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Abstract. The Dual Post Correspondence Problem asks, for a given
word α, if there exists a non-periodic morphism g and an arbitrary mor-
phism h such that g(α) = h(α). Thus α satisfies the Dual PCP if and only
if it belongs to a non-trivial equality set. Words which do not satisfy the
Dual PCP are called periodicity forcing, and are important to the study
of word equations, equality sets and ambiguity of morphisms. In this pa-
per, a ‘prime’ subset of periodicity forcing words is presented. It is shown
that when combined with a particular type of morphism it generates ex-
actly the full set of periodicity forcing words. Furthermore, it is shown
that there exist examples of periodicity forcing words which contain any
given factor/prefix/suffix. Finally, an alternative class of mechanisms for
generating periodicity forcing words is developed, resulting in a class of
examples which contrast those known already.
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1 Introduction

The Dual Post Correspondence Problem (Dual PCP) is a decidable variation
of the famous Post Correspondence Problem (see Post [10]). It was introduced
by Culik II and Karhumäki in [1], where the authors make progress towards a
characterisation of binary equality sets. A word is said to satisfy the Dual PCP
if it belongs to an equality set E(g, h) for two morphisms g, h where at least
one morphism is non-periodic. For example, the word abba belongs to E(g, h)
where g(a) := aba, g(b) := b, h(a) := a, and h(b) := bab. Thus abba satisfies
the Dual PCP; in other words, it is a non-trivial equality word. In contrast, the
word abaab does not satisfy the Dual PCP, but this claim is much harder to
verify.
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In this paper, words which do not satisfy the Dual PCP (often referred to
as periodicity forcing words) are examined. Periodicity forcing words are of im-
mediate importance to the study of equality sets, since they are words which do
not belong to any non-trivial equality set. As a result, they can be viewed as
being opposite to equality words. Furthermore, they are strongly related to the
studies of word equations and of the ambiguity of morphisms.

Due to both the original research by Culik II and Karhumäki [1], and from
more recent research into equality sets (e. g., Holub [5], Hadravova, Holub [4])
and word equations (e. g., Czeizler et al. [2], Karhumäki, Petre [7]), quite a lot
is known about the binary case. Much less, however, is known about the general
case. One reason for this is that although the Dual PCP is known to be decidable
(due to Makanin’s algorithm [9], as shown by Culik II and Karhumäki [1]) decid-
ing on whether a word is periodicity forcing can be a particularly intricate task,
and becomes even more so as the alphabet size increases. In [3], we overcome
this problem by employing the use of morphisms to generate periodicity forcing
words over arbitrary alphabets.

In Sect. 3 of the present paper, we explore the structure of the set of peri-
odicity forcing words (DPCP¬) in relation to morphisms. Specifically, a ‘prime’
subset of DPCP¬ is considered from which all periodicity forcing words may be
generated using a specific type of morphism, characterised in [3]. In Sect. 4, it is
shown that there exist periodicity forcing words with arbitrary factors, providing
a level of generality not yet achieved. Finally, in light of the results on ‘prime’
periodicity forcing words, some alternative approaches to generating periodicity
forcing words (specifically over large alphabets) are investigated.

2 Notation and preliminary results

Let N = {1, 2, ...} be the set of natural numbers, and let N0 := N∪{0}. The set
N is used as an infinite alphabet of symbols, and words over N are referred to
as patterns. The symbols occurring in a pattern are called variables, and the set
of variables occurring in a pattern α is denoted by var(α). Symbols from words
which are not patterns (referred to as letters) are indicated using typewriter font
(e. g., Σ := {a,b,c...}).

For an alphabet Σ := {a1, a2, ..., an} and a word u ∈ Σ∗, the Parikh vector,
written P(u), is the vector (|u|a1

, |u|a2
, ..., |u|an

). The result of dividing the
Parikh vector by the greatest common divisor of its components is called the
basic Parikh vector. A word u is primitive if it is not a repetition of a shorter
word (i. e., u = vn implies n = 1). Otherwise it is imprimitive. A word u ∈ Σ∗
is ratio-imprimitive if there exist words v, w ∈ Σ+ such that u = vw and u, v
share the same basic Parikh vector. Otherwise, it is ratio-primitive.

