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Abstract: The methodology used in part 1 [1] of the work for single-cell thin-walled closed-
section composite beams is extended to multi-cell thin-walled closed-section composite
beams. The effect of material anisotropies is fully considered on the mid-surface shear strain
of all the cross sectional members including skin walls and internal members. Numerical
comparisons with ABAQUS finite element simulations are performed for three-cell box and
elliptical beams with a variety of laminate layups under various loading conditions and
excellent agreements are observed. Significant deficiency of some existing models are shown.

1. Introduction

An accurate structure mechanical model has been developed in part 1 [1] of the work for
TWCSCBs with single-cell cross sections. In this part 2, the model is extended to TWCSCBs
with multi-cell cross sections which are much more popular in several industrial sectors. The
extension will involve more complex analytical operations than that for TWCSCBs with
single-cell cross sections. All the kinematic developments remain the same and are not
repeated here. However, details will be presented here to determine the local shell wall axial
warping displacement, the mid-surface shear strain and the global beam stiffness matrix.

2. The TWCSCBs model in [2-4]

Fig. 1 shows the multi-cell cross section of a TWCSCB with its shear flow diagram.
Although it is in a relatively simple one-direction multi-cell arrangement, the principle for the
development of present 1-D TWCSCB modelling will be thoroughly demonstrated and
remains the same for any arbitrary multi-cell arrangements.

Eg. (13) in part 1 of the work [1] gives the local shell wall mid-surface warping
displacementw_(s,z)as
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W, (s,2) = —@'(2) j:r(s)ds + I:yszds +W,(0,2) (1)

with w (0,z) = C’1§[d)’(z)j;r(s)ds - josﬁzds]ds and C = §ds. Note that the circular integration

symbol § denotes an integration over the whole cross section perimeter including both the
skin and internal shell walls and starting point s =0is arbitrary. It is seen from Eq. (1) that
the shell wall mid-surface shear strain 7, needs to be determined first in order to determine
the shell wall mid-surface axial warping displacementw (s,z). Applying Eq. (1) to any one
complete cell, e.g. the R cell 1-2-3-4-1 as shown in Fig. 1, gives

§ 7.ds = 2A,'(2) ¥y

where 2A; = ferds with A, being the enclosed area by the R cell. In order to determine 7, ,

Librescu and Song [2] assumes a constant shear flow g, developed within each cell under the
St.Venent pure torque. Therefore, the resultant shearing force due to torsion on the four walls
of the Rn cell are N2 =qo, N2 =0, -0, N3 =0q, N2t =0, —Qg., . respectively.
Further, the work [2] makes the same treatment as that for single-cell cross section. That is,
N., = N,; =G(s, 2)t(s, 2)7,,(s,z) where G(s,z) is called the equivalent shear modulus and
t(s,z) is the thickness of the shell wall. However, it is not reported in the work [2] how to
determine the equivalent shear modulus G(s,z) in the case of generally laminated composite
materials. Now, using the above two assumptions Eqg. (2) becomes,

, 1
() (Z) = K[qRé‘lZ + (qR - qR—1)523 + qR534 + (QR - qR+1)541] (3a)
R
where
5 = (@s/at) (3b)
This can be rearranged as:
, 1
D'(z) = (_ qulé‘R,R—l + qRé‘R,R - qR+l5R,R+1) (4a)
2Ax
where
O ra= '[R'R_l(ds/Gt) (4b)

O = §R’R(dS/Gt) (4c)



Op o1 = J.RYRH(dS/Gt) (4d)

OrRr-1 represents the integration on the wall bounded by the R cell and the (R-1)w cell; drr
denotes the closed integration on the Ri cell and drr+1 represents the integration on the wall
bounded by the Ru cell and the (R+1)w cell. Assembling Eq. (4) for all the N cells shown in
Fig. 1 gives

