
 
 
 

 
This item was submitted to Loughborough’s Institutional Repository 

(https://dspace.lboro.ac.uk/) by the author and is made available under the 
following Creative Commons Licence conditions. 

 
 

  
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288379846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 INDEXING THE APPROXIMATE NUMBER SYSTEM 
 1 

 

 

 

 

 

 

 

Indexing the Approximate Number System 

 

Matthew Inglis and Camilla Gilmore 

Mathematics Education Centre 

Loughborough University 

 

 

 

Mathematics Education Centre 

Loughborough University 

Loughborough 

Leicestershire, LE11 3TU 

United Kingdom 

Email: m.j.inglis@lboro.ac.uk 

 

 



 INDEXING THE APPROXIMATE NUMBER SYSTEM 
 2 

Abstract 

Much recent research attention has focused on understanding individual differences in the 

Approximate Number System, a cognitive system believed to underlie human mathematical 

competence. To date researchers have used four main indices of ANS acuity, and have 

typically assumed that they measure similar properties. Here we report a study which 

questions this assumption. We demonstrate that the Numerical Ratio Effect has poor test-

retest reliability and that it does not relate to either Weber fractions or accuracy on 

nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly 

skewed distribution and that they have lower test-retest reliability than a simple accuracy 

measure. We conclude by arguing that in future researchers interested in indexing individual 

differences in ANS acuity should use accuracy figures, not Weber fractions or Numerical 

Ratio Effects. 
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INDEXING THE APPROXIMATE NUMBER SYSTEM 

How do students develop their mathematical competence? In recent years there has 

been substantial interest in addressing this question by investigating individual differences in 

children and adults’ abilities when performing basic arithmetic operations on nonsymbolic 

stimuli. Infants, children, adults and non-human animals are all capable of forming rapid 

nonsymbolic representations of the numerosity of arrays of dots and sequences of tones (e.g., 

Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene, 1997; Feigenson, Dehaene, & Spelke, 

2004). The mechanism that underlies these representations has become known as the 

Approximate Number System (or ANS) and allows individuals to compare, add, and subtract 

sets of items, e.g., objects, dots, or tones (Barth, La Mont, Lipton, Dehaene, Kanwisher & 

Spelke, 2006; Meck & Church, 1983; Pica, Lemer, Izard, & Dehaene, 2004).  

Some researchers have hypothesised that the ANS is the cognitive basis of all formal 

symbolic mathematics abilities; several sources of evidence support this view. First, the ANS 

is automatically activated in response to Arabic numerals in addition to nonsymbolic arrays 

(Moyer & Landauer, 1967). Second, prior to formal mathematical instruction children seem 

to be capable of using ANS mechanisms to perform approximate calculations with Arabic 

numerals despite being incapable of performing exact calculations (Gilmore, McCarthy, & 

Spelke, 2007). Third, measures of the precision of children’s ANS representations – their so-

called ANS acuity – have been found in some studies to predict their achievement on 

standardised school mathematics tests (e.g., De Smedt, Vershaffel, & Ghesquièrre, 2009; 

Halberda, Mazzocco, & Feigenson, 2008; Inglis, Attridge, Batchelor, & Gilmore, 2011; 

Libertus, Feigenson, & Halberda, 2011; Mazzocco, Feigenson, & Halberda, 2011a; Mundy & 

Gilmore, 2009). Fourth, it has been found in some studies that students with dyscalculia have 

lower ANS precision than typically achieving children, suggesting that an ANS deficit may 
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be the cause of mathematical learning difficulties (Mazzocco, Feigenson & Halberda 2011b; 

Piazza, Faocertti, Trussardi, Berteletti, Conte, Lucangeli, Dehaene & Zorzi, 2010).  

All these studies rely upon measuring an individual’s ANS acuity: the accuracy with 

which they represent nonsymbolic numerosities. Typically this is achieved using the 

nonsymbolic comparison task. Participants are presented with two dot arrays n1 and n2, side 

by side or sequentially, and asked to judge which is the larger. After the presentation of many 

such pairs, one of four indices is typically calculated: accuracy, Weber fraction, numerical 

ratio effect (NRE) for accuracy or NRE for reaction time. These four indices are implicitly 

assumed to be measuring the same property: the acuity of an individual’s ANS (e.g. Libertus, 

Feigenson, & Halberda, 2012; Price, Palmer, Battista, & Ansari, 2012). But, to date, little 

evidence has been presented for this suggestion. Our goal in this paper is to investigate the 

psychometric properties of, and interrelations between, these different indices. Before 

motivating our specific questions, we briefly discuss each of the four indices. 

Several researchers have, when investigating ANS acuity, simply reported 

participants’ accuracies: the proportion of trials they answered correctly (e.g., Fuhs & 

McNeil, 2013; Gilmore, Attridge, & Inglis, 2011; Kolkman, Kroesbergen, & Leseman, 2013; 

Lourenco, Bonny, Fernandez, & Rao, 2012; Nys, Ventura, Fernandes, Querido, Leybaert, & 

Content, 2013; Wei, Yuan, Chen & Zhou, 2012) or, less commonly, the number of trials they 

answered correctly in a given time (e.g., Nosworthy, Bugden, Archibald, Evans & Ansari, 

2013). 

