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ABSTRACT

This work investigates the reflection and transinission properties of a circular arc plate
which is submerged in deep water. The purpose is to compare the reflective properties of
a circular arc plate with those for a submerged, circular cylinder in order to assess the
suitability of using circular arc plates when constructing a water wave lens. Linear theory
is assumed and two separate techniques are used to determine the wave field. The first
involves expanding the potential as a series of multipole potentials outside a circular region
and a series of nonsingular solutions of Laplace’s equation within the region and matching
the expansions on the boundary. The second technique is based on a variational procedure
and is used to derive an explicit, approximate expression for the reflection coefficient,
under the assumption that the plate is short compared with the other length scales in
the problem. Results are presented which compare the approximate solution with the full
numerical fnethod for a variety of plates. Finally, the full numerical calculations of the
reflection and transmission coefficients for a plat_.e are compared with those for a submerged,

circular cylinder.
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Chapter 1

1.1 Introduction

Increasing demand for energy has encouraged scientists to devote theinselves to var-
ious research projects on how to extract energy fromn renewable energy sources. Ocean
waves represent an enormous energy resource and a great deal of effort has been made
by the scientists around the world to economically extract energy from water waves. The
theoretical aspects of the hydrodynamics of wave energy devices are discussed in Evans
(1981). A Norwegian research group has also investigated the feasibility of constructing a
water wave lens (Helstad, 1980) for focusing waves. A water wave lens consists of a system
of submerged bodies, each of which is capable of retarding a wave by a different amount
and the overall effect of the underwater system is to focus waves prior to harnessing their
energy (Mehlumn and Stamnes, 1978). The idea of constructing a water wave lens which
would focus waves prior to extracting energy from them has been developed by Mehlum

and Stamnes (1978) and more recently by Kinoshita and Murashige (1991).

Each lens element must clearly possess the property that it reflects very little of the
incident wave, over a wide range of frequencies and directions. Such a lens system operates
under the same principles that govern the focusing of light waves. As a wave enters the
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shallower region over a submerged body, the wavelength is decreased and, as is well-known,
the wave speed is reduced and a phase lag is introduced in the transmitted wave on the far
side of the body. After passing over the lens the waves converge towards a focal point where
a wave energy device may be installed. Mehlumn (1980) considered the use of a submerged,
circular cylinder as a lens element as Dean (1948) and Ursell (1950a) had showed that
this body has the ideal property that it does not reflect normally incident waves of any
frequency when placed in deep water. Total transmission of normally incident waves past,
other bodies does also occur but only at isolated frequencies (Newman, 1965 and Mei and
Black, 1969). Mclver (1985) also studied the use of a horizontal flat plate which is moored
to the sea bed as a lens element as it may be easier to construct a sufficiently long plate

than a sufficiently large cylinder to give the phase lag required in the transimitted wave.

The reflective properties of the bodies referred to in the previous paragraph have been
determined using linear wave diffraction theory. This theory relies on the assumption that
the water is inviscid and incompressible and that the motion is irrotational. Under these
assumptions the wave motion is described by a velocity potential which satisfies Laplace’s
equation. In addition, the wave amplitudes are assumed to be small compared to the
wavelength and the amplitude of any body motion is assumed to be correspondingly small
and so the free surface and body boundary conditions may be linearised. Under linear
theory the velocity potential is conventionally split up into the scattering potential, which
is due to the wave diffraction by a fixed body and the radiation potential which is due to

the radiation of waves by the moving body into otherwise calm water.

In two dimensions, the properties of the wave reflected or transmitted by a fixed body
are measured by the reflection and transmission coefficients respectively. These coefhicients
are ratios of the amplitudes of the reflected and transmitted waves to the amplitude of
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the incident wave. In general exact analytic solutions for the reflection and transmission
coefficients are very hard to find. However Ursell (1947) and Dean (1945) obtained analytic
solutions for the reflection and transmission coefficients associated with a finite vertical
plate and a semi-infinite vertical plate respectively in infinite depth water. The work of
Ursell is based on the Havelock wavemaker theory (Havelock, 1929). Extensions to the work
of Ursell (1947) were made by John (1948) who considered barriers inclined at angles w/2n
to the horizontal, although the solution rapidly becomnes more complicated as n increases.
Further extensions to submerged plates, obliquely incident waves and more than one barrier
have been made by Evans (1970), Evans and Morris (1972) and Porter (1974). Evans
(1970) considered scattering of surface waves by a fixed vertical plate, submerged beneath
the free surface. His method of solution was a complex function technique. Shaw (1985)
considered the problem of scattering by a surface-piercing plate, whose shape is slightly
altered from being flat. Using perturbation techniques, Shaw found that to the first order,
the problem is the same as that solved by Ursell (1947). However he found second order
corrections to the reflection and transmission coefficients. Siinilarly, the horizontal plattle
has been the subject of many investigations. Although there does not exist an explicit,
solution for a finite, horizontal plate, munerical methods such as the finite element, method
(Patarapanch, 1984) and a matched eigenfunction expansion (Mclver, 1985) have been
used to obtain the values for the reflection and transmission coeflicients. Mclver (1985)
employed the method of matched eigenfunction expansions to obtain the scattering and
radiation potential due to diffraction of water waves by a moored, horizontal flat plate. In
addition, the Wiener-Hopf technique has been used by Burke (1964) and Heins (1950) to
generate explicit forms for the reflection coefficient associated with a semi-infinite plates,

both submerged and in the free surface. More recently, Parsons and Martin (1992) have
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developed a method based on hypersingular integral equations to calculate the reflection
from a plate of arbitrary inclination. Their method may be generalised to plates which are
not flat and Parsons and Martin (1994) presents some results for a submerged, circular arc

plate.

In addition to the work done on plates there have been many investigations into
the properties of submerged cylinders. The radiation and scattering of waves by a single
cylinder have been investigated by Dean (1948) and Ursell (1950a). Dean employed the
conformal mapping technique and showed that waves normally incident on a submerged
circular cylinder suffer no reflection. The only effect the obstacle has at a great distance is
that it produces a phase-difference between the incident and transmitted waves, while the
amplitude of the waves is the samme. Ursell (1950a) verified the results by using multipole
potentials. Multipole potentials are singular solutions of Laplace’s equation which satisfy
the free surface condition, behave like waves radiating outwards at large distances from
the singular point and, in infinite depth water, decay with depth. Ursell placed sets
of these multipoles at the centre of the cylinder, choosing their strengths to satisfy the
body boundary condition. Mathematically he derived the multipole potentials by repeated
differentiation of the complex source potential with respect to the source point. Ursell
(1950b) also established the uniqueness of the wave potential when a normal velocity
distribution was applied on the cylinder surface. Ogilvie (1963) used Ursell’s method
to calculate the first-order and second-order forces on a cylinder. In fact, he extended
Ursell’s method for the specific problem, in which a cylinder is made to move along a
circular orbit around its axis, and showed that there is wave radiation in one direction
only. He also restablished the remarkable conclusion arrived at originally by Dean (1948)
and subsequently confirmed by Ursell (1950a). The single circular cylinder was also studied
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by Levine (1965) who used a Green's function technique to investigate waves incident on a
cylinder at arbitrary angles and showed that zero reflection occurred at normal incidence.
He developed a mode of analysis to extehd the results previously obtained in the case of
normal incidence. The Green’s function technique is a boundary element method which was
developed by John (1950). The advantage of this method is that it can be used for arbitrary
shaped bodies and the disadvantage of the method is that for multiple bodies it becomes
expensive both in terms of cpu time and computer storage, to model each body accurately:
Davis (1974) developed a short wave approximation technique for wave scattering by a
submerped circular cylinder. Evans et at (1979) further investigated the possibility of the
use of a submerged circular cylinder as a wave energy device. Leppington and Siew (1980)
extended the work of Davis (1974) for cylinders of elliptic cross-section. Mehlum (1980)
derived a formula for the transmission coefficient using a conformal mapping technique
for the problem of waves normally incident on a submerged cylinder. The method is an
attractive one in terms of munerical calculation. A more general method for a submerged

elliptic cylinder was derived by Grue and Palmn (1984) using integral equations.