A morphism h : A∗ → B∗ is a mapping which is compatible with concatena-
tion (meaning h(uv) = h(u) · h(v) for any words u, v ∈ A∗). Thus, although a
morphism maps words in A∗ to words in B∗, it is fully defined once it is specified
for each individual symbol in A. The composition of two morphisms g : A∗ → B∗



and h : B∗ → C∗ is the morphism g ◦ h : A∗ → C∗, given by g ◦ h(x) = g(h(x))
for every x ∈ A.

A morphism g : A∗ → B∗ is periodic if there exists a word w ∈ B∗ such that
for every x ∈ A, g(x) ∈ {w}∗. Given another morphism h : A∗ → B∗, g and h
are said to be distinct if there exists an x ∈ A such that g(x) 6= h(x). If, for some
word α ∈ A+, g(α) = h(α), then g and h are said to agree on α. A renaming of
a word u ∈ {a1, a2, ..., an}+ is the word σ(u) where σ : {a1, a2, ... , an}∗ → {b1,
b2, ... , bn}∗ is a morphism given by σ(ai) = bi, and where b1, b2, ..., bn are
distinct letters. If {a1, a2, ... an} ∩ {b1, b2, ... , bn} = ∅, then the renaming is
said to be strict. On the other hand, if ai ∈ {b1, b2, ..., bn} for 1 ≤ i ≤ n, then
σ(u) is a permutation of u. For sets ∆ and V ⊂ ∆, the morphism πV : ∆∗ → V ∗,
given by πV (x) = x if x ∈ V and πV (x) = ε otherwise, is called a projection.

A set of patterns is periodicity forcing if, whenever two morphisms agree on
every pattern in the set, they are periodic. A set of patterns T is said to be a
test set of another set of patterns S if any two morphisms which agree on every
pattern in T also agree on every pattern in S. Note that this means any test set
of a periodicity forcing set must also be periodicity forcing.

A morphism σ is said to be ambiguous with respect to a pattern α if there
exists another morphism τ such that σ(α) = τ(α) and σ, τ are distinct. It is
convenient to refer to the following set: DPCP := {α ∈ N+ | there exists a
non-periodic morphism σ and an arbitrary morphism τ such that σ(α) = τ(α)}.
Note that this implies the complement DPCP¬ is exactly the set of periodicity
forcing words.

For a set of unknowns ∆, a word equation is an equation α = β for some
words α, β ∈ ∆+. It is non-trivial if α 6= β. For a given alphabet Σ, solutions
to the word equation are morphisms σ : ∆∗ → Σ∗ such that σ(α) and σ(β) are
equal. Unless otherwise specified, ∆ is usually a set of variables, while Σ is a set
of letters. As a result, word equations equate patterns, and their solutions map
to terminal words (words which are not patterns). The following is a well known
and important result on word equations.

Lemma 1 (Lothaire [8]). Non-trivial word equations in two unknowns have
only periodic solutions.

One consequence of Lemma 1 which provides a particularly useful tool is that
if two words u and v commute (i.e., uv = vu), then u and v (and therefore also
uv) share a primitive root. Similarly, an arbitrarily large set of words {u1, u2,
..., un} is said to commute if u1, u2, ..., un all share the same primitive root.

In our investigation into the use of morphisms to generate periodicity forcing
words in [3], we provide the following criterion.

Lemma 2 ([3]). Let ∆1, ∆2 be sets of variables. Let ϕ : ∆1
∗ → ∆2

∗ be a
morphism such that for every x ∈ ∆2, there exists a y ∈ ∆1 such that x ∈
var(ϕ(y)), and

(i) for every non-periodic morphism σ : ∆2
∗ → {a, b}∗, σ ◦ ϕ is non-periodic,

and



(ii) for all distinct morphisms σ, τ : ∆2
∗ → {a, b}∗, where at least one is non-

periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then for any α /∈ DPCP with var(α) = ∆1, ϕ(α) /∈ DPCP.

