

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Achieving Business Excellence in Software
Quality Management

Michael Elliott1, Ray Dawson2, Janet Edwards2

1Software Quality Manager, AWE plc., Aldermaston, Reading, Berkshire. UK

2Department of Computer Science, Loughborough University, Loughborough, UK

Abstract

Many companies have had difficulties in achieving success with
software process improvement initiatives or have had adverse
experiences in implementing quality systems. With a plethora of
standards available and the numerous frameworks to apply best
practice, none appears to act as a panacea to guarantee fulfilment or
realise a true Return-on-Investment. This paper proposes a holistic
approach to software process improvement, describing a range of
supporting tools and methods highlighting a true understanding of
the customer base and associated cultures.

The research aim was to develop and evaluate a demonstrably
effective and efficient software quality management methodology
suitable for a technical company. To be effective the methodology
must deliver real process improvement conformance to the best
practice quality standards. To be efficient the methodology must
deliver a real Return-on-Investment.

A range of case studies are described including audits, self-
assessment, training, system design, marketing, and the people skills
associated with a consultation process are all examined in detail.
Each case study provided a further opportunity to measure and
analyse the success or otherwise of that method for further
refinement.

The research methodology has demonstrated its success as the data
collected during these case studies show that steady improvement in
implementing the software quality system has occurred year on year.
This success has been validated by third party ISO 9001 assessments
and has led to an enhancement in reputation. The approach has
overcome cultural resistance and changed working practices. With a
philosophy of customer care, consultation, and active engagement,
practitioners adopt best-practice quality management principles. The
cost effectiveness of this methodology means its adoption could be
considered by any organisation whether large or small.

1. Introduction

This paper documents a successful methodology for improving the level of
implementation of the software quality management system (SQMS) within a large
and diverse technical organisation. The claim for achieving excellence can be
justified by the significant improvements in the working practices used by software
and IT practitioners, feedback from third party companies assessing the
implementation of the SQMS, a noticeable change in culture and attitude from
practitioners towards quality systems in general, and the savings as cost benefits
gained from improved working practices.

The improvements in working practices are demonstrated by direct measurement
of the level in implementation of the SQMS over a nine year period. The
methodology improved the level from a baseline value of 34% to that of 81%.
This is considered an outstanding achievement by all stakeholders and validated by
reports from third party auditors on ISO 9001 assessment. These figures are the
average values for each year from a number of assessments conducted on software
systems throughout the Company, see Table 1.

The requirements of the SQMS had to take into account both the ISO 9001
standard, utilising the supporting guidance standard ISO 9000-3 and the Defence
Standard 05-95, Quality System Requirements for the Design, Development,
Supply and Maintenance of Software and the subsequent revisions

The research presented in this paper and research thesis [1] was facilitated by the
first author’s role as a Software Quality Manager in the organisation central quality
assurance group, with the responsibility for the SQMS definition, inline with the
contractual standards. He had at his disposal the internal audit team to check, or
perhaps more aptly, enforce compliance.

Of particular interest was the significant difference after the application of the
methodology described in this paper that occurred in behaviour from software
practitioners, the customers of the SQMS. At the initiation of the improvement
project, some components of the culture could be described as “thoughtless tick-in-
box compliance”. Some of the outputs from various processes mandated or
documents produced in response to the SQMS requirements could lack quality. A
detailed review of many of these documents would conclude that some were
produced; “just to get them out of the way”, indeed this was admitted by many of
the document or software system owners. From earlier research on the
implementation of the SQMS [2] and the related auditing process [3], it was
evident that there was a level of resentment in having to implement what were not
fully understood controls. The success of the improvement programme was to
provide software and IT practitioners with a good understanding of the SQMS
requirements, and to encourage active engagement with these customers to deal
with their concerns. As a result, more quality documents were produced that
contained the output of good decision making that improved both the effectiveness
and efficiencies of local working practices. It could therefore be demonstrated that

implementing the requirements of the SQMS truly added value and this could be
further emphasised by well maintained systems.

2. Literature Review

One of the major factors to investigate within this research is why auditing is not a
popular process [4]. Culturally, they could be seen as a necessary evil. According
to Wealleans [5], they are often viewed as a means to finding and recording of
trivial issues, and this has blighted the perception of the auditing process [5]. In
the “audit world” this is very clearly recognised, many publications focus on this
issue. Yet despite this understanding, the negative perception of the process has not
significantly improved, suggesting the new focus may not have been effective. It
is an assertion within this research investigation that a tangible cost benefit has to
be attributed to the corrected action, otherwise this activity will not necessarily
actually add value.

