and information management, offered by the
CIM-BIOSYS IIS are also accessed and managed through this standard interface.

The ‘application shell” was designed and developed by the author in the form of a multi-
window environment run under the UNIX operating system. The design included provision
for data entry fields and specially configured buttons which serve as the front-end to perform
and access the necessary MCS functions and services, as illustrated in Figure 5-7. The
environment makes available all commonly required MCS functions, thereby allowing easy
access to these functions for the following purposes :

Page 87

Chapter § Integrating Infrastructure to underpin MCS Interoperation

[(vewrar) (xoquire) (Chamgs) ActiveGroup: Eoqure ™\

(Getpurts) (et Job towd) [(Get Location) (Get Accountabitity)

Dute uit Values

=] Part Number:Fsg .
®®

(P) () ()

(o) (Res) (scrativp) (seron bown)

Job load. 4 rows
part_nmo (ype Instance PP CAD CAFPP CELL FCs

\mo N 3 WP WIF P r r/
AL

Interoperating MCS

User interface

-

MCS FIMM

{CIM-B10SYS IIS\
services

APPLICATION SHELL

CIM-BIOSYS IIS

£ i)
: KA '@r
Daia
i i repositories

Figure 5-7 : ‘Application shell’ to coalesce interoperating MCS components
and integrate with MCS FIMM and CIM-BIOSYS IIS

Page 88

Chapter § Integrating Infrastructure to underpin MCS Interoperation

» To provide users with an abstracted working viewpoint which supports them in an effective
manner when conducting their specific tasks. This satisfies the need for a user interface
capability which reflects inherent MCS-human interaction requirements (as stated earlier in
section 1.4) so as to enable software interoperability in an effective manner. This ‘standard’
human-MCS interaction facility provides users with a global perspective which enables
better and more informed decision-making in relation to performing their specific tasks.

» To make functional interaction management easier by effectively insulating the user from
complexities and details involved in the underlying interoperation processes which will be
taken care of by relevant services offered by the MCS FIMM and the CIM-BIOSYS IIS.

The reader should refer to Appendix X for further details on the human-MCS ‘interface’
offered through the generic ‘application shell’.

5.4.1 Interface between MCS Functions and ‘Application Shell’

In this study a proof-of-concept interface between MCS functions and the ‘application shell’
was implemented based on the use of UNIX pipes. A UNIX pipe basically makes the output of
one program the input of another. Two pipes are created during normal operation. As
illustrated in Figure 5-8, user inputs, which drive MCS functions, are emulated and redirected
to one pipe. The output from the MCS functions is redirected to the second pipe to enable
interpretation and visual display by the user via the ‘application shell’ display window.
Program listings for the interface mechanisms implemented are included in Appendix XI.

Pipe in

User input and commands

E mcs ||
function

Pipe out
3 MCS function reswnsa

User Communication mechanism

Figure 5-8 : Communication interface via ‘application shell’

Page 89

Chapter § Integrating Infrastructure to underpin MCS Interoperation

5.5 Enabling Distributed Functional Interaction Management

The services of the MCS FIMM are accessible as a set of ANSI-C program functions. If an
MCS application runs on the host computer where the MCS FIMM database resides, the
required services can be directly invoked as all required information is held locally. However,
in order to support MCS functional interaction in a distributed environment, where the MCS
functions are spread over several host computers connected via a local area network (LAN),
remote versions of the services (as described previously in section 5.3) are necessary. These
have been developed to allow any host computer connected to the network to have access to
MCS FIMM services. Here the proof-of-concept implementation was based on
communication mechanisms which use UNIX pipes to connect between the remote host
computer on which the MCS component resides and the computer system on which the
services of MCS FIMM reside. As illustrated in Figure 5-9, the communication mechanisms
implemented enable the following capabilities :

« requests made by MCS applications to be relayed to the host computer where the services of
the MCS FIMM reside for processing to occur.

» request made by MCS applications for MCS FIMM service(s) to be interpreted.

« MCS FIMM service(s) to be invoked as required.

« ability to relay responses or outputs from MCS FIMM services back to MCS applications
requesting its service.

Program listings for the communication mechanisms implemented are provided in Appendix

XL

VN

MCS FIMM Database Host

Communication
Mechanism

(__1001:

receive command
call service
retum result

Functional Interaction
Manager services

Register New Pan

Get Job Load

FIMM
database

Remotely located computer

Communlcztion
Mechanism

remote Register New Part ||l -ugl—
L retmote Get Job Load

loop

MCS Application

; wait for result
4 Process retumed result

Figure 5-9 : Communication mechanism to support MCS FIMM
in a distributed environment

Page 90

Chapter § Integrating Infrastructure to underpin MCS Interoperation

5.6 Summary

The MCS FIMM functions provide a framework which formally structures functional
interaction among MCS components. However it was conceived with the purpose of enabling
the flexible integration of MCS components. Hence it is modular in construction and
comprises the following sub-systems :

+ Function-Association Table

* Functional Interaction Manager
« Engineering Resource Manager
+ FIMM Configurator

The MCS FIMM was implemented in proof-of-concept form and developed to satisfy the
requirements for functional interaction identified in section 5.1. Restated these requirements
illustrated a need to :

+ Establish formal association between MCS functions and their required information.
These associations are represented in the form of a Function-Information Association Table
which identifies predefined relationships between information entities (which correspond to
the generic reference model described in section 4.2) and activities performed by MCS
functions. This Table is referenced (during run-time) in a manner which governs system
behaviour in a controlled and co-ordinated way. Here associated preceeding and succeeding
activities and consideration for their need for shared information is taken into full account.

The FIMM Configurator was conceived and developed to facilitate flexibility in a
manageable fashion, where via its editing services, the MCS FIMM can be configured quite
easily to suit specific user functional and information needs.

+ Establish a capability for controlling and co-ordinating the sequence of activities
performed in a distributed MCS,
The Functional Interaction Manager is responsible for providing this capability. It
incorporates mechanisms to
- monitor the availability of shared information via its status management capability.
- initiate or trigger appropriate functional activities which are in need of that
information for further processing.

Page 91

Chapter 5 Integrating Infrastructure to underpin MCS Interoperation

+ Establish means of effectively coalescing the interaction of MCS components via a
‘standard’ human interface.
A generic ‘application shell’ has been developed to enable human interaction with MCS
components via MCS FIMM and CIM-BIOSYS IIS services. The ‘application shell’
effectively serves as a front-end user interface for MCS interoperation, where easy access
to associated functions which are distributed throughout the MCS systems at different
network nodes, is offered. This provides the user with a system-wide working viewpoint of
the effect of conducting their specific tasks. The ‘application shell’ is responsible for
drawing together various interacting MCS components in a manner which leads to synergy
between them. As a result it promotes and enables cooperative as well as better and more
informed decision-making across the enterprise.

- Establish means of managing engineering data.
This was achieved via conceiving and developing an Engineering Resource Manager. This
effectively serves as an archive for engineering data where users are informed of the
availability and physical location of information entities which will be distributed as
information fragments stored in different databases at a number of computer nodes
connected to a LAN.

The MCS FIMM overcomes some of the limitations inherent.in contemporary solutions (as
discussed in section 5.2.2) by offering the following advantages when facilitating and
supporting functional interaction :

« Control and co-ordination of the sequence of activities in a data-driven manner.

Here due consideration is given to the availability of shared information and the need by the
functions concerned in order to properly and accurately validate and co-ordinate the
sequence of activities performed on a system-wide basis. With reference to the association
established between MCS functions and their required information, concurrent operation of
functional activities is made possible in a flexible but controlled manner (via the Functional
Interaction Manager). This enables interacting MCS software applications to run in parallel
and their acdvities to be synchronised based on the availability of their required
information which is monitored by appropriate mechanisms provided.

+ Simplify and manage interconnection between interacting applications via use of a
" domain-specific IIS.
The MCS FIMM is built upon the CIM-BIOSYS IIS in order to utilise the more general
integration services provided which includes inter-process communication and
information management. This is to help simplify interconnection between applications

Page 92

Chapter § Integrating Infrastructure to underpin MCS Interoperation

by delivering these general services in a form which is more suited to typical users found
in the MCS domains of manufacturing organisations. Furthermore, interaction
knowledge is embodied in the MCS FIMM which is used at run-time to integrate MCS
functions with human interaction enabled over the CIM-BIOSYS IIS, via the generic
‘application shell’, Thus it is only necessary to link the applications concerned to this
front-end common user interface in order to make use of the MCS FIMM services
provided. This essentially removes the need to incorporate interaction knowledge in
each individual application, thereby simplifying interconnection, facilitating interaction
and providing opportunities to standardise and modularise MCS components,

Page 93

Chapter 6

System Life Cycle Support

“The only Constant is change”
Bishop, PA Consulting Group (UK)

6.1 The Requirement for Integrated Life Cycle Support

In reality integrated manufacturing systems are characteristically evolutionary in nature and
must be adaptable and responsive to changing needs. For example, a very common
requirement is further integration with other functions and a re-engineering of existing
functions in order to modify and enhance the functional capabilities provided. Change is
essential in order to provide competitive differentiation and to ensure the survival of
companies in the face of changing customer, supplier, financial and labour markets. As Tom
Peters aptly pointed out in his highly publicised book entitled Thriving on Chaos,

“To survive and become superlative in today's economic environment, the flexibility to react
and be responsive to changes is highly desired... Impermanence is a cherished quality for
excellent firms ' [Peters 1989]

Change in the requirements and characteristic properties of integrated manufacturing system
will inevitably affect dependency relationships and information flows among interoperating
MCS functions in the system. Hence the author strongly advocates the need to effectively
support an integrated system through its life cycle, which will involve the following phases
(refer to section 2.4 for details) :

» Conceptual Design; the prime focus is deciding what a system should do.

+ Detailed Design and Implementation; this involves specifying how the global
requirements defined can be realised in terms of building the required solutions.

« Operation and Maintenance; this characterises the working life of the installed
solution, as well as necessary adjustments and repair during the operational lifetime of
the system.

In order to facilitate ease of system development and change management, it is necessary to
share and channel usable results and data between the different life cycle phases in a consistent
and accurate manner [Singh and Weston 19945]. However, there is presently an absence of an
integrated, formalised and structured approach which straddles the various life cycle phases,
that can help support systems as they evolve [Czernik and Quint 1992]. As is evident from the

Page 94

Chapter 6 System Life Cycle Support

literature survey (refer to section 2.4.1), no one methodology includes a capability for
modelling the functional, information, dynamic and decision aspects of integrated
manufacturing control systems. As a result, independent and separate use of a number of
methods will be required if the formal modelling and construction of systems is required.

As previously discussed (in section 2.4.2) the formal modelling of systems can provide an
entry point for supporting the life cycle of manufacturing systems where the models created
(of function and information aspects) can serve as a source of knowledge during different life
cycle phases. However, it is necessary to develop additional life cycle support tools coupled
closely to the modelling tool. Such a software toolset should exploit the knowledge contained
within the model in order to :

» reference the functional and information models created during conceptual and
detailed design;

 ensure compatibility and continuity between different life cycle phases, i.e. maintain
consistency between models produced and used at each life cycle phase; and

« control and enforce structured implementation and change management.

Thus as part of this research study a new methodology and software toolset has been
developed to support implementation, run-time and change processes, thereby facilitating
integrated life cycle support of systems in response to changing needs. In this approach,
system design and modelling methods, which typically provide a means of representing
functional, information and behavioural views of a system, serve as the entry point. The
information and function models created are exploited in downstream life cycle phases to
ensure clarity, consistency, accuracy and re-utilisation of knowledge and data between phases.

6.2 Software Tools to Enact Function and Information Models

In order to enable functional and entity-attribute relationship modelling, IDEF modelling
methodologies (namely IDEF; and IDEF, respectively) were chosen as the starting point for
this research because of the following reasons :

» They had demonstrated their usefulness as a ‘simple and effective communication tool’
which encourages end user involvement as well as their cooperation with system builders
[Maji 1988].

Page 95

Chapter 6 System Life Cycle Support

« They have a growing popularity and acceptance, this being evident from the significant
levels of research and industrial applications published in the literature. This reflects
primarily their accessibility and potential in a wide range of applications.

* No other methodology known to the author claim to provide the same functional analysis
capability [Colquhoun et al. 1993].

» These modelling methodologies offer opportunities for enhancement and integration with
other tools [Colquhoun et al. 1993, Mayer and Painter 1991].

+ Although the normal application of IDEF, and IDEF,y are separate and independent of
each other, they are able to offer a formal and relatively complete representation of the
manufacturing systems, this from their different modelling perspectives (i.e. functional and
information).

« IDEF,y is a natural choice for representing a relational information model, as the model
created has an inherent one-to-one correspondence with the entity-attribute relationships
normally defined in a relational database [Arngrimsson and Vesterager 1992].

Figure 6-1 provides an overview of the MCS rhodelling and implementation environment
conceived and used in this research to enact static MCS functional and information models.
These models were created using IDEF; and IDEF;x methods. The purpose of this
environment is to provide a formal and structured approach to

(i) facilitate implementation processes based on specific user requirements concerned with
information systems comprising a number of relational data repositories;

(ii) enact the information and function models (which were created) in order to establish and
configure associations, as identified and represented by the Function-Information
Association Table of the MCS FIMM. This table being used to represent and encode
system behaviour (see section 5.3 for details).

-

The environment itself is built from an aggregate of the following tools :

(A) EXPRESS to SQL Compiler

(B) STEP Parser

(C) IDEFx to EXPRESS transformation tool

(D) IDEF ;1 Parser

(E) FIMM Configurator (refer to section 5.3 for details)

(A), (B) and (C) are tools which were developed by fellow researchers in the MSI Research

Institute [Clements et al. 1993], whereas (D) and (E) were developed as part of this research
study.

Page 96

Chapter 6

System Life Cycle Support

Interoperating MCS components

Software Operator MCS
Applications Interface Functions

MCS FIMM

Controlled and co-ordinated
interaction based on
function-information association

i

CIM-BIOSYS IIS

PrYXCIRSRPTRRTEerErRREryreS

T e T

i
i
i
i
g
i
H

:
i
i
i

AT A R R

i
H
b
H
»
H
H

Y S

e

MCS Functional and Information Models
Enactment Methodology

&

% IDEF,
Activity based Modelling

s ity

Functicnal model

T FIMM Configurator

Function-Information association

% IDEFy,x Parser

—

T

Transformation to
EXPRESS schema

Information Modelling

Information model \

S

o

EXPRESS
Editor

Implementation &
\ change management

Relationship M odeliing

S

T IDEF,x

Informatlon system
design)

Figure 6-1 : Software toolset for integrated life cycle support

Page 97

A ARy A R T 8 Y e e e A A U AT

Chapter 6 System Life Cycle Support

6.2.1 Information Model Enactment

The IDEF; x entity-attribute relationship modelling tool [ICAM 1985] was used to represent
the global schema of common information used by MCS. It is a composite view of a set of
information models which corresponds to the generic reference models (as identified and
described by the author in section 4.2). The structure, content and entity relationships among
the attributes of the information models are clearly described. The semantics are, therefore,
made explicit so that there is common interpretation of the relationships among data items.
Please refer to Appendix XII and Figure 6-2 for an overview of IDEF;x and the entity-
attribute relationships of the information models respectively.

The EXPRESS data modelling language [Schenck 1989] is an emerging standard which is
used within ongoing STEP (STandard for the Exchange of Product data) [ISO 1993, Joris et
al. 1993] initiatives world-wide to define data models. EXPRESS is used in this research to
facilitate detailed information modelling and was chosen because the author believed that it
would enable implementation of a physical system in a manner which maintains the structure
of the formal models. Through parallel research effort at MSI the following tools have been
developed to exploit EXPRESS as a means of representing aspects of the information
architecture of CIM systems and of providing a means of managing change more effectively
[Clements et al. 1993, Clements 1992, Clements et al. 1991, Clements 1991a, Clements
1991b] :

+ EXPRESS to SQL Compiler
Using an EXPRESS to SQL Compiler software tool created at MSI by Clements, an
EXPRESS information model can be directly compiled to generate SQL statements
which will later be responsible for creating SQL compliant tables within the
database. In this way the database is structured according to EXPRESS defined
schemas so that relationships are strictly maintained; relevant information
concerning the tables and their interrelationships are automatically generated and
stored in a dictionary. This approach is database independent (EXPRESS is not
biased towards implementation) and can produce as output SQL statements which

function for different relational database implementations, such as Ingres and
ORACLE.

« STEP Parser
This tool has been created by Clements to enable the population of the tables (within
different relational databases) with real data in the format specified by the
EXPRESS model. This process is structured by information contained in the output
files generated by the EXPRESS to SQL complier.

Page 98

USED AT: AUTHOR: VALDEW SINGH DATE: 15/05/93 WORKING READER DATE |eowTEXT:
FROJECT: Definitlon’of Informatlon models REV: DRAFT
eniity-aitribule relationships - X | RECOMMENDED
NOTES: 1 2 3 4 5 & T 8 % 10 PUBLICATION
ENGINEERING RESOURCE /3 PROCESE PLAN /4
ORDER ENTRY /1
MFG ORDER NUMBER PART MAITER BOM 2
CUSTOMER I PARENT PART NUMBER
PARENT PART NUMBER
1 1 [Enecivity Start Dae
Pracesding Mig Qrder Numben, Ehwetivity End Deww
Description Unit of Measure
Product ENectivity Start Daw Engiresring Change Notcs
Product EMectivity End Dale Change Effected by
Trpe Cale of Change
Due Dare Phases oul Part Number
Unit of Measure Phased out by Part Number
Unit Price Number of Levels :
Ordet Quaniity Humber of components (chilken}
‘ 1 r ——
p MFG CELL CONFIGURATION /S
1 SCHEDULR & »
CUSTOMER 71 WG ORDER NUMBER | Number of Mig S tations
CUSTOMER 1D P PART NUMBER ‘ P
Company/Name Priarity ® P RESOURCE ASSIGNMENT /4
Addrase Order Status MFG PACILITY ASSIGNMENT /42
Contact Parson Planned Cuantity MANUFACTURING FACILITY /19
Telsphane Unit of Measure ASSET D
Fax Schedule Start Date .
Schadule End Date Dascriplion
[Location
1 [Working Capacity
Labor Cost per hour
{Handling Coat per hour
P 1 1
[] ® 1‘| P“ 1 __Q_
SilOP FLOOR ETATUS /» BOM CHILD /11]
MWFG ORDER NUMBER PARENT PART NUMBER MACHINE /102
PART NUMBER PART NUMBER ASSET ID
1 SUPPLIER
Achual Quanity Produced 1 {Namber of components (chidren) W Ll 3
Work Cenbe/Cell Usiisation Ram Pari Type Last Service/Mainienancs Date)
Acunl Capacity Utkised Quanbty per Assembly PERSONNEL /101 [n.p.i.d on 1
Effectivity Start Dase Repair Work Ordes Number
m&::"’" Maa. job sire accommodated - AY/Z axes] SUPPLIER /UL (5 iteka/Sopoty Code
Lsad Time Offeet hecuracy SUPPLER D Catalogue Order Number
d ! Machiring Cosl pa hour Purchasing Lead Time
Engineering Change Nosce Hotws Powar Company/Name| |} 4gy Orde Date
Change g:;cbd by Spawd Range {May Min,} ﬁ"'p Cuaniity Ordered
Relatlonshlp Cardinallty Phasaes Oul Part Number -::;Idond Td:he;\..‘m E:;::::g:;l&.:
—# =, oot may \Phitsed Oul by Part Number Working Envelops - KV/Z/AB wes Fu Stack en-hwnd
—& P e ormom Sewp Time AllozatechFiseer ved Stock
Tool Chengs Time Scrap Value
—® 1 mencion Feed Chenge Time Uit of Measucs for Scrap
Table Rotaton Tims
Tool Adustment Time
Rapid Tranverss Aake J
NODE: IDEF1X TITLE: [nformation Models Entity-Altribute relationships I"UMBER=

Figure 6-2 : IDEF;y, entity-attribute relationship model representing a composite view of the information models

Chapter 6 System Life Cycle Support

In addition an IDEF;x to EXPRESS transformation tool was developed by the author to
enable the automatic creation of an EXPRESS based information model from IDEF;x
entity-attribute relationship descriptions. It operates by directly mapping the entities of the
IDEF | x model into entities of the EXPRESS model. The reader should refer to Appendix XIV
for details on the EXPRESS based information model in which the global schema is described.
The establishment of this IDEF;x to EXPRESS computerised link not only offers a means of
formally structuring information requirements but also supports design, build and change
processes associated with them.,

The overall approach conceived by the author offers the following advantages :

« It helps simplify entity-attribute relationship modelling.

This is possible because EXPRESS has a strong object oriented nature where the information
models are treated as objects, thus allowing modularity and data inheritance. It reduces the
tedium and complexity associated with the schematisation of relational information models
by eliminating the need to specify all common or primary attributes (which are necessary to
link the tables together). Instead relationships among tables can be readily (i) established by
allowing tables to inherit the attributes of other tables to which they are linked (as illustrated
in Figure 6-3), and (ii) altered and relationships added or removed without causing chaos in
what remains.

» Allows easy extension and modification of information models.

« Supports and encourages the reusability of information objects, thereby reducing the
development time and enabling wider scope solutions.

» Enables the use of IDEF 1y created models, this being important in system development and
maintenance phases of projects.

» Implementation is database independent.

6.2.2 MCS Functional Modelling

Within the context of this research study, the process of functional modelling is concerned
with much broader issues related to formal identification and description of dependencies
among functional activities, rather than focusing on specific details pertaining to the
capabilities and requirements of each functional activity.

Page 100

USED AT: AUTHOR: VALDEW SINGH DATE: 24/05/93 WORKING READER DATE |cowtexT:
PROJECT: Informatiou models sntity-stiribute REV: DRAFT
relatlonsbips for Input to EXFRESS X | RECOMMENDED
NOTES: 1 2 3 4 5 & 7 & 9 10 PUBLICATION
7 ENGINEERING RESOURCE 13 PROCESS PLAN /4
DER ENTR PART MASTER-BOM /2
WFGORDEA NUMBER - PARENT PART NUNBER Enginewing Flescurce
Precesding Mig Ordw Number 1 1 Ethwclivity Start Dawe ﬁ
Deacriplion EHeciivity End Dat
Prodhsct EMectivity St Date Unit of Measure
Prochsct Efectivity End Daw i Nolice
Change ENected by
Date of Change
Phases out Parl Number
Phased out by Part Numbet
Numbes of Levels
Numbes of components (children)
L
¥ —
1
CUSTOMER /7
1
CUSTOMER 1O Priorty P
Gompany/Name Order Stense P of RESOURCE ASSIGNMENT /43
gwp 3:::’“?-"'{ MFG FACILITY ASSIGNMENT /42
tact Prarson e MANUFACTURING F. TY /19
Telaphane Scheduss Siwt Daw A ACIY
Fax Schedyle End Date
1
OURCE /6
del 14Pe 14! J?_ L
SHOF FLOOR STATUS /¥ DOM CHILD /21 [
b_ﬁm’"m] MACHINE 1161 Rasoucs Type
11 Dascripion
Actual Cuanity Produced (Numbae of components (chidren) | [Locati
Work ConverCell Liskinaion Rate Fat Type . - — <P mmmu
Acwal Capacity Lrlised Cuaniity per | Repaired on Linit of Meansrs
Eftwciily Start Daw PERSONNEL /101 Fopsit Work Qrder Number 1 4P Uil B
Etiwclivity End Date !h:. job size sccommodated - XY/Z axes SUPPLIER /11 Buy/Make/Supply Coce
Unit of Measuie 4 o Catalogue Order Number
Laad Tiw Offsat m"‘ our SUPPLIER D Purchaning Lead Time
Enginesting Change Nolice) Last Ordher Dute
Change Effected by Fors Ry {MaxMin) CompanyMamel | Guanity Ordwied
Changs Da v Range Contect Person | {Efiectvity Stant Date
Retationship Cardirality Phases Out Purt Numbes V;:h E - XA Taisphone Etiectvity End Dase
—® oro, cme ey |Phased Out by Part Mumber M;?“:“‘W' e Fou Stock on-hend
—8 P om or mow Took Change Time Serap Vahie o Slock
—o 1 moame e o e LRl M o S
Tool Adjusiment Time
id T. Raw
:hpl 1anverse Ra
NODE: IDEF1X TITLE: |nformation Models Entity-Attribule retationships for input to EXPRESS |NUMBER:

Figure 6-3 : IDEF,x entity-attribute relationship model modified for translation to EXPRESS schema

Chapter 6 System Life Cycle Support

A proprietary IDEF activity based modelling tool [Meta Software 1990] was used in this
study to produce a function model from which, in a structured manner, identifies and defines
dependencies and inter-relationships among Production planning, Finite capacity scheduling,
Process planning and Cell control activities. A further decomposition of this functional model
(in a hierarchical manner) can be realised to define more closely the interactions among the
functional activities where inputs required to drive the functions and their outputs (generated
under supervision of their controls and enabling mechanisms) are represented. The
hierarchica! decomposition of this functional model is illustrated in Figures 6-4, 6-5 and 6-6.
Please refer to Appendix XII for an overview of IDEK,.

6.2.3 System Behaviour Enactment

A formal definition of the interaction processes between the functional components of an
integrated system requires complete and accurate descriptions of (i) the flow of information
between function blocks; and (ii) the form and type of information; which need to be made
available to support and drive those functions, so that they can realise their assigned tasks. As
previously discussed (in Section 2.5.2) there should be a means of

(a) unifying the perspectives of functional and information modelling in order to establish
an association between the two modelling streams; and

(b) facilitating the structuring of downstream life cycle processes, for example to aid
implementation and configuration in relation to co-ordination and control for
functional interaction.

Hence a novel approach is offered in this research study to meet these requirements. This
approach involves use of an IDEFg,x Parser tool and the FIMM Configurator (previously
described) which together can formally define and describe the behavioural aspects of an
interoperating system where the

+ IDEFy, x Parser is responsible for the enactment of MCS function and information models
in order to establish association between them.

« FIMM Configurator generates data which encodes the required associations (refer to section
5.3 for further details on FIMM Configurator).

As the IDEFyx Parser and FIMM Configurator tools need to operate in close relation with
each other, they share the same database (i.e. FIMM database). Within this database all
relevant data concerning the functions, information entities and their nature of association (i.e.
as either input or output) are stored.

Page 102

USED AT) . ATTHORY YALDEW SINGH GATEY 19745740 WORK ING READES DATE w—Te
PROJELT S Describse MCS functional RE¥¢ oRAPT it
fnter-ratationsbip to support par| manofacturs x Yy
eoTES: 1 X 3 4 % 8 T F B 8 FOSLICATION
Enquiry & R Enterprise Manufacturing Capabitity
Availability of Marwisauring
Remources & Facilities
Y | g Procurement of Manufacturing Resources
) P Schol
Manufactiring Resources
. & Facilities Requisition —» ——————1» Process Plans
. R Part manufacture P Shop Floor Starus
Production Report —————=# with MCS |~ Allocation of Mamufacturing Resources A Facilitiea/Pleklis
. |~ Tammaction Report for Progross/Delays & Resouroes Shanuall
Shop Floor Status Report — " e Order Acknowlodgemens
e |-————p» Finished Procucts
AD ——P» Rejecs/Scrap
MCS Functions Manufsctering Cell
wooks ao Tine Context Diagram l"'“

Figure 6-4 : IDEF function model (Context Diagram)

OSED ATa AUTHOR ¢ VALDEW SINAGII BATE [EXLENT) wORKING - ALADER Balt —TET

ROJECT Describe MCS funciionsl Lo g
inter-relationship to support part manufacture

ORAFT

xlmm
MOTEE: 1 T 3 & 3% & 7T ¥ 9% 18

PUBLICATION

Enteyprise Manufacturing Capability
Cusuxna Crder ’ Availability of Manufascuring
Enquiry & Request Romources & Facilities
L A
& Y
Pre-Planning =¥ - Order Acknowledgemnen
Product Order ™
Al
4 Confirmed
Orders I
Y
#» Procurement of Manufacturing Resources
T P Allocation of Manufacturing Resources & Facilities/Picklist
b 3 ol R CROUTCAS
g Resources s Planning for L C » e N
& Facilitics Roquisition ———— ¥ >
* Manufscture l [: (P" Process Plars
- e
A2 l,; [: E [T ion Report for Progress/Melays & Kesources Shartfall
h
Production Repon
Manufacturlng | o piniched Producs
Control
\ N N . P Rejocis/Semp
‘\/\ L » A3 Shop Floor Staius
Sho:FInanumc - J ()Mmuf ing Cell
L MCS Functions Shop Floor Data Acquisition
) o feine. WOWRER

Part manoufacturs with MCA

Figure 6-5 : IDEF, function model to describe Production Planning and its inter-relationship with other MCS functions

GSED AT AUTNORT YALDEW SINGI DATET 19703703 WORE T NG NEADER
FrojECT Describs MCS luncllonal v mAPT = o
1nter-relatlonshlp to support part manufaciure e
BOTESY 1 2 3 4 3 4 Y 5 ¥ 10 x e
PUBLICATION D
r—
Availability of Marwfacturing
Resources & Facilities
Enterprise Marufscturing Capability (
T \
L L Process
(=4 Planning Process Plans
Manufacturing R csources k i
& Facilities Requisition
2 g
- Production (& T\ c’ Tra: Repont for Progrest/Delays & Resources Shonfall
Planning C T C P Pro of Manufacturing Rescurces
Confirmed > i
N . [g S P Allocation of Manufacturing Resources & Facilities/Pick lisy
Orders ™
A1
Mamfacturing
Shop Floor Statys Orders
Report (Unscheduled) Finlte Capaclty h
Schaduler - Schodules
= —
A% h |
Product
Daesign —‘—L"‘——"—':é BoM

L b L (CAD/ICAM) }—— I Engineering Resources

[E ;

A2
L MCS Functions
oL a2 TITLE:
Planning lor Manutacture raoa:

Figure 6-6 : IDEF function model with detailed level of decompositon for Planning for Manufactu

re activity within Production Planning domain

Chapter 6 System Life Cycle Support

4

As illustrated in Figure 6-7, the tools perform the following specific tasks :

» IDEFy;1x Parser
This sorts through and assimilates large amounts of data generated in the IDEF; and
IDEF,x reports which contain details pertaining to the models. The following
services are provided :

- selection of all functions defined in the IDEF functional model;

- selection of entity-attributes, which comprise the various information models
defined with the IDEF;x tool;

- interactive selection of required functions and information entities through
specially developed user-friendly interfaces (as illustrated in Appendix XVII),
where the selected functions are assigned unique identifiers for easy
representation; and

- populates selected data into the FIMM database.

Program listings for the IDEF,x Parser implemented by the author are included in
Appendix XVIIL

+ FIMM Configurator .
The FIMM Configurator processes the data derived from the IDEF,x Parser. It
offers services which enable the user to interactively set, edit and display
associations between functions and information. The configured associations
between functions and information entities are stored in the Function-Information
Association Table of the MCS FIMM and used (during run-time) for the following
purposes (see section 5.3) :

- to ensure accountability of information to functions; and

- to control the flow of sequence among functions in a controlled and co-ordinated
manner where information availability and completeness is verified prior to
enabling any function requiring access to it.

The IDEFy;x Parser and FIMM Configurator have been applied to the IDEF; function model
(illustrated in Figures 6-4, 6-5 and 6-6) and the IDEF;x entity-attribute relationship model
(illustrated in Figure 6-2); this by processing their generated reports (included in Appendices
XVI and XV respectively). This proof-of-concept demonstration illustrated the ability to
enable and support the establishment, management and change of associations between
functions and information as indicated in Figure 6-7.

Page 106

IDEF, generated report on MCS Functional model

[Diagrarm AD] Pert mannfacture with MCS
Activity: [Al] Pe-Planning

Activity: [A2] Planning for Mann facture
Activity: [A3] Manufacturing Coutrol
Arrow: Cuswomer Order Bnquiry & Roquest

Cantrol Prom: Custerner Order Endquiry & Requen
Contral To: (A1) Pre-Placning

Agrow; Availability of Mamufacturing Resources & Facilitics
Cantrol Prom: Availability of Manufactering Resources & Facilitics

FUNCTIONS

“{AQ] Past mammafacture with MCS *
“[A1) Pro-Planniing”™

“{A2} Plaming for Mam facturc”
“[A3] Mamfacturing Control"
“{A21] Production Plecming”

“[AZ3) P Plarming”

"[A24) Product Design (CAD/CAM)"
“[A22] Pinit: Capacity Scheduler”

DG

IDEF;x generated report on MCS information model

{ENTITY, [El, ORDER ENTRY, {MPG ORDER NUMBER,CUSTOMER ID,PARENT PART NUMBER }, { Precoeding Mg Order
Number,Dexcription Product Effoctivity Start Date Product Effectivity End Daw, Type, Due Daw, Unit of Moasuro, Unit Prics,Order Quantity} }

{ENTITY, IE2, PART MASTER-BOM, {PARENT PART NUMBER, }, {Effcctivity Stant Dats,Effoctivity End Date,Unit of Measuro Bngineering Changs
Natice,Change Effscted by Date of Changs Phases out Part Number, Phased out by Part Number,Number of Lovels Nurmber of companents (children)))

(ENTITY, [E4, PROCESS PLAN, {PROCESS PLAN ID,PART NUMBER MPG CELL GROUP D},
{Process Description,] }

{DEPENDENT ENTITY, DE2!, BOM CHILD, {PARENT PART NUMBER,PART NUMBER },

{Number of components (children), Part Type,Quantity per Amembly,Bffectivity Start Dute Effoctivity Bod Datn, Unit of Measare, Lead Time
Offset Bngineering Clungs Netice, Chango Eiffoctod by, Change Date,

Phases Out Part Number,Phused Oxt by Part Number } }

IDEFO’IX Parser

* Extraction of functions and information entitics

INFORMATION

“IE1 ORDER ENTRY"

“IE2 PART MASTER-BOM™

“IE4 PROCESS PLAN"

"DE2] BOM CHILD”

“DE4] MPG OPERATION ASSIGNMENT™
“DEA2 RESOURCE ASSIGNMENT™
“DB42 MPG PACILITY ASSIGNMENT"
“IES MPG CELL QONFIGURATION"

Selection of required functions via IDEFy, x Parser

Assigned unigue identifier
for selected functions

“IE6 RESOURCE”

“IE3 ENGINEERING RESOURCE™
“IE7 CUSTOMER" .
“IE8 SCHEDULE" Selection of required information
“IE9 SHOP FLOOR STATUS" .
“[E10 MANUFACTURING FACILITY™ via IDEFx Parser
“[E1? SUPPLIER"
“DE101 PERSQONNEL"
“DE102 MACHINE"

“A?) Manafactaring Contral” = SFCTRL FIMM Configurator
"{A21] Production Planming” = MPG PLAN o “IE] ORDER ENTRY"
*{A23] Process Plaming” = ROUTE * Configure association between 52 PART MASTER-BOM"
“{A24) Product Design (CAD/CAM)* = DESIGN functions and information *[E4 PROCESS PLAN"
“{A22] Finite Capacity Schedules” = SCHEDULER “[E§ RESOURCE"
"[E3 ENGINEERING RESOURCE"
& “IE7 CUSTOMER"
“IES SCHEDULE"
“IE§ SHOP FLOOR STATUS*
Informatios | ORDER FROCESS “IB10 MANUFACTURING FACILITY"
Pt ENTRY |POM PLAN | RESOURCE| SCREDULE | “E11 SUPPLIER"
Lewend MFG FLAN 1. I - I 1O -
1= loput DESIGN 1 0 I 1 - e
0= Output ROUTE - I o 1 I
OTEDULER i i T : 5 —| FIMM Function-Information Association Table
SFCTRL - I I I 1 —

Figure 6-7 : Methodology for function-information association

Chapter 6 System Life Cycle Support

The methodology proposed in this research study is based on the use of IDEFgy;x Parser and
FIMM Configurator tools and offers an effective and formal means of capturing and
establishing a link between MCS functions and their required information. No extra effort is
placed on the system designer or builder, except for configuring the required associations
based on data drawn directly from existing function and information models. In addition, the
consistency and accuracy of the associations between function and information is ensured and
maintained from a very early stage in the system life cycle (i.e. the conceptual design stage)
right through to system implementation and maintenance. This reduces uncertainty and
resolves many potential conflicts. In addition, this approach also helps improve the
accountability and traceability of functions and information.

6.3 Summary

As illustrated by this research study, system design and modelling can provide an effective
entry point for supporting the life cycle of systems in an integrated manner (i.e. in a manner in
which the results and knowledge generated at one phase can be used during other life cycle
phases). Models generated using one or more chosen modelling methods can provide a formal
representation of different views (i.¢. function, information, behaviour) of the system under
consideration and can serve as a source of usable data to structure and enable various
downstream life cycle processes.

However, in order to truly achieve and enable integrated life cycle support it is necessary to
allow usable data to be referenced, accessed, manipulated and formatted in a manner suitable
for use at each life cycle phase. The work reported in this chapter represents a useful first step
towards meeting this requirement, namely through use of the following software toolset:

+ EXPRESS to SQL Compiler

STEP Parser

IDEF;x to EXPRESS transformation tool
IDEFy/x Parser

FIMM Configurator

Each of these tools exists as an independent entity but are linked through a shared database
(i.e. FIMM database) where usable data is stored for common access and usage to support the
different life cycle phases. It should be noted that the software toolset developed can be
configured to support other system design and modelling methodologies on condition that the
methodologies in question provide ready access to their underlying data and knowledge
structures which they use to encapsulate function and information models.

Page 108

Chapter 6 System Life Cycle Support

Finally, in relation to the overall methodology conceived in this research study to enable

interoperation of MCS components (see section 3.5), this chapter has reported on two sub-
methods, namely :

» Means of Enacting Function Models
» Means of Enacting Information Models

In view of their need to adapt and respond to changes in system requirements, the set of build
tools used here offers the system builder a more formalised and structured approach (as

compared to current practice) to the creation and maintenance of integrated manufacturing
systems.

Page 109

Chapter 7

Use and Appraisal of the Methodology Derived

7.1 Proof-of-Concept MCS Implementation

A proof-of-concept MCS implementation study was carried out in order to illustrate the
application and ascertain the level of effectiveness of the methodology derived in this research
study, which seeks to enable interoperability among MCS components.

In this study a proof-of-concept MCS system was built to demonstrate the interoperation of a
number of typical software applications which are representative of the manufacturing control
domain being considered in this research study [Singh and Weston 1994a, 1994b, 1993]. The
main generic class of problem tackled in the system involves the transformation of a
commercially available stand-alone proprietary CAPM package, namely MCC, into a more
open system so as to enable interoperation with other MCS components. This demonstrates a
particularly important industrial capability, namely the integration of existing legacy (or “as
is”) software applications. The following sub-systems are utilised :

+ MCS FIMM (Functional Interaction Management Module) to facilitate MCS domain
specific functional interaction and to govern system behaviour (during run-time).

« CIM-BIOSYS IIS to simplify interconnection and to provide common general
purpose integration services to support functional interaction.

+ Set of build tools (used and developed in this research study) to formally structure
- interaction among MCS components;

- implement and maintain information system on a system-wide basis, by
managing and maintaining a data repository which holds information of
common concern.

Page 110

Chapter 7 Use and Appraisal of the Methodology Derived

7.2 MCS Software Interoperability Demonstration System

As illustrated in Figure 7-1, the following functional components are involved in the MCS
demonstration system :

+ Production Planning

This encompasses order entry, scheduling, and manufacturing resource and facility
management which includes allocation, procurement as well as routing for part
manufacture. MCC (Manufacturing Control Code), which is a commercially available
CAPM package from John Brown Systems PLC, was chosen for this study as its
information is stored in a relational database, namely ORACLE RDBMS, and is to a certain
degree accessible by other applications. The purpose of MCC is to turn product orders into
manufacturing schedules for enaction by a set of manufacturing resources. Please refer to
Appendix XIX for an overview of MCC. -

+ Finite Capacity Scheduler

Although the finite capacity scheduling function available in MCC is utilised, it is
intentionally treated as an independent and separate function in order to isolate and
effectively study its interaction needs with other MCS components. This finite capacity
scheduling sub-system is responsible for the short term planning of manufacturing orders in
a manner which optimises manufacturing operations on the shop floor. It relies on the
availability of data from production planning, treating it as its input, to perform the
necessary scheduling function based on, for example: resource and manufacturing facility
allocation and constraints, part procurement and manufacture lead time as well as routes for
part manufacture.

+ Cell Controller
A cell controller, separately conceived and developed by a co-MSI researcher, Binglu
Zhang, was integrated into the MCS demonstration system. Here the cell controller has
responsibility for a segment of a pseudo shop floor (based on data supplied by a local
engineering company manufacturing cranes and hoists) and is required to despatch planned
manufacturing orders (scheduled by the finite capacity scheduler), and to co-ordinate,
execute, control and monitor the operation of shop floor activities. The cell controller is also
responsible for shop floor data acquisition thereby enabling and generating production
status feedback.

+ Decision Support System
This class of software system was represented by a dynamic cost analysis tool which was
created by another co-MSI researcher [Shaharoun 1992] to support strategic decision
making for economic part manufacture. This decision support system has been included in
the demonstration system in order to highlight the ease with which the system can be

Page 111

Use and Appraisal of the Methodology Derived

Chapter 7
Interoperating MCS components
Finite Capacity Scheduler
Cell
Decision Support System Controller
Production Planning

Cost Modeller

Production Planning

MCS FIMM

Cell Controller

1 MCS FIMM has knowledge of information
requirement and availability of resources
1o support interaction between
MCS components

Cotnmaonly shared
information stored
with teference to
information models

Mapping of data T

to the repository
MCC

DPatabase

Cell Controller
Data Store

Figure 7-1 : Demonstration system for MCS software interoperability

Page.112

Chapter 7 Use and Appraisal of the Methodology Derived

expanded in terms of building and plugging in ad-hoc specialised MCS components that
require access to data available in the system data repository. It relies on both planned and
actual production data, derived from production planning and the cell controller
respectively, to perform the necessary cost analysis.

It should be noted that the cell controller and the decision support system for cost analysis
represent a new generation of modular and reconfigurable MCS components created through
research effort at Loughborough’s MSI Research Institute.

The MCS demonstration system was built to facilitate interoperation between the above-
mentioned functional components in a manner to enable sharing of and access to information
of common interest (see Figure 7-2 which depicts information flow between functional

components and dependency between information entities).

MANUFACTURING
CELL

MANUFACTURING
FACILITY

RESOURCE

BOM
(Sub-componenis)

WIP
{Shop foor status)

Figure 7-2 : Overview of information flow and dependency between information entities

Page 113

Chapter 7 Use and Appraisal of the Methodology Derived

7.2.1 Implementation of the Demonstration System

The following four inter-related meta-steps were supported by the author’s methodology in a
way which structured the development of the proof-of-concept MCS demonstration system :

» Implementation of a system-wide information repository

+ Flexible interconnection of the functional components of the MCS

+ Establishment and configuration of appropriate functional interaction capability
« Establishment and configuration of user interface capabilities

Details of the activities carried out in each of these meta-steps are outlined as follows :

Here the following activities are facilitated which are representative example activities

typically involved in establishing and managing the manufacturing information system :

(a) Identification and formal representation of information requirements

A global schema corresponding to system-wide shared information, i.e. shared between
the MCS components concerned, was represented in the proof-of-concept system with
reference to the generic information models. It represents a unification of information
entities of common concern (to be held in the system data repository) which will
require to be accessed and updated. Here IDEF;x was used to formally represent the
global schema (as illustrated in Figure 7-3). It uncovers semantic properties of the
underlying information system and make them explicit within the data definition of
information objects.

(b) Mapping between local databases to the system data repository
Proprietary information, stored in the MCC relational database, which is of common
interest to other MCS functional components, were mapped onto the system data
repository via reference to the global schema (refer to Figures 7-4, 7-5 and 7-6 for
illustration). This same mapping principle can be applied for all legacy components, in
which proprietary information data structure is used, thereby enabling other system
components to gain access and update that information in a flexible manner.

(c) Creation of relational tables stored in the system data repository
The set of build tools used here to develop the system data repository is depicted in
Figure 7-7. First the IDEF;x to EXPRESS transformation tool is applied to
automatically create an EXPRESS based information model which has an underlying
data structure related to the entity relationships defined in the global schema, i.e.

Page 114

USED AT: AUTHOR: YALDEW SINGH DATE: 24/05/93 HWORKING READER DATE CONTEXT!
PROJECT: Infermallon teodels satity-alirlbule REV: DRAFT
ralationships for inpul to EXFRESS X | RECOMMENDED
NOTES: 1 2 3 4 5 ¢ T B § 10 PUBLICATION
ENGCINEERING RESOURCE 3 PROCRSS PLAN /4
ORDER n. PART MABTER-BOM /1 T #{PROCESS AN ©
peresing Rescutes | P
MFG ORDER NUMBER ; PARENT FART MUMBER m"’ﬂ B B o ohon 1
Praceacing Mig Orcer Number | 1 EMucivity Start Date ¥ 1
Dencription ENwclivity End Dam 1
Product Effectivity Start Daw Unil ol Messure
Product Effectivity End Daw ing Changs Nollos MFG OPERATION ASSIGNMENT /41
Typs Changs Eflected by
Due Qate Date of Changs
Unit of Msasisy Phases out Part Number
Unil Price Phased out by Part Number
Orcae Cuanaty Numbaer of Levels
ber of comp {chikaren)
[J 1 :}
MFG CELL CONFIGURATION /8
CUSTOMER /7 " A
CUSTOMER © Priorly ® P
Compenym Crcwr Statve P ef RESOURCE ASSIGNMENT /43
Address Planaved Guantity MFG FACILITY ABSIGNMENT /42
s:mlﬂ Person Urit of “';:‘:'h MANUFACTURING FACILITY f1%
Fex Schedule End Daw ASSET D
Description
Location
[Working Capecity
Labor Coat per frour
Handing Cont par hour
® P. 1 1 'y P ® 1 1 4
SHOP FLOOR STATUS M BOM CHILD 1
o *PAH‘I’ NUMBER) MACHINE /103
11
Actsal Quanity Produced [Number of i (chicken) } (
Work Cante/Col Usksaticn Rale ParTape T (ehdem) ——
Acual Capacity Lhiised Cuank Anngmibl Repared on
== Elhc:ztrs'tm Cure PERSONNEL fi91 Flopair Work Order Numbaer 1Lp
E'w,' £nd Daw - Max. ,::vun secommodated - JY/T exeel SUPPLIER /11
Urst of Measure Aceuru Cos hout
Laad Time Ofset m \ por SUPPLER ID
Enginesring Change Nowcs Speed Range (Mar /Min } Company/Neme
Change Ellecind by Feed Ran Ackicess Sty
Do Payload o Contact Pawson g::'""g::&?'"
Relationship Cardinaliy | Phasss Out Pl Number . wephone ity ate
— mpu-«mr ’ Phasad Out by Pari Numbar J Wotimg Envelops - XYL axes :_ Stoch on-hand
. $‘UP me - Allocated/Flaser ved Siock
—® P omormom cmc;:n";. 1‘_::'“'. Scrap Velue
e EE T Tebde Rotaton Time Unit of Measiw @ Jor Scrap
Yool Adusiment Time
flpid Tranverse Anie p

NODE:

IDEF1X TITLE:

Information Modeis Entity-Attribute relatlonshlips Ifor input to EXPRESS

NUMBER:

Figure 7-3 : IDEF, x entity-attribute relationship model representing the global schema

BOM

BILL_OF_MAT _ITEM;

NO_ITEMS_PROD
PRI

BILL_OF_MAT_REQ,

UNIT_NAM
BILL_OF_MAT_IDENT
DESCR

TOOL_NO

Process Plan
OPER_LINK:

FROM_OPER_IDENT
IDENT
ROUT_IDENT
TO_OPER_IDENT
TYP

BATCH_SIZ

BILL_OF_MAT_ITEM_IDENTY/

OPER_IDENT
QUANT
WAST

BILL. OF MAT_IDENT
BILL._OF_MAT_ITEM_NO |:

BILL._OF_MAT_NAM
IDENT

ITEM_NO

QUANT

UNIT_NAM

ENG_CHANG_IDENT CONS_REQ:;
LAG_UNIT_NAM —

MAX_LAG ? omn'ﬁ?m
MIN_LAG 3

- UNIT_NAM
FIX_QUANT
TTEM_QUANT
cosT

ROUT_REQ_INST,

OPER_IDENT
ROUT_REQ_IDENT
UTIL

RES_IDENT

Figure 7-4 : Grouping of product and process information represented in MCC database with reference to information models

Manufacturing
Facility

ACT_USAG

IDENT
LAST_WIP_TRANS_IDENT
OPER_IDENT
ROUT_REQ_IDENT
SCH_JOB_IDENT
SCH_ASS_IDENT
SCH_IDENT

START_TIM

WIP/Shop floor Status

WIP_TRANS
IDENT
OPER_IDENT
PERC_COMPL
QUANT
SCH_IDENT
SCH_JOB_IDENT

ASS_GROUP_ALL

ASS_GROUP_IDENT
SCH_ASS_IDENT

ASS_GROUP

SCH_IDENT

T
SCH_ASS e

IDENT
RES_IDENT
TYP
ASS_IDENT
EMPL_IDENT

"“:7:?%;}.%.:3-&::0'}: O O i R
SIS

% G0

Figure 7-5 : Grouping of schedule information represented in MCC database with reference to information models

TYP

NAM T .
] SCH_PARA)

CLOS { SCH_IDENT -
SCH_IDENT b\‘(ﬁd ©
IDENT A rre—— X
ASS_GROUP_IDENT e
SCH_ASS_IDENT R :»wof,g.ﬁp' : -
CAL _N AM - SCH_OPER :' o4 =
START_DAT OPER_IDENT [v
END_DAT SCH_JOBDENT i in

R e ?:'
SCH_ASS_USAG

=

o

SCH_ASS_IDENT
SCH_IDENT

IDENT _
FROM_TIM
TO_TIM
OPER_IDENT
ROUT_REQ_IDENT

REne, T
ot By

R

Schedules

Chapter 7 Use and Appraisal of the Methodology Derived

MCC Database

System data repository

Data which is of common interest to MCS
lications is mapped with reference to
}:ﬂ)mfmmaﬁon models

bll) of emat Parent B
— . % s

Mtz Operation
Assignment

A Procoas Plan ID

to_oper_ident
nons_mé Resotircs Ansignment
i [R5 ”'.:f:".'i:MI;Opnﬁ:nm
item_po B +ﬁ 2] Resourss [D
fem_quant i] Quantity required
unil_nzm ATEEEEEE Unit of Measur Mg Facllity Assignment

{%* Mg Opersticn D

Figure 7-6 : Mapping between information entities

Page 118

Chapter 7 Use and Appraisal of the Methodology Derived

(Information model \
Transformation to gfgﬁéﬁ

System EXPRESS schema
data repository
. Entity-Attribute
EXPRESS tosQL | [formation Modelling N o \otionship Modelling
Complier to
? EXPRESS % IDEF
Edltor X
Implementation & Information system

\ change management design :

Figure 7-7 : Set of build tools to develop data repository

during activity (a) by using the IDEF;x modelling tool. The reader should refer to
Appendix XIV for details on the EXPRESS based information model used as the
global schema of the MCS demonstration system.

The EXPRESS information model is then compiled by applying the EXPRESS to
SQL Compiler to generate SQL statements (responsible for creating relational tables
which will be stored in the system data repository). In this case, the MCS
demonstration system data repository was chosen to be ORACLE based. ORACLE has
a similar nature to that of the MCC database, and this simplified to some extent,
information sharing and transfer between the two databases. Hence the systemn data
repository was structured according to the EXPRESS defined schemas which has the
important benefit that relationships are strictly maintained, resulting in relevant
information contained in the tables and inter-relationships among information objects
being automatically generated and stored in a data dictionary via use of the STEP
Parser.