Characterisations of morphisms which satisfy conditions (i) and (ii) of
Lemma 2 are given in the following propositions respectively.

Proposition 3 ([3]). Let ∆1 and ∆2 be sets of variables, let ϕ : ∆1
∗ → ∆2

∗

be a morphism, and let βi := ϕ(i) for every i ∈ ∆1. The morphism ϕ satisfies
Condition (i) of Lemma 2 if and only if, for every non-periodic morphism σ :
∆2
∗ → {a, b}∗,

(i) there are at least two patterns βi such that σ(βi) 6= ε, and
(ii) there do not exist k1, k2, ..., kn ∈ N such that

σ(γ1)k1 = σ(γ2)k2 = · · · = σ(γn)kn (1)

where {γ1, γ2, ..., γn} is the set of all patterns βi such that σ(βi) 6= ε.

Proposition 4 ([3]). Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗

be a morphism. For every i ∈ ∆1, let βi := ϕ(i). The morphism ϕ satisfies
Condition (ii) of Lemma 2 if and only if {β1, β2, . . . , βn} is a periodicity forcing
set.

3 A ‘Prime’ Generating Subset of DPCP¬.

In this section, the structure of the set DPCP¬, with respect to morphisms, is
investigated. Specifically, DPCP¬ is partitioned according to whether, for a given
pattern α, there exists a morphism ϕ, and a second pattern β /∈ DPCP, such that
α = ϕ(β).1 This condition is clearly trivial if β is permitted to be a renaming of
α, so only morphisms which alter the structure of β are considered. Furthermore,
the Dual PCP is trivial for unary alphabets, so only patterns α and β over non-
unary alphabets are considered. This partition allows DPCP¬ to be represented
as chains of patterns. It can be inferred directly from the constructions given
in [3] that every periodicity forcing word is a pre-image of another, meaning
these chains are infinite in one direction. In Proposition 9 below, it is shown
that there exist patterns for which there does not exist a non-trivial pre-image
in DPCP¬ and therefore that some chains terminate. More generally, it can be
shown that DPCP¬ is spanned by one-sided infinite chains of this type, and thus
that there exists a (strict) subset of DPCP¬ from which all periodicity forcing
words can be generated using the morphisms characterised in [3].

The proofs rely on a lower bound on the size of periodicity forcing words
(relative to the number of variables), achieved by developing a strong sufficient

1 It is worth noting that a characterisation of such morphisms ϕ is given in [3] (The-
orem 14).



condition for a pattern to be contained in DPCP. To do this, morphisms of the
following form are considered.

σ(x) :=

{
apy baqy if x = y, and

arx otherwise,

for some fixed variable y, where px, qy, ry are numbers depending on the variables
x and y respectively. Clearly two morphisms σ1 and σ2 of this type agree on a
pattern α if and only if the number of occurrences of a coincide between each
occurrence of b. Thus the agreement of the two morphisms can be determined by
solving a system of linear Diophantine equations. In the case that n < | var(α)|,
it is possible to show that such a system always permits a non-trivial solution –
meaning the two morphisms are distinct. Furthermore, it is clear that they are
non-periodic, so it is possible to conclude the following.

Proposition 5. Let α be a pattern, and let n := | var(α)|. Suppose that |α|x < n
for some x ∈ var(α). Then α ∈ DPCP.

It follows that, for a periodicity forcing word with n letters, each letter must
occur at least n times, implying the next corollary which provides a lower bound
on the length of the shortest periodicity forcing word with n letters.

Corollary 6. Let α /∈ DPCP, and let n := | var(α)|. Then |α| ≥ n2.

Since periodicity forcing words can be obtained as concatenations of words
in a particular type of periodicity forcing set (see Sect. 5), it is possible to infer
a corresponding upper bound from results in [6]. The authors provide a concise
test set (containing at most 5n words, each of length n) for the set Sn consisting
of all permutations of the word x1 ·x2 · · ·xn. Although it is stated in [6] that Sn

itself is not periodicity forcing, it can be verified using results from [6] and [1]
that the augmented set Sn

′ := Sn ∪ {x1 · x1 · x2 · x2 · · ·xn · xn} is. Given a test
set Tn for Sn, a test set for Sn

′ is clearly Tn ∪ {x1 · x1 · x2 · x2 · · ·xn · xn}. Thus
there exists a test set for Sn

′ containing at most 5n words of length n and one
word of length 2n. The periodicity forcing word resulting from concatenating
these words is at most 5n2 + 2n letters long.