The work described so far has all been for a single cylinder. Wang (1970, 1981)
extended Ursell’s multipole method to two cylinders. Schnute (1971) used the integral
equation method of Levine (1965) to investigate the radiation and scattering of waves
by two submerged circular cylinders of arbitrary radii and arbitrary depth. The integral
equation technique was further used by Schnute (1967) who looked at the scattering of
waves by an infinite array of submerged circular cylinders each of which had the same
size and depth but no numerical results were given. Chakrabarti (1979) also applied the
boundary element method of John (1950) to a group of submerged cylinders and the
numerical results were discussed for two parallel cylinders. In O’leary (1985) an extende(}
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multipole potential technique has been used to investigate the radiation and scattering of
waves by a group of any number of submerged, horizontal circular cylinders with arbitrary

positions and radii.

In this chapter we have already discussed the wave scattering in two dimensions by
vertical and horizontal, flat and non-flat plates. Following the plates, we discussed the;
reflective properties of a single and multiple circular c¢ylinders. We also discussed the
different techniques that have been used to tackle the wave scattering problems by plates,
circular cylinders and even the cylinders of elliptic cross-section. Although a submerged
horizontal plate reflects more energy than a submerged circular ¢ylinder, it may be easier
to construct plates of sufficient size to obtain the phase lags required in the transmitted

wave when the bodies is acting as a lens element. Thus, the main objective of this thesis

is to study the scattering of waves by a fixed submerged, circular arc plate. The reason

i
[

this body is chosen is that it might be expected to reflect very little of the waves becausé

in shape, it resembles the top part of a circular cylinder.

This thesis is organized as follows. In the next section of this chapter we review the
derivation of the linearised equations of motion of water waves. In chapter 2 we determine
the reflection and transmission coefficients for a submerged circular arc plate using the
multipole potential technique of Ursell (1950a). In chapter 3 we derive approximate solu-
tions for the reflection and transmission coeflicients by using a variational approximation
technique. In chapter 4 we illustrate owr numerical results for long and short plates and
compare the full theory with the approximate solution. Finally, some concluding remarks
based on the numerical results are also given in chapter 5. We also make comments and

give further research direction by weighing these results against the ideal properties of a

lens element in the same chapter.



(The work in this thesis has already been accepted for publication in Mclver and Urka

(1995).)



1.2 Equations of Motion

The theory is concerned with an incompressible Newtonian fluid so that any motion
is governed by the Navier-Stokes equations. These equations govern the conservation of

mass and momentum and for an incompressible fluid they are as follows:
V.ou=0 (1.1)

and

] ' .
a—f+g-v14=—v (%)+£+uv2u , (1.2)
where u is the velocity, p, the presswre, p, the density, F, the body force and v, the

kinematic viscosity. The body force is the gravitational force on the body and is given by
E = (0,_(}, 0) = V(_ij) ’ (13)

where y is the y-coordinate of a coordinate system and is measured vertically downwards

from the mean free swrface.

The water is assuned to be inviscid, incompressible and of constant density. There-
fore, in the presence of a conservative body force if a portion of the water is initially in
irrotational motion then it can be seen from Kelvin’s circulation theorem (Acheson, 1990)
that the portion will always be in irrotational motion. However, it is assumed that the

water is initially at rest and therefore, it follows that

VAu=0 . (1.4)
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The equation (1.6) iinplies that for an inviscid irrotational flow, there is a velocity potential
® such that

u=Vd . (1.5)
Substitution of (1.5) into (1.1) gives the Laplace’s equation for the potential
Ve =0 . (1.6)

Therefore if the velocity potential is known, then the pressure can be found from the

momentum eqguation (1.2). By using the vector identity,
w-Vu=V(u?/2) —uA (VA (1.7)

and irrotationality, we may rewrite equation (1.2), with » =0, as

o (V) p )
viZ= 22— 2 o =0 . i
(Ot + + p gy (1.8)

The last equation is integrated to give,

ad v o)?
P—Po=—p (E + ( 2) - y:u) ) (1.9)

where p, is a constant, usually chosen to equal atinospheric pressure which is assumed to

be constant.

The boundary conditions at the free surface, at solid boundaries and at large distances
from any bodies, must be added to the equations discussed so far. First the free surface
boundary conditions will be considered. In two dimensions the vertical elevation of any

point on the free surface is defined by,

y=C(x,t) . (1.10)
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Surface tension is considered negligible so the pressure just below the free surface equals

atmospheric pressure just above the free surface, ie., p = p, on y = ((z,t). Thus, from

(1.9),

9 , (Vo)
Ot 2

—-g(=0, ony=( . (1.11)

This is known as the dynamic free surface boundary condition. The kinematic free surface
condition is derived by requiring a fluid particle on the free surface to remain on the free

surface, i.e.,

D{y—()
Dt

=0 ony=¢( , (1.12)
where D/ Dt is the Lagrangian derivative (0/8t + u - V). Equation (1.12) is expanded to

give

m‘ﬁ‘%%ﬂl ony=_( . (1.13)

Equations (1.11) and (1.13) are now linearised about the mean free surface, y = 0 to obtain

%% =¢g( ony=0 (1.14)
and
-gE =% ony =0 (1.15)
Y ,

which may be combined to give a boundary condition for the potential,
j
ek FaliE
— —g— =0 ony=10 . 1.16
oz Y dy y (1.16)

The other boundary conditions which are needed are that of no flow through any solid
body and some specification of the formn of the wavefield at large distances.

10



It is now assumed that the motion is simple harmonic. Under the assumption of linear
wave theory we can consider a plane wave of small amplitude of particular frequency, w

and so it is convenient to represent the velocity potential as,

® =Re [-%Aq&e—*’“"] , (1.17)

!

where ¢ is now a complex quantity and A is the amplitude of the incident wave. The free

surface condition now becomes

w'é | 04 _

={) y=0 . 1.1
J D on vy (1.18)

i1



Chapter 2

2.1 Introduction

We consider the problem of wave scattering by a submerged circular arc plate and
a mathematical model for the interaction of surface water waves with the arc plate is
sought. Two-dimensional motion is considered and the solution to the scattering potential
is obtained by using Ursell’s multipole potential technique (Ursell, 1950a). The problem
is to obtain an expression for the velocity potential and in particular the reflection and

transmission coeflicients.

2.2 Proble'm formulation

A two-dimensional cross-section through a circular arc plate, which is submerged at

a fixed position in infinite deep water, is illustrated in figure 2.1.



Circular arc plates

Figure 2.1

Cartesian axes are chosen with the z-axis along the free surface and y-axis pointing ver-
tically downwards. The plate is assumed to occupy an arc of a circle. The centre of the
circle is at the point (0, h) and the curve has radius a. Local polar coordinates (r,8) are

defined at the centre of the circle and are related to the original, Cartesian coordinates by,

Tz =rsind
(2.1)
y— h =rcosf
The water is assumed to be inviscid and incompressible and the flow is irrotational and so

from the theory in section 1.2 it may be described by a velocity potential
® = Re [—igAd(z, y)e_i“’t/w] (2.2)

where w is the frequency of the incoming wave, A is its amplitude and g is the acceleration

due to gravity. The complex potential ¢ satisfies
V2¢ =0 in the fluid , {2.3)

with the free surface boundary condition

3¢=

K¢+5§

0 on y=0, (2.4)
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where K = w?/g. The arc is assumed to be fixed and so

0
6—¢=U onr=qa, e <8< —a+2r . (2.5)
T

In addition we assume that the fluid is at rest at large depths, thus
V¢ — 0 as Y — 0o . (2.6)

A wave is incident on the arc from the left and so ¢ satisfies the radiation condition

{ei.K:::—](y + RP—i[\':i:-—Ky as T — —00
¢~ & ' ’

K 2.7
Te ==Ky as & — +o0o, 27)

where T and R are the transmission and reflection coefficients respectively.