(d) Populating the system data repository

At run-time the shared information (stored in the system data repository) is accessed
through using services offered by a database ‘driver’. This is achieved via suitably
defined data access objects (as illustrated in Appendix VI), thereby making them
accessible to the other MCS functional components. Thus the system data repository
effectively serves as the focal point for exchanging, updating and sharing information
of common concern between the various MCS functional components concemned. The
services of the database ‘driver’ and the data access objects are required to have a
knowledge of the mapping processes (defined during activity (b)) between local and
global database schema as illustrated in Figure 7-6.

Page 119

Chapter 7 Use and Appraisal of the Methodology Derived

Using a similar principle, the data store of the cell controller was mapped onto the system data
repository; this was also to establish a share information capability within the MCS
demonstration system.

D) Flexible i ion of the functional f the MCS

The task here is to interconnect the various MCS functional components which will normally
be heterogeneous in nature and reside at different computer nodes of a distributed system. As
earlier explained the CIM-BIOSYS IIS was chosen to achieve flexible interconnection among
such components. However, viewed from the perspective of a CIM-BIOSYS system builder
MCC is a non-conformant (or alien) application, i.e. it is not inherently compatible with the
CIM-BIOSYS IIS architecture. Thus it was necessary for the author to design and implement
an ‘alien application shell’ specially developed for MCC; this to provide it with sufficient
capability to use the common integration services offered by the CIM-BIOSYS IIS (which
includes inter-process communication and information management). Program listings related
to the ‘alien application shell’ for MCC are included in Appendix XX. Conversely, being
originally conceived by MSI researchers, the cell controlier and the decision support system
are conformant applications and they can operate directly over the CIM-BIOSYS IIS; hence
they have no need of an ‘alien application shell’.

The MCS functional components and the system data repository need to be registered users of
the CIM-BIOSYS IIS. This registration requires their actual physical location over the local
area network (LAN) to be clearly specified and stored within a CIM-BIOSYS configuration
file. This knowledge is essential to the CIM-BIOSYS IIS during its normal operation in order
for it to (i) activate required MCS functional component; and (ii) enable independent and
transparent information access via the database ‘driver’, i.e. without the need for users to have
detailed knowledge of integration issues.

In this meta-step, as illustrated in Figure 7-8, the IDEFy x Parser is used to process the IDEF;
function model (described in Figures 6-4, 6-5 and 6-6 in section 6.2.2) and the IDEF; x entity-

attribute relationship model (described in Figure 7-3) as encoded by their generated reports
(see Appendices XVI and XV respectively). This process can be viewed as enacting the MCS
function and information models in order to establish associations between them. The reader
should refer to Figure 6-7 in section 6.2.3 for an illustration of principles involved here.

Subsequently the FIMM Configurator is used to formally establish and configure associations
between MCS functions and their shared information requirements, this being represented by

Page 120

Chapter 7 Use and Appraisal of the Methodology Derived

Functional model Information model

588

Referenced for O
system behaviour conirol O
e

% FIMM Configurator ? IDEFy,x Parser

Function-Information association

MCS FIMM

Figure 7-8 : Configuration of MCS FIMM

the Function-Information Association Table of the MCS FIMM. The Table is referenced by
the MCS Functional Interaction Manager (during run-time) to govern the dynamic behaviour
of the system in a controlled and co-ordinated manner based on predefined sequences of
activities and information needs established between MCS functions.

IV) Establis] 1 confi ion of user interf biliti

As illustrated in Figure 7-9 and earlier described, a configurable ‘application shell” was
created to act as a generic MCS front-end user interface. In the proof-of-concept MCS
demonstration system this ‘application shell’ was configured to

- provide a consistent and simple user interface to the various MCS functional
components, thereby providing an effective working environment for human
interaction during run-time.

- provide human access to MCS FIMM tools, CIM-BIOSYS IIS and MCS
components, in a way which facilitates system construction, management and
change.

The reader should refer to Appendix XXI for further details on the services and options

offered through this user interface. Details on the mechanism developed to enable
communication between MCC and the ‘application shell’ are provided in Appendix XXII.

Page 121

Chapter 7 Use and Appraisal of the Methodology Derived
B g3
[&0 &
g =g £ 5 = s
28 £3 £% g
EE Es a5 5%
t Y o b= =
8 | 28 g8 g
5 &8 £¢ 53
A A » A - A .
Whadow MCC oot MCS Oprices (Now Per) (EBoquie) (Cengs) Active Groupe Enqui
() | =) (== G l' (CciPun) (Cetioblow) (Oeilocation) (GetAccowmubiin)
((CQow) | (Valuea J(Retum) (BoM) {(Changs) Defaalt Valors
: Puncrianl: PP =23 Pant Number: (353 - (300
(s) | (Eo)(Be=cq) |(Romn)(Quny) (Gmie) [P=eis o) s
(N B)(PrevB) |(Schoduls) (2] |, " almialnlo)
=0 GO (=D ol o)
(Do Kay) (ProvF)(NextF) Bom New i e PP CAD CAP CELL FCS
10 N 3 WP WP P P P

SWIVEL STOPPER, LEVEL

UoM [[EACH]

Eff. from [29:0CT-92] To

Comments [

Item No

Display
window for
MCS
BILL OF MATERIAL DETAILS functional
L. operation
Description Qty UoM Type

B1

Char Mode: Replace

Page 1 Count: ¥2)

Figure 7-9 : “Application shell’ configured to coalesce MCS components and

integrate with MCS FIMM and CIM-BIOSYS IIS

Page 122

Chapter 7 Use and Appraisal of the Methodology Derived

7.2.2 Analysis and Discussion

The following sections summarise the most important observations and findings resulting
from the implementation and running of the proof-of-concept MCS demonstration system :

(A) Development process

(i) A higher entry point to integrated system developmen: is offered which provides a
structured path towards a more organised and prescribed approach. This property is
attributed to the application of generic reference and functional models which capture
and encapsulate generic working knowledge of part manufacture, this in terms of
clearly specified and defined information flows as well as relationships between MCS
functions and their information needs. This approach avoids continuously re-inventing
the wheel, which is a common disadvantage of developing custom built MCS solutions
from scratch.

(ii) It is necessary to have detailed knowledge of the proprietary information structures used
in proprietary databases (MCC in this case) in order to understand their semantics and
structure sufficiently well enough to share information in a flexible and effective
manner. Such knowledge is required before the relevant information can be accessed or
mapped from the database of any *“as is” MCS application onto the system data
repository, thereby establishing its common usage. Thus it is vital to gain a sufficient
level of support and understanding of would be interoperating software products from
their manufacturer (this being provided by John Brown Systems PLC for MCC in this
study). Without such knowledge there will be severe restraints on further progress in
the development of interoperable systems.

(iii) When incorporating “as is” MCS applications (of the MCC ilk) into interoperating
systems, some degree of data duplication is inevitable. However, as an underlying
axiom of the methodology adopted in this research study is to decouple MCS functions
from their information repositories, local changes (i.e. on the locality of a single
component) to information and functional aspects of a MCS component will have
minimal effect on other applications. Thus change management is much facilitated and
it can be expected that functional and information needs of the system can be handled in
a largely separate and less complicated manner.

Page 123

Chapter 7 Use and Appraisal of the Methodology Derived

(iv) The system data repository can be expected to be only partially populated (such as with
information of common concem to a single data store, like the MCC database); thus a
degree of data independence is offered where the individual local databases retain their
autonomy and hence can continue to serve their existing customer set.

(v) The set of build tools used in this case study provides a more formal and structured
approach to engineering interoperable manufacturing control systems solutions, as
compared to others observed in the literature by the author or other MSI researchers.
Thus the software toolset facilitates ease of system development and change
management beyond that of alternative methodologies reported. .

(B) Operation during run-time

(i) The MCS functions (contained within interoperating components) are made available to
MCS users through the configured ‘application shell’, which coalesces and integrates
the interworking of the MCS functions via use of the MCS FIMM tools and the CIM-
BIOSYS IIS. This can result in considerable synergy, not only in providing any single
user with access to specialised MCS functions to support part manufacture but also in
enabling the sharing of concurrent knowledge in a way which can support better and
more informed decision making. For example the user is able to take into account
information regarding availability of manufacturing resources and facilities as well as
manufacturing capability when considering the requirements and specifications of parts
accepted for manufacture. Thus the proof-of-concept system has been shown to
promote intra-organisation integration, where an effective and defined channel for
dissemination of knowledge and information is made available via a consistent and
effective front user interface. '

(ii) Discipline is well maintained when MCS components interact during run-time. As
functional interaction is based on data availability and clearly predefined sequences of
activities, any conflict or misunderstanding that might occur, in relation to information
flows and needs, are effectively eliminated. For example, when the production schedule
is required by the cell controller to control and monitor shop floor execution, the user
issues a request through the configured ‘application shell’ for access of the production
schedule (stored in the system data repository), The Functional Interaction Manager of
the MCS FIMM would interpret the user’s request and check for availability of the
production schedule via its status management mechanism. The Functional Interaction
Manager also ensures that the production schedule has been processed and prepared by

Page 124

Chapter 7 Use and Appraisal of the Methodology Derived

the finite capacity scheduler in accordance with the sequence of activities predefined in
the Data 1/O Table, prior to triggering off the cell controller to proceed with access of
the requested information from the system data repository.

Hence cooperation among interoperating software components is enabled which is not
normally possible by conventional means.

Finally, it should be highlighted that the demonstration system implemented offers an effective
means of improving interworking among finite capacity scheduling, cell control and
production planning systems and represents a step towards more open versions of such
systems which could provide even greater benefit from such a facility. This in turn will help to
narrow the wide gap which currently exist between production planning and the shop floor.

Page 125

Chapter 8

Conclusions and Recommendations

8.1 Contributions to Knowledge

The methodology devised and used in this research study supports the formal design and
development of interoperable systems where the mechanisms and software toolset developed
enable software components to “functionally interact” in a coherent manner by sharing
information of common interest; this through accessing distributed data repositories in an
efficient, highly flexible and standardised manner.

The viability of this methodology has been tested by selecting or producing software
mechanisms and tools which collectively support the implementation of that methodology
whilst enabling the interoperation of MCS components. By doing so, the methodology has
been shown to meet the requirements identified in section 1.4, namely to enable software
interoperability in an effective manner by facilitating :

- Information Sharing

- Interconnection

- Control of System Behaviour

- Consistent User Interface Capabilities
- System Design and Development

1) Inf ion Shari

« Generic reference models have been identified and defined by the author which underpin
the sharing of information of common interest among production planning, product
design, finite capacity scheduling and cell control systems. They constitute prime
information which are required by various components of MCS, as mentioned. The
generic reference models specified are characterised by their generalised applicability,
‘while being sufficiently flexible to enable customisation to suit specific user needs.
Indeed the reference models offer promise as being effective in addressing current
problems which result from a lack of standardisation in information representation and
exchange for MCS components. The applicability and effectiveness of the generic
reference models was demonstrated in a case study carried out in collaboration with
UBMC. Here the database of a commercially available proprietary CAPM software
package, namely ELMS, has been restructured with reference to the generic information
models, this in order to facilitate the incorporation of additional functionality.

Page 126

Chapter 8 Conclusions and Recommendations

» An information architecture has been devised and adopted which establishes structure
and uniformity whilst enabling sharing and transfer of information between MCS
components, this via use of the generic reference models. The information architecture
acts as a global library of information entities, providing mechanisms for répresenting
.and managing physical data, which is actually stored in a fragmented fashion within a
number of heterogeneous data stores. Hence the information architecture provides a
foundation for defining, identifying, and integrating both specific and generic
information entities.

IT) Interconnection

* The CIM-BIOSYS integrating infrastructure (I1S), developed by other researchers at the
MSI Research Institute at Loughborough University of Technology, has been used to
structure and simplify problems of realising interconnection among MCS components. It
separates integration and application issues in a manner which resolves differences in the
physical system relating to heterogeneity, distribution and data fragmentation. The CIM-
BIOSYS IS provides low level common integration services for inter-process
communication and information management. It maps distributed processes (embodied
in MCS components) onto the physical data repository contained within a target
manufacturing system. The CIM-BIOSYS IIS offers “soft” or_ flexible integration of
MCS activities so as to enable their reconfiguration and incremental development.

The author’s research has contributed to the enhancement of the functionality and
capability of a database ‘driver’ which handles data intensive activities. By doing so,
this ‘driver’ (via the 1IS) ensures consistent, reliable, transparent and open access of
information stored in the data repository making it available o distributed processes in
a device independent manner.

Application of the CIM-BIOSYS IIS and the enhanced ‘driver’ has been demonstrated
in a proof-of-concept MCS demonstration system built as part of this research study.
Here interoperation of a number of typical software applications has been enabled.

(IIT) Control of System Behaviour

+ The MCS Functional Interaction Management Module (FIMM) was designed and
developed as part of this research study to (i) formally and flexibly structure threads of
functionality embedded within various MCS components; and (ii) facilitate their
interaction (during run-time) in a controlled, co-ordinated and deterministic manner,
where considerations for associated preceeding and succeeding activities and for their
shared information needs are taken into account.

Page 127

Chapter 8 Conclusions and Recommendations

The FIMM offers an effective framework for governing system behaviour in a data-
driven manner based on functional dependencies and information needs and
availability. The MCS FIMM can be viewed as constituting high level integraton
mechanisms and tools of an IIS. It builds upon the low level, general purpose integration
services and tools of the CIM-BIOSYS IIS, which provide standard data inter-
communication and information transfer facilities to interconnect MCS software
components. The FIMM Configurator has been developed to configure the MCS FIMM
in a manner which can meet specific user functional and information needs.

nsisten r Interf; iliti

A highly reconfigurable generic ‘application shell” has been developed to serve as the
front-end user interface. It provides consistent access to and coalesces the interoperation
of various MCS functional activities over the CIM-BIOSYS IIS. This user interface
capability supports intra-organisation integration across functional boundaries where it

- enables access to MCS related functions which are distributed across the local
area network. Hence users are provided with a system-wide working viewpoint,
this to effect better and more informed decision-making in relation to the spe’biﬁc
tasks they perform.

- makes functional interaction management easier by effectively insulating the user
from the complexities and tediwm involved, which will be taken care of by the
relevant services offered by MCS FIMM and the CIM-BIOSYS IIS.

The functionality of the ‘application shell’ has been highlighted and demonstrated in
the proof-of-concept MCS demonstration system produced in this research study.

V)S m Design and Development

s As part of this research study a new methodology and software toolset have been
developed which use models to formally structure and support implementation, run-time
and change processes, this in a way which supporis the various life cycle phases of
systems. In this approach, system design and modelling methods, which typically
provide means of representing functional and information views of a system, serve as the
entry point. The information and function models created are exploited during
downstream life cycle phases to ensure clarity, E:onsistency, accuracy and re-utilisation
of knowledge and data between phases. This is enabled via a set of life cycle support
tools which have been developed to closely couple IDEF; and IDEF;x modelling tools
(used for functional and entity-attribute relationship modelling respectively) with tools
based on EXPRESS (which enable information modelling). As indicated in Table 8-1,
some of these tools were developed by other MSI researchers.

Page 128

Chapter 8 Conclusions and Recommendations

Life Cycle Support Tools Developed by
EXPRESS to SQL Compiler
STEP Parser Other MSI researchers

IDEF;x to EXPRESS transformation tool

IDEF g, x Parser - Author as part of this research swudy
FIMM Configurator

Table 8-1 : List of life cycle support tools developed

Accordingly, these tools reference, access, manipulate and reformat data (corresponding
to function and information models) so that it assumes a form which is suitable to
structure and enable various downstream life cycle processes. Hence the software toolset
offers system builders a more formalised and structured way of creating and maintaining
integrated manufacturing systems, thereby catering for their need to adapt and respond
to changes in system requirements.

Use of the set of tools has been assessed by formally structuring and supporting
implementation, run-time and change processes associated with the proof-of-concept
MCS system produced as part of this research study.

Hence the requirement specification for enabling software interoperability (identified in
section 1.4) has been met; in proof-of-concept form, it has proved possible :

+ to identify and specify architectural models of system functionality and information which
themselves are based on studies of the inter-dependency of functions and commonality of
information shared among production planning, product design, process planning, finite
capacity scheduling and cell control processes.

This has been met in relation to the work carried out to satisfy the requirement
specification in (I).

« to address key issues of managing functional interaction, i.e. to study a means of
coordinating and synchronizing MCS functions. This by enabling and managing the
interoperation of associated software applications in a flexible manner.

Work done to satisfy (II), (III) and (IV) has provided a capability and working
mechanism which successfully address the issues related to functional interaction and
interconnection between MCS components.

Page 129

Chapter 8 ' Conclusions and Recommendations

* to provide a formalised and structured methodology which can cope with high levels of
complexity and change, straddling design, implementation, run-time and maintenance life
cycle phases of interoperable systems. This to enable overall system reconfigurability, more
optimal system design and operation and a reduction in the time and effort involved in
creating such systems.

An innovative approach which facilitates support of the MCS life cycle has been
realised in order to satisfy the requirement specification in (V).

In conclusion it is evident that the realisation of a ‘fully specified open standard for software
interoperability’, which enables on a widespread basis unconstrained interaction and
interchange between heterogeneous software components, is currently an impractical goal.
This is attributed to the enormous complexity of the problem and to the many outstanding
standardisation issues which have yet to be resolved. Much of it depends upon

» availability of suitable MCS with facilities required for the following which should be
sufficiently standard to make many people adopt and write to those standards :
- interprocess communication
- information sharing and management
- interconnection

« availability of acceptable reference models which can describe in a comprehensive
manner (i) information flow and requirement; (ii) functional activities and their inter-
relationships and dependencies; and (iii) system behaviour.

« availability of integrated life cycle support systems to design better MCS solutions.

« progressive release of more interoperable MCS components (with more modular and
atomic functionality) from vendors.

However, on the other hand, the use of contemporary ‘turnkey’ or ‘custom built’ solutions
(which do not adhere to any open standards) is not tenable for systems requiring interoperation
of many MCS components. Constraints in software interoperability will undoubtedly remain if
such proprietary systems are not designed to enable access to their threads of functionality or
underlying information.

Page 130

Chapter 8 Conclusions and Recommendations

Bearing in mind these difficulties, this research has offered a realistic approach which can
be considered to be part-way between the extremes of “open” and *““closed” systems, as
illustrated in Figure 8-1. The emphasis has been to provide a means of enabling a degree of
software interoperability which overcomes (a) limitations inherent in contemporary MCS
components and solutions; and (b) associated and inherited problems concerned with
achieving their interoperation. Hence based upon the implementation studies in this research,
an infrastructure that enables a degree of interoperation is offered which not only allows for
the adoption of legacy (or “as is”) MCS components but also the introduction of a new
generation of highly reconfigurable, modular and more open MCS software products, i.e. “to
be” products (as they become available to industry). Thus a migration path is offered towards

“open” manufacturing control systems which are readily adaptable in the face of changing
functional and operational requirements.

“to be”
+ High
. £ Research Focus
'E % * Formally structure Interoperable systems
- 8 3 * Specification of generic reference models
’E, ,g é * MCS software components Interconnection via IIS
3 E 'ﬁ w. s #* System behaviour control
'g & as 1s
2 § “Closed”
o Low .
— Proprietary
I Systems
High Low
Degree of difficulty & Level of effort and investment
to facilitate

Software Interoperability

Figure 8-1 : Degree of Software Interoperability

Page 131

Chapter 8 Conclusions and Recommendations

8.2 Further Recommendations

As part of the immediate requirement for progressive enhancement of the software
interoperability methodology described in this thesis, the author recommends further
investigation and development in the following key areas in order to address existing
deficiencies :

(A) Integration and management of multi-vendor database systems

A number of database “drivers” have been created to enable access to the Progress, Ingres and
ORACLE RDBMS. However, the ‘drivers’ are restricted and dedicated to addressing the
idiosyncrasies of the specific database system they service. They are not equipped to handle
semantic differences among different database systems. Currently, collating data from
different database systems can be somewhat tedious where the data needs to be filtered
through a series of programs in order to resolve semantic differences and to convert them to
the required format when retrieving and populating data across different database systems.

Thus further research is required towards developing a more elegant solution for global data
management and manipulation across such multi-vendor database systems. The emphasis
should be to provide a means of unifying data across different database systems, resolving the
heterogeneity and semantic differences between them and presenting the information in
accordance with the format requested by the user. Hence information would appear as part of a
unified system-wide database.

(B) Modelling and simulation capability for system behaviour control

The MCS Functional Interaction Management Module (FIMM) was developed to provide an
effective framework which (i) formally and flexibly structures threads of functionality
embedded within the various MCS components, and (ii) facilitates their interaction (during
run-time) in a controlled, co-ordinated and data-driven manner.

It would be beneficial to also provide a modelling and simulation capability which during
initial system design or prior to making a system change, enables performance analysis of the
interoperable system. This would help identify and enable a study of conditions under which
the system can interoperate in a more optimal manner in relation to the constraints imposed.
The following could be considered in the analysis for system behaviour control :

- functional dependencies, this to properly structure the co-ordination of the combined
activities in order to clearly identify succeeding and preceeding activities and their
shared information requirement.

Page 132

Chapter 8 Conclusions and Recommendsations

- type and nature of suitable associations (such as one-to-one, one-to-many, many-to-
many, etc.) to be established between functions and their information needs so as to
ensure better information flow for enhanced system performance. This would help
alleviate conflicts, contentions and ambiguities with regard to information
requirement in the interoperating system.

Such a capability could be provided for in the form of a software tool, coupled closely with the
FIMM database to access and use the relevant data needed.

Finally, the research methodology described in this thesis can only facilitate software
interoperability which is sufficiently useful and effective in satisfying mid-term needs. In
order to provide for more effective and universally applicable interoperable solutions, the
author expects future interoperability development in the following major areas :

« Advancement of life cycle support approaches leading to simulation, emulation and
execution of MCS so as to resullt in better designed systems.

» Standardisation of information reference models and functional models.
» Improved and standard infrastructural facilities.

+ Progressive development of a new generation of more open MCS components
(possibly on the base of general software developments).

Page 133

PUBLICATIONS

The following refereed technical publications have been made in relation to this research
study : :

I) International Journals

* Singh, V., Weston, R. H., 1994,
Functional interaction management : A requirement for software interoperability
Journal of Engineering Manufacture, The Institution of Mechanical Engineers, Part B,

» Singh, V., Weston, R. H., 1994,
Life Cycle Support of Manufacturing Systems based on an Integration of Tools
Journal of Production Research

» Singh, V., Weston, R. H., 1994,
Information Models : A Precursor to Software Interoperability
Journal of Production Planning and Control

« Weston, R. H., Singh, V., 1994,
Structured Specification and Construction of Open Manufacturing Control Systems
Journal of Manufacturing Systems
SME (Society of Manufacturing Engineers, USA)

IT) Proccedings of International Conferences

» Singh, V., Weston, R.H., May 1994,
Software Interoperability for Integrated Manufacturing,
A Reference Model Driven Approach
Conference on Data and Knowledge Systems for Manufacturing and Engineering
(DKSME “94), Hong Kong.

» Singh, V., Weston, R. H., September 1993,
New Generation of “Open” Manufacturing Control Systems
for “Seamless” Integration in CIM
Conference on Computer Integrated Manufacturing (ICCIM’ 93), Singapore

Page 134

REFERENCES

Afferson, M., Andrews, J. K., Muhlemann, A. P, Price, D. H. R., Sharp, J. A., 1992,
Generic manufacturing information systems development via template prototyping,
European Journal of Information Systems, Vol. 1, p379-386

Aguiar, M.W,, Weston, R.H., 1993a,

CIM-OSA and stochastic time Petri nets for behavioural modelling

and model handling in CIM systems design and building,

Procs. of the Institution of Mechanical Engineers, Vol. 207. Part B. Journal of Engineering
Manufacture, pp147-158.

Aguiar, M. W,, Weston, R. H., August 1993b,
Reference Architectures for Enterprise Integration,
Procs. of CARS/FOF’ 93 Conference, USA

Akif, H. C,, Documeings, G., 1991,

- Computer aided GRAI method (C. A. GRAI),|
. Procs. of Advances in Production Management Systems - IFIP/91, France, pp283-292

AMR (Advanced Manufacturing Research}), March 1991,
Application Enabler,
Report, USA

Anscombe, J., November 1992,
Integration - Breaking the Barriers to Excellence,
Procs. Twenty-seventh Annual BPICS Conference, Birmingham, UK, pp89-103

Arngnimsson, G., Vesterager, J., August 1992,

STEP ! Experiences from actual use of the standard,

Procs. of IFIP Working Group 5.7, Conference on Integration in Production Management
Systems, Eindhoven, Netherlands, pp23-35

Bailin, S. C., 1989,

An object-oriented requirements specification method,
Communications of the ACM, Vol. 32, No. 5, pp608-623

Page 135

Barkmeyer, E. J., 1989,
Some Interactions of information and control in Integrated Automation systems,

Advanced Information Technology, Industrial Material Flow Systems, Springer-Verlag

Batini, C., Lenzerini, M., Navathe, S. B., December 1986,
A Comparative Analysis of Methodologies for Database Schema Integration,
ACM Computing Surveys, Vol. 18, No. 4, pp322-364

Bauer, A., 1991,
Shop floor control systems : from design to implementation
Chapman and Hall

Beech, D., Ozbutun, C., 1990,

Object databases as generalizations of relational databases,

Proc. of the Object-Oriented Database Task Force Group Workshop,
Ottawa, Canada, pp119-135

Beerit, C., October 1993,
New Directions in Database Management Systems
Procs. of Fifth Jerusalem Conference on Information Technology, Israel, pp500-506

Bohse, M. E., Harhalakis, G., 1987,
Integrating CAD and MRP II Systems,
CIM Review, Vol. 3, No. 4, pp7-15

Bond, T. C., 1993,
An investigation into the use of OPT production scheduling,
International Journal Production Planning and Control, Vol. 4, No. 4, pp399-406

Breitbart, A., Morales, H., Silberschatz, A., Thompson, G., October 1993,
Multidatabase Concurrency Problems

- Multidatabase Transctions Concurrency Control Mechanisms,

Procs. of Fifth Jerusalem Conference on Information Technology, Israel, pp507-519

Bright, M. W, Hurson, A. R, Pakzad, S. H., 1992,
A Taxonomy and Current Issues in Multidatabase Systems,
IEEE, pp50-59

Page 136

Buchman, A. P, 1984, _
Current Trends in CAD Databases,
Computer-Aided Design, Vol. 16, No. 3

Buyer’s Guide Supplement, February 1990,
Production Management Software, Industrial Computing, pp46-58

Chang, Tien-Chien, 1985
An Introduction to Automated Process Planning Systems
Prentice-Hall

Chaudhri, A. B., Revell, N., 1994,

Object database benchmarks: past, present and future,

Proc. of Object-Oriented Databases: Realising their Potential and Interoperability with
RDBMS, London, UK

Chaudhri, A. B., 1993
Object database management systems: an overview
BCS OOPS Newsletter, No. 8, pp6-15

CIM-OSA ESPRIT Consortium AMICE, 1989,
Open System Architecture for CIM,
Springer-Verlag, Berlin (D)

CIM Strategies, March 1990,
DELTA factory floor manager combines data management methods, pp7-10

CIM Strategies, March 1991,
Application Case Study, Interoperability standards form a base for CIM,
Vol. 8, No. 3, pp4-7

Clements, P., Coutts, L.A., Weston, R.H., September 1993,

A life-cycle support environment comprising open systems manufacturing

modelling methods and the CIM-BIOSYS infrastructural tools,

Proc. of the Symposium on Manufacturing Applicaton Programming Language Environment
{MAPLE) Conference, Ottawa, Canada, pp181-195.

Page 137

Clements, P., October 1992,
The application of EXPRESS modelling and tools within an integration platform,
Second EXPRESS Users Group, Dallas, USA

Clements, P, Hodgson, A., Leech, M., Ryan, A., November 1991,
Information Systems Modelling and Implementation in an industrial environment,

Procs. of AUTOFACT 91, Chicago, Illinois, USA

Clements, P., March 1991a,
Internal Report on the STEP Parser, Loughborough University of Technology

Clements, P., February 1991b,

Internal Report on the EXPRESS to SQL Compiler, Loughborough University of Technology

Codd,E. F, 1992,
Dr. Codd on “End of Relational” ,
DBMS, Vol. 5, No 11:6

Colquhoun, G. J., Baines, R. W., Crossley, R., 1993,
A state of the art review of IDEFO,

International Journal Computer Integrated Manufacturing, Vol. 6, No. 4, pp252-264

Computing, November 1991,
Database giants revamp products, pl1

Cutts, G., 1991,
SSADM Structured Systems Analysis and Design Methodology,
Blackwell Scientific, Oxford, UK

Czemik, S., Quint, W., 1992,

Selection of methods, techniques and tools for system analysis

and for the integration of CIM elements in existing manufacturing organizations,
International Journal Production Planning and Control, Vol. 3, Part 2, pp202-209

DATAPRO, March 1992,
Manufacturing Automation Series : Factory Automation Systems,
McGraw Hill , USA

Page 138

Date, J. , 1986,
An Introduction to Database systems,
Vol. 1, Addison-Wesley Publishing Co, Inc

Davis, G. B, Olson, M. H., 1987,
Management Information Systems,
Second Edition, McGraw-Hill, pp502-504

De Toni, A., Caputo, C., Vinelli, A., 1988,
Production management techniques,
Intemnational Journal of Operations and Production Management, Vol. 8, No. 2, pp35-51

De Vaan, M. J,, July-September 1992,
Introduction MRP II, with enhancements: the case of a furniture manufacturer,
Intrnational Journal Production Planning and Control, Vol. 3, No. 3, pp258-263

Dinitz, M., July 1990,
Configure-To-Order: An industry challenge,
Industrial Engineering, pp21-22

Drucker, P. F,, November 1991,
The Factory of the Future,
World Executive’s Digest, pp26-32

DTI, 1993,
Computer Integrated Manufacturing - A Survey of Worldwide R & D

DTI, 1989,
PA Consulting Group, Manufacturing into the late 1990s, HMSO

DTI, 1987,
UK, Through MAP to CIM, Moore & Matthes Ltd

ELMS Technical Manual, 1990
ESPRIT Consortium, 1989,

Open System Architecture for CIM,
Project 688, Vol. 1, Springer-Verlag, pp13-16

Page 139

Evans, C. D., Meek, B. L., Walker, R. S., 1993,
User Needs in Information Technology Standards,
Butterworth-Heinemann Ltd (Publisher), UK

Foong, N. F, Ang, K. P, Singh, V., May 1992,
Computer Simulation as a Tool for Integrated Manufacturing,
Procs. Asia-Pacific Industrial Automation (IA)’ 92 Conference, Singapore

Fritsch, C. A., 1989,
Information Dynamics for Computer Integrated Product Realisation,
NATO ASI Series, Springer Verlag, Vol. F53:, pp21-38

., Fry, T, Karwan, K., Baker, W., 1993,
Performance measurement systems and time-based manufacturing,
International Journal of Production Planning and Control, Vol. 4, No. 2, pp102-111

Golberg, C. J., Winter 1993,
Object Oriented Databases - The New Wave in RDBMS Technology,
ORACLE, Vol. VII, No. 1, pp35-39

Goldratt, M., E., 1988,
Computerized shop floor scheduling,
International Journal of Production Research, Vol. 26, No. 3, pp443-455

Gould, L., August 1992,
CIM Interface Modules : A route to Open Systems,
Managing Automation, Vol. 7, No. 8, pp47-50

Goyal, S. K., Gunasekaran, T. Martikainen, YLi-Olli, P., 1993,
Design of optimal configuration for a multi-stage production system,
International Journal of Production Planning and Control, Vol. 4, No. 3, pp239-252

Halevi, G., Weil, R., 1992,
CAPP as concurrent link between Design and Production Management,
IFIP Transactions Part B Applications in Technology, Vol. 6, pp177-184

Halladay, S., Wiebel, M., 1993
Object-Oriented Software Engineering,
Lawrence, Kan.: R & D Publications

Page 140

Halsall, D. N., Muhlemann, A. P, Price, D. H. R., September 1993,
A Production Planning and Resource Scheduling Model from
Small Manufacturing Enterprises,

Procs. Ninth National Conference on Manufacturing Research

Harhalakis, G., Lin, C. P, H. Hillion, Moy, K. Y., 1990,
Development of a factory Level CIM Model,
Journal of Manufacturing Systems, Vol. 9, No. 2, pp116-128

Hars, A., Heib, R,, Kruse, Chr., Michely, J., Scheer, A., -W., May 1992,
Reference Models for Data Engineering in CIM,
Procs. Eighth CIM-Europe Annual Conference, Birmingham, UK, pp249-260

Hars, A., 1990,
CIDAM - modules for the creation of CIM,
Procs. Sixth CIM-Europe Annual Conference, pp286-295
!
Hayes, F., Spring 1992,
Esperanto for Databases,
Unixworld-Supplement : Special Report Interoperability, pp49-51

Himes, D. A, 1993,
Database Interoperability and portability through standards,

Procs. of the Second International Conference on Parallel and Distributed Information

Systems, pp225-256

Hind, C. J., West, A. A., Williams, D,, J., 1990,
The use of object orientation for the design and implementation of
manufacturing process control systems,

Internal Report, Dept of Manufacturing Engineering, Loughborough University of

Technology, LUT Press

Hodgson, A., 1993,
Production Planning and Control within a CIM environment :
some current developments and requirements for the future,

International Journal Production Planning and Control, Vol. 4, No. 4, pp296-303

Page 141

Hodgson, A., Weston, R. H., 1993,
Application and Information Support Systems for Planning and Control in CIM,
ACME Review Final Report, Grant No. GR/F 69192

Hodgson, A., Waterlow, G., 1992,
Special feature: Computer-aided production management,
_Computing & Control Engineering Journal, Vol. 3, No. 2, Published by IEE, ISSN 0956-3385

Hodgson, A., Weston, R. W,, Sumpter, C. M., Gascoigne, A., August-September 1988,
Planning And Control Information flow in CIM,

Procs. International Conference on Factory 2000 - Integrating Information and Material Flow,
Cambridge, UK, pp49-56

Higgins, P, Tierney, K., Browne, J., September 1991,

Production Management State of the Art and Perspectives,

Procs. Fourth International IFIP TCS5 Conference, Computer Applications in Production and
Engineering, Bordeaux, France, pp3-14

Hollyman, B., Anderson, L., January 1991,

Implementing an Open Systems Architecture,

CommUNIXations, Published by Uniforum (International Association of Unix Systems
Users), Vol. XI, No. 1, pp23-29

Hughes, D., August-September 1988,

Criteria for the distribution of information processing in factory 2000,

Procs. International Conference on Factory 2000 - Integrating Information and material flow,
Cambridge, England, pp45-48

ICAM, December 1985,

Information Modelling Manual IDEFI - Extended,

ICAM Project Report (Priority 6201), D. Appleton company, Inc, Manhattan Beach,
California

Ingres, 1991,
Database set of manuals Version 6.4

ISO, 1993, 1SO DIS 10303-1,
Product Data Representation and Exchange Part 1 : Overview and Fundamental Principles,
International Organization for Standardization, Geneva

Page 142

ISQ, 1991,

MANDATE,

ISO TC184/SC4/WG8 Document N1, ISO TC184/5C4 Secretariat, National Institute of
~ Standards and Technology, Gaithersburg, MD 20899, USA

ITAP Technology Seminar, 1990,
Advances in Computer Integrated Manufacturing,
ITAP Technology Report No. 5/90, National Computer Board (Singapore)

Jain, K. H,, Bu-Hulaiga, I. M., Summer 1992,
E-R Approach to Distributed Heterogeneous Database Systems for Integrated Manufacturing,
Journal of Database Administration, Vol, 3, Part 3, pp21-29

Jeng, B. C., Chao, W. S., July 1992,
Communicating Objects for System Integration modelling, Procs. Second Interational
Conference on Automation Technology, Taipei, Taiwan, Vol. 2, pp307-312

Jochem, R., 1989,
An object oriented analysis and design methodology for

computer integrated manufacturing systems,
Tools 89, pp75-84

Jones, G., Roberts, M., 1990,
Optimized Production Technology (OPT),
IFS Publications, UK

Joris, S. M., Vergeest, Matthijis, Sepers, June 1993,

Techniques to make CAD/CAM Systems communicative,

Procs. of the Third International Flexible Automation and Integrated Manufacturing,
University of Limerick, Ireland, pp255-266

Jorysz, H. R., Vernadat, E. B., 1990,
CIM-OSA part 1 : Total enterprise modelling and function view,
International Journal Computer Integrated Manufacturing, Vol. 3, Nos. 3 and 4, pp144-156

Kaul, M., Drosten, K., Neubold, E. J., 1989,
View System: Integrating Heterogeneous information bases by object-oriented views.
Procs. [EEE International Conference on Data Engineering

Page 143

Khoshafian, S., Blumer, R., Abnous, R., 1990

Inheritance and generalization in Intelligent SQL,

Proc. of the Object-Oriented Database Task Force Group Workshop,
Ottawa, Canada, pp103-118

Kochhar, A. K., Monniott, J. P, Price, D. H. R, Rhodes, D. J., Towill, D. R., Waterlow, J. G.,
1987,

A study of computer aided production management in UK batch manufacturing,
International Journal of Operations and Production Management, Vol. 7, pp7-57

Koriba, M.., 1983,
Database Systems @ Their Applications to CAD Software Design,
Computer-Aided Design, Vol. 15, No. 5

Kosanke, K., 1991,

Open Systems Architecture for CIM (CIM-OSA) Standards for Manufacturing,

Procs. International Conference on Computer Integrated Manufacturing (ICCIM’ 91),
" Singapore

Krishnamurthy, R., Litwin, W, Kent, W., April 1991,
Interoperability of Heterogeneous Databases with schematic discrepancies,

Procs. First International Workshop on Interoperability in Multidatabase systems, Kyoto,
Japan, pp144-151

Lang-Lendroff, G., Unterburg, J, June 1989,
Changes in understanding of CADICAM : a database-oriented approach,
Computer Aided Design, Vol. 21, No. 5, pp309-314

Lars, D. T, 1990,
Is there a “GAP"” of knowledge between R&D and Production?,

Advances in production management systems, Procs. Fourth International IFIP Conference
TC5/WG 5-7, Espoo, Finland

Larsen, N. E., Alting, L., 1993,

Criteria for selecting a production control philosophy,
International Journal Preduction Planning and Control, Vol. 4, No. 1, pp54-68

Page 144

Lee, C. Y., 1993, :
A Recent Development of the Integrated Manufacturing System : A Hybrid of MRP and JIT,
International Journal of Operations and Production Management, Vol. 13, No. 4, pp3-17

Leech, M., J., March 1993,
Internal Report on CIM-BIOSYS Datastore Driver Guide, Loughborough University of
Technology

Lim, B. S., July-October 1992,
CIMIDES - A Computer Integrated Manufacturing Information and Data Exchange System,
International Journal of Computer Intergrated Manufacturing, Vol. 5, No. 4 & 5, pp240-254

Logan, F A., March 1986,
Evolutionary Cycle of an Expert CAPP System,
Procs. Conference CIMTECH, Boston, Massachusetts

Lopes, P. F,, 1992,
CIM Il : The Integrated Manufacturing Enterprise,
Industrial Engineering, Vol. 24, No. 11, pp43-45

Luscombe, M., 1991
Design and Implementation of Integrated Production Control systems,
Integrated Manufacturing System, Vol. 2, No. 4, pp4-8

Maier, D., 1989,

Object-Oriented Concepts, Databases, and Applications,
Edited by W. Kim and F. H. Lochovsky,
Addision-Wesley

Maji, R. K., October 1988,
Tools for development of Information Systems in CIM,
Advanced Manufacturing Engineering, Vol. 1, pp26-34

Martin, J., 1980,

Computer Data Base Organization,
Second Edition, Prentice-Hall, Englewood Cliffs, New Jersey

Page 145

Martin, J., 1988,
CIM : What the Future Holds?,
Manufacturing Engineering

Maude. T., Willis, G., 1991,
Rapid Prototyping,
Pitman Publishing, London, UK

Maull, R. S., Childe, S. J., 1993,

A step-by-step guide to the identification of an appropriate

computer-aided production management system,

International Journal of Production Planning and Control, Vol. 4, No. 1, pp69-76

Mayer, R. J., Painter, M. K, 1991,
Roadmap for enterprise integration,
Procs. of Autofact 91, USA

MCC Technical Manual, 1989
John Brown Systems PLC

Meta Software, 1950,
Design/IDEF User’s Manual, Meta Software

Metz, S., August 1990,
Making Manufacturing Better, not just faster,
Managing Automation

Moerman, PA., 1991,

The evaluation of technology in relation to products and markets:

observations, considerations, experience, and solutions,

International Journal of Computer Integrated Manufacturing, Vol. 4, No. 1, pp2-15.

Motro, A., July 1987,

Superviews : Virtual Integration of Multiple Databases,
IEEE Trans. Software Engineering, Vol. 13, No. 7, pp785-798

Muhlemann, A. P, Price, D. H. R., Sharp, J. A., Afferson, M., 1991,

Fourth Generation languages and integrated information systems for

small manufacturing companies,

International Journal Computer Integrated Manufacturing, Vol. 4, No. 1, pp16-22

Muhlemann, A. P, Price, D. H. R., Sharp, J. A., Afferson, M., Andrews, J. K., 1990,
Information systems for use by production managers in smaller manufacturing enterprises,
Procs. of the Institution of Mechanical Engineers (Part B), Vol. 204, p191-196

Olle, T. W, 1978,
The CODASYL Approach to Database Management Systems,
John Wiley and Sons, New York

ORACLE RDBMS, June 1991,
Utilities User’s Guide,
Version 6.0, Oracle Corporation

ORACLE, 1992
Database set of manuals
Version 6.0, Oracle Corporation

O, K., Gane, C., Yourdon, E., Chen, P. P, Constantine, L. L., April 1989,
Methodology : The Experts Speak,
Byte, pp221-244

Paranuk, H. V. D., 1988,
Chapter 5 : Factory communication system, Artificial Intelligence : Implications for CIM,
IFS Publications Ltd, Springer-Verlag

Peters, T., 1989,
Thriving on Chaos,
Pan Books Lid, UK

Perkovic, P, Spring 1991,

SQL Access and ANSIIISO SQL and X/Open ,
COMPCON, pp120-122

Page 147

Pheasey, D., November 1992,
Competitive Manufacturing - ‘A Vision of the year 2001,
Procs. Twenty-seventh Annual BPICS Conference, Birmingham, UK, pp23-31

Plenert, G., 1993,
An Overview of JIT,
International Journal of Advanced Manufacturing Technology, Vol. 8, pp91-95

Preece, J., 1993,
A Guide to Usability,
Addison-Wesley

Progress, 1990,
Database set of manuals version 6.2

Puak, C. A., 1991,
MRP, MRP I1, OPT, JIT, and CIM - Succession, Evolution, or necessary combination?,
Production and Inventory Management Journal, Vol. 32, Part 2, pp7-11

Pugh, D. S., Hickson, D., J., 1989
Writers on Organization
Penguin Books (Fourth Edition), pp90-93

Rembold, U., Nnaji B. O, Storr, A., 1993
CiM
Addison-Wesley, UK

Ross,D. T., 1977,
Structured Analysis (SA) : A language for Communicating ldeas,
IEEE Transactions on Software Reliability, Vol. 3, No. 1

Rui, A., 1989,
Information support systems for the distributed planning and control in batch manufacture,
PhD Thesis. (Supervised by Weston, R.H. and Hodgson, A.): PhD awarded 1989,

Rumbaugh, J., et al., 1991

Object-Oriented Modeling and Design,
Prentice Hall International

Page 148

Rusinkiewicz, M., Czejdo, B., 1987,
An approach to query processing in federated database systems.
Procs. Hawaii International Conference on Systems Sciences

Sanders, L., Mayer, R. J., Browne, D. C.,, Menzel, C,, 1991,
Containers objects : a description based knowledge representation scheme,
Procs. of Autofact’ 91, USA, pp7.39-7.50

Savolainen, T., 1991,
CIMVIEW : a tool for symbolic top-down simulation for CIM,
Procs. of Advances in Production Management Systems, IFIP, Holland

Saxe, K., November 1985,
MRP H Into CIM : The Interface Phase,
Procs. Conference Autofact ‘85, Detroit, Michigan

Scheer, A.-W., 1991,
CIM - Towards the Factory of the Future,
Second Edition, (Springer-Verlag)

Scheer, A.,-W., 1989,
Enterprise-Wide Data Modelling - Information Systems in Industry,
Springer-Verlag, pp259

Scheer, A.-W., 1988,
Computer Integrated Manufacturing - Computer Steered Industry
First Edition, (Springer-Verlag)

_ Schenck, D., December 1989,
Information Modelling Language EXPRESS,
ISO TC184/SC4/WG1 N442

Schiel, U., Mistrik, 1., 1990,
Using object-oriented analysis and design for integrated systems,
Procs. of the First International Conference on Systems Integration, USA, pp125-134

Schnur, J. A., Summer 1987,
Can there be CIM Without MRP 112,
CIM Review

Page 149

Schonewolf, W., Langendoen, M., Gransier, T., Baisch, R., Drossopoulos, May 1992,
Application of CIM-OSA in Machine Tool Manufacturing and Aluminium Casting,
Procs. Eighth Annual CIM-Europe Conference, Birmingham, UK, pp217-229

Shaharoun, A. M., Hodgson, A., Weston, R. H., August 1992,
Cost modelling in Advanced Manufacturing Systems,
Procs. of International Conference for Manufacturing Automation (ICMA), Hong Kong

Shunk, D., Sullivan, B., Cahill, J., Fall 1986,
Making the Most of IDEF Modeling - The Triple Diagonal Concept,
CIM Review, pp2-17

SI (Systems Integration) Group (LUT), February 1994,

Model Driven CIM : The design, implementation and management of Open CIM systems
Loughborough University of Technology

SERC/ACME Review Report No. 2, Grant No, GR/H/22798

SIM, 1993,
User and Technical Manual,
MSPL Ltd.

Singh, V., Weston, R. H., 1994a,
Functional interaction management : A requirement for software interoperability,
Procs. of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture

Singh, V., Weston, R.H., May 1994b,

Software Interoperability for Integrated Manufacturing, A Reference Model Driven Approach,
International Conference on Data and Knowledge Systems for Manufuring and Engineering
(DKSME ‘94), Hong Kong.

Singh, V., Weston, R. H., September 1993,

New Generation of “Open” Manufacturing Control Systems for

“Seamless” Integration in CIM,

Procs. Intemational Conference on Computer Integrated Manufacturing (ICCIM’ 93),
Singapore, pp309-32!

Singh, V., May 1992,
Flexible Materials Handling and Storage System for Integrated Manufacture,

Procs. Asia-Pacific Industrial Automation (IA)’ 92 Conference, Singapore, ppl0-21

Page 150

Singh, V., October 1991,

CIM Model for Metal Machining Trade - Translating Vision into Reality,

Procs. International Conference on Computer Integrated Manufacturing (ICCIM’ 91),
Singapore, pp336-341

Solberg, J. J., 1989,
Managing Information Complexity in Material Fiow Systems,
NATO ASI Series, Springer Verlag, Vol. F53:, pp3-20

Ssemakula, M. E., 1987,

The role of process planning in the integration of CAD/CAM systems,

Procs. of Fourth European Conference on Automated Manufacturing (AUTOMAN 4),
Birmingham, UK

St. Charles, D. P, October 1987,
The Fractured CIM Market,
Managing Automation

Struedel, H. J., Desruelle, P, 1992,
Manufacturing in the Nineties,
Van Nostrand, Reinhold, New York

Taylor, FE W., 1947
Scientific Management
Harper and Row (Publishers)

Taylor, R. W,, Frank, R. L., 1976,
CODASYL data base management systems,
ACM Computing Surveys, New York, Vol. 8, No. 1

Terry, W. R., Matz, T. W., 1989,
An object-oriented programming paradigm for synchronous manufacturing,
Computers Industrial Engineering, Vol. 17, Nos. 1-4, pp124-129

Thompson, G. R., Gomer, T., Chung, C., Barkmeyer, E., Carter, E,, Templeton, M., Fox, S.,
Hartman, B., September 1990,

Heterogeneous Distributed Databases Systems for Production Use,

ACM Computing Surveys, Vol. 22, No. 3, pp237-265

Page 151

Timon, E,, Jagdev, H. S., Browne, J., 1990,
The Analysis of and the selection Criterion for Production Management Packages,

Advances in production management systems, Procs. Fourth International IFIP Conference
TCS5/WG 5-7, Espoo, Finland, pp427-438

Van der Lans, R. F, 1989,
The SQL standard, ,
Prentice Hall

Van Donselaar, K., July-September 1992,
The use of MRP and LRP in a stochastic environment,
International Journal Production Planning & Control, Vol. 3, No. 3, pp239-246

Vollmann, T. E., Berry, W. L., Whybark, D. C,, 1988,
Manufacturing Planning and Control Systems,
Dow Jones Irwin, Homewood, IL.

Waterlow, J. G., Monniott, J. P, 1986,
A study of the state of the Art in Computer-Aided Production Management in UK industry,
ACME Report

Weber, D. M., Moodie, C. L., 1989,
Distributed intelligent information systems for automated integrated manufacturing systems;
Advanced Information Technologies for Industrial Material Flow systems, Springer-Verlag

Weinberg, J. C., 1989,
Linking the CIM Plan with Operations Strategy,
Procs. Conference Autofact’ 89, Detroit, Michigan

Welz, F.,, March 1993,

Software Interoperability within Manufacturing Control Systems,

Graduate Dissertation (Dept of Manufacturing Engineering, Loughborough University of
Technology), LUT Press

Weston, R.H., 1993,

Steps Towards Enterprise-Wide Integration: a Definition of Need

and First Generation Open Solutions,

International Journal of Production Research, Vol. 31, No. 9, pp2235-2254.

Page 152

Weston, R. H., Zhang, P., Murgatroyd, L. S., Coutts, I. A. and Hodgson, A., September 1991,

Soft Integrated Assembly Systems,

Procs. Fourth World Conference on Robotics Research, Pittsburg, USA, pp410-419

Weston, R. H., Gascoigne, J. D., Rui, A., Hodgson, A., Sumpter, C. M. and Coutts, L, 1988

Steps towards information integration in manufacturing,

International Journal Computer Integrated Manufacturing, Vol. 1, No. 3, pp140

Weymont, N., P, Honeyager, J. S., 1987,
Developing a CIM Architecture,
Procs. of the Digital Equipment Computer Users Society, USA

White, C. J., Winter 1993/1992,
Interoperability : The Impact of New Standards,
INFODB, Vol. 7, Part 1, pp21-30

Wight, O., 1984,
Manufacturing Resource Planning : MRP I,
Essex Junction, Oliver Wight Publications Ltd

Wilkinson, G., G., Winterflood, A. R., 1987,
Fundamentals of Information Technology
John Wiley and Sons, pp207-219

Williams, J., Rogers, P., 1991,
Manufacturing cells : control, programming and integration
Butterworth-Heinemann

Wood, P. J., Johnson, P. N., 1989,
A review of the use of SSADM and IDEF at the University of Warwick,
Procs. of SAMT’ 89 Conference, Sunderland, UK

Wyatt, T., Al-Maliki, 1., 1990,
Methods in manufacturing systems engineering - the background,
Integrated Manufacturing Systems, Vol. 1, No. 2, pp91-93

Yeomans, R. W., Choudry, A., 1986,
Design Rules for CIM,
North Holland

Page 153

Zhang, H. -C., Alting, L.,
An Exploration of Simultaneous Engineering for Manufacturing Enterprises,
International Journal of Advanced Manufacturing Technology, Vol. 7, No. 2, pp101-108

Zipfel, G., Missbauer, H., 1993,

New Concepts for production planning and contfol,
European Joumnal of Operational Research, Vol. 67, pp297-320

Page 154

APPENDICES

Page 155

APPENDIX I J

Types of ngical Data Models

Page 156

There are the following three logical data models most commonly supported by database
management systems [Wilkinson and Winterflood 1987, Martin 1980] :

+ Hierarchical model

Data is represented in a hierarchical or tree structure. The highest level in the hierarchy
is known as the root node. It has no parent node above it. Apart from the root node all
other nodes must have only one parent node, but any node can have more than one
dependent or child node. As illustrated in Figure a, node Department is the root, node
Employee is the child of node Department and the parent of node Job History. Tree
structures are a natural way to model truly hierarchical relationships from the real world
when one-to-many (parent to child) segment types can be defined to represent
successive levels in a tree structure in order to relate entities to one another. However, in
many situations relationships do not naturally fit into this model. For instance it is not
easy to directly represent relationships between segment types at the same level in the
hierarchy, nor is it possible without introducing data duplication to represent many-to-
many relationships between entities. A more detailed discussion of the hierarchical
model can be found in Date [1986].