Proposition 7. Let αn be a shortest pattern not in DPCP such that | var(α)| =
n. Then n2 ≤ |α| ≤ 5n2 + 2n.

The above bounds not only demonstrate the growth of periodicity forcing
words with respect to alphabet size, but also provide an indication of how re-
strictive the set DPCP¬ is. Furthermore, the lower bound is particularly useful
when considering the following.

Definition 8. Let α /∈ DPCP be a pattern with | var(α)| ≥ 2. Then α is said to
be a prime element of DPCP¬ (or simply prime) if for every pattern β /∈ DPCP
with | var(β)| > 1, and every morphism ϕ : var(β)∗ → var(α)∗, ϕ(β) = α implies
ϕ is a renaming morphism.



Showing that a pattern satisfies Definition 8 is a highly non-trivial task, since
all morphisms must be accounted for with respect to every pattern β /∈ DPCP.
However, due to Proposition 5, it is possible to provide an example. Specifically,
it is possible to conclude that 1 ·2 ·1 ·1 ·2 is a prime element of DPCP¬, since any
pre-image β must contain a variable x such that |β|x ≤ 2. By Proposition 5, this
excludes the possibility that | var(β)| ≥ 3, and reduces the candidates for β to
a finite number of patterns which may be checked individually with little effort.
This demonstrates that it is possible to produce chains of periodicity forcing
words which terminate in exactly one direction (i.e., they are not bi-infinite).

Proposition 9. Prime elements of DPCP¬ exist.

It is possible to generalise the reasoning behind Proposition 9, and show that
each periodicity forcing word is either prime, or may be obtained from a prime
periodicity forcing word using morphisms. This results in a structure comprised
of one-sided infinite chains which spans exactly the set DPCP¬.

Theorem 10. Let S be the set of all prime elements of DPCP¬. Let α /∈ DPCP
with | var(α)| ≥ 2. Then either α ∈ S, or there exists β ∈ S and a non-trivial
morphism ϕ such that ϕ(β) = α.

Thus, there exists a non-trivial subset of DPCP¬ whose elements, when com-
bined with the morphisms characterised in [3], generate the set DPCP¬. More-
over, it is not difficult to see that the conditions for satisfying Definition 8 are
very restrictive, and therefore one can expect such a subset to be much smaller
than the original set.

4 Patterns in DPCP¬ with Arbitrary Factors

One particular consequence of the research on periodicity forcing words in [3] is
that there exist periodicity forcing sets which include any given pattern α – it
is sufficient to simply include a pattern β /∈ DPCP where var(β) = var(α). By
constructing these sets such that they satisfy the conditions for Proposition 3,
it is possible to provide a morphism ϕ which satisfies Lemma 2 such that ϕ(α)
contains an arbitrary given factor β for some α /∈ DPCP. Thus a level of gen-
erality previously not achieved is reached: that there exist periodicity forcing
words with arbitrary factors. It is worth noting that due to the properties of
morphisms, the construction may be altered with little effort to guarantee that
β appears as a prefix or suffix.

Proposition 3 is addressed in the following proposition, which demonstrates
that the conditions may always be satisfied. The task is somewhat simplified by
using patterns with the same Parikh vector, since any morphism σ either maps
all, or none of them to the empty word. The result is also relevant to Theorem 19,
confirming that such a construction always exists.



Proposition 11. Let α0 be a pattern, and let n := dlog2(| var(α0)|)e. There
exist patterns α1, α2, ..., αn with P(α0) = P(α1) = · · · = P(αn) such that for
any k0, k1, ..., kn ∈ N, the system of word equations

α0
k0 = α1

k1 = · · · = αn
kn

has only periodic solutions.