[HEa}= {1}’ (5a)
where
af={o, q - Qe Gy Q) (5b)
_ T
It=ft1..1..11 (50)
[ H, -H, 0 0 |
-H,, H,, 2,3 0 0
0 0
[H]: 0 0 —Hgpry Her —Hegra 0 0 (5d)
0 0
0 - HN—l,N—Z HN—l‘N—l - HN—l,N
L 0 0 _HN,N—l HN,N |
where the elements Hi; are expressed as:
1
Hi :2_Ae-5i’j (5e)

From Eq. (5), the shear flow of each cell, as a function of sectional rate of twist,®'(z), is
given as

aj=1{J o' (6a)
where:
=M (6b)
Finally, the shear flow distribution in each wall can be calculated as:
{ql Q2,1 qR qR+1,R qN,N—l QN}T :{‘Jl ‘]2_‘]1 ‘JR ‘]R+1_‘]R ‘]N_‘JN—l ‘]N}T(D’ (7)

where the subscript of R denotes the walls of the R cell that are not bounded with any other
cells, e.g. the wall 1-2 and 3-4 in Fig. 1. Whereas the subscript of R+1, R denotes the wall
bounded by (R+1)u and R cells, for example the wall 4-1 in Fig. 1. By using the earlier
assumption N, ~ N, =G(s,2)t(s,z)7,,(s,z) the distribution of shell wall mid-surface shear



strain for a multi-cell section in the work [2] becomes:

—R+LR —=N,N-1 =N

{77312 7752211"' 7753 Vs o Yy Vs }T

B EUCHRCERATCH VY IR D CINRE Y (8a)
B (‘]N_‘]N—l)/(Gt)N,N—l ‘]N/(Gt)N

Eq. (8a) can be written in a more compact form as
7(8:2) =w (8)®'(2) =y (s)K, (2) (8b)

where the location of wall segments is represented as s=(1),(2,1), ... (R), (R+1,R), ... (N,N-
1), (N). y is called the torsional function of a multi-cell closed-section.
Instead of assuming constant shear flow N, ~ N,; = G(s, 2)t(s,z)j,(s,z) on each shell

wall segment [2], the work [3,4] assumes a constant quantity 7,,t . The torsional function y in
the work [3,4] therefore becomes:

V/(S) = {‘Jl/tl (Jz - Jl)/tz,l ‘]R/tR (‘]R+1 - ‘]R)/tR+1,R (‘]N - ‘JN—l)/tN,N—l ‘JN /tN }T (9)
The 6 integrations corresponding to Egs. (4b,c,d) change to be

Opp1 = JR’R_l(dS/t) (10a)
Sen =1, (ds/t) (10b)
Orpa1 = J.R'RH(dS/t) (10c)

The mechanical meaning of constant quantity 7t is unclear for composite materials.

Now, substituting Eqg. (8b) into Eq. (1) gives the shell wall mid-surface axial warping
displacement.

W, (5,2) = —a(s)®'(2) (11)

where w(s):n(s)—C*ljﬁnds is the warping function with n(s):J':[r(s)—y/(s)]ds. It has

same form as that for single-cell cross section as expected. Then, the shell wall mid-surface
axial strain &, is expressed as in terms of the global beam strain and curvatures, which is the

same as that in Eq. (18) in part 1 [1] and is recorded here.
g, =€, +Y(S)K, + X(9)K, + o(s)K, (12)