Many standards exist to provide a framework for a software quality management
system defining the organisational arrangements and the working processes. The
ISO 9001 standard [6] and the Software Engineering Institute’s (SEI) Capability
Maturity Model Integration (CMMI) (Carnegie Mellon, 2001) are often
contractually specified. The guidance (ISO 9004, 2000) to the revision of the ISO
9001 standard from 1994 to 2000 highlights eight principles for a successful
management system: customer focus, leadership, involvement of people, process
approach, system approach to management, continual improvement, factual
approach to decision making and mutually beneficial supplier relationships. As the
SEI CMMI conveys five levels of maturity for a company to be world class, the
initial key process areas to obtain the first level of maturity would be the most
important. These consist of: configuration management, quality assurance, sub-
contract management, project tracking and oversight, project planning, and
requirements management. There is a correlation between these two standards,
various management processes and requirements management, but there are also
some differences, suggesting disagreement on what would be a magic formula for
a software quality management system. Further correlation of the importance of
management processes and requirement management comes from the Standish
Research Group’s Chaos Report (Standish, 1994), which stated that the top eight
reasons why projects are cancelled or severely fail to deliver on time, cost or
performance, were: incomplete requirements, user involvement, lack of resources,
unrealistic expectations, lack of senior management support, changing
requirements, inadequate planning, system no longer needed. Again, five relate to
requirements management, and three to what would be considered general
management processes. The follow-up Standish Report (Standish, 2001),
highlighted its top ten factors for project success as: executive support, user
involvement, an experienced (project) manager, clear business objectives,
minimized scope, standard infrastructure, firm basis requirements, formal
methodology, reliable estimates, others, including: small milestones, proper

planning, and competent staff and ownership. Again there is some correlation, but
there are also differences.

Organisational culture does not feature highly in these standards or reports,
although, as Spencer et al. [11] state competency normally encompasses
motivation along with knowledge and experience. Culture is also conservative
about change. Wagner [12] also suggests that motivation can be influenced by
cultural factors. Indeed many excellent technical books on software quality
management do not focus on culture. Horch [13] warns of the pitfalls, starting a
software quality programme is doomed to failure with inadequate preparation,
misused terms, lack of planning and failure to recognise the individual role of
members of the organisation. Galin [14] suggests that having colleagues involved
in the development and, at least, the review of company procedures, will help
convince other colleagues to abide by them. The little attention to culture is
perhaps surprising, indicating that the effect of culture on the adoption and
implementation of a software quality management system has been under-
estimated [15].

According to Sandi et al. [16] training programmes are an essential feature of
organisational life. Training initiatives are widely acknowledged to be a salient
feature of the competitive organisation’s corporate strategy and, in times of great
change, learning is the key skill [17] Employees, managers and organisations rely
on training as a solution to enable issues to be resolved, yet Hale [18] reports that
only 35% of UK companies have measured the effectiveness of their training and
development programmes. To value and reward learning, an organisation must
have a method of determining performance in learning and gaining knowledge.
Morey and Frangioso [19] state that a method to assess the value of learning is to
measure the performance of employees in creating items of business value from the
learning. They suggest that for training to be effective it must have specific
objectives and outcomes which directly lead to business benefit. It is surprising
that despite heavy investment in training, organisations fail to evaluate adequately
the value or success of their training programmes and many that do, do so
inadequately [18]

The ultimate aim of the software engineering training was to improve the
application of the software quality management system. Training and education
are a key component in any improvement initiative. To further evaluate the
success of this training in terms of value, the financial benefits should be
considered as outlined by Philips [20].

Lee and Quazi [21] report that the recent increase in the use of self-assessment as a
process improvement tool has been, in part, due to organisations setting the goal of
attaining a recognised quality award. These awards include The Malcolm Balridge
National Quality Award (MBNQA), and The European Quality Award (EQA). An
integral part of obtaining such an award is to conduct self-assessment of
organisational performance against the award criteria or framework. A key
element of the self-assessment process is the question-set. Typical question-set
methods are pro forma or matrix as described by Samuelson and Nilson [22].