+ Network model

In the network model, data is represented in a network or plex structure. In the network
model any node can be connected to any other node in the structure. The nodes consist of
groups of data usually representing an entity and its attributes, whilst the connection
between the nodes represents the existence of relationship between the nodes (entities),
as illustrated in Figure b. Network structures offer more scope to represent data
relationships than hierarchical structures, albeit at the expense of simplicity, at least with
respect to physical storage structure. The need to transform many-to-many relationships
by the construction of a network model does mean than more or less irreversible
decisions have to be made about the nature of the relationships between entities when the
data model is designed. It should be noted that the network model, whilst permitting a
representation of many-to-many relationships without introducing duplication of the
duplicating record occurrences, does make retrieval of data a laborious process. For
further reading on network database systems the reader is referred to Taylor and Frank
[1976], Olle [1978] and Date[1986].

Page 157

LATE ORDERS

Department
DEPT # | NAME | MANAGER | BUDGET

Employee

| EMPLOYEE# INAME DEPI‘#I SALARY IwCATIONE
Job

| JOB# |IOB DESCRJPTIONE
Next of kin y
Job History ¥ l NAME I RELATIONSHIP | AGEE
JOB DATE | TITLE

Salary History ¥
| sALARY DATE. | saLarY

e

(a) A multilevel hierarchical schema

Supplier

SUPPLIER # | ADDRESS | NAME DETAILSE

Part
»l PART#!NAME DETAILSI QTYON-HANDE
L7,]
&
% Quotation
s
2 PART# |SUPPLIER # | QUOTE PRICE| DELIVERY TIME
E Order
Purchase Item
- " pART # | QTY ORDERED| PRICE

(b) A plex structure of five record types used for a purchasing application

Figure : Database models and structures

Page 158

« Relational model)

In a relational model, entities, relationships and attributes are represented in the form of
two-dimensional tables known as relations. Records are assimilated to the rows of the
table and each set of attributes forms a column. Each row in a table is known as a tuple
and consists of a fixed number of attributes. In a relational database entities are stored
totally independently. That is to say the existence of a relation or a tuple in a relation is
not dependent on any other relation or tuple, nor is access to a tuple reliant on explicidy
pre-defined access paths through complex data structures as it is in the formatted
hierarchical or network models. Instead logical associations among the stored data are
exploited through relational operations, such as select, project and join which can be
used to create new tables. The application of any (relational) operation produces an
object which is itself a relation (which can be stored as a new table in the database).
Thus any number of operators and relations can be combined in a ‘relational expression’
used to answer almost any query. The entities, atributes and relationships produced
from the conceptual data model can often be modelled directly as relations in a
relational database model. The use of the relational model rather than hierarchical or
network models is seen to demand less compromise in transforming the real-world
model of the conceptual data model, although the processing overhead it requires is still
often a serious deterrent to its use for many applications [Date 1986].

Page 159

APPENDIX II \/

The following publications relate to the CIM Model Project :

“CIM Model For Metal Machining Trade - Translating Vision into Reality”
Valdew Singh

Proceedings of International Conference on CIM (ICCIM” 91),
October 1991, Singapore, pp336-341

“Flexible Materials Handling and Storage System for Integrated Manufacture”
Valdew Singh

Proceedings of Asia Pacific Industrial Automation (IA’ 92) International Conference,
May 1992, Singapore, pp10-21

Page 160

Proceedings of Intemational Conference on CIM (ICCIM' 91),
Oct 1991, Singapore

CIM Model for Metal Machining Trade
- Translating Vision into Reality

Valdew Singh
Applied Technology Group
Singapore Economic Development Board

ABSTRACT

This paper describes the effort involved in developing a Computer Integrated Manufacturing (CIM) model which
will serve as a working showcase to the local industry. It comprises a defined hierarchy of control and integrated
information flow which links very closely the various preduction planning and shop floor related activities, and a
flexible manufacturing cell serviced by an automated material handling system that includes an AGV and ASRS.
A detailed overview of the realised system and the functional aspects and requirements of the CIM modules will
be provided. .

INTRODUCTION

An immediate problem facing Singapore is the shortage of labor supply and according to the National
Automation Master Plan (1988) Report [1], automation is the key technology to improving labor productivity,
flexibility, enhancing competitiveness, and stimulating growth in the future. CIM technology, therefore, has
definitely a very important role to play towards ensuring the continued survival and helping to sharpen the
competitive edge of manufacturing companies.

However, its vision seldom translates into reality primarily due to the lack of awareness, proper training as well
as standards and open structure in the use of multi-vendor systems to integrate and interface the various “islands
of automation™.

In order to help promote greater awareness and better expose industry, particularly in the metal machining trade,
to CIM technology, a project to develop a CIM model [2] was initiated by the Applied Technology Group (ATG)
of EDB; vehicle for the promotion and propagation of new application technologies.

The emphasis for the CIM model is on the development of a strategy to guaranice a constant, efficient and
distributed information flow and processing to link all production related activities. It also comprises a flexible
manufacturing cell (FMC) responsible for the machining activities and an automated material handling system
that includes an automated guided vehicle (AGV) and an automated storage and retrieval system (ASRS) to offer
transportation and storage support to the FMC.

APPROACH FOR IMPLEMENTATION
As a guideline, the following is the approach taken to initiate the implementation of the CIM model :

« Rationalization to identify and understand the specific needs and relate them to already avaitable technology
for selection and adoption.

« The analysis and simplification of all existing business and manufacturing activities to eliminate counter-
productive weak points such as double tracking and dead ends to achieve efficiency through optimization of
these activities. :

» Automation and computerisation is then initiated. Full compatibility and ease of customisation must always be
considered for future integration of these newly created “islands of automation”. The initial approach to
computerisation is via the MRP II system to allow automation of labor intensive and time consuming
processes, purchase order processing, routing, bills of material pre calculation and MRP.

Page 161

Proceedings of Intemational Conference on CIM (ICCIM” 91),
Oct 1991, Singapore

« The integration of the “islands of automation™ is carried out in progressive stages to make it manageable and to
help isolate and tackle any problem that might arise.

MODULES INCORPORATED FOR THE CIM MODEL
The configuration of the CIM model is illustrated in Fig. 1 and it includes the following modules :

In-house developed modules

g‘l:'g‘l:d ?:(l)g: Finite capacity planning and loading.
Tool, Fixturing & Check on the machining parameters and the availability and inventory
Material Management | siatus of selected tools, fixtures and materials. The TFM system is linked
(TFM) directly to MRP 1.
Apsg'eg:gm To selectively identify and accept suitable product for processing.

Network based Distributed Numerical Control (DNC) system linked to
the DICON DNC manager for NC program management and automatic
control and monitoring of the CNC and inspection stations.

Remote DNC

The lack of suitable commercial systems which could offer the required openness and functionality that is
encompassing enough for the needs of the user has made it necessary for these in-house developments.

Off-the-shelf commercially available modules

MRP II system Production management, planning and control.
* Fourth Shift

. CAD Generation of engineering drawings.
* AUTOCAD :

* E(Z:‘-‘\CN;M Generaticn of NC programs.

CAD/CAM , o ,
Management To archive and manage engineering drawings and NC programs,

* COMPASS

Provide status feedback & event triggering to initiate shop floor
Real-time Shop floor e di It i ed th h di
Monitoring & Control activities in a coordinated manner. It is carried out through direct
* ONSPEC communication with the SIEMENS PLC whick is networked with the
SINEC L1 Local Area Network to offer distributed PLC control.

Simulation Graphical and discrete event simulation to model and analyze the
* GRASP operational strategies of the shop floor manufacturing activities.
* SIMFACTORY
Quality Control . .
*CVQA Generate inspection program for CMM

Page 162

Proceedings of Intemnational Conference on CIM (ICCIM” 91),
Oa 1991, Singapore

These modules, however, exist as stand-alone “islands of automation” and they need to be specially customized
and bespoke software and macros have 10 be provided to offer the opportunity for these modules to be integrated
and interfaced.

All the CIM modules are linked via the NOVELL Local Area Network (LLAN) for information flow, refer to Fig.
1 for illustration. The following LAN solution has been adopted to allow intercommunication between the
various in-house developed and heterogeneousmix of selected multi-vendor systems which operate over varied
platforms which includes MD-DOS, O5/2 and UNIX :

= Netware protocol between all MS-DOS and OS/2 based systems. In addition, the MAP ASSIST utility has been
utilized to offer peer to peer communication over NOVELL LAN between the MS-DOS based systems. This
effectively help reduces the dependency on the network server and the information traffic flow to the server.

» 34+Open TCP with DPA (Demand Protocol Architecture) for communication between the MS-DOS and OS5/2
based systems with UNIX.

Based on this LAN solution, a database strategy is developed to support a distributed information processing
architecture. This is 1o facilitate the integration of all dissimilar, non-standard and local databases which are
proprietary to the respective application software in use to a more standard and shareable DBMS (Database
Management System) [3,4,5]. ORACLE RDBMS has been chosen to serve as the required DBMS because of its
portability over MS-DOS, 08/2 and UNIX platforms, data and security control across distributed platforms and
flexibility as well as ease in application development and structuring because of SQL support. User friendly front
end interfaces have been developed through ORACLE 1o allow easier and common access and storage of
information by the various application software. Tracking, confirmation and logging in of all the planned
activities and relevant information will be undertaken by it

MANUFACTURING CELL

The layout for the FMC is illustrated in Fig. 2. The cell includes two CNC machining centres {(i.e. MAHO MC35
and MHO MH7008), and automated material handling system which includes an AGV and an ASRS. The
machines are linked to the remote DNC terminals which serve as cell controllers. It was necessary to enhance and
retrofit these stand-alone CNC machines for unmanned machining operation through the provision of the
following :

» Modular docking cum buffer stations for the receipt and delivery of pallets from and to the AGV.
« Automated transfer mechanism for the transfer of the pallets between the docking stations and the machines.

« Automated clamping and location for holding the pallets securely when machining.

All these automated systems are under the control of the networked based SIEMENS PLC.

The FMC is able to function in an autonomous manner without much operator intervention because of the
following :

= Ease of handling a defined family of products with minimum setup and transfer time due to the multi-axis
machining capability.
» The communication protocol available on the CNC controller allows micro-computer control for :
- Automatic start-up, NC program selection, upload and download.

- Vertical integration of the cell with the real-time shop floor monitoring and control software and the
remote DNC system for status feedback and automated control and coordination of the cell.

The parts will be fed into the ASRS for storage via a manual fixturing station where they will be fixtured with the
aid of modular fixtures on common size pallets [6). The ASRS will be responsible for the storage of empty
pallets, prefixtured parts that are ready for machining operations but need (o be stored temporarily prior to
dispatch. The AGV is equipped with a twin conveyor carrier to handle (wo pallets simultaneocusly. It will
automatically shutte pallets between the ASRS and the FMC

Page 163

Proceedings of Intemational Conference on CIM (ICCIM® 91),
Oct 1991, Singapore

The Carl Zeiss UMC 5508 coordinate measuring machine (CMM) is responsible for inspection of the parts that
has been machined. The paris o be inspected will be delivered by the AGV from the ASRS to the specially
developed buffer cum transfer mechanism for automated transfer to the CMM.

INFORMATION FLOW

The CIM environment created represents what happens when an order is placed and the logic that follows. With
reference to Fig. 3, the information generated and the sequence of flow between the modules are as follows :

» Product Assessment - Check for suitability

The order received is interactively assessed for suitability, Existing constraintsand specifications must be satisfied
such as the size of part, payload, batch quantity and type of material permitted and the machining processes that
can be accommodated by the system. Suitable order will be further processed.

* MRPII - Order Entry

The order is registered and availability check on the required machining capacity and other resources necessary
to manufacture the order will be performed. The route plan will be generated and a delivery date is provided after
considering the manufacturing and delivery lead times for the required items as well as the loading commitment
for all prior confirmed orders.

The quotation wilt also be generated based upon the available costing information. If the quote and delivery date
is agrecable to the customer, the process of product design will commence,

» CAD - Product Design & Engineering Drawing Generation

Within the CAD/CAM manager environment, all part drawings will be gencrated. The TFM software has been
directly interfaced to provide on-line information on available toolings, fixtures and materials for possible
selection and consideration.

The CAD system has been customised to include a standard library for the modular fixturing elements so as to
allow computer aided fixturing to be carried out interactively to generate the necessary fixturing drawing for the
part concerned.

The part drawing has to be converted to either the neutral Data Exchange Format (DXF) or Intermediate Graphic
Exchange Standard Format (IGES) for input to the EZ-CAM and the CVQA inspection software for subsequent
NC and inspection program generation respectively.

The generated pant and fixturing drawings as well as the DXF/IGES converted file will be stored in the CAD/
CAM manager database located on the network server.

The BOM (Bill of Materials), specifying all materials and standard items required for the part as well as the
necessary modular fixture elements, will be created through the BOM module of the MRP II system residing
within the CAD/CAM manager.

+« CAM - NC & Inspection Program Generation

EZ-CAM also operates within the CAd/ACAM manager environment. It imports the necessary IGES or DXF
formatied part drawings to post-process the required NC program. Similarly, the CVQA software will post-
process the IGES formatted part drawings o generate the inspection program necessary for the CMM. The NC
and inspection programs will be sent to the DICON DNC manager for storage until required.

The BOM, specifying all 1ooling requirements, will be created through the BOM module of the MRP II system
residing within the CAD/CAM manager.

» MRP II - Generation of Manufacturing & Purchase Order

The MRP 1l system will automatically generate action messages for the purchase of relevant items after receipt of
the full BOM for the part concerned. The order will be confirmed and incorporated into the Master Production
Schedule (MPS).

The manufacturing order and a picklist, which provides information on all the resources needed to produce the

Page 164

Proceedings of International Conference on CIM (ICCIM" 91),
Oct 1991, Singapore

part, i.e. materials, toolings, fixtures, etc, will be generated. The manufactring order for the part will be input
automatically to the shop floar scheduler for further processing.

The picklists and the manufactring orders will only be released when the availability of materials, toolings,
fixwres, process plans, Nc¢ programs, and part and fixring drawings are confirmed.

» Shop floor Scheduler - Generation of Scheduled Orders

The shop floor scheduler will perform finite scheduling of the manufacturing orders received from the MRP II
system. It is heuristic based [7, 8] and considers criteria such as critical ratio and slack time in obtaining a
feasible solution fast. It will generate the following three schedules for :

- Processing of parts stored in the ASRS.
- Prefixturing of parts for forward loading.
- Processing of the batch orders for each of the specific stations.

The shop fioor scheduler is linked to the simulation sofiware, SIMFACTORY, in order to determine optimum
capacity loading and resource allocation. This is to alleviate potential problems such as bottlenecks as well as
poor and unbalanced utilization of machines. The scheduled orders will be held in queue until they are to be
released depending upon the start date.

The scheduled lists for the processing of the parts stored in the ASRS and prefixturing of parts for forward
loading will be accessed by the ASRS controller for processing based upon the availability of the stations. The
lists will be updated by the ASRS controller in order to allow order monitoring for the following :

- Comparison of actual to planned quantity status.
- Indication of the operational status for the order.

» Remote DNC - NC Program Management & Cell Control

The remote DNC terminal atlached to the specific machine will access the scheduled list containing the batch of
orders to be processed by it It will upload the associated NC programs from the DICON DNC manager. The
terminal will coordinate the sequence of activities necessary for unmanned machining operationsuch as sensing
for pallet presence and checking to ensure that the pallet has been properly secured prior o activating the
machining cycle. An optical based part identification (ID) system, SUNX/IDX, is interfaced 1o the terminal to
allow the reading of the ID tag, which is attached to the pallet. This is to check the authenticity of the part
received and relate it to its NC program for machining. The part ID system allows traceability of the part as it
flows through its planned route.

« MRP II - Close Order

- Information conceming the completion of an order will be captured by the shop floor scheduler from the updated
schedule lists. It will automatically update and inform the MRP II system. The MRP II system will then generate
action messages which can be acted upon to close the order. The completed order is then ready for dispatch to the
customer.

CONTROL ARCHITECTURE

The control architecture has been formulated to cater for the processing of the scheduled orders based on the pull-
through technique; i.e. required orders and services will only be provided when the need arises. This is to allow
balanced and optimum utilization of resources.

The ASRS controller will process the orders from the scheduled lists depending upon the availability of the
buffering cum docling stations at each of the machining and inspection stations. This information is feedback on-
line by the real-time shop floor monitoring and control software, ONSPEC. After dispatch of the order the ASRS
will register a request for the service of the AGV 1o collect and deliver the part to its designated station. The AGV
will be informed by ONSPEC to collect parts that have been machined and inspected.

This network based heterogeneous control architecture [9] has been adopted over the more pervasive hierarchical

Page 165

Proceedings of Intemational Conference on CIM (ICCIM'* 91),
Oa1'1991, Singapore

architecture so as to cater for effective distributed information processing. Each entity will be able to operate
independently with intercommunication on a peer to peer basis, Furthermore, such an architecture allows for ease
of software development, maintenance, system reconfiguration and expansion.

CONCLUSION

In summary, it is hoped that this model can help serve as means to an end in keeping pace with the constantly
evolving CIM technology and to offer assurance and confidence to those wishing to venture into CIM.

The future plan is to incorporate more intelligence into the system to further isolate and contain menacing
production variables and to enable it to operate with greater antonomy in the acquisition and processing of the
necessary information across multi-vendor platforms.

ACKOWLEDGMENT

The author wishes to express his thanks to the Manpower Development Division of the Singapore Economic
Development Board for much appreciated support. Special thanks are also expressed to his colleagues in ATG
involved in the project (in particular C. N. Chang, §. D. Foo, N. F. Choong, §. H. Ang, K. §. Tam, C. K. Lim and
C. M. Ching) and to his family, Magdalene and Sabrina, for their understanding, patience and constant
encouragement.

Page 166

Proceedings of Intemational Conference on CIM (ICCIM” 91),
Oct 1991, Singapore

REFERENCES

1. Productivity Digest/ SME Newsletter, March 1989

2. Singh, V., “PC Based Computer Integrated Manufacturing Solution for Small and Medium Enterprise”,
Proceedings of the Asia-Pacific Industrial Automation (A’ 90) Conference, May 1990, Singapore

3. Ranky, P. G., “Manufacturing Database Management and Knowledge Based Systems”™ CIMware LTD,
Guildford, Surrey (UK), 1990

4. Yourdon, E., “Modern Struciure Analysis”, Prentice-Hall, Eaglewood Cliffs, New Jerscy, 1989

5. CIM Strategies, “Client-Server Architecture, What does it buy you?” Vol. VIII, No. 3, March 1990
6. Lewald, R., “Soon : an intemational pallet standard”, American Machinist, Feb 1990, pp69-70

7. Berry, W. L., Rao, V., “Critical ratio scheduling”, Management Science, Vol 28, No. 2, 1975

8. Chang, Y. L., Sullivan, R., “Schedule generation in a dynamic job shop”, International Journal of Production
Research, Vol 28, No. 1, 1990

9, Duffie, N., A., Piper, R. S., “Non-Hierarchical Control Model of a Flexible Manufacturing Cell”, Robotics &
Computer Integrated Manufacturing, Vol. 3, No. 2, pp175-179

REGISTERED TRADEMARKS

SIMFACTORY - CACI SimLab, Inc _
GRASP - BYG Systems Lid, UK.
ORACLE - ORACLE Corp

QNSPEC - Heuristics, Inc

NOVELL - Novell, Inc

FQURTH SHIFT - Fourth Shift Corp.
3+Open - 3COM Corp

MAP ASSIST - Fresh Technology Corp
AUTOCAD - Autodesk , Inc
EZ-CAM - Bridgeport Machines, Inc
COMPASS - TCAE GmbH

CVQA - Computer Vision, Inc

DICON - Dinkel Industrie Automation GmbH

Page 167

Proceedings of Intemational Conference on CIM (ICCIM' 91),

Oa 1991, Singapore

CAD/CAM MRP It Product Scheduler Stmulation Tool, fixture &
- Design - Order Entry Assessment - Shq) Aoor ~ Modc.lling matertal
- NC program - Costing - Feasibility Scheduling & analysis management
-BOM - Inventory check for part - Enquiries - Availability
control manufacture - Order status d check
CAD/ICAM " and status
Manager -BOM Process Planning SIMFACTORY on resources
] [l i]
~ " Ethemet based NOVELL Nciware / 3+0pen TCP . i

SIEMENS SIMATIC
85 PLC

-Docking stations
-Transfer mechanisms

- Automated clamping

- Conveyors

- Tool distritation system

Graphicat simulation Quality control

Coordinate measuring machine

Fig 1 - CIM MODEL CONFIGURATION

Procesdings of Intemational Conference on CIM (ICCIM® 91),

Oct 1991, Singapore

Flexible Machining Cell (FMC)

.%

e

oy

CNC Machining Cell for
pan manufacture -
= l iy
! Transfer Mechanismmsjp o
] ﬁ

<4 Docking Stations

¥, Manval Fixturing
Station

P e i a2

N

CNC Coordinate Measuring Machine (CMM)

Automated Storage & Retrieval System

(ASRS)

Fig. 2 - Physical Layout of Flexible Manufacturing cell (FMC)

Market analysis, research & sales forecast

!

Production Planning A Product :
and control level fscssmen
I Order entry I
TFM | _
Process Customer) Quotation &
Planning Delivery date
' 1 |
CAD/CAM, CAF, BOM MRPII Resource planning &
CAQC (Founth Shift) checking
Manufacturing Orders
NC & Inspection
programs Shop floor scheduler
Schedule
I Simulation & analysis
DICON
DNC Manager
Shop fioor ASRS
Shop floor level feedback ,
Regquest for service
AGV Shop ficor
monitoring & control
Automatic Remote DNC ONSPEC
celt control 1 Status feedback &
[evenl triggering
CNC Machine PLC

Fig. 3 - Information flow

Page 169

Proceedings of Asia Pacific Industrial Automation (LA* 92) Imemational Conference,
May 1992, Singapore

Flexible Materials Handling and Storage system
for
Integrated Manufacture

Valdew Singh
Applied Technology Group
Singapore Economic Development Board

ABSTRACT

The flow and management of material and information in material handling system are proving to be
technologies with the most dramatic impact on integrated factory automation. In estimated between 70 and 80 %
of throughput time during manufacturing can be accounted for by processes such as transport, handling, buffering
and storage.

A flexible material handling and storage system (FMHSS) has been developed as part of a project to develop a
computer integrated manufacturing (CIM) model which will serve as a working showcase to the Iocal industry.
The FMHSS comprises an AS/RS (Automated Storage and Retrieval System) and two AGVs (Automated
Guided Vehicle) to provide storage and transportation services respectively to a flexible machining cell (FMC),
flexible assembly cell (FAC) and an automated CMM inspection station. The objective of the FMHSS is o
supply the right quantity of parts in an efficient, controlled and coordinated manrer at the right time. The FMC
has been retrofiied with specially designed clamping and transfer system for unmanned precision machining and
automated part transfer. The FAC comprises two robotic system working in close coordination for automated
assembly of a family of componenis. The AS/RS cater for parts and component for both FMC and FAC. The
AGVs offers controllability and fast reaction to flexibly interlink the AS/RS, FMC, FAC and the CMM
inspection station. The FMHSS is driven by schedules and shop floor status feedback generated by an integrated
production planning and management system,

This paper describes the effort involved in the development of the FMHSS and it will highlight the following :

- The modular approach for progressive implementation of the various individual material handling modules with
the aim of combining them inlo an integrated system.

- The network basced control architecture which involves an ethernet based local area networking for distributed
information processing and PLC networking for shop floor automation.

- The adoption of the pull-through technique where the FMC and the FAC will be services by the AS/RS and the
AGYVs based upon their availability for part processing.

- The integration of the AS/RS warehouse management software with the production planning and management
systems such as MRP II and the Shop floor Scheduling through a SQL based relational database management
system (RDEMS).

1.0 INTRODUCTION

In the local manufacturing industry today, the investment in factory automation such as the application of

automated machine tools and computer-aided applications, e.g. CAD/CAM systems, to improve productivity is

pervasive because of the following reasons :

- Growing problem of shortage and high cost of skilled labour.

- Intense competition among companies to gain the competitive edge.

- Maturing of related technologies, such as computer numerical control (CNC), programmable logic controllers
(PLC), computer and electronic communication technology.

However, the level of automation among the local small and medium enterprises (SMEs) [1] is generally
confined to stand-alone automatic machines and computer-aided applications where implementation is usually

Page 170

Proceedings of Asia Pacific Industrial Antomation (IA’ 92) Intemational Conference,
May 1992, Singapore

not well planned and is ofien carried out on a piece meal basis. This can only offer short term benefits with
limited opportunity for progressive growth and enhancement.

Therefore, to help introduce and create greater awareness among the local companies to the concept of CIM
{Computer Integrated Manufacturing) a CIM model [2,3] was developed by the Applied Technology Group
(ATG) of EDB; vehicle for the promotion and propagation of new application technologies.

The model incorporates a flexible machining cell (FMC) for precision machining and a flexible automated cell
(FAC) for automated part assembly. Its emphasis is on the strategic application of computer-aided technologies to
form an information network o combine the activities relating to engineering, business and production functions
required for product planning and manufacture. The distribution of activities within the hierarchy of this CIM
model is illustrated in ANNEX I

As the prime task for the realisation of this model lies in the integration of both information and material flow, the
inclusion of Automated Guided Vehicle Systems (AGV) and Automated Storage and Retrieval Systems (AS/RS)
are necessary as these are fast becoming indispensable components in integrated factory management and
automation. These technologies facilitate automated movement of products and materials according to planned
schedule and provide effective management and control 1o help optimise production.

2.0 FLEXIBLE MATERIALS HANDLING & STORAGE SYSTEM

As illustrated in ANNEX II, the following are the major components of the flexible materials handling and
storage system (FMHSS) for the developed CIM model :

» Flexible Machining Cell (FMC)

The FMC includes the MAHO MC5 and MH700S CNC machining centres for the fabrication of a defined family
of products. These products will be mounted on commeon sized pallets [4] with the aid of modular fixtures. The
Carl Zeiss UMC 5508 coordinate measuring machine (CMM) is incorporated for quality control and automated
part inspection. These stand alone machines are dissimilar are linked to remote Direct Numerical Control {DNC)
terminals which serve as cell controllers. In order to enable the cell to function in an autonomous manner without
much operator intervention the following enhancements and provisions were necessary

- Buffering cum AGYV docking stations to service CNC machines
These will serve as intermediate buffer areas for the receipt and delivery of pallets from and tothe AGYV. They are
made of standard height for the benefit of the AGV and are modular in design.

-Automated pallet transfer units

It is responsible for the rransfer of pallets between the AGY docking station and the CNC machine. It is made
mobile over a short linear track and is controlled by the linear axis motion control module of the PLC. This
makes the locaton programmable and reconfigurable if necessary. It also provides the necessary height
adjustment between the AGV docking and the height of the CNC machine table during the transfer of pallets.

- Swarf control & automated pallet clamping and location

- CMM conveyor system
A conveyor system for pallet transfer has been developed and incorporated with the CMM., It allows the
automated transfer of pallets from the AGV to the CMM and vice-versa.

- Upgrading of CNC machine controllers

The MAHO machine controllers were upgraded to allow for the provision of the LSV2 communication protocol.
Through the remote DNC terminals specific communication routines have been written based on the LSV2
protocol to address the required machine functions in order to allow for remote control of the CNC machines
such as automalic start up, upload, download and selection of NC programs.

Page 171

Proceedings of Asia Pacific Industrial Automation (1A’ 92) Intemational Conference,
May 1992, Singapore

- PLC for FMC hardware automation

The SIEMENS SIMATIC S5 PLC 115U is used for sequence control of all sensors, actuators, limit switches and
other devices that would require digital [/O control for the FMC. The SIEMENS SIMATIC S5 L1 PLC bus
network is used to link the various automated modules in the FMC. The master PLC in the network is linked to
the microcomputer based shop floor control and process monitoring software, ONSPEC, for status feedback and
event triggering for the FMC. Refer to ANNEX III for illustration. .

- Part Identification

Part identification (ID} within the FMC is provide by the optical based SUN X/ID system which allows for read/
write of information such as routing and operation sequences to special ID tags which are embedded and
carefully concealed at the side of the pallets. The ID read/write scanners are locate at the various processing
stations to check for part authenticity during receipt of the pallets as well as to update the operation status of the
part after it has completed each operation. It allows for ease of part raceability and error recovery.

+ Flexible Assembly Cell (FAC)

The FAC has been configured to include the BOSCH & SKILLAM pick and place robotic systems to perform
assembly activities for the family of components to be stored on pallets in magazine. The FAC is capable of the
following :

* Ease of handling a defined family of products with minimum setup and transfer time without operator
intervention.

* Flexibility in programming and movement of the robot to avoid restriction for component handling and
orientation.

* Integration of the two robotic systems with the automated conveyor system for transfer of magazine within the
FAC via the PLC.

* Ability to control and monitor the activities and status of the robotic cell through the in-house developed
EYESCREAM based shop floor control and process monitoring application. This offers the opportunity for
vertical integration for status feedback and information processing.

* Magazine transfer through the provision of automated magazine transfer and buffering facilities for unmanned
assembly for receipt and delivery of magazine between the assembly stations and the AGV.

The OMRON PLC is used to link the various automated modules for the FAC. The OMRON SYSLINK RS$422
link is used to coordinate and synchronize the activities of the BOSCH and the SKILAM robotic systems with the
automated conveyor system for transportation of pallets and magazine for automated part assembly. It is linked to
EYESCREAM based shop floor control and process monitoring software.

« AS/RS and AGVs

The AS/RS is for common storage of pallets and magazine Lo service both the FMC and FAC. It consists of two
racks facing each other with the stacker crane servicing the 216 available storage compartments. Eighty of the
storage compartments are reserved exclusively for the storage of magazine for the FAC. There are two AGVs.
One AGYV is equipped with a twin conveyor carrier dedicated to shutde pallets between the AS/RS and the FMC
and the other has a two tier conveyor system (o transport magazine between the FAC and the AS/RS. The AS/RS
has been retrofitied with the following in-house developed transfer system to support its automated material
handling functions:

* Modular chain driven conveyor system equipped with input and output bays for store-in and store-out of pallets

for FMC,
* A two tier roller conveyor system for store-in and store-out of magazine for FAC.

Since the AS/RS has w service the FMC and FAC simultaneously, its control and inventory management
application sofiware has, therefore, been developed under the UNIX platform to take advantage of the necessary
multi-tasking and multi-user functions. The ORACLE relational database management system has been chosen
as the database for the AS/RS system because of the following:

* Openness for access of relevant data for processing and manipulation through SQL.

* Ease of report generation and formatting.

* Portability and ability (o intercommunicate across heterogeneous platforms.

Page 172

Proceedings of Asia Padfic Industrial Auomation (IA' 92) Intemational Conference,
May 1992, Singapore

The AGVs rely on magnetic guidance 10 move along special magnetic based tracks laid on the floor to define the
AGY routing. They are capable of bidirectional angd transverse movements with spin turn ability. The AGVs are
interfaced with all the docking stations through a special 4-bit optical based sensor. This sensor serve as an
intermediate communication interface between the AGV and the PLC module controlling the docking station. It
helps to synchronize pallet and magazine transfer between the AGV and the docking stations.

3.0 FMHSS PLANNING AND DESIGN

3.1 Graphical Simulation

The GRASP computer-aided graphical simulation package has been utilized to build a model of the FAC, FMC,
AS/RS as well as the two AGVs for visualization and dynamic simulation of the material flow. It serves as a
useful tool to help analyse the design of the various automated material handling modules and enables the
simulation of the operational performance. The derivatives from this graphical simulation exercise includes the
following :

- Optimum layout planning.

- Collision detection of all interacting facilities,

- Determination of parameters such as operation cycle, transfer and idle times.

- Definition for operation sequence and digital I/O specificalion for overall PLC program consideration.

3.2 Part Family specification

Based upon the physical specifications as derived from the FMC and FAC and historical production records;
statistics were obtained to determine the characteristics of the parts that have been produced such as maximum
and minimum physical size of parts that can be accommodated, tooling and material requirements, number of
settings required, processes supported, and etc. This information is used to formulate the part families and based
upon these information a Product Assessment Module has been developed to assess the suitability of parts and
only parts that meet the characteristics for the part family will be accepted. This is essential in order to match
process and operation requirements to available capability and resources.

4.0 CONTROL ARCHITECTURE FOR FMHSS

The description for the flow of information within the control architecture of the FMHSS will commence from
the receipt of the daily schedule lists by the AS/RS controller from the Scheduler for machining and assembly.
These schedule lists have been optimised [5] based on criteria such machine utilisation, throughput time and
work-in-progress.

4.1 Operation Procedure

The operation begins with raw materials pre-fixtured on common size pallets and components loaded into the
magazine at the manual fixturing and assembly stations and stored away in the AS/RS. Parts will be retrieved
from the AS/RS and sent to the respective machining centre, assembly station and the CMM for processing, and
finally sent back to the AS/RS for either in progress or temporary storage. Parts that require secondary operations
like grinding or heat treatment, are sent out of the system for these operations to be accomplished and retumed
finally to the AS/RS.

4.2 Information Processing
The AS/RS controller needs to shuttle between servicing the FAC and FMC. It will only store-out the orders from
the scheduled lists depending upon the availability of the machining, assembly and inspection stations. This

information is feedback on-line by the real-time shop floor control and process monitoring software, ONSPEC,
which is responsible for the initiation, coordination and synchronization of all FMHSS activities. After dispatch

Page 173

Proceedings of Asia Pacific Industrial Awtomation (A’ 92) Intemational Conference,
May 1992, Singapore

of the order the AS/RS will register a request for the service of the AGYV to collect and deliver the parts to its
designated station. The AGV will be informed by ONSPEC to collect parts that have been machined, assembled,
and inspected. Refer 10 ANNEX IV for illustratdon of the information flow for the FMHSS.

The AS/RS and AGV controllers, ONSPEC and the shop floor control and process monitoring application for
FAC are integrally linked over a NOVELL ethernet based local area network (LAN) backbone. The following
were incorporated as part of the LAN solution in order to allow for intercommunication and information transfer
between the specific applications across heterogeneous platforms :

- Netware protocol between all the MSDOS and OS/2 based systems. In addition, the MAP ASSIST utility has
been used to offer peer to peer communication over NOVELL LAN between MSDOS based systems. This
effectively reduces the dependency on the LAN server and the information traffic flow to the server.

- 3+0Open TCP with DPA (Demand Protocol Architecture) for communication between the MSDOS and OS/2
based systems with UNIX.

Based upon this LAN solution the control architecture has been formulated to cater for the processing of the
scheduled orders based on the “pull-through technique™ where parts will be fabricated and assembled enly upon
availability of the processing station, This is to allow balanced and optimum utilization of resources.

This heterogeneous control architecture has been adopted because it caters for effective distributed information
processing. Each enlity will be able to operate independently with intercommunication on a peer (0 peer basis.
Furthermore, such an architecture allows for ease of software development, maintenance, system reconfiguration
and expansion.

5.0 CONCLUSION

In summary, the developed integrated material handling system offers flexibility in terms of the following :
- Modularity

- Programmability
- Reconfigurability

This is essential in order to allow for progressive implementation, ease of adaptation (0 suit changing product and
process needs, and more importantly to safeguard the system against technological redundancy and obsolescence.
This system will serve as a working technological showcase to help promote the concept of integrated
manufacturing to the local manufacturing industry,

6.0 ACKNOWLEDGMENT

The author wishes to express his thanks to the following :

- The Manpower Development Division of the Singapore Economic Development Board for much appreciated

support.
- Colleagues in ATG involved in the project (in particular N.E. Choong, S.H. Ang, C.K. Lim and C.M. Ching)
- Paul Binding and Yamanouchi from ER Mechatronics Pte Ltd.

Special thanks are also express to his wife Magdalene for her constant encouragement, patience and kind
understanding,

Page 174

Proceedings of Asia Pacific Industrial Amtomation (JA' 92) Intemational Conference,
May 1992, Singapore

REFERENCES

1. Productivity Digest/SME Newsletter March 1989.

2. Valdew Singh, ** PC Based Computer Iniegrated Manufacturing Solution for Small and Medium Enterprise”,
Proceedings of Asia-Pacific Industrial Automation (1A} ‘90 Conference, May 1990.

3. Valdew Singh, “ CIM Mode! for Metal Machining Trade”, Proceedings of International Conference on CIM
(ICCIM) “91 Conference, Oct 1991.

4.Roon Lewald, “Soon: an international pallet standard”, American Machinist, Feb 1990, pp 69-70.

5. NF Choong, KP Ang, V. Singh, * Computer Simulation as a Tool for Integrated Manufacturing”, Proceedings
of Asia-Pacific Industrial Automation (I1A) ‘92 Conference, May 1992,

REGISTERED TRADEMARKS
SIMFACTORY - CACI SimLab, Inc
GRASP - BYG Systems Ltd, UK.
ORACLE - ORACLE Corp

ONSPEC - Heuristics, Inc

NOVELL - Novell, Inc

EYESCREAM - Real Time Graphics, Inc
3+Open - 3COM Corp

MAP ASSIST - Fresh Technology Corp

Page 175

ANNEX I

[PRODUCTION_PLANNING AND MANAGEMENT!

IDESIGN AND DEVELOPMENT)| . ETHERNET BASED LOCAL
AREA NETWORK (LAN)

COMPUTER AIDETl FOCTURING (CAF)
/OOMPUTER AIDED TOOLING (CaT)

_

COMPUTER 4IDTD DESIDN (CAD)
POR DESMIN & MODILLING

DISTRIBUTED NUMIRICAL
CONTROL (DNC) POR NC
PROGRAN MANAGEKENT

FLEXIBLE ASSEMBLY CELL

- Distribution of activities within the CIM hierarchy

ANNEX II

B
=
2
—
S
=
o
Qo
=
)
=
o
=
wn

OPERATION & CONTROL ROOM

FLEXIBLE ASSEMBLY CELL

FLEXIBLE ROBOTC CELL FOR

COMPONENT ASSEMBLY AND

INSPECTION

FLEXIBLE MACIINING CELL

5-AXIS MACHMNING CENIRE

CNC COORDINATE
MEASURING MACHINE

AUTOMATED STORAGE &
RETRIEVAL SYSTEM

4-A%1S MACHINING CENTRE

ANREX II1I

AND CONTROL

FLEXIBLE ROBOTIC

SHOPFLOOR MONITORING

CELL FOR COMPONENT
ASSEMBLY & INSPECTIO

ACY FOR
FAC

AGY FOR
FMC

EYESCREAM BASED SHOPFLOOR
CONTROL AND MONITORING

FOR FAC
' .

CNC COORDINATE MEASURING

MACHINE

AUTOMATED STORAGE
& RETRIEVAL SYSTEM
WITH CONVEYOR SYSTEM

FLEXIBLE MANUFACTURING CELL

CIM ARCHITECTURE

FOR SHOPFLOOR CONTROL & MONITORING

—

SHOPRLOOR
SCHEDULER

= UNIX BASED ,
~ DAY TO DAY SCHEDULING OF
WORKS ORDER FOR COMPONENT
MACHINING AND ASSEMBLY OPERATION

SHOPFLODR MONTTORING
AND CONTROL SCFTWARE (FMC)

- 05/2 BASED
- OVERALL MANUFACTURING ACTIVITY CONTROL

& WORKS ORDER

VEHKCLE

&

AUTOMATED GUIDED

=TRANSPORTATION FOR
MANUFACTURING CEILS

AUTOMATED STORAGE &

RETRIEVAL SYSTEM

4

g
o

SHOPFLOOR MONITORING
AND CONTROL SOFTWARE (FAC)

~M5-D0S BASED
—QVERALL ASSEMBLY ACTMTY CONTROL

V811121171117 874
LI

Y ELITIITIIIITTIY

Vorsiiinl

FEIITIIITITTI

~FOR PALLET MAGATIHE
AND COMPONENT STORACE

AUTOMATED GUIDED
VEMICLE

@mn

~TRANSPORTATION
ASSIMBLY COLS

DISTRIBUTED NUMERICAL CONTROL

~ NC PROGRAM MANAGEMENT
~ OPERATION DATA ACQUISITION

CNC TURN-MILL

@

~FOR COMPONENT
MARUFACTURNG

4—AXIS MACHINING
CENTRE

-FOR COUPONENT
MANLFACTURING

S—ANIS MACHINING
CENTRE

«FOR COMPOMENT
MANLFACTURNG

&

CNC COORDINATE
MEASURING MACHINE

—FOR COMPONENT
QUALITY INSPECTION

FLEXIBLE ROBOTIC CELL FOR
COMPONENT ASSEMBLY AND INSPECTION

—ASSEMBLY
~INSPECTION USING MACHINE VISION

AT XIANNV

APPENDIX III

INFORMATION MODELS

Manufacturing
Facility

Part Master/
BOM

Resource

Process
Plan

Order
Entry

Schedule

WwIP

Engineering
Resource

Manufacturing
Cell

Customer

Supplier

Page 180

Schedule End Date

FIELD DEFINITION | SIZE DESCRIPTION
Manufacturing order number| NI[7] User defined unique identifier for a batch of manufacturing order
Part number CI15) | Unique identifier for the part (or component).
Priority N3] |It sorts and dictates the sequencing of scheduled jobs.
™1 Order Status C[1] |Itindicates the pan's current position within the order process.
—| Schedule Status C[10] | It indicates the status of the part within the scheduling & manufacturing process.
Planned Quantity NI[9] |Ii specifies how many or how much of the pant is required for manufactre.
Unit of Measure C[4] Ii is the standard quantitive unit for the part used in the manufacturing process.
Schedule Start Date Date | Planned date of commencement for the manufacture of the required quantity of parts..
Date

Planned date of completion for the manufacture of the required quantity of pants,

—3» (Schedule / Unschedule / Complete / WIP / Hold)

with manufacture.

l——bﬁ: Quotation or Firmed planned forecast
3 = Open Order. Confirmed order but all required issues or shipment have not been made for the item.

4 = Released Order. Confirmed and planned but pending receipt of required issues or shipments.
5 = Closed Order. All required issues or shipment have been made for the item and can therefore proceed

6 = Closed Order. Manufacture of the item is complete and is ready for dispatch.
7 = Closed Order. The order is ready to be deleted from the active file and retained in order history.
8§ = Closed Order. Purge the order and do not retain in order history.

9 = Credit Hold. The customer’s credit limit has been exceeded or the order is placed on hold for another
reason. The item is then treated as an open order.

~

Page 181

The bill of materials (BOM)} is a list of the itemns, ingredients or materials needed to produce a parent item, end item,
or product. [t is not just a simple listing of dependent demand items, but a structured lisi which describes the sequence
of sieps in manufacturing the product.

The BOM is utilised for the following :

* Manufacturing engineering use the BOM 10 show how to manufacture the product®

* Production planning use the BOM to schedule the parts which make the product.

* Manufactunng use the BOM 1o make the product on the shop floor.

* Finance use the BOM to cost the uct.

* Onder entry use the BOM 10 translate customer orders and enquiries based upon the inter-dependency and
relationships of components! for the product in terms of manufacture, procurement and eic.

FIELD DEFINITION SIZE DESCRIPTION
Parent Part Number C[15]) Unique identifier for the parent item which is the higher level item in the BOM.
Effectivity start Date Date Date on which the part is introduced into the BOM.
- Effectivity End Date Date Date on which the part is severed from the BOM
§ Unit of Measure Cl4) Itis the standard quantitive umit for the part used in the manufacturing process.
% Engineering Change Notice Number higl The revision for the BOM as authorized by the engineering department.
% Change Effected by C[20] Personnel, section or department responsible for the change.
‘E‘ Date Date Date on which the engineering revision was initiated.
v Phases out Part Number C[15] Preceeding part that was in use.
g? Phased out by Part Number C[15] Succeeding part Lo be used.
Number of levels N[2] Nurmber of Icvels in BOM supported for the parent ilem 10 be produced.
Number of children N[3) Number of different sub-componentis supported at the specified level.
“m
Parent Part Number C[15] Unique identificr for the parent item which is the higher level item in the BOM.
Number of Children N(3) Number of different sub-componenis supported at the specified level.
Part Number (Child) Cris) Unique identifier for the parnt (or component).
B Part Type cnj ;g;;l:?&?;esmtf% Baﬁous types of relationship between a component & iis
= §‘_,- Quantity per assembly N[122) Number of components required for assembly of per unil parent itemn.,
E Effectivity start Date Date Date on which the pan is introduced into the BOM.
; Effectivity End Date Date Date on which the pan i3 severed from the BOM
o Unit of Measure C[4] Tt is the standard quantitive unit for the part used in the manufacturing process.
= Lead-time offset N[9] It is the difference between the due date and the release date.
Engineering Change Notice Number | N[7] The revision for the BOM as suthorized by the engineering deparument
Change Effected by Cl20] Personnel, section or department responsible for the change.
Date Date Date on which the engineering revigion was initiated.
Phases out Part Number CIi3) Preceeding part that was in use.
Phased out by Part Number Cl15] Succeeding part 10 be used.
_'/N = Normal component that is consumed in the manufacture of its parent. \
P= rl;ha:nl:g‘t:\tmmeg; ru::: is used for BOM structuring purposes only (e.g. a transient subassembly consumed in the
R =Rescurce component used in the planning process of the manufacture of its parem'_(e:-g, labour & ;'na-chi.ning hrs),
C = Co-product component derived from the manufacture of the parent,
T = Tool component used in the manufacture of the parn.
Q = Tool retum item which will be retumed after manufacture of the part. /

Page 182

The process plan will involve assxgnmml of nnnufaaunng facilities and resources to each of the plamed

manufacturing operation.. The 5 munng is geared towards cellular type of production where Group
Process Technology is applied 1o identify “sameness™ of enls or processes in order (o denive
pp parts, equipm P
Plan suitable working cells.
O
O o may Mﬁnu.l’qcmnng
L ;' > n.mgnmc.m
235 Plan Mznufacturi
<A i
mlhxn%hlp
agsignment
One to many
fo mx
FIELD DEFINITION SIZE DESCRIPTION
5 Part Number C[15] Unique identifier for the part (or component).
=
E "E Process Plan 1D NI7] Unique identifier for the process plan.
g % Process Description Cl60] Brief exinal description pertaining to the process routing.
E = Manufacturing Cell assignment NI[3] Unique identifier for assigned manufacturing cell where pant need to be delivered. for
manufacture. (_~
e _____________
Process Plan 1D N[7] Unique identifier for the process plan,
Manufacturing Operation ID N[7] Unique identifier for the manufacturing operation.
- Manufacturing Operation Description Cl60] Brief textual description.
=]
'g' Preceeding Manufactulmg Operatlon 1D N[7] Unique identifier for preceeding manufacturing opention.
6",'_:. Next Manufacturing Operation ID NI[7) Unique identifier for next manufacturing operation to be performed.
@
.%a Eﬂ Alternative Manufacturing Operation 1D N[7] Unique identifier for alternative manufacturing operation.
‘;‘: a Setup time per unit item (min) N[6.2] Time required to equip and prepare the “work centre” or cell for production.
-
E Machining time per unit item (min) NI[6,2] Actual productive time for manufacture of part.
= Handling time per unit item (min} NI[6,2} Time required for handling of part which includes transportation.
Operation time (min) N[10,2] Cumulative setup, machining and handling 1imes for the manufacture of the order.
Scrap rate NIS2] The percentage difference between the amount or number of unit pans started in a
mnufactunnglgroeeu and that amount or numbser of units which is completed at an
acceptable quality level.
L
- Manufacturing Operation ID N7 Unique identifier for the manufacturing operation.
= Asset ID N[7] Unique identifier for either an employed personnel or an item which is owned by the
2 business and has value that can be measured objectively.
b Feed N4l Machining feedrate.
EZ N6l
E E Speed (mm/min) Cutting speed.
.,g -%n Depth of cut {inm) N[3]
g~ N[3)
= Number of passes
Remarks Clsa) Textual comment.
Manufacturing Operation ID N7l Unique identifier for the manufacturing operation.
Resource ID C[15] Unique identifier assigned to resource item
- Resource type 2] Classification of resources :
] T = Toolings
LE TA= Toolmg Accessories or Attachments
2% M = Matcrnals
87 F = Fixturing elements
S FA = Fixwring Accessories or Atachments
M = Miscellaneous
Quantity required N[12,2] Total quantity of resource item 1o be allocated or reserved.
Unit of Measure Ci4] It is the standard quantitive unit for the pant used in the manufacturing process.

Page 183

FIELD DEFINITION SIZE DESCRIPTION

Manufacturing Order number NI[7] User defined unique identifier for a batch of manufacuring order.

Part Number C[15] Unigue identifier for the part (or component).

Actual Quantity produced N[9] The number of parts manufactured.

Work centre or Cell utilization rate N[5.2] ‘The percent time that a “work centre™ or cell is ranning production.

Actual capacity (hrs) N[52] Capacity calculated from actual performance data,

i.e. number ofpants produced multiplied by standard hrs per part.
3
Order Entry
FIELD DEFINITION SI1IZE DESCRIPTION

Customer ID NI[7] Unique identifier assigned to a customer.
Precceding Manufacturing Order Number N7} Unique identifier assigned for the previous batch of manufacturing order.
Current Manufacturing Order Number N[7} Unique identifier assigned for the current batch of manufacturing order.
Parent Part Number C[13] Unique identifier for the parent item which is the higher level item in the BOM.
Description Cle0] Brief textual description of the customer ordexfproduct,
Product Effectlvity Start Date Date Date from which the product is being supported.
Product Effectlvity End Date Date Date from which the product is no longer supported.
Type (Repeat/One OFf) Cl1] Classification of manufacturing order for either repeat or one off type.
Due Date Date Planned completion or shipmen date for the product.
Unit of Measure Cl4] It is the standard quantitive unit for the pant used in the manufacturing process.
Unlt Price N[12.2] It is the price per umit of the item being ordered.
Order Quantity N[9] Number of items ordered at the specified unit of measure.