The Weber fraction is an alternative approach to indexing an individual’s ANS acuity 

(e.g. Bonny & Lourenco, 2013; Castronovo & Göbel, 2012; Halberda & Feigenson, 2008; 

Halberda et al., 2008; Halberda, Ly, Willmer, Naiman, & Germine, 2012; Inglis et al., 2011; 

Libertus et al., 2011, 2012; Lyons & Beilock, 2011; Mazzocco et al., 2011a; Piazza et al., 

2010; Price et al., 2012; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013). It makes the 
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theoretical assumption that the ANS operates according to the Weber-Fechner law (e.g. Barth 

et al., 2006). Under this interpretation, when an individual observes an array of n dots, they 

form an internal representation which follows a normal distribution with mean n and standard 

deviation wn. Here w is the Weber fraction, which represents the precision of the individuals’ 

representation. Those with ws closer to zero are more likely to form representations closer to 

the true value of the numerosity n. These assumptions imply that an individuals’ expected 

accuracy on a given trial is a function of n1, n2 and w: 

acc(n1,n2;w) =
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. In practice, an individual’s Weber fraction can be 

estimated by calculating the value of w which bests fits their behavioral data. 

Figure 1 shows the relationship between the ratio of the two to-be-compared 

numerosities, and an individuals’ expected accuracy for various values of w. As can be seen, 

as expected accuracy tends to 0.5, w asymptotically tends to infinity. It is therefore 

impossible for an individual to have an accuracy of under 0.5 under this model (to do so 

would require a w greater than infinity). The practical consequence of these considerations is 

that Weber fractions can only be calculated for participants whose responses follow the 

Weber-Fechner law, and consequently who score above 0.5 (cf. Libertus et al., 2011).  

Finally, some researchers have adopted the Numerical Ratio Effect (NRE), or the 

closely related Numerical Distance Effect (NDE), to index ANS acuity (e.g., Bugden, Price, 

McLean & Ansari, 2012; Gilmore et al., 2011; Holloway & Ansari, 2009; Lonnemann, 

Linkersdorfer, Hasselhorn & Lindberg, 2011; Merkley & Ansari, 2010; Price et al., 2012; 

Sasanguie, Van den Bussche, & Reynvoet, 2012; Vanbinst, Ghesquière, & De Smedt, 2012). 

This effect observes that individuals are typically less accurate on, and slower to respond to, 
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comparison trials where the n1/n2 ratio is close to 1. An individual’s NRE can be obtained by 

calculating the slope of their ratio-accuracy (or ratio-RT) graph. Assuming that n1/n2 < 1, 

then an individual with a strongly negative NRE(accuracy) shows a substantial drop off in 

accuracy between easier trials (with ratios away from 1) and harder trials (those with ratios 

close to 1). Similarly, an individual with a strongly positive NRE(RT) shows a substantial 

slowing between easier and harder trials. As Figure 1 illustrates, the slope of an individuals’ 

ratio-accuracy curve is predicted by their Weber fraction (the slope of the w = 0.1 curve is 

substantially steeper than the slope of the w = 0.4 curve, for example). Therefore, an 

individuals’ NRE(accuracy) should, according to the standard model of the ANS, be strongly 

related to their Weber fraction (albeit non-linearly). It is less clear whether theory would 

predict a relationship between Weber fractions and NRE(RT)s, although many researchers 

have used NRE(RT) to index ANS acuity (e.g. Price et al., 2012). 

The four different methods of indexing ANS acuity have, to a large extent, been 

assumed to unproblematically measure the same phenomenon (e.g., Libertus et al., 2012; 

Price et al., 2012). However, there are at least four reasons to doubt this belief.  

First, calculations of the reliability of the different indices have been surprisingly low. 

Price et al. (2012) calculated immediate test-retest reliability figures for the NRE(RT) and 

Weber fraction on three variants of the nonsymbolic comparison task, finding reliability 

coefficients varying between r = .4 and .8; Maloney, Risko, Preston, Ansari & Fugelsang 

(2010) found that the immediate test-retest reliability of an NDE(accuracy) measure was in 

the same range, r ≈ .6. Remarkably, Libertus et al (2012) found that the three month test-

retest reliability of their measure of individuals’ Weber fractions was not significantly 

different to zero.  

Second, researchers have observed surprisingly low correlations between estimates of 

these indices obtained from different tasks. For example, Gilmore et al. (2011) found that 
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estimates of Weber fraction obtained from a nonsymbolic comparison task did not correlate 

with similar indices derived from a nonsymbolic addition task, which is believed to be a 

closely related method of assessing ANS acuity (e.g. Barth et al., 2006).  