14



2.3 Mathematical Model

The potential ¢ is constructed by splitting the fluid into two regions, namely region T
(outside the arc) and region IT (inside the arc). In region I the potential may be considered
to arise from a normal velocity distribution around the circle surface which is precisely the
problem studied by Ursell {1950a). He expressed the scattering potential for a submerged
circular cylinder as a series of multipole potentials. These are the singular solution of
Laplace’s equation which satisfies the linear free surface condition, decay with depth and
behave like waves radiating outwards as |z| — co. Thus in region I the velocity potential

¢ may be written as
eiK:r:—Ky K a” [Ps g pa a] ) (28)
¢ an§ 1 n n¢n n ¢n ;

where P and P2, ¢;, and ¢& are the symmetric and anti-symmetric multipole strengths
and multipole potential respectively. Thorne (1953) showed that the time-independent,
symmetric, n-th order multipole potential which has a singularity at the point (0. h) is

given by

_cosnf N (—1)~! J[°‘° (K +¢)
0

3 _ AR TR =1 =E(yt+h)
Pn e I (% - L’)E e cos x dl
(=n"

(n—1)!
and the corresponding anti-symmetric multipole potential has the representation
oSt U [0 D
= D d sin fx df
br e =1 ), (=9 e sin £z

(-1
(n— 1)

(2.9)

+ omi K™ KWth) cos K

(2.10)

+ omiK e KWth) gin Ko

where -f denotes the principal value integral. By deforming the contour of integration in

equations (2.9) and (2.10) it may be shown that

—1\" .
@5, — ﬁzwmne""(y“‘)e‘”'x' , aslz] — o0 (2.11)

15



and

-1 n—1 )
dp — Sgn(ic)_(zn_)_l)'??rkme—f((y-{-h) RUE] . aslz] — +oo

Substituting values for ¢ and ¢ from (2.12) and (2.11) into (2.8) we have

o n _1yn-1 .
¢ — e Kv L kg Z %— [P,‘:Sgn(:l:)—————((nl_) D o K e~ K(y+h) ik z|

n=1

"(n-1)

Thus when £ — —o0o we have

+Ps (-1n» IzwiKne_K(y-i-h)eiKlml]

o0
i a— K o (—1)11 - s, —K{y+h) —iKx
p~e Y+ Ka E [Pu - on(Ka)te  Kluthg

n=1

+P3 ( 1) 211,”(1{”.)11 K(y+h)6—iK::::|

1K:r I(w;+21r}r\“‘ —I(hz:( ) (Ir )N(Pc:_*_iR':)e—iKJ:—Ky
n=1

Therefore, comparing (2.14) with (2.7) the reflection coeflicient is given by

R =2rKae™ X" Z (Sl 1) (Ka)™ (P +iPs)
n=1

Similarly when @ — 400 we have

(=1)*!

o0
¢’ —~ eif(u:—f(y + Ka Z P;: QW(I{“)n,e—K’(?}"}‘h)eiK:.’

n=1

—1)"
+Pq( ) 21T?,(I(H.)HF—K(”+") 1.[\’.:]

T

o0
, 1"
= KoKy |1 4 2nKae™ K" :————( ') (Ka)*(—Py +iP})
el n.:

Thus comparing (2.16) with (2.7) gives the transmission coeflicient, as

o0 n
T—1+21rI((LP_K"Z( D (Ka)*(—P* + iP?)

n=1

In region I, r < a, so the poteutial may be expressed as,

¢ = KoKy 4 Z An cosnf + B, sinnf)
a™
n=0
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where A,, and B, are further coeflicients to be determined. (The incident wave term is
included in (2.18) for later convenience. In principle, it could be expanded in a series of
7™ cos n# and r™ sinnf and incorparated into the existing series.) The unknown coefficients
in (2.8) and (2.18) are determined by requiring the potential in each region to satisfy the
body boundary condition (2.5) and also by requiring ¢ and 9¢/dr to be continuous on
r =a, —a < f < « ensuring continuity of pressure and velocity in the fluid. A combination
of these conditions shows that d¢/dr is continuous everywhere on r = ¢ (except at the

actual plate tips where there is a square root singnlarity in the velocity).

In order to satisfy the body boundary condition it is necessary to obtain series expan-

sion of @2 and ¢ in terms of " cosmf and r™* sinmé respectively (Evans et al., 1979).

Consider

I= ][b,,(l?)e_ey_ie“’df : (2.19)

Jo
where
I\ + !) 1 _”

(¢ —_— T e .

I (€) = 7 (2.20)
then

l)m R un.H

—eh —hc ~¢h pin
I—)gb (De df = Z_:O — fbn(ﬁ)e e, 0<r< 2k (2.21)

Now it follows from (2.21) that

COS nf)

.= Anm. *cosné 2.22
1.~ S S A .2)
and
t
P = sinn Z A sinmé (2.23)
™ =0
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which is valid for 0 < r < 2k, where

_ (_1)1”+"_1 fm (I(-}-ﬂ) n4n—1_-—2¢h
Amn =i [, -0t ¢ ¥

-1 m+tn ,
( '( ) 1)' 71_1:1'{111+1L6—2Kh
L7 — H

(2.24)

It is noticeable that the matrix A,,, appears in the expansion of both ¢ and ¢7. The

incoming wave ¢y can be written as follows
cbI — eiK:r:—-Ky — eiK?‘ sin #—K (h-r cos #)

= g~ Khg—Kre¥ _ —KhZ( 1) (S (2.25)

=0

(r3
n

The partial derivatives of ¢, ¢ and ¢; with respect to r are as follows

0:,  —ncosnfl
or ',:-1.}1 —* ,;1 ™ Ay cos il (2.26)
do¢ —n sinnd > | .
(i’] = f.:.:illn + “tz_l 7"”""”_144"?41, sinmé (227)
and
o 1V K™ =1 .
¢’I e Ih Z (=1 / e—ind (2.28)

- 1!
ot (n -1}
The expression for ¢, ¢ and ¢; and their corresponding partial derivatives will be used

in later calculations.