Page 184

Machine & Work parameters

Personnel

Applies to
Manufacturing | 5 machines

nt an er
Facility mq;ﬁrup::;u

FIELD DEFINITION SIZE DESCRIPTION
Unique identifier for eith rsonnel i hich is owned by th
Asset ID N7 bumsiqnn;: and h:;vol{m ll':lrl.::fnc be mel.:urracnd l}oggpoczvcly.“ ° by the
Description C[60] Brief textual description for the item.
Location C[15) Physical location where the personnel is assigned or where the asset item
can be found or is being curremtly used.
Working capacity (hrs) N[3) Allocated productive time available for working.
"Labaur cost / hr N{7.2)
Handling cost / hr N[7.2]
L
Asset ID N{7]
Supplier ID N[7] Unique identifier for supplier of asset itern.
Last Service / Maintenance Date Daie Date on which service or maintenance is carmied out on the asset item.
Repaired on Date Date on which repair work was carried out on the asset item.
Repair work order number N[Work order number for repair work on the asset item.
Maximum job size accommodated Physical size of part that can be handled without any problems by the asset
X axis (mm) NI521 Hem.
Y axis (mm}) NI5.2]
Z axis (mm) Ni5,2]
Accuracy N[4.2] The degree of freedom from error.
. Standard Cost
Machining cost / hr N[7.2]
Ltilittes
Horse power N[T)
Speed range
Maximum (mm/min) N[6])
MiInlmum (mm/min) N[6)
Feed range 1. ximum (mm/min) NI4]
Mlnimum {(mm/min) N[4)
Payload (kg} NIs]
X axis (mm) Ni52]
Y axis (mm) N(5.2)
Z axis (mm) NI5.2]
A axlg (mm) Ni5.2]
B axls (mm) N{5.2]
Standard Times
Setup time (min) NI[5.2]
Tool change time (min} NI[5.2]
Feed change time (min) N[5.2]
Speed change time (min) NI[5.2]
Table rotation time (min) NI[5,2]
Tool adjustment time (min) N[5.2]
Rapid tranverse (mm/min) N(5,2]
Asset ID N[7]
Personnel ID Cns)
Name C[30]
Salary Ni7.2]
Address Cl60]
Telephone Cl20]
Skin C[30] Skills or expertise personnel possess.
Skill level N[2]
Remarks C[60]

Page 185

Resource Appliesto
Tools/Materials/Fixtures
FIELD DEFINITION SIZE DESCRIPTION
Resource ID cns) Unique identifier assigned to resource item
Resource type CR Classification of resources :
T = Toolings .
TA = Tooling Accessories or Attachments
M = Materials
F = Fixwring elements
FA = Fixuring Accessories or Atlachments
M = Miscellancous
Description Cl60] Brief textual description for resource item.
Location C{15} Storage or usage area where the resource item can be found.
Account Number N[15] Assigned number for purchase of the item.
Unlt of Measure C[4} It is the standard quantitive unit for the part used in the manufacturing process.
Unit Price N[12.2} It is the price per unit of the item being ordered.
Buy/Make/Supply Code cy It indicates if the item is as follows :
M = Make (Manufactured in-house)
B = Buy (Purchased and no parnts need to be supplied to the vendor)
S = Supplied (Purchased but supplied to the vendor)
Suppller ID NI7] Unique identifier assigned to the supplier of the resource item.
Catalogue Order Number <ol Catalog number for the supplied resource item.
Purchasing Lead Time N7 The span of time required Lo obtain a purchased item which includes procurement
lead time, vendor lead time, transporationtime, receiving, inspection and put away time,
Last Order Date Date Date on which the last order was placed for the resource item.
Quantity Ordered NI[9] Number of items ordered.
Effectlvity Start Date Date Date from which the resource ilem i3 being supported.
Effectivity End Date Date Date from which the resource item is no longer supperted.
Stock on-hand N[9} Physical stock on-hand minys allocations, reservations and (usually) quantities
held for quality problemns.
Allocated/Reserved Stock NI5] Commitied resource item.
Scrap value N[7.2) Value of scrap per unit measure of scrap.
Unit of measure for scrap cal It is the standard quantitive unit for the scrap item.

Page 186

Manufacturing 7 Grouping of manufacturing stations into cells for part manufacture.

Cell

FIELD DEFINITION SIZE DESCRIFPTION
Manufacturing Cell Group ID N[2] Unique identifier for manufacturing cell.
Number of manufacturing stations N[2} Number of manufacturing stations or processes supported in the configuration.
Manufacturing Station 1 - Assest ID N[7] Uniqfuc identifier for manufacring station.

Description C[60] Brief textual description for manufacturing activity.
Manufacturing Station 2 - Asset [D N7l - dinto -
Description C(e0]
Manufacturing Station 3 - Asset ID N[7) . dinto -
Description Cleo]
Manufacturiig Station 4 - Asset ID N[7) -ditto -
antiaciiring o Dessscerlptlon Cl60) dito
Manufacturing Statlon 5 - Asset ID N[T] it
Description | CI60} dito
Customer
FIELD DEFINITION SIZE DESCRIPTION
Customer [D NI[7] Unique identifier assigned to a customer.
Company/Name Ci40] Name of customer.
Address C[s0)
Contact Person C[25)
Telephone Cl20}
Fax C120]
3
FIELD DEFINITION SIZE DESCRIPTION
Supplier ID N[7] Unique identifier assigned to a supplier.
Company/Name Cl4 Name of supplier.
Address Cl60}
Contact Person Cl[25]
Telephone Cl20]
Fax Ci20]

Page 187

Engineering
Resource

FIELD DEFINITION SIZE DESCRIPTION
Part Number C[15] Unique identifier for the pant (or component).
Location Cl10]

Engineering Resource Cp10]
e

—

Page 188

APPENDIX IV

Association between information models and information representations
in MCC and ELMS CAPM packages

Page 189

Manufacturing
Facility

WIP/Shop floor Status

ACT_USAG WIP_TRANS

IDENT IDENT R
LAST_WIP_TRANS_IDENT OPER_IDENT - SCH_JOB o
ROUT_REQ_IDENT QUANT 2 e DEM_IDENT i
SCH_JOB_IDENT SCH_IDENT W ot |
X! DENT <

SCH_ASS_IDENT SCH_JOB_IDENT A
SCH_IDENT /| rourDENT Y%
START_TIM , g Y] PRI o}
END_TIM R T QUANT it
ASS_IDENT : - o '

EMPL_IDENT :
- - o

ASS_GROUP_ALL ASS_IDENT -
ASS_GROUP_IDENT . EMPL_IDENT g
SCH_ASS_IDENT | SCH IDENT
;ﬁ:\ RN DTS A :':

N SCH X

ASS_GROUP N~ scR r -
SCH_IDENT IDENT o ok

s

e L R s

SCH_ASS_USAG
SCH_JOB_IDENT 1

IDENT

e

DESCR SCH_PARA

CLOS
SCH_IDENT
IDENT

SCH_ASS_IDENT 5
SCH_IDENT £
IDENT o

FROM_TIM

ASS_GROUP_IDENT

R R

SCH_ASS_IDENT
CAL_NAM

OPER_IDENT =
ROUT_REQ_IDENT '

s

START_DAT 4 OPERIDENT [io oo
END_DAT | SCHJOBIDENT [T

TYP : TYP S

5 R e >
o et R S
i S R e

SCHEDULE DATA TABLES IN MCC

Schedules

INPUT.

Process Plan

BOM

BILL_OF MAT_ITEM:;
BILL_OF MAT_IDENT
BILL_OF_MAT_ITEM_N
BILL_OF_MAT_NAM
IDENT
ITEM_NO
QUANT
UNIT_NAM

BILL_OF_MAT

NO_ITEMS_PROD

PRI

UNIT_NAM

BILL_OF _MAT _IDENT
DESCR

TOOL_NO

BILL_OF_MAT_REQ;

BILL_OF_MAT_ITEM_IDENT|
OPER_IDENT

QUANT

WAST

CPER_LINK;

FROM_OPER_IDENT
IDENT
ROUT_IDENT
TO_OPER_IDENT
TYP

ENG_CHANG_IDENT CONS_REQ:

LAG_UNIT_NAM =

MAX_LAG OPER—IIql)OENT ‘

MIN_LAG AP
FIX_QUANT
ITEM_QUANT
COST

ROUT_REQ_INST,

OPER_IDENT
ROUT_REQ_IDENT
UTILL

Common resource

RES_IDENT

PRODUCT & PROCESS DATA TABLES IN MCC

Customers Data

Order Entry /
Schedule

Order Entry

QUSTOMER_ORDER

CUST _ORD_NR
CUST_ORD_KEY
CUST_KEY
ITEM_KEY
QUANTITY
DATE

PRICE

Suppliers Data /

Resources

PROCESS

CUST_STATUS

WORKS_ORDER

WORKS _ORD_NR
WORKS_ORD_KEY
WO_STAT
CUST_ORD_KEY

WORKS_ORDER_USAGE

e e L L

% ITEM/RESOURCES

| ITEM_KEY
. | ITEM_ID
“| ITEM CLASS
ITEM_NAME

WORKS _ORD_KEY
ITEM_KEY
QUANTITY

DATE

LOCATION
ISSUE_TO
BATCH_ID_NR

WORKS_ORDER_ITEM

ITEM_DESCP

£ TTEM_UNIT

| ITEM_MAX_STOCK

| ITEM_MIN_STOCK

| ITEM_STOCK_ORDERS

21 ITEM_STOCK_WIP
2 ITEM_STOCK_REQUIRED
33 ITEM_STOCK_PLAN

WORKS ORD KEY
TTEM_KEY

WO_START
WO_DELIVERY

WO_PLAN_START
PRODUCT_WIP

| ITEM_cosT
| ITEM_LEADTIME
Y ITEM_PRICE
‘2| STORE_LIFE
| ITEM_SPEC_NR

ITEM_STOCK_ALLOCATED |

Resources

OPERATION_PROCESS

OPERATION_KEY
PROCESS_KEY

OPERATION_PLAN

ITEM_KEY
OPERATION_KEY
TOME_SLOT
PLAN_NR
TIME_UNTTS (START)
‘TIME_UNITS (END)
TDME_UNITS (SETUP)
WORK_GROUP_KEY
SKILL_KEY
PERSONNEL_KEY

Part Master / BOM

DATA RELATIONSHIPS IN ELMS

PROCESS_KEY
PROCESS_NR
PROCESS_NAME
PROCESS_DESCRP
PROCESS_CAPACITY
LOCATION
WORK_CROUP..KEY

Resources/

_OPERATIOR Process Plan /

OPERATION_KEY
OPERATION_NR
OPERATION_NAME
DESCRIPTION

Manufacturing
cell configuration

WORK_GROUP

WORK_GROUP_KEY
WORK_GROUP_NAME
PERSONNEL_KEY

PERSQONNEL

PERSONNEL_KEY
WORK_GROUP_KEY

PERSON_ADDRESS
PERSON_TEL_NO
SKILL_KBY

APPENDIX V

Database ‘Driver’
Services offered

Page 193

Database Driver

Services Offered Details

CONNECT Provides a direct connection to the database and loads the definition of data
access objects from a file. An application must connect to the database before it
can access any data. The parameters for the connect service are the username and
password to establish the database connection and the file name from which the
definition of the data access objects is loaded.

DISCONNECT Closes the connection to the database, established by the connect service. Before
the connection is closed, the changes performed in the current transaction are dis-
carded. To make the changes permanent, the commit service must be used. The
disconnect service requires no arguments.

SELECT Retrieves rows and columns from one or more SQL tables. When requesting the
select service, a data access object must be specified. Optional arguments are an
additional search condition and a file name. The actual SQL statement is build up
using the definition of the specified data access object and the additional search
condition if present. Assuming that the data access object has a search condition
defined and an additional search condition is given when the stlect service is
requested, the SQL statement has the following form:

SELECT object field list FROM object tables
WHERE object search condition AND additional search condition

The retrieved data is writien (o a file, specified by the file name when the service
was requested. If no file name is given, the result is written to a global character
string. Because of the fixed length of the character string it should only be used,
when the amount of expected data doesn’t exceed this length. Otherwise the rest
of the data is discarded. When an error occurs while the SQL statement is
executed, this is also indicated in the global character string and the specified file
will be empty.

INSERT Adds new rows to a database table. The insert service requires two mandatory
arguments. One to specify a data access object, the SQL statement should refer to
and the second argument to define the data that is to be inserted in the database
table. The insert service can only be requested for data access objects that refer to
one table in the table definition. Otherwise an error will occur when executing the
SQL statement. The SQL statement has the following form:

INSERT INTO object table {object field list)
VALUES (new data)

A further restriction of data access objects that can be used for the insert service
concerns the list of field names. In this list, all fields must be present that are
forced to contain a value by the definition of the databasc table, i.c. all fields,
specified as NOT NULL. The new data argument must contain a value for each
field name given in the same order as in the data access object definition. The
result of the execution of the SQL statement will be indicated in a global
character string.

Continue..... B

Page 194

Database Driver

Services Offered Details

UPDATE Changes the data in a table. The update service has two mandatory and one
optional argument. The first nandatory argument specifies a data access object
and the second gives field names and their new values. In the optional argument,
an additional search condition can be specified. The update service is again
restricted to data access objects which refer to only one database table. If an
additional search condition was given when the update service was requested and
the specified data access object has a search condition defined, the actual SQL
statement has the following form:

UPDATE object table SET change data .
WHERE object search condition AND additional search condition

The actual number of changed rows will be indicated in a global character string.
It is not treated as an error if no row is changed.

DELETE Removes rows [rom a table. When requesting the delete service, a data access
object must be specified. An additional search condition can be given, but is not
mandatory. The delete service can only be requested for data access objects,
referring to one database table. Otherwise an error will be indicated. If an
addidonal search condition is given and the specified data access object has a
search condition defined. The actual SQL statement has the following form:

DELETE FROM object table
WHERE cbject search condition AND additional search condition.

The number of deleted rows will be indicated in a global character string. It is not
treated as an error if no row is deleted.

If one of the optional search conditions is not present in the services select,
update or delete, the where clause will have the following from:

WHERE single search condition

If none of both search conditions is defined, no where clause is added to the
actual SQL statement. :

COMMIT Makes permanent all changes performed in the current ransaction (naturally, the
data may be changed by future updates). Before the commit service is requested,
the changes performed in the current transaction are not visible for other users of
the same database. The commit service marks the end of the current transaction
and the beginning of a new one. No arguments are required for this service.

ROLLBACK Undo the work done in the current transaction. The rollback service requires no
arguments.

Page 195

Program listings

#include <stdio.h>
#include “local_incl.h”

FILE *temp_file;
char column[40];
char file_line[132];
char file_name[60];

extern char result_string[VERY _LONG_STRING];

main(}
{

int i
strepy(file_name, “/home2/sandra/valdew/oracle_c/progs/example_1_tem");
mw_connect(*mcc21”, “m”, */home2/sandra/valdew/oracle_c/progs/file_1.ixt™);

r* Usage of Files */
mw_query(“objectl”, *“, file_name);
if((temp_file = fopen(file_name,"r")) == NULL)
printf("\nError, open.”),

file_line{0] = \0";

1=1;
while(file_reader(column, temp_file, file_line))

{
printf(’\n%d. Value: %s.”,i++,column);

}
fclose(temp_file);

/* Usage of Query */

mw_query(*“objectl”,"item_no = ‘LUT-B1°",™);
printf(""nResult_String: %s.” result_string);
i=1;
while(next_value(result_string, column, result_string))
{

printf(*“\n%d. Value: %s.” i++,column);
printf{"\nResult_String: %s.” resull_string);

)

/* Usage of insen. */

mw_insert(“object1”, “*Example access_ora’, ‘Example’”);
printf(""nResult_String: %s.” result_string);
mw_query(“object2”,”item_no = ‘Example'”,”");
printf("“nResult_String: %s.” result_string);

i=1;

while{next_value(result_string, column, result_string))

{
printf(*n%d. Value: %s.”,i++,column);
printf(*\nResult_String: %s.” result_string);

}

Page 196

/* Usage of update */

mw_update(“object1”, “item_descr = ‘Ex’”, ““*);
printf("\nResult_String: %s.” result_string);
mw__quel'y(“ObjeCll","",“");

printf(""\nResult_String: %s.” result_string);

i=1;

while(next_value{result_string, column, result_string))
{

printfC\n%d. Value: %s.”,i++,.column);
printfC\nResult_String: %s.” result_string);

}

f* Usage of delete */

mw_delete(“object1”, “item_no = ‘LUT-B1'™);
printf("\nResult_String: %s.” result_string);
mw_query(“objectl”,”item_no = ‘LUT-B1'",™);
printf(*“nResult_String: %s.” result_string);

i=1;
while(next_value(result_string, column, result_string))
{
printf(*\n%d. Value: %s.”,i++,column);
printf(""nResult_String: %s."” result_string);

}

printf(*\n");
FAmw_commit(}; mw_rollback(); */
mw_disconnect();

}

Page 197

Meta-file definition

Name of meta-file : file_1l.txt

Definition of database-objects: (for access_ora)

“object]” object name “item i, bill_of_mat b” table name

“i,item_descr, b.item_no, b.nam” columns “i.item_no = b.item_no (+) AND i.item_no LIKE
‘LUT-B1%"” where clause

“object2” object name “itemn” table name
“item_descr, item_no”’ columns ‘““* where clause

Page 198

Program library functions for embedded SQL command calls to
perform required ‘Driver’ services

f* File name & Package Name */
struct sqlcxp

{

unsigned short fillen;

char filnam[13];

%
static struct sglcxp sqlfpn =
{

13,

45,

access_ora.pc”

}'
static unsigned long sqlctx = 0;

static struct sqlexd (
unsigned long sqlvsn;
unsigned short arrsiz;
unsigned short iters;
unsigned short offset;
unsigned short selerr;
unsigned short sqlety;
unsigned short unused;
short *cud;

unsigned char *sqglest;
char *stmt;

unsigned char **sqphsv;
unsigned long *sqphsl;
short **sqpind,

unsigned char *sqhsiv[3];
unsigned long sqhstl[3];
short *sqindv([3];

} sqlstm = {1,3}; .
extern sqlcex(/*_ unsigned long *, struct sqlexd *, struct sglcxp * _*/};
extern sqlbuf(/*_ char * _*/);

extern sqlora(f*_ long *, void * _*/);

static int IAPSUCC = 0;

static int IAPFAIL = 1403;

static int JAPFTL = 535;

extern sqliem(};

/* cud (compilation unit data) array */
static short sqleud0[] =

{12,
2,0,0,0,27,192,.3,3,0,1,0,1,5,0,0,1,5,0,0,1,10,0,0,
25,0,0,0,29,461,0,0,0,1,0,
36.0,0,0,31,480,0,0,0,1,0,
47,0,1,5,17,545,1,1,0,1,0,1,5,0,0,
62,0,1,0,19,556,1,0,0,1,0,0,32,0,0,
77,0,1,0,11,576,1,0,0,1,0,0,32,0,0,

Page 199

92,0,1,0,20,586,1,0,0,1,0,0,32,0,0,
107,0,1,0,14,714,1,0,0,1,0,0,32,0,0,
122,0,1,0,31,794,0,0,0,1,0,
133,0,1,0,15,837,0,0,0,1,0,
144.0,1,0,32,838,0,0,0,1,0,
155,0,1,10,17,888,1,1,0,1,0,1,5,0,0,
170,0,2,0,24 891,1,1,0,1,0,1,5,0,0,
185,0,2,0,31,915,0,0,0,1,0,
196,0,1,10,17.971,1,1,0,1,0,1,5,00,
211,0,3,024 974,1,1,0,1,0,1,5,0,0,
226,0,3,0,31,998,0,0,0.1.0,
237,0,1,10,17,1051,1,1,0,1,0,1,5,0.0,
252,04,0,24,1054,1,1,0,1,0,1.5,0,0,
267,0,4,0,31,1078,0,0,0,1,0,

B

/*&tt*t#********t**tttttt****t*t**t*t****tt****t***##ttt**t‘t*t*tt***tt#***t*t#/
/* File: access_ora.pc */

/* Function: The functions in this file provide access to an oracle database */

/* using embedded SQL-statements. */

f* First, the programm has to connect to the oracle database using the */

/* function mw_connect. Then the data can be accessed and manipulated by */

/* the functions mw_query, mw_insert, mw_update and mw delete. To make */

/* changes to the database permanent, the function mw_commit has to be */

/* called. To discard changes, call the mw_rollback function. The function */

/* mw_disconnect is used to end the database session. Note that mw_disconnect */

/* discards all changes that have not been commited. */
/***t*********************************##*t************t***********#**********t#l

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include “local_incl.h”

#ifndef NULL
#define NULL 0
#endif

/t*ttt*******t**t*******##************#**#******t#t*#*****ttt**#*****t*****#*l*l

f* Only for debuging purpos */

/****#*******t*t****#************#**#*************#****************************!

#define NOPRINT O
#define NOSTATEMENTS 0

EERERR Rk bk Rk Rk kb kR kR R R Rk R Rk

/* Maximum number of select-list items, allowed in an select statement. */
,**tt******t*t*t****ttttitt*t***t*#***************t*&*t*t***t********t‘*****tt*,

#define MAX_ITEMS 30

/t**l***#***********‘*********************#****t*********************#*********!

/* Maximum lengths of the names of the select-list items in an select */

/* statement. */
/**tt**#t*t***t#***##**#tt*t********tttttt*********t*t*********#t*i************/

Page 200

#define MAX_VNAME_LEN 30

f****‘**itt**#***1t************####**#*tt****ttt*******t*t******t*****t******tt/

/* This string is used 1o process the SQL-statements */
I*t*ttt*ttt**#"ttttttttttttttt*tttt‘titt##&*tttttttttttttttt*t*ttt*‘*tt*ttt#ttl

f* SQL stmt #1

EXEC SQL BEGIN DECLARE SECTION;

*f

char sql_statement[1024];

/* SQL stmt #2

EXEC SQL VAR sql_statement [S STRING(1024);
EXEC SQL END DECLARE SECTION;

*f

/* SQL stmt #4

EXEC SQL INCLUDE sqlca;

*

/*
* $Header: sqlca.h,v 1040100.1 91/02/26 00:14:09 ¢potteng Generic<base> $ sglcah
*f

* Copyright (c) 1985,1986 by Oracle Corporation. */

f*

NAME

SQLCA : SQL Communications Area.
FUNCTION

Contains no code. Oracle fills in the SQLCA with status info

during the execution of a SQL stmt,

NOTES

If the symbol SQLCA_STORAGE_CLASS is defined, then the SQLCA
will be defined to have this storage class. For example:

#define SQLCA_STORAGE_CLASS extern
will define the SQLCA as an extern.

If the symbol SQLCA_INIT is defined, then the SQLCA will be statically initialized. Although this is not neces-
sary in order to use the SQLCA, it is a good pgming practice not to have unitialized variables. However, some C
compilers/0OS’s don’t allow automatic variables to be init’d in this manner. Therefore, if you are INCLUDE’ing
the SQLCA in a place where it would be an automatic AND your C compiler/OS doesn’t allow this style of ini-
tialization, then SQLCA_INIT should be left undefined -- all others can define SQLCA_INIT if they wish.

MODIFIED

Clare 12/06/84 - Ch SQLCA to not be an extern.

Clare 10/21/85 - Add initialization.

Bradbury 01/05/86 - Only initialize when SQLCA_INIT set
Clare 06/12/86 - Add SQLCA_STORAGE_CLASS option.
*

/

#ifndef SQLCA
#idefine SQLCA 1

Page 201

struct sqlca

{

/* ubl */ char sqlcaid[8];
/* b4 */ long sqlabc;

/* b4 */ long sqlcode;
struct

{

/* ub2 */ unsigned short sqlerrml;
/* ubl */ char sqlerrmc[70];
} sqlerrm;

f* ubl */ char sqlerrp(8];

/* b4 */ long sqlerrd{6];

/* ubl */ char sqlwarn([8];
f* ubl */ char sqlext[8];

h

#ifdef SQLCA_STORAGE_CLASS .
SQLCA_STORAGE_CLASS struct sqlca sqlca
#else

struct sqlca sqlca

#endif

#ifdef SQLCA_INIT

={

{ISI’ ‘Q,' IL!’ IC’, ‘AI, . :' L3 s’ L3 i}'
sizeof(struct sqlca),

0,

{0, {0}},

[st’ lo:' :T!’ ‘ l’ |S;' :E!, .T’, [t}‘

#endif

f*end SQLCA */

/* SQL stmt #5

EXEC SQL INCLUDE sqlda;
*/

f*

* $Header: sqlda.h,v 1040100.1 91/02/26 00:14:15 epotieng Generic<base> § sqlda.h
*, .

!t*t*#******t*******************t*#********************t******t*

* The SQLDA descriptor definition *
*____ ¥
* VAX/3B Version *

* %

* Copyright (c) 1987 by Oracle Corporation *

LR E L ELL L2 L] **********#***#**tt******************************t***/

Page 202

/* MODIFIED

Moise 12/01/87 - undef L and S for v6 include files
Richey 07/13/87 - change int defs to long

Clare 09/13/34 - Port: Ch types to match SQLLIB structs
Clare 10/02/86 - Add ifndef SQLDA

*f

#ifndef SQLDA_
#define SQLDA_ 1

#ifdef T
#undef T
#endif
#ifdef F
undef F
#endif

#ifdef S

undef S
#endif
#ifdef L
#undef L
#endif

struct SQLDA {

long N; /* Descriptor size in number of entries */

char **V; /* Ptr to Arr of addresses of main variables */
long *L; /* Ptr 10 Arr of lengths of buffers */

short *T; /* Pir to Arr of types of buffers */

short **I; /* Pir to Arr of addresses of indicator vars */
long F; /* Number of variables found by DESCRIBE */
char **S; /* Ptr to Arr of variable name pointers */

short *M; /* Pir 1o Arr of max lengths of var. names */
short *C; /* Pir to Arr of current lengths of var. names */
char **X: /* Pir to Arr of ind. var. name pointers */

short *Y; /* Pir to Arr of max lengths of ind. var. names */
short *Z; /* Ptr 1o Arr of cur lengths of ind. var. names */

JH
typedef suct SQLDA SQLDA;
#endif

SQLDA *bind_dp;
SQLDA *select_dp;

/**ﬁ‘i**i#****‘ttt***i*****#*#********t**t**************i#**#**************##t*/

/* Functions external to this module. */
I*#*************t***********t#****##***/

extern SQLDA *sqlald();
extern void sqlnul{);

It*********t**##*t***********#**********#***********t******#*t******#********#*/

/* A global flag for the SQL error routine, */

/*tt*t*******t*tt*******it********#***ttt*t*******#************ttt***********&*’

Page 203

int parse_flag = (;

I‘tttt*ttt‘***‘*#t#*it*tt*t*******t‘t***ttt‘ttt*tt***t‘**t#tttt***********tt**t,

/* structure 1o store one database object */

/* an object consists of: */

/* name of the object */

/* the name of the associated database table(s) */

/* alist of ficld names */

/* a where clause */

/* The function mw_connect loads the object definitions from a file */

/* into a list of this structure. */

/* The object definition in this structure is used to build the SQL-statements*/
/* which are send to the oracle data base. See mw_query, mw_insert, mw_update */
* and mw_delete for details. */

/**#tt#i**###*#t‘t*t*******ttt***i#*****#t**lt***t**t**********ttttt*#******l**l

struct dtb_obj_typ{

char *name;

char *dtb_table;

char *sli;

char *where;

struct dib_obj_typ *next_obj;
JH

/***t***********************t************ti#**********t************************/

f* The Variable objects is used to store the definition of several objects. */

f* When the application connects o Oracle, the object definition file is */

/* read. ¥/

/* The mw_disconnect function frees the memory ocupied by the objects. */

[EEERrbk bR Rk kR Rk R sk ok R R R ROk kR ok bRk

struct dtb_obj_typ *objects;

struct dtb_obj_typ *actuel_object;

/*#***********************i**#******tti**t*‘*****#tt*********t#***********tit**/

/* The result_string stores the results of the database operations */
/* The first character determins if the operation was sucessfully executed(s) */
/* or if the operation faild(f). The rest of the string contains the result */

/* of the operation (number of processed rows, rows, filenames). */
/***tt********t***‘******t**##*****&*****tti********tt********#***************#/

¢har result_string[VERY_LONG_STRING];
int resuli_string_len;

char help_no_blank[VERY_LONG_STRING];

/**********#************************t*‘***********#**********t***#********1****/

[* The ora_state = (: not connected to oracle. */

/* = 1: connected to oracle but no open coursor */
/t*#*#***#**********#*******t*****#**i***/

int ora_state = (;

JERRERR R R RO RO R RO R R O ROk kR kR Rk |

/* The function find_actuel_object searches for the object o_name in the */
f* list objects. If the object o_name is not found, the result is NULL., */

Page 204

!tt**t*‘tt*t‘ttt**********‘**‘***t*t*t**t*tt‘#tttt**it*******t***************tt!

struct dtb_obj_typ *find_actuel object{o_name)
char *o_name;

{

struct dtb_obj_typ *help_obj;

help_obj = objects;

while((help_obj != NULL) & & (strcmp(help_obj->name, o_name)))
help_obj = help_obj->next_obj;

return(help_obj);
)

/******************i*****#**t#ti*#****************************t***#**********i*l

f* The function append_where is used to construct a valid SQL where clause */

f* using where_string and acutel_object->where. */
SRR ER Rk kR R Rk koo ook R bk ok Rk ok kR R R kR

void append_where(where_string)
char *where_string;

{

if {(actuel_object->where[0] 1= 0"} I
(where_string[0] 1= "0"))

{

sprintf(&sql_statement[strlen(sql_statement)],” where “);
if {{actuel_object->where[0] = ") &&
(where_string[0] != “0%))
sprintf(&sql_statement[strlen(sql_statement)],”(%s) and (%s)”,
actuel_object->where, where_string);

else

{

if (actuel_object->where[0] = N\0”)
sprinuf{&sql_statement[strlen(sql_statement}],"%s",
actuel_object->where);

else
sprintf(&sql_statement[strlen(sql_statement)],”%s",
where_string);

}

}

).

/**t************t*!**********************#*‘**#*****tt**********************l*#l

/* The function oracle_connect connects to Oracle using the username u_name */
/¥ and the password p_word. */

/*********tt***t*****#tt##**********#t#‘**tt***#******&****#**********‘****#***/

int oracle_connect{u_name, p_word}
char *u_name;

char *p_word;

{

Page 205

/¥ SQL stmt #6

EXEC SQL BEGIN DECLARE SECTION;
¥

char username[20];

char password[20];

/* SQL stmt #7

EXEC SQL VAR username IS STRING(20);
EXEC SQL VAR password IS STRING(20);
EXEC SQL END DECLARE SECTION,;

*/

strepy(username, u_name);
strepy(password, p_word);

/* SQL stmt #10
EXEC SQL WHENEVER SQLERROR GOTO connect_error;
*/

/* SQL st #11

EXEC SQL CONNECT :usemame IDENTIFIED BY :password;
*f

{

sqlstm.iters = (unsigned short)10;
sqlstm.offset = {unsigned short)2;

sqlstm.cud = sqlcud0;

sqlstm.sglest = (unsigned char *)&sqlca;
sqlstm.sglety = (unsigned short)0;
sqlstm.sghstv[0] = (unsigned char *jusername;
sqlstm.sghstl[0} = (unsigned long)20;
sqlstm.sqindv[0] = (short *)0;
sglstm.sqhstv[1] = (unsigned char *)password;
sglstm.sqhst[1] = (unsigned long)20;
sqlstm.sqindv[1] = (short *)0;

sqlstm.sqphsv = sqlstm.sghstv;

sqlstm.sqphsl = sqlstm,sqhstl;

sqlstm.sqpind = sqlstm.sgindv;
sqlcex(&sglctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < 0) goto connect_error;

#ifndef NOPRINT

fprintf(stderr,nConnected o ORACLE as user %s. ", username);
#iendif
return 0;

connecl_error:
fprintf(stderr,”Cannot connect to ORACLE as user %s\n”, username);
return -1;

}

I*********t*##**#t**#tt#************#*********#ttt**#*t**t*t**#**********t*****/

f* alloc_descriptors allocates memory for bind_dp and select_dp, */

/* which are necded 10 execut SQL-statements. */
f******t****&t***lﬁtt*tl*##*t*t**#*****#***1**#*##*#*******##**t*******t****#t**/

int alloc_descriptors(size, max_vname_len, max_iname_ien)
int size, max_vname_len, max_iname_len;

{

Page 206

inti;

r*

* The first sqlald parameter determines the maximum number of
* array elements in each variable in the descriptor. In

* other words, it determines the maximum number of bind

* variables or select-list items in the SQL statement.

*

* The second parameter determines the maximum length of
* strings used to hold the names of select-list items

* or placeholders, The maximum length of column

* names in ORACLE is 30, but you can allocate more or less
* as needed.

*®

* The third parameter determines the maximum length of

* strings used 10 hold the names of any indicator

* variables. To follow ORACLE standards, the maximum

* length of these should be 30. But, you can allocate

* more or less as needed.

*/

/* bind variables are not used here */

if ((bind_dp =

sglald(1, 0, 0)) == (SQLDA *) NULL)

{

fprintf(stderr,

“Cannot allocate memory for bind descriptor.™),
return -1; /* Have to exit in this case. */

}
bind_dp->N=1;

if ({(select_dp =

sqlald {size, max_vname_len, 0)) == (SQLDA *) NULL)
{

fprintf(stderr,

“Cannot allocale memory for select descriptor.”;

return -1;

)

select_dp->N = MAX_ITEMS;

/* Allocate the select indicator variable pointers. */
for (i = 0; i <« MAX_ITEMS; i++)
select_dp->I[i] = (short *} malloc(sizeof(short *));

/* Allocate the select variable pointers. */

/¥ realloc() will be used to change the size. */
for (i = 0; 1 <« MAX_ITEMS; i++)
select_dp->V[i] = (char *) malloc(sizeof(char});

return O,

)

/*#**#***i*/

/* free the memory occupied by the object definitions. This function is */
/* called, where the connection to oracle is closed. */

Page 207

P*tt*****tttt**.'##****ttt******t***ttit**lﬁ***‘************iittt**t***t***#****l

void free_objectsQ
{
struct dtb_obj_typ *help_obj, *help_obj2;

help_obj = objects;
help_obj2 = objects;

f* if help_obj == NULL then there is nothing to do! */

if(help_obj != NULL)

{

/* search for the objext at the end of the list */

/* help_obj2 points to the second but last object, or equals to help_obj */
/* when there is only one object left */

while{help_obj->nexi_cbj != NULL)

{

help_obj2 = help_obj;
help_obj = help_obj->next_obj;
)

while(help_obj != help_obj2)
{

/* there are more then one object left */

/* free the memory for the object at the end of the list */
free(help_obj->name);

free(help_obj->dib_table);

free(help_obj->sli);

free(help_obj->where};

free(help_obj);

/* terminate the resulting object list with NULL */
help_obj2->next_obj = NULL;

f* start again at the head of the list */
help_obj = objects;
help_obj2 = objects;

f* search for the object at the end of the list */

/* help_obj2 points to the second but last object, or equals 10*/
/* help_obj when there is only one object left */
while(help_obj->next_obj != NULL)

{

help_obj2 = help_obj;

help_obj = help_obj->next_obj;

)

) /* while(help_obj != help_obj2) */

/* free the memory for the last object left in the list */
free(help_obj->name);

free(help_obj->dib_table),

free(help_obj->sli);

free(help_obj->where);

free(help_obj);

objects = NULL,

Page 208

) £* if(help_obj != NULL) ... */
}

ft**t*****tt***t**t*!*&*t*&t****t**t******tttt****#t***t*******t#t*********t**#l

/* The function mw_connect connects to oracle using the function */
/* oracle_connect. In addition the definitions of database objects is loaded */
/* from the file o_file. */

I*****t*it‘tt*tti*i******************#*t*tttt#****#**t#tt*t*&***#****l********#/

void mw_connect{u_name, p_word, o_file)

char *u_name;

char *p_word;

char *o_file;

{ FILE *obj_file;

char file_line[VERY_LONG_STRING];

char line[FILE_LINE_L.EN]; /* to process longer lines from the */
/* objects file */

int line_length = FILE_LINE_LEN; /* ajust the given constants */
struct dtb_obj_typ *help_obj, *help_obj2;

if (ora_state !=0)

{
#ifndef NOPRINT

fprintf{stderr,™n already connecled to oracle™);
#endif -

strepy(result_string, “s™), /* command faild but oracle connection should*/
/* be ok */

return;

}

/* allocate memory for the pointer objects */

if((objects = (struct dtb_obj_typ *)

malloc(sizeof(struct dtb_obj_typ))) == NULL)
fprintf(stderr,™nno memory allocated (mw_connect, objects)™);

help_obj = objects;

/* open file to read the object definitions */

if ({(obj_file = fopen(o_file, “r")) == NULL)

{

fprintf(stderr,”™nCan’t open file ‘%s’.”,0_file);
fprintf(stderr,”\nNot connecied to Oracle.”);
free(objects);

strepy(result_string,”f);

return;

}

/* read object definitions from the opend file */

while (file_reader(line,obj_file file_line))

{

if ((help_obj->name = (char *)malloc{strlen(line}}) == NULL)
fprintf(stderr,”\ano memory allocated (mw_connect, name)”);
strcpy(help_obj->name, line);

if (file_reader(line obj_file file_line))

{
if ((help_obj->dtb_table =(char *)malloc(strlen(fing))) == NULL)
fprintf(stderr,™nno memory atlocaled (mw_connect, dtb_table)™);

4

Page 209

strepy(help_obj->dtb_table, line);

}

clse

(

fprintf(stderr, “nno valid object definition(table), stop and check\n™);
strepy(result_string,”f™);

retum;

)

if (file_reader(line,obj_file,file_line))

{

if ((help_obj->sli = (char *)malloc(strlen(line))) == NULL)
fprintf(stderr,”™ano memory allocated (mw_connect, sli)™);
strepy(help_obj->sli, line);

)

else

{

fprintf(stderr,”™ano valid cbject definition (sli), stop and check\n™);
strepy(result_string,”f™);

retum;

}

if (file_reader(line,obj_file,file_line))

{

if ((help_obj->where = (char *)malloc{strlen(lin¢))} == NULL)
fprintf(stderr,"\ano memory allocated {mw_connect, where)™);
strepy(help_obj->where, line);

}

else

{

fprintf(stderr,™nno valid object definition(where), stop and check\n™);
strepy(result_string,”f”});

return;

}

f* prepare pointer for the next object */

if ((help_obj->next_obj = (struct dtb_obj_typ *)
malloc(sizeof(struct dtb_obj_typ))) == NULL)
fprintf(stderr,™\nne memory allocated (mw_connect, next_obj)™);
help_obj2 = help_obyj;

help_obj = help_obj->next_obj;

)

f* free unnecessary allocated memory */
free(help_obyj);
help_obj2->next_obj = NULL;

/* close file */
fclose(obj_file);

if (oracle_connect{u_name, p_word) 1= 0)
{ strcpy(result_string,”f™");
return; }

if (alloc_descriptors(MAX_ITEMS, MAX_VNAME_LEN, 1) 1=0)
{ strepy(result_string,”f);

return;)
ttifndef NOPRINT

Page 210

fprintf(stderr, \nmw_connect sucessfully executed *);
#endif

ora_stale = 1;

strepy(result_string,”s™);

}

/*tt#t*****t*ttttt**********tt*t&**##*tl*****#1#**‘**‘**##*****ltt*****t****‘**/

/* The mw_commit function commits all changes in the oracle database, made */

/* since the last commit of rollback. */
/***#******t****Ft************************t**************t*‘*#**************ﬂ**l

void mw_commit(}

{ if (ora_stale == 0)

{ fprintf{stderr,”\n not connected to oracle, no commit possible™);
strepy(result_string,"f™);

)

else

(
/* SQL stmt #12
EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL COMMIT WORK;

*/

[.
sqlstm.iters = (unsigned short)1;
sqlstm.offset = (unsigned short)25;
sqlstm.cud = sqlcud®;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sglety = (unsigned short)0;
sglcex(&sqlcix, &sqlstm, &sqlfpn);
}

strepy{result_string,”s™);

ora_slate = 1;

}
)

/**********t*****#**#*****************#*‘**********#***************************/

/* The mw_rollback function discarges all changes in the oracle database, */

/* made since the last commit of rollback. */
/#*******t#******t*********#t**t#**#**i**/

void mw_rollback()

{ if (ora_state = 0)

{

fprintf(stderr,™n not connected to oracle, no rollback possible™);
strepy(result_string,”f™);

)

else

{
/* SQL stmt #14
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK;
*

{

sqlstm.iters = (unsigned short}1;

sqlstm.offset = (unsigned short)36;

sqlstm.cud = sqlcud(;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;

Page 211

sqlcex(&sqlctx, &sqlstm, &sqlipn);
}

strepy(result_string,”s™);

ora_state = 1;

)

}

!****tt****t*tittt***t****tttt***#tt*t*t*ti*ttt**ittt****#*tiitt*t***i******t#*,

/* The function mw_gquery executes a select statement defined by the object */

/* o_name and the additional where clause in where_string. The SQL-statemant */
/* has the following form: */

/* SELECT actuel_object->sli FROM actuel_object->dib_table */

/* WHERE actuel _object->where AND where_string */

/* If the string result_file_name is not empty, the result of the select */

/* statement is stored in a file of that name. Otherwise, the result is */

/* stored in the variable result_string. */
/**#***‘itt**t*#****‘#l*t********t*t**i***i*‘*************#*#*tt*t**********t**/

void mw_query{o_name, where_string, result_file name)
char *o_name;

char *where_string;

char *result_file_name;

{

FILE *result_file;

int i;.

int null_ok, precision, scale;

char help_string]SMAL_STRING];

/* Open resull file if a name was given, */
if(result_file_name[0])

if((result_file = fopen(resuli_file_name, “w")) == NULL)
printf{"\nError, open %s" result_file_name);
result_string_len = 0;

if (ora_state == 0)

{

fprintf(stderr,”™n not connected to oracle, query not executed!™);
strcpy(résult_string, “F™);

if(result_file_name[0])

fclose(resuli_file);

remm;

1
actuel_object = find_actuel_object{o_name);

if (actuel_object == NULL)

(

fprintf(stderr,™n object (%s) not known”,0_name};
strepy(resuli_string, “f”);

if(result_file_name[0])

fclose(result_file);

return;

}

/* build select statement */
sprintf(sql_statement,”select %os from %s “,
actuel_object->sli, actuel_object->dtb_table);

Page 212

append_where(where_string);

#ifndef NOSTATEMENTS

fprimtf(stderr,nexecuted select statement: \n%s;\n” ,sql_statement),
#endif

f* Prepare the statement and declare a cursor. */
/* SQL stmt #16

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
*/

parse_flag = 1; /* Set a flag for sql_error. */

/* SQL stmt #17

EXEC SQL PREPARE § FROM :sql_statement,
*

{

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)47;

sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)(;
sqlstm.sqhstv[0] = (unsigned char *)sqi_statement;
sqlstm.sqhstl[0] = (unsigned long)1024;
sglstm.sqindv{0] = (short *)0;

sqlstm.sgqphsv = sqlstm.sghsty;

sqlstm.sgphsl = sqlstm.sqhstl;

sqlstm.sqpind = sqlstm.sqindv;

sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < Q) goto sql_error;
]

parse_flag = 0; /* Unset the flag. */

/* SQL stmt #18
EXEC SQL DECLARE C CURSOR FOR §;
*/

f* Set the bind variables for any placeholders in the
SQL stalement. */

f* Describe any bind variables (input host variables) */

bind_dp->N = 1; MInitialize count of array elements. no variables used*/
/* SQL stmt #19

EXEC SQL DESCRIBE BIND VARIABLES FOR § INTO bind_dp;
*f

{

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)62;

sqlstm.cud = sglcudO;

sqlstm.sqlest = (unsigned char *)&sqlca;

sqlstm.sqlety = (unsigned short);

sqlstm.sghstv[0] = (unsigned char *)bind_dp;

sqlstm.sghstl[0] = (unsigned long)0;

sqlstm.sqindv[0] = (short *)0;

sqlstm.sgphsv = sglstm.sghstv;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sqpind = sqlstm.sgindyv;

sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < 0} goto sql_error;
}

Page 213

/* If F is negative, there were more bind variables
than originally allocated by sqlald(). */

if (bind_dp->F '=0)

{

fprinti{stderr,™n bind variables not allowed!™);
strepy(result_string, “f™);

if(result_file_name[0])

fclose(resule_file);

return;

}

/* Set the maximum number of array elements in the
descriptor to the number found. */
bind_dp->N = bind_dp->F;

/* Open the cursor and execute the statement.*/

/* SQL stmt #20

EXEC SQL OPEN C USING DESCRIPTOR bind_dp;
*/

{

sqlstm.stmt = ***;

sqlstm.iters = (unsigned short)t;
sqlstm.offset = {unsigned short)77;
sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sglca;
sqlstm.sglety = (unsigned short)0;
sqlstm.sghstv[0] = (unsigned char *)bind_dp;
sqlstm.sqhst{0] = (unsigned long)0;
sqlstm.sqindv([0] = (short *)(;

sqlstm.sgphsv = sqlstm_sghsty;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sgpind = sqlstm.sqindv;
sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < 0) goto sql_error;

}

/* Describe the

select-list items. The DESCRIBE function returns
their names, datatypes, lengths (including precision
and scale), and NULL/NOT NULL statuses. */

select_dp->N = MAX_ITEMS;

/* SQL stmt #21

EXEC SQL DESCRIBE SELECT LIST FOR S INTO select_dp;
*

/
{

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)92;

sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;
sqlstm.sghstv[0] = (unsigned char *)select_dp;
sqlstm.sqhstl[0] = (unsigned long)0;

Page 214

sqlstm.sqindv([0] = (short *)0;
sglstm.sqphsv = sqlstm sghstv;
sqlstm.sqphs] = sqlstm.sqhstl;
sglstm.sqpind = sqlstm.sqindv;
sqlcex(&sqlctx, &sqlstm, &sqlfpn);
if (sqlca.sqlcode < 0) goto sql_error;
}

f* If F is negative, there were more select-list
items than originally allocated by sqlald(}, */
if (select_dp->F < 0)

{

fprintf(stderr,"\nToo many select-list items (%d), maximum is %d\n”,
~(select_dp->F), MAX_ITEMS); '
strepy(result_string, “f);
if(result_file_name[0])

fclose(result_file);

return;

}

/* Set the maximum number of array elements in the
descriptor to the number found. */
select_dp->N = select_dp->F;

/* Allocate storage for each select-list item.

sqlprc() is used to extracl precision and scale
from the length (select_dp->LI[il).

sqlnul(} is used to reset the high-order bit of
the datatype and to check whether the column
is NOT NULL.

CHAR datatypes have length, but zero precision and
scale. The length is defined at CREATE time.

NUMBER datatypes have precision and scale only if
defined at CREATE time. If the column

definition was just NUMBER, the precision

and scale are zero, and you must allocate

the required maximum length.

DATE datatypes return a length of 7 if the default
format is used. This should be increased 10

9 to store the actual date character string.

If you use the TO_CHAR funcRT\ tion, the maximum
length could be 75, but will probably be less

(you can see the effects of this in SQL*Plus).

ROWID datatype always returns a fixed length of 18 if
coerced to CHAR.

LONG and .
LONG RAW datatypes return a length of 0 (zero),
s0 you need to set a maximum. In this example,

it is 240 characters.