Third, researchers have reported different relationships between their measures of 

individuals’ ANS acuity and mathematical achievement. While some of these researchers 

have indexed ANS acuity using Weber fractions (e.g. Castronovo & Gobel, 2012; Halberda 

et al., 2008, 2012; Halberda & Feigenson, 2008; Inglis et al., 2011; Libertus et al., 2012; 

Lyons & Beilock, 2011; Piazza et al., 2010; Price et al., 2012; Sasanguie et al., 2012), others 

have used NREs (e.g., Bugden et al., 2012; Holloway & Ansari, 2009; Lourenco et al., 2012; 

Merkley & Ansari, 2010; Price et al., 2012), and others accuracy (e.g. Fuhs & McNeil, 2013; 

Nys et al., 2013; Wei et al., 2012). One account for why some of these researchers have 

found a relationship between ANS acuity and mathematics achievement, and others have not, 

is simply that their choice of index do not measure the same underlying phenomenon. For 

example, Mundy and Gilmore (2009) found a significant relationship between nonsymbolic 

comparison performance and mathematical achievement, but only when they indexed 

performance by accuracy rather than NDE. 

Finally, to our knowledge, the only attempt to understand the relationship between 

different indices of ANS acuity suggests that the indices may measure different phenomena. 

Price et al. (2012) found extremely weak relationships between NDE(RT)s and Weber 

fractions. They found a significant (but weak, R2 = .11) association between these two indices 

on a nonsymbolic comparison task where the stimuli were presented sequentially, and no 

significant associations on tasks where the stimuli were displayed concurrently. 

To summarise, although much progress has been made towards understanding the 

ANS and its relationship with mathematical achievement, there is little agreement in the 

literature about how best to index an individual’s ANS acuity. Further, there are reasons to 
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suppose that at least some contradictory findings reported in the literature could be resolved 

by a careful study of the psychometric properties of different indices of the ANS. In this 

paper we take a step in this direction by asking four main questions. First, what distributions 

do the four commonly-used indices of ANS acuity (accuracy, Weber fraction, NRE(accuracy) 

and NRE(RT)) follow? Second, what are the relationships between these different indices? 

Third, what are the immediate and delayed test-retest reliabilities of the different indices? 

Finally, to what extent are accuracies and Weber fractions dependent on the problem sets 

from which they are derived? To answer these questions, we asked groups of adults and 

children to tackle a typical 80-trial nonsymbolic comparison task four times, twice in 

succession and then twice more in succession a week later. 

 

1. Method 

1.1 Participants.  

Participants were 49 adults (ages 18-52, M = 33.6, 21 female), all staff or students 

working or studying at Loughborough University; and 56 children (ages 7-9, 25 female) 

recruited from a local school. The adults were paid £4 for participation, and the children were 

rewarded with stickers. 

1.2 Materials and Procedure 

The study took place during two sessions, scheduled exactly a week apart (within ±30 

minutes). During each session participants were first familiarised with the nonsymbolic 

comparison task before being given 10 practice trials, and 80 experimental trials (Quarter 1). 

They were then asked to complete the same 80 experimental trials for a second time (Quarter 

2). Participants repeated the same procedure in the second session. Consequently, by the end 

of the second session participants had completed the set of 80 trials four times (Quarters 1 to 

4).  
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Each of the trials consisted of two dot arrays – one red, one blue – presented side by 

side on a laptop. Numerosities varied from 5-30, with each trial containing arrays that 

differed by one of four approximate ratios: 0.5, 0.6, 0.7 or 0.8. Participants were asked to 

select, as quickly and accurately as possible, which array was more numerous using the 

leftmost or rightmost buttons on a five-button response box. Stimuli were displayed until 

participants responded, or for 1000ms (to prevent counting). If participants had not responded 

within the time limit, a second screen, displaying a question mark, was shown until response. 

The side of the correct answer and its colour were counterbalanced across trials. To avoid 

participants relying upon continuous quantities associated with numerosity (e.g. dot size, 

envelope size), the stimuli were created using the method devised by Gebuis and Reynvoet 

(2011a). According to this method four sets of images were created, where: (1) envelope area 

and dot size are both positively correlated with the number of dots; (2) envelope area is 

positively correlated and dot size is negatively correlated with the number of dots; (3) 

envelope area is negatively correlated and dot size is positively correlated with the number of 

dots; and (4) envelope area and dot size are both negatively correlated with the number of 

dots. Participants were encouraged to take breaks every 20 trials, and while the children were 

given regular generic encouragement, no formal feedback about participants’ accuracies was 

given. 

2. Results and discussion 

We structure our discussion of the results in four main sections. First, we report the 

distributions of the four indices under consideration. Second, we investigate their inter-

relationships. Third, we explore the immediate and one-week test-retest reliabilities of the 

indices. Finally, we investigate the extent to which accuracies and Weber fractions depend on 

the problem sets from which they were derived. 
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2.1 Inclusion criteria and index construction 

Participants were included in the analyses if they scored significantly above chance 

(on a sign test) on all four quarters of the experiment. A total of 21 participants (all children) 

failed to meet this criterion and were eliminated, leaving 84 participants in the final analysis.  