It is now possible to show that there exists a pattern not in DPCP which has
an arbitrary pattern β as a factor. This is achieved as follows. Let β1 be a pattern
not in DPCP such that var(β1) = var(β). In accordance with Proposition 11,
construct the patterns β2, ... , βn, and consider the morphism ϕ : {1, 2, ... ,
n + 1}∗ → var(β)∗ given by ϕ(i) := βi for 1 ≤ i ≤ n, and ϕ(n + 1) = β.
Since β1 /∈ DPCP, and var(β1) = var(βi) = var(β) for 1 ≤ i ≤ n, the set
{ϕ(x) | 1 ≤ x ≤ n + 1} is periodicity forcing, so by Proposition 4, ϕ satisfies
Condition (ii) of Lemma 2. By construction, ϕ also satisfies Condition (i). Let
α /∈ DPCP be a pattern such that var(α) = {1, 2, ... n + 1}. By Lemma 2,
ϕ(α) /∈ DPCP. It is clear that β appears as a factor of ϕ(α). It is therefore
possible to formulate the following theorem.

Theorem 12. For any pattern β ∈ N+, there exists a pattern α /∈ DPCP such
that β is a factor of α.

Example 13 demonstrates how such a morphism may be constructed. Note
that the patterns β2, ... βn are constructed around β, rather than β1. This is
simply to keep example more compact, and it is not difficult to see why the
correctness is unaffected. In a similar way, the patterns can be ‘swapped’ around
to guarantee that β appears as a prefix or suffix of ϕ(α).

Example 13. Let β := 1 · 1 · 2 · 3, let β2 := 2 · 3 · 1 · 1, and let β3 := 3 · 1 · 1 · 2. Let
β1 := 1·2·1·1·2·1·3·1·1·3·2·1·1·2·1·1·2·1·1·2·1·2·1·1·2·1·3·1·1·3·2·1·1·2·1. By [3]
(Proposition 32), β1 /∈ DPCP. Thus, by Proposition 4, the morphism ϕ : {1, 2,
3, 4}∗ → {1, 2, 3}∗ given by ϕ(i) := βi for 1 ≤ i ≤ 3 and ϕ(4) := β satisfies
Condition (ii) of Lemma 2.

Condition (i) is now considered. Let σ : {1, 2, 3}∗ → {a,b}∗ be a non-periodic
morphism. Note that, since var(β) = var(β1) = var(β2) = var(β3), σ(γ) 6= ε for
every γ ∈ {β, β1, β2, β3}. Let k1, k2, k3, k4 ∈ N and consider the equation

σ(β1)k1 = σ(β2)k2 = σ(β3)k3 = σ(β)k4 . (2)

Clearly, this is only satisfied if

σ(2 · 3 · 1 · 1)k2 = σ(3 · 1 · 1 · 2)k3 = σ(1 · 1 · 2 · 3)k4 ,

and therefore

σ(1 · 1 · 2 · 3) = σ(2 · 3 · 1 · 1) = σ(3 · 1 · 1 · 2).



Assume that (2), and therefore the subsequent systems of equations, are satisfied.
This implies that

σ(311)σ(2) = σ(2)σ(311)

= σ(11)σ(23) = σ(23)σ(11)

= σ(112)σ(3) = σ(3)σ(112)

and therefore by Lemma 1 σ(1), σ(2), σ(3) share a primitive root. Thus σ is
periodic. This is a contradiction; there does not exist a non-periodic morphism
σ such that (2) is satisfied. By Proposition 3, ϕ therefore satisfies Condition (i)
of Lemma 2. Thus, for any pattern α /∈ DPCP with var(α) = {1, 2, 3, 4},
ϕ(α) /∈ DPCP, and β is a factor of ϕ(α).

5 An Alternative Means of Finding Patterns not in
DPCP

While Theorem 10 provides motivation for the further study of morphisms in the
context of DPCP¬, it also demonstrates the need to identify periodicity forcing
words by other means. In [1], Culik II and Karhumäki show that this may be
done using periodicity forcing sets. Indeed, patterns not in DPCP are essentially
periodicity forcing sets with a cardinality of 1. However, it is generally easier
to construct periodicity forcing sets with higher cardinalities, as more patterns
results in a more restricted class of (pairs of) morphisms which agree on every
pattern. This is precisely the reason why the morphisms approach is useful (see
Proposition 4).