*/

Page 215

for (i = 0; i < select_dp->F; i++)

{

f* Turn off high-order bit of datatype (in this example,

it does not matter if the column is NOT NULL). */

sqlnul (&(select_dp->TTi]), &(seleci_dp->T(i]), &null_ok);

switch (select_dp->T[i])

{

case 1 : f* CHAR datatype: no change in length
needed, except possibly for TO_CHAR
conversions (not handled here). */

break;

case 2 : /#* NUMBER datatype: use sqlprc(to
extract precision and scale. */

sqlprc (&(select_dp->LI[i]), &precision, &scale);
/* Allow for maximum size of NUMBER. */

if (precision == 0) precision = 40,

/* Also allow for decimal point and

possible sign, %/

select_dp->L[i] = precision + 2;

f* Allow for a negative scale, */

if (scale < 0)

select_dp->L[i] += -scale;

break;

case 8 : /* LONG datatype */
select_dp->L[i] = 240;
break;

case 11 : /* ROWID datatype */
select_dp->L[i] = 18;
break; :

case 12 : /* DATE datatype */
select_dp->L[i] = 9;
break;

case 23 : /* RAW datatype */
break;

case 24 : /* LONG RAW datatype */
select_dp->L[i] = 240;

break;

)

f* Allocate space for the select-list data values. */
select_dp->VI[i] = (char *) realloc(select_dp->V[i],
(size_t) select_dp->L[i]);

f* Print column headings, right-justifying number
column headings. */

#ifndef NOSTATEMENTS

if (select_dp->T[i} == 2)

fprintf(stderr,”%.*s *, select_dp->L[i], select_dp->S[i]);
clse

fprintf(stderr,”%-.*s “, select_dp->L{i], select_dp->S[i]);

Page 216

#endif

/* Coerce ALL datatypes except for LONG RAW (o
character. */

if (select_dp->Tli] !=24)

select_dp->Tlil = 1;

#ifndef NOSTATEMENTS
fprintf(stderr,™\n\n");
#endif

f* FETCH all rows selected and print the column values. */

f* SQL stmt #22

EXEC SQL WHENEVER NOT FOUND GOTO end_select_found;
*f

strepy(result_string, “s”);

while(1)

{
/* SQL stmt #23

EXEC SQL FETCH C USING DESCRIPTOR select_dp;
*/

{

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)107;
sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)(;
sqlstm.sqhstv{0} = (unsigned char *)select_dp;
sqlstm.sqhstf0] = (unsigned long)0;
sqlstm.sqindv([Q] = (short *){;

sqlstm.sqphsv = sqlstm.sqhstv;

sqlstm.sgphsl = sqlstm.sqhstl;

sqlstm.sqpind = sqlstm.sqindv;
sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode == 1403) goto end_select_found;
if {(sqlca.sqlcode < 0) goto sql_error;
)

/* Since each variable returned has been coerced to a
character string, very litle processing is required
here. This routine just prints out the values on
the terminal. */
#ifndef NOSTATEMENTS
for (1 = 0; i < select_dp->F; i++)
{
if (*select_dp->I[i} < 0)
fprintf(stderr,”%-*c “,(int)select_dp->L[i], * *);
else
fprintf(stderr,”%-*.*s “, (int)select_dp->Ll[i],
(int)select_dp->L[i], select_dp->V[i]});
}
fprintf(stderr,™n");
#endif
if(result_file_name[0])
{ /* print result (o a file */
for (i = 0; i < select_dp->F; i++)

Page 217

{

strepy(help_no_blank select_dp->VI[i]);
help_no_blank([select_dp->L{i]] =

if (*select_dp->I[i} < 0)
strepy(help_string, ™ a\™\""),

else

sprintf(help_string,

"\ %s\™, no_blanks(help_no_blank));
fpuis(help_string, result_file);

)

)

else

{ /* print result to the result_string */

for (i = 0; i < select_dp->F; i++)

{

strcpy(help_no_blank select_dp->VIi]);
help_no_blank([select_dp->L[i]] = “0";

if ({(*select_dp->I[i] < 0) & &
(strlen{result_string+4<VERY_LONG_STRING))
strepy(&result_string[strlen(result_string)),”0:™);
else

{

sprintf(help_string,”%s"”, no_blanks(help_no_blank));

if(strien(result_string)+3+strien(help_string)< VERY_LONG STRING)

sprintf(&result_string(strlen(result_string)],

“:9od:”, strien(help_string));

)

if ((}(*select_dp->I[i] < 0)) &&
(strlen{result_string)+1<VERY_LONG_STRING))
sprintf(&result_string(strlen(result_string}],

“%s", no_blanks(help_no_blank));

)

)

)

end_select_found:

£* Tell user how many rows processed. */
#ifndef NOSTATEMENTS

fprintf(stderr,\n\n%d row%c processed.\n", sqlca.sqlerrd{2],
sqlca.sglerrd[2] == 17 0" : *s");
#endif

ora_state=1;

if(result_file_name{0])

fclose(result_file);

retumn;

sgl_error:

/¥ ORACLE error handler */
fprintf{stderr, "\n\n%.70s\n" sqlca.sqlerrm.sqlerrmc);

if (parse_flag)

(

fprintf(stderr,\nexecuted select statement: \n%s;\n” sql_statement);
fprintf(stderr,

“The parse error was at character offset %d in the SQL statement.\n”,

sqlca.sqlerrd{4]);
} -

Page 218

/* SQL stmt #24 :
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK;

*/

{
sqlstm.iters = (unsigned short)1;
sqlstm.offset = (unsigned shor)122;
sqlstm.cud = sqlcud0;
sglstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;
sqlcex{&sqlctx, &sqlstm, &sqlfpn);

}
ora_state = 1;
strepy(result_string,”f™);
if(result_file_name[0])
fclose(result_file);
return;

}

/*t********tt**t*********t‘t#t*********t***********tt**********t*t*******tt****/

/* The function mw_disconnect closes the connection to Oracle, after */
/* all changes, made since the last commit, are rolledback. */
/* The memory occupied by the data base object definitions is freed. */

/***t***t*U*****‘*************************************t*****t*#****************/

voitd mw_disconnect()
{inti,

if (ora_state == 0)

{
#ifndef NOPRINT

fprintf(stderr,™n not connected to oracle, no disconnect possible”™);
#endif

strcpy(result_string,”f™);

return;

}

free_objects();

/* When done, free the memory allocated for

pointers in the bind and select descriptors. */

for (i = 0; i <« MAX_ITEMS; i++)

(

if (select_dp->V[i] = (char *)} NULL)
free(select_dp->VI[il);

free(select_dp->I[i]); * MAX_ITEMS were allocated. */
}

/* Free space used by the descriptors themselves. */
sqlclu(bind_dp);
sqlclu(select_dp);

/* SQL stmt #26

EXEC SQL. WHENEVER SQLERROR CONTINUE;
*/

/* Close the cursor. */

/* SQL simt #27

Page 219

EXEC SQL CLOSE C;

*/

{

sqlstm.iters = (unsigned short)1;
sqlstm.offset = (unsigned short)133;
sglstm.cud = sqlcudO;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short);
sqlcex(&sqlcix, &sqlstm, &sqlfpn);

}

/* SQL stmt #28

EXEC SQL ROLLBACK WORK RELEASE;
*/

{

sqlstm.iters = (unsigned short)1;
sqlstm.offset = {unsigned short)144;
sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sglca;
sqlstm.sqlety = (unsigned short)0;
sqlcex{&sqlctx, &sqlstm, &sqlfpn);

ora_stale = {J;
strepy(result_string,”s™);
)

f*******t*t**************tt*t*********#*#*t*****#***tit*************t*******t**/

/* The function mw_insert executes an insert statement, defined by the given */
/* object name o_name and the data_string. The used SQL.-statement hag the */
/* following format: */

[* INSERT INTO actuel_object->dtb_table (actuel_object->sli) */

/* VALUES (data_string) */

/* This function is restricted to objects, that refere 10 only one databae */

/* able and where all fields with NOT NULL values are in the */

/* field list (sh). */

f* The data_string must contain the new values for all fields in the ficld */

/¥ list, in the same order. */
f#t*t#******tt******tt**********‘*************#********************************/

void mw_insert(o_name, data_string)
char *o_name;

char *data_string;

{int1;

if (ora_state == 0}

{

fprintf(stderr,\n not connected 1o oracle, insert not executed!™);
strepy(result_string, *“f);

retum,;

}

actuel_object = find_actuel_object(o_name};

if (actuel_object == NULL)

{

fprintf(stderr,™n object not known™);
strepy(result_string, “f™);

return;

}

Page 220

/* build insert statement */

sprintf(sql_statement,”insert into %s (%s) values (%s)”,

actuel_object->dth_table, actuel_object->sli,
data_string);
#ifndef NOSTATEMENTS

fprintf(stderr,\nexecuted insert statement: \n%s\n",sql_statement);

#endif
/* Prepare the statement and declare a cursor. */
f* SQL stmt #29

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

*/

parse_flag = 1; /* Set a flag for sql_error. */
/* SQL stmt #30

EXEC SQL PREPARE S FROM :sql_statement;
*f

(

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)155;

sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;
sqlstm.sghstv[0] = (unsigned char *)sql_statement;
sqlstm.sqhstl[0] = (unsigned long}1024;
sglstm.sqindv([0] = (short *}0;

sqlstm.sqphsv = sqlstm.sqhstv;

sqlstm.sqphsl = sqlstm.sqhstl;

sqlstm.sgpind = sqlstm.sqgindv;

sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < 0) goto sql_error;

}

parse_flag = 0; * Unset the flag, */

/* SQL stmt #31

EXEC SQL EXECUTE IMMEDIATE :sql_statement;
*f

(

sqlstm.stmt = *“*;

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)170;

sqlstm.cud = sqlcud(;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)(;
sqlstm.sqhstv[0] = (unsigned char *)sql_statement;
sqlstm.sqhstl[0] = (unsigned long)1024;
sqlstm.sqindv{(] = (short *)0;

sqlstm.sqphsv = sqlstm.sqhstv;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sqpind = sqlstm.sgindv;

sqlcex(&sqletx, &sqlstm, &sqlfpn);

if (sglca.sqlcode = 1403) goto end_select_found;
if (sqlca.sqlcode < 0) goto sql_error;

)

/* Tell user how many rows processed. */
#ifndef NOSTATEMENTS

fprintf(stderr, \n\n%d row%c processed.\n”, sqlca.sqlerrd[2],

Page 221

sqlcasqglemrd[2] == 17 0" : *'5”);

#endif

ora_slate = 1;
sprintf(result_string,”s:%d",sqlca.sqlerrd[2]);
retm,

sql_error:

/¥ ORACLE error handler */

fprintf(stderr,™n\n%.70s\n" sqlca.sqlerrm.sqlerrmc);

if (parse_flag)

{

fprintf(stderr,nexecuted insert statement: \n%s\n”,sql_slatement);
fprintf(stderr,

“The parse error was at character offset %d in the SQL statement\n”,
sqlca.sqlerrd[4]);

]

f* SQL stmt #32

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK;

*/

(

sqlstm.iters = (unsigned short}1;
sqlstm.offset = (unsigned short)185;
sqlstm.cud = sqlcud;

sqlsum.sglest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;
sqlcex({&sqlctx, &sglstm, &sqlfpn);

)

ora_state = 1;
strepy(result_string,”f);
return;

end_select_found:

ora_stale = 1;

strepy(result_string,”f™");

return; .
}

/‘****t***Ilr**#*******t##t#******t#***#’Hl*****#**********************************l
/* The function mw_update executs an update statement, defined by the object */

f* o_name, the additional where clause where_string. The fields to update */

f* and the new values are in the string data_string. Updates are only allowed */

f* for objects, refering to only one database table. */

/* The used SQL-statement has the following formal: */
f* UPDATE actuel_object->dib_table SET data_string */
/* WHERE actuel_object->where AND where_string */

JEERERR RSk KRR R KRR R RN R R kR KR R R AR R Rk dok f

void mw_update(o_name, data_string, where_string)
char *o_name;

char *data_string;

char *where_string;

{inti;

if (ora_state == ()

Page 222

{
fprintf(stderr,™n not connected 1o oracle, update not executed!”);

strepy(result_string, “f™);
retumn;

)
actuel_object = find_actwel_object(o_name);

if (actuel_object == NULL)

{

fprintf{stderr,™n object not known™;
strepy(result_string, “[);

returm;

)

/* build update statement */
sprintf(sgl_statement,"update %s set %os *,
actuel_object->dtb_table, data_siring);
append_where(where_string);

#ifndef NOSTATEMENTS

fprintf(stderr,\nexecuted update statement: \n%s;\n" sql_statement);
#endif

/* Prepare the statement and declare a cursor. */
/* SQL stmt #34

EXEC SQL WHENEVER SQLERROR GOTO sql_error;
*f

parse_flag = 1; /* Set a flag for sql_error. */
/* SQL stmt #35

EXEC SQL PREPARE S FROM :sgl_statement;
*/

{

sqlstm.iters = (unsigned short)1;

sqlstm.offset = (unsigned short)196;

sglstm.cud = sqleud0;

sqlstm.sqlest = (unsigned char *)&sqglca;
sqlstm.sqlety = (unsigned short)(;
sqlstm.sqhstv(0] = (unsigned char *)sql_statement;
sqlstm.sghstl[0] = (unsigned long)1024:
sqlstm.sqindv[0} = (short *)0;

sqlstm.sqphsv = sqlstm.sqhstv;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sqpind = sglstm.sgindv;

sqlcex(&sqlctx, &sqlstm, &sqlfpn);

if (sqlca.sqlcode < Q) goto sql_error;

}

parse_flag = 0; M Unset the flag, */

f* SQL stmt #36

EXEC SQL EXECUTE IMMEDIATE :sql_stalement;
*/

{

sqlstm.stmt = **;

sglstm.iters = (unsigned short}1;

sglstm.offset = (unsigned short)211;

sglstm.cud = sqlcudQ;

sqlstm.sglest = (unsigned char *)&sqlca;

Page 223

sqlstm.sqlety = (unsigned short)0;

sqlstm.sqhstv[0] = (unsigned char *)sql_statement;
sqglstm.sqhstl[0] = (unsigned long}1024;
sqlstm.sqindv[0] = (short *)0;

sqlstm.sqphsv = sqlstm.sghstv;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sgpind = sqlstm.sgindyv;

sqleex{&sqlctx, &sqlstum, &sqlfpn);

if (sglca.sqlcode == 1403) goto end_select_found;
if (sqlca.sqlcode < 0) goto sql_error;

/* Tell user how many rows processed. */

#ifndef NOSTATEMENTS

fprintf(stderr,”™\n\n%d row%c processed.\n”, sqlca.sqlerrd[2],
sqleca.sqlerrd[2] == 17 0" : 's");

#endif

ora_state = 1;

sprintf(result_string,"s:%d” sqlca.sqlerrd[2]);
retumn;

sql_error:

/* ORACLE error handler */

fprintf(stderr, \n\n%.70s\n",sqlca.sqlerrm.sqlerrmc);
if (parse_flag)
{

fprintf(stderr,"\nexeculed updale statement: \n%s;\n" sql_statement);
fprintf(stderr,

“The parse error was at character offset %d in the SQL statement\n”,
sqlca.sqlerrd[4]);

}

f* SQL stmt #37

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK;

*/

{

sqlstm.iters = (unsigned short)1;
sqlstm.offset = (unsigned short)226;
sqlstm.cud = sqlcud0;
sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = {(unsigned short)0;
sqlcex(&sqlctx, &sqlstm, &sqlfpn);

ora_state = 1;
strepy(result_string,”f™);
return;

end_select_found:

ora_state = 1;

sprintf(result_string,”s:%d" sqlca.sqlerrd(2]);
return;

)

/**H**#*uu**n**tn*uuuu****#*tu****u*uutttuu****H*******ut‘*uul

/* The function mw_delete executes a delete statement, defined by the object */
/* o_name and the additional where clause in where_string. It is restricted */

Page 224

f* 10 objects, refering to only one database table. */

f* The used SQL-statement has the following format: */
/* DELETE FROM actuel_object->dib_table */

/* WHERE actuel_object->where AND where_string */

/*t**tll#tttt#***********ttt#tttt**ll***ttt*t#**"#***tt*tt********t*l#t******tt*l

void mw_delete(o_name, where_string)
char *o_name;

char *where_string;

{inti;

if (ora_state == 0)
{
fprintf(stderr,™n not connected to oracle, delete not executed!™);

strepy(result_string, “f™);
return;

}
actuel_object = find_actuel_object(o_name);

if (actuel_object == NULL)

{

fprintf(stderr,™n object not known™);
strepy(result_string, “f™);

return;

}

/* build delete statement */

sprintf(sql_statement,”delete from %s “,
actuel_object->dib_table);

append_where(where_string);
#ifndef NOSTATEMENTS

fprintf(siderr, “nexecuted delete statement: \n%s;\n”,sql_statement},
#endif

/* Prepare the statcment and declare a cursor. */
/* SQL stmt #39

EXEC SQL WHENEVER SQLERROR GOTO sqt_error;
*f

parse_flag = 1; /* Set a flag for sql_error. */

/* SQL stmt #40

EXEC SQL PREPARE S FROM :sql_statement;
*/

(

sqlstm.iters = (unsigned short)1;

sqlsum,offset = (unsigned short)237;

sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;
sqlstm.sghstv{0] = (unsigned char *)sql_stalement;
sqlstm.sghstl{0] = (unsigned long)1024;
sqlstm.sqindv[0] = (short *)0;

sqlstm.sqphsv = sqlstm.sqhstv;

sqlstm.sqphsl = sqlstm.sghstl;

sqlstm.sqpind = sqlstm.sgindv;

sqlcex(& sqlcix, &sqlstm, &sqlfpn),

if (sglca.sqlcode < 0) goto sql_error;

Page 225

}
parse_flag = 0; /* Unset the flag. */

* SQL stmi #41

EXEC SQL EXECUTE IMMEDIATE :sql_statement;
*/

{

sqlstm.stmt = ““;

sqlstm.iters = (unsigned shor)1;

sqlstm.offset = (unsigned short)252;

sqglstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)&sqlca;
sqlstm.sqlety = (unsigned short)0;

sqlstm.sghstv[0] = (unsigned char *)sql_statement;
sqlstm.sqhstl[0] = (unsigned long)1024;
sqlstm.sqindv[0] = (short *)0;

sqlstm.sqphsv = sqlstm.sghstv;

sqlstm,sqphsl = sqlstm.sghstl;

sqlstm.sgpind = sqlstm.sqindv;

sqlcex(&sqlctx, &sqistm, &sqlfpn);

if (sqlca.sglcode = 1403) goto end_sclect_found;
if (sqlca.sglcode < 0} goto sql_error;

}

/* Tell user how many rows processed. */

#ifndef NOSTATEMENTS

fprintf(stderr, \n\n%d row%c processed.\n”, sqlca.sqlerrd[2],
sqlcasglerrd[2] == 1?7 °\)' : ‘s");

#endif

ora_state = 1;

sprintf(result_string,”s:%d" sqlca.sqlerrd{2]});

relam;

sql_error:

/* ORACLE error handler */

fprintf(stderr,™"\n\n%.70s\n" sqlca.sglerrm.sqlerrmc);

if (parse_flag)

{

fprintf(stderr,™\nexecuted delete statement: \n%s;\n",sql_statement);
fprintf(stderr,

“The parse error was at character offset %d in the SQL statement.\n”,
sqlca.sqlerrd[4]);

]

f* SQL stmt #42

EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK WORK;

*/

{

sqlstm.iters = (unsigned short)1;
sqlstm.offset = (unsigned short)267;
sqlstm.cud = sqlcud0;

sqlstm.sqlest = (unsigned char *)}&sqlca;
sqlstm.sglety = (unsigned short)0;
sqlcex(&sqglctx, &sqlstm, &sqlfpn);

)

ora_state = 1;

Page 226

strepy(result_string,”f™);
retumn;

end_select_found:

ora_state = 1;

sprintf(result_string,”s:%d" sqlca.sqlerrd[2]);
return,

)

Page 227

APPENDIX VI

Mapping of proprietary MCC information entities
to the information models in the system data repository

Page 228

/////// mmag,gwmm;a:c;“ ////////%//

Order Entry
bill_of mxt Customes
i - D

o Pxrent Part Number
off_to_dst -
unit_pam e

Unit of Measure

Unit Prics

Order Quantity

blll_of_mat_ltem cuid

Customes
Customer ID
g EEEEEAE Brg irering Changt: Number
_ident Phases out Part Number T
i || gt noconm —
- ot E
o
lead_tim "
rout
xm_po
idert
descr
liem
Mfg Operation = .
oper Asslghment g J&:‘. - -
n Resource ID R
E L) n ::Eﬁ i
Uni of Measure [, Hem_sourc_d
Uni Prios G T, |
Scpptior D gﬁ, G item_po
-ﬁ.;é? i quot_peic
& lead_tim
ach_lob
wrd idoot
Schedule -
cont_req Resource Anignment % o "
- _ I Mfg Order Number %
— T ity Opection D pus ?mm
N o 451 Rescurcs
it 10 o e D Priarity A
ivem_quant %X ,% Quantity mquirod - Order Status -
unit_pam & 2451 Unit of Messure Mfg Faclilty Assignment Planned Quantity . >

Page 229

Program listings for mapping and population of the following data
from MCC to data repository:

1. Manufacturing resources and process plans (Create_process_file.c)
2. Schedule (Create_schedule.c)
3. WIP (Populate_wip.c)

4. BOM (populate_bom.c)

Page 230

Create_process_file.c

f‘ttt*tttttti.itt###*‘iti‘##**t*tttttt**tttttttt*t*‘t*i*‘t**tt*i‘tt*t#*t*t‘!
/* File: create_process_file.c */

/* This program creates a file with process information, which is readable */

{* by the cell controler. Before the process information can be */

/* put in a file with this program, the file with the schedule information */

/* must be created, using the program create_schedule_file. */

/* Then this program extracts the process information for all parts, */

f* which are in that schedule. */

f#*tt&&**#t#***ﬂ****#***t**ti*#****ttt**tt&*t*#****tttt*****ttt***********tl

#include <stdio.h>
#include *“local_incl.h™

/*"‘*t*t**&#‘t**##‘t‘t‘*‘*ttt***t*t*###***ttt*t#*****t**#****tt*#********t/

/* The string result_string is used to commaunicate with the functions of the */

/* program access_ora, with are used to access the oracle database. */
j*****t‘*t*t*t##******t**t*#tttt*#t***t***t*tti*t*************‘t#i********#/

extern char result_string[VERY_LONG_STRING];

char help[LONG_STRING];
char value[SMAL_STRING];
FILE *drive, *drive2;

char file_rest{FILE_LINE_LEN];

char temp_sel[MEDIUM_STRING];
char process_data_filefMEDIUM_STRING];

/***t*t****tt*tt*t*tt****#*#*#tttttttt***t**t*i**t*t******t**ttttit*t**#***l
/* The function init_oracle connects to the MCC oracle database and sets */

/* values for temporal files and the file with the process data. */
/* The file with the schedule data is opened for writeing. */

/*t#‘tt*“*t***t*****i*it**ii*******t**t**tt*lt***tt*#ttl***tt*******#*****/

void init_oracle()

{
strepy(temp,_sel,”/home?2/sandrajvaldew/misc/temp™);

strcpy(process_data_file,
“/home/wayne/blzhangficlcell/message/part_proc.data™),

mw_connect{*mcc21”,”m”,
“/mhome2/sandra/valdew/oracle_c/embed_sql/config_tables_process.txt™);

if((drive = fopen(process_data_file,”w")) == NULL)
printf(*\nError, open %s.” process_data_file);
}

/*ti***********#***************t***********i*******t*#*#t*i****#***********/

/* The function terminate_oracle closes the process_data_file, commiis all */
f* changes made in the oracle database and closes the connection to the */
f* oracle database. */

/*****#********t**#***t##*t*******t***#**t**#*#***************t**#*********/

Page 231

void terminate_oracle(}
{

fclose(drive);
mw_commit();
mw_disconnect();
printf("\n");

)

I******t!!tt***********tttttttt&******ttitt*****ti*tttt#t#t*tt##***‘ttii**#’

/* The function write_process writes the process data to the file */
f* process_data_file, for all parts in the current schedule. */

/***t*ttttt****ttt*ttt****t*iit**t#t*ttit**ttttt“**t*iittt‘t‘t‘*tt**ttt***l

void write_process()

{

char pari_no[SMAL_STRING], process_id[SMAL_STRING];

char pan_type[SMAL_STRING], operation_time[SMAL_STRING];
char mfg_operation_id[SMAL_STRING];

char asset_id[SMAL_STRING], asset_number[SMAL_STRING];
int operation_number;

/* Wrile header to the process_data_file. */

sprintf(help,”Part Process Data File\n™);
fputs(help,drive);

/* The table help_asset_number is used to generate machine numbers for */
/* assets, related to the operations. As the cell controler only accepts */

/* machine numbers between 1 and 4, the asset_id can’t be used direcdy. */
/* This information is stored permanently in the database to be able to */

/* interpret the feed back information, produced by the cell controller, */

* correctly. */

mw_delete("help_asset_number_1","");
sprintf(help,”0, ‘0°™);
mw_insert(**help_asset_number_1" help);

/* Retrieve all parts, which are produced by the current schedule., */

/* The able help_part_type is used for this purpos, because it contains */
/* the part type for all parts. (See file create_schedule_file for */

f* details. */

mw_query(“help_part_type_1","part_type > 0 order by part_type”.temp_sel);
if({drive2 = fopen(temp_sel,"r")) == NULL)

printf('\nError, open %s.” temp_sel);

file_rest[0] = \D";

while(file_reader(part_no, drive2, file_rest))
{
file_reader(part_type, drive2, file_rest);

/* Print the header for a process rout to the process_data_file. */
/* The number of machines needed to produce the current part is */
/* set o 4 by default. */

sp’.intr(hclp’l, ml');
fputs(help,drive);
sprintf(help,”%s\%d\n" part_type, 4);

Page 232

fputs(help.drive);

/* Get the process_plan_id for the current part from the */
f* process_plan_id table. */

sprintf¢help,”part_number="%s"” part_no);
mw_query{“process_plan_id_1" help,””);
next_value(result_string, process_id,result_string);

f* Get the first operation for the current part. The first operation */

/* 1s identified by having no preceeding operation but having a next */
/* operation. If the part has only one operation, its process rout */

/* will not be extracted correctly. In the current version, */

/* aliernative operations are not extracted. */

sprintf(help,”o.process_plan_id=%s and o.presc_mfg_operation_id IS NULL and o.next_mfg_operation_id IS
NOT NULL", process_id);

mw_query(“mfg_operation_ass_1"help,””);
operation_number = 0;

while(next_value(result_string,mfg_operation_id,result_string))
{

next_value(result_string,operation_time,result_string);
next_value(result_string, asset_id, result_string);
operation_number++;

/* Get the machine number for the current asset. */

sprintf(help,”asset_id = %s”, asset_id);
mw_query(“help_asset_number_2" help,”");
if(!next_value(result_string, asset_number, result_string))
{

/* Generate a new number for the current asset. */

mw_query(““help_asset_number_3","",");
next_value(result_string,asset_number.result_string);
sprintf(help,”%s, ‘%s' " asset_id, asset_number);
mw_insen(“help_asset_number_1" help);

)
/* Write the operation details to the process_data_file. */

sprintf(help,” %d\%s\ %os\(h\n”, operation_number, asset_numbser,
operation_time};
fputs(help,drive);

f* Get the next operation. */

sprintfhelp,”o.process_plan_id=%s and o.presc_mfg_operation_id = %s”, process_id, mfg_operation_id);
mw_query(“mfg_operation_ass_1",help,”™);

)

fputs(“Ovn” drive);
)

fclose(drive2);

}

Page 233

main()

(

init_oracle();
write_process();
terminate_oracle();

)

Meta-file definition

Name of meta-file : config_tables_process.txt
Definition of database-objects: (for access_ora)

“help_part_type_1" “help_part_type”
‘“part_no, part_type” *““

“help_asset_number_1"" “help_asset_number”
“asset_id, asset_number” “*

“help_asset_number_2" “help_asset_number”
“asset_number”

“help_asset_number_3" “help_asset_number”
“(max(asset_number) + 1)” teik

“process_plan_id_1" “process_plan_id”
“process_plan_id” *““

“mfg_operation_ass_1" “mfg_operation_ass o, mfg_facility_ass a”
“0.mfg_operation_id, o.operation_time, a.asset_id”
“a.mfg_operation_id = o.mfg_operation_id”

Page 234

Create_schedule_file.c

ltt***t*#tt**t*tittttt*t#*i*******‘***t*****tit*t*t********ttt*ttt**t********tt’
/* File: create_schedule_file.c */
/* This program creates a file with scheduling information, which is readable */

/* by the cell controler. */
lttt*tttttttttti#t*itt*#‘#l‘ttl#t!“t#tt*ttttt****#i“*ttt*t‘t<***‘#tt*ttt**tl

#include <stdio.h>
#include “local_incl.h”

/***t**ittt*****t******&*&*ttt*******&*t**t*tt!*t*********ttt***************ttt/

f* The string result_string is used o communicate with the functions of the */

f* program access_ora, with are used to access the oracle database. */
/***t**********“**“***i***‘“‘**‘***tt*.******‘****************************‘*’

extern char result_string[VERY_LONG_STRING];

char help[LONG_STRING];

char value[SMAL_STRING], result_rest{VERY_LONG_STRING];
FILE *drive, *drive2;

char file_rest{FILE_LINE_LEN];

char temp_sel[MEDIUM_STRING];
char schedule_data_filelMEDIUM_STRING};

/*****#t**t#*******##t*i‘t*t#&******t**Q*tt********‘i‘*i*t*****&***#**#**t*t***/
/* The function init_oracle connects to the MCC oracle database and sets */

/* values for temporal files and the file with the schedule data. */

/* The file with the schedule data is opened for writeing. */

/#****t*#**t'*********tttttttt***&&‘&**t*t*t************tlti**#*******ttt*t****/

void init_oracle(}

{

strcpy(temp_sel,
“/home2/sandra/valdew/misc/temp”);

strepy(schedule_data_file,
“home/wayne/blzhang/ficleell/message/schedule.data™);

mw_connect(*mcc21”,”m”,
“/home2/sandrafvaldew/oracte_c/embed_sql/config_tables_schedule.txt™);

if((drive = fopen(schedule_data_file,”w™)) == NULL)
printf(*\nError, open %s.” schedule_data_file);
)

/**t#**t*******t**t***‘tt*‘#“#***#**t#t*****‘t*t*****i******t**********#****li/

/* The function terminate_oracle writes the tail o the schedule_data_file, */

/* commits changes made in the oracle database and ends the oracle session. */
f#*##*t*#**t*#*#*#**tt***t*t*#*t*****t##tt*t*t***********#t**tt*#****t****t**t#/

void terminate_oracle()

{

sprintf(help, t000\n", value);

fputs(helpdrive);

sprintf(help,”- - \n™);

Page 235

fputs(help,drive);
fclose(drive);
mw_commit();
mw_disconnect();
printf(*\n");

)

ft*t**t*tttt***t**i!tt**1t*ittt***‘**t*#i‘ii*‘tt*tiiiitt#t‘tt*#*******it#*ttttt/

f* The function write_schedule_header writes the header to the file */
/* schedule_data_file. */

f*tt#ttttttt#tttt‘i.‘***tttt**t‘*t***tt!t**‘#tttt***ttttttt#t****tt**t*t*#**l**/

void write_schedule_header()

{

sprintf(help,™ Production Schedule\n™);
fputs(help,drive);)

sprintf(help,” \n");
fputs(help,drive);

mw_query(“date”,™,"™);
next_value(result_string,value,result_rest);
sprintf(help,”™ 001\t %es\n", value);

fputs(help,drive);

sprintf(help,” 0"y,
fputsthelp,drive);

]

/******#t**t*t********t#*&*t****#*#*i*t******‘t#***&&****&*t***********ttt*t***!

/* The function generate_part_types generates a unique part type for cach */

* scheduled part. This is done because the cell controller feed back is */

/* related only to part types and not to order numbers and part numbers. */

/* To be able relate the feed back to orders and parts, the part types are */

/* stored in the database table help_part_type. A process rout has 1o be */

/* produced for each part type as well. The program create_process_file will */
/* do that job, */

I**********t******i*t****i*i#******#**t**t*************************************/

void generate_part_types(

(

char mfg_order_no[SMAL_STRING], part_no[SMAL_STRING];
char part_type[SMAL_STRING];

/* Initialise the table help_pari_type. */
mw_delete(“help_part_type_1","");

sprintfthelp,”’0’, '0°, 0");
mw_insert(**help_part_type_1" help);

f* Get all parts in the schedule. */
mw_query(“schedule_1","" temp_sel);
if((drive2 = fopen(temp_sel,”r”)) == NULL)
printfC\nError, open %s.” temp_sel);
file_rest[0] =)",

/* Generale a unique part type for cach order and part, starting with */
/* the part type 1. */
while(file_reader(mfg_order_no, drive2, file_rest))
{
file_reader(part_no, drive2, file_rest};

Page 236

mw_query(“‘next_part_type”,”",”");
next_value(result_string, part_type, result_rest);
sprintf(help,”%s, ‘%s’, %os” mfg_order_no, part_no, part_type);
mw_insert(“help_part_type_1", help);

]

fclose(drive2);

}

F e et e d il bt ke L L)

/* The function write_schedule writes the schedule data to the file */
/* schedule_data_file. */

f**ttttt‘**tlt#***‘#tttt*‘#titt**ttt# LR b i 2L 2 22 2 R e P2ttt 2 LE L] t*******t#t*ﬁ'[

void write_schedule()

{

char mfg_order_no[SMAL_STRING], part_no{SMAL_STRING];
char part_type[SMAL_STRING], planned_quantity[SMAL_STRING];
int schedule_order_number = 0;

/* Get all pants in the schedule. */
mw_query(“schedule_2","" temp_sel);
if{{drive2 = fopen(temp_sel,”r")) == NULL)
printf(*\nError, open %s.” temp_sel);
file_rest[0] = \O”;

/* Write an entry for each scheduled part to the file. */
while(file_reader(mfg_order_no, drive2, file_rest))

{
schedule_order_numberi+;
file_reader(part_no, drive2, file_rest);
file_reader(planned_quantity, drive2, file_rest);

sprintf(help,”mfg_order_no=%s and part_no="%s’",mfg_order_no, part_no);
mw_query(*“help_part_type_2"help,”™);

next_value(result_string, part_type, result_rest);

sprintf(help, ™ 00%d\NNO0%s\N %s\n” schedule_order_number,

part_type, planned_quantity);

fputs(help,drive);

file_reader(value, drive?, file_rest);
file_reader{value, drive2, file_rest);
}

fclose(drive2);

}

main()

{

init_oracle();
write_schedule _header();
generate_part_types();
write_schedule();
terminate_oracle();

}

Page 237

Meta-file definition

Name of meta-file : config_tables_schedule.txt

Definition of database-objects: (for access_ora)

“help_part_type_1" “help_part_type”
“mfg _order_no, part_no, part_type” ‘““

“help_part_type_2" “help_part_type”
& ‘part_typc” 1113

“next_part_type” “help_part_type”
“(max(pm_type) + 1)’! (1144

“datc”“dual,’
“Sysdate” L1113

“schedule_1" **schedule”
“mfg_order_no, part_no” ““

“schedule_2" “schedule”

“mfg_order_no, part_no, planned_quantity, priority, schedule_start_date”
“planned_quantity > O order by schedule_start_date, priority”

Page 238

Populate_wip.c

I********‘t***t**‘***t****ii**********‘**&***t***************li**********#***i*/
[* File; populate_wip.c */

f* This program populates the data repository wip. */

/* Any old data residing in this table is deleted. */

/* The data is read from the cell status file: */
/*‘Mhome/wayne/blzhang/ficlcell/message/cell_status.data’. */

l*i*#***i**‘*ittt#t‘ttt‘**itit**‘t*ttt*“tt‘t*ttt‘it*#titt#****tt***‘*****#*tt*l

#include <stdio.h>
#include “local_incl.h"

j****t******i*t****#*ttt**t*ttt‘###‘i***#itt**i###ti*##**tt***‘tt***‘*t**#**t*t/

/* The string result_string is used to communicate with the functions of the */
/* program access_ora, with are used to access the oracle database. */
l*#*t*tttt***ttt*tttt*#*tttttt***tit*t#***tt#*t*it*ttt**#********‘*t*#tttt**#*tl

extern char result_string[VERY _LONG_STRING];

char wip_file[MEDIUM_STRING];
FILE *drive;

,******t*****tt******t***#tit******t***1**t*‘***#t*i#**t*********ti*#*#**#***t*/

f* The function init_oracle connects to the MCC oracle database and opens */

J* cell status file, */
/*************i*******‘*****tt******t****##*************‘******************#‘tt/

void init_oracle()

(
strepy(wip_file,”/home/wayne/blzhangficlcell/message/cell_status.data”);
if{(drive=fopen(wip_file,”r")) == NULL)

printf(“‘\nError oper file: %s.”,wip_file);

mw_connect(*mcc21”,”m”,
“fhome2/sandra/valdew/oracle_c/embed_sql/config_tables_wip_2.1xt™);
}

/****************************t******&*****‘tt#****t*#***ti*****tt*t**********l*/

/* The function terminate_oracle closes the cell status file, commits all */
/* changes in the database and ends the database session, */

/***t***###ii*‘t#*t&***###**t**##!t‘t**##i‘*****t#***‘*****t*********i****#**‘*/

void terminate_oracle()
(

fclose{dnive);
mw_commit();
mw_disconneci();
printf("*\n");

)

/*#****t****************************t*#*************#**************************/

/* The function word_no retrieves the n’th word from a string. The words */
f* have to be seperated by blanks. */

/****ttt*********#t****##*t**#*****#*******i***#***********t******t****t****it*/

char word_no(line, number, word)

Page 239

char *line;
int number;
char *word;
{
char blank_state = 1;
inti=0,start, end, act_no=1;

word[0] = "0";

while(line[i) == ' *)i++;

if(tline[i]) retum(0);

while(act_no < number)

{

while((line[i] = * *) && line[i])i++;
while(line[i] == * ‘)i++;

if(!line[i]) retumn{0);

aCct_no++;

}

start=1i;

while((line[i] != * ‘) && line[i])i++;
end=1;

strncpy(word, &line]start], end-start);
word[end-start] = “\0’;

return(1);

}

I‘**#********“*#**t*#***t***ttt**‘*******‘t*t&***********t‘tit*t****t**t****i*/

/* The function pop_wip reads from the cell status file and puts some of the */
/* data in the table wip. */

/*****#*t**t***#*****t**************t L] » "rt******tt**************i**t/

void pop_wip()
{

char file_string[FILE_LINE_LEN], file_string2[FILE_LINE_LEN};

char blank_state = 0,

int i;

int cell, time;

char order_no[SMAL_STRING], part_no[SMAL_STRING], type[SMAL_STRING];
char quant[SMAL_STRING};

char help2{SMAL_STRING], helpl [SMAL_STRING];

/* Delete any old wip data. */

mw_delete(* wip”,™™);

printf("\n”);

/* Read the first three lines. */

for(i=0;i<3;i++) fgets(file_string, FILE_LINE_LEN, drive);
/* Get the cell number and the actual time. */
word_no{file_string, 3, helpl);

cell = to_numberthelpl);

word_no(file_string, 5, helpl);

time = to_numberthelpl);
printf(“nCell: %d, Time: %d.” cell, time);

Page 240

/* Get the status and utilisation rate of the machines. */

for(i=0;i<S5;i++) fgets{file_string, FILE_LINE_LEN, drive),
fgets(file_string2, FILE_LINE_LEN, drive);
for(i=1;i<=cell;i++)
{
word_no(file_string, i, helpl);
word_no{file_string2, i, help2);
printf("\nMachine %d, State: %s, Util: %s." i, helpl, help2);
}

/* Get the status and utilisation rate of the AGV, ¥/

word_noffile_string, 5, helpl);
help1[strlenthelpl)-1] = \0';
word_noffile_string2, 5, help2);
help2[strlen(help2)-1] = N0";

printf*\nAGYV State: %s, Utl: %s.”, helpl, help2);

* Gel lhé number of parts in the raw part area. */

for(i=0;i<5;i++) fgets(file_string, FILE_LINE_LEN, drive);
printf("\nRaw Part Area:”);

word_no(file_string, 1, helpl);

while(strcmp(help!, “000™))

{

word_no(file_string, 2, help2);

help2[strlen(help2)-1] = “O’;
printf("\nPart Type: %s, Number: %s.” helpl, help2);
fgets(file_string, FILE_LINE_LEN, drive);
word_no(file_string, 1, helpl);

}

/* Get the number of parts in the finished part area and store that */
/* data in the wip table. */

for(i=0;i<3;i++) fgets(file_string, FILE_LINE_LEN, drive);
printf(*\nFinished Part Area:”™);

word_no(file_string, 1, helpl);

while(stremp(helpl, “000™)

{

word_no(file_string, 2, quant);

quant[strlen(quant)-1] = \)";
sprintf(type,”%d" to_number(helpl));
printf(**\nPart Type: %s, Number: %s.” type, quant);

sprintf(helpl,”part_type = %s"”.type);
mw_query(“help_part_type”helpl,”);
next_value(result_string, order_no, result_string);
next_value(result_string, part_no, result_string);
printf("\nOrder_no: %s, Part_no: %s.” order_no, part_no);
sprintfthelpl,”%s, ‘%s’, %s” order_no, part_no, quant);
mw_insert(“wip”, helpl);

fgets(file_string, FILE_LINE_LEN, drive);
word_no(file_string, 1, helpl);

)

}

Page 241

main()

{

init_oracle();
pop_wip();
terminate_oracle();

}

Meta-file definition

Name of meta-file : config_tables_wip_2.txt
Definition of database-objects: (for access_ora)

“help_part_type” “help_part_type”
“mfg_order_no, part_no” “

G‘wip” l‘wip!,

“mfg_order_no, part_no, actual_quantity_prod”

Page 242

Populate_bom.c

/* File: populate_bom.c */

f* This program populates the data repositories bom_parent and bom_child, */
/* Any old data residing in those tables is deleted. */

/* The item_no’s starting with ‘LUT..." and Bom name ‘BOM’ are chosen, */

#include <studio.h>
#include “local_incl.h”

/*t*t**tttiitt*tt*‘*t*#‘**iit******#*tt****‘** sk * ******‘l*******t,

/* The string result_string is used to communicate with the functions of the */

/* program access_ora, with are used to access the oracle database. */
lt#**t*tttttt*i***#tttt***###*t**t***t****tttt#****ittt***tt**#itt**##*****t‘#*/

extern char result_string[VERY _LONG_STRING];

char temp_sel[MEDIUM_STRING];
int level_number;

/****#**ttiv LT EL LS *iti***t*****ti*t#**t****#ttt*****t***t*#***t*#it*t*/

/* The function init_oracle connects to the MCC oracle database and sets */
/* values for temporal files. */

I****tt*t1t*******t##*t**t***ﬁ********t*ti**tt*#*#**t#***t****‘*l************t*!

void init_oracle()

{

strepy{temp_sel,
“fhome?/sandrafvaldew/miscfiemp”);

mw_connect(*mcc21”,”m”,
“/home2/sandra/valdew/oracle_c/embed_sql/config_tables_bom.txt");
}

I‘******#***#*i‘****#***#t#&#&***************t*******************t*************/

/* The function terminate_oracle commits all changes in the oracle database */

/* and ends the database session. */
I****t****t**t*******#***#***tt#****###**t*#****##tt***###t***tt*****#******t**/

void terminate_oracle()
(

mw_commit();
mw_disconnect();
printf("\n™);

}

/**#****t***tt***t***********t*****t****##**##t***&**##******t*t********tt*tt*tl

/* The function pop_child populates the table bom_child with data from the */
f* MCC table bill_of_mat_item. It puts the data specified by child_id in */
f* the bom_child 1able and calls pop_child for all children of this child. */

/**#t**********t**********#*#******t*ttt#***#****#lll*********###t*****#*l**t*t/

void pop_child(child_id, level)
char *child_id;

int level;

{

char help[LONG_STRING];
FILE *drive;

Page 243

char file_rest[FILE_LINE_LEN];
char loc_file[MEDIUM_STRING];

char parent_no[SMAL_STRING], s_date[SMAL_STRING], e_date[SMAL_STRING];
char child_no[SMAL_STRING];

char unit_nam[SMAL_STRING], lead_ume[SMAL_STRING]I;

char sub_child_id[SMAL_STRING];

char chang_no[SMAL_STRING], sup_ident{SMAL._STRING), quant{SMAL_STRING];
int childs;

char pritty_print[SMAL_STRING];

i

pritty_print[0]="0";
for(i=0i<level;i++) sprintf(pritty_print,"%s *,pritty_print);

sprintf(toc_file,”%s%d” temp_sel level);
if(level > level_number) level_number = level;
printf(*‘\n%schild_id: %s.”,pritty_print,child_id);

/* Get the data from the bill_of_mat table. */

sprintf(help,”b.ident = %s”, child_id);
mw_query(“‘bom_child” heip,””),

next_value(result_string, parent_no, result_string);
next_value(result_string, child_no, result_string};
next_value(result_string, s_date, result_string);
next_value(result_string, e_date, result_string);
next_value(result_string, unit_nam, result_string);
next_value(result_string, lead_time, result_string);
next_value(result_string, chang_no, result_string);
next_value(result_string, sup_ident, result_string);
next_value(result_string, quant, result_string);

/* Set non existant values to NULL. */

if(e_date[0]) sprinti(e_date,”’ %s'" e_date); else sprintf(e_date,"NULL");
if(sup_ident[0]) sprintf(sup_ident,”" %s’” sup_ident);

else sprintf(sup_ident,”"NULL");

if(!lead_uime[0]) sprintf(lead_time,”"NULL");

if(!chang_no[0]) sprintf(chang_no,”"NULL");

/* Get all children. */

sprintf(help,”bill_of_mat_item_no='%s" and bill_of mat_nam="BOM"” child_no);
mw_query(bill_of_mat_item_1" help,loc_file);

if((drive=fopen(loc_file,"r")) = NULL)

printf("\nError oper file %s.” loc_f{ile);

file_rest[0]="0";

childs =0;

/* Call pop_child for all children (if any). */

while(file_reader(sub_child_id, drive, file_rest))
{
pop_child(sub_child_id, (level+1));
childs++;

] a

Page 244

fclose(drive);

printf{'\n%s%s, %s, %s, %s, %s, %s, %os, %s, %d, %s™,pritty_print,parent_no,
child_no, s_date, e_date, unit_nam,
lead_time, chang no, sup_ident, childs, quant);

/* Insert row in the bom_child table, */

sprintf(help,”' %s’, ‘%s’, ‘%s’, %s, ‘%s’, %S, %S, %S, %d, %s”,
parent_no, child_no, s_date, e_date, unit_nam,

lead_time, chang_no, sup_ident, childs, quant);
mw_insert(“bom_child_1" help);

}

F**tt*t***tt**‘ltt***t*****#t*#***i*‘*t#**#ﬁt******#tt****tt***‘*********t****t/
f* The function pop_bom_head gets the data from the bill_of_mat table and */

f* puts it into the bom_parent table. The function pop_child is call for */

f* all children of the specified part, */

/***&&*i*#it*t***#**##*ll#tiit*t******‘!lilttt***********ti#******t*#t**t********i/

void pop_bom_head(bom_ident)
char *bom_ident;

{

char helpfLONG_STRING];

FILE *drive;

char file_rest[FILE_LINE_LEN];
char loc_file[MEDIUM_STRING];

char parent_no{SMAL_STRING], s_date[SMAL_STRING], e_date[SMAL_STRING];
char unit_nam[SMAL_STRING], lead_time[SMAL_STRING], child_id[SMAIL._STRING];
int childs;

sprintf(loc_file,”%s0” temp_sel);

printf("\nldent: %s.” , bom_ident);
level_number = 0;

/* Get data from the bill_of_mat table. */

sprintf(help,”b.ident = %s”, bom_ident);
mw_query{"bom_head”.help,™);
next_value(result_string, parent_no, result_string);
next_value(result_string, s_dalte, result_string);
next_value(result_string, e_date, resuli_string);
next_value(result_string, unit_nam, result_string);
next_value(result_string, lead_time, result_string);

/* Get all children. */

sprintfthelp,”bill_of_mat_ident=%s",bom_ident);
mw_guery(“bill_of_mat_item_1" help,loc_file);
if((drive=fopen(loc_file,"r"}) == NULL)
printf(*\nError oper file %s.” loc_file);
file_rest[0]="0";

childs=0;

f* Call pop_child for each child (if any). */

Page 245

while(file_reader(child_id, drive, file_rest))
{

pop_child(child_id, 1);
childs++;

}

fclose(drive);

/* Set non existant values to NULL. */

if(e_date[0]) sprintf(e_date,” %s’" e_date); else sprintf{e_date,"NULL");
if(!lead_time[0]) sprintf(lead_time,"NULL");

printf("\n%s, %s, %s, %s, %s, %d, %d” parent_no, s_date, e_date, unit_nam,
lead_time, childs, level_number);

/* Inser row in the table bom_parent. */

sprintf{help,”" %s’, ‘%s’, %s, ‘%s’, %5, %od, %d”,
parent_no, s_date, e_date, unit_nam,

lead_time, childs, level_number);
mw_insert(*“bom_parent” help);

)

!ﬂl**ll*tttttt***t*‘*******ll**lll*tt**‘l‘t*it**t*#&***t**t**t*i**t**************#**/

/* The function start_pop_bom deletes all data in the tables bom_parent */
/* and bom_child and get calls pop_bom_head for all parts with a bom name */
/* *BOM’ and an item_no like ‘LUT%". */

/**‘*llt*tlt*ﬁ*t***#t**#******t********#***t* a2 2o e o 0 o e o oo e ok ol ok ol ok ke ok ek ek kR ******/

void start_pop_bom(

{

char help[LONG_STRING};

FILE *drive;

char file_rest(FILE_LINE_LEN];
char bom_ident[SMAL_STRING];

mw_delete(“bom_parent™,™);
mw_delete("bom_child_1","");

sprintf(help,”item_no LIKE ‘LUT%c’ and nam = ‘BOM’”,"%’}; f*don’t change */
mw_query(“bill_of_mat_1" helptemp_sel);

if((drive=fopen{temp_sel,"r")) == NULL)

{

printfCnError oper file %s.” temp_sel);
returm;

}

file_rest[0] = \O*;
while(file_reader(bom_ident, drive, file_rest))
pop_bom_head(bom_ident);

fclose(drive);

}

main{)

{

init_oracle(),
start_pop_bom();
terminate_oracle();

}

Page 246

Meta-file definition

Name of meta-file : config_tables_bom.txt
Definition of database-objects: (for access_ora)

“bill_of _mat_1" “bill_of_mat”
iiiant” L1133

“bom_head” “bill_of_mat b, item_sourc_dati”
“b.item_no, b.eff_from_dat, b.eff_to_dat, b.unit_nam, i.lead_tim”
“b.item_no = i.item_no (+)”

“bill_of_mat_item_1"" “bill_of _mat_item”
“ident" (1711

“bom_child” “bill_of_mat_item b, item_sourc_dat i’

“b.bill_of _mat_item_no, b.item_no, b.eff from_dat, b.eff_to_dat, b.unit_nam, i.lead_tim,
b.eng_chang_ident, b.sup_ident, b.quant”

“b.item_no = i.item_no (+)”

“bom_parent” “bom_parent”
“parent_part_no, eff_start_date, eff_end date, unit_of measure, lead_time_offset, num-
ber_of_children, number_of_levels™ ““

“bom_child_1"" “bom_child”

“parent_part_no, part_number, eff_start_date, eff_end_date, unit_of_measure, lead_time_off-
set, eng_change_no, phases_out_part_no, number_of_children, quantity_per_assembly” ““

Page 247

APPENDIX VII

MCS FIMM

Functional Interaction Manager - Service Options

Page 248

Functional Interaction Manager

Service Options

Details

Manipulation Services

Add New Part

Registers a new part 1o be processed. The number of the new part and
its type must be given as an argument. The part number must be
unique and is restricted 1o integers between 0 and 99999999, The type
of 3 part can be any character string with a length of 3 alphanumeric
characters. The status of all activities defined in the FIMM
configuration data is set to pending (‘P’) for the new part and its
instance is set to 1.

Change Status

Change Stats: Changes the status of a function for a given part,
identified by its part number. If the new status of the function is
complete (‘C’) the instance of the part is changed as well. The
instance of the part will be set to the end instance of the function, as
defined in the FIMM configuration data. When two or more functions
have defined the same end instance, the instance of the part is changed
only when all functions with the same end instance are completed.
Otherwise a function, waiting for the competition of two other
functions could get a part number on its job load list, while one of
thefunctions is still working on that part (sce also get job load).

Change Instance

Changes the instance of a part, identified by its part number. Using this
service a function can indicate 10 the Functional Interaction Manager
that it has reached a certain status for a part, which might trigger other
functions to start working on that part.

Query Services

Get Parts

Get Parts: Get information about parts, specified by four parameters.
The first two parameters refer to the range of part numbers, the
retrieved parts must lie in. If no lowest or highest number is specified,
the values 0 and 99999999 are assumed as range. The other two
parameters specify a function and a status value, The returned part
numbers will only belong to parts which have the specified stats for
the given function. If no function is specified, all parts with numbers
lying in the specified range are returned. A fifth parameter determines
the format of the returned data. Either only the part numbers, or the
complete status, instance and type information can be returned.

Get Job Load

Get Job Load: Gets information about all paris, that have to be
processed by a specified function. Besides the function, a range of part
numbers can be specified, the retrieved parts should lie in. There are
two conditions, that specify the returned parts. First, the status of the
parts must be pending (‘P for the specified function. Second, the start
instance of the function must be greater or equal than the actual
instance of the part. The last parameter again determines the format of
the returned data.

Page 249

Program listings
for
Functional Interaction Manager & Engineering Resource Manager

/* File: operator_functions.c*/
/* The functions in this file perform tasks of the Functional Interaction Manager and
Engineering Resource Manager).*/

/* Functions include the following :*/

[*new_part()

enters a new part to be registered in the MCS FIMM. The status for all activities is set to ‘P’ for pending
and the point of the part is set to 1.%/

f*change._status()

changes the status of an activity for a given part. If the new stats of the activity is *C’ for completed,
the point of the part is set to the end point of the aclivity, The point is not changed, if there are other
activities with the same end point and a status other than complete.*/

f*change_point()
sets the point of a given part to a new value.*/

f*add_eng resource()
adds the location of an engineering resource to the eng_resource_table. If there was already a location given,
the old value is overwritten.*/

f*get_jobs()
retrieves parts fulfilling a given condition.*/

f*get_job_load()
retrives parts which are pending (‘P”) for a given activity and with point values greater or equal to the
start point of the given activity.*/

f*get_eng_resources()
retrieves the location of engineering resources,*/

f*get_resp_eng()
retrieves all engineering resources related to a given activity.*/

#include <stdio.h>
#include “local_incl.h”

extern char result_string[VERY_LONG_STRING];

char help[MEDIUM_STRING], help2[MEDIUM_STRING};

char vall[SMAL_STRING], val2[SMAL_STRING], val3[SMAL_STRING};
char value[SMAL_STRING], result_restitMEDIUM_STRING];

FILE *drive, *drive2, *drive3;

char file_rest{fFILE_LINE_LEN)], file_rest2[FILE_LINE_LEN];

extern char temp_sel[MEDIUM_STRING];

exiern char temp_sel2[MEDIUM_STRING];

extern char job_filefMEDIUM_STRING];

extern char resource_file[MEDIUM_STRING];

char new_part(part_no, type)
char *part_no;

.