Thus in regions I and I expressions for ¢ in (2.8) and (2.18) are differentiated with

respect to r and equated on r = a. This gives

a iKn—Ky = N 0¢ a 8¢fx
PG )+ Ka Zl - (Pyctn =2+ Pt

) " (2.29)
= 8 (etfCe—Kuy 4 Z A,,_ cosné + B, sin n())

nl

18



Substituting the values of 9¢2/8r and 3¢2 /0r from (2.27) and (2.26) into (2.29) we get
Ka Z: [P,f( — cosnf + Z mM,,.,. cos m9) + P,‘:( —sinnf + Z mM,,,, sin mﬂ)]
n=1 m=1 m=1

[ o]
= z n{ A, cosné + By, sinnf),

n=1
(2.30)
where
am+n
Mopn=Apn—— (2.31)
n
Multiplying (2.30) by cos k6 and integrating from —m to +m we have
e
Ka[ - —£ PiMin] = A k=1,2... . 2.32
G,[ & + ; ni¥ik ] k ) ( )
Similarly multiplying (2.30) by sin k€ and integrating from —= to +7 we have
P oo
Kaf - ‘“ + ZP”‘Mkn] =B, k=1,2... . (2.33)

Equations (2.32) and (2.33) represent expressions for the unknown coefficients in the region
I'T expansion of the potential in terms of the coefficients in the region 7 expansion. Turther
relations between the sets of coeflicients, in regions / and I7 are obtained by requiring
continuity of pressure on the fluid interface section of r = a and zero normal velocity on
the arc section of r = a. From (2.8) and (2.18), contimiity of pon r = ¢, —a < # < a

gives

oC

= a” r
— + Py “ —_ A B, g —o < 0 . 2.34
; ~ ¢2] Z o cosnf + B, sinnf), -—o <a (2.34)

Substituting the expansions of ¢2 and ¢2 from (2.22) and (2.23) into (2.34) we have

Ka i [P;;’{ coinﬂ + i M. cOS m9} + P,f:{Sir;ng + i M, sinmﬁ}]

= m=0 m=) (2.35)
=Z(Ancosn9+aninn9) , —a<f<a
n=0
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Multiplying (2.35) by cos sf and integrating from —« to +a we have

= | P® =\ A,G
"G P; M, . Gs| = z "3, s=10,1... ]
Z ns + Z "y 3] I{ﬂ, S 11 ? (2 36)
n=1 m=0 n=0
where
4o
G = / cosnf cos st df . (2.37)

Similarly multiplying (2.35) by sin sf and integrating from —« to +a we have

o0 00
P B, H
TS P(L M‘”L?LH‘”'? = "'} - 1 "I = 17 21 e ? "
5 [t 3 | < 5 B 259
where
+ao
H,.= / sinnfsin s df . (2.39)

By eliminating A,, and B,, from (2.36) aud (2.38) using (2.32) and (2.33) we get two sets

of equations for the coeflicients in the region I expansion, naely,

Ka

2G .. AuGos
2 [ M(,,,,G(,H] =—G s=0,1,2,... , (2.40)

n=1

and

00
2an
ZP"( ~ )=(1 s=1,2,... . (2.41)

n=1

Clearly these equations caunot produce a unique solution for the multipole coefficient
unless all information in the problem, especially the body boundary condition (2.5), is
specified. After the expansion for ¢ in region I in (2.8) is differentiated with respect to r,

the body boundary condition, ¢/d0r = (0 ou r = a is applied and yields

-a_¢ — i iKz—Ky - - o u0¢'n qa¢3
a,’,. - a.,. (6 )+Ii”'Z n (Pn 0 +‘P'n, 0 ) * (242)

n=1
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Substituting the expansions for 8¢%/9r and 0¢%/0r and the derivative of the incident

wave from (2.26) and (2.27) and (2.28) into (2.42) we have

o0 o0
Ku Z [P,i ( — cosnd + Z mM,,.,, cos m())

n=1 m=1
o0
+ P:( — sinnd + Z MMy, sin 1n9)] (2.43)
m=1

_ —-KhZ( )" (Ka)"

-1 (cosnf —isinnf), a < § <21 —a.

Multiplying {2.43) by cos sf and integrating from « to —a + 27 we obtain

T pe - _kh e ()M (Ka)"
Ka Z R,,( - Eﬂs -+ Z ”LMnmr.E'rus) = — Z -('n—l)[Enei (244)
n=1 m=1 n=1 a ’
where
2m—cr
E,..= / cos nf cos s@ «f s=1,2,... . (2.45)

Similarly multiplying (2.43) by sin sf and integrating from « to —« + 27 we obtain

> S (- 1 *(Ka)™
I . —Kh
Ka.; Pe( = Fu+ Z=:1 My Fons ) = i Z o e (2.46)
where
-
F,..= / sinnd sin s@ 6 s=1,2,... . (2.47)

Clearly equations (2.44) and (2.46) do not include any information about the potential
or its derivative on the part of the circle —a@ < # < « and therefore they cannot be
suflicient to determine the coefficients PJ aud P?. In order to use all the information on
the line r = a we solve two particular combinations of the systemns of equations, namely
the combination A x (2.44) — s % $(2.40)/2 and A x (2.46) — ju x 5(2.41)/2, where A and p
(0 < A, iz € 1) are user supplied parameters, chosen to obtain the numerical convergence.

After numerical experimentation we found that g = 1 and A =1 gave the best results. Of
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course other combinations of equations may be taken but the motivation for these choice
is that they were found to produce the best numerical convergence. The only exceptions
to the above choice were when we considered the limiting case of a circular cylinder, for
which we took g = 0, A = 1 and the limit in which the plate shrinks to zero when we took
p=1, A = 0. After the coefficients A,,,n = 1,2... are eliminated from (2.36) by using

(2.32), the combination A x (2.44) — u % 5(2.40)/2 gives

A CZ’O: P, E'n.s + i nlM‘rnnEnm — [ Z (SG"S + MonGoq) 5 M

m=1 n=1 2 Ka
—Kh ( 1 “ (I{”‘)”- E
= s '=1,2,...
"Z (n— 1)1 s F
(2.48)
In addition there is one extra equation which comes from (2.40) for s =0, namely
2G,, AoGoo
Z [ =+ M(,HGM,] == (2.49)
= Kua
Substituting the value of A, from (2.49) in (2.48) we have
= ) ns S GTIOG(}S
A Z [_Ens + Z_:l THMNJ.HEHIHJ 1 Z:l ( - 5 GOO )
n=1 - ( ‘"J.)— (I( ) 1 T (2.50)
-1y ayr
—Ae Kh E.. s=12...
Ae ; (n — 1)1 Tes 5 y =
Similarly by taking A x (2.46) — p x 3(2.41)/2 we have
A P |-Fut Z mM,.,,.,Rm] — ): Py ( )
n=1 m=1 (251)

11] I (”' 1)
_ hie—Kh Z (— n(_“;))l F., s=12...

‘ll."_‘
The systems of equations for the coefficients P and P are truncated and solved
numerically using the NAG library routine f04adf. The values of the reflection and trans-
mission coefficients, R and T are then found from (2.15) and (2.17) respectively. The

full set. of results for the reflection and transmission coeflictents for various frequencies are

discussed in chapter 4.
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Chapter 3

3.1 A Variational Approximation

In this section, approximations to the reflection and transmission coefficients are ob-
tained using the Schwinger variational procedure. This technique has been applied by
many people. Miles (1967) considered the diffraction of gravity waves at a discontinuous
change in depth between two horizontal bottoms. He developed and illustrated a scat-
tering matrix formulation for the diffraction of gravity waves and associated Schwinger
variational principal. The variational approximations for the elements of the scatteriné
matrix were developed. Evans and Morris (1972) also used an approximation method as-
sociated with a fixed vertical barrier immersed to a given depth. They used this method
to obtain accurate upper and lower bounds for the reflection and transmission coefficients
for all angles of incidence and all wavelengths. The method involved the use of a one-
term Galerkin approximation to the solution of an integral equation which is equivalent to

Schwinger variational approach.

