

This item was submitted to Loughborough's Institutional Repository (<u>https://dspace.lboro.ac.uk/</u>) by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED		
Attribution-NonCommercial-NoDerivs 2.5		
You are free:		
 to copy, distribute, display, and perform the work 		
Under the following conditions:		
Attribution . You must attribute the work in the manner specified by the author or licensor.		
Noncommercial. You may not use this work for commercial purposes.		
No Derivative Works. You may not alter, transform, or build upon this work.		
 For any reuse or distribution, you must make clear to others the license terms of this work. 		
 Any of these conditions can be waived if you get permission from the copyright holder. 		
Your fair use and other rights are in no way affected by the above.		
This is a human-readable summary of the Legal Code (the full license).		
Disclaimer 🖵		

For the full text of this licence, please go to: <u>http://creativecommons.org/licenses/by-nc-nd/2.5/</u>

Introduction to Physical Acoustics

V.A. Krasil'nikov, V.V. Krylov Nauka, Moscow 1984, - 400 pp (in Russian).

Abstract, Contents and Index

(translated from the Russian)

Abstract

The book gives a concise account of physical acoustics – a branch of physics and acoustics studying the interaction of acoustic waves with matter at the macro- and microscopic levels. It starts with the basics of mechanics of continuum needed to analyse the problems of physical acoustics. This is followed by the description of linear and nonlinear problems of acoustics of gases, liquids and solids. Also considered are the problems of 'turbulence and sound', acoustics of magnetic media, and acoustics of crystals. Essential information is provided also on acousto-electronics and acousto-optics. Some parts of the book contain descriptions of the methodology of experiments and experimental data.

The book would be of interest to undergraduate students of physical, chemical and engineering specialities, postgraduate students, researchers, lecturers, acoustic engineers, and all those engaged in fluid mechanics, elasticity, solid state physics, radio physics, signal processing, underwater acoustics and geophysics.

Contents

Foreword

6

PART I. Waves in liquids and gases

Chapter 1. Some problems of hydrodynamics	9
§ 1. Ideal liquid	9
§ 2. Viscous and heat-conductive liquid	14
§ 3. Examples of exact solutions	17
§ 4. Scaling laws. Non-dimensional numbers in fluid dynamics	21
§ 5. Approximate solutions for a viscous fluid with large and small Reyno	lds numbers
The boundary layer	23
§ 6. Capillary waves	25

§ 7. Turbulent fluid motion. The law of 'two-thirds'	27
Chapter 2. Sound waves in gases and liquids. Relaxation theory	34
§ 1. Sound waves of small amplitude in an ideal medium	34
§ 2. Sound velocity and sound absorption in gases and liquids	36
8 3 Dispersion and absorption of sound Experimental studies	41
$\frac{3}{8}$ A Relayation of the bulk viscosity	17
8 5 Relevation of the shear viscosity in liquids	55
 § 5. Relaxation of the shear viscosity in inquities § 6. Acoustic spectroscopy 	60
Chapter 3. Fundamentals of nonlinear acoustics of gases and liquids	65
§ 1. A plane wave of finite amplitude in the gas and liquid in the absend	ce of
dissipation	65
§ 2. Experimental techniques	72
§ 3. A plane wave in a nonlinear medium with dissipation	76
8.4 Nonlinear plane waves in a dispersive medium	80
8.5. Spherical and cylindrical poplinear wayes	85
8.6. Sound hours	85 87
§ 6. Sound beams	07
Chapter 4. Nonlinear interaction of acoustic waves. Parametric antennas	89
§ 1. Interaction of nonlinear waves	89
§ 2. Nonlinear standing waves and resonators	94
§ 3. Parametric processes in nonlinear waves. Parametric emitting and rece	iving
antennas	99
§ 4. Statistical effects in the propagation of nonlinear acoustic waves	108
§ 5. Sound absorption by noise. Acoustic turbulence	110
Chapter 5. Radiation pressure. Acoustic flows	118
§ 1. Radiation pressure. Overview	118
§ 2. Acoustic radiation force acting on suspended spherical particles	126
§ 3 Interaction of two spherical particles in a sound field	132
§ 4. Acoustic flows	135
Chapter 6. Acoustic cavitation. Sound propagation in a medium with bul	obles
- • • • •	138
§ 1. General information	138
8.2. The dynamics of a single gas bubble in an acoustic field	139
8.3 The dynamics of a single vapour hubble	147
8.4. A symmetric slamming of assistation hubbles in liquids	152
8.5 Conjutation regions and conjutation thresholds	154
g J. Cavitation regions and cavitation infestions	100
§ 6. Propagation of sound in a medium with bubbles	160
Chapter 7. Turbulence and sound	170
8.1 Introduction Overview	170
§ 1. Introduction. Over view	1/0
8.2 Geometrical acoustics approximation	171

§ 3. Approximate calculation of the diffraction corrections. The method of	f smooth
perturbations	179
§ 4. The problem of the scattering of sound by turbulence	182
§ 5. Experiments on the scattering of sound by turbulent inhomogeneities	186