Page 250

char *type;

(

int part_number,;

char part_number_string[SMAL_STRING];

/¥ part_no must be a number */
strepy(part_number_string, part_no);
part_number = to_number(part_no});
sprintf(part_no,”%d”,part_number);
if(strcmp(part_no,part_number_string)} return{0);

if((strlen(part_no)>PART_NO_LEN) |l

(sirlen(type)>STATUS_LEN) It ({part_no[0]) I (!type[0])) remurn(0);

/* part_no must not exist */
sprintf(help,”part_no="%s’ and type="type’”,part_no);
mw_query(‘status_table” help,””);
if(next_value(resuli_string,value result_rest))

return{Q);

else
{

* sprintf(help,” %s’, ‘type’, ‘%s'",part_no,lype);
mw_insert(“status_table” help); :
sprintf(help,”" %s’, ‘point’, *1'” part_no);
mw_insert(“‘status_table” help);
mw_query(‘s_act”,”™ temp_sel),
if((drive = fopen(temp_sel,”r”)) == NULL)
printf("\nError, open %s” temp_sel};
file_rest(0] = N0
while(file_reader{vall, drive, file_rest))

{
sprintfthelp,” %s’, ‘%s’, ‘P*”, part_no, vall);
mw_insert(*status_table” help);

}
fclose(drive),

mw_commit();

return(1);

)

}

char change_status(part_no, activity, status)
char *part_no;

char *activity;

char *status;

{

int part_number;

char part_number_string[SMAL_STRING];

/* part_no must be a number */
strepy(part_number_string, part_no);
part_number = to_number(part_no};
sprintf(part_no,”%4d" part_number);
if(stremp(part_no,part_number_string)) retun{Q);

if((strlen(part_no)>PART_NO_LEN) |l
(strlen(activity)>FIC_NAME_LEN) Il
(strlen{status)>STATUS_LEN) il (!status{0D)} return(0});

Page 251

f* part_no must exist in the status_table */
sprintf(help,”part_no="%s" and type="type’”,part_no);
mw_query(*‘status_table”, help,™);
if(!next_value(result_string,value resolt_rest))
retun(0);

/* activity must be known */
sprintf(help2,”name="%s"" activity);
mw_query("s_act”help2,™);
if('next_value(result_string,value result_rest))
return{0);
clse
{

/* decide whether update or insert is needed */
sprintf(help,”part_no="%s" and type="%s"" part_no, activity);
sprintf(help2,”status="%s"" status); ’
mw_query(‘status_table” help,™);
if(next_value(result_string,value result_rest))
mw_update(“status_table” help2,help);
else
{
sprintf(help,” %s’,"%s’,’ %s"" part_no,activity,status);
mw_insert(*'status_table” help);

]
if(result_string[0] = ‘s’)

{ mw_rollback(); return(0);)
else
{

/* if status = C set point to end point of activity */
if(!strcmp(status,”C™)

{

sprintf(help,”activity="%s" and type="¢_p’” activity),
mw_query(“activity_info_info” help,””);
if(next_value(resuli_string,value,result_rest))

{

/* check whether other activities have the same end point and are not */

/* in the status C */
sprintf(help,”status!="C" and part_no="%s" and type in(select activity from activity_info_table where informa-
tion="%s’ and type="e_p’)",
part_no,value);
mw_query(‘status_table” help,™);
if(Inext_value(result_string,vall result_rest))

(

sprintf(help,”part_no="%s" and type="point’" part_no);
sprintfthelp2,”status="%s"" value);
.mw_update(*'status_table” help2, help);

)

)

else
{
prinif(*\nCan’t find end point for activity %s!” activity);
mw_rollback(); return{Q);

}
}
}

mw_commit();

return(1);

}

}

char change_point(pan_no, point)
char *part_no;

char *point;

{

int part_number;
char part_number_string[SMAL_STRING];

/* part_no must be a number */
strepy(part_number_string, part_no);
part_number = to_number(part_no);
sprintf(part_no,”%d" part_number);
if(strcmp(part_no,part_number_string)) retum{0);

if((strlen(part_no)>PART_NO_LEN) Il
(strlen(point)>STATUS_LEN) Il (!point[0])} return(0);

f* part_no must exist */
sprintf(help,”part_no="'%s’ and type="point
sprintf(help2,”status="%s’",point);
mw_update(“status_table” help2,help);
if{stremp(result_string,”s:1™))

return{0);

else
{
mw_commit();
retun(l);

}

)

,part_no);

char add_eng_resource(part_no, resource, location)
char *part_no;

char *resource;

char *location;

{

int part_number; .

char part_number_string[SMAL_STRING};

/* part_no must be a number */
strepy(part_number_string, part_no};
part_number = to_number(part_no);
sprintf(part_no,"%d” part_number);
if(stremp(part_no,part_number_string)) return(0);

if((strlen{part_no)>PART_NO_LEN) Il
(strlen{resource)>FIC_NAME_LEN} I
(strlen(location)>FIC_NAME_LEN) |l (!location[0])) return(0);

/* pari_no must exist in the status_table */
sprintf(help,”part_no="%s" and type="type’”,part_no),
mw_query(“status_table” help,™);
if(Inext_value(result_string,value,result_rest))

return(0};

[* resource must be known */
sprintf(help2,”name=""%s’" resource);
mw_query(‘s_er” help2,”™;

Page 253

if(!next_value{result_string,value,result_rest))
return(0);

sprintf(help,”part_no="%s" and eng_resource="%s"", part_no, resource);

mw_query(‘eng_resource_table”, help, ““);
if{next_value(result_string,value,result_rest))
{ .
sprintf(help2,”location="%s'",location}),
mw_update(“eng_resource_table” help2,help);
)
else

{

sprintf(help,” %s’,’%s’,"%s"" part_no, resource, location);

mw_insert("eng_resource_table” help);
}

mw_commit();

return(1);

)

void get_jobs(part_nol,part_no2,activity,status,format)
char *part_nol;

char *part_no2;

char *activity;

char *status;

char *format;

{

int part_number;

/* part_no must be a number */
part_number = to_number(part_nol);
sprintf(part_nol,”%d",part_number);

part_number = to_number(part_no2);
sprintf(part_no2,”%d”,part_number);
sprintf(help,”part_no>="%s’ and part_no<="%s"",
part_nol[0] == \)" 7“0” : part_nol,

part_no2[0] == 0" ? *99999999" ; part_no2);
if{activity[0])

{
sprintf(help2,”%s and type="%s" and status="%s"",
help, activity, status);

) .

else strepy(help2 help);
mw_query(“status_table_numbers” help2,temp_sel);
sprintf(help,”mv %s %s” temp_sel, job_file);
if(format[0])
system(help).

else

{
- drive3=fopen(job_file,"w");

fprintf(drive3,"\"%s\" \"%s\N” \"%s\™\n",”part_no”,”type”, “point’),

mw_query(“s_act”,”" temp_sel2);
if((drive2 = fopen(temp_sel2,"r™)) == NULL)
printf(*\nError, open %s.” temp_sel2);

file_res2[0] = \O";
while(file_reader(val3, drive2, file_rest2))
{ .

Page 254

fprinuf{drive3,” \"%s\ ™" val3);

)

fprintf(drive3,” \™\™™);,

fclose(drive2);

if({(drive = fopen{temp_sel,"r”)) == NULL)
printf(‘“\nError, open %s.” temp_sel);
file_resi[0] = \O’;

while(file_reader(vall, drive, file_rest))

{

fprintf(drive3,™\a\"%s\” “,vall);
sprintf(help,”part_no="%s" and type="type'",
vall);
mw_query(“status_table_status™ help,””);
next_value(result_string,value,result_rest);
fprintf(drive3,"\"%s\"\n" value);
sprintf(help,”part_no="%s’ and type="point’”,
vall);
mw_query(“status_table_status” help,””);
next_value(result_string,value resuli_rest);
fprintf({drive3,™\"%s\" “,value);

if((drive2 = fopen(temp_sel2,”r")) == NULL)
printf(“\nError, open %s.” temp_sel2);
file_rest2[0] = \O’;

while(file_reader(val2, drive2, file_rest2))

{

sprintf(help,”part_no="%s’ and type="'%s"",
vall, val2);

mw_query(‘status_table_staws” help,”");
next_value(result_string,value,result_rest);
fprintf(drive3,™"%s\"\n",value);

}

forintf(drive3,” \"™\"™);

fclose(drive2),

}
fclose(drive);
fclose(drive3);

)

}

void get_job_load(part_no1 part_no2 activity,format)

char *part_nol;
char *part_no2;
char *activity;
char *format;

(

int part_numbet;

/* part_no must be a number */
part_number = to_number(part_nol),
sprintf(part_nol,”%d",part_number);

part_number = to_number(part_no2);
sprintf(part_no2,”%d”,part_number);

sprintf(help,”part_no>="%s’ and parl_no<='%s"",
part_noi[0] == D" 70" ; part_nol,

part_no2{0] == 0" ? “99999999" : part_no2},
if(activity[0])

Page 255

{
sprintf(help2,”%s and type="%s" and status="P*",
help, activity);

else strepy(help2 help);
mw_query(status_table_numbers” help2.temp_sel2);

sprintf(help,”activity="%s" and type="s_p"" activity);
mw_query(“activity_info_info” help,™);
if(Inext_value{result_string,val2 result_rest))

printf(*“\nError, can’t get start point from activity %s” activity);

drive2=fopen(temp_sel,”w");

if((drive = fopen{temp_sel2,"’r")) == NULL)
printf(*\nError, open %s.” temp_sel2);
file_rest[0] = “\D";

while(file_reader(vall, drive, file_rest))

{
sprintf(help,"part_no="%s" and type="point’ and status>="%s"",
vall,val2);
mw_query(“stams_table_status” help,”"");
if(next_value(result_string,value result_rest))
fprintf(drive2,” \"%s\""n" vall);

)

fclose(drive);

fclose(drivel);

sprintfthelp,”mv %s %s” lemp_sel, job_file);
if(format[0])
system(help);

else

{
drive3=fopen(job_file,"w");
fprintf(drive3,"™\"%s\’ \"%s\” \"%s\\n”,"part_no”,"type”, “point™);
mw_query(*“'s_act”,"” temp_sel2);

if({drive2 = fopen(temp_sal2,”r"™)) == NULL)
printf(“nError, open %s.” temp_sel2);
file_rest2[0] = \O’;

while(file_reader(val3, drive2, file_rest2))

{

fprintf(drive3,” \"%s\"\n" val3);

}

fprintf{drive3,” N7\,
fclose(drive2);
if({(drive = fopen(temp_sel,"r")) == NULL)
printf("\nError, cpen %s.” temp_sel);
file_rest[0] = \O;
while(file_reader(vall, drive, file_rest))

{

fprintf(drive3,™o\"%s\” “,val1);
sprintf(help,”part_no="%s" and type="type'”,
vall);
mw_query(“status_table_status” help,™);
next_value(result_string,value,result_rest);
fprintf(drive3,"\"%s\"\n" value);
sprintf(help,”part_no="%s" and type="point’”,
vall);
mw_query(“status_table_status” help,™);

Page 256

next_value(result_string,value,result_rest);
fprintf(drive3,™"%s\™\n" value};

if((drive2 = fopen(temp_sel2,”r")) = NULL)
printf("\nError, open %s.”,temp_sel2);
file_rest2[0] = \O';

while(file_reader{val2, drive2, file_rest2))

{

sprintf(help,”part_no="'%s’ and type="%s"",
vall, val2);
mw_query(“status_table_status™ help,™);
next_value(result_string,value,result_rest);
fprintf{drive3,”™\"%s\\n",value);

)

fprintf(drive3,” \"*\"™);

fclose(drive2);

)

fclose(drive),

fclose(drive3);

)

)

void get_eng resources(part_nol,part_no2,resource,format)
char *part_nol;
char *part_no2;
char *resource;
char *format;
{ .
int part_number;

/* part_no must be a number */
part_number = to_number(part_nol);
sprintf(part_nol,”%d” part_number);

part_number = to_number(part_no2},
sprintf{part_no2,”%d" pari_number);
sprintf(help,”pant_no>="%s" and part_no<="%s"",
part_nol[0] == "0’ 70" ; pant_nol, '
part_no2[0] == 0" ? *99999999" : part_no2);
. if(resource[0])

{

sprintf(help2,”%s and eng_resource="%s"",

help, resource);

drive3=fopen(temp_sel,”w™);
fprintf(drive3,™"%s\™\n" resource);
fclose(drive3);

}

else

(
mw_query(“‘eng_resource_table_res”,help,temp_sel);
strepy(help2,help);

)

mw_query(“eng_resource_table_numbers” help2 temp_sel2);

drive3=fopen(resource_file,"w");
if(!format[0])

{
fprintf(drive3,™"%s\\n","part_no™);

Page 257

APPENDIX VIII ¥

FIMM Configurator - Service options

Page 259

FIMM Configurator

Service Options

Details

Add MCS function

Registers a new MCS function to be managed. The user will be asked
1o enter the start and end instance and the relations to the existing
information models and engineering resources for the newly
registered function.

Add information model

Registers a new information model, which is necessary to support part
manufacture. The user will have 10 enter the 1/O relations of the new
information model to the existing functions.

Add engineering resource

Registers a new engineering resource 10 the system. The user will be
asked to enter a function which is accountable for the newly registered
engineering resource.

Delete MCS function

Deregisters an existing MCS function and purges all its related
information, which includes configuration data about the function as
well as all dynamic data concerning the status of the function with
regard 1o processing the parts for manufacture.

Delete information model

Deregisters an existing information model and purges all related
information from the system.

Delete engineering resource

Deregisters an existing engineering resource and purges all related
configuration data from the system. Dynamic data about that
engineering resource (i.e. the location of the resource for a specific
part to be manufactured) will, however, not be deleted.

Change start/end instance Changes the start and end instance for a function. The start instance is
used, when the MCS function is ready to receive the job for part
processing. The end instance is used to indicate the completion of the
Job by the function concemned.

Change Input/Qutput (/0) Changes the 1/O association relationship between MCS functions and
association information models. The user can cheose to alter the following :
* Single [/O relation between function and information model.
* All 1/O relations of a function to the information models.
* All I/O relations of an information model to the functions.

Change accountability Changes the accountability of MCS function for an engineering
resource. Note that a function can be accountable for more than one
engineering resource.

Display MCS functions List all existing MCS functions.

Display information models

List all existing information models.

Display engineering resources

List all existing engineering resources.

Display I/O association The following choices are available ;
* All I/O relations of a function to the information models.
* All I/O relations of an information model to the functions,
Display status Display status of functional interaction manager with regards to parts

being processed.

Page 260

Program listings FIMM Configurator

/* File: engincer.c */

/* Functions for FIMM Configurator */

/* This program has to be started on the host wayne (location of FIMM database). */
/

#include <stdio.h>

#include “local_incl.h™

extern char result_string[VERY_LONG_STRING];

main()

(

intijk;

char command[SMAL_STRING];

char val1[SMAL_STRING], val2[SMAL_STRING], val3[SMAL_STRING];

char val4[SMAL_STRING], help[MEDIUM_STRING], help2[MEDIUM_STRING];
char value[SMAL_STRING], result_rest(MEDIUM_STRING];

FILE *drive, *drive2;

char file_rest[FILE_LINE_LEN], file_rest2[FILE_LINE_LEN];

char file_pathf MEDIUM_STRING];
char temp_sel[MEDIUM_STRING];
char temp_sel2[MEDIUM_STRING]);

strcpy(file_path,”/home2/sandra/valdew/misc™);
sprintf(temp_sel,”%s/lemp_sel” file_path);
sprintf(temp_sel2," %sftemp_sel2” file_path);

mw_connect{“mcc21”,”m”,” home?2/sandrafvaldew/foracle_c/fim/config_tables.txt™);

printf¢*‘\nEnter command {(press RETURN for command list): “);
gets(command);

while((stremp{command, “quit”))& &(command[0]!="q"))
{

if{(command[0] == ‘n")&&(command[1}=="a"}))

{

printfC \nEnter activity name: *);

gets(vall);

sprintf(help, name="%s"" vall);
mw_query(“'s_act”,help,™;
if(next_value(result_string,value result_rest))
printf("\nActivity %s exisis allready.”, vall);
else

{ .

sprintf(help,™ act’, *%s"" vall);
mw_insert(*i_{flat” help);

mw_query(“s_dm”,”” temp_sel);

if{(drive = fopen(temp_sel,”r")) == NULL)
printf("\nError, open %s.” temp_sel);

file_rest[0] = N\D;

while(file_reader{val2, drive, file_rest))

(

printf(“\nEnter role of %s for %s (i, 0, /o, -): %,
val2, vall);

gets(val3);

Page 261

sprintfthelp,™ %s’, ‘%s’, ‘%s’",vall, val2, val3);
mw_insert(“in_out_table” help);

)

fclose(drive);

printf(“\nEnter start point: *);

gets(val2);

sprintf(help,”"%s’, ‘s_p’, ‘%s’".vall,val2);
mw_inseni(*activity_info_table” help);
printf("\nEnter end point: *);

gets(val2);

sprintfthelp,” %s’, ‘e_p’, ‘%s’",vall,val2);
mw_insert(*activity_info_table” help);
mw_query(“s_er”,”" lemp_sel};

if((drive = fopen(temp_sel,”r™)) == NULL)
printf(\nError, open %s.” temp_sel);
file_rest[0] = ™O";

while(file_reader(val2, drive, file_rest))

{

printf(*\nls %s responsible for %s (y,n): “,
vall, val2);

gets(val3);

if(val3[0] == ‘'y")

{

sprinif(help,”" %s’, ‘e_r’, ‘%s’ ", vall,val2);
mw_insert(“activity_info_table” help);

)

)
}

]

else if{{(command(0] == ‘d")&&(commandf1]=="a'))

(
printf(“\nEnter activity name: *);
gets(vall);
sprintf(help,”name="%s"",vall};
mw_gquery(*'s_act” help,”™);
if(!next_value(result_string,value,result_rest))
printf(\nActivity %s not known.”,vall);
else)

(

sprintf(help,”type="act’ and name="%s"",vall);
mw_delete(*i_flat™ help);

sprintf(help, type="%s"",vall);
mw_delete("status_table” help);
sprintf(help,”activity="%s’",vall);
mw_delete("in_out_table” help);
mw_delete(“activity_info_table” help);

)

)

else if((command[0] == ‘p")&&(command[1]=="3"))

{
printf("\n\n\nThe following aclivities are defined\n™);
printf("\n\ { Activity}™);
printf(\n\ "
mw_query(“s_act”,”” lemp_sel);
if({drive = fopen{temp_sel,”r™)) == NULL)
printf(*\nError, open %s.” temp_sel);
file_rest[0] = \O'";
while(file_reader(vall, drive, file_rest))

Page 262

printf("\n\%s” vall};
printf("*\n\n™);
fclose(drive);

}

else if((command[0] == *a")& &{command[1)=="s"))
{

printfC\n\n\nThe following new activities are defined:\n™);
printf(o\ { Activity - IDEFO}™);
printf(*\n\t i -
mw_query(*'s_acl_status”,”” temp_sel};
if((drive = fopen(temp_sel,”r”)) == NULL)
printf(\nError, open %s.” temp_sel);
file_rest{0] = \O”;
while(file_reader(vall, drive, file_rest))
printf(*"n\t%s”, vall);
printf("\n\n”);

fclose(drive);

)

else if((command[0] == ‘p")&&(command[1]=="r"))

printf(*\nThe following engineering resources are defined:™);
mw_query(*'s_er”,”” temp_sel);
if({drive = fopen(temp_sel,"r")) == NULL)
printf(“\nError, open %s.” temp_sel);
file_rest[0] = "\D
while(file_reader(vall, drive, file_rest))
printf(**"n\%s"” vall);
felose(drive);
)
else if({(command[0] == ‘p"}&&(command[1]="d"))
{
printfCm\n\nThe following data models are defined:\n™);
printf(*“n\t{ Data Model}™);
printf{(*~n\, ™),
mw_query(“s_dm”,"”” temp_sel);
if{(drive = fopen(temp_sel,”r")) == NULL)
printf(\nError, open %s.” temp_sel);
file_rest[0] = \O'; .
while(file_reader(vall, drive, file_rest))
printf("\a\ %s” vall);
printf(\i\n™);
fclose(drive);
)

clse if((command([0] = ‘d")&&(command[1]=="s"))
(

printf\n\n\nThe following new data models are defined:\a™);

printf("\n\ { Data Model - IDEF1X])™);
printf(™\n\ "%
mw_query("'s_dm_status”,”” temp_sel);
if{(drive = fopen(temp_sel,”r”)) = NULL)
printf(\nErrar, open %s.” temp_sel);
file_rest[0] =

while(file_reader(vall, drive, file_rest))
printf("\ %s"” vall);

printf(\i\n");

Page 263

fclose{drive);
}

else if((command[0] == ‘n"}&&{command[1]=="d"))
{
printf(*"\nEnter data model name: *);
gets(vall),
sprintf(help, name="%s"",vall),
mw_query(“s_dm" help,™;
if(next_value(result_string,value result_rest))
printf(\nData model %s exists allready.”, vall);
else
{
sprintf(help,”’dm’, *%s’",vall);
mw_insert(“i_fla1” help);
mw_query(*'s_act”,"” temp_sel);
if((drive = fopen(temp_sel,”r”)) == NULL)
primf(*“\nError, open %s.” temp_sel);
file_rest[0] = \O;
while(file_reader(val2, drive, file_rest))
{
printf(*\nEnter role of %s for %s (i, 0, ifo, -): “,
vall, val2);
gets(val3);
sprintf(help,” %s’, *%s’, *%s"™ val2, vall, val3}),
mw_insert(*in_out_table” help);
}
felose(drive);
)
}
else if((command[0] == ‘d")&&(command[1]=="d"))
{
prinif(\nEnter data model name: “),
gets(vall);
sprintf(help,"name="%s"",vall);
mw_query(“s_dm” help,”™);
if('next_value(result_string,value result_rest))
printf("\nData model %s not known.”,vall);
clse
{
sprintf(help,”type="dm’ and name="%s"'",vall);
mw_delete(“i_flat” help);
sprintf(help,”data_model="%s""vall);
mw_delete(“in_out_table” help);
)
}
else if({command[0] == ‘n")&&(command[1]=="r"))
{
printf("\nEnter engineering resource name: “};
gets(vall);
sprintf(help,"name="%s"",vall);
mw_query(“s_er”,help,”™);
if(next_value(result_string,value result_rest))
printf("\nEng. resource %s exists allready.”, vall);
else

{
sprintf(help,”’er’, ‘%s’”,vall);

Page 264

mw_insert("i_flat” help);
printf(*\nWhich activity is responsible for %s: “,vall);
gets(val2);
sprintf(help,”name="%s"" val2);
mw_query(s_act” help,™);
while((val2{0]'="0") &&
(!next_value(result_string,value,resuli_rest)))
{
printf(*\nActivity %s is not known.”);
printf(** Try again or enter ‘RETURN’ to abort.”);
printf("\nWhich activity is responsible for %s: “,vall);
gets(val2);
sprintf(help,”name="%s"" val2),
mw_query('s_act”,help,™);
}
if(val2{0]!}="0")
{
sprintf(help,” %s’,'e_t°,"%s"”,val2,vall};
mw_insert(“activity_info_table” help);
}
)
}
else if((command([0] == ‘d’)& &(command{1]=="r"))
{
printf("\nEnter engineering resource name; *);
gets(vall);
sprintf(kelp,"name="%s"",vall);
mw_query(“s_er™,help,”");
if(!next_value(result_swring,value result_rest))
printf(*\nEng. resource %s not known.”,vall);
else
{
sprintf¢help,”type="er’ and name="%s"",vall);
mw_delete(*i_flat” help);
sprintf¢help,”type="e_r’ and information="%s"",vall);
mw_delete("activity_info_table” help);
}
}
else if((command[0] == 's")& &(command[1]=="a"})
{
printf(*\nEnter activity name:);
gets(vall);
sprintf(help,”name="%s"",vall);
mw_query(“s_act” help,™0");
if(fnext_value(result_string,value result_rest))
printf(*\nActivity %s not known.” vall);
clse
{
printf(*nInput data for activity %s:"”,vall);
mw_query("s_dm”,”” temp_sel);
if{{drive = fopen{temp_sel,"r")) == NULL)
printf(\nError, open %s.” temp_sel);
file_rest[0] = NO";
while(file_reader(val2, drive, file_rest))
{
sprintf(help,”activity="%s" and data_model ='%s""
,vall,val2);
mw_query(“in_out_info” help,™)

Page 265

- if(next_value(result_string,value,result_rest))

if(value[0] == i)

printf(*\n\%s” val2);

}

fclose(drive);

printf(\o\nOutput data for activity %s:",vall);

mw_query("'s_dm”,"” tlemp_sel);

if({drive = fopen(temp_sel,”r”)) == NULL)
printf(“nError, open %s.” temp_sel);

file_rest[0] = \O';

while(file_reader(val2, drive, file_rest))

{

sprintf(help,”activity="%s’ and data_model ="%s""
,vall, val2);

mw_qguery(“in_out_info” help,”"Y;

if(next_value(result_string,value,result_rest))

if({valuc[0] = “o")Ii(value[1] == ‘1))
printf(\n\%es™, val2);

}

fclose(drive);

)

}

else if((command[0] == *s’)&&(command[1]=="d")}

printf("‘\nEnter data model name: *);
gets(vall);

sprintf(help,"name="%s"",vall);
mw_query("s_dm” help,”};
if(!nex1_value(result_string,value result_rest))
printf(\nData model %s not known.”,vall);
else

{

printf(“‘\nActivities getting input from %s:"”,vall);
mw_query(“'s_act”,” temp_sel);

if({drive = fopen(temp_sel,”r”)) == NULL)
printf(* \nError, open %s." temp_sel);

file_rest[0] = \O';

while(file_reader(val2, drive, file_rest))

{

sprintf(help,"activity="%s" and data_model ="%s’”
wval2,vall);

mw_query(“in_out_info” help,”);
if(next_value(result_string,value,result_rest))
if{value[0] = *i")
printf("\n\1%s” val2);

)

fclose(drive);

printf(*“‘\n\Activities producing output for %s:”,vall);
mw_query(“s_act”,”” temp_sel);

if((drive = fopen(temp_sel,”’r")) == NULL)
printf(*\nError, open %s.” temp._sel);

file_rest[0} = N)’;

while(file_reader{val2, drive, file_rest))

{

sprintfthelp,”activity="%s’ and data_model ='%s"”
,val2,vall);

mw_query(“in_out_info” help,™},
if(next_value(result_string,value,result_rest))

Page 266

if((value[0] = ‘0" }li{value[l] = /"))
printf(*\n\t%s” , val2);
}
fclose(drive);
}
|
else if((command([0] == ‘¢’)& &{command[1]=="a"))
{
printf(\nEnter activity name: *);
gets(vall);
sprintf(help,”name="%s"",val1),
mw_query(“s_act” help,”")
if(!next_value({result_string,value result_rest))
printf(*\nActivity %s not known.”, vall);
else
{
sprintf(help,”status="used’");
sprintf(help2, " name="%s"",vall};
mw_update(“i_flat_status” help,help2);
mw_query(“s_dm”,”” temp_sel);
if((drive = fopen(temp_sel,”r”)) == NULL)
printf(*\nError, open %s.” temp_sel);
file_rest[0] = \ND";
while(file_reader(val2, drive, file_rest))
{
printf(*\nEnter role of %s for %s (i, 0, i/o, -):. ©,
val2, vall);
gets(val3);
if(val3[0] '= \O%)
{
sprintfihelp,”activity="%s" and data_model="%s""
,vall,val2);
mw_query(‘in_out_table” help,”™);
if(next_value(result_string,value,result_rest})
{
sprintf(help2,"relation="%s"",val3),
mw_update(*in_out_table” help2 help);
]
else
{
sprintfthelp,™ %s’, *%s’, ‘%s’”,vall, val2, val3};
mw_insert(*in_out_table” help);
}
)
}
fclose(drive);
}

}
else if{{(command([0] == ‘c’)&&(command[1}=="d"))

{
printf{"“\nEnter data model name: *);
gets(vall);
sprintf(help,”name="%s"",vall);
mw_query(“s_dm"help,™);
if('next_value(result_string,value result_rest))
printf(*\nData model %s not known.”, vall);
else
{

Page 267

sprinif(help,”status="used"");
sprintf(help2,”name="%s"",val1);
mw_update(“1_flat_status” help,help2);
mw_query(“‘s_act”,” temp_sel);

if({drive = fopen{temp_sel,”r™)) == NULL)
printf("“\nError, open %s.”,tlemp_sel);
file_rest[0] = D,

while(file_reader(val2, drive, file_rest))

{

printf(*“nEnter role of %s for %s (i, o, ifo, -): ¥,
vall, val2);

gets(val3);

if(val3[0] 1= "\O")

(

sprintf(help,”activity="%s’ and data_model="%s""
,val2 vall);
mw_query("in_out_table” help,”™™);
if(next_value(result_string,value, result_rest))
{

sprintf(help2,”relation="%s"",val3),
mw_update(*in_out_table” help2 help);
)
else

{

sprintf(help,”™ %s’, ‘%s’, ‘%s’",val2, vall, val3);
mw_insert(“in_out_table” help);
}

}

}

felose(drive);
)

)

clse if((command[0] == ‘s’ }&&(command[1]=="s"}))

{
printf("\n%065s”,"<----Start and end points—-->");
printf"\n%15s: “,"Aclivities");
for(i=1:i<20;i++) printf(“1%2d",i);
mw_query(“s_act”,”” temp_sel);
if({drive = fopen(temp_sel,”r”)) == NULL)
printf(*“\nError, open %s." temp_sel);
file_rest[0] = "\O";
while(file_reader(vall, drive, file_rest))

(

printf(*\n%15s: “,vall);
sprintfhelp,”activity="%s" and type="s_p'",vall);
mw_query(“‘activity_info_info" help,”),
next_value(result_string,value,result_rest);
i=to_number(value);

for(j=1;j<i;j++) printf("| “);
sprintf(help,”activity="%s’ and type="e_p'”,vall);
mw_query{(“activity_info_info” help,™);
next_value(result_string, valoe,result_rest),
k=10_number(value);

i=k-1

for(G=0:j<i;j++) printf("“{**"),

for(j=k;j<20;j++) printf("‘l “);
]
fclose(drive);

Page 268

printf(“\n\n"™);
}
else if((command[0] == ‘s’ }&&(command[]j=="r"))
{
printf(\nResponsibility for engineering resources\n™);
printf(\n%16s %s","” Aclivities:”,"Engineering resources:\n™);
mw_query(™'s_act”,” temp_sel);
if((drive = fopen(temp_sel,”r")) == NULL)
printf("\nError, open %s.” temp_sel);
file_restf0] = "O";
while(file_reader(vall, drive, file_rest))
{
printf(*\n%15s: “,vall);
sprintf(help,”activity="%s" and type="e_r'",vall);
mw_query(“activity_info_info”,help,temp_sel2);
if({drive2 = fopen{temp_sel2,"r")) == NULL)
printf(\nError, open %s.” temp_sel2);
file_rest2[0] = \O;
while(file_reader(val2, drive2, file_rest2))
{
printf(*%10s “,val2);
1
fclose(drive2);
)
fclose(drive);
printf("\n\n™);
)
else if((command[0] == ‘s")&&(command[1]=="i"))
{
printf\o\NMN\NData Model assignment\n™);
printf (AN ™)
mw_query(“s_dm™,”” temp_sel2);
if((drive2 = fopen(temp_sel2,"r")) == NULL)
printfC\nError, open %s.” temp_sel2);
file_res2[0] = NO";
i=0;
while(file_reader(val2, drive2, file_rest2))
{
++i;
printf*\n\NNNN Fd d<-—> s i, val 2);
1
fclose(drive2);
printf(*‘\o\n\n%50sIn/Output Table™);
printf("\n%21s"," Activity/Data Model:™);
mw_gquery(“s_dm™,”" temp_sel2);
if((drive2 = fopen(temp_sel2,"r")) == NULL)
printf(*\nError, open %s.” temp_sel2);
file_rest2[0] = “\0’;
i=0;
while(file_reader(val2, drive2, file_rest2))
{
++i;
printf(“%4d”,i);
}
fclose(drive?);
mw_query(“s_act”,”” temp_sel);
if((drive = fopen(temp_sel,"1")) == NULL)
printf(*“\nError, open %s.” lemp_sel);

"

Page 269

file_restf0] = \O”;
while(file_reader(vall, drive, file_rest))

{

printf(*\n%20s:",vall);

if((drive2 = fopen(temp_sel2,”r")) == NULL)
printf(*\nErmror, open %s.” temp_sel2);
file_rest2[0] = \O’;

while(file_reader(val2, drive2, file_rest2))

{

sprintf(help,”activity="%s’ and data_model="%s"",
vall, val2); -
mw_query(“in_out_info” help,");
next_value(result_string,value,result_rest);
printf{("*%4s" value); ‘

}

fclose(drive2);

)
prinf(\n\n”);

fclose(drive);

)

else if((command{0] == ‘s’)& &(command([1]=="1"))

{
printf(‘*\nStarting at part_no: *);
gets(vall);
printf(*“\nEnding at part_no:");
gets(val2);
printf{*\nStatus tableA\n™);
printf(*\n%16s”,”Part No:™);
sprintf(help,”part_no>='%s" and part_no<="%s"",
vall[0] == ' 7 0™ : vall,

val2[0] == O’ 7 “99999999" : val2);
mw_query(“status_table_numbers” help,temp_sel);
if((drive = fopen({temp_sel,"r")) == NULL)
prinif("“nErmror, open %s.” temp_sel);
file_rest[0] = \O’;

while(file_reader(val3, drive, file_rest))

{

printf{(*%5s",val3);

]

fclose(drive);
printf("*\ni\n% 165", "Type:");

if((drive = fopen(temp_sel,"r")) = NULL)
printf(*\nError, open %s.” temp_sel);
file_rest[0] = \O";

while(file_reader{val3, drive, file_rest))

(

sprintf(help,”part_no="%s" and type="type’”,
val3);
mw_query(“status_table_status” help.””);
next_value(result_string,value,result_rest);
printf(*%5s” value),

}

fclose(drive);

printf(*\n%16s”,"Point.");

if((drive = fopen(temp_sel,"r")) == NULL)
print{(*\nError, open %s.” temp_scl);
file_rest[0] = \O"; -
while(file_reader(val3, drive, file_rest))

Page 270

{
sprintf(help,”part_no="%s" and type="point’",
val3);
mw_query(*‘status_table_status” help,”);
next_value(result_string,value,resuli_rest);
printf(**%5s” value);
}
fclose(drive);
printf("\n”);
mw_query(“'s_act”,””,temp_sel2);
if((drive2 = fopen(temp_sel2,”r")) == NULL)
printf(*\nError, open %s.” temp_sel2);
file_res2[0] = "\D";
while(file_reader(val3, drive2, file_rest2))
{
printf(*\n%15s:",val3);
if({drive = fopen(temp_sel,”r")) == NULL})
printfC\nError, open %s.” temp_sel);
file_rest[0] = \ND*;
while(file_reader(val2, drive, file_rest))
(
sprintf(help,”part_no="%s" and type="%s"",
val2, val3);
mw_query(“status_table_status” help,”);
next_value(result_string,value,resuli_rest);
printf(*“%5s”,value);
]
fclose(drive):
)
fclose(drive2);
printf(*\n\n™);
]
else if((command[(] == ‘s’)& &(command[1]=="¢"))
{
printf(“\nStarting at part_noc: “);
gets(vall);
printfC\nEnding at part_no:™);
gets(val2);
printf("\nengineering resource table:™);
printf("*“\n%10s”,”part_no™);
sprintf(help,”part_no>="%s" and pari_no<='%s"",
vall{0] == 0" 70" : vall,
val2{0] == D' 7 “99999999” : val2);
mw_query(“‘eng_resource_table_res” help,lemp_sel2);
if((drive2 = fopen{lemp_sel2,”r")) == NULL)
printf("\nError, open %s.” temp_sel2);,
file_rest2[0] = O’;
while(file_reader(val3, drive2, file_rest2))
{
printf(**%10s”,val3);
}
fclose(drive2); .
mw_query(“‘eng_resource_table_numbers” help,temp_sel);
if((drive = fopen(temp_sel,"r”)) == NULL)
printf("“\nError, open %s.” temp_sel);
file_rest[0] = \O";
while(file_rcader(vall, drive, file_rest))
{

Page 271

printf(*\n%9s:",vall);
if{(drive2 = fopen(temp_sel2,”r”)) == NULL)
printfC\nError, open %s.” temp_sel2);
file_rest2[0] = \0’;
while(file_reader(val2, drive2, file_rest2))
{
sprintf(help,”part_no="%s" and eng_resource="%s"",
vall, val2);
mw_query(“‘eng_resource_table_location” help,”");
next_value(result_string,value result_rest);
printf(**%10s”,value);
}
fclose(drive2);
]
fclose(drive);
)
else if((command[0] == ‘¢")&&(command[1]=="p"})
{
printf(*“\nEnter part number: *};
gets(vall);
printf(*\\nEnter activity name, ‘type’ or ‘point’: “);
gets(val2);
printfC“\nEnter new value:),
gets(val3);
sprintf(help,”part_no="'%s" and type="%s’",vall ,val2);
sprintf(help2,”status="%s'" val3),
mw_query(“status_iable” help,”);
if(next_value(result_string, value, result_rest))
mw_update(“status_table”,help2,help);
else
printf(“\nEntry doesn’t exist. Nothing changed.”);
}
else if((command[0] == ‘c"}&&(command[1]=="r"}))
{
printf("\nEnter part number: *);
gets(vall);
print{("“nEnter engincering resource name: *);
gets(val2);
printf("\nEnigr new value: “);
gets(val3);
sprintf(help,”part_no="%s’ and eng_resource="%s"" vall ,val2);
sprintf{help2,”location="%s"",val3);
mw_query(“‘eng_resource_table” help,”™");
if(next_value(result_string, value,result_rest))
mw_update(*‘eng_resource_table” help2,help);
else
printf(*\nEntry doesn’t exist. Nothing changed.”);
}
else if((command[0] == ‘¢")&&(command[1}=="s"))
(
printf(*\nEnter activity name: *);
gets(vall);
“sprintf(help,”name="%s""vall});
mw_query(“s_act” help,””);
if(Inext_value(result_string,value result_rest))
printf("““\nActivity %s not known.”, vall);
else

{

Page 272

printf(*“nEnter new start point: **);
geis(val2);
sprintf(help,”activity="%s’ and type="s_p'”,vall};
sprintf(help2,”information="%s"" val2);
if(to_number(val2))
mw_update(“activity_info_table” help2,help);
printf(*‘\nEnter new end point: “);
gets(val2);
sprintf(help, activity="%s" and type="e_p'",vall);
sprintf(help2,”information="%s’" val2);
if{to_number(val2))
mw_update(“activity_info_table” help2,help);
}
)
else if((command[0] == ‘¢")&&(command[1]=="¢"}))
(
printf(*\nEnter activity name: *);
geis(vall);
sprintf(help, " name="%s"",vall);
mw_query(“s_act” help,”");
if(!next_value(result_string,value result_rest))
printf(*\nActivity %s not known.”, vall);
else
{
printf("\nEnter eng resource that must be provided by %s: “,
vall);
gets(val2),
sprintfhelp,”name="%s"" val2);
mw_query('s_er” help,”);
if(!next_value(result_string,value,result_rest))
printf("‘\nEng. resource %s not known.”, val2);
else
{
sprintf(help,” %s’, ‘e_r’, ‘%s’' ", vall,val2);
mw_inserti(“activity_info_table™ help);
)
}
}
else if((command[0] == ‘d")&& (command[1]=="e’))
{
printf{' \nEnter activity name: *);
gets(vall);
sprintfthelp,"name="%s"",vall);
mw_gquery(*“‘s_act” help,”™);
if(next_value(result_string,value result_rest))
printf(‘“\nActivity %s not known.”, vall);
else
{
printf(*\nEnter eng resource that must not be provided by %s:
vall);
gets(val2);
sprintf(help,”name="%s""val2);
mw_query(“'s_er” help,”™;
if(!next_value(result_string value result_rest))
printf(*\nEng. resource %s not known.”, val2);
clse

{

sprintf(help,”activity="%s’ and type="c_r" and information="%s

r

Page 273

,vall val2);
mw_delete(“activity_info_table” help);
}
)
}
else if{{command[0] == ‘¢’)}&&(command[1]=="t"))
{
mw_commit();
)
else if((command[0] == ‘r’)& & (command[1]="b"))
{
mw_rollback(});
)
else
{
printf("\l14\nAvailable commands are:™);
printf("\n ‘pa’ print activities”);
print("* ‘as’ new activity - IDEF)"),
printf("* ‘na’ register new activity”);
printf(** ‘da’ delete activity™);
printf(*n *pd’ print data models™);
printf(** ‘ds’ new data model - IDEF1X"™);
printf(* ‘nd’ register new data model");
printf(** ‘dd’ delete data model”);
printf(*“n\n ‘pr’ print engineering resource”);
printf(*\n “nr’ new engineering resource”);
printf(** *dr’ delete engineering resource™);
printf(*\n\n ‘sa’ show ¥/o for activity™);
printf(* ‘sd’ show i/o for data model”);
printf(*\n ‘si* show infout table™);
printf(*\n *ca’ change i/o for activity”);
printf(** ‘cd’ change ifo for data model™);
printf(*\n\n ‘ss’ show start/end points™);
printf(*\n ‘cs’ change start/end points for activity™);
printf(*n\n “sr” show responsibity for resource™);
printf(*n ‘ce’ add responsibitity for activity™);
printf(*n ‘de’ delete responsibity for activity™);
printf(*“niwn ‘st’ show status table™);
printf(** ‘cp” change status table™);
printf(*\n\n ‘se’ show engineering resource table™);
printf(*\n ‘cr’ change engineering resource table™);
printf("“\o\n ‘ct’ commit™);
printf(*\n ‘rb’ rollback™);
prind(*\n ‘q’ commit & quit”);
printf(*“\nCommand (%s) unknown, Try again\n”,command);
}
printf{"\nEnter command (press RETURN for command list): “‘);
gets(command):
)
printf"\n\n");
mw_commit();
mw_disconnect();

}

Page 274

Meta-file definition

Name of meta-file ; config_tables.txt
Definition of databasc-objects: (for access_ora)

“s_act” object name*flat_table” table name
“name"ficlds“type = ‘act’” where condition

“s_act_status” object name*flat_table” table name
“name”fields"(type, status) = ((*act’, ‘new"))” where condition

“s_dm™ object name*flat_table” table name
“name"fields"type = ‘dm’” where condition

“s_dm_status™ object name“flat_table” table name
“name”fields" (type, status) = ((*dm’, ‘new"))” where condition

“s_er” gbject name“flat_table” table name
“name”fields“type = ‘er’” where condition

“i_flat” object name*fla_table” table name
“type, name”fields™* where condition

“i_flat_status” object name*flat_table” table name

“statns, name"fields"* where condition

“status_table™ object name“status_table™ table name
‘“part_no, type, status™fields'“ where condition

“status_table_status™ object name"status_table” table name
“statusfields"** where condition

“status_table_numbers” object name*'status_table™ table name
“distinct part_no"fields*“* where condition

“eng_resource_table_location™ object name*‘eng_resource_table™ table name
*location"fields"" where condition

“eng_resource_table” object name*eng_resource_table” table name
“part_no, eng_resource, location"fields"** where condition

“eng_resource_table_numbers” object nameeng_resource_table” table name
“distinct part_no™fields** where condition

“eng_resource_table_res” object name“eng_resource_table” table name
“distinct eng_resource fields*"* where condition

“in_out_table” object name“in_out_table” table name
“activity, data_model, relationfields" where condition

“in_out_info™ object name*in_out_table” table name
“relation”fields*** where condition

“activity_info_table” object name*activity_info_table” table name
“activity, type, information"fields"** where condition

Page 275

“activity _info_info™ object name“activity_info_table” table name
“informationfields*** where condition

“bom™” object name“bill_of_mat” table name
“ident"fields™* where condition

“rout™ object name*rout” table name
“ident"fields*** where condition

“dem” object name*“dem” table name
“ident”fields™* where condition

“ord” object name“ord_lin" table name
“int_ord_no"fields*“* where condition

“bom_item” object name"bill_of _mat” table name
“item_no"fields'* where condition

“rout_item”™ object name“rout” table name
“item_no"fields™* where condition

“dem_item” object name*“dem” table name
“item_no™fields"* where condition

“ord_item” object name*ord_lin" table name
“item_no"fields'** where condition

“mec_reference™ ‘mec_reference”
“part_no, bill_of_mat_ident, rout_ident, dem_ident, order_no™ “

i

mec_reference, bill_of_mat bom”

(LT3

“get_bom
“bom.item_no, bom.nam
“get_rout™'mec_reference, rout r”

“ritem_no, r.nam"™'mcc_reference rout_ident = r.ident”

“get_dem™'mcc_reference m, dem d”
“d.ident, d.sch_ident™ ‘m.dem_ident = d.ident”
™mec_reference m, ord_lin 0”

*“m.order_no = o0.int_ord_no”

“get_or
*0.item_no, o.int_ord_no

“get_sch_job™‘mcc_reference m, sch_job s”
“s.sch_ident, s.sch_job_no™“m.dem_ident = s.dem_ident”

*“costed_bom™ object name"costed_bom” table name

“itlem_no, quant, unit_nam, bill_of_mat_ident, typ, no_of_items” ficlds

LETTY

where condition

“costed_bom_info™‘costed_bom”
“quant, no_of_items” **

“rout_bom_ident™"
“r.bill_of_mat_ident, r.item_no, b.nam

rout r, bill_of_mat b”

LR

“bill_of_mat_info™bill_of_mat”
“ident, quant™***

mcc_reference.bill_of_mat_ident = bom.ident”

r.bill_of_mat_ident = b.ident” __

Page 276

“bill_of_mat_item_info™bill_of_mat_item”
“item_no, quant, unit_nam, typ” *“*

Aldual” udualn
“Sysdaf.c“ L1

Page 277

APPENDIX IX

MCS FIMM
Database Schema

Page 278

MCS FIMM

flat_table g table name
(name, type)-- attributes
in_out_table

(function, information_meodel, relation)
SQL tables
which constitute the
MCS FIMM database
activity_info_table
(function, type, information)
status_table
(part_no, type, status)
eng_resource_table
{part_no, eng_resource, location)
SQL Table Stored data
flat_table Functions to be managed, information entities and engineering resources.
in_out_table Relations between functions and information entities.
activity_info_table Start and end instance of functions and its accountability for engineering resources.
status table Dynamic information on status of functions for each and every part processed or
- being processed for manufacture.
eng_resource_lable Engineering resources and their location in relation to the parts being processed
for manufacture.

Page 279

APPENDIX X

Operational Characteristics and Services of MCS FIMM
offered through
Generic ‘Application Shell’

Page 280

User Interface Operation and Services of MCS FIMM

[)

New Part) (Enquire] (Change] Active Group: Enquire

(Get Parts) (Get Job Load) (Get Location) (Get Accountability)

Default Values

Part Number: |

: (ox) (aBorT)
Command: (P) (WIP) (C) (i) @

(Leﬂ) Q%ight) (Scroll Up) &mﬂ Downj

Job load. 4 rows
part_no type instance PP CAD CAPP CELL FCS
100 N 3 WIP WIP P P P

/

Display for part manufacture status

Procedure for service request

i. Chose a service group. This will present all available services in this group to the
user.

i1. Chose the actual service.

iti. Enter all required parameters in the entry field as displayed in the command line.
Press the ‘OK” button to confirm your entry or ‘ABORT’ to choose another service.

iv. After entering the last parameter, the selected service is requested from the operation
module.

v. The result of the service is displayed in a text field. Now the next service can be
selected.

Default values are provided for function names, engineering resource names, part
numbers ranges and single part numbers. For single part number, however, the default
values are those of the first displayed part number retrieved from status or resource
information normally displayed to the user.

Page 281

Service groups available

*New Part
This group consists of only one service which allows the user to register new parts
to be processed for manufacture.

*Enquiry
This group comprises all query services. They retrieve and display to the user status
and engineering resource information from the FIMM database.

+Change
These services allow the user to change status and instance data for specified parts
and to enter engineering resource locations.

The following are details on the services available to the user :

New Part: This service requires two parameters and both cannot be chosen as default values.
First the part number must be entered. This part number must be unique and not exist in the
FIMM database. The second parameter is the type of the new part. The user can enter this
value either by pressing one of the buttons ‘N’ for a ‘new’ or ‘R’ for a ‘repeated’ type, or
enter any other type value in the entry field and press ‘OK" afterwards.

Get Parts: There are four parameters that determine which parts are retrieved. The lower and
upper boundary for the range of part numbers is taken from the default fields. If no default
values are entered in those fields, the maximum range is chosen automatically. This is done,
wherever a part number range is necessary for a service parameter and the user will never
be asked to enter values for that range. The other two parameters refer to a function and a
status value. When a function is entered in the default field the user will be asked to enter a
status value. The retrieved parts will then have the specified status value for the default
function. If nodefault function is given, all parts in the specified range are retrieved. The
status value can either be entered by the entry field or by using one of the buttons ‘P’,
‘WIP’, ‘'C’.

Get Job Load: The range of part numbers for the job load is again specified by the default
values, like in the service ‘get parts’. The remaining parameter refers to an activity. If no
default value is given, the user will be asked to enter a function name.

Get Location: The range of part number is specified as before. If a default value for an
engineering resource is entered in the appropriate field, only locations for that engineering
resource are retrieved by this service. If no default engineering resource is available, the
user is asked to enter one, or he/she can press the ‘OK” button without entering a value to
retrieve the location of all engineering resources for the specified part number range.

Page 282

Get Accountability: To retrieve all engineering resources that a function is accountable for,
the user can either enter a default value for a function before requesting this service or enter
a function name in the entry field.

Change Status: This service requires three parameters. Two of them, the function name and
the part number are taken from the default fields if available. The last parameter is the new
status value of the function for the actual part. This value can either be entered by the entry
field or by using one of the buttons ‘P’, “WIP’, ‘C’.

Change Instance: The part for which the instance should be changed is again taken from the
default field. The new Instance must be entered by the user via the entry field.

Store Location: The engineering resource name and the part number are taken from the
default fields as before. The user will be asked to enter the location for the specified
engineering resource.

If one of the fields for the default values is empty and the value is required by a service, the
user will be asked to enter the appropriate value in the entry field. When the user enters the
required parameter values for the service requested, and subsequently decides not to execute
this service, the ‘“ABORT” button can be use to cancel. While a requested service is executed
by MCS FIMM, the line ‘Working...” is displayed in the command field. During this time, no
service can be requested.

Finally, the buttons ‘Left’, ‘Right’, ‘Scroll Up’ and ‘Scroll Down’ are used to move through
the retrieved information.

Page 283

APPENDIX XI

Program listings for Communication Mechanism
for remote MCS FIMM services over LAN

Page 284

/* File: new_mcc_remote_side.c*/
/* The Functions in this file communicate with a remote process on the host wayne
{where FIMM database resides)*/

/* Functions include :*/
[*init_remote_new_mcc()
starts the remote process on the host wayne(location of FIMM database).*/

f*quit_remote_new_mcc(}
stops the remole process and removes the notifier object new_client from the notifier.*/

F*new_popen()
creates two pipes and a child process. The two pipes are used as stdin and stdout by the child process.*/

*new_pclose()
closes the two pipes new_p1 and new_p2.*/

Fnew_input_handler()

It is called by the notifier, whenever the remote process sends an output to the stdout.

Depending on the function_state, a return function is called, with the received string as an argument.