It is convenient to derive V(#) to be the jump potential across the circle 7 = a and
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this is expanded on r = a using (2.18) and (2.8) to give

o0 . (s @]
V(9 = Ka Z P; cosnb + P sinnf + Z My (P sinm8 + P cos m8)
n
—Z(aninn9+ A, cosnf) -T<@<m.

n=0

This equation is split into two parts, namely the symmetric and antisymmetric parts,

V(Q) = Vs(g) + Va(g) : (3.2)

From (3.1) the symmetric part is

cosnf

V() = KaiP,f

n=1

+ Z M n cosmﬁ] - Z A cosnf, — T <A <w (3.3)
m=0

n=0

and the antisymmetric part is

V.(6) = Ka i pe

n=1

sinné > e
My sinmf| — B, sinnd, —m <A< w. 3.4
" + z sinm } Z sinnd , - e (3.4)

m=1 n=1

The coefficient A, and B,, n = 1,..., are eliminated from (3.3) and (3.4) using (2.32) and

(2.33) to give

cosnf

Vo(6) = 2Ka ) P; ~A+Ka) PiMy ,—m<0<% (3.5)

n=1] m=1

and

sinnf

V.(6) = 2Ka i P

n=1

<< . (3.6)

Multiplication of (3.5) by cosmé and integration between —m to m gives
w

™ et P T
/ Vs (8) cosmbdf = 2Ka Z -—7-1—’5 f cos nf cos medf — / A, cosmfdo
n=1 -

—_r o) —=T

+ Ka z PiMon/ cosmddd .
m=1 -n
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As the trigonometric functions are orthogonal on [—, ] this gives

P i
2nKa—2 = V.(8) cos madb, m=1... . (3.7
™m |«

However,

T =4 2T —or
V. (0) cos mfdf = / V. (8) cosméde + / V. (8) cos mbde

and the potential jump V,(#) is zero on [—a, «f and so (3.7) becomes

g

P pL
2rKa—2 = / V. (6) cos mbd8, m=1,... . (3.8)
mn o

Similarly, multiplication of (3.6) by sinm# and integration between —x to 7 gives

il

22—
2rKa—" = / V. (#) sinnédé, me=1,... . (3.9)

T

It is also convenient to define U(#) by

U®) = nc’)i [¢ - e"'K"""K-"] onr=qa,—-n7<60<7w, OFIxn. (3.10)
.

From (2.8) we can write

o0 o0
Uf) = Ka Z P2 {—cosnf + Z Mynn cos i}
n=] m=1
-~ (3.11)
+ Py {—sinnf + Z mM,,,,, sin mf)}]
=1

This is split into two parts, a symmetric and an antisymnetric part,
U@)=U,(6)+ U.(#) . (3.12)

From (3.11) the syinmetric part is given by

Us0) —iKa Z P Z mM:  cosmé

n=1 m=1 "o
- o (3.13)
= Ka Z P | —cosnf + Z mM,,, cosmb

n=1 m=1



and the antisymmetric part is given by

[o =] o0
U.(0)—iKa Z Py Z mM: . sinmé
n=1 m=1
oo (3.14)
= Ka z P, | —sinnf + Z mM,, . sin mf)]
n=1 m=1
where M7, and M}, are the real and imaginary parts of M,,, respectively. Using the

body boundary condition 8¢/0r =0, on r = a, a < # < 27 — « yields

U0 + U0 = Y o5 - (et

= or or
T I{ T (3.15)
= K"’Z( 1,3_(1(0 (cosn# —isinnd) on w<@<2mr—w.

n=1

From (3.15) we can write

1 T I k1
U,(8) = — ‘K"Z (= 0 (;)(:) cosnf on o<f#<2r-a (3.16)
n —
and
oo 1Y (Ka)"
U (0) = ie” K" Z % sinnf on a<#<2r—a . (3.17)
n=1 !

From (2.15) the reflection coefficient may be written as R = R, + R,, where

" — ) = —1 ™ TE 8 ‘
R, = 2rxie Kl 21 ( n!) (Ka) +1Rn. (3.18)
and
oK Z ( (K“)"+113;: (3.19)

n=1

This may be used together with (2.31), (3.16) and (3.17) to rewrite the left-hand sides of

(3.13) and (3.14) which gives

i

U (9)(1+R.) =Ka ) _ Py [—cosnf + Z mMT_ cosmf| on a<<2r—a (3.20)

n=1 m=l
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and

U.6)(1—-R,) = Ku,z P

n=1

—sinnd + Z mM,,., sxnm()] on a<f<2r—ca, (3.21)

m=1

where U,(6) and U,(#) are given explicitly by (3.16) and (3.17). Thus, substitution of P2
and P¢ in terms of V() and V,(#) from (3.8) and (3.9) into the right-hand sides of (3.20)

and (3.21) yields

o 2m—c .
U ()14 R,) = % "Z:ln [—— /(; V,{(#") cos nf cosnf' d§’
21r—c;«_ (322)
+ Z mM;, [ V.(#") cosm# cos nf)’clﬂ’]
and
1 oo 2m—ar , , ,
U.8)(1+ R,) = o "Z_:ln [— /ﬂ V. (8") cosné cos nt dg
e (3.23)
+ Z mM,,,, V. (8" cos il cos 'nﬂirif)’]
From (3.22) and (3.23) we get
oo dm—ax :
V@)1 +R) =Y / (6, 8V, (8)d0 , @ < B < 27— (3.24)
n=1"
where
k(0,0 = % [— cosnf cosnd’ + :Z‘l mM, . cosmb cosnf } (3.25)
and
I —cr
U,(6)(1 — R,) 2/ ko (0,0 Vo (@YW , 0 < @ < 27— @ (3.26)
n=1
where _
' L ' y '
kna(0,8') = o {— sinnf sinnd’ + MZ;l mM, ., sinmé sinnf ] : (3.27)

It is not possible to interchange the order of summation and integration in (3.24) and
(3.26) as the resulting series would not converge. (Evans and Morris (1972) overcame a
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similar problem by introducing an artificial exponential decay factor in the kernal of the

equation and taking the limit as the exponent tends to zero. However, it is not necessary
that the order of integration and summation should be changed here.) By writting

Vi(8) = (1 + R,)X.(6) (3.28)

i

and )

Vo(6) = i(1 — R)X.(0) (3.29)

the following integral equations are obtained for X,(#) and X, (6)

27 —cr
Z ] kns(8,0) X (0 = U(0), a < <21 — @ (3.30)
n=1
and
2r—ar
Z f kna(0,0) X, (640 = —iU,(0), a <8 <271 — . (3.31)

The quantities kpn.(#, 8'), k.. (#,6"), U.(8) and —iU,(#) are real so X, and X, must be Iedl

functions. From (3.18) using (3.16) and (3.8) it may be shown that,

R, =—i / T L 0.6 (3.32)

(44

and so by rewritting V, in terms X, using (3.28), R, may be written as

A,
R, = — 3.3:
“STTA (3.33)
where
I —a
A, = [ X, (6)U.(6)d8 (3.34)

and A, is real quantity. A similar analysis gives

R. = , (3.35)



where
2r—or
A, = f X, (8)(—iU,(8))do (3.36)
and A, is also a real quantity.

A variational approximation to X, is sought in the form X,(#) = a,W,(8) where a,

is a constant and is chosen so that '

2m—cx r—o O 2t—o :
f asW(0)U,(8)df = / W (6) Y f ks (6,0 a, W, (8)d0'd0 . (3.37)
o o n—1ve

Substitution of this approximation into (3.34) yields

[ 2T —r U 2

J2 (W, (e)da]

A= s =T (3.38)
Jn W-!‘ (H) Zn:l Jﬂ kus (9-,\ H’)Ws (9’)”!9’(],'9

The success of the approximation depends on a suitable choice for the function W, (8).
There are square root singularities in the velocity at the tips of the plates and the simplest,

way to model this is to choose
W.(0) =@ -a)?2r—a-NHY?, a<bh<r—a . (3.39)

Such an approximation allows only a very simnple variation in potential along the length of
the plate and so may be expected to give good results only when the plate is short compared
to the wavelength and occupies a small part of the circle. An approximation similar to
ours was also used by Mei and Petroni (1973) when considering the wave scattering by a
vertical, circular harbouwr which contains a narrow gap. More Recently, Porter and Evans
(1995) developed a variational method based on a Galerkin approximation for scattering

problems involving vertical barriers with gaps in finite depth. Substitution of (3.39) into

(3.38) yields j
i 2
2me 2K 5202, L gy (- ) r
Ao _ (3.40)
Zu:l [_ n + z"i,:l(_]_)"“-"M-;anJl (TL(?T - (Y))Jl(m(w - Cl’))]
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where Gradshteyn and Ryzhik (1980, 3.752.2) has been used to write

/ T sl (6 — a)V2(2r — o — 6)/2d8 = (—‘%n(n A -a),  (3.41)

x

where J, is a Bessel function of the first kind.