For each participant we calculated, separately for each quarter of the experiment, their 

accuracy, their Weber fraction (by fitting their data to the model given above using maximum 

likelihood estimation), their NRE(accuracy) and their NRE(RT). Like earlier researchers 

(e.g., Libertus et al., 2011), we included w data from all participants for whom we were able 

to calculate Weber fractions, and so all 84 participants were represented in this dataset. Nine 

participants (all children) had outlier NRE(RT)s in one or more of the four quarters of the 

experiment (more than 3 SDs away from the mean). These participants were eliminated from 

analyses involving NRE(RT) but were retained in the other (non-RT) analyses. Descriptive 

statistics for the four indices under consideration are shown in Table 1. 

2.2 Distributions of the indices 

Figure 2 shows histograms of the indices for the children and adults separately. All 

the indices were roughly normally distributed, with the exception of the Weber fractions, 

which appeared to be strongly positively skewed (mean skewness statistics were 0.75 and 

1.19 for adults and children respectively). We conducted Shapiro-Wilks tests of normality for 

each quarter of the experiment for adults and children separately. The distributions of Weber 

fractions significantly departed from normality for every one of the eight quarters, all ps < 

.003. In contrast, the accuracy and NRE(RT) distributions significantly departed from 

normality for only one of the eight quarters (children, quarter 1), and NRE(accuracy) never 

significantly departed from normality.  

In sum, the accuracy and both NRE indices followed approximately normal 

distributions in both children and adults. However, the Weber fractions were not normally 
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distributed for either children or adults. Instead they appeared to be strongly positively 

skewed. This finding is unsurprising in view of the function which relates accuracy and w (as 

discussed above, as accuracy tends to 0.5, w tends to infinity). However, it does have 

significant implications for how Weber fractions can be legitimately used by researchers 

interested in individual differences in ANS acuity. Specifically, most researchers who have 

used Weber fractions to index individual differences in ANS acuity have gone on to correlate 

them with, for example, measures of mathematical achievement. However, the Pearson 

correlation coefficient is not robust to violations of the assumption of normality (e.g. Bishara 

& Hittner, 2012; Kowalski, 1972), and Osborne (2010) suggested that correlational analyses 

should not be performed on data from distributions with a skew greater than 1.0 (which was 

the case in our child sample). This raises concerns about the appropriateness of analysing 

Weber fractions in this fashion without first performing an appropriate transformation (e.g. 

Osborne, 2008). In the general discussion section we discuss this issue further, and suggest 

that the skewedness of the distribution of Weber fractions can account for some of the results 

we report below, as well as several existing observations in the literature. 

2.3 Inter-relations among the indices 

Next we considered the extent to which the different indices were related to each 

other. Because we were interested in how the indices represented the same set of 

experimental data (rather than generalizing to the population of individuals), we used each 

quarter of the experiment (i.e. each complete set of 80 trials) as the unit of the analysis rather 

than each participant. Scatterplots showing how the different indices relate to each other are 

given in Figure 3. R2 values for the relationships between the indices are given in Table 2. All 

these values reached significance, with the exception of the relationship between the 

NRE(accuracy) and NRE(RT), R2 = .01, p = .091. Despite mostly showing significant 

relationships, the R2 values were remarkably low: only the relationship between accuracy and 
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Weber fraction indicated that the two indices could reasonably be interpreted to be measuring 

the same construct: Cohen and Swedlik (2009), for example, suggested that any reliability 

figure below r = .65 (R2 = .42) should normally be considered unacceptable. Furthermore, 

Figure 3 clearly indicates that the relationship between accuracies and Weber fractions is 

non-linear. Fitting a power law function, y = axk, rather than a straight line, gave a higher 

value of R2 = .86. We also note that our data replicate Price et al.’s (2012) finding of a low 

relationship between NRE(RT) and Weber fractions. Whereas Price et al. found R2s < .15, we 

found an R2 of .14.  

In sum, these analyses indicate that Weber fractions and accuracy figures can 

reasonably be interpreted to be measuring the same construct, presumably ANS acuity. But 

the same is not the case for NREs: neither the accuracy- or RT-based NREs were strongly 

related to accuracy or Weber fraction indices, and nor were they strongly related to each 

other. The lack of a strong relationship between NRE(accuracy)s and Weber fractions may 

have theoretical as well as practical significance. As shown in Figure 1, an individual’s 

Weber fraction is, according to the standard model of the ANS, strongly, albeit non-linearly, 

related to the slope of their ratio-accuracy graph. We found no such relationship in our data: 

fitting a linear slope to the data resulted in an extremely low R2 = .16, as did fitting a cubic,  

R2 = .19, a curve which would be expected to better capture the theoretical non-linear 

relationship between NRE(accuracy)s and Weber fractions. This lack of a strong relationship 

may indicate that performance on the nonsymbolic comparison task is not governed by purely 

Weberian processes (cf. Fuhs & McNeil, 2013; Gebuis, Cohen Kadosh, de Haan, & Henik, 

2009; Gebuis & Reynvoet, 2011b, 2012; Gilmore et al., 2013; Hurewitz, Gelman & 

Schnitzer, 2006; Nys & Content, 2012; Verguts & Fias, 2004; Zorzi & Butterworth, 1999). 