It follows from the properties of morphisms that the agreement of two mor-
phisms on a ratio-imprimitive pattern can be reduced to the agreement of those
morphisms on a set of two (or more) smaller patterns. The following lemma
establishes this relationship formally, providing a characterisation of when a
ratio-imprimitive pattern is in DPCP.

Lemma 14. Let α = β1 · β2 · ... · βn be a pattern such that β1, β2, ..., βn share
a basic Parikh vector. Then α /∈ DPCP if and only if {β1, β2, ..., βn} is a
periodicity forcing set.

For patterns with a higher element of ratio-imprimitivity (i. e., those which
have many different prefixes with the same basic Parikh vector as the whole
pattern), larger values of n can be taken. This results in a larger potential sim-
plification gained by applying Lemma 14. While this does restrict the range of
patterns to which this approach may be applied, it is worth noting that any
concatenation of all the patterns β1, β2, ..., βn is also not be in DPCP. This
means that relatively rich classes of patterns can be established with any single
set of factors. Expressing the same result using morphisms demonstrates more
clearly this trade-off. The following proposition gives a criterion for a morphism
ϕ : ∆1

∗ → ∆2
∗ which maps any pattern α with var(α) = ∆1 to a pattern not in

DPCP.



Proposition 15. Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗ be
a morphism. For every i ∈ ∆1, let βi := ϕ(i). If {βi | i ∈ ∆1} is a periodicity
forcing set, and β1, β2, ... βn share the same basic Parikh vector, then ϕ(α) /∈
DPCP for any pattern α satisfying var(α) = ∆1.

While the set of patterns to which morphisms satisfying Proposition 15 can
be applied is much larger than for morphisms satisfying Lemma 2, the images are
more restricted. The result is a contrasting class of examples of patterns not in
DPCP. The characterisation given in Lemma 14 shows that periodicity forcing
sets of patterns with the same basic Parikh vectors are very closely related to
sets of ratio-imprimitive patterns not in DPCP. Indeed, every ratio-imprimitive
pattern not in DPCP can be decomposed into a unique periodicity forcing set of
ratio-primitive patterns with the same basic Parikh vectors, and for every such
set, there exists a unique corresponding set of ratio-imprimitive patterns not in
DPCP, obtained by concatenating every pattern in the set at least once.

It is therefore appropriate to simply investigate periodicity forcing sets of
ratio-primitive patterns with equal basic Parikh vectors, since such sets auto-
matically yield sets of patterns not in DPCP. While it is not difficult to construct
periodicity forcing sets for any set of variables, generating sets of patterns with
equal basic Parikh vectors present more of a challenge. Similarly to the mor-
phisms approach studied in [3] and Sect. 3, the following techniques produce
periodicity forcing words by building on the existing knowledge in the two vari-
able case. Strong sufficient conditions are known for a set of patterns over two
variables to be periodicity forcing (see Holub [5]), so they are generally not dif-
ficult to produce. Lemma 16 provides a conveniently concise example to use as
a starting point.

Lemma 16 (Culik II, Karhumäki [1]). The set {1 ·2, 1 ·1 ·2 ·2} is periodicity
forcing.

The advantage of starting with a smaller periodicity forcing set is that strict
conditions can already be imposed on factors of the larger patterns. It is not
difficult to see that for any periodicity forcing set Π := {β1, β2, ... , βn}, and
any morphism ϕ : (var(β1) ∪ · · · ∪ var(βn))∗ → N∗, the set ϕ(Π) := {ϕ(β1),
ϕ(β2), ... , ϕ(βn)} is periodicity forcing with respect to each factor ϕ(x), where
x ∈ var(β1) ∪ var(β2) ∪ · · · ∪ var(βn). Specifically, for each pair of morphisms σ,
τ which agree on ϕ(Π), at least one of the following cases needs to be satisfied:

(i) There exists a primitive word w such that, for every x ∈ var(β1)∪var(β2)∪
· · · ∪ var(βn), σ(ϕ(x)) ∈ {w}∗ and τ(ϕ(x)) ∈ {w}∗.