The corresponding variational approximation to X, (6} is given by X.(8) = a,W,.(8)
where

W) =@ —m) 08— ) ?2r—a-0)Y2, a<f<2r—a . (3.42)

and the constant a, satisfies

2mr—o

W (6) ) / Ko (6,0, W, (8")d0'd .

o

2w —cr

/a T W) (=i, () = /

o n=1

(3.43)

A similar analysis yields

n!

A, = e == (3.44)
Z:'I:,ozl [_ "n. + 211121(“1)7"'+1LM:;L11 J2 ('n‘(ﬂ - (‘1"))‘]2 (’Nb(?'l' - (.Y))]

" 2
e 2Kh [Ef’;l gﬁ)—h(n(ﬂ' - uf.))]

where Gradshteyn and Ryzhik (1980, 3.771.10) has been used to write
2r—ar . ) (_1)1; !
f sinnd (8 — )@ — o)} ?2r —a—0)2d8 = Tﬂ'(?r —a)?Jy(n(r — ), (3.45)

where J, is a Bessel function of the first kind. The expressions for A, and A4, in (3.40)
and (3.44) are substituted into (3.33) and (3.35) and the resulting approximation to the
reflection coefficient is compared with the results from the full numerical solution in the

next chapter.
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Chapter 4

4.1 Numerical Results and Discussion

In this chapter we carry out numerical studies and comparisons. We compare the
numerical results for the reflection coefficient for a number of circular arc plates with those
for a submerged circular cylinder in order to assess the suitability of using circular arc
plates when constructing a water wave lens. Results obtained from both the variational
approximation and the matched series expansion techniques are also compared graphically.
For the implementation of our program both for the circular cylinder and for the arc plate
we have used following input parameters: (i) a/h, where a is the radins and A s the depth
of the centre of the cylinder respectively (see Figure 2.1 in chapter 2), (ii) the angle o
which fixes the length of the plate, (o = 0 corresponds to the circular cylinder) and the
frequency parameter Ka. From numerical experiments it was found that 256 multipole
potentials were usually sufficient to ensure that the numerical results were accurate to two
decimal places and in several cases less terms were required. In Table 4.1 we represent, how

|R| changes with the number of multipoles for a/h = 0.9 and o = 0.77.
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Table 4.1

N = Number of multipoles

Ka 64 128 256 512

.100000 025887 025588 025420 025323
.300000 207476 .205654 204626 .204034
.500000 407376 406672 406272 406014
700000 463471 466631 468451 .469436
.900000 403314 .409886 413702 415818
1.100000 .286530 304553 309253 311888
1.300000 190695 198247 202706 205223
1.500000 106611 112679 116284 118328
1.700000 047565 051912 054509 055987
1.900000 009833 012605 014273 015225
2.100000 011754 .010276 .009375 .008858
2.300000 .021893 .021403 021088 020906
2.500000 024396 .024605 .024705 024761
2.700000 .022218 022869 023234 023441
2.900000 017565 018446 018949 .019236
3.000000 014826 015755 016288 0165693

In particular, many fewer terms were needed to model the wave scattering by a circular
cylinder than any one of the plates. This is thought to be because the velocity potential
is modelled by a series of smooth functions and in order to produce a singularity in its
derivative at the tips of the plate, the coefficients in the series have to decay at a certain
rate which is not as fast as the coefficients in a series for which the velocity is bounded.
Thus more terms were needed in the series expansion for a plate geometry to obtain the
same level of accuracy in any calculation. In all our calculations 256 multipole potentials

were used.

We first consider the matched eigenfunction expansion method and check our model
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by reproducing the results of Ursell (1950a) for the submerged, circular cylinder in the
limit as ¢ — 0. Our numerical scheme also ensured that the energy was conserved (i.e.,
|R|? + |T|? = 1). In Ursell’s formulation the transmission coefficient, T, is given by
o oo
T = 1 — 4ri(Ka)e X" (ob)~? 21 %(Ka)" — dn(Ka)e KR (ob) 7' S %’-;(Kn,)" . (a1)
n— n=1
where the period of simple harmonic motion is 27/¢. The unknown cocfficients are
(6b)~p, and (ob)~lq, where b is the amplitude of the wave motion. We now compare this
form with the representation for the transmission coefficient derived in (2.17) in the limit
as &« — 0. (In this limit, the two models should coincide.} Comparing these two trans-
mission coeflicients we have the following relationships between the unknown cocfficients

of two models,

~(9) 7 pn = (- 1) S [S(P2) - R(PY) (42)

and

~(06) g = (~ 1" S [S(P) - RPY)] (43)

where § and R are real and imaginary parts. Ursell (1950a) used five muitipole potentials
in his numerical work. Clearly it is enough to reproduce the values for the unknown
coefficients in order to show the that the reflection and transmission coefficients are the
same in each case. The values of the unknown parameters —(gb)~'p,, and —(ah)~'¢, have
been exactly reproduced upto four decimal places as shown in Table 4.2 below, where the
column under U represents the values of Ursell (1950a) and the column under C represents

our calculated values.
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Table 4.2

—(0b)"'pi —(ob) g
i U C U C
1 0.07195 0.07199 -0.06771 -0.06776
2 0.16241 0.16246 -0.15284 -0.15290
3 0.15341 0.15343 -0.14437 -0.14440
4 0.09680 0.09679 -0.08109 -0.09110
) 0.04954 0.04953 -0.04662 -0.04661

Next we compare our results with those of Mehlum (1980) for the circular cylinder. In
his graphical representation Mehlum plotted the phase shift in the transmission coefficient
as a function of the radius and depth of the circular cylinder. He considered scaled values
for radius and depth of the cylinder, A = a/A and D = d/A, where a is the radius and d is
the depth of the cylinder and A is the wavelength. We only plot the results for a particular
value of D, namely D = 0.45. In our implementation appropriate rearrangements of
the parameters have been carried out in order to provide a fair comparison. We took
a/h = A/D and Ka = 2rA. We consider A in the range of [0.05, 0.45] inclusive. Since
the values of A affect the values of a/h therefore for a particular set of valies for Ka we
had to calculate the values for a/h. The program was run for each value of Ka and its
corresponding value for a/h and the phase shift, §, has been found for each run by using
§ = tan~Y(T}/T,), where T; and T, are the real and imaginary parts of the transmission

coefficient. The graph is shown in Figure (4.1).
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Fig. 4.1 : Phase shift against Ka for the corresponding input values of Mehlum; a=0.0

we compare the phase shift for a set of values for D at some particular frequencies and the
results are shown in Table 4.3. In this Table the column under O represents onr own caleu-
lated result and the column under M represents the approximate value for Mehlumn. From

this fable it is clear that the comparison of our result Mehlum’s shows good agreement.

Table 4.3 Comparison of phase shift ()
M O D A
44.00 44,10 0.30 0.20
129.00 128.34 0.45 0.40
80.00 80.51 0.70 0.60
94.00 93.55 0.90 0.80

Next we compare the values of the reflection and transmission coefficients with those
given by Parsons and Martin (1994). Parsons and Martin formulated the scattering poten-
tial problem as a hypersingular integral equation for the unknown discontinuity in potential
across the arc plate and they solved the integral equation numerically using collocation and
Chebyehev expansions. We consider a number of different plates for comparison and as it
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can be seen in Table 4.4 that two decimal place agreement was obtained in the majority

of cases.