PART II. Waves in solids

Chapter 8. Linear acoustics of isotropic solids	188
 § 1. Fundamentals of the theory of elasticity § 2. Longitudinal and transverse waves in an isotropic solid § 3. Reflection and refraction of longitudinal and transverse waves § 4. Rayleigh surface waves § 5. Other types of surface waves § 6. Waves in plates and rods 	188 193 196 199 203 208
Chapter 9. Fundamentals of crystal acoustics	213
 § 1. Plane elastic waves in crystals. Christoffel equation. Quasi-longitudinal quasi-transverse waves § 2. Influence of symmetry of the elastic properties on wave propagation. Example calculation for a cubic crystal § 3. Energy flow. Phase and group velocities § 4. Waves in piezoelectric crystals. Electromechanical coupling coefficient § 5. Reflection and refraction of elastic waves at the interface § 6. Surface waves in crystals § 7. Discrete treatment of the crystal lattice. Acoustic activity and other effects during microstructure 	and 213 mple 215 219 221 225 227 ae to 231 rmal 236
 § 1. Introduction. Overview § 2. Sound absorption in isotropic dielectrics § 3. Some information on the crystal lattice vibrations and phonons § 4. Interaction of acoustic waves with thermal phonons. Microscopic considera Low temperatures and hypersonic frequencies § 5. Interaction of acoustic waves with thermal phonons. Macroscopic considera High (room) temperatures and ultrasonic frequencies § 6. Absorption and dispersion of sound due to dislocations. Acoustic emission 	236 238 241 tion. 246 tion. 253 261
Chapter 11. Nonlinear acoustics of solids	280
 § 1. Introduction. General comments § 2. Fundamentals of nonlinear elasticity § 3. Interaction of elastic waves of finite amplitude in an isotropic solid § 4. Nonlinear acoustic effects in crystals 	280 281 285 291

Chapter 12. Acousto-electronics	305
 § 1. Overview § 2. Excitation and detection of surface acoustic waves. Interdigital transducer § 3. Delay lines and filters using interdigital transducers § 4. Scattering of surface waves. Resonators and filters based on reflecting struct 	305 307 313 ctures
 § 5. Amplification of sound by drift of charge carriers in piezoelectric semicondu and layered structures § 6. Wave interactions due to the electric current nonlinearity. Acousto-electric of 	318 ictors 324 effect
§ 7. Nonlinear acousto-electronic devices on surface acoustic waves	333
Chapter 13. Acousto-optics	339
 § 1. Introduction § 2. Diffraction of light on sound. Raman-Nath and Bragg regimes § 3. Diffraction of light on surface acoustic waves § 4. Mandelstam - Brillouin scattering by thermal vibrations § 5. Stimulated Mandelstam - Brillouin scattering § 6. Acousto-optics of liquid crystals § 7. Some applications of acousto-optic interactions 	339 340 344 346 348 351 354
Chapter 14. Waves in magnetically ordered crystals	368
 § 1. Basic information about magnetically ordered crystals § 2. Spin waves in ferromagnetics and antiferromagnetics § 3. Magnetoelastic waves § 4. Attenuation of magnetoelastic waves § 5. Nonlinear effects 	368 371 375 378 379
References	382
Index	400

Index *)

*) This index complements the contents of the book, without repeating it. Terms and concepts that are reflected in the table of contents are not included in the index.

Acoustic holography	357
Acoustic levitation	130
Acoustic axes	218, 226, 233
Acoustic branches of oscillations	243

Acousto-luminescence	366
Acousto-optic deflectors	364
- processors	365
Acousto-electronic interaction	325
Degenerate interaction	295, 334
Three-wave interaction	89
Phonon-phonon interaction	244
The displacement vector	189
Viscous waves	20, 56
Gravity-capillary waves	26
Gulyaev - Bleustein waves	203
Bending waves	210
Wedge elastic waves	207
Torsional waves	212
Lamb waves	210
Generalized Lamb waves	205
Love waves	204
Magnetostatic wayes	373
Normal longitudinal waves	210
SH waves	210
Simple waves	68
Stationary waves	70
Stoneley waves	205
Temperature waves	203
Shock waves	12
I eaky waves	206 231
Slit waves	200, 231
Voung's waves	200
Rectified heat transfer	151
Generation of backward wave	205
Sound pressure	34
Langevin pressure	120
- Langevin pressure Paulaigh pressure	120
- Kayleigh pressure	121
apperelized	192
- generalized	213
Sound radiation by dislocations	293, 330
by gradies	272
- by cracks	270
Magnons	5/3
Magneto-acoustic resonance	3//
Akhiezer mechanism	257
- Landau - Rumer mechanism	257
Elastic moduli	192, 215, 282
Unilateral diffusion	146
Optical vibrational modes	243
Poisson adiabate	11
Reflective grating on SAW	320
Bordoni peaks	268
Scattering of sound by sound	93, 290
SAW resonators	321

Riemann solution	66
Bjerknes force	133
Adiabatic speed of sound	11, 36
- high-frequency speed of sound	47
Vibration velocity	34
Soliton	84
Weinreich formula	332
Kramers - Kronig dispersion relations	54
Manley - Rowe relations	100
The strain tensor	189
- stress tensor	190
- Piola - Kirchhoff tensor	283
- thermodynamic stress tensor	193, 282
Thermo-optical generation of sound	359
Brewster angles	199, 234
Bernoulli equation	17
- Boltzmann kinetic equation	256
- Burgers equation	77
- Hertz - Knudsen equation	149
- Dyson equation	163
- Equation of motion of an elastic medium	190, 194, 213
- Kelvin - Voigt equation	49
- Korteweg - de Vries equation	83
- Navier - Stokes equation	14, 19
- Continuity equation	10, 13
- Nolting – Nepiras equation	141
- Heat transfer equation	16
- Rayleigh equation	140, 200
- Khokhlov - Zabolotskaya equation	87
- Eikonal equation	173
- Euler's equation	9, 13
Matching condition	89, 289
Convolution and correlation devices	333
- optical image reading devices	337
Dispersion filters	317, 323
- band filters	315
Amplitude fluctuations	178
- Phase fluctuations	174
Koenig formula	133
- King's formula	130
- Minnaert formula	144
- Stokes – Kirchhoff's formula	41
Photo-acoustic spectroscopy	363
Electro-acoustic echo	295
Effective magnetic field	370
5	