Samuelson and Nilson point out that responses to questions need to be carefully
managed as issues such as bias and inconsistency can distort analysis, though
inconsistency can be minimised with a suitably large number of samples to
“average-out” false variations. Waina [23] documents characteristics of the use of
self-assessment. In its simplest form it can be administered in one or two hours. In
this situation the disruption is low.

With the significant number and high profile of software project failures, as
reported by Standish [9], a considerable amount of research has been undertaken
on risk concepts to try and avoid these failures [24]. Jones [24] describes the
“Common Colds” of software management:

• Excessive schedule pressure – cultural issues that requires therapy to deal
with the sociological issues.

• Poor quality – technology problem with cultural aspect. Requires new
methods in measurement, defect prevention and removal, plus cultural
awareness of the true value of quality to the business.

• Inaccurate estimation – essentially a technological problem, but has a
cultural aspect. Requires good estimating and planning tools. However
measurement is needed for accuracy and this is where the cultural aspect
comes in.

Jones’ [24] philosophy is that the value of identifying the risks for each software
application is to proactively plan for the appropriate risk mitigation action.
Significantly these can be the quality assurance activities required from the
adoption of quality standards that could be captured in a quality plan.

In considering the cost-benefits and value of software quality or engineering
practices the effectiveness of reviews, particularly software inspections [25] are
often cited. For example, Freeman and Weinberg [25] report that they cut testing
costs by 50% - 80% or that they remove 80% - 95% of faults at each development
stage and Gilb & Graham [26] state that they can reduce schedules by up to 25%
and produce a 28 times reduction in maintenance costs and can cost only 5% - 15%
of development cost. These are supported by Yourdon [27] who states that testing
reviews or inspection can produce a 10 times reduction in faults reaching the
testing phase. If ever a case could be made for the value of a quality assurance
system, these few statements make it. The important of design information in a
maintenance regime is given by Bennett et al [28] in that with a complex system,
50% to 95% of the cost needed to make a change can be taken to understand the
program. The need for independent testing is highlighted by Freeman and
Weinberg [25] in their research that testers find only 30% to 40% of their own
faults.

As this research presents a cost-effective methodology, it is of interest to review
the themes of Cost-Benefit and Return-On-Investment (ROI) in the work of Rico
[29]. ROI is the quantification of the benefits received in financial terms of any
investment scheme such as the introduction of a SQMS or software process
improvement project. Waina [23] states that the drive to invest in these systems is
to make the business more successful by producing better products, more quickly

and cheaply whilst improving customer satisfaction. Significant investment is then
required in process definition and documentation, training and education, as well
as tools, technologies and techniques.

A powerful strategy to aid adoption of any management system is to demonstrate
its cost-benefits and ROI. As the start-up costs and effort are apparent in any
software process improvement or quality system initiative, a framework or method
to convey benefits will surely provide an incentive to accelerate its adoption. Rico
[29] analyses a number of techniques and standards in terms of training costs,
project costs, life cycle benefits, benefit-to-cost ratio and ROI. The adoption of
standards has additional preparation and assessment costs. The systems assessed
for ROI are Software Inspections [30] Personal Software Processsm [31] Team
Software Processsm [31], Software Capability Maturity Model (SW-CMM) [32]
ISO 9001 [33] and Capability Maturity Model Integration (CMMI) [7] The
conclusion from Rico’s analysis is that due to the high start-up cost for the
adoption of the standards SW-CMM, ISO 9001, and CMMI, they provide the
lowest ROI. According to Rico [29], the highest ROI was achieved by PSP, then
the software inspections.

3. Methodology

A project to improve the adoption of the SQMS was initiated at the completion of a
comprehensive assessment on the level of implementation [1]. This comprehensive
assessment, in fact, became the first step of a seven-step methodology for effective
implementation. These seven steps are described in the remainder of this
methodology section:

Step 1 : Establishing a Baseline
A sample of fifty-five software systems from a diverse range of applications, were
assessed against all the requirements of the SQMS. These requirements were
documented in a comprehensive audit question-set that were grouped into software
quality topics. These included general management, requirements management,
development, testing, use, configuration management, and disaster recovery.