Table 4.4
Parameters Ka |R|t arg(R")  |R}} arg(R})
a/h =0.9139 0.5305 0.7223 2.8094 0.7237 2.7998
a = 0.7n 1.0610 0.2743 -2.3145 0.2852 -2.3264

1.5915 0.0518 1.1029 0.0506 1.0992
2.1221 0.0485 1.0874 0.0507 1.0845
a/h = 0.8884 0.3979 0.4820 2.5410 0.4841 2.5352
a = 0.6n 0.7958 0.2586 -2.6607 0.2648 -2.6675
1.1937 0.0083 -2.3713 0.0097 -2.3738
1.5915 0.0277 0.7732 0.0283 0.7718
a/h = 0.8642 0.3183 0.2935 2.3490 0.2957 2.3460
o = 0.5 0.6366 0.2057 -2.9432 0.2095 -2.9466
0.9549 0.0353 -2.6399 0.0364 -2.6408
1.2732 0.0083 0.5278 0.0084 0.5278

T Matched series results; ¥ Parsons and Martin (1994)

We next compare both the full and approximate methods for a number of arc plates.
We compare the values of |R| calculated from the full numerical solution with those ob-
tained from the variational approximation for plates of different lengths but for which
a/h = 0.8. Figures 4.2-4.4 show graphs of |R| plotted against Ka. First we consider the

plate with the shortest length equal to 0.27a, which is equivalent to a value of o = 0.97.
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Fig. 4.2: Comparison of approximate and exact values of | f2};a/4=0.8,0 =097

It is clear from Figure 4.2 that the approximation to the reflection coefficient is very close
to the exact solution over the whole range of frequencies considered. Therefore as expected
the approximation has produced good results for the short plate. The disadvantage of the
approximation is that it does not allow for large variations in the potential along the length
of the plate and so is expected to perform well only when the plate is short compared to
the wavelength and occupies a small fraction of a circle. Analogous results were obtained
by Mei and Petroni (1973} who used a similar approximation when modelling the wave
scattering by a vertical, circular harbour which contains a narrow gap. We next consider
the second largest plate of length equal to 0.67a, (equivalent of a value of o = 0.77).
Figure 4.3 clearly shows that whilst the approximation is good at low frequencies, it starts
to diverge from the true solution at Ka = 0.4. However better approximations could be
obtained by employing a more accurate technique such as b.y choosing W.(8) and W,(8)
in (329) and (3.42) in terms of Chebychev polynomials (Porter and Evans, 1995). Porter
and Evans have recently produced extremely accurate results for the scattering of waves by
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vertical barriers in finite depth. They have used a direct Galerkin method as an alterna-
tive variational approach. Their approach is based on deriving complementary hounds on
quantities of interested. Evans and Morris (1972) have also proved that quantities calcu-
lated using a variational procedure provide bounds for the exact quantities. They obtained
good complementary bounds for the reflection coefficient. In this case, the muncrical evi-
dence indicates that the values of A; and A, generated from the variational approximation
are negative and, in magnitude, are lower bounds for the exact values. However, we were
unable to prove this because we were unable to show that the operators in (3.30) and
(3.31) are negative definite. Even if the variational approximation does vield bonunds for
A and A, these do not translate a bound for the total refiection coeficienm hocanse of the

way it is constructed from (3.33) and (3.35) by

R = - + - (4.4)

This is apparent in Figure 4.3 where the approximate solution sometimes underestimates
and sometimes overestimates the magnitude of the reflection coefficient. In Figure 4.4
we compare the approximate and full solution for a semi-circular plate. In this case, the
approximation is not particularly good except at very low frequencies and for plates of this
length or longer it would be desirable to seek other approximations such as those based on

high or low frequency asymptotics or even small gap approximations.
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Fig. 4.4 : Comparison of approximate and exact values of [Ri;a/h=0.8,0=0.57

In Figure 4.5 we compare the reflection coefficients for a set of plates of different
lengths at a depth of a/h = 0.9. The matched series expansion method has been used
for these calculations. The motivation behind this is to assess the suitability of the arc
plate as a lens element. The corresponding reflection coefficient for the circular cylinder
is of course zero for all frequencies. As expected, as a decreases and plate occupies more
of circle, so the reflection coeflicient decreases on average. In particular, for plates which
occupy half a circle or more there is very little reflection.
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However, for the shortest plate with a value of & = 0.757 there can be substantial armounts
of reflection at low frequencies. Finally in Figure 4.6 we compare the phasc of the trans-

mission coefficient for the same range of frequency and for the same set. of plates as were

considered in Figure 4.5.
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Fig. 4.6 : Variation of Arg(T) with frequency; a/h=0.9

In addition, the results for the corresponding circular cylinder are also given. If we consider
graphs for a = 0.507 and a = 0.257 in Figure 4.6 it can be seen that the variation’in the
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phase between these two cases of the transmission coefficients is very small. Therefore, in
comparison with the circular cylinder one can infer that the variation in the phase of the
transmission coefficient does not significantly depeﬁd on thg position of the ends of the
plates which occupy half a circle or more. It is as if the wave field only ‘secs’ the top part
of the body and the fact that the lower part of the cylinder is missing has an insignificant
effect. Thus in circumstances in which the circular cylinder produces suitable phase shifts .
to be used as a lens element, a circular arc plate occupying a least half of the same circle

should also be a candidate.
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Chapter 5

5.1 Conclusion

A Norwegian research group has demonstrated that a water-wave lens may be con-
structed out of a system of under water structures. In this work we considered modelling
one of these structures by a fixed submerged, circular arc plate. The wave scattering by .
the arc plate has been investigated using linear theory. Two methods, namely a matched
series expansion and a variational approximation were used to investigate the reflective
properties of the arc plate. The first method employed Ursell’s multipole potentials tech-
nique (Ursell, 1950a) while an explicit approximate solution which modelled exactly the
behaviour of the velocity potential at the tips of the plate was derived using the second
method. The full numerical solution was used to compare the reflection and transimission
coefficients associated with a number of plates with the corresponding cocfheients for a
submerged, circular cylinder and it was found that there was very little difference between
the reflective properties of plates which occupy a half circle or more and those of a ¢circular
cylinder.

The approximation to the reflection coefficient proved to be accurate for plates which

were short compared with the wavelength and occupied a small part of a circle. This was
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expected because of the way the square roots singularities in the velocity ai the tips of the
plate were modelled. Better approximations could be obtained by modelling the velocity
more accurately using a series of Chebychev polynomials multiplied by the square root
singularity in a similar fashion to that done by Porter and Evans (1995} for a barricr with

a single gap.

Further work needs to be done to obtain an approximation for longer plates. For the
long plates the reflection coefficient for a wide range of frequencies should become very
small. In these circumstances, it may be more appropriate to devclop an approximate

solution based on a cylinder with a small gap in it.

43



References

Acheson, D. J. (1990), Elementary fluid Dynamics, Clarendon Press, Oxford.

Barakat, R. (1962), Vertical motion of a floating splere in a sine wave sea, Journal of Fluid

Mechanics, Vol.13, pp 540-556.

Burke, D.C. (1964), Scattering of surface waves on an infinitely deep fluid, Journal of

Mathematical Physics, Vol.5, pp 805-819.

Chakrabarti, S. (1979), Wave interaction with multiple, horizontal cylinders, Applied

Ocean research, Vol.1, No.4, pp 213-216.