(ii) For every x ∈ var(β1) ∪ var(β2) ∪ · · · ∪ var(βn), σ(ϕ(x)) = τ(ϕ(x)).

This can be verified by contradiction: assuming that neither condition holds, the
morphisms σ ◦ϕ and τ ◦ϕ are evidence that {β1, β2, ... βn} is not a periodicity
forcing set. It can therefore be more efficient to generate new periodicity forcing
sets from existing ones, by substituting individual variables for patterns as this
considerably restricts the morphisms σ, τ which need to be accounted for.



The first case is, generally speaking, the more difficult – and is addressed
in the following two lemmas, which provide a tool for exploiting the ‘partial’
periodicity of two morphisms, and extending it to guarantee their total period-
icity. This is achieved by introducing patterns which are formed by ‘splitting’ a
pattern which has a periodicity constraint on it.

Lemma 17. Let w, u, v be words, and let k1, k2, k3, k4 ∈ N0 with k2 ≥ 1. If

wk1 · u · wk2 · v · wk3 = wk4

then u, v, and w commute.

Lemma 18. Let w be a primitive word, and let u, u′, v, v′ be non-empty words
such that u ·v = u′ ·v′ = w. Then for any k1, k2, k3, k4 ∈ N0 and any q1, q2 ∈ N,
the equation

wk1 · u · wq1 · v · wk2 = wk3 · u′ · wq2 · v′ · wk4 (3)

only has solutions if k1 = k3, k2 = k4, q1 = q2, u = u′ and v = v′.

It is now easier to formulate methods for generating larger periodicity sets
from smaller ones, allowing for the preservation of the property of having pat-
terns with the same basic Parikh vector. The following method relies on ‘split-
ting’ one variable y into two (so each occurrence of y becomes, e. g., y1y2) in
each pattern. New patterns are then introduced to ‘force’ the periodicity of y1
and y2. Although the theorem appears very technical, it is relatively simple to
apply, as example 20 shows.

Theorem 19. Let ∆ := {x1, x2, ..., xn} be a set of variables, and let y /∈
∆ be a variable. Let Π := {α1, α2, ..., αm} be a periodicity forcing set such
that

⋃m
i=1 var(αm) = ∆. Let ϕ : ∆∗ → (∆ ∪ {y})∗ be the morphism given by

ϕ(xn) := xn · y and ϕ(xi) := xi for 1 ≤ i < n. Let t ∈ N, and for 1 ≤ i ≤ t, let
βi := xn · γi · y for some pattern γi. Let βt+1 = x1 · x1 · x2 · x2 · · ·xn · xn · y · y. If

(i) γ1, γ2, ..., γt are patterns such that var(γ1) = var(γ2) = · · · = var(γt) =
∆\{xn},

(ii) for any k1, k2, ..., kq ∈ N, the series of word equations γ1
k1 = γ2

k2 = · · · =
γt

kt has only periodic solutions,

then the set {ϕ(α1), ϕ(α2), ..., ϕ(αm), β1, β2, ..., βt+1} is periodicity forcing.

Example 20. Let Π := {1 · 2, 1 · 1 · 2 · 2}. It is established in Lemma 16 that Π is
a periodicity forcing set. Let ϕ : {1, 2}∗ → {1, 2, 3}∗ be the morphism given by
ϕ(1) := 1 and ϕ(2) := 2 ·3. Consider the set Π ′ := {ϕ(1 ·2), ϕ(1 ·1 ·2 ·2), β1, β2}
where β1 := 2 · 1 · 3 and β2 := 1 · 1 · 2 · 2 · 3 · 3. It follows from the fact that Π is a
periodicity forcing set that, for any two morphisms σ, τ : {1, 2, 3}∗ → {a,b}∗,
if σ and τ agree on every pattern in Π ′, then

(1) σ(1), τ(1), σ(2 · 3), τ(2 · 3) commute, or
(2) σ(1) = τ(1) and σ(2 · 3) = τ(2 · 3).