A range of 0 to 4 implementation rating system was applied to each topic. This
rating system could be described as an anti-dote to the culture of “tick-in-the-box”
compliance as level 4 was a test that the local area valued their implementation of
the SQMS. Increased levels on the rating for a topic could be achieved with an
increase in the number of requirements for that topic that were complied with.
This has similarities to the Software Process Improvement Capability
Determination (SPICE) model of ISO Standard 15504 [34]. However, level 4
could not be achieved unless the initial actions to implement the SQMS were
updated when changes occurred, so that the system retained its integrity and was
maintained. This would act as a demonstration that the local area felt what had
been implemented was of sufficient value to be maintained. This provided an
indication that SQMS requirements were an established way of working and had
become institutionalised, and not completed and then forgotten. Each system

assessment attracted a pro-rata percentage of implementation that was collated to
calculate a company average for the year [1]. The result came to 34% and this was
a concern for senior management. Of particular concern was that neither the ISO
9001 assessments for certification nor the internal audit process had raised any
major issues. It was directed that corrective action for improvement had to be
conducted in a low profile manner until significant improvement could be
demonstrated. A programme of assessments continued each year as can be seen in
Table 1. Unfortunately, due to a temporary reassignment on to other tasks for most
of the fourth year, only five assessments took place. The assessments were
conducted on business critical software systems that were all well managed and
demonstrated a high degree of compliance. Unfortunately due to the low sample
the data is not representative.

Step 2 : Gathering Feedback from Users
In parallel with Step 1, during the assessments comments, problems and other
barriers to adopting the SQMS were gathered. These issues were documented as
“causes” (e.g. direct, contributory, root) for non-compliance on the assessment pro-
forma. There were clear themes presented in these comments. There was certainly
a significant cultural resistance to the procedures which, in many cases, stemmed
back to the original ISO 9001 certification process, when many practitioners felt
that their concerns on the system definition were not taken into consideration. As a
result, a culture of annoyance and an assumption of lack of relevance was evident
concerning the SQMS. This would present a significant challenge to improvement.
From a technical viewpoint it was clear that some terminology was not understood,
and termed as “quality speak”. There was criticism that all the procedures had to
be read thoroughly before you knew what rules to follow. This was often
described as an inability to visualise the various processes. There was a lack of
understanding of many software quality and engineering concepts. Best-practice
requirements management, life-cycle selection, configuration management and
effective reviews were not fully understood.

Step 3 : Review and Revision of Quality Procedures
To address the lack of clarity of the procedures and deal with some of the other
comments or criticism of the SQMS, all the procedures were reviewed and revised.
Based on the feedback from Step 2, key considerations for the revision were to
deal with the lack of coherence of the current system, visualisation of processes
and the provision a simple framework or introduction to the main requirements.
The solution to the issue of applicability was to develop a system to grade or tailor
the number of requirements based on risk and complexity. The re-drafted
procedures formed the basis of a significant consultation process. The drafts were
sent out for comment, and were facilitated by a number of presentations and
workshops. The aims of this consultation were marketing the benefits of
implementing procedures and dealing with any concerns so as to gain the buy-in
from the practitioners, the users of the system. It was hoped that this would help
overcome much of the resistance that had built-up over the years. These
workshops and presentations certainly raised the awareness of the procedures, but
it became evident that education on software engineering, quality principles and
terminology conversion was required. This whole process took four months,

however, the improvement in understanding and reduction in resistance meant this
time was well spent and ultimately very effective.

Step 4 : Facilitated Self-Assessment
The next phase of the improvement programme was to carry-out a series of
facilitated self-assessments. This would continue the non-threatening and low
profile approach established from the consultation process. Also, when advice and
guidance was requested from the central quality group by software developers and
IT practitioners, they were encouraged to conduct a self-assessment. However, it
was not mandated to engage in a process improvement project. In addition,
practitioners were encouraged to attend a training course on software engineering
principles and quality. Self assessment was particularly useful in support of the
training as not only did it baseline the current level of implementation, but it
helped gain an insight as to the amount of understanding of software engineering
or quality processes. This helped tailor the training to specific individual training
needs and present examples that were more relevant to attendees.

Step 5 : Software Engineering Training
Step 5 was carried out in parallel, and working closely with Step 4. The first
training course was started in late in the second year. The philosophy for training
was to provide a good introduction to the principles of software engineering and
link this into how to implement the company software procedures [35]. A
partnership was established with a training provider that not only had a ready made
software engineering course, but also had experience of implementing the methods
and techniques from a diverse range of software systems. The first author
contributed to the training by providing the links to the Company Software
Procedures. A feature of this part of the training was to not only provide examples
of good practice but also to identify some situations where people had
misinterpreted the requirements in a manner that was slightly humorous. This
helped give the course a lighter feel as software engineering and quality can
otherwise be a dry subjects.