All other functions check the length of their arguments and send a command string to the remote process.
The variable function_state is set 10 the apropriate value.*/

#include <stdio.h>
#tinclude <sunwindow/notify.h>
#include *local_incl.h™

static intnew_popen_pid;
static int new_p1{2];
static int new_p2{2];

static char new_client_object;
static Notify_client new_client;

void new_popen();
void new_pclose();

Notify_value new_input_handler();
char function_statef3];

char send_string[LONG_STRING];
int send_string_len;

void init;remote_new_mcc(cimbios)
char *cimbios;

{

int i;

char *file_path_exe;

char help{MEDIUM_STRING];
char *getenv();

file_path_ex¢ = getenv(“NEW_MCC_EXE");
function_state{0] = \0*;

new_client = (char *)&new_client_object;

"Page 285

sprintf(help,”%s/mew_mcc_ora_side".file_path_exe);

new_popen(help);

notify_set_input_func(new_client, new_input_handler, new_p2[0]);

strepy{function_state,”in”);

if(!cimbios[0])
{
notify_start();
new_pclose();
)
}

void quit_remote_new_mcc(cimbios)
char *cimbios;

{

write(new_p1[1],"\n",1);

if(cimbios[0])
{
new_pclose();
notify_remove({new_client);
}
else
{
new_pclose();
notify_stop();
}
}

void new_popen{cmd)
char*cmd;

{

if (pipe(new_p1) < 0)
printfC“nnew_p1 not created!!™);
if (pipe{new_p2) <0)
printf(*“\nnew_p2 not created!!™);
if ((new_popen_pid = fork()) = 0)
(

close(new_p1[1]);

close(0);

dup(new_p1[0]);
close(new_p1{0]);

close(new_p2([0]);
close(1);
dup(new_p2[11);
close(new_p2[1]);

execl(*'fusrfucb/rsh”, “wayne”, cmd, 0);

_exit(}); M*disaster*/

}

if (new_popen_pid == -1)
printf(“\nchild process not created!!!”),
close(new_p1[0]);

Page 286

close(new_p2(11);
)

void new_pclose()
{
close(new_p1[1]);
close(new_p2[01);
)

Notify_value new_input_handler()

{

send_string[0] = \D";

send_string_len =0,
read(new_p2[0],&send_string[send_string _len++],1);
while(send_string[send_string_len-1] !="\n")
read(new_p2{0],&send_string[send_string_len++],1);
send_string[send_string_len-1] = \0';

if(!stremp(function_state,”gj"™))

{
function_state[0] = \0’;
return_get_jobs(send_string);

)

else if(!stremp(function_state, np™))
{
function_state[0] = "0,
return_new_part(send_swring);

}

else if(!stremp(function_state,”cs™))
{
function_state[0] = “\0*;
return_change_status(send_string);

}

clse if(!stremp(function_state,”cp™))
(
function_state[0] = \O”;
retum_change_point(send_string);

}

else if(!stremp(function_state,”ar”))
{
function_state[0] = “0’;
return_add_eng_resource(send_string);
}

else if(!stremp(function_state,”in™))
(
function_state[0] = "0";
result_init_new_mcc();

}

else if(!stremp(function_state,”gr™))
{

function_state[0] = \)’;
return_get_eng_resources(send_string);
}

else if(!stremp(function_state, gl™)
{

function_state[0] = \O';
return_get_job_load(send_string),

}

else if(!stremp(function_state,"ge™)
{
function_state[0] = \0";
return_get_resp_eng(send_siring);
}
else if(!stremp(function_state,”sb”))
(
function_state[0] = “0";
return_set_bom{send_siring);
}
else if(!stremp(function_state,”gb™)
{
function_state[0] = NO';
return_get_bom(send_string);
)

else if(!stremp(function_state,”st™))

function_state[0] = \0’;
return_set_rout(send_string);
)

else if(!stremp(function_state,”gt™)

function_state{0] = \0’;
return_get_rout(send_string);
)

else if(!stremp(function_state,”sd™))

function_state[0] = "0’;
return_set_dem(send_string);
)

else if(1stremp(function_state,”gd™))

function_state[0] = \0’;
retum_get_dem(send_string);
]
else if(!stemp(function_state,”so™)
{
function_state[0] = \0’;
retum_set_ord(send_string);
)
else if(!stcmp{function_state,”go"))
{
function_state[0] = \)';
return_get_ord(send_string);
)
else if(!stremp(function_state,"gs™))
{
function_state[0] = \)';
return_get_sch_job(send_string);
)
else if(!stremp(function_state,”rs™))
{
function_state[0] = "O";
return_create_files();
}
else if(!stremp(function_state,”rw™))

{

function_state[0] = \O’;

return_read_wip();
)
else
(
printf\nError{new_mcc_remote_side).");
printf{*’\nGot message(%s) in function_state: (%s)!!",send_string,
function_state);

)

return(NOTIFY_DONE);
}

char get_jobs(part_nol, part_no2, activity, status, format)
char *part_nol;

char *part_no2;

char *activity;

char *status;

char *format;

{

if(function_state[0] !l (strien(part_no1)>PART_NO_LEN) Ii
(strlen(part_no2)>PART_NO_LEN) Il
(strlen(activity)>FIC_NAME_LEN) Il
(strlen(status)>STATUS _LEN)) return(0);

Smpy(fuﬂction_s[aw,ngj,.) .

sprintf{send_string,":2: %s: %d: %s: %d: %s: %od: %os: %od: %s: %d: %os\n” function_state,
strlen{part_no1), part_nol, strlen(part_no2), part_no2,

strlenfactivity), activity, strlen(status), status,

strlen(format),format);

write{new_p1[1],send_string strlen(send_string));

return(1);

}

char get_job_load(part_nol, part_no2, activity, format)
char *part_nol;

char *part_no2,

char *activity;

char *format;

{

if(function_state[0] Il (strlen(part_no1)>PART_NO_LEN) il
(strlen(part_no2)>PART_NO_LEN) Il
(strlen(activity)>FIC_NAME_LEN)) return{Q);

strepy(function_state,”gl”);

sprintf(send_string,”: 2:%s:%d: %s: %d: %os: %od: %s:%d: %os\n” function_state,
strlen(part_nol), pant_nol, strlen(part_no2), part_no2,

strlen(activity), activity, strlen{format),format);
write(new_p1[1],send_string strlen(send_string)};

" rewmn(1),

}

char get_resp_eng(activity)

char *activity;

{

if(function_state[0] Il (strlen(activity)>FIC_NAME_LEN})) return(0),

Page 289

strepy(function_state,"ge™);

sprindf(send_string,”:2:%s: %d: %s\n” function_state,
strlen(activity), activity);
write{new_p1[1],send_string strlen{send_string));
return{1);

}

char get_eng_resources(part_nol, par_no2, resource, format)
char *part_nol;

char *pant_no2;

char *resource;

char *format;

{

if(funcdon_statef0] il (strlen(part_no1}>PART_NO_LEN) Il
(strlen(part_no2)>PART _NO_LEN)} |
(strlen(resource)>FIC_NAME_LEN)) retum(0);

strepy(function_state,”gr"y;

sprintf(send_string,”:2:%s; %d: %s: %ed: %os: fod: %os: %d: %ostn” function_state,
strlen(part_nol), part_nol, strlen(part_no2}), part_no2,

strlen(resource), resource, strlen(format),format);
write(new_p1(1],send_string strlen(send_string));

return(l);

}

char new_part(part_no, type)

char *part_no;

char *type;

{

if(function_state[0] Il (strlen(part_no)>PART NO_LEN) |
(strlen(type)>STATUS_LEN) Il (part_no[0]) I (!type[0])) return(0);

strepy(function_state,”np™);

sprintf(send_string,"”:2:%s: %d: %s: %d: %s\n” function_state,
strlen{part_no), part_no, strlen{type), type),
write(new_p1[1],send_string strlen(send_string));

return(1);

}

char change_status(part_no, activity, status)
char *part_no;

char *activity;

char *status;

if(function_state[0] Il (strlen{part_no)>PART_NO_LEN) Il
(strlen{activity)>FIC_NAME_LEN]} Il
(strlen(status)y>STATUS_LEN} il (!statusf0])) return(0};

strepy(function_state, cs™);

sprintf(send_string,”: 2:%s: %d: %os:%d:%s: %d: %s\n” function_state,
strlen{part_no), part_no, strlen{activity), activity,

strlen(status), status);
write(new_pl[1],send_string,strlen(send_string));

return{1};

Page 290

)

char change_point(part_no, point)

char *part_no;

char *point;

{

if(function_state{0] U (strlen(part_no)>PART_NO_LEN) Il
(strlen(point)>S TATUS_LEN) Il (!point[0])) return(0);

strepy(function_state,"cp”);

sprintf(send_string,”:2:%s: %d: %s:%d: %s\n” function_state,
strlen(part_no), part_no, silen{point), point);
write(new_p1[1],send_string strlen(send_string));
retumn(i);

}

char add_eng_resource(part_no, resource, location)
char *part_no;
char *resource;
char *location;
(
if(function_state[0] Il (strden(pant_no)>PART_NO_LEN) Il
{strlen{resource)>FIC_NAME_LEN) II
{strlen(location)>FIC_NAME_LEN) ll (1ocation[0])) return(0);

strecpy(function_state,” ar”);

sprintf(send_string,”:2:%5:%d:%s: %d: %s: %od: %os\n” function_state,
strlen(part_no), part_no, strlen{resource), resource,

strlen(location), location);

write(new_p1[1],send_string strlen(send_string));

return{1);

}

char set_bom(pari_no, item_no, bom_nam)
" char *part_no;

char *item_no;

char *bom_nam;

{

strepy(function_state,”sb™);

sprintf(send_string,™:2:%s: %d: %s: %d: %s: %d: % s\n" function_state,
strlen{part_no), part_no, strlen{(item_no), item_no,
strlen(bom_nam), bom_nam);

write(new_p1{1],send_string strlen({send_string));
return{1);

}

char get_bom(part_no)
char *part_no;
{

strepy(function_state,"gb™);

sprintf(send_string,"”:2:%s: %d: %s\n” function_state,
strlen{part_no)}, part_no);

Page 291

write{new_p1[1],send_string strlen(send_string));
return{1);
}

char set_rout{part_no, item_no, rout_nam)
char *part_no;

char *item_no;

char *rout_nam;

{

strepy(function_state,”'st”);

sprintf(send_string,”: 2:%s: %d: %s:%d: %s: %d: %s\n” function_state,
strlen{part_no), part_no, strlen(item_no), item_no,
strlen{rout_nam), rout_nam); -

write(new_p1[1],send_string sirlen(send_string));
retumn(1};
)

char get_rout(part_no)
char *part_no;
{

strepy(function_state,”gt”);

sprintf(send_string,":2:%s:%d: %s\n” function_state,
strlen(part_no), part_no);

write(new_p1[1],send_string strlen(send_string)),
return(1);
}

char set_dem(part_no, ident)
char *part_no;

char *ident;

{

strepy(function_state,”sd”™);

sprintf(send_string,”:2:%s: %d: %s:%d:%s\n",function_state,
strlen{part_no), part_no, strlen(ident), ident);

write(new_p1[1],send_string strlen(send_string));
retumn{1);

}

char get_dem(pari_no)
char *part_no;
(

strepy(function_state,”gd™);

sprintf(send_string,™ 2:%s: %d: %s\n” function_state,
strlen{part_no), part_no);

write(new_p1[1],send_string strlen{send_string));
retum(1);

}

char set_ord(part_no, ident)

Page 292

char *part_no;
char *ident;
{

strepy(function_state,”so™);

sprintf(send_string,”:2:%s: %d: %s:%d: %s\n” function_state,
sirlen(part_no), ._no, strlen{ident), ident);

write{new_p1[1],send_string strlen(send_string));
retumn(1);
}

char get_ord(part_no)
char *part_no;
{

strecpy(function_state,”go");

sprintf(send_string,”:2:%s: %d: %s\n" function_state,
strlen{part_no), part_no);
write(new_p1[1],send_string strlen{send_ su-mg))
return(1);

}

char get_sch_job(part_no)
char *part_no;
(

strepy(function_state,”gs");

sprintf(send_string,”:2:%s:%d: %s\n" function_state,
strlen{part_no), part_no);

write(new_p1([1],send_string strlen(send_string));
return{1);

)

char create_files(}
{

strepy(function_state, ”r‘s")
sprintf(send_string,":2:%s\n" function_state);
wrile{new_p1{1),send_string strlen(send_string)};
return(1);

}

char read_wip()

[su'cpy(funcuon_stale,“rw
sprintf(send_string,”:2:%s\n" function_state);
write{new_p1[1],send_string sirlen(send_string));

retum(1);

}

Page 293

APPENDIX XII

Overview of IDEF, and IDEF;x

Page 294

IDEF,

IDEF) is the technique for modelling functions or activities of the enterprise. It is a descendant
of the Structured Analysis and Design Technique (SADT) developed by Ross [Ross 1977].

As illustrated, the building block of this modelling approach is the activity box. The activity
box defines an activity, or function in the enterprise that is being modelled. The activity may
be a decision making, or information conversion activity, or it may be a material conversion
activity, or both. Inputs to the activity are shown at the left of the box. Inputs are items
(material, informational) that are transformed by the activity. Qutputs of the activity are shown
at the right of the box. Outputs are the results of the activity acting on the inputs. Controls are
shown entering the activity box from the top. A control is a condition that governs the
performance of the activity. For example, a control may be a set of rules governing the activity
or a condition that must exist before the activity can be done. Mechanisms enter the activity
" box from below. A mechanism is the means by which an activity is realised. For example, a
mechanism may be a machine, a worker or any enabling element. Refer to Figure A for
illustration.
Controls(C)

#

Inputs(l) ——— Mﬂl&?ggtt;ring » Outputs(O)

Mechanisms(M)

Figure A : The activity box ICOMs

IDEF, is applied using top down hierarchic decomposition. At the top of the hierarchy is the
overall purpose of the model; it is the global activity that is the subject of the model. The
overall activity is decomposable into components that, when taken together, comprise the
global activity. This is the second tier of the architecture. Similarly, the second tier activities
may be further decomposed into component activities. The decomposition process continues
until there is sufficient detail to serve the purpose of the model builder. Refer to Figure B for
illustration.

Page 295

—P >
//'
e
Parent
More General Child
> 4
Decomposition * —]
of functions 4 L
_>
" Parent
More Detail #
Child

Figure B : Hierarchical decomposition of IDEF model

Page 296

IDEF;x is an extension of IDEF, and is for diagramming the information architechure. Itis a
semantic data modelling technique that defines the meaning of data within the context of its
interrelationship with other data. IDEF;x uses the entity relationship approach based on the
ER technique developed by Chen [Chen 1977]. A corilpleted IDEF;x diagram is a static
structure that defines information groupings and relationships among groupings.

As illustrated Figure C, the basic diagrammatic structure comprises boxes, which are used to
represent entities. An entity is a set of real or abstract things (people, object, events) which
have common attribute or characteristic. An attribute of an entity set, for which each instance
must have a unique value is called a key attribute for that entity.

ASSETID

Working Capacity
. Relntionship cardinallty between entity sets

ﬁ RESOURCE 1D
Primary Keys

[SUPPLIER ID
Dependent Entity /R Tym
ASSET I mupum
s oo
UPPLIER ID Hocaty \
Last Sexvice/Maintenance Datn . Attributes
Repeired an .
Repair Work Ordor Number .
; ok Order N SUPPLIER ID ‘\
Conpany/Nama
Address Key Attribute
Cotrtact Peraon (Forelgn Key)

\ ! I.ndtpendan
Entities

Figure C : IDEF,x Entity-Attribute relationship

In the IDEF1X diagram, entity attributes are listed with the box representing the entity. The
key attribute is known as the primary key of a given entity and are separated from the rest of
the attributes by a line that goes across the box. Relationships may exist between entities. A
key attribute that provides the linkage between entities is called a foreign key. A relationship
has cardinality which specifies the number of instances of an entity with which a given entity
is associated through the relationship. There are the following possible relationships :

* One-to-One
* One-to-Many
* Many-to-Many

Each of the entities becomes a tabIe_'i_ri;the database i;nplementation. The set of attributes of
each entity becomes an attribute field (or record field) of the entity table.

Page 297

APPENDIX XIII

Report on
IDEF,x Entity-Attribute relationship model

Page 298

(ENTITY, IE1, ORDER ENTRY, (MFG ORDER NUMBER ,CUSTOMER ID,PARENT PART NUMBER},
{Preceeding Mfg Order Number,Description Product Effectivity Start Date Product Efectivity End Date, Type,
Due Date,Unit of Measure,Unit Price,Order Quantity})

{ENTITY, IE2, PART MASTER-BOM, {PARENT PART NUMBER,}; {Effectivity Start Date Effectivity End
Date,Unit of Measure, Engineering,Change Notice,Change Effected by,Date of Change Phases out Part Number,
Phased out by Part Number,Number of Levels Number of components (children)} }

{ENTITY, IE4, PROCESS PLAN, {PROCESS PLAN ID PART NUMBERMFG CELL GROUP ID}, [Process
Description, } }

{DEPENDENT ENTITY, DE21, BOM CHILD, {PARENT PART NUMBER ,PART NUMBER}, {Number of
components (children),Part Type,Quantity per Assembly,Effectivity Start Date Effectivity End Date, Unit of
Measure,Lead Time Offset, Enginecring Change Notice,Change Effected by,Change Date,

Phases Out Part Number,Phased Out by Part Number})

{DEPENDENT ENTITY, DE41 , MFG OPERATION ASSIGNMENT, {PROCESS PLAN ID,

MFG OPERATION ID}, {Mfg Operation Description,Preceeding Mfg Operation 1D Next Mfg Operation 1D,
Alternative Mig Operation ID,Setup time per item,Machining time per item,Handling time per item,
Operation time per item,Scrap rate,, }]

{DEPENDENT ENTITY, DE43, RESOURCE ASSIGNMENT, (MFG OPERATION ID,RESOURCE 1D},
{Resource Type,Quantity Required,Unit of Measure})

{DEPENDENT ENTITY, DE42, MFG FACILITY ASSIGNMENT, { MFG OPERATION ID,ASSET ID},
{Feed,Speed,Depth of cut,Number of passes,Remarks} }

{ENTITY, IES, MFG CELL CONFIGURATION, {MFG CELL GROUP ID,ASSET ID},
{Number of Mfg Stations})

{ENTITY, IE6, RESOURCE, {RESOURCE ID,SUPFLIER ID}, {Resource Type, Description,Location,
Account Number,Unit of Measure,Unit Price,Buy/Make/Supply Code, Catalogue Order Number, Purchasing
Lead Time, Last Order Date,Quantity Ordered, Effectivity Start Date Effectivity End Date,Stock on-

hand Allocated/Reserved Stock,Scrap Value,Unit of Measure for Scrap))

{ENTITY, IE3, ENGINEERING RESOURCE, {PART NUMBER}, {Engineering Resource, Location] }

{ENTITY, IE7, CUSTOMER, {CUSTOMER ID}, {Company/Name,Address,Contact
Person, Telephone Fax))

{ENTITY, IE8, SCHEDULE, {MFG ORDER NUMBER ,PART NUMBERY)}, {Priority,Order Status, Planned
Quantity,Unit of Measure,Schedule Start Date, Schedule End Date})

Page 299

{ENTITY, IE9, SHOP FLOOR STATUS, {MFG ORDER NUMBER, PART NUMBER]},
{ Actual Quantity Produced, Work Centre/Cell Utilisation Rate,Actual Capacity Utilised})

{ENTITY, IE10, MANUFACTURING FACILITY, [ASSET ID,}, (Description, Location, Working
Capacity,Labor Cost per hour,Handling Cost per hour,,}]

[ENTITY, IE11, SUPPLIER, {SUPPLIER ID}, {Company/Name,Address,Contact Person, Telephone Fax} }

{DEPENDENT ENTITY, DE101, PERSONNEL, { ASSET ID}, (Personnel ID,Name, Address, Telephone,
Salary,Skill Skill level Remarks])

{DEPENDENT ENTITY, DE102, MACHINE, {ASSET ID,SUPPLIER ID}, {Last Service/Maintenance Date,
Repaired on,Repair Work Order Number,Max. job size accommodated - X/Y/Z axes,Accuracy,Machining Cost
per hour Horse Power,Speed Range (Max./Min.),Feed Range Payload, Working Envelope - X/Y/Z/A/B
axes,Setup Time,Tool Change Time,Feed Change Time,Table Rotation Time, Tool Adjustment Time,Rapid
Tranverse Rale) }

{CATEGORIZATION, CR1, , COMPLETE, {IE10}, {DE101,DE102)

{RELATION, RL1, , NON-SPECIFIC, [E2, DE21, OM}

{REL.ATION, RL2, , NON-SPECIFIC, [E4, DE21, O}

{RELATION, RL3, , NON-SPECIFIC, DE41 , DE43, OM}

{RELATION, RL4, , NON-SPECIFIC, IEL, IE2, O]

(RELATION, RLS5, , NON-SPECIFIC, IE4, DE41 , O}

{RELATION, RL6, , NON-SPECIFIC, DE41 , DE42, OM})

{RELATION, RL7, , NON-SPECIFIC, DE43, [E6, O]

{RELATION, RLS, , NON-SPECIFIC, IE1, IE7, O}

{RELATION, RL9, , NON-SPECIFIC, IE8, IE9, O)

{RELATION, RL10, , NON-SPECIFIC, IE9, DE21, O]

{(RELATION, RL11, , NON-SPECIFIC, IE8, DE21, O}

{RELATION, RL12, , NON-SPECIFIC, IE4, IE5, ZOM}

Page 300

{RELATION, RL13, , NON-SPECIFIC, IE3, IE4, O}
(RELATION, RL14, , NON-SPECIFIC, IE1, [E8, OM]}
(RELATION, RL15, , NON-SPECIFIC, IE1, [E9, OM)}
(RELATION, RL16, , NON-SPECIFIC, IE5, IE10, OM]}
(RELATION, RL17, , NON-SPECIFIC, IE11, IE6, OM]}
{RELATION, RL18, , NON-SPECIFIC, DE102, IE11, O)
(RELATION, RL19, , NON-SPECIFIC, DE21, IE3, OM}

[RELATION, RL20, , NON-SPECIFIC, DE42, IE10, O}

Done.

Page 301

APPENDIX XIV

1. EXPRESS based information model schema

2. EXPRESS index datafile
(assignment of unique identifier to entities in EXPRESS model)

3. EXPRESS model data dictionary

4. EXPRESS to SQL Compiler generated datafile
(SQL commands to enable creation of relational database tables)

5. Example of relational database tables relationship
(via the datafile generated by EXPRESS to SQL Complier)

Page 302

SCHEMA INFORMATION_MODELS;

TYPE

type_class = enumeration of (repeat_order, one_off);

END_TYPE;

TYPE

pari_class = enumeration of (normal, phantom, resource, co-product, tool, tool_retam_item),
END_TYPE;

TYPE

resource_class = coumenation of (lool, Lool_assessories, matcrials, fixtures,
fixture_assessories, miscellaneous);

END_TYFE;

TYPE

order_category = enumeration of (quote_forecast, open_order, confirmed_osder,
closed_order_proceed,order_complete, closed_order_archive, order_purge, order_hold);
END_TYPE;

TYPE

product_code = enumeration of {make, buy, supply).

END_TYPE;

ENTITY ORDER_ENTRY:
has_PART_MASTER-BOM : PART_MASTER-BOM;
has_CUSTOMER : CUSTOMER;

has_SCHEDULE : LIST [1:7) OF SCHEDULE;
has_SHOP_FLOOR_STATUS : LIST [1:7) OF SHOP_FLOCR _STATUS;
Mfg_Order_Number : INTEGER(7),

Preceeding Order_Number : INTEGER(?);
Description : STRING(60);

Effectivity_Stan_Date : date;

Effectivity_End_Date : date;

Type : 1ype_class;

Due_Date : dale;

Unit_of_Measure : STRING(4);

Unit_Price : REAL;

Order_Quantity : INTEGER(9),

END_] s

ENTITY PART_MASTER-BOM;
has_BOM_CHILD : LIST [1:7] OF BOM_CHILD;
Parent_pan_number : STRING(15);
Effectivity_Stant_Date : date;
Effectivity_End_Date : date;
Unit_of_Measure : STRING(4);
Engineering_Change_Notice : INTEGER(7);
Change_Effected_by : STRING(20);
Date_of_Change : date;
Phases_out_Pan_Number : STRING(15);
Phased_out_by_Pant_Number : STRING(15);
Number_of_Levels : INTEGER({2);
Number_of_components : INTEGER(3);
END_ENTITY:

ENTITY PROCESS_PLAN;

has_BOM_CHILD : BOM_CHILD;

has_MFG_QOPERATION:_ASSIGNMENT : MFG_OPERATION_ASSIGNMENT;
has_MFG_CELL_CONFIGURATION : MFG_CELL_CONFIGURATION;
Process_plan_ID : INTEGER(7);

Process_Description : STRING(60);

END_ENTITY;

Page 303

ENTITY BOM_CHILD,,

has_ ENGINEERING_RESOURCE : LIST [1:7] OF ENGINEERING_RESOURCE;
Part_number : STRING(15).
Number_of_components : INTEGER(3);
Pan_Type : pan_class;
Quantity_per_Assembly : REAL;
Effectivity_Start_Daie : date;
Effectivity_End_Date : date;

Unit_of Measure : STRING(4);

Lead_Time _Offser : INTEGER(9);
Engineering Change_Notice : INTEGER(7);
Change_Effecied_by : STRING(20),
Change_Date : date:
Phascs_Out_Pan_Number : STRING(15);
Phased_Out_by_Part_Number : STRING(15);
END_ENTITY;

ENTITY MFG_OPERATION_ASSIGNMENT,
has_RESOURCE_ASSIGNMENT : LIST [1:7] OF RESOURCE_ASSIGNMENT;

has_MFG_FACILITY_ASSIGNMENT : LIST [1:7) OF MFG_FACILITY_ASSIGNMENT:

Mfg Operation_[D : INTEGER(7);

Mfg Operation_Description : STRING(60);
Preceed_Mfg_Openation_ID : INTEGER(7);
Next_Mfg_Operation_ID : INTEGER(7);
Altemate_Mfg Operation_ID : INTEGER(7);
Setp_time_per_item : REAL;

Machining time_per_item : REAL;
Handling_time_per_item : REAL;
Operation_time_per_item : REAL;
Scrap_rate : REAL;

END_ENTITY:

ENTITY RESOURCE_ASSIGNMENT;
has_RESQURCE : RESOURCE,;
Rescurce_Type : resource_class;
Quantity_Required : REAL;
Unit_of_Measure : STRING(4);
END_ENTITY:

ENTITY MFG_FACILITY_ASSIGNMENT:;

has_ MANUFACTURING_FACILITY : MANUFACTURING_FACILITY;
Feed : INTEGER({(4);

Speed : INTEGER(6);

Depth_of_cut : INTEGER(3);

Number_of_passes : INTEGER(S};

Remarks : STRING(60);

END_ENTITY:;

ENTITY MFG_CELL_CONFIGURATION;

has_ MANUFACTURING_FACILITY : LIST [1:7) OF MANUFACTURING_FACILITY;

Mig_Cell_Group_ID : INTEGER(2);
Number_of_Mfg_Siations : INTEGER(2);
Mfg_station_1 : INTEGER(7),
Description_station_1 : STRING(60);
MIg_station_2 : INTEGER(7}.
Description_station_2 : STRING(60),
Mfg_station_3 : INTEGER(7);
Description_station_3 : STRING(60),
Mfg_station_4 : INTEGER(Y);
Description_station_4 : STRING(60};
Mifg_siation_5 : INTEGER(7);
Description_station_5 : STRING(60);
END_ENTITY;

Page 304

ENTITY RESOURCE;
Resource_ID : STRING(15);
Resource_Type : resource_class;
Description : STRING(60);

Location : STRING(15);
Account_Number : INTEGER(15};
Unit_of _Measure : STRING(4):
Unit_Price : REAL;
Buy_Make_Supply_Code : product_code;
Catalogue_Order_Number : STRING(30);
Purchasing Lead_Time : INTEGER(7);
Last_Order_Date : date;
Quaniity_Ordered : INTEGER(9);
Effectivity_Stant_Date : date;
Effectivity_End_Date : date;
Stock_on_hand : INTEGER(9);
Allocated_Reserved_Stock : INTEGER(9);
Scrap_Value : REAL,
Scrap_unil_of_Measure : STRING(4);
END_ENTITY;

ENTITY ENGINEERING_RESOURCE;
has_PROCESS_PLAN : PROCESS_PLAN:
Engineering_Resource : STRING(10);
Location : STRING(10);

END_ENTITY;

ENTITY CUSTOMER;
Customer_ID : INTEGER(7);
Company_Name : STRING(40);
Address : STRING(60);
Contact_Person : STRING(25);
Telephone : STRING(20);

Fax : STRING(20);
END_ENTITY,

ENTITY SCHEDULE;

has_SHOP_FLOOR_STATUS : SHOP_FLOOR_STATUS;
has BOM_CHILD : BOM_CHILD;

Prority : INTEGER(3);

Order_Status : order_category;

Planned_Quantiry : INFEGER (9);

Unit_of_Measure : STRING(4);

Schedule_Stan_Date : date;

Schedule_End_Date : date;

END_ENTITY:

ENTITY SHOP_FLOOR_STATUS;
has_BOM_CHILD : BOM_CHILD;
Actal_Quantity_Produced : INTEGER(9);
Siation_Utilisation_Rate : REAL;
Actyal_Capacity_Utilised : REAL;
END_ENTITY;

ENTITY MANUFACTURING_FACILITY
SUPERTYPE OF (ONEOF(PERSONNEL, MACHINE));
Asset_[D : INTEGER(T);

Description ; STRING(60};

Location : STRING(15);

Working_Capacity : INTEGER(3);

Labor_Cost_per_hour : REAL;

Handling_Cost_per_hour : REAL;

END_ENTITY:

Page 305

ENTITY SUPPLIER;

has_RESQURCE : LIST [1:7] OF RESOURCE;
Supplier_ID : INTEGER(7),

Company_Nzme : STRING(40);

Address : STRING(60),

Contact_Person : STRING(25);

Telephone : STRING(20);

Fax : STRING(20),

END_ENTITY;

ENTITY PERSONNEL
SUBTYPE OF (MANUFACTURING_FACILITYY),
Personne)_ID : STRING(15);
Name : STRING(30);
Address : STRING(60);
Telephone : STRINGQ20),
Salary : REAL;

Skill : STRING(30)
Skill_level : INTEGER(2):
Remarks : STRING(60);
END_ENTITY;

ENTITY MACHINE

SUBTYPE OF (MANUFACTURING_FACILITYY;
has_SUPPLIER : SUPPLIER;
Last_Service_Maintenance_Date : date;
Repaired_on : date;
Repair_Work_Order_Number : INTEGER();
Max_job_size_X_saxis : REAL;
Max_job_size_Y_axis : REAL;
Max_job_size_Z_axis : REAL;
Accuracy : REAL;
Machining_Cost_per_hour : REAL;
Homse_Power : INTEGER(7);
Spead_Range_Min : INTEGER(6);
Specd_Range_Max : INTEGER(6);
Feed_Range_Min : INTEGER(4);
Feed_Range_Max : INTEGER(4);
Payload : INTEGER(5);
Working_Envelope_X_axis : REAL;
Working_Envelope_Y_axis : REAL;
Working_Envelope_Z_axis :REAL:
Working_Envelope_A_axis : REAL;
Working_Envelope_B_axis : REAL;
Sewp_Time : REAL;
Tool_Change_Time : REAL;
Feed_Change_Time : REAL;
Table_Ratation_Time : REAL;
Tool_Adjustment_Time : REAL;
Rapid_Tranverse_Rate : REAL,
END_ENTITY;

ENTITY date;

day : INTEGER(2});
moath : INTEGER(2);
year : INTEGER(2);
END_ENTITY;

END_SCHEMA;

Page 306

¢l:ORDER_ENTRY:
¢2:ORDER_ENTRY_has_PART_MASTER-BOM:
¢3:ORDER_ENTRY _has CUSTOMER:

¢4:0RDER_ENTRY _has_SCHEDULE:
€5:0RDER_ENTRY_has_SHOP_FLOOR_STATUS:
¢6:0RDER_ENTRY_Effectivity_Start_Date:
c7:ORDER_ENTRY_Effectivity_End_Date:
e8:0RDER_ENTRY_Type:

¢9:0RDER_ENTRY_Type:

¢10:0RDER_ENTRY_Due_Date:

en0:PART_MASTER-BOM:
el1:PART_MASTER-BOM_has_BOM_CHILD:
€12:PART_MASTER-BOM_Effectivity_Stan_Date:
¢13:PART_MASTER-BOM_Effectivity_End_Date:
el4:PART_MASTER-BOM_Date_of_Change:
c15:PROCESS_PLAN:
¢16:PROCESS_PLAN_has_BOM_CHILD:;
e17:PROCESS_PLAN_has_MFG_OPERATION_ASSIGNMENT:
¢18:PROCESS_PLAN_has_MFG_CELL_CONFIGURATION:
enS:BOM_CHILD:
e19:BOM_CHILD_has_ENGINEERING_RESOURCE:
¢20:BOM_CHILD_Pan_Type:
¢21;:BOM_CHILD_Effectivity_Start_Date:
e22:BOM_CHILD_Effectivity_End_Date:
¢23:BOM_CHILD_Change_Date:
ent:MFG_OPERATION_ASSIGNMENT:
€24:MFG_OPERATION_ASSIGNMENT _has_RESOURCE_ASSIGNMENT:
€25:MFG_OPERATION_ASSIGNMENT _has_MFG_FACILITY_ASSIGNMENT:
en3:RESOURCE_ASSIGNMENT:
¢26:RESOURCE_ASSIGNMENT_has_RESOURCE:

" ¢2T:-RESOURCE_ASSIGNMENT "_Rescurce_Type:
¢28:RESOURCE_ASSIGNMENT _Resource_Type:
enlO:MFG_FACILITY_ASSIGNMENT:
€29:MFG_FACILITY_ASSIGNMENT _has_ MANUFACTURING_FACILITY:
enT:MFG_CELL_CONFIGURATION:
e30:MFG_CELL_CONFIGURATION_has_MANUFACTURING_FACILITY:
en] 1:RESOURCE:
€31:RESQURCE_Resource_Type:
c32:RESOURCE_Buy_Make_Supply_Code:
€33:RESOURCE_Last_Order_Date:
¢34:RESOURCE_Effectivity_Siart_Date:
€35:RESOURCE_Effectivity_End_Date:
en8:ENGINEERING_RESOURCE:
e36:ENGNE'ERING_RESO URCE_has_ PROCESS_PLAN:
enl:CUSTOMER:
en2:SCHEDULE:

Page 307

¢37:.5CHEDULE_has_SHOP_FLOOR_STATUS:
¢38:SCHEDULE_has_BOM_CHILD:
e39:SCHEDULE_Order_Status:
¢40:SCHEDULE_Order_Status:
¢41:SCHEDULE_Schedule_Suan_Date:
¢42:SCHEDULE_Schedule_End_Date:
en3:SHOP_FLOOR_STATUS:

¢43:SHOP_FLOOR_STATUS_has_BOM_CHILD:

enl22MANUFACTURING_FACILITY:
€44:SUPPLIER:

¢45:SUPPLIER _has_RESOURCE:
¢46:PERSONNEL:

e4T:MACHINE:
e48:MACHINE_has_SUPPLIER:

e49:MACHINE_ Last_Service_Maintenance_Date:

e50:MACHINE_Repaired_on:
end:date:

tl:type_class:

12:pant_class:
13:resource_class:
t4:order_category:
15:product_code:

Page 308

Data format in dictionary N

Table in which attribute is located

Y

Mandatory requirement
Attribute classification

i.e. entity, aray and enumeration (fixed assigned values)

Range for atribute’s field size

Attribute type (i.e. integer, string)
I +— Unique idantifier for attribute

\Attribule_Nlme Table_Name M Class Index 1 Index 2 Type Attribute_Token

_J

has_PART_MASTER-BOM e1 m entity en0 a0 L
has_CUSTOMER e1 m entity eni a1

has_SCHEDULE et m LIST 1 # en2 a2
has_SHOP_FLOOR_STATUS a1 m LIST 1 #en3 a3

Mfg_Order_Number e1 m 1 7 INTEGER a4
Preceeding_Order_Number ¢1 m 1 7 INTEGER a5
Description @1 m 1 60 STRING a6
Effectivity_Start_Date @1 m antity end a7
Effectivity_End_Date e1 m entity end a8

Type 61 m enumeration t1 a9

Type @1 m entity t1 a10

Due_Date e1 m entity end att

Unit_of_Measure e1 m 1 4 STRING al2
Unit_Price @1 m REAL a13

Order_Quantity 81 m 1 9 INTEGER ai4 J

has_BOM_CHILD en0 m LIST 1 # en5 a15)

Parent_part_number enO m 1 15 STRING a16
Effectivity_Start_Date en0 m entity end a17
Effectivity_End_[ate en0 m entity end a8

Unit_of Measure en0O m 1 4 STRING a19
Engineering_Change_Notice end m 1 7 INTEGER a20 >
Change_Efiected_by en0 m 1 20 STRING a21

Date_of Change en0 m entity end a22
Phases_out_Part_Numberend m 1 15 STRING a23
Phased_out_by_Par_Number en0 m 1 15 STRING a24
Number_of_Levels enOm 1 2 INTEGER a26
Numbaer_of_components en0 m 1 3 INTEGER a26

has_BOM_CHILD e15 m entity en5 a27

has_MFG_OPERATION_ASSIGNMENT e15 m entity en6 a28

has_MFG_CELL_CONFIGURATION e15 m entity en7 a29

Process_plan_|ID e15m 1 7 INTEGER a30
Process_Description 615 m 1 60 STRING a31
Part_number enS m 1 15 STRING a33

} ORDER ENTRY

PART MASTER/BOM

> PROCESS PLAN

Page 309

nl

has_ENGINEERING_RESOURCE en5 m LIST 1 #en8 a32)

Number_of_components en5 m 1 3 INTEGER a34
Part_Type en5 m enumeration t2 a35
Quantity_per_Assembly en5 m REAL a36
Effectivity_Start_Date en5 m entity end a37
Eftactivity_End_Date en5 m entity end a38

Unit_of_Measure en5 m 1 4 STRING a39 >’ BOM-CHILD

Lead_Time_Offseten5 m 1 9 INTEGER a40
Engineering_Change_Notice en5 m 1 7 INTEGER ad1
Change_Effectad_by en5 m 1 20 STRING ad2
Changa_Date en5 m entity end a43
Phases_Out_Part_Number en5 m 1 15 STRING ad4
Phased_Out_by_Part_Number en5 m 1 15 STRING a45

has_RESOURCE_ASSIGNMENT en6 m LIST 1 # en9 a6
has_MFG_FACILITY_ASSIGNMENT en6 m LIST 1 # en10 ad7

Mfg_Operation_[D en6 m 1 7 INTEGER a48
Mfg_Operation_Description ené m 1 60 STRING a49
Preceed_Mfg_Operation_ID ens m 1 7 INTEGER a50
Next_Mfg_Operation_ID en§ m 1 7 INTEGER a51
Alternate_Mfg_Operation_{D en6 m 1 7 INTEGER a52
Setup_time_per_item ené m REAL a53
Machining_time_per_item enS m REAL a54
Handling_time_per_item en6 m REAL aS5
Operation_time_per_item ené m REAL a56
Scrap_rate ens m REAL a57

has_RESQURCE en9 m entity en1t a58

MANUFACTURING
OPERATION

ASSIGNMENT

Resource_Type en m enumeration t3 a59
Resource_Type enS m entity t3 a60 RESOURCE ASSIGNMENT

Quantity_Required en9 m REAL a&1
Unit_of_Measure en9 m 1 4 STRING a62

has_MANUFACTURING_FACILITY en10 m entity en12 a63
Feed en10Om 1 4 INTEGER a64

Spead en10 m 1 6 INTEGER a65

Depth_ot_cuten10 m t 3 INTEGER a66
Number_of_passes en10m 15 INTEGER a67

Remarks en10 m 1 60 STRING a8

has_MANUFACTURING_FACILITY en7 m LIST 1 #en12 a69

Mfg_Cell_Group_ID en7 m 1 2 INTEGER a70
Number_of_Mfg_Stations an7 m 1 2 INTEGER a71
Mfg_station_1 en7 m t 7 INTEGER a72
Description_station_1 en7 m 160 STRING a73
Mfg_station_2 en7 m 1 7 INTEGER a74
Description_station_2 en7 m 1 60 STRING a75
Mig_station_3 en7 m 1 7 INTEGER a76
Description_station_3 en7 m 1 60 STRING a77
Mig_station_ 4 en7m 17 INTEGER a78
Description_station_4 en7 m 1 60 STRING a79
Mfg_station_5 en7 m 1 7 INTEGER a80
Dascription_station_5 en7 m 1 60 STRING a81

MANUFACTURING
FACILITY
ASSIGNMENT

A

MANUFACTURING
CELL
CONFIGURATION

Page 310

Resource_ID en11 m 1 15 STRING a82
Resource_Type eni1l m enumeration t3 a83
Description en11 m 1 60 STRING a84

Location en11 m 1 15 STRING a85

Account_Number en11 m 1 15 INTEGER ag6
Unit_of_Measure ent1 m 1 4 STRING a87
Unit_Price en1t m REAL a88 .
Buy_Make_Supply Code an11 m enumeration 15 aB%
Catalogue_Ordar_Number eni1 m 1 30 STRING a0 MANUFACTURING
Purchasing_Lead_Time en11 m 1 7 INTEGER a91 RESOURCE
Last_Ordor_Date en11 m entity end a92
Quantity_Ordered en11 m 1 9 INTEGER a%3
Effectivity_Stant_Date en11 m entily end a94
Effectivity_End_Date en11 m entity end a95
Stock_on_hand en11 m 1 9 INTEGER a%6
Allocated_Reserved_Stock en11 m 19 INTEGER a97
Scrap_Value en11 m REAL a98

Scrap_unit_of Measure en1t m 1 4 STRING a99

has_PROCESS_PLAN en8 m entity e15 a100

ENGINEERING
Engineering_Resource en8 m 1 10 STRING a101 RESOURCE
Location en8 m 1 10 STRING a102

Customer_|D en1 m 1 7 INTEGER a103

Company_Name ent m 1 40 STRING a104

Address en1m 1 60 STRING a105

Contact_Person ent m 1 25 STRING a106 CUSTOMERS
Telephone en1 m 1 20 STRING a107

Fax en1 m 1 20 STRING a108

"

has_SHOP_FLOOR_STATUS en2 m entity en3 a109
has_BOM_CHILD en2 m entity en5 al10

Priority en2 m 1 3 INTEGER a11t
Order_Stalus en2 m enumeration t4 a112

Order_Status en2 m entity t4 ai13 > SCHEDULE
Planned_Quantity en2m 1 9 INTEGER ai14
Unit_of_Measure en2 m 1 4 STRING a115
Schedule_Start_Date en2 m entity end a116
Schedule_End_Date en2 m entity end a117

[has_BOM_CHILD en3 m entity en5 al18
Actual_Quantity_Produced en3m 19 INTEGER a119 % SHOP FLOOR STATUS

Station_Utilisation_Rate en3 m REAL a120
Actual_Capacity_Utilised en3 m REAL a121

[Asset_ID en12m 17 INTEGER a122
Description en12 m 1 60 STRING 2123
Location en12 m 1 15 STRING a124 MANUFACTURING

Working_Capacity en12 m 1 3 INTEGER a125
Labor_Cost_per_hour en12 m REAL a126 FACILITY

{ Handling_Cost_per_hour en12 m REAL a127

Page 311

[has_RESOURCE e44 m LIST 1 # en11 a128

Supplier_IDed4d m1 7 INTEGER a129
Company_Name 044 m 1 40 STRING a130

< Address 644 m 1 60 STRING 131 > SUPPLIERS

Contact_Person edd m 1 25 STRING a132

Toelephone edd m 1 20 STRING a133

Fax 44 m 1 20 STRING a134

Personnel_ID e46 m 1 15 STRING a135
Name ed6 m 1 30 STRING a136
Address e46 m 1 60 STRING a137
Telephone 46 m 1 20 STRING a138

< Salary 646 m REAL a139 > PERSONNEL
Skill 846 m 1 30 STRING a140
Skill_level 846 m 1 2 INTEGER a141
Remarks e46 m 1 60 STRING a142

[has_SUPPLIER e47 m entity 44 a143

Last_Service_Maintenance_Date 847 m entity end a144
Repaired_on @47 m entity end a145
Repair_Work_Order_Number e47 m 1 7 INTEGER ai146
Max_job_size_X_axis 47 m REAL a147
Max_job_size_Y_axis e47 m REAL a148
Max_job_size_Z_axis 647 m REAL a149

Accuracy e47 m REAL a150

Machining_Cost_per_hour 647 m REAL a151
Horse_Power e47 m 1 7 INTEGER a152
Speed_Range_Min e47 m 1 6 INTEGER a153

Speed_Range_Max e47 m 1 6 INTEGER a154 MACHINING
Feed_Range_Min e47 m 1 4 INTEGER a155 .
Feed_Range_Maxed47 m 1 4 INTEGER a156 FACILITY

Payload @47 m 1 5 INTEGER a157
Working_Envelope_X_axis e47 m REAL a158
Working_Envelope_Y_axis e47 m REAL a159
Working_Envelope_Z_axis e47 m REAL a160
Working_Envelope_A_axis e47 m REAL a161
Working_Envelope_B_axis e47 m REAL a162
Setup_Time e47 m REAL a163
Tool_Change_Time e47 m REAL a164
Feed_Change Time 647 m REAL a165
Table_Rotation_Time 647 m REAL a166
Tool_Adjustment_Time e47 m REAL a167
Rapid_Tranverse_Rate e47 m REAL a168

day end m 1 2 INTEGER a169
month end m 1 2 INTEGER a170 DATE
yearend m 1 2 INTEGER a171

Page 312

create table index_table (
sys_name char(10),
entity_name char{80)

%

crcate table data_dict {
atiribute_name char(B0),
table_name char(10),
mand_opt char(1),

class char(10),

index_1 char(10),
index_2 char(10),

type char(10),
attnbute_token char(80)
)

create table logical

(

logical_id number(10),
logical_type char(10)
)

insert into logical (logical_id, logical_type)
values (0, 'FALSE®
)

insert into logical (logical_id, logical_type)
values (1, ‘TRUE’
)

insert into logical (logical_id, logical_type)
values (2, ‘UNKNOWN’
)

create table types

(

type_name char{80),
opt char(80),

class char(15)

%

create table id_table

(

table_name char(30),
column_name char(80)
%

create table ¢2
(.
el_id number(10),
en0_id number(10)
%

creale table e3

(

cl_id number(10),
enl_id number(10)
%

create table e4

(

el_id number{10),
en2_id number({10},
e4_id number(10)
X

Page 313

creaie table e4_ps

(

e4_ps_pred number(10),
cd_ps_succ number(10)
)3

create table e5

(

el_id number{10),
en3_id number(10),
e5_id number{10)
)3

create table ¢5_ps

(

e5_ps_pred number(10),
e5_ps_succ number(10)
X

create table ¢6

(

el_id number(10),
end_id number(10)
)

creale table £7

{

el_id number(10),
end_id number(i0)
%

create 1able e8

(

el_id number(10),
t1_id number(10)
%

create lable c9

(

el_id number(10),
1l_id number(10)
%

creale lable el0

(

el_id number(10},
end_id number(10)
%

create table el

(

el_id number{10),
el_Mfg_Order_Number number(7),
el_Preceeding _Order_Number number(7),
¢1_Description char(60),
¢1_Unit_of_Measure char(4),
eli_Unii_Price number(7,2),
el_Order_Quantity number(9)

)

create table ell

(

en0_id number(10),
enS_id number(10),
ell_id number{10)
%

Page 314

create table ell_ps

(

ell_ps_pred number(10),
ell_ps_succ number(10)
X

create table 12

{

en(_id number(10),
end_id number(10)

X

creale table 13

(

en0_id number(10),
end_id number(10)
%

creale table e 14

(

en(_id number(10),
end_id number(10)

X

create lable en0

(

enQ_id number(10),
en(_Parent_pan_number char(15),
en0_Unit_of _Measure char(4),
en0_Engincering_Change_Notice number(7),
en0_Change_Effecied_by char(20),
en(_Phases_out_Part_Number char(15),
en_Phased_out_by_Pan_Number char(15),
en0_Number_of_Levels number(2),
enQ_Number_of_components number(3)

)

create wable ¢16

(

e15_id number{10},
end_id number{10)
)3

create table e17

(

¢15_id number(10),
en6_id number(10)
)3

create table e18

(

el5_id number(10),
en7_id number(10)
)

create table e15

(

el3_id number(10),
el5_Process_plan_ID number(7),
e15_Process_Description char(60)
)

create table e19

(

en5_id number(10),
en8_id number(10),
el9_id number(10)

%

Page 315

create table ¢19_ps

(

¢19_ps_pred number(10),
e19_ps_suce mumber(10)
%

create table ¢20

(

enS_id number(10),
2_id munber(10)

%

create table £21

(

enS_id number(10),
end_id number(10)
)5

creale table e22

(

enS_id number{10),
erd_id number(10)
%

create table 23

(

en5_id number(10),
end_id number(10)

%

create table enS

(

enS_id number(10),

en5_Pan_number char(15),
en5_Number_of_components number(3),
enS_Quantity_per_Assembly number(7 2),
en5_Unit_of_Measure char(4),
en5_Lead_Time_Offset number(9),
enS_Engineering_Change_Notice number(7),
enS_Change_Effected_by char(20),
enS_Phases_Out_Part_Number char(15),
en5_Phased_Oust_by_Pan_Number char(15)
)

create table e24

(

en6_id number(10),
en9_id number(10),
e24_id number(10)
)7

create table e24_ps
(

e24_ps_pred number{10),
e24_ps_succ number{10)

X

create table €25

(

ené_id number(10),
enl0_id number(10),
€25_id number(10)
%

create table e25_ps

(

€25_ps_pred aumber(10),
€25_ps_succ number{10})
%

Page 316

create table ent

(

en6_id number{10),

en6_Mfg_Operation_ID number(7),

ené_Mfg Operation_Description char(60),
en6_Preceed_Mfg Operation_ID number(7),
en6_Nexi_Mfg_Operation_ID mumber(7),

en6_Alternate_Mfg_Operation_ID number(7),

ené_Setup_time_per_jtem number(7,2},
en6_Machining_time_per_item number(7,2),
enf_Handling _time_per_item number(7,2),
ent_Operation_time_per_ilem number(7,2),
en6_Scrap_rate number(7,2)

%

create table 26

(

en9_id number(10),
enll_id number(10)
%

create table 27

(

en9_id number{10),
13_id number(10)

)%

create table e28

(

en9_id number(10},
13_id number(10}

%

create table en9

(

en9_id number(10),
en9_Quantity_Required nomber(7,2),
en9_Unit_of_Measure char(4)

%

creale table 29

(

enl0_id number(10),
enl2_id number(10)
)

create table enl0

(

enl0_id number(10),

enl0_Feed number(4),

enl10_Speed number(6),
enl0_Depih_of_cut number(3),
enl0_Number_of_passes number(5),
enl0_Remarks char(60)

)

c@e table e30

(

en7_id number(10),
enl2_id number(10),
. €30_id number(10)
%

create table €30_ps

(

¢30_ps_pred number(10),
e30_ps_succ number(10)
X%

Page 317

create table en7

(

en?_id number(10),

en?_Mfg Cell_Group_ID number(2),

en7_Number_of_Mfg_Stations number(2),

en7_Mfg station_l number(7),
en7_Description_station_} char(60),
en’/_Mfg_station_2 number(7),
en?_Description_station_2 char(60),
en7_Mfg_station_3 number(7),
en’7_Description_station_3 char(60),
en?_Mfg_station_4 number(7),
en7_Description_station_4 char{60),
en?_Mfg station_5 number(7),
en7_Description_siation_5 char(60)
)

create table 31

(

enll_id number(10),
13_id number(10)

%

create table €32

(

enll_id number(10),
t5_id number(10)

)3

create table ¢33

{

enl]_id number(10),
end_id number(10)
)%

create table e34

(

enl1_id number(10},
end_id number(10)
%

create table ¢35

(

enll_id number(10),
end_id number(10}

)

create table enll

(

enl1_id number(10),
enl1_Resource_ID char(15),
en11_Description char(60),
enl1_Location char(15),
enl1_Account_Number number(15),
en11_Unit_of_Measure char(4),
enll_Unir_Price number(7,2),

enll_Catalogue_Order_Number char(30),
enl1_Purchasing Lead Time number(7),

enl1_Quantity_Ordered number(9),
enll_Stock_on_hand number(9),

enll_Allocated_Reserved_Stock number(9),

enll_Scrap_Value number(7,2),
enll_Scrap_unit_of Measure char(4)
%

Page 318

create table ¢36

(

en8_id number(10),
e15_id number(10)
%

create table en8
(
en8_id number(10},

en8_Engineering_Rescurce char(10),

en8_Location char(10)
%

create table enl

(

enl_id number(10),
enl_Customer_ID number(7),
enl_Company_Name char(40),
enl _Address char(60),
enl_Contact_Person char(25),
enl_Telephone char(20),
enl_Fax char(20)

X

create table 37

(

en2_id number(10),
en3_id number(10)

X

create table e38

(

en2_id number(10),
enS_id number({10)

X

create table €39

(

en2_id number(10),
14_id number(10)

)2

create table ed)

(

en2_id number(10),
14_id number(10)

%

create table e41

(

en2_id number(10),
end_id number(10)
%

create table c42

(

en2_id number(10),
end_id number(10)
%

create table en2

(

en2_id number(10),

en2_Priority number(3),
en2_Planned _Quantity number(9),
en2_Unit_of_Measure char(4)

X

Page 319

create able e43

(

en3_id number(10),
end_id number(10)
) A

create Lable en3

(

en3_id number(10),
en3_Actual_Quantity_Produced number(%),
en3_Station Udlisation_Rate number(7,2),
en3_Actual_Capacity_Utilised number(7,2)
%

creale table enl2

(

enl?2_id number(10),

enl12_Asset_ID number(7),
enl2_Description char{60),

enl2_Location char(15),
enl2_Working_Cspacity number(3),
enl2_Labor_Cost_per_hour number(7,2),
enl2_Handling_Cost_per_hour number(7,2)
% .

create table ed5

(

ed44_id number(10),
entl_id number(10),
€d5_id number(10)
%

create table e45_ps

(

e45_ps_pred number(10),
e45_ps_succ number(10)
X%

create table e44

(

e44_id number(10),
c44_Supplier_ID number(7),
ed4_Company_Name char(40),
ed4_Address char(60),
ed4_Contact_Person char(25),
cd4_Telephone char(20),
c44_Fax char(20) ’

)3

create table c46

{

eds_id number(10),
enl2_id number(10),
e46_Personnel_ID char(15),
e46_Name char(30),
e46_Address char(60),
ed6_Telephone char(20),
ed6_Salary number(7,2),
e46_Skill char(30),
e46_Skill_level number(2),
e46_Remarks char(60)

)3

creale 1able 48

(

e47_id nurnber(10),
edd_id number(10}
X

Page 320

o

create table e49

(

c47_id nurber(10),
end_id number(10)
)4

create table e50

(

€47 _id numben(10),
erd_id number(10)
)

create table e47

(.