Alternatively, it may be that there is simply too much noise in behavioral data to observe this 

predicted theoretical relationship. That we found a strong relationship between Weber 
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fractions and accuracy suggests that any noisiness which disrupts the NRE-Weber fraction 

relationship may be more present in the NRE measures than the Weber fraction. This 

suggestion is supported further by our test-retest analyses, reported below. 

2.4 Test-retest reliability 

We calculated four test-retest reliability coefficients for each index. Two provided 

estimates of the indices’ immediate test-retest reliabilities: the correlations between Quarters 

1 and 2, and between Quarters 3 and 4. Two more provided estimates of the indices’ one 

week test-retest reliabilities: the correlations between Quarters 1 and 3, and between Quarters 

2 and 4. 

The resulting four scatterplots for each of the four indices are shown in Figures 4 – 7. 

Means of the two estimates for each indices’ immediate and one-week test-retest reliability 

coefficients are given in Table 3 (top panel). Of the four indices, accuracy showed the highest 

reliability (which, for adults, was in Cohen and Swerdlik’s (2009) acceptable range of r ≥ 

.65), followed by Weber fraction (although all these reliability figures remained in the 

unacceptable range). Both the NRE indices showed extremely poor test-retest reliability, and 

in the child sample the figures were close to zero.  

To investigate the extent to which increasing the length of a nonsymbolic numerical 

comparison task would influence its one-week test-retest reliability, we combined Quarters 1 

and 2, and 3 and 4, into two halves, each of 160 trials and recalculated indices for accuracy, 

Weber fraction, NRE(accuracy) and NRE(RT). These figures are shown in Table 3 (bottom 

panel). This substantially increased the one-week test-retest reliability for accuracy in adults 

(from .65 to .79), but surprisingly had little effect on the accuracy figure for children, or on 

the figures for Weber fraction (in adults or children). As before, the NRE reliability figures 

for children remained close to zero. 
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When reporting their three-month test-retest analysis of Weber fractions, Libertus et 

al. (2012) noticed that some of their participants showed greater between session variability 

than others. In particular, they found that the size of this variability was greater for 

participants with high Time 1 Weber fractions (i.e. lower ANS acuity), compared to those 

with low Weber fractions at Time 1. To investigate this observation, we followed Libertus et 

al.’s approach by calculating each individuals’ absolute change in Weber fraction from 

Quarter 1 to Quarter 3 (repeating this analysis for Quarter 2 to Quarter 4 changes yielded 

essentially identical results). These were significantly correlated with Weber fractions from 

Quarter 1, r = .372, p = .001, replicating Libertus et al.’s finding.  

However, we do not believe that this finding indicates, as suggested by Libertus et al. 

(2012), that those participants with low ANS acuity (i.e. high Weber fractions) show 

particularly labile ANS acuities. Instead we suggest that this correlation is merely the result 

of the positive skewness of the distribution of Weber fractions, coupled with regression to the 

mean. Those participants with high Weber fractions were relatively further from the mean of 

the distribution than those with low Weber fractions (because of the skewed distribution), so 

they would be expected to regress further in subsequent measurements. To test this 

alternative account, we conducted two further analyses. First, we repeated Libertus et al.’s 

analysis with accuracy figures rather than Weber fractions (that is to say that we correlated 

participants’ Quarter 1 accuracies with their absolute change in accuracy from Quarter 1 to 

Quarter 3). This revealed no significant correlation, r = -.089, p = .422, which would be 

surprising if participants with low ANS acuities had particularly variable performance. 

Second, we tested whether the relationship observed by Libertus et al. could also be observed 

in reverse. A signature of regression to the mean effects is that they are time reversible, that is 

to say that both large Time 1 and large Time 2 scores should ‘cause’ larger absolute Time 1 

to Time 2 differences. We found exactly this pattern: Quarter 3 Weber fractions were 
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significantly related to participants’ absolute Quarters 1 to 3 change scores, r = .779, p < 

.001.  

The positive skew of the distribution of Weber fractions may also account for the 

difference in reliability observed between accuracies and Weber fractions. Recall that, for 

adults at least, the test-retest reliabilities observed for Weber fractions were consistently 

within Cohen and Swerdlik’s (2009) unacceptable range (r < .65), whereas the equivalent 

figures for accuracy were consistently above it. Because of the power law relationship 

between accuracies and Weber fractions, small changes in accuracy have different expected 

effects on the Weber fraction depending on whether the individual is a high or low performer. 