From the onset it was felt important to ensure attendees felt the course was of
value. This was not only achieved through the monitoring of course evaluations
but also by comments requested at the end of each course tutorial. The evaluations
consisted of a comprehensive set of questions on course objectives, value,
applicability, joining instructions, food, etc., to be answered on a six point scale.
After a number of courses it became clear that the company specific elements was
considered the most valuable, so the course altered to become a completely
bespoke course, tailor-made to the company software system. Nearly all tutorials
were geared to further implementing the SQMS requirements. Attendees would
document there own processes, collate inventories and assign categories and
software product baselines. They also learned to understand system measures and
metrics and apply their own. The courses were not made compulsory but the skills
provided by the course were documented in a competency framework within the
company software procedures. Over a six year period, 130 people completed the
training course, and a total 69 full assessments were conducted as part of the
training.

Step 6 : Providing Support and Guidance
Step 6 was also undertaken in parallel with Steps 4 and 5. Another issue that
needed solving that became apparent during the consultation process was the
considerable time was spent explaining many aspects of the software quality
system on the telephone. Frequent questions were on some quality terminology
and how to implement various requirements in a range of differing situations.
There were many requests for examples. These questions continued after the
procedures were published. The role of central quality assurance could be
compared to that of a helpdesk. Unfortunately many of these calls would last
typically 20 minutes with a significant number around 45 minutes. The response to
this required a significant resource and presented a clear need to support or
underpin the main procedures with guidance information. Certainly the ability to
refer, in the first instance, to a document would alleviate the amount of time spent
of the phone. In response to this need, a programme was established to produce
guidance documents. A total of twenty-two guidance documents were issued to
provide the detailed explanation, examples and templates to streamline software
engineering document production. The first document produced was a template on
how to produce a software control plan. As this would provide the biggest return-
on-investment and immediately improve both the quality of the processes and
significantly raise the level of compliance. Thereafter, the guidance was produced
on a priority basis that reflected the weakest implemented processes, such as
software configuration management and guidance for conducting reviews, and the
most frequently asked questions, such as “what is the category of my software?”
and “what is the difference between verification and validation?”

Step 7 : Monitoring and Evaluation
The final step is closely associated with Step 1, Establishing a Baseline. The
exercise to assess the level of implementation of the SQMS was continually
monitored with each new quality assessment, with the level of compliance with the
SQMS being recorded. At the end of each year the results were compiled into
Tables 1 and 2, to gain a measure of what improvement in implementation was
being achieved, which then gave a measure of the success of the overall
improvement methodology.

In practice, all the above steps were subject to many iterations. Each self-
assessment helped identify areas of improvement in the training, in the support and
guidance and even in the quality procedures themselves. The questions trainees
asked in training sessions also led to improvements in support documentation and
the greater understanding the training imparted led to improved self-assessments.
The questions received in the support process identified areas of training need and
the training courses and support contacts helped recruit further candidates to carry
out self assessments. This continual improvement in all of the steps in the
methodology was an essential part of the approach, allowing the improvement
process itself to grow in its effectiveness as it was being carried out and developed.

During the final two years of the research, some of the recommendations from the
earlier work were tested. This again formed quite an integrated approach as the
recommendations on auditing were combined on a new audit programme
mandating the self-assessment spreadsheet as a check-list [36]. Further, the cost
models described were also included in the self-assessment spreadsheet[36] to test
the response of financial factors being applied to inefficiencies related to
inadequate practice, or in auditing terms, non-conformance.

The audits and assessment conducted for years 8 and 9 were from management
areas that they had not engaged on improvement initiatives over the last few years
or had not undertaken the self-assessment as part of the training programme. The
selected areas were placed on the company audit programme with the self-
assessment spreadsheet mandated as part of the audit process with guidance and
support available when needed.

As audit deficiencies were raised as formal non conformances they were presented
to senior management to ensure support and drive for improvement actions. So
the formality of the audit process was used to maximum effect.

A further research objective was to test the Cost-Benefit Audit Methodology (C-
BAM) model described in an improved process for internal auditing [37] and
depicted in Figure 1. The concept was to include example inefficiencies for non-
compliance and have the cost models integrated in the self-assessment spreadsheet.
The summary page on the spreadsheet contained the percentage implementation
and also an inefficiency rating cost based on not fully complying with the SQMS.
The idea was this would stimulate debate on the cost benefits of applying best
practice methods and to further the model to the costs to the software system and
management arrangements under investigation. The cost benefit of improvements
and the resultant savings could then be collated to demonstrate the cost benefit that
improvement actions would provide. The response was quite mixed, from genuine
interest to develop the cost models to fierce criticism and challenge to the concept
of even trying to include it in an audit process.

Figure 1. Improved top level process map for internal auditing

Feedback

Improve-
ment action

Conducting
Audits

Audit
Planning

Impact
Analysis

Benefits &
Savings

4. Results

Table 1. depicts the assessment results of software systems checked against a
question set based on practices within a software quality system. Up to one
hundred questions could be applicable depending on the type of software system.
The assessments were evidence based as documentary evidence was required to
prove relevant practices had been adhered too. The results show the average value
of all systems assessed that year.

Table 1. Software System Assessment Results

Year Number of Systems Assessed Average %
implementation

1 55 34%
2 18 46%
3 19 54%
4 5 n/a
5 22 60%
6 21 66%
7 16 74%
8 29 73%
9 51 81%

The assessment question set was compiled under seven main headings. The
figures presented in Table 2 are the average values of all system that year for that
particular subject.

Table 2. Software Quality Topic Percentage Improvements by Year

Topic Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
General

Management
36% 51% 57% n/a 61% 65% 72% 78% 81%

Requirements
Management

26% 32% 42% n/a 57% 71% 76% 82% 83%

Development
Processes

26% 44% 48% n/a 59% 60% 69% 71% 80%

Testing
Arrangements

40% 53% 60% n/a 68% 71% 76% 79% 81%

System
Use

n/a 59% 70% n/a 74% 75% 94% 78% 84%

Configuration
Management

20% 26% 33% n/a 50% 52% 67% 45% 73%

Disaster
Recovery

36% 47% 61% n/a 58% 57% 74% 77% 85%

5 Analysis of Results

The results in Table 1 show a steady improvement in the overall level of
implementation. As well as the increase in the yearly average, the number of
systems below 40% reduced from 27 in year 1 to just the one in year 6. By year 9
the lowest assessment result was 48%. Although there was a programme of
assessments a significant number of systems assessed each year came from either
people requesting advice or from attending the training course. In this respect the
sampling of assessments contained an element of randomness adding to the
validity of the improvement.

Another indication of the general upward trend is that a number of systems were
assessed more than once and on each occasion an improvement was achieved. The
owners were therefore implementing further best practices to implement the SQMS
through their own initiative. This is further indication that once understood the
SQMS requirements are seen as adding value.

The topic improvements in Table 2 provide a good indication that the targeted
training, guidance and support emphasised on both configuration management and
requirements management have had significant impact as they are the topics with
highest improvement. The most significant improvement in the development
section was in the knowledge provided for design decisions based on reliability and
maintenance factors and the effective selection of appropriate life cycles. The
significant increase in the “system use” section revolves around the fact that people
can see an immediate payback to supporting the use of the software system with
guidance and work instructions. Customer and user satisfaction provides its own
drivers. .

It was reassuring that management areas visited in year 8 and 9 that had attended
the training course but had not undertaken self-assessment had reasonable scores,
despite concerns to the contrary. The company average score of 73% for year 8 is
a good reflection on the progress for the process improvement actions identified
from both the audit and self-assessment. It was noticeable that the drive to
complete audit actions which are tracked on a company data base provided more
impetus to improvement action than normally witnessed through facilitated self-
assessment without audit. Again the drive given to progress audit action
accelerates the audit and self-assessment process improvement activity. The final
improvement to 81% is seen as an outstanding achievement.

This pilot scheme to include financial models for cost benefit analysis was
successful as one or two areas engaged in the discussion on how accurate the
models were to identifying the cost of non conformance and the associated cost
benefits and savings attributed to improvement actions. The challenge to the
approach described in the method section must be noted and the conclusion here is
that the request to consider costs to non-conformance was too much of a surprise
and seen as a threat to local management.

6. Conclusion

It is clear from the data that steady improvement in implementing the software
quality system has occurred year on year and that the overall approach in
facilitating these improvements has been successful and effective.

An independent validation of the improvement is given by the ISO 9001
Certification process where the number of problems found in software issues had
been greatly reduced. Significantly, only one, minor nonconformity had been
raised in the last three years of the research. The third party audit reports frequently
praised the holistic approach being taken to improve compliance to the SQMS.
The training methodology was found to an exemplar when compared against best
practice evaluation frameworks and industry in general.

Perhaps the most pleasing aspect of the improvement is that it reflects a difficult to
achieve success for software process improvement projects that this approach had
truly won the hearts and minds of practitioners to bring about a change in culture.
With a philosophy of customer care, consultation, and active engagement,
practitioners now produce documentation of good quality that, in turn, facilitates
good decisions that have proved to be effective and efficient.

The research has demonstrated a practical solution to achieving process
improvement for software quality management. The cost effectiveness of the
approach is attractive to any organisation, as value and a return-on-investment are
keys to success. Any system that has a beneficial impact on “the bottom line” will
win. Another pleasing aspect of the research is that elements of the methodology
have also proved successful individually and, as such, each could be applied in
their own right.

As this research has surfaced methods that have not been addressed elsewhere by
current literature and the practical aspect of the level of achievement have been self
validating, the author believes the findings of this research make a significant
contribution to the world of process improvement. With the number of process
improvement failures still making headlines, it is suggested that companies adopt
the suggestions that have emerged from this research to add another dimension to
the effectiveness of their process improvement programmes.

7. References

1. Elliott, M., (2008), Achieving Business Excellence in Software Quality

Management, PhD thesis, Loughborough University, UK
https://dspace.lboro.ac.uk/2134/8121

2. Elliott, M., Dawson, R.J. and Edwards, J., (2007a), An Analysis of Software
Quality Management at AWE plc. Software Quality Journal, Volume 15,
Number 4, pp 347-363, Springer Netherlands, ISSN 0963-9314.

3. Elliott, M., Dawson, R.J. and Edwards, J., (2006), Towards real process
improvement from internal auditing—A case study, Software Quality Journal,
Volume 14, Number 1, pp 347-363, Springer Netherlands, ISSN 0963-9314.

4. Cangemi, M. P. and Singleton, T. (2003), Managing the Audit Function, John
Wiley & sons, Hoboken, New Jersey, USA, ISBN 0-47128-119-0.

5. Wealleans D. (2000), The Quality Audit for ISO 9001:2000, A Practical
Guide, Gower Publishing Company, ISBN 0 566 08245 4.

6. International Standards Organisation (ISO), (2000), ISO 9001 : 2000 Quality
Management Systems – Requirements

7. Carnegie Mellon University, (2001), Capability Maturity Model Integration,
Software Engineering Institute, Pittsburgh USA.

8. ISO 9004:2000, (2000), ISO 9001 : 2000 Quality Management System –
Guidelines for performance improvements, International Standards
Organisation, Geneva, Switzerland

9. Standish Group International, (1994), The Chaos Report, Standish Group web
site, www.standishgroup.com, (visited November 2005)

10. Standish Group International, (2001), Extreme Chaos, Standish Group web
site, www.standishgroup.com, (visited November 2005)

11. Spencer L.M., McClelland D.C., Spencer S.M., (1992), Competency
Assessment Methods, History and State of the Art, Paper presented at the
American Psychological Association, Annual Conference, Boston, USA.

12. Wagner H., (1999), The Psychobiology of Human Motivation, Routledge,
Taylor & Francis (UK), Abingdon, Oxon., England, ISBN 0-415192-95-7

13. Horch, J.W. (1996), Practical Guide to Software Quality Management,
Artech House Publisher, Boston, USA, ISBN 0-89006-865-8

14. Galin D., (2004), Software quality assurance, from theory to implementation,
Pearson Education Limited, Essex England, ISBN 0-201-70945-7

15. Siaksa S, and Georgiadou (2002), Empirical Measurement of the Effects of
Cultural Diversity on Software Quality Management, Software Quality
Journal, Issue 10 No 2, September 2002, pp 169-180, ISSN: 0963-9314