The 1-D multi-cell TWCSCBs constitutive equations can then be established in the same
way as that for the 1-D single-cell TWCSCBs by replacing the single-cell torsional function
with the multi-cell ones given here. The details can be found in Eqgs. (A18-32) in part 1[1] of



the work.
The shell wall mid-surface shear strain 7, in Eq. (8b) and the axial strain £,,in Eq. (12)

serve the basis for the mechanical modelling in the work [2-4]. It is worth to repeat the
following point made in part 1 [1] of the present work. Eq. (8b) is the key feature in works [2-
4] in which the material anisotropies in TWCSCBs are not considered. It gives the solution of
the local shell wall mid-surface warping displacement W (s,z) in Eq. (11) which produces

the local shell wall mid-surface warping axial strain o(s)K, in Eq. (12) and. The part 1 [1] of
the present study has proved that o(s)K_ has small effect on the modelling accuracy. Hence,

the axial strain in Eq. (12) is kept in use in the present work although a slightly more accurate
approach can be achieved with much more complications to use the y_, determined in next

section. Part 1 [1] of the present study has shown that the adoption of Eq. (8b) can introduce
gross error on y,, and consequently on the accuracy of modelling. In next section the 7, will

be determined by using the material constitutive laws of local shell wall.

3. The present TWCSCBs model

From the constitutive equations of local shell wall given in Eq. (22) or (23) in part 1 [1], the
shell wall mid-surface shear strain 7, reads

Vs =Su€y + SAZEZZ + S43|Zsz +3uN,, (13)
where S;; are given in Appendix Eq. (A2) of part 1 [1]. Substituting Eq. (13) into Eg. (1)
gives,

§R (841522 + S42’?22 + S431?52 + S44st )dS = 2AeRI<XY (14)

The resultant shear force Ns; can be considered in two parts, namely the constant St.\enant
torsional shear flow N, and the variable bending shear flow N, i.e. N, =N ; + N;.

Then, Eq. (14) becomes,
§R (841522 + S42’?22 + S43’?52 + S44stT + S44N'szB }jS = Z'A\eRK XY (15)
Since §R(S44NSZB )ds =0 for symmetrical cross-section and negligibly small for most of the

closed-cross sections in common applications, N
the bending shear term §R (544st3 )ds

§R (844 N siT )dS = ZAeR K Xy = §R (841§zz )dS - §R (842’?22 )dS - §R (843’?52 )dS (163)

Replacing N, by shear flow q for simplicity, the left-hand side of Eq. (16) can be considered
for each wall segment as:

can be solved from Eq (15) by neglecting

szT



§ SuNgrds = qR—lé‘R,R—l + qR5R,R - qR+15R,R+1) (16b)

where:
Oppa = IR‘R_lsts (16¢)
Sur = §R S,,ds (16d)
Oppsr = -[R,R+1S44ds (16¢)

Using Eq. (12) for £,, and K, kSZ in Eqg. (8) in part 1 [1], the left hand side of Eq. (16a)
becomes,

2ARK _f';R( 1€z )dS i( 12Kz )dS §( 13K, )dS
=c, (§R SlAds +K, (§R (SLY - S,, cosw)ds)+ K, @R (S X +S,,sin a)ds) (16f)
+K,y (2§R S, ds+2A, )+ KQGR (S0 Sz4q)ds)

Note that the quantity q in Eq. (16f) is the normal distance from the global axis OZ to an
arbitrary point (s, z) on the shell wall mid-surface as shown in Fig. 1 in part 1 [1]. Now,
assembling Eg. (16) for all the N cells shown in Fig. 1 gives

[sKa=[Ple} (17a)
where
51,1 _51,2 0 0 |
_52,1 52,2 _52,3 0 0
0 . . 0
[5]= 0 0 _5R,R—1 5R,R _§R,R+1 0 0 (17b)
0 0
0 —Onan-2 Onaana  —Onaan
i 0 0 —Ouna  Onn )

i §1814ds §l(Sl4Y —8'24 cosw)ds ﬁ(SMX + ;24 sin a)ds 2§1534ds +2A o ﬁ(suw—. 824q)ds i

[P]= §Rsl4ds §R(814Y—§24c05a)js §R(Sl4x+§24sina)xis 2§R834ds+2AR §R(S a)—824q)ds

_§N Sl4ds N (814Y - 824 cow}js N (814X + 824 sin a)ds 2%\ 834ds+ 2A R fN ( 14a) 824q)d
(17c)
{g}: {ez Ky Ky Ky Kw}T (17d)



The shear flow developed in each cell {g} is then solved in terms of the global strain and
curvatures {¢}. That is

faj=I¢Ke} (18a)
where
[¢]=[6]°[P] (18b)
Finally, the shear flow distribution in each wall can be calculated as:
0, I {é/l.j}

q?,l {52,1}_ {[;1,1'}

0 || el
qRJ.rl,R - {gR+l,j}._{é/R,j} {g} (19)

qN,.N—l {gN,j}_.{CN—l,i}
a ) | )

where {CRJ} (j=12,...,5) is the Rt row of the matrix [g] Replacing the shear flow symbol

q by the symbol N used in local shell wall constitutive equations, the constant shear flow at
each wall segment is given as:

stT (S) = (‘}:s,l)ez +(§s,2)KX + (és,:%)KY + (55,4)KXY + (555)Kw (20)
The location of the wall segment is s=(1),(2,1), ... (R), (R+1,R), ... (N,N-1), (N)
corresponding to Eq. (19), and & ; (J=12,..,5) can be easily calculated from Eq. (19)
using the matrix [;] in Eq. (18b). Now, substituting Eg. (20) in to Eq. (13) and neglecting
bending shear flow give the shell wall mid-surface shear strain y, . Finally, the 1-D multi-cell

TWCSCBs constitutive equations can then be established in the same way as that for the 1-D
single-cell TWCSCBs in part 1 [1] of the work. That is,

{Fz M, M, M, MQ}T:[EU]{EZ Ky Ky Ky Km}T (21)

The details of the stiffness matrix [E;]are given in the Appendix.

4. Numerical validations

The 1-D multi-cell TWCSCB model in Eq. (21) has been implemented in a 1-D beam
finite element similar to that in the work [3,4]. For the purpose of convenient comparison, the
model in the work [2,3,4] and the present model are designated as Model 1 and 2 in the



following text, respectively. The numerical results calculated from both models are compared
with results from an ABAQUS shell model. The four-node linear quad-4 S4R5 shell element
from ABAQUS element library is employed [6].

The first validation example concerns a three-cell cantilever box beam as shown in Fig. 2.
The box beam consists of three equal cells. The material properties are summarized as

E, =148GPa, E, =9.65GPa, Gip =4.55GPa, v1p =0.3

Similar to that in part 1[1] of the work, four loading cases are considered. They are the axial
load F, , two transverse loads F, , F, and torsional moment M,. The loads are applied

individually at the free end of the box. Five different layups are studied. They are layups in
[5] [45%/90°] , [60%70°/80°], symmetric layups [-75%75°]s , anti-symmetric layups [70%-20°],
and quasi isotropic layups [75°790%-75°]. Note that all the layups are counted in the LSWCS
nsz from n=-t/2 and the fibre angle & in Fig. 1 of part 1 [1] of the work is measured relative
to s and not the usual axial axis z. The direction of s axis is anti-clockwise along the skin shell
wall and downwards and upwards along the left and right webs, respectively. Table 1 shows
the free end displacements and rotations from both models and the four-node linear quad-4
S4R5 shell element from ABAQUS. For symmetric and quasi-isotropic laminate layups, the
results predicted by both models are identical and compares well with ABAQUS simulations.
For layups [45/90], the difference between the two models becomes clearly visible but not
significant. Model 2 achieves better accuracy than Model 1 comparing with the ABAQUS
benchmark. For arbitrary layups [60/70/80] and antisymmetric layup [70/-20]2, Model 2
achieves consistently close agreement with ABAQUS whereas gross errors are found in
Model 1.

The failure of Model 1 can be seen as a consequence of its inappropriate application of the
shell wall mid-surface shear strain in Eq. (8) to a composite beam. The shear strain y, for a

composite beam should be explicitly defined by Eq. (13) indicating that the shear strain y, of

a composite shell is not only related with shear flow Ns; but also depends on the material

coupling with axial strain£,, , and curvaturesk,, andk_, .

The causes of significant errors in calculating the bending stiffness are similar to those
observed in the analysis of the single-cell TWCSCBs in part 1 [1] of the work. The A and
Azs decide the magnitude of ki and ks, which ultimately affect the magnitude of AE2, and
AEszs. Unlike the single-cell TWCSCBs of which axial, axial-twist coupling and torsional
stiffnesses were unchanged between the Model 1 and 2 regardless of laminated layups, the
axial, axial-twist coupling and torsional stiffnesses of the multi-cell box beam varies between
the two models for different laminate layups, as shown in Table 1. Assessments of the
stiffness difference, e.g. AE11 and AEas4, can be carried out in the similar approach as AE22 and
AE3z from part 1 [1] of the work for single-cell TWCSCB model. The AE1 is studied as a
demonstration example below.

The constitutive relationship between the global axial force F, and the global axial strain

e, in Model 1 is defined by the stiffness term Eu given as



(Ell)Ml = igknds (22)
where the subscript M1 denotes Model 1. Its counterpart in the present model is given as
(Ell)M 2 = i;kllds_'_ §_ k122 / kZZdS + §Sl4§s,lds = (Ell)Ml + RZ (23)

where the underlined part is the difference between the two models and is represented by R,
as

R, =R; + Ry, (24a)

with
Rz = ig_klzz [ky,ds (24b)
Ry, = §S14§s,1ds (24c)

Table 2 lists the stiffness parameters and variations of the axial stiffness between the two
models for the five layups considered. Upon comparisons, the following observations were
obtained:

® Generally, AE;; due to terms Rz: and Rz are less significant compared to the AE22 and
AEss given in Table 2 of part 1 [1] of the work. The material coupling between ¥, and &,,

are mainly contributed to the warping which is negligible for closed cross section beams.

® For symmetrical layups and quasi-isotropic layup, Ais=A2=0. Effectively, ki»=S14=0.
Therefore, Rz vanishes so that the axial displacements calculated by the two models are
identical.

® For layup [45/90], the ki2 is much smaller than k2. As a result, the magnitude of R;
become insignificant compared to Eu1 from Model 1. Therefore, the difference of the axial
stiffness of the two models is small.

® For arbitrary layups [80/70/60] and [70/-20] 2 where the ki is much greater than k2., the
Rz is greater than 4% of Ex from Model 1 and need to be considered.

To validate present model on a commonly used multi-cell TWCSCB with curved walls, a
cantilever multi-cell elliptical beam with same material properties and layups as those used
for multi-cell box beam is assessed. Fig. 3 shows the geometrical specifications of the beam.
The results from both models are tabulated in Table 3 along with ABAQUS simulations. The
observations are the same as those concluded from the analysis of the three-cell box beam.

5. Conclusions

The accurate structure mechanical model for single-cell TWCSCBs in part 1 [1] of the
work is extended to multi-cell TWCSCBs. Numerical comparisons with ABAQUS
simulations are performed for box and cylindrical beams with a variety of laminate layups
under various loading conditions and excellent agreements are observed. It concludes that the
present model is applicable with truly arbitrary layups of laminates. Neglecting the effect of
material anisotropies can lead to gross overestimate of global beam bending stiffness while
neglecting the axial warping effect leads to slight overestimate of the global beam extension



and torsional stiffness. It will be valuable work to extend the present model to broader areas
such as including vibration analysis [7], transverse shear effect [8], geometrical nonlinearity
[9], and etc.

