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Abstract. The received view of mathematical practice is that mathematicians gain 

certainty in mathematical assertions by deductive evidence rather than empirical or 

authoritarian evidence. This assumption has influenced mathematics instruction where 

students are expected to justify assertions with deductive arguments rather than by 

checking the assertion with specific examples or appealing to authorities. In this paper, 

we argue that the received view about mathematical practice is too simplistic; some 

mathematicians sometimes gain high levels of conviction with empirical or authoritarian 

evidence and sometimes do not gain full conviction from the proofs that they read. We 

discuss what implications this might have, both for for mathematics instruction and 

theories of epistemic cognition 
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One of the central problems in contemporary mathematics education concerns 

how students should convince themselves and others that mathematical assertions are true 

(Harel & Sowder, 1998, 2007). For instance, the Common Core Standards list a number 

of skills related to justification1 that students should develop in elementary and high 

school  school mathematics, including “comparing the effectiveness of two plausible 

arguments,” “distinguishing correct reasoning from that which is flawed,” and “deciding 

whether [the arguments] of others make sense” (Common Core Content Standards 

Initiative, 2012).  It is widely assumed by mathematics educators that knowledge should 

be constructed and justified in mathematics classrooms in a manner analogous to how 

knowledge is constructed and justified in the mathematical community (Ball & Bass, 

2000; Schoenfeld, 1992) and that students should gain conviction and persuade others in 

the same ways that mathematicians do (Harel & Sowder, 1998, 2007). Of course, there 

will necessarily be important differences between a classroom community and a 

mathematical community. For instance, the concepts that mathematicians study are often 

more abstract and further removed from direct perception; mathematicians also have 

access to conceptual resources, such as powerful representation systems and methods of 

inference, with which students are unfamiliar. Nonetheless, mathematics educators argue 

that students’ standards of conviction and justification can still be qualitatively similar to 

those of mathematicians in that they can use the same types of evidence to justify their 

mathematical claims. The common assumption is that like mathematicians, students 

                                                
1 Throughout the paper, we refer to justification as any argument that aims to establish 
the veracity of a claim. 
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should be led to use deductive reasoning2, rather than empirical reasoning or appeals to 

authority, to justify their mathematical knowledge (Harel & Sowder, 1998, 2007; Recio 

& Godino, 2001; Stylianides, 2007). The desire is for students to engage in similar 

epistemic actions as mathematicians when it comes to justifying mathematical assertions. 

 Stylianou (2004) argued that “if indeed we choose to focus [instruction] on 

professional mathematical practice, then it is crucial to have a thorough understanding of 

this practice” (p. 304). We concur with this statement. If a central goal of mathematical 

instruction is for students to convince themselves and others of the truth of an assertion 

using the same types of evidence that mathematicians do (Harel & Sowder, 2007), then it 

is essential to have an accurate understanding of how mathematicians convince 

themselves that mathematical assertions are true. Put another way, if we want 

mathematicians’ epistemic cognition to be an explicit goal of mathematics instruction, 

research is needed on what expert cognition in mathematics is. We believe that recent 

arguments in the philosophy of mathematics, as well as the results of many empirical 

studies that we have conducted, imply the position that mathematicians gain conviction 

solely by logical deduction is too simplistic. In this paper, we will argue that a more 

nuanced view of mathematical practice is necessary and that this has important 

consequences for mathematics instruction. Specifically, we will advance the following 

claims: 

                                                
2 Throughout the paper, when we refer to deductive reasoning, we are referring to 
arguments where each new assertion is a necessary logical consequence of previous 
assertions, not where each statement is derived by the mechanical application of an 
explicit logical rule. Indeed, few proofs in mathematics are written in this way. We 
discuss this point in more detail later in this paper. 
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(1) The position that mathematicians never gain conviction in mathematical assertions 

from empirical evidence or authoritarian sources is overstated.  

(2) The sources of evidence that mathematicians use are dependent upon their epistemic 

aims, a point that has until now received only limited consideration in the mathematics 

education literature. Mathematicians do not believe that an argument based on empirical 

evidence constitutes a  mathematical proof 3, but this does not imply that they never find 

empirical evidence to be persuasive. 

(3) Whether empirical or authoritarian evidence is persuasive to a mathematician 

depends, in part, on the quality of that evidence. Simply because mathematicians reject 

some types of empirical or authoritarian evidence as unpersuasive does not imply that all 

other types of empirical or authoritarian evidence are never persuasive. 

(4) Whether an argument is acceptable to a mathematician depends, in part, upon the 

individual mathematician. There is substantial variance in mathematicians’ evaluations of 

mathematical arguments. This is true for mathematicians’ evaluations of both empirical 

and deductive arguments. 

(5) The instructional goal of having students be persuaded by deductive arguments, but 

not empirical evidence or appeals to authority, has merit. However, the simplicity of this 

viewpoint leads to some instructional goals that we find to be both infeasible and 

                                                
3 There is no consensus on the meaning of proof, either among philosophers (e.g., Rav, 
2007) or mathematics educators (e.g., CadwalladerOlsker, 2011), although we believe the 
majority of mathematics educators believe any characterization of proof should be based 
on the proofs that mathematicians actually produce (CadwalladerOlsker, 2011). For the 
purposes of this paