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Abstract 
 
The work reported here presents a parametric solid model of the spine, loading systems 
of the spine and a extracted arch spine model in which the body weight and external 
loads are treated as forces applied at appropriate points on the spine and muscle and 
ligament forces are treated as reaction forces applied to both ends of the spine. The 
model extends the arch spine approach by using optimisation techniques to find a better 
fitting thrust line compared with the previous arch model in the literature, and calculates 
the internal forces between the vertebrae in the spine. Case studies show the reasonable 
values of the internal forces (1.1-1.5 kN) in the arch spine. The values are much less than 
that of lever models (up to 6.6 kN). 
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1.  Introduction 
 
The human spine consists of the cervical spine, thoracic spine, lumbar spine and sacrum 
in the form of a column surrounded by ligaments and muscles. It is the main structure to 
support human body weight and external loads, to allow the torso to reach to a variety of 
positions and to protect the spinal nervous system. Lumbar back pain and disorders may 
be related to spine curvature and disc pressure. The human spine is a statically 
indeterminate structure which is held in equilibrium by a complex set of internal and 
external forces, is composed of a variety of materials and is subject to deformation in 
normal use. An understanding of the mechanical behaviour of the spine is important in 
the study of its normal function and the prevention, diagnosis and treatment of 
pathological conditions. Understanding is limited due to the structural complexity of the 
spine and the difficulty of conducting experiments in vivo. Mathematical analogs 
become a useful tool for manipulating and analysing such a complex system. Many 
attempts to model the spine have been made. Four categories of the models can be made 
according to classification of mechanics of materials which deals with the behaviour of 
solid bodies subjected to various types of loading, axially or laterally. Those are levers, 
simple beams, cantilever beams and arches. Lever models (Morris, 1973; Morris et al, 
1961) typically describe the whole spine as a rigid lever in two dimensions with no 
proper consideration of spinal curvature. Loads arc applied to the lever spine with 
balancing reaction forces at the sacrum. This static analysis is simple but can produce 
unacceptably large reaction forces at the sacrum. Elastic analysis is used in lever, simple 
beam and cantilever beam models while plastic analysis is used in arch model. The arch 
model (Aspden, 1989) describes the spine as an arch in two dimensions in the sagittal 
plane. The stability of the spine under a variety of loading conditions can then be 
determined using plastic analysis methods in compliance with the criterion that stability, 



or safety of the arch, requires that a thrust line should be completely located within all 
the cross sections of the arch (Heyman, 1982). The spine curvature can therefore be 
considered in the arch model. Comparisons between the arch, lever, simple beam and 
cantilever beam models can be found (Xiao et al, 1996). 
 
The work  reported here presents a parametric solid model of  the spine, loading systems 
of the spine and an extracted arch spine model in which the body weight and external 
loads are treated  as forces applied at appropriate points on the spine and muscle and 
ligament forces are treated as reaction forces applied to both ends of the spine. It also 
extends the arch spine approach using optimisation techniques to find a better fitting 
thrust line compared with the previous arch model in the literature, and calculates the 
internal forces between the vertebrae in the spine.  Calculation shows the reasonable 
values of the internal forces (1.1-1.5 kN) in the arch spine. The values are much less than 
that of lever models (up to 6.6 kN). 
 
2. A parametric model of the spine and loading system of the spine 
 
A parametric solid spine model was generated (Stepney, et al, 1996) as shown in Figure 
1. A biomechanical loading system of the spine consists of body weight (concentrated or 
distributed), external loads, muscle forces, ligament forces, abdominal pressure etc. as 
shown in Figure 2. The loading system of the human spine may be simplified as a 
mechanical structure like a tower with independent layers which are fixed through a 
number of strings to the base and linked between the layers in three dimensions. This is a 
statically indeterminate structure as the number of variables is greater than the number of 
equations available. The tension in the strings, the frictional forces between the layers of 
the tower and the connection conditions between the string ends and the base are 
unknown. The vertebra and discs of the spine are modelled as rigid blocks in order to 
generate an arch spine. 
 
3. The arch model using optimisation techniques 
 
A masonry arch, loaded as shown in Figure 3 (a), is a statically indeterminate structure, 
because the reaction forces HI, H2. R1 and R2 cannot he found from consideration of 
equilibrium of the applied loads F1, F2 and F3 using force and moment equations such 
as: 
     ƩFx=0,  ƩFy=0,  ƩFz=0. 
The four unknown reactive forces, H1, H2, Rl and R2, cannot be found from the above 
three independent equations of statics, as the number of variables is larger than the 
number of equations, i.e. there are an infinite number of solutions. To obtain a fourth 
equation, deformation of the arch must be considered. The horizontal reaction H2 can be 
taken as the redundant element, then its magnitude will be determined from the condition 
that the horizontal displacement of the hinge E in Figure 3 vanishes. As a general 
approach to the problem of the analysis of statically indeterminate arches, we shall use 
the second theorem of Castigliano or the theorem of least work which requires the 
establishment of an expression for total strain energy stored in the arch under load 
(Timoshenko, 1965). 



 
Figure 1: A parametric solid model                  Figure 2: Loading system of the spine 
                of the spine                                                       with partial muscle forces 
 
A well-known tool for the analysis of arches is the funicular polygon (thrust line) shown 
in Figure 3 (b,c) (Heyman, 1982). The problems of the hanging string in Figure 3 (b) and 
the arch which is modelled as hinged rigid rods in Figure 3 (c), are the same to statics. 
The Figure 3 (b) inverted becomes Figure 3 (c). The rods work in compression while the 
strings are in tension. Compressive force, thrust, is transmitted along a line called the 
thrust line. The thickness of the arch voussoirs which contain the thrust line, and the 
funicular polygon (thrust line) determines the stability of the arch The reaction forces R1 
and R2 in Figure 3 can be found using ƩMA=0, ƩFy=0 if it is assumed that the horizontal 
component H (H1=H2 in this case) is known, then the funicular polygon (thrust line) in 
Figure 3 (b,c) can be drawn from the force polygon at once and only one thrust line is 
existent But in most cases, the horizontal components H1 and H2 are unknown, so the 
pole O of the force polygon could be placed anywhere, and an infinite number of thrust 
lines in an arch corresponding to different pole positions O could be found. The position 
and shape of the thrust line depends on the position of the pole O of the force polygon 
and changes with the position of the pole O. A similar situation is found in the spine due 
to difficulty of finding all the muscle and ligament forces applied to the neck and sacrum. 



 

Figure 3: String and arch with loads in equilibrium 
 
There are three assumptions for the masonry arch, and thus for the spine model, as 
follows: (1) Masonry has no tensile strength; that is no tensile forces can be transmitted 
in arches. For the spine, loads are transmitted by compressive forces along the spine 
length even though ligaments, muscles, vertebrae and discs have some tensile strength. 
(2) Masonry has an infinite compressive strength; that is there is no danger of crushing 
the materials of arches. For the spine, compressive damage to the vertebrae or discs does 
not lead the spine to collapse and normally compressive forces are lower than the 
crushing strength of vertebrae and discs. (3) Sliding failure cannot occur in arches, that is 
friction between voussoirs is high enough to prevent sliding. For the spine, the vertebral 
disc is sufficiently strong to resist shear forces between the vertebrae, as are the 
ligaments. 
 



According to the "Middle-Third Rule" hinges (Heyman, l982), if the applied load (thrust 
line) stays within a core of the section, stresses across the whole section will be 
compressive. For a rectangular section the core has a depth of one-third of the total 
depth. This means that an assurance of satisfactory design of an arch would be obtained 
if a thrust line is found to lie within the core of the whole arch. This is the geometrical 
factor of safety with respect to the core of the arch. In other words, a thrust line for the 
arch must lie within the masonry. This means that the pole O of the force polygon must 
be located in such a position that the corresponding funicular polygon (thrust line) does 
indeed lie within the masonry. If any other thrust line can be found for the whole arch, 
which is in equilibrium with external loads (including self weight), and which lies totally 
within the masonry of the arch, then the arch is safe. In other words, the existence of one 
satisfactory thrust line ensure that the arch cannot collapse. Thrust lines lie outside the 
masonry (or critical core) may cause the arch to collapse due to the formation of four 
hinges (Heyman, 1982). Posterior extrusion of fibrocartilage from the disc, caused by 
hydraulic wedging pressure and the stretching of ligaments may be a cause of back pain 
as shown in Figure 4(b) (Keegan, 1953). 

 
Figure 4: Thrust line and lumbar disorders 

 
An infinite number of thrust lines for a single arch can be obtained due to it being a 
statically indeterminate structure However there is one thrust line which is the best for 
the arch or spine. Hence this is an optimization problem. However there may be some 
difficulty in finding the best fitting thrust line. A better fitting thrust line which is as 
close as possible to the reference line (or the central line) of the spine can be found. The 
question of finding a better fitting thrust line in an arch spine is the question of finding a 
better position for the pole O of the force polygon which generates a better fitting thrust 
line. This is a non-linear optimization problem. 
 
A 77 kg (755 N) man in a stooped, forward bending, position holding a 91.8 kg (900 N) 
weight in both hands which is assumed to act on T6 (thorax 6).  The head and shoulders 
weight of 130 N (l8% of body weight) acts on T1, the trunk weight of 230 N (30% of 
body weight) acts on T12, and intra-abdominal pressure of 70 N acts perpendicularly to 
each of the vertebrae L1 to L5, as shown in Figure 5(a) (Aspden, 1989). The body 
weight, intra-abominal pressure  and additional loads are treated as the external forces.   
 
 
 
 
 
 



The ligament and muscle force are treated as reaction forces acting on both ends of the 
spine (sacrum  and head or neck.). Lever model leads to a predicted reaction force at the 
sacrum of 6.6 kN (Morris et al, 1961 ) which is comparable with that of fracture of the 
end plates of the vertebral body (whose bearing strength is about  5-8 kN). This is 
unlikely to be the real situation. 
 
The optimised thrust line (line 1) calculated from the force polygon, for this case are 
shown in Figure 5. Internal forces between the vertebrae in the spine can be calculated 
from the thrust line 1 as shown in Table 1.   It should be noticed from Table 1 that the 
reaction force at sacrum is only about 1.5 kN which is much smaller than the one 
predicted by the lever model (6.6 kN). This simple comparison between the lever model 
and our arch model shows clear differences in the predicted reaction forces.  Further 
work is required to explore the validity and utility of our approach. 

 
Figure 5: Calculation of the optimization arch model 

 
 
 
 



Table 1: Internal forces 
Locations Internal forces 

(compression) N 
Top of T1 1156.92 
T1/T2 1156.92 
T2-T6 1129.43 
T6-T12 1329.45 
T12/L1 1467.33 
L1/L2 1460.44 
L2/L3 1461.58 
L3/L4 1469.86 
L4/L5 1485.52 
L5/S1 
(sacrum) 

1505.86 

 
4. Discussion 
 
1.  A better fitting thrust line which is as close as possible to the reference (or central) 
line of the spine in the complete arch spine can be obtained using optimisation 
techniques. The optimised arch model in this paper produces a better predictor which is 
closer to the central line of the spine than the one from the literature and represents a 
better fitting thrust line in the spine. 
2.  If the result thrust line lies outside the spine (in the lumbar region in the case study 
shown in Figure 5) the risk of the spine disorder may occur. If a lordosis can be 
introduced in this case, this kind of lumbar disorder may be avoided. So a good spinal 
posture under certain load conditions might be suggested by the optimised thrust line. 
3. The internal forces in the vertebrae and discs could be found through the optimised 
thrust line and the force polygon, which provides for the strength check. The reaction 
force at sacrum calculated by the plastic arch model with optimisation is about 1.5 kN 
which is much smaller than that by elastic lever model (6.6 kN) and may be more 
realistic in practice. 
4. The calculations and analysis show that intra-abdominal pressure and the lordosis 
work together to strengthen the spine which is the experience of the weightlifter. 
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