Appendix

Elements of the global cylinder beam stiffness matrix [E;]=[E; 1" in Eq. (21) in the present
model

{Fz M, M, M, Mw}T:[Eij]{ez Ky Ky Ky Kw}T:

E.= f 1lds+§Sl4§s ,ds (A1)
E,= §(SMY S,, COsa )ds + §Sl4§ ,ds (A2)
Ep = §§(SHX +S,sina)ds + §Sl4§5 ,ds (A3)
E, = §(2313 o|s+§sl4§s ,ds (Ad)
Eys = §(S0—S,,0)ds + §8,,, 50 (A5)
E,, = §(SHY ? _S,,Y cosa Jds + §S..YE, s

(A6)

f(SHY cosa —S,, COS a)ds + §sz4 cosad, 2ds)

Eys = §(SuXY +S,,Y sina)ds + §S,,Y& ds

(A7)
(§>(812X cosa + S, cosasina )ds + §SZ4 cosad, 3ds)
E, = §(2513Y )ds + §514Y§s ,ds — (§(2523 cosa)ds — §SZ4 cos 0555,4(13) (A8)
Ex = §(811Y(0 Sleq dS + §814Y§s 5ds
(A9)
GS(SH cosaw —S,, Cosaq )ds + §sz4 cosaé, 5ds)
E,, = ft;(SllX ? 4 Sp,xsina ds + §S.uXé, s
(A10)
+ @(slzx sina +S,,sin’ a)ds + ifSZA sin afsysds)
Es = (25X s + §5,,X¢, 05+ (@S sina)ds + §,, i, s ) (A11)



Es = §(311Xa) -3y Xq)ds + §S14Xégs,5ds

(Al12)
+ @(S12 sinaw — S, sinaq )ds + §SZ4 sin aésds)

B, =§ré, ds+ [§(4333)ds + §2334§S,4dsj (A13)

E45 = §r§s,5ds + (i(zsma)_ 2823q)dS + §2534§s,5d8) (A14)

Ess = §<Slla)2 - Slzm)ds + §814a)§s,5d5 - (§(81260q - Szzqz)ds + ﬁ;Squ gs,sds) (A15)
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Figure captions:

Fig. 1. A multi-cell cross section with its shear flow under pure torque M, .

Fig. 2. Dimensions of a cantilever thin-walled composite three-cell box beam.
Fig. 3. Dimensions of a cantilever thin-walled composite three-cell elliptical beam.



Table captions:

Table 1 Comparions of free end displacements of cantilever thin-walled composite three-cell
box beams.

Table 2 Stiffness parameters of the shell wall for the composite three-cell box beams.

Table 2 Comparions of free end displacements of cantilever thin-walled composite three-cell
elliptical beams.
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Fig. 1. A multi-cell cross section with its shear flow under pure torque M, .
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Fig. 2. Dimensions of a cantilever thin-walled composite three-cell box beam.
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Fig. 3. Dimensions of a cantilever thin-walled composite three-cell elliptical beam.



Table 1 Comparions of free end displacements of cantilever thin-walled composite three-cell
box beams.

Layups in [5] symmetric syrr'la\mngtric is(o?tl;gi)lic
Load Case Disp Models [45/90] [60/70/80] [-75/75]s [70/-20]2 [75/90/-75]
ABAQUS 3.89E-04 6.13E-04 2.64E-04 9.36E-04 2.44E-04

W,m Model 1 3.89E-04 5.71E-04 2.65E-04 8.75E-04 2.43E-04

Model 2 3.90E-04 6.15E-04 2.65E-04 9.43E-04 2.43E-04
Fz=2.4kN
ABAQUS -6.21E-03  -3.62E-02  0.00E+00  -4.42E-02 7.75E-04
@, rads Model 1 -6.06E-03  -3.36E-02  0.00E+00  -4.17E-02 8.04E-04
Model 2 -6.09E-03  -3.62E-02  0.00E+00  -4.49E-02 8.04E-04

ABAQUS 2.00E-03 3.26E-03 1.39E-03 5.29E-03 1.30E-03
Fv=150N V,m Model 1 1.91E-03 1.70E-03 1.36E-03 2.69E-03 1.25E-03
Model 2 1.96E-03 3.25E-03 1.36E-03 5.34E-03 1.25E-03