For example, the curve of best fit for the accuracy-Weber fraction graph shown in Figure 3 is 

given by w = 0.13a-4.1 (where w is the Weber fraction and a is accuracy). Thus, if an 

individual moves from a = .95 to a = .94, we would expect their Weber fraction to change by 

only 0.007. But if a different individual’s accuracy changed from a = .55 to a = .54, their 

Weber fraction would be expected to change by 0.12, a figure nearly 17 times greater. Of 

course, this different effect would be in some sense desirable if participants were following 

the Weber-Fechner law (a change in accuracy from .54 to .55 would be more significant than 

a change from .94 to .95 in terms of the precision of their ANS acuity), however if dot 

comparison performance is not entirely Weberian (as suggested by, for example, Fuhs & 

McNeil, 2013; Gebuis et al., 2009; Gilmore et al., 2013; Hurewitz et al., 2006; Nys & 

Content, 2012; Verguts & Fias, 2004; Zorzi & Butterworth, 1999), then this property of the 

Weber fraction may be less desirable. In short, it may be that this exaggeration of small 

changes in behavior at the lower end of performance accounts for the relatively poor test-

retest reliability observed in Weber fractions. 

In sum, we found widely varying levels of test-retest reliability for the different 

indices used to investigate individual differences in ANS acuity. Both the NRE indices had 
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extremely low test-retest reliability, especially in children. The most reliable index was 

accuracy. The test-retest reliabilities of the accuracy indices for adults for both the 80- and 

160-item tests were within the range considered acceptable by psychometricians (e.g. Cohen 

& Swerdlik, 2009), but the equivalent figures for children, were somewhat lower than this. 

Weber fractions proved to have reliability coefficients some distance away from the 

acceptable range for both the 80- and 160-item test. It is possible that Weber fractions’ 

skewed distribution may account for their comparatively low reliability coefficients.  

 

2.4 Ratio Invariance of Accuracies and Weber fractions. 

One clear difference between the accuracy and Weber fraction indices is that 

accuracies are strongly related to the ratios of the to-be-compared numerosities on a 

nonsymbolic comparison task. Ratios close to 1 are more difficult than those further away 

from 1, therefore one can manipulate a participant’s accuracy by choosing harder or easier 

ratios. Is the same true of Weber fractions, or are they largely independent of the presented 

ratios? If the latter were true, one could more easily compare Weber fractions derived from 

different problem sets than one could accuracies.  

To investigate this issue we split our problems (across all quarters) into two sets. Set 

A consisted of 75% of the trials with ratios 0.5 and 0.6, and 25% of the trials with ratios 0.7 

and 0.8, and Set B was formed of the remaining trials. Thus we had two sets of problems, one 

with an average ratio of 0.6 and one with an average ratio 0.7, but both with a range of 0.5 to 

0.8. We then calculated each participants’ accuracy and Weber fraction for the two sets of 

problems separately. To compare the between-problem-set variance of accuracies and Weber 

fractions, we standardised each measure (across both problem sets), and calculated, for each 

participant, their absolute difference. Both individuals’ accuracies, r = .786, p < .001, and 

their Weber fractions, r = .752, p < .001, were strongly correlated across problem sets (these 
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figures are in some sense measures of the indices’ internal reliabilities). As expected, 

participants’ accuracies differed by a mean of 1.24 standard deviations between Set A and Set 

B. We also found a smaller, but still substantial, mean difference of 0.28 standard deviations 

between the Weber fractions derived from Set A and those derived from Set B. For both 

adults and children, the Set A – Set B differences in both accuracies and Weber fractions 

were signficant, all ps < .001  

These figures suggest that both accuracies and Weber fraction seem to depend, in 

part, on the ratios of the problem sets from which they are derived. Although this effect was 

substantially smaller for Weber fraction than it was for accuracies, it nevertheless seems 

reasonable to conclude that both indices are influenced by researchers’ choices of ratios. 

 

3. General Discussion 

In recent years there has been increasing interest in individual differences in ANS 

acuity, but researchers have adopted several different methodological approaches in their 

investigations. Here we considered four commonly used indices of ANS acuity: accuracy, 

Weber fraction and two variants of the NRE. We considered the psychometric properties of 

these indices, and how they were related, reporting four main findings. First, that accuracy 

and NREs for both accuracy and RT are distributed approximately normally, but that Weber 

fractions are distributed with a strongly positive skew. Second, that accuracy and Weber 

fractions are strongly related, R2 = .86, suggesting that they are measuring the same 

underlying construct, but that accuracy- and RT-based NREs are not related to each other, 

and neither are they related to accuracies or Weber fractions. Third, we reported the 

immediate and one-week test-retest reliabilities of the four measures, finding that both the 

NRE indices had reliabilities close to zero in the child sample, and that accuracies had 

stronger test-retest reliability than Weber fractions in both the immediate and one-week 
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analyses, for both adults and children. Finally, we found that both accuracies and Weber 

fractions depend, in part, upon the ratios of the problem sets from which they are derived. 

In our view, these findings clearly indicate that researchers should no longer use NRE 

measures when trying to index ANS acuity, especially when investigating young populations. 