Assume the first case is true. It follows from Lemmas 17 and 18 that if σ and
τ agree on 2 · 1 · 3, they must be periodic. Assume that the second case is true.
Then if σ and τ agree on 1 · 1 · 2 · 2 · 3 · 3, they must agree on 2 · 2 · 3 · 3. They
also agree on 2 · 3, and {2 · 3, 2 · 2 · 3 · 3} is a periodicity forcing set. Thus if σ
and τ are distinct, they must be periodic over {2, 3}. Furthermore, if they agree
on 2 · 1 · 3, then since σ(1) = τ(1) = u for some word u ∈ {a,b}∗,

σ(2) · u · σ(3) = τ(2) · u · τ(3).

If σ and τ are periodic over {2, 3}, there exist k1, k2, k3, k4 ∈ N0 and a primitive
word w ∈ {a,b}∗ such that σ(2) = wk1 , σ(3) = wk2 , τ(2) = wk3 and τ(3) = wk4 .
Thus

wk1 · u · wk2 = wk3 · u · wk4

which is a non-trivial equation in two unknowns unless k1 = k3 and k2 = k4,
in which case σ and τ are not distinct. Therefore by Lemma 1, u ∈ {w}∗.
Consequently, if two distinct morphisms agree on every pattern in Π ′, they are
periodic, so Π ′ is a periodicity forcing set.

An alternative to splitting variables in the patterns of a periodicity forcing set
is to generate a set of patterns obtained by inserting a new variable repeatedly
into occurrences of a single pattern not in DPCP. It is relatively simple to
establish a set of patterns with the same basic Parikh vectors in this way. The
next results demonstrate how it can be shown that such a set is also periodicity
forcing. The following definition is given to provide a notation for inserting a
new variable x at a specified place in a pattern α.

Definition 21. Let α be a pattern and let x ∈ var(α) be a variable. Let prex(α)
be the prefix of α up to, and including the first occurrence of x. Let sufx(α) be
the suffix of α starting after (not including) the first occurrence of x.

Note that prex(α) · sufx(α) = α, so the pattern prex(α) · y · sufx(α) is the
pattern obtained by inserting the variable y into the pattern α directly after
the first occurrence of x. Again, knowledge of existing periodicity forcing sets
is used to impose the required conditions. For clarity, a specific example (from
Lemma 16) is used; however, any periodicity forcing set of patterns with two
variables would be suitable.

Theorem 22. Let α /∈ DPCP and let x /∈ var(α). Then the set Π := {x · α,
x · x · α · α} ∪ {prey(α) · x · sufy(α) | y ∈ var(α)} is periodicity forcing.

It is clear that the patterns generated in the style of Theorem 22 have the
pattern αk as a sub-pattern, where k := | var(α)| + 3. Thus there exists a non-
trivial morphism ϕ and a pattern β /∈ DPCP such that ϕ(β) = αk.

Proposition 23. Let α = βk for some pattern β and number k ≥ | var(α)|+ 3.
Then α is not a prime element of DPCP¬.

This is an interesting result since the properties associated with the Dual
PCP are, due to the nature of morphisms, generally consistent for powers of the
same word. It can also be interpreted that, as a result, the majority of periodicity
forcing words are not prime.



6 Conclusion

Section 3 introduces a prime subset of DPCP¬, allowing the set to be described as
chains of morphic images. It is shown that this subset is non-empty, and thus that
DPCP¬ can be exactly generated by the set of prime periodicity forcing words.
In Section 4, a construction is given for periodicity forcing words containing any
given factor/prefix/suffix. This not only produces a rich class of new examples,
but demonstrates a previously unknown level of generality within the seemingly
very restrictive set. Motivated by the study of the prime periodicity forcing
words introduced earlier, Section 5 examines alternative methods for generating
periodicity forcing words. The results give examples of periodicity forcing words
which contrast those known so far, and provide further insights into the prime
words considered earlier in the paper. As a by-product of results from this paper
and existing literature, tight bounds on the length of the shortest periodicity
forcing word over a given alphabet can be given.
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