€47 _id number(10),

enl2_id number(10),
¢47_Repair_Work_Order_Number number(7),
e47_Max_job_size_X_axis number(7.2),
47_Max_job_size_Y_axis number(7.2),
e47_Max_job_size_Z_axis number(7,2),
ed47_Accuracy number(7,2),
¢47_Machining Cost_per_hour number(7.2),
e47_Horse_Power mimber(7),
e47_Speed_Range_Min number(6),
e47_Speed_Range_Max number(6),
€47_Feed_Range_Min number(4),
¢47_Feed_Range Max number(4),
c47_Payload number(5),
e47_Working_Envelope_X_axis number(7,2),
e47_Working_Envelope_Y_axis number(7,2),
e47_Working Envelope_Z_axis number(7,2),
ed47_Working Envelope_A_axis numben(7,2),
e47_Working_Envelope_B_axis number(7,2),
¢47_Sewp_Time number(7,2),
e47_Tool_Change_Time numbes(7,2),
ed7_Feed_Change_Time number(7,2),
e47_Table_Rotation_Time number(7,2),
¢47_Tool_Adjustment_Time number(7,2),
¢47_Rapid_Tranverse_Rate number(7,2)

)

create table end

(.

end_id number(10),
end_day number(2),
erd_month number(2),
end_year number(2)

X

create table tl

(

t1_id number(10),
t1_name chan(12)
%

create table 12

(

t2_id number(10),
t2_name char(16)

)7

creale table 3

(

13_id number(10),
t3_name char(19)

%

Page 321

create teble t4

(

14_id number{10),
14_name char{20)
)4

create table 15

(

t5_id number{10),
15_name char(6)

X%

Page 322

e
el_id
en(_id

el

| e1_id

el_Mfg_Order_Number

¢l_Preceeding_Order_Number

¢1_Description

¢1_Unit_of Measure

el_Unit_Price

€l_Order_Quantity

en

en0_id

enO_Pareht _part_number

en(_Unit_ot_Measure

en0_Engineering Change_Notice

enQ_Change_Effccted_by

enQ_Phases_out_Part_Number

en0_Phased_out_by_Part_Number

en0_Number_of Levels

en0Q_Number_of_components

ORDER ENTRY

ens

en5_id

enS_Part_number

en5_Number_of_components

en5_Quanltity - per_Assembly

en5_Unit_of_Measure

en5_Lead_Time_Offset

en5_Enginecring_Change_Notice

en5_Change_Effected_by

en5_Phases_Qut_Part_Number

enS_Phased_Out_by_Part_ Number

BOM-CHILD

enll

PART MASTER/BOM

el cnll_id

enll_Resource_ID

enll_Description

enll_Location

enll_Account_Number

enll_Unit_of_Measure

RESOURCE

enll_Unit_Price

enll_Catalogue_Order_Number

enll_Purchasing Lead Time

enll_Quantity_Ordered

enll_Stock_on_hand

enll_Allocated_Reserved_Stock

enll_Scrap Value

APPENDIX XV

Report on
IDEF,;x Entity-Attribute relationship model
(to be translated to EXPRESS schema)

Page 324

{ENTITY, IE1, ORDER ENTRY, {MFG ORDER NUMBER,}, (Preceeding Mfg Order Number, Description,
Product Effectivity Start Date, Product Effectivity End Date, Type, Due Date,Unit of Measure,Unit Price,
Order Quantity})

{ENTITY, IE2, PART MASTER-BOM, {PARENT PART NUMBER,}, {Effectivity Start Date, Effectivity End
Date, Unit of Measure Enginecring Change Notice,Change Effected by,Date of Change Phases out Part Number,
Phased out by Part Number, Number of Levels, Number of components (children)})

{ENTITY, IE4, PROCESS FLAN, {(PROCESS PLAN ID,}, [Process Description,})

{DEPENDENT ENTITY, DE21, BOM CHILD, {PART NUMBER,}, {Number of components (children) Part
Type, Quantity per Assembly.Effectivity Start Date, Effectivity End Date,Unit of Measure, Lead Time Offset,
Engineering Change Notice, Change Effected by,Change Date,Phases Out Part Number,Phased Qut by Part
Number] }

{DEPENDENT ENTITY, DE41 , MFG OPERATION ASSIGNMENT, {MFG OPERATION ID,},
{Mfg Operation Description, Preceeding Mfg Operation 1D, Next Mfg Operation ID, Alternative Mfg Operation
ID, Setup time per item,Machining time per item, Handling time per item,Operation time per item, Scrap rate,, }]

{DEPENDENT ENTITY, DE43, RESOURCE ASSIGNMENT, {,},
{Resource Type,Quantity Reguired,Unit of Measure})

{DEPENDENT ENTITY, DE42, MFG FACILITY ASSIGNMENT, {},
[Feed,Speed, Depth of cut,Number of passes, Remarks) }

{ENTITY, IE5, MFG CELL CONFIGURATION, {MFG CELL GROUP ID,},
{Number of Mfg Stations})

[ENTITY, IE6, RESOURCE, {RESOURCE ID,}, {Resource Type, Description, Location, Account Number,
Unit of Measure, Unit Price,Buy/Make/Supply Code,Catalogue Order Number,Purchasing Lead Time,

Last Order Date, Quantity Ordered Effectivity Start Date Effectivity End Date,Stock on-hand,
Allocated/Reserved Stock,Scrap Value, Unit of Measure for Scrap} }

{ENTITY, IE3, ENGINEERING RESOURCE, (], {Engineering Resource Location} }

{ENTITY, IE7, CUSTOMER, {CUSTOMER ID},
{Company/Name, Address, Contact Person, Telephone Fax} }

{ENTITY, IE8, SCHEDULE, {}, {Priority,Order Status Planned Quantity,Unit of Measure, Schedule Start Date,
Schedule End Date} }

(ENTITY, IE9, SHOP FLOOR STATUS, {}, { Actual Quantity Produced,Work Centre/Cell Utilisation Rate,
Actual Capacity Utilised})

{ENTITY, IE10, MANUFACTURING FACILITY, { ASSET ID,}, { Description,Location, Working Capacity,
Labor Cost per hour,Handling Cost per hour,,}}

{ENTITY, IE11, SUPPLIER, {SUPPLIER ID]}, {Company/Name, Address, Contact Person, Telephone Fax}}

{DEP;ENDENT ENTITY, DE101, PERSONNEL, { },
{Personnel ID Name,Address, Telephone, Salary,Skill Skill ievel, Remarks} }

{DEPENDENT ENTITY, DE102, MACHINE, (}, {Last Service/Maintenance Date,Repaired on,

Repair Work Order Number,Max, job size accommodated - X/Y/Z axes,Accuracy,Machining Cost per hour,
Horse Power,Speed Range (Max./Min.),Feed Range,Payload,Working Envelope - X/Y/Z/A/B axes,Sewp Time,
Tool Change Time,Feed Change Time, Table Rotation Time, Tool Adjustment Time Rapid Tranverse Rate}]

Page 325

{CATEGORIZATION, CR1, , COMPLETE, ({IE10), (DE101,DE102}

{RELATION, RL1, , NON-SPECIFIC, [E2, DE21, OM}
{RELATION, RL2, , NON-SPECIFIC, [E4, DE21, O]
{RELATION, RL3, , NON-SPECIFIC, DE41 , DEA43, OM}
{RELATION, RLA4, , NON-SPECIFIC, [E1, IE2, O}
{RELATION, RLS, , NON-SPECIFIC, IE4, DE41 , O}
{RELATION, RL6, , NON-SPECIFIC, DE41 , DE42, OM}
{RELATION, RL7, , NON-SPECIFIC, DE43, IE6, O}
{RELATION, RLS, , NON-SPECIFIC, IE1, IE7, O}
{RELATION, RL9, , NON-SPECIFIC, IE8, IE9, O}
{RELATION, RL10, , NON-SPECIFIC, IE9, DE21, O}
{RELATION, RL11, , NON-SPECIFIC, IES, DE21, (O}
{RELATION, RL12, , NON-SPECIFIC, IE4, IES, ZOM)
{RELATION, RL13, , NON-SPECIFIC, IE3, IE4, O}
{RELATION, RL14, , NON-SPECIFIC, IE}, IE8, OM}
{RELATION, RL15, , NON-SPECIFIC, IE1, IE9, OM)
{RELATION, RL16, , NON-SPECIFIC, IES5, IE10, OM}
{RELATION, RL17, , NON-SPECIFIC, [E1], IE6, OM)
(RELATION, RL18, , NON-SPECIFIC, DE102, IE1l, O}
{RELATION, RL19, , NON-SPECIFIC, DE21, IE3, OM)
{RELATION, RL20, , NON-SPECIFIC, DE42, IE10, O}

Done.

Page 326

APPENDIX XVI

Report on
IDEFy MCS function model

Page 327

[Diagram: A-0)
Activity: [A0] Part manufacture with MCS

Arrow: Product Order
Input From: Product Order
Input To: [AQ] Part manufacture with MCS

Arrow: Shop Floor Status Report
Input From: Shop Floor Status Report
Input To: [AQ] Part manufacture with MCS

Arrow: Customer Order Enquiry & Request
Control From: Customer Order Enquiry & Request
Control To: [AQ] Part manufacture with MCS

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilities
Control To: [A0] Part manufacture with MCS

Arrow: Enterprise Manufacturing Capability
Contro! From: Enterprise Manufacturing Capability
Control To: [A0] Part manufacture with MCS

Arrow: Engineering Resources
Output From: [AQ] Part manufacture with MCS
Output To: Engineering Resources

Arrow: Schedules
Output From: [A0] Part manufactre with MCS
Output To: Schedules

Arrow: Process Plans
Output From: [AQ] Part manufacture with MCS
Output To: Process Plans

Arrow: Shop Floor Status
Output From: [A0Q] Part manufacture with MCS
Output To: Shop Floor Status

Arrow: Order Acknowledgement
Qutput From: [A0] Part manufacture with MCS
Qutput To: Order Acknowledgement

Page 328

Arrow: Finished Products
Output From: [A0] Part manufacture with MCS
Output To: Finished Products

Armrow: Rejects/Scrap
QOutput From: [AQ] Part manufacture with MCS
Output To: Rejects/Scrap

Arrow; MCS Functions

Mechanism From: MCS Functions

Mechanism To: [A0] Part manufacture with MCS
Arrow: Manufacturing Cell

Mechanism From: Manufacturing Cell
Mechanism To: [AQ] Part manufacture with MCS

Arrow: Procurement of Manufacturing Resources
Output From: [A0] Part manufacture with MCS
Output To: Procurement of Manufacturing Resources

Arrow: Tansaction Report for Progress/Delays & Resources Shortfall
Output From: [AQ] Part manufacture with MCS

Output To: Tansaction Report for Progress/Delays & Resources Shortfall
Armrow: Allocation of Manufacturing Resources & Facilities/Picklist
Output From: [A0] Part manufacture with MCS

Output To: Allocation of Manufacturing Resources & Facilities/Picklist
Arrow: Production Report

Input From: Production Report

Input To: [AQ] Part manufacture with MCS

Arrow: Manufacturing Resources & Facilities Requisition

Input From: Manufacturing Resources & Facilities Requisition

Input To: [AQ]} Part manufaciure with MCS

[Diagram: AQ] Part manufacture with MCS

Activity: [A1] Pre-Planning

Activity: [A2] Planning for Manufacture

Activity: [A3] Manufacturing Control

Page 329

Arrow: Customer QOrder Enquiry & Request

Control From: Customer Order Enquiry & Request

Control To: [A1] Pre-Planning

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilities

Control To: [Al] Pre-Planning

Arrow: Confirmed Orders
Output From: [A1] Pre-Planning
Input To: [A2) Planning for Manufacture

Arrow: Order Acknowledgement
Output From: [A1] Pre-Planning
Output To: Order Acknowledgement

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To; [A2] Planning for Manufacture

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To: [A3] Manufacturing Control

Arrow: Finished Products
Output From: [A3] Manufacturing Control
Output To: Finished Products

Arrow: Rejects/Scrap
Output From: [A3] Manufacturing Control
Qutput To: Rejects/Scrap

Arrow: Shop Floor Status Report
Output From: [A3] Manufacturing Control
Output To: Shop Floor Status

Arrow: Product Order
Input From: Product Order
Input To: [A1] Pre-Planning

Arrow: Shop Floor Data Acquisition
Mechanism From: Shop Floor Data Acquisition
Mechanism To: [A3] Manufacturing Control

Page 330

Amow:
Ouiput From: [A2] Planning for Manufacture
Output To: Process Plans

Arrow:
Output From: [A2] Planning for Manufacture
Qutput To: Schedules

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To: [A1] Pre-Planning

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilities
Control To: [A2] Planning for Manufacture

Arrow: Procurement of Manufacturing Resources
Output From: [A2] Planning for Manufacture
Output To: Procurement of Manufacturing Resources

Arrow: Production Report
OQutput From: [A2] Planning for Manufacture
Output To: Tansaction Report for Progress/Delays & Resources Shortfall

Arrow:
Output From: [A2] Planning for Manufacture
Output To: Allocation of Manufacturing Resources & Facilities/Picklist

Arrow:
Output From: [A2] Planning for Manufacture
Qutput To: Engineering Resources

Arrow: Schedules
QOutput From: [A2] Planning for Manufacture
Input To: [A3] Manufacturing Control

Arrow: Process Plans
Output From: [A2] Planning for Manufacture
Input To: [A3] Manufacturing Control

Arrow: Allocation of Manufacturing Resources & Facilities/Picklist

Qutput From: {A2] Planning for Manufacture
Input To: [A3] Manufacturing Control

Page 331

Arrow: Engineering Resources
Output From: [A2] Planning for Manufacture
Input To: [A3] Manufacuring Control

Arrow: Manufacturing Cell
Mechanism From: Manufacturing Cell
Mechanism To: [A3] Manufacturing Control

Arrow: Shop Floor Status Report
Output From: [A3] Manufacturing Control
Input To: [A2] Planning for Manufacture

Arrow: Enterprise Manufacturing Capability

Control From: Enterprise Manufacturing Capability
Control To: [A2] Planning for Manufacture

Arrow: Enterprise Manufacturing Capability

Control From: Enterprise Manufacturing Capability
Control To: {A1] Pre-Planning

Arrow: Production Report

Output From: [A2] Planning for Manufacture

Qutput To: [A2] Planning for Manufacture

Arrow: Manufacturing Resources & Facilities Requisition
Input From: Manufacturing Resources & Facilities Requisition
Input To: [A2] Planning for Manufacture

[Diagram: A2] Planning for Manufacture

Activity: [A21] Production Planning

Activity: [A23] Process Planning

Activity: [A24] Product Design (CAD/CAM)

Activity: {A22] Finite Capacity Scheduler

Arrow: MCS Functions

Mcchanism From: MCS Functions
Mechanism To: [A23] Process Planning

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To: [A24] Product Design (CAD/CAM)

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To: [A22] Finite Capacity Scheduler

Arrow: Confirmed Orders
Input From: Confirmed Orders
Input To: [A21] Production Planning

Arrow: Process Plans
Output From: [A23] Process Planning
Output To: Process Plans

Arrow: Allocation of Manufacturing Resources & Facilities/Picklist
Output From: [A21] Production Planning
Output To: Allocation of Manufacturing Resources & Facilities/Picklist

Arrow: Procurement of Manufacturing Resources
Output From: [A21] Production Planning
Output To: Procurement of Manufacturing Resources

Arrow: Production Report
Input From: Production Report
Input To: [A21] Production Planning

Arrow: Process Plans
Output From: [A21]} Production Planning
Output To: Process Plans

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilities
Control To: [A23] Process Planning

Arrow: Schedules
Output From: [A22] Finite Capacity Scheduler
Output To: Schedules

Arrow: BOM
Output From: [A24] Product Design (CAD/CAM)
Output To: BOM

Page 333

Arrow: Engineering Resources
Cutput From: [A24] Product Design (CAD/CAM)
Output To: Engineering Resources

Arrow: BOM
Qutput From: [A21] Production Planning
Output To: BOM

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilities
Control To: [A21] Production Planning

Arrow: Availability of Manufacturing Resources & Facilities
Control From: Availability of Manufacturing Resources & Facilitics
Control To: [A24] Product Design (CAD/CAM)

Arrow: Confirmed Orders
Input From: Confirmed Orders
Input To: {A23] Process Planning

Arrow: Confirmed Orders
Input From: Confirmed Orders
Input To: [A24] Product Design (CAD/CAM)

Arrow: Manufacturing Resources & Facilities Requisition
Output From: {A23] Process Planning
Input To: [A21] Production Planning

Arrow: Manufacturing Resources & Facilitics Requisition
Output From: [A24] Product Design (CAD/CAM)
Input To: [A21] Production Planning

Arrow: Transaction Report for Progress/Delays & Resources Shortfall
Qutput From: [A21] Production Planning
Output To: Transaction Report for Progress/Delays & Resources Shortfall

Arrow: Shop Floor Status Report
Input From: Shop Floor Status Report
Input To: {A21] Production Planning

Arrow: Shop Floor Status Report
Input From: Shop Floor Stams Report
Input To: [A22] Finite Capacity Scheduler

Page 334

Arrow: Manufacmring Orders (Unscheduled)
Output From: [A21] Production Planning
Input To: [A22] Finite Capacity Scheduler

Arrow: MCS Functions
Mechanism From: MCS Functions
Mechanism To: [A21] Production Planning

Arrow: Enterprise Manufacturing Capability
Control From: Enterprise Manufacturing Capability
Control To: [A21] Production Planning

Arrow: Enterprise Manufacturing Capability
Control From: Enterprise Manufacturing Capability
Control To: [A23] Process Planning

Arrow: Enterprise Manufacturing Capability
Control From: Enterprise Manufacturing Capability
Control To: [A22] Finite Capacity Scheduler

Arrow: Enterprise Manufacturing Capability

Control From: Enterprise Manufacturing Capability

Control To: [A24] Product Design (CAD/CAM)

Arrow: Availability of Manufacturing Resources & Facilities

Control From; Availability of Manufacturing Resources & Facilities
Control To: [A22] Finite Capacity Scheduler

Done.

Page 335

APPENDIX XVII

IDEF;x Parser user interfaces

Page 336

(A) User interface for selection of functions defined in IDEF functional model

[=——— IDEF, - FIMM PARSER EDITOR ——= 1

FUNCTION : [[A3] Manufacturing Contr ACCEPT (Y/N)

FUNCTION ID :

Char Mode: Replace Page 1 Count: *0

(B) User interface for selection of information entities defined in IDEF;y information model

| ===== IDEF,y - FIMM PARSER EDITOR ==== |

INFORMATION : |
MODEL

ACCEPT (Y/N)

Char Mode: Replace Page 1 Count: *0

Page 337

APPENDIX XVIII

Program listings for IDEF g;;x Parser

1. Program structure for IDEF, x Parser
2. Program listing for idef0_act

3. Program listing for ideflx_ent

4. Listings for idef0_out

3. Listings for ideflx_out

6. Program listing for idef fimm.c

Page 338

idefO.txt
IDEF report

idef0_act ideflx_ent

Extract functional entities Extract information entities

ideflx_out

idef fimm.c
Populate output data into FIMM database

Y
N~]

FIMM
Database

"

Page 339

%%

int space_count = 1;

int field_count =0;

int ch=0x22;

Activity:+[] {space_count = 1;
++field_count;

}

Armow: field_count = 0;
Diagram: field_count = 0;

\n {++space_count ;
if (space_count ==2)
printf(“%c\n%c”,ch,ch);
)

\tfield_count = (;
[A{if(field_count > 0)
printf(*%s”,yytext);

)

Page 340

%%

int field_count = 1;

int space_count =1,

int ch=0x22;

[,J+[] {(++field_count;
if(field_count==3)
printf(*);

)

ENTITY {field_count=1;
space_count =1,
)

\n { ++space_count ;

if (space_count ==2)
printf(“%c\n%c” ch,ch);
}

[71{if(field_count > 1 && field_count < 4)
printf(“%s”,yytext);

}

Page 341

46

“[AQ] Part manufacture with MCS “
“[A1] Pre-Planning”

“[A2] Planning for Manufacture”
“[A3] Manufacturing Control”
“[A21] Production Planning”

“[A23] Process Planning”

“[A24] Product Design (CAD/CAM)”
*{A22] Finite Capacity Scheduler”

€

ad

“IE1 ORDER ENTRY”

“IE2 PART MASTER-BOM”

“IE4 PROCESS PLAN”

“DE21 BOM CHILD”

“DE41 MFG OPERATION ASSIGNMENT”
“DE43 RESOURCE ASSIGNMENT”
“DE42 MFG FACILITY ASSIGNMENT”
“IES MFG CELL CONFIGURATION”
“IE6 RESOURCE”

“IE3 ENGINEERING RESOURCE”

“IE7 CUSTOMER”

“IE8 SCHEDULE"

“IE9 SHOP FLOOR STATUS”

“IE10 MANUFACTURING FACILITY”
“IE11 SUPPLIER”

“DE101 PERSONNEL”

“DE102 MACHINE”

£

- Page 342

/* Populating extracted information from IDEF; & IDEF, x into FIMM database*/

#include <swdio.h>
#include “local_incl.h”

FILE *temp_file;
char column([40];
char file_line[132];
char file_name[60];

extern char result_string[VERY_LONG_STRING];

main()
{
int i,j,k;

char command[SMAL_STRING];

char vall[SMAL_STRING], val2[SMAL_STRING];

char help[MEDIUM_STRING], help2[MEDIUM_STRING];
FILE *drive;

char file_rest{FILE_LINE_LEN];

char file_path[MEDIUM_STRING];
char temp_sel[MEDIUM_STRINGT;
char temp_sel2[MEDIUM_STRING];
char idefO[MEDIUM_STRINGI;

char idef1X[MEDIUM_STRING];

strepy(file_path,”/home2/sandra/valdew/oracle_c/fim/idef™);
sprintf(temp_sel,”%s/fidef0_out_temp” file_path);
sprintf(temp_sel2,”%s/fidef1x_out_temp” file_path);
sprintf(idef0,”%s/idef0_out” file_path);
sprintf(idef1X,"%s/idef1x_out” file_path);

mw_connect("*mcc21”, “m”, “/home2/sandra/valdew/oracle_c/fim/idef/objects_idef.ixt");

printf("\nEnter command (press RETURN for command list): **);
gets(command);
while((stremp{command, *“quit”))& &(command[0]!="q’))
{
if{(command[(0] = ‘{")&&(command{1]=="0"))
{
/* Insert functions derived from IDEFO into FIMM */
system(“‘clear™);
printf*\n\n\n\n");
printi("Populating FIMM Database (IDEFU0 functions)\n\n");
mw_query(“idefO_out_table”.”” temp_sel);
if((drive = fopen(temp_sel,”r"y) == NULL)
printf(*\nError, open %s.” temp_sel);
file_rest[0] = 0",

Page 343

while(file_reader(val2, drive, file_rest))
(
printf(*\n ----> %s” val2);
sprintfChelp,”’act’,’ %s’, new’”,val2);
mw_insert(“flat_idef0” help);
sprintfthelp,” %s’,'s_p°*," ‘", val2);
mw_inseri(“act_idef0_sp”, help);
sprintfthelp2,™ %s",'e_p’,” *”,val2);
mw_insert(“act_idef0_ep” help2);
mw_update(*idef0_fimm”,*answer="*"""");
)
fclose(drive);
mw_commii();
printf{*\n\n\n";
] B
else if{(command[0] == ‘f")& &{command[1]="1"))
{
/* Insert entities derived from IDEF1X into FIMM */
system{“clear”);
printf(*“\n\n\o\n"™);
printf(*Populating FIMM Database (IDEF1X entities)\wi\n”);
mw_query(“idefl X_out_table”,"” temp_sel),
if((drive = fopen{temp_sel2,”r")) == NULL)
printf(*\nError, open %s.” temp_se¢l2);
file_rest[0] = “O”;
while(file_reader(vall, drive, file_rest})
(
printf(*\n ----> %s” vall);
sprintf(help,”"dm’,’ %s’,'new’” vall);
mw_insert(“flat_idef1X™ help);
mw_update(“idef1X_fimm","answer="*"","");
}
fclose(drive);
mw_commit();
printf(*\n\n\n™);
}
else if((command{0] == ‘r")&&({command([1]="0"))
{
system(“clear”);
printf(*‘nPlease Wail......");
print{("\aMIDEFO ---> FIMM Parser is working\n\n”);
system(“runlex()”’);

/* Insert functions derived from IDEFQ into IDEFO_QUT Table */

if((drive = fopen(idef0,”r")) == NULL)

printf(*‘\nError, open %s.” idef0);

file_rest[0] =)",

while(file_reader(vall, drive, file_rest))
{ .

sprintf(help,” %s ", vall);

mw_insert(“idef0” help);

}

fclose(drive);

mw_commit();

printf(*\n\n\n");

]

else if((command[0] == ‘e"}&&(command[1]=="0"))
{

system(“clear”);

Page 344

system(*runform IDEF0_FIMM mcc21/m™);
mw_commil();
sprintf(help,™); .
mw_delete(““del_idef0_out™ help);
mw_commit();
}
clse if((command[0] == ‘r")&&(command[1]=="1"))
{
system(“clear™);
printf("“\nPlease Wait......”);
printf(\nNIDEF1X ---> FIMM Parser is working\n\n™);
system(*‘runlex1x");
/* Insert functions derived from IDEF1X into IDEF1X_OUT Table */
if((drive = fopen(idef1X,"r")) == NULL)
printf(*‘nError, open %s.”,idef1X);
file_rest[0] = "O";
while(file_reader(vall, drive, file_rest))
{
sprintf(help,” %s'" vall);
mw_insert(“idef1X" help);
}
fclose(drive);
mw_commit();
printf(*\nm\o\n’™);
J A
clse if((command[0] == ‘e’)& & (command{1]=="'1"))
{
system(“clear™);
system(“runform IDEF1X_QOUT mcc21/m™);
mw_commit(};
sprintf(help,");
mw_delete("del_idef1X_out” help);
mw_commit(};
}
else if((command[0] == ‘¢’ }&&(command[1]=="t"))
{
mw_commit(};
)
else if((command[(] == ‘r)& &(command[1]="b"))
{

mw_rollback(};

)

else

{

printf(*\14\nAvailable commands are:™);

printf(*‘n ‘rQ’ IDEFQ --> FIMM Parser™};

printf(*\n ‘e0’ IDEFQ-FIMM Parser Editor™);

printf(*\n ‘f0" Populate IDEFO function(s) into FIMM database);
printf(*‘\n\n ‘rl’ IDEF1X --> FIMM Parser”);

prinif{("\n ‘el” IDEF1X-FIMM Parser Editor™);

printf(‘““n ‘f1’ Populate IDEF1X entities into FIMM database™);
printf(*‘\n\n “ct’ commit”);

printf(**n ‘rb’ rollback™);

printf(**n ‘q’ commit & quit”);

printf(**nCommand (%s) unknown. Try again.\n",command);

}

printf{"nEnter command (press RETURN for command list): *9;
gets(command);

Page 345

}

printf(\n\n™);
mw_commit();
mw_disconnect();

)

LV

Name of meta-file : objects_idef.txt

Definition of database-objects: (for access_ora)

“flat_idef0” object name*‘flat_table” table name
“type, name, status”fields*“* where condition

“idef0” object name“idef0_out” table name
“activity”fields*“* where condition

“del_idefO_out” object name*“idef0_out” table name
“activity, answer, act_id fields““‘answer="N""" where condition

“idef0_out_table” object name“idef0_out” table name
“act_id"fields“answer="Y""" where condition

“idefO_fimm” object name*idef0_out” table name
“answer, act_id"fields“answer="Y"" where condition

“flat_idef0” object name*“flat_table™ table name
“type, name, status”fields'“‘ where condition

“idef1X” object name*idef1X_out” table name
“activity”fields*“ where condition

“idef1X_out_table” object name*“idef1X_out” table name
“activity”fields*“answer="Y"" where condition

“del_idef1X_out” object name*idef1X_out” table name
“activity, answer, act_id”fields“answer="N""" where condition

“idef1X_fimm” object name"“idef1X_out” table name
“answer’fields“answer="Y "’ where condition

“flat_idef1X” object name‘‘flat_table” table name
“type, name, status”'fields** where condition

“act_idef0_sp” object name‘‘activity_info_table” table name
“activity, type, information”fields*‘* where condition
“act_idef0_ep” object name*activity_info_table” table name
“activity, type, information”fields** where condition

Page 346

APPENDIX XIX

Overview
MCC CAPM software package

Page 347

MCC

MCC (Manufacturing Control Code) is a commercially available computer aided production
management application software supplied by John Brown Systems PLC. It is for the control
of production, especially of material movement. The control is achieved by utilising a realistic
model of the production process. The model focuses on the shop floor, and covers the
resources available (labour and machines), and the production process (what operations must
be performed, their order, how they are linked together, their standard times etc.). This model
can be loaded with a combination of orders and forecasts of expected future demands.
Running the production simulator produces a schedule taking into account all the production
constraints, material requirements remain associated with resource capacity. On this basis
MCC produces at a single pass, realistic production and material requirement plans, as
illustrated below.

Forecasts
&

QOrders

Shop Floor
Schedule

MCC comprises the following six major modules which use data residing in a common
ORACLE RDBMS :

Base Module

ORACLE RDBMS

The central module SCC is the production simulation module, and provides a tool for finite
capacity planning and shop floor scheduling. The module details facility and resource
availability, shift patterns, and the job load.

Page 348

Details of bills of material, product routings, and production resources are maintained in the
engineering contrel module (ECC).

The purchasing functions covering stock, non-stock, and service orders are controlled by the
purchasing control module (PCC).

Sales and order processing functions are to be carried out using the customer control code
module (CCC) whilst the inventory control code module (ICC) maintains stock and material
requirement data across multiple stores and their multiple locations.

The system is tied together by software which controls the database tables, report functions,
menu systems, and user authority codes.

User Interface

The proprietary user interface of MCC is written in ORACLE RDBMS based SQL*Forms,
which is an application development environment package. A form is a fill-in-the-blanks
template displayed on a computer screen that allows the user to enter, update and query
information in a database. As illustrated in the example below, forms are composed of blocks,
records and fields.

Comments

BILL OF MATERIAL DETAILS
Ttem No Description Qy UoM Type

Char Mode: Replace Page 1 Count: *2

MCC form for its Bill of Materials option - ECSBM

Block: A group of related fields on a form.

Record: The data from a row in a database or non-database table.

Page 349

Field: An area on the screen that can display a value or accept an input value. A field normally
represents a column form a database table.

In general, MCC is written in SQL*Forms and it consists of several forms and program
routines.

Page 350

INFORMATION REQUIREMENTS OF MCC

Closures |

-Processed Calender

Resource Assetlll Employee
Group 1| Asset Group

Srchedulec.luAsseﬂ
Usage 2

SIMULATOR

- Process requirements

Materials & ||| Scheduled |}

Process || ! Consumables |} Operations

B Q’ go.'o:cm'.e-x«.\x&:-:cv:.:x.}:-'.VA.\:-'.-:‘:-:-:-..w\:-';:\:-:x\:&%ﬁ%&ﬁ&ﬁ%ﬁ:&tﬁv&ﬁﬁﬂ. 5 JOb Numbers 3 J Ob Li[lks 5
Materials Routes [} . :

Bill of

Paramctcrs

i Forwards/Backward i
{ No of Days

Operational Steps in MCC

Y

10 create new demands

Y

Module Description Remarks

MCSIM ltems registration :

- Components/raw materialsfools
sub-components

ECSBM Bill of materials (2 levels build up)

* if any changes use ECSEC: Changes & updates to BOM To get indented BOM report call ECRIB

password - Damian ’

Type -N

Origin - Anything

* for queries use ECSIB which | Query on BOM

shows indeneted BOM

ECSRT Entry & update on routing Need 1o build “bottom-up”

Run proc_routes for routing report

* Call ECSOR within ECSRT | Page 2 for BOM assignment

(Esc 8) for operations
requirement maintainance.

ECSRM Resource maintenance

SCSSM Create Schedule & Parameter senting for schedulerun | Note the series must be assigned.

SCSAR Assel register Real machines with inventory no.

SCSAM Schedule Asset maintenance - Resource to Asset Resources need general grouping.

allocation for schedule.

SCSGM Asset grouping

SCSCA Calendar allocation to schedule

SCSCM Calendar definition

SCSCL Calendar closure maintenance Block off period e.g. machine maintenance & labor
availability.

Need 10 run this module if changes are done to the
calendar.

SCSDM Demand maintenace Akin 1o schedule log.

8SCSCJ Create job from demand. Asgign routing to job.

SCUC) Create job links. Check for corresponding links. If don't exist delete
SQL> Update sch_job set stat = NULL where

sch_ident = 1361 and sch_job_no = 6758 and
sch_job_ser_name = ‘Swivel‘; Commit;

SCSIM Schedule job maintenace Also 10 query on assigned routing.

Can block off unwanted jobs by changing status 1o
‘Y* (non-Schedulable)

SCURS Run calendar preprocessor.

SCCSM Schedule run, If schedule need to be adjusted go o SCSSM 10
change SCH_PERIOD in parameter. Further
modifications can be done in ECSRT by changing
contigous (MC) to non-contigous (MN) e.g. those >
10 hrs of operation in the schedule.

SCMSR Simulation reports : SCRJL & SCRWL

SCSWP Record work in progress. Page 2 for further details.

PCSIS Item sourcing

MCSOE External Organization information

CHSOR Sales Order

Page 352

STEPS TOWARDS RUNNING MCC

schedule routing changes

Y

Make

new prod 7

schedt§e maintenance

SCSSS

schedule param & simulator

—_— ECSOR ECSRM
schedule operations regmnts schedule resource maintenance
SCSAR [~
schedule asset register
SCSAM l
schedule asset maintenance
SCSCM »
schedule calender maintenance
C
> schedule asset calender
Y include
SCSCL -t closures ?
schedule closures
. SCSDM

SCURS

cal pre-processor & simulator

schedule demand maintenance,

SCUC]
schedule jobs from demand

APPENDIX XX

Program listings of ‘alien application shell’ for MCC

Page 354

‘Alien application shell’ for MCC

[*Program :new_mcc_mw_1.c*/
*Creaied:11 - 06 - 93%/

AMCC & CIM-BIOSYS application Main Interface.*/.

* Functions:
mw_die() Terminates the CBS-Application, MCC and the process connected to QOracle.

mw_quit() Calls mw_die() if no MCC-Option is active.

mw_tick_tock() Displays visible clock. Also used to
Start MCC and a process connected to Oracle.
Displays the cursor in the MCC screen.

Count the slow_down_count variable,

Initialise the message buffer.

app_user_disp_data()
app_user_disp_req()

copy_mess(to_mes, from_mess)
Copies a message of the type mess_data.

init_mes_buf(} Initialises the message buffer.

put_mes(mes) Copies the message mes in the message buffer. If the message buffer is full, the message is not
copied and the result of the function is 0. Otherwise the result is 1.

get_mes{message) Gets the next message from the message buffer. If the message buffer was empty, the result of
the function is 0. Otherwise the result is 1.

next_message(} Starts the processing of the next message.

receiv_message() Decides if the received message can be processed or if it has to be stored in the message buffer.
*/

#define PERMITOx71(f

#include “local_incl.h”

#include<string h>

#include“global_inc.def”/* Defs for all modules. */
#include“wind_inc.def”/* Defs for window interface modules*/
#include”new_mcc_wind_inc.def”/* Defs for window modules.*/
#include“app_user_inc.def”/* Defs for user application modules.*/
#include“app._serv_inc.def"/* Defs for app_serv task modules. */
#include*use_mcc_special.def”/* Defs for use_mcc */

/* and run_mcc only */

#include“demo_comm.def”/* Defs for communication. */

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#ifndef NULL

Page 355

#define NULL ¢
#endif

char state_start = Q;
extern char cursor_state;
extern char slow_down_count;

extern int main_state;
extern int m¢c_pl[2];

struct mess_data message_bufferfMES_BUF_LEN];
int mec_busy_state 1 =0;

int point_to_write, point_to_read;

struct mess_data chs_message;

struct mess_data act_message;

int mess_data_len;

void init_mes_buf(), copy_mess();
char put_mes(), get_mes();
void next_message(), receiv_message();

M*Functions external to this module.*/

/*Variables external to this module.*/
extemnstructs_frame_desc*wind_data[NO_WINDOWS] ;
structs_app_link

{charname[21] ;

)

extern app_links[MAX_APP_LINKS] ;

/*Functions internal to this module*/
intmw_die() ;

long intnow ;
struct s_cbs_req_datacbs_req_data ;

[Fvoidmw_quit()*/

f*Panel button routine to quit the application. */
[rreturn value*/
f*void.*/

voidmw_quit()

{register intresult ;
charbuffer[81} ;
if(no_option_activ(})

{
pi_reg_func(mw_die,5) ;

sprintf(buffer,”%s TERMINATING In 5 SECS.” g proc_title) ;
window_set(wind_data[M_WINDOW]->frame FRAME_LABEL buffer,0) ;

}

else

wi_put_str_mess(M_WINDOWMW_DEF_LAYOUTMW_ANW,

“Exit current screen before leaving MCC.™);

Page 356

)

fintmw_dieQ*/

A --*/

[*Terminates the current process.*/

Fretrn value*/

/*FALSE1o stop the pulling of this function*/

intmw_die(t_count)
- intt_count ;
[register intresuls ;

quit_mcc();
quit_remote_new_mec(*1"),

result = ii_term_this_proc() ;
return(FALSE) ;
}

frintmw_tick_tock(t_count)*/

r* */

MDisplay a visible clock tick in the main interface window and times*/
f*out the window if nccessary*/

f*int_countcurrent tick count*/

f*return value*/

/*TRUEso that polling of this function continues */

intmw_tick_tock(t_count)
int t_count;

(register inttmp,idx ;
staticstat_count=1;

if(Istate_start)

{

state_start++;

start_mcc();

start_new_mcc_ora();

init_mes_buf();

mess_data_len = sizeof(struct mess_data);

}

if(slow_down_count < 5) slow_down_count++;

if(cursor_state) cursor_state = (; else cursor_state = 1;
mcc_cursor();

put a tick/tock message into appropriate field./
wi_tick_display(M_WINDOW,MW_DEF_LAYOUTMW _TICK,(_count) :

retum(TRUE) ;
}

fintapp_user_disp_data(cmd_flag,user_cmd_data_ptr)*/
* */
f¥Display the contents pointed by user_cmd_data_ptr either as a received*/

Page 357

f*command or response according to cmd_flag.*/

fintcmd_flag*/

f*command flag (TRUE for command, FALSE for response)*/
f*struct s_cbs_cmd_data*user_cmd_data_ptr ;*/

f*pointer to user command data*/

[¥return value*/

FOK.*/

/*When cmd_flag = TRUE, the start_copmmand function is called.*/

intapp_user_disp_data(cmd_flag,user_cmd_data_ptr)
intcmd_flag ;

struct s_cbs_cmd_data*user_cmd_data_ptr ;
{register intmp,idx result,len.cnt ;
charbuffer(81],*name_ptr ;

long intnow ;

result = OP_FAILED ;
now = time(NULL) ;

printf(*\napp_user_disp_data™);
if (cmd_flag==0)
{

name_ptr = user_cmd_data_ptr->sarg] ;
)

else

{

name_ptr = user_cmd_data_pir->sarg? ;
)

if (cmd_flag)

{

copy_mess(&cbs_message, user_cmd_data_ptr->data_ptr);
receiv_message();

}

if { user_cmd_data_ptr->cmd_code== CBS_EST_LINK &&
user_cmd_data_ptr->status ==0)
{
imp = si_find_link_entry(name_ptr) ;
if (tmp == NOT_FOUND)
{tmp = si_find_link_entry("*) ;
if (tmp 1= NOT_FOUND)
{sprintf(app_links[tmp).name,”%.20s™ ,name_ptr) ;
}
}
}
if (user_cmd_data_ptr->cmd_code == CBS_TERM_APP)
{tmp = si_find_link_entry(name_ptr) ;
if (tmp != NOT_FOUND)
{
sprintf(app_links[tmp].name,”%.20s”,"") ;
}
}
if (user_cmd_data ptr->cmd_code == CBS_SEND_APP &&
cmd_flag == FALSE &&
user_cmd_data_ptr->status 1=0)
{tmp = si_find_link_entry(name_ptr) ;

Page 358

if (tmp != NOT_FOUND }

(
sprintf(app_links[tmp].name,"” %.20s™,"") ;

}

)
sprintf(buffer,”Links : None.”) ;
len=8;
for (idx = 0,cnt = 0 ; (idx <« MAX_APP_LINKS) && (cnt < 4) ; idx++)

{if (app_links[idx].name[0] !=0)

[sprintf(buffer + len,”%-10.10s” app_links[idx].name) ;

Crit++ ;

len +=10;

)

)
wi_put_str_mess(M_WINDOWMW_DEF_LAYOUTMW_M_LINKS buffer) ;
if (cnt == 0 & & stremp{g_proc_title,"tom™) = 0)

{
pi_reg func{mw_die,5) ;
sprintf(buffer,”%s TERMINATING In 5 SECS.”,g_proc_title) ;
window_set(wind_datalM_WINDOW]->frame, FRAME_LABEL ,buffer,0} ;
}

result = 0K ;
return{result} ;

}

/*intapp_user_disp_req(cbs_req_data_ptr)*/

™ */

/*Display the contents of a CMBSYS request from us to ASP.*/
[¥struct s_cbs req data*cbs_req data_ptr ;*/

/*pointer to CMBSYS request*/ -

f*return value*/

FOK.*/

intapp_user_disp_req{cbs_req_data_ptr)
struct s_cbs_req_data*cbs_req_data_ptr;
{register intidx,tmp,result ;
charbuffer[201] ;

long intnow ;

now = time(NULL) ;

cbs_req data_ptr->data_pir{cbs_req data_ptr->data_len]=0;
return(OQK) ;
}

void copy_mess(to_mes, from_mes)
char *to_mgs;

char *from_mes;

{

inti;

for(i = 0; i<mess_data_len; i++)
to_mes[i] = from_mes[i];

}

void init_mes_buf()

{

Page 359

inti
for(i=0;i<MES_BUF_LEN;i++)

{

message_bufferfi].sender{0] = 0",

)
point_to_write = (;
point_to_read = 0;

}

char put_rnes(mes)
struct mess_data *mes;

{

if(message_buffer{point_to_write].sender{0])

{
copy_mess(&message_buffer{point_to_write], mes);
point_to_write = (++point_to_write)%MES_BUF_LEN;
return(1);

)

else returm(0);

}

char get_mes(message)
struct mess_data *message;

{
if(message_buffer(point_to_read].sender[0])

{

copy_mess(message, &message_buffer[point_to_read]);
message_buffer[point_to_read].sender[(] = “\I*;
point_to_read = (++point_to_read)%MES_BUF_LEN;
return(1);

}

else return{0);

}

void next_message()

{

struct mess_data help;

if(get_mes(&help))
{

process_message(&help);

}

else

{)
act_message.sender[0] = N0’;
mcc_busy_state_1=0;

]

}

void receiv_message()

{
printf(*\nMessage received.”);
help_print(&cbs_message);

printf("\nBusy: %d.”,mcc_busy_state_1);

if{cbs_message.sender[0])

{

Page 360

if(mcc_busy_state_1)
put_mes(&cbs_message);

else

[.
process_message{&cbs_message);
}

}

)

Page 361

APPENDIX XXI

Services and Options offered via User Interface

Page 362

CIM-BIOSYS IS Production Planning Interoperating

services (MCC) related functions MCS functions Functional Interaction Management services
cas MOC Panctions MCS Optiors (Gt o) | (e P} (Bouive) (Cmge) Active Oroupe Eguire

o) | (Bt)(Commnin) |(Orckx By ([New)
(Qose) | {(vatues) Reworm)
(niide) | (BxtQ)(Exec@)
(NexiB)[Prev B)
Groex) T J(aowa) |((Bam)
(DoKey) (Prev P)(NextF

[mp.@ (Gt Job Load) (Get Location) [Get Acconntability)

Diefanit Values

Display
window

Comments [

BILL OF MATERIAL DETAILS
Item No Description Qy UoM Type

Char Mode: Replace Page 1 Count: *2

The user interface consists of an input/ output display window, an entry field and several
specially configured buttons. The window displays the output of MCC to the user. It has the
same format as the original output of MCC. Only a flashing ‘*’ was added to mark the current
cursor position.

The functions of the buttons can be divided in three groups:

« MCC functions to edit a form or commit changes.

» Call a MCC option.

+ Cross reference MCC data with FIMM data.

If the user wants to enter data in the MCC forms, the entry field is used instead of entering the
data directly in the form. This data input will be sent to MCC when one of the MCC function

buttons is pressed.

Page 363

The buttons for the MCC function offer only those functions which are used frequently when
working with MCC. They include buttons for moving around in a form, committing changes
and leaving a form. As there are 44 functions offered by MCC, they can’t all be offered via
buttons. To call a function which is not directly offered by a button, the user can enter the
name of the desired function in the entry field and press the button ‘Do Function’. The button
‘Show Functions’ will display a list of all available functions. Note that the list of available
functions depends on the actual form and field.

The buttons to call MCC options make easier access to some of the MCC options. Instead of
going through the menu structure of MCC, those options can be selected directly by pressing
the appropriate button. The offered options are sufficient to build a production simulation
module, enter product information and orders and to produce schedules by running the
production simulator.

The options are divided into five groups:

+ Bill of material
The options of this group allow to define a bill of material that contains all the stock items
required to produce a manufactured item.

» Routings
These options are used to create and maintain information about the method of manufacture
for an item.

i. The required operations to produce the item.

ii. The order these operations are executed in order to ensure that the item is made in the
correct sequence.

iii. The requirements of these operations, in terms of resource and stock items.

» Schedule Model
The shop floor model for the simulation is build with these options. They allow to specify
the availability of machines and labour,

» Schedule Run
The workload, described as a number of jobs is defined with the options in this group. In
addition, they allow to run the simulator and to feed back data about completed operations
and jobs.

+ Extra
The options in this group are very specific to MCC, but they are needed to build and run a
production simulation. They allow to enter general information like available assets of
employees without relating them to the production simulation model.

Page 364

The last group of buttons are provided to relate data FIMM to data in MCC. Each part can be
related to bill of material, routing and schedule job information. To assign information to
parts, the status of that part must be displayed in the FIMM output field and the MCC data
must be displayed in the MCC screen. The button ‘Set Id’ relates the information together.

Buttons have also been specially configured to activate and interact with the Cell Controller
and the Cost Modeller through the user interface.

Page 365

APPENDIX XXII

Communication between MCC and the User Interface

Page 366

MCC expects input consisting of readable character strings and esc sequences, as illustrated
below. The character strings are used to enter data in the fields of a form. The esc sequences
invoke special functions e.g. to edit a form or to retrieve values or to coramit changes. The

output of MCC consists of character strings and esc sequences too. The character strings
" contain the text, displayed on the screen and the esc sequences specify the format and the
location of that text.

The information about the meaning of those esc sequences is stored in a special file, called ‘crt
file’ (please refer below for illustration) [ORACLE RDBMS 1991]. By using different crt
files, it is possible to run SQL*Forms applications like MCC on different terminals. To make
the interpretation of the MCC output easier, a special crt file was created. It contains esc
sequences with format specifications which can be represented in the input/output display
window of the user interface over CIM-BIOSYS IIS. It is also necessary to know the structure
of those options and the related forms. For example the number of blocks in a form, the
sequence of fields and the error messages which can occur, when entering data in a field.

INSERT INTO cn VALUES (‘MCC220’,"CHAR' ,NULL,'1" NULL, 24,80,23,24 \e[2)’,

010, "e[1C° ey H’ e[2K,

“e[62;1"p\exe[T1De[?6le(Be)N T, Ne[62,17p', Ne[4m"’ ,"e[4m ', "e[Tm’, Form Layout
“e[0m’ Ne[NNbr' NeD' MeM’,N016°,NO1 7" NULL NULL,

“e[K' "e[1A" Ne[IB" ,"c#3' "e#d' NULL, "cf[lm'e[7m’,

“e[Tm’ e[Ime[Soe[Tm',Ne[Im’,"e[5Sm’, “e[Tm ", Ne[4m");

insert into esc values (‘LAP', ‘MCC220°, *CT", “e[29~',"Do");
insert into esc values (‘1AP", ‘MCC220", 'CA", "¢[31-"F17");
insert into esc values (‘IAP', ‘MCC220", ‘CB’, "e[32~"'F18");
insert into esc values { ‘IAP’, ‘MCC220", 'RR’, "e[33~",'F19");
insent into esc values (‘IAP', ‘MCC220', ‘'CP’, “e[34~",'"F20’);
insertinto esc values (‘IAP', "MCC220°, *Q’, "“e[1~*,'Find’}; " .
ingent into esc values ('IAP®, ‘MCC220", ‘EQ’, “e[4~,"Select*); Deﬁmtwn&offuncnons
insen into esc valves { ‘IAP’, "MCC220", ‘CR’, "e[2~','Insent Here'); :
insert into esc values ("LAP", "MCC220°, 'D’, "e[3~",’"Remove’); Keyboard mapping
insent into esc values (‘IAP", *‘MCC220°, ‘PB’, “e[5-",'Prev Screen’);
insent into esc values (‘IAP’, *"MCC220°, 'NB’, "e[6~','Next Screen’);
insert into esc values (*[AP", *MCC220", 'CM’, "e{26-','F14°);

insert into esc values (‘IAP", ‘MGERQ, '‘DE', “eOR','PF3");

insert into esc values { ‘IAP", @ CQ', "el19-"'F8");

k name of ‘crt file’ used

FE':S;OH Function Description | Escape Sequence | Comments
CT Commit Transaction \e[29~ Do
CA Clear Form / Rollback ‘el31~ F17
CB Clear Block e[32~ F18
RR Clear Record ‘e[33- F19
CF Clear Field e[34~ F20
Q Execute Query e[1~ Find
EQ Enter Query ‘e[4~ Select
CR Create Record e[2~ Insert Here
D Delete Record e[3~ Remove
PB Previous Block \e[5~ Previous Screen
NB Next Block e[6~ Next Screen
CcM Insent / Replace e[26~ F14
DE Display Error ‘eOR PF3
cQ Count Query Hits e[19- F8

Page 367

With knowledge of the crt file, MCC functions can be offered through the user interface over
CIM-BIOSYS IIS. The user can enter text in an entry field which is send to MCC. Specially
configured buttons are provided to invoke the special functions for editing a form and
committing changes. The output of MCC is scanned for the esc sequences that specify the
format and location of the text strings. This information is used to display the MCC forms
through the user interface over CIM-BIOSYS IS via the input/output display window
provided. Through this interface, the complete functionality of MCC is made available to
users.

Page 368