NRE indices do not relate to other indices of ANS acuity, and have extremely low test-retest 

reliability in child samples. Furthermore, it may be that the lack of the predicted relationship 

between NRE(accuracy) and Weber fraction has some theoretical significance, implying that 

there are important processes involved in the nonsymbolic comparison task which do not 

follow the Weber-Fechner law (as suggested by, for example, Fuhs & McNeil, 2013; Gebuis, 

Cohen Kadosh, de Haan, & Henik, 2009; Gebuis & Reynvoet, 2011b, 2012; Gilmore et al., 

2013; Hurewitz, Gelman & Schnitzer, 2006; Nys & Content, 2012; Verguts & Fias, 2004; 

Zorzi & Butterworth, 1999). 

A second implication of our findings is that an individual’s accuracy seems to be a 

substantially superior measure of ANS acuity to their Weber fraction, especially when a large 

number of trials are used. While these two indices are strongly related, accuracy shows 

higher test-retest reliability and follows a normal distribution. In contrast, the distribution of 

Weber fractions in our study was strongly positively skewed, and we suggested that this skew 

was responsible for the relatively low test-retest reliability we observed. Furthermore, we 

have suggested that the skewness of the Weber fraction distribution is responsible for the 

relationship, observed by Libertus et al. (2012), between an individual’s Weber fraction and 

its subsequent change. Because the distribution is skewed, we would expect asymmetric 

regression to the mean effects. A further disadvantage of the Weber fraction is that as 

accuracies decrease to 0.5, they asymptotically tend to infinity. In fact, it would require a 

Weber fraction greater than infinity to successfully model individuals’ who score less than 

0.5. While such a score would appear impossible if the nonsymbolic comparison task 
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involves only Weber-Fechner processes (a claim which is disputed by some researchers), 

some participants do indeed perform in this range: 10 of the 420 experimental quarters in our 

study resulted in accuracies below 0.5, and in Libertus et al.’s (2011) study, over 10% of 

participants fell into this category. 

Given their worse reliability, is there any reason for researchers to continue to use 

Weber fractions to index the ANS ahead of simple accuracy scores? One justification would 

be because the Weber fraction is a theoretically-motivated measure which derives from the 

well-established psychophysical Weber-Fechner law. However, as we have noted, many 

researchers have questioned whether performance on dot comparison tasks is entirely 

Weberian. Some have highlighted the role that inhibitory control plays in visual dot 

comparison tasks (e.g. Fuhs & McNeil, 2013; Gebuis, Cohen Kadosh, de Haan, & Henik, 

2009; Gilmore et al., 2013; Hurewitz, Gelman & Schnitzer, 2006; Nys & Content, 2012) and 

others have proposed alternative accounts entirely (e.g. Gebuis & Reynvoet, 2011b, 2012; 

Verguts & Fias, 2004; Zorzi & Butterworth, 1999). Given that there is no consensus on the 

processes by which nonsymbolic comparison takes place, relying upon a measure which is 

contingent on a particular theory could be seen as being somewhat premature. 

Another justification for preferring Weber fractions could be to argue that they are 

superior to accuracy because they are a universal measure of ANS acuity which allow 

researchers to better compare performance between tasks. In contrast, accuracies clearly vary 

between experiments depending on the particular paradigm adopted, and numerosities 

involved. Indeed, some researchers have implicitly taken this position. For example, Piazza 

(2010) plotted Weber fractions derived from seven different sources on one graph, where 

each source had used substantially different experimental procedures. These differences can 

be categorized on several dimensions, including presentation style (habituation versus 

comparison), numerosity (ranges of 4-16, 5-16, 12-40 and up to 80) and stimuli duration 
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(time limited or until response). Clearly this approach requires the assumption that Weber 

fractions derived from substantially different tasks are comparable. In a similar vein, some 

researchers have analyzed together data from participants who were asked to tackle the 

nonsymbolic comparison task with different stimuli durations (e.g., Halberda & Feigenson, 

2008; Mazzocco et al. 2011a).  

Both these approaches implicitly assume that the Weber fractions derived from these 

various methods are comparable, but there are at least three reasons to question this 

assumption. First, as we have shown in here, Weber fractions do appear to be, in part, 

influenced by the ratios of the trials from which they are derived. Second, Price et al. (2012) 

found that Weber fractions derived from extremely similar versions of the nonsymbolic 

comparison task were not strongly related. They gave participants nonsymbolic comparison 

tasks where the stimuli were presented either concurrently separately, concurrently 

overlapping or sequentially, finding low rs of .39, .50 and .68 (see also Gilmore et al., 2011). 

Third, Inglis and Gilmore (2013) found that Weber fractions derived from a nonsymbolic 

comparison task systematically varied with the duration for which numerical stimuli were 

displayed. These findings appear to suggest that it is unreasonable to assume that Weber 

fractions derived from studies with different stimuli and experimental designs are 

comparable.  