16. Sandi, M. and Robertson, I.T., (1996), What should training evaluations
evaluate? Journal of European Industrial Training Vol. 20/9 pp 14-20 MCB
University Press, ISSN 0309-0590

17. Tennant, C, Boonkrong, M. and Roberts, P.A.B., (2002), The design of a
training programme measurement model, Journal of European Industrial
Training Vol. 26/5 pp 230-240 MCB University Press, ISSN 0309-0590

18. Hale, R., (2003), How training can add real value to business: Part 2,
Industrial and Commercial Training, Vol. 35 No 2 pp 49-52, MCP UP
Limited, ISSN 0019-7858

19. Morey, D. and Frangioso, T. (1998), Aligning an organization for learning:
The six principles of effective learning, Journal of Knowledge Management,
Vol. 1 No 4, pp 308-314, Emerald Publishing, ISSN 1367-3270

20. Phillips, J.J. (2002), Return on investment in Training and Performance
Improvement Programs, 2nd ed., Butterworth-Heinemann, Woburn, MA.

21. Lee, P. and Quazi H. A. (2001), A Methodology for Developing a Self-
assessment Tool to Measure Quality Performance in Organisations,
International Journal of Quality and Reliability Management, Vol 18 No 2 pp
118-141, MCB University Press, 0256-671X

22. Samuelson, P. and Nilson L (2002), Self-Assessment Practices in Large
Organisations, Experiences from using the EFQM Excellence Model,
International Journal of Quality and Reliability Management, Vol 19, No 1,
pp 10-23, MCP UP Limited, 0265-671X

23. Waina, R.B. (2001), Five Critical Questions in Process Improvement, web
site http//www.chips.navy.mil/ archives/
01_summer/five_critical_questions_in_proce..htm. visited April 2006.

24. Jones Capers (1994), Assessment and Control of Software Risks, Yourdon
Press, Prentice Hall Building, Englewood Cliffs, New Jersey, ISBN 0-13-
741406-4

25. Freeman & Weinberg, (1991), Handbook of walkthroughs, inspection and
technical reviews, Dorset House Publishing Co Inc.,U.S, ISBN 0932633196

26 Gilb, T. and Graham, D., (1993), Software Inspections, Addison-Wesley,
Massachusetts, USA, ISBN 0-201631814

27. Yourdon, E., (1989), Structured Walkthroughs, Prentice Hall, New Jersey,
USA. ISBN 0138552893

28. Bennett K H, Munro M, Knight C & Xu J (2000). Informatics Centres of
Excellence; Research Institute for Software Evolution. IEE Computing and
Control Engineering Journal 11(4): 179-186.

29. Rico, D.F. (2002), Software process improvement: Modelling return-on-
investment (ROI), Software Engineering Institute (SEI) Software Engineering
Process Group Conference (SEPG 2002) Phoenix, Arizona.

30. Fagan, M.E. (1976), Design and code inspections to reduce errors in program
development, IBM Systems Journal, 12(7), pp 744-741.

31. SMPersonal Software Process, PSP, Team Software Process, TSP are service
marks of Carnegie Mellon University.

32. Humphrey W.S. (1989), Managing the Software Process, Addison-Wesley,
Massachusetts, USA, ISBN 0-201180-95-2

33. ISO 9004:2000, (2000), ISO 9001 : 2000 Quality Management System –
Guidelines for performance improvements, International Standards
Organisation, Geneva, Switzerland

34. ISO 15504, (1998), Software Process Assessment, International Standards
Organisation, Geneva, Switzerland

35. Elliott, M., Dawson, R.J. and Edwards, J., (2009), Providing demonstrable
return-on-investment for organisational learning and training, Journal of
European Industrial Training, Vol. 33 Iss: 7, pp.657 – 670, Emerald Group
Publishing Limited, ISSN: 0309-0590

36. Elliott, M., Dawson, R.J. and Edwards, J., (2009), An evolutionary cultural-
change approach to successful software process improvement, Software
Quality Journal, Volume 17, Issue 2, pp 189-202, Springer Netherlands,
ISSN 0963-9314

37. Elliott, M., Dawson, R.J. and Edwards, J., (2007b), An Improved Process
Model for Internal Auditing. Managerial Auditing Journal, Volume 22,
Numbers 6 and 7, Emerald Group Publishing Limited, ISSN 0268-6902.

 British Crown Copyright 2013/MOD

	Abstract