Davis, A.J.M. (1974), Short surface waves in the presence of a submerged, circular cylinder,

SIAM Journal of Applied Mathematics, Vol.27, No.3, pp 479-491.

Dean, W.R. (1945), On the reflection of surface waves by a flat plate floating vertically,

Proceedings of Cambridge Philosophical Society, Vol .41, pp.231-238.
Dean, W.R. (1948), On the reflection of swface waves by a submerged circular cylinder,
Proceedings of Cambridge Philosophical Society, Vol.44, pp.483-491.

Evans, D.V. (1970), Diffraction of water waves by a submerged vertical plate, Journal of

Fluid Mechanics, Vol.40, pp 433-451.

Evans, D.V. and Morris, C. A. N. (1972), The effect of a fixed vertical barrier on obliquely
incident surface waves in deep water, Journal of Iustitute of Mathematics and its
Applications, Vol.9, pp 198-204.

44



Evans, D.V., Jeffrey, D.C., Salter, S H. and Taylor, J.R.M (1979), Submerged cylinder

wave energy device, Applied Ocean research, Vol.1, No.1, pp 3-12.

Evans, D.V. (1981), Power from water waves, Annual Review of Fluid Mechanics, Vol.11,

No.1, pp 1-10.

Gradshteyn, I. S. and Ryzhik, I. M. (1980) Table of Integrals, Series and Products, Aca-

demic Press, New York.

Grue, J. and Paln, E. (1984), Reflection of surface waves by submerges cylinders, Applied
Ocean research, Vol.6, No.1, pp 54-60.
Havelock, T.H. (1929), Forced surface waves on water, Philosophical Magazine, Vol.8, pp

969-576. .

Havelock, T.H. (1955), Wave due to floating sphere making periodic, heaving oscillations,

Proceedings Royal Society London, Series A, Vol.231, PP 1-7.

Helstad, J., (1980), Power production hased on focused ocean swells, Norwegian Maritime

Research, No.4.

Heins, A. J., (1950), Water waves over a channel of finite depth with a submerged plane

barrier, Canadian Journal of Matheinatics, Vol. 2, pp 210-222,

Hume, A. (1982), The wave forces acting on a floating hemisphere undergoing forced,

periodic oscillations, Journal of Fluid Mechanics, Vol. 155, pp 511-530.

John, F. (1948), Waves in the presence of an inclined barrier, Communications on Pure

and Applied Mathematics, Vol.1, pp 149-200.

John, F. (1950), On the motion of floating bodies 11, Communications on Pure and Applied

Mathematics, Vol.3, pp 45-101.



Kinoshita and Murashige (1991), A fundamental study on ocean wave focusing, Report of

the Institute of Industrial Science, The university of Tokyo, Vol. 36, No.43.

Levine, H. (1965), Scattering of surface waves by a submerged, circular cylinder, Journal

of Mathematical physics, Vol.6, No.8, pp 1231-1243.

Leppington, F.G and Siew, P.F. (1980), Scattering of surface waves by submerged cylinders,

Applied Ocean research, Vol.2, No.3, pp 129-137.

O’Leary, M. (1985), Radiation and scattering of swface waves by a group of submerged,

horizontal, circular cylinders, Applied Oceanr research, Vol.7. No.1, pp 51-57. ,

Meclver, M. (1985), Diffraction of water waves by a moored, horizontal, flat plate, Journal

of Engineering Mathematics, Vol.19, pp 297-319.

Meclver, M. and Urka, M. (1995), Wave Scattering by Circular Arc Shaped Plates, to

appear in Journal of Eugineering Mathematics, 1995.

Mehlun, E., (1980), A circular cylinder in water waves, Applied Ocean Research, Vol.2,

pp-171-177.

Mehlum, E. and Stamnes, J.J. (1978), On the focusing of ocean swells and its significance

in power production, Central Institute for Industrial Research, Blindern, Oslo, SI Rep.

78 04 08-3.

Mei, C.C. (1989), The applied dynamics of ocean surface waves, World Scientific, Singa-

pore.

Mei, C.C. and Black, J.L. (1969), Scattering of surface waves by rectangular objects in
water of finite depth, Journal of Fluid Mechauics, Vol.38, Part 3, pp 499-511.

46



Mei, C.C. and Petroni, R. P. (1973), Waves in a harbor with protruding breakwaters,
Journal of Waterways, Haarbors, Coastal Engineering procedings ASCE, Vol.99, pp

209-229.

Miles, J. W. (1967), Surface wave scattering matrix for a shelf, Journal of Fluid Mechanics,

Vol.28, Part 4, pp 755-767.

Morison, J.R., O’Brien, M.P., Johnson, J.W. and Schaat, S.A. (1950), The force exerted

by surface waves on piles, Petrolewun Transactions, AL M.E., Vol. 189, pp 149-154.

Newman, J.N. (1965), Propagation of water waves past long two-dimensional obstacles,

Journal of Fluid Mechanics, Vol.323, Part 1, pp 23-29.

Ogilvie, T.F. (1963), First and second order forces on a cylinder submerged under a free

surface, Journal of Fluid Mechauics, Vol.16, pp 451-472.

Patarapanich, M. (1984), Maximun and zero reflection from a submerged plate, Journal

of Waterway, Port, Coastal and Ocean Engineering, Vol.110, No. 2, pp 171-181.

Parsons, N.F. and Martin, P.A. (1992), Scattering of water waves by submnerged plates

using hypersingular integral equations, Applied Ocean Research, Vol.14, pp 313-321.

Parsous, N.F. and Martin, P.A. (1994), Scattering of water waves by submerged curved

plates and by surface-piercing flat plates, Applied Ocean Research, Vol.16, pp 129-139.

Porter, R and Evans, D. V. (1995), Complementary approximations to wave scattering by

vertical barriers, Journal of Fluid Mechanics, Vol.294, pp 155-180.

Porter, D. (1974), The radiation and scattering of swface waves by vertical barriers, Jour-
nal of Fluid Mechaunics, Vol.63, No.4, pp 625-634.

47



Schnute, J.T. (1967), Scattering of waves by submerged, circular cylinders : Part II, Scat-
tering by an infinite array of cylinders, Technical Report No. 11, Department of

Mathematics, Stanford University, Stanford, California.

Schnute, J.T. (1971), The Scattering of surface waves by two subinerged, cylinders, Pro-

ceedings of Cambridge Philosophical Society, Vol.69, pp 201-215.

Shaw, D.C. (1985), Perturbational results for diffraction of water waves by nearly vertical

barriers, IMA Journal of Applied Mathematics, Vol.34, pp 99-117.

Thorne, R. C. (1953), Multipole expansions in the theory of surface waves, Proceedings of

Cambridge Philosophical Society, Vol.49, pp 707-716.

Ursell, F. (1947), The effect of a fixed vertical barrier on surface waves in deep water,

Proceedings of Cawbridge Philosophical Society, Vol.43, pp 374-382.

Ursell, F. (1949), Surface waves on deep water in the presence of a submerged circular

cylinder,(I), Proceedings of Cainbridge Philosophical Society, Vol.46, pp.141-152.

Ursell, F. (1950a), Surface waves on deep water in the presence of a submerged cylinder,

Part I, Proceedings of Cambridge Philosophical Society, Vol.46, pp 141-152.

Ursell, F. (1950b), Swface waves on deep water in the presence of a submerged cylinder,

Part II, Proceedings of Cambridge Philosophical Society, Vol.46, pp 153-158.

Wang, S. (1970), On the hydrodynamic forces of twin-hulled vessels Proceedings Confer-

ence Coastal Engineering, Vol.12.3, pp 1701-1721.

Wang, S. (1981), Wave radiation due to oscillations of two parallel, spaced cylinders, Ocean

Engineering, Vol.8, pp 599-621.

48 ‘