In sum, we believe that it is unreasonable to assume that Weber fractions are 

paradigm independent. To be clear, we do not suggest that these issues effect Weber fractions 

but not accuracies: they effect all measures of ANS acuity. Specifically, both accuracy and 

Weber fraction indices can only be interpreted in relation to other figures derived from the 

same experimental design. Given this, and given the superior psychometric properties of 

simple accuracy figures, we suggest that the best way of indexing the acuity of an 
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individual’s ANS is simply to report their accuracy on a large number of nonsymbolic 

comparison trials. 
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Table Captions 

 

Table 1. Descriptive statistics, averaged across each of the four quarters of the experiment, 

for each of the four indices under consideration. 

 

Table 2. Inter-relations between the four different indices, given as R2 values derived from 

Pearson correlation coefficients. All figures are significantly different to zero, except for the 

relationship between NRE(accuracy) and NRE(RT). Note that the relationship between 

accuracy and Weber fraction is non-linear, so the figure in the Table is an underestimate of 

the true relationship: fitting a power law function (y = axk) to these data yielded an R2 value 

of .86. 

 

Table 3. Immediate and one-week test-retest reliability coefficients for the four indices, 

separately for adults and children. The 80-trial figures are averaged over two measurements 

(the immediate figures are the mean of the correlations between Quarters 1 and 2, and 3 and 

4, and the one-week figures are the mean of the correlations between Quarters 1 and 3, and 2 

and 4). *ps < .05, **ps < .01, ***ps < .001. 
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Table 1. Descriptive statistics, averaged across each of the four quarters of the experiment, 

for each of the four indices under consideration. 

 

 Mean SD Skewness Kurtosis 

 Children 

Accuracy 0.73 0.06 -0.15 -0.51 

Weber fraction 0.51 0.18 1.19 1.62 

NRE(accuracy) -0.61 0.41 0.00 0.23 

NRE(RT) 62 418 -0.19 0.93 

 Adults 

Accuracy 0.85 0.06 -0.52 -0.41 

Weber fraction 0.25 0.08 0.75 0.02 

NRE(accuracy) -0.89 0.33 -0.27 -0.05 

NRE(RT) 427 258 -0.07 0.78 
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Table 2. Inter-relations between the four different indices, given as R2 values derived from 

Pearson correlation coefficients. All figures are significantly different to zero, except for the 

relationship between NRE(accuracy) and NRE(RT). Note that the relationship between 

accuracy and Weber fraction is non-linear, so the figure in the Table is an underestimate of 

the true relationship: fitting a power law function (y = axk) to these data yielded an R2 value 

of .86. 

 

 Accuracy Weber Fraction NRE(accuracy) NRE(RT) 

Accuracy - .79 .02 .19 

Weber Fraction .79 - .16 .14 

NRE(accuracy) .02 .16 - .01 

NRE(RT) .19 .14 .01 - 
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Table 3. Immediate and one-week test-retest reliability coefficients for the four indices, 

separately for adults and children. The 80-trial figures are averaged over two measurements 

(the immediate figures are the mean of the correlations between Quarters 1 and 2, and 3 and 

4, and the one-week figures are the mean of the correlations between Quarters 1 and 3, and 2 

and 4). *ps < .05, **ps < .01, ***ps < .001. 

 

 Immediate One-week 

 Adults Children Adults Children 

Accuracy (80 trials) .68*** .57** .65*** .47** 

Weber fraction (80 trials) .55** .50* .60*** .41* 

NRE(accuracy) (80 trials) .28 -.02 .27 -.13 

NRE(RT) (80 trials) .27 .21 .27 -.07 

Accuracy (160 trials)  .79*** .52** 

Weber fraction (160 trials)  .59*** .47** 

NRE(accuracy) (160 trials)  .52*** -.05 

NRE(RT) (160 trials)  .53*** .11 
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Figure Captions 

 

Figure 1. Predicted accuracy as a function of the n1/n2 ratio, for various values of w. 

 

Figure 2. Histograms showing the distributions of the four indices, separately for adults and 

children, combined across all quarters of the experiment.  

 

Figure 3. Scatterplots showing how each of the indices relate to each other. R2 figures are 

derived from Pearson correlations coefficients, other than for the accuracy – Weber fraction 

plot, which is derived from a power law function. 

 

Figure 4. The test-retest reliability of the accuracy index. 

 

Figure 5. The test-retest reliability of the Weber fraction index. 

 

Figure 6. The test-retest reliability of the NRE(accuracy) index. 

 

Figure 7. The test-retest reliability of the NRE(RT) index. 
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Figure 1. Predicted accuracy as a function of the n1/n2 ratio, for various values of w. 
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Figure 2. Histograms showing the distributions of the four indices, separately for adults and 

children, combined across all quarters of the experiment.  
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Figure 3. Scatterplots showing how each of the indices relate to each other. R2 figures are 

derived from Pearson correlations coefficients, other than for the accuracy – Weber fraction 

plot, which is derived from a power law function. All R2 are significant other than the 

NRE(RT) – NRE(acc) relationship. 
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Figure 4. The test-retest reliability of the accuracy index. 
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Figure 5. The test-retest reliability of the Weber fraction index. 
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Figure 6. The test-retest reliability of the NRE(accuracy) index. 
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Figure 7. The test-retest reliability of the NRE(RT) index. 
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