ABAQUS 9.13E-04 1.16E-03 6.40E-04 1.79E-03 6.06E-04
Fx=150N um Model 1 8.56E-04 7.59E-04 6.06E-04 1.19E-03 5.55E-04
Model 2 8.70E-04 1.07E-03 6.06E-04 1.70E-03 5.55E-04

ABAQUS 1.68E-02 2.04E-02 1.29E-02 2.06E-02 1.64E-02
Mz=100N.m @, rads Model 1 1.70E-02 1.99E-02 1.30E-02 2.02E-02 1.66E-02
Model 2 1.71E-02 2.05E-02 1.30E-02 2.09E-02 1.66E-02




Table 2 Stiffness parameters of the shell wall for the composite three-cell box beams.

Stiffness Layups in [5] symmetric syn'wb\mngtric isgt%?ic
parameters - 4590] [60/70/80] [75/-75] s [70/-20],  [75/90/-75]
Ass 3.479E+07  1.497E+07  0.000E+00  -3.313E+07  0.000E+00
Ass 3.479E+07  7.089E+07  0.000E+00  3.313E+07  0.000E+00
ko 9.990E+06  5.213E+07  0.000E+00  4.164E+07  0.000E+00
kao 2.087E+07  2.968E+07  2.592E+07  2.851E+07  2.031E+07
Ra1 1.82E+06  -3.48E+07  0.00E+00  -2.31E+07  0.00E+00
Rz 166E+06  3.19E+07  0.00E+00  212E+07  0.00E+00
R 1536405  -2.93E+06  0.00E+00  -1.95E+06  0.00E+00
(Ew)m 6.32E+07  7.18E+07  9.05E+07  4.64E+07  9.88E+07

AEy -0.24% -4.09% 0.00% -4.20% 0.00%




Table 3 Comparions of free end displacements of cantilever thin-walled composite three-cell
elliptical beams.

Layups in [5] symmetric synf\mngtric isgturzi)lic

Load Case Disp Models [45/90] [60/70/80]  [-75/75]s [70/-20]12  [75/90/-75]
ABAQUS 5.21E-04 8.03E-04 3.54E-04 1.23E-03 3.26E-04
W,m Model 1 5.19E-04 7.46E-04 3.55E-04 1.14E-03 3.25E-04

Model 2 5.21E-04 8.07E-04 3.55E-04 1.23E-03 3.25E-04
Fz=2.4kN
ABAQUS -9.37E-03  -5.38E-02  0.00E+00  -6.65E-02 1.20E-03
@, rads Model 1 -9.18E-03  -4.99E-02  0.00E+00  -6.15E-02 1.44E-03
Model 2 -9.23E-03  -541E-02 0.00E+00  -6.66E-02 1.44E-03

ABAQUS 3.74E-03 6.09E-03 2.61E-03 1.00E-02 2.43E-03
Fv=150N V,m Model 1 3.59E-03 3.20E-03 2.57E-03 5.09E-03 2.35E-03
Model 2 3.68E-03 6.10E-03 2.57E-03 1.01E-02 2.35E-03

ABAQUS 2.58E-03 3.50E-03 1.81E-03 5.66E-03 1.68E-03
Fx=150N um Model 1 2.45E-03 2.19E-03 1.76E-03 3.47E-03 1.61E-03
Model 2 2.50E-03 3.42E-03 1.76E-03 5.54E-03 1.61E-03

ABAQUS 3.03E-02 3.58E-02 2.33E-02 3.64E-02 2.97E-02
Mz=100N.m @, rads Model 1 3.07E-02 3.48E-02 2.32E-02 3.53E-02 2.96E-02
Model 2 3.08E-02 3.60E-02 2.32E-02 3.64E-02 2.96E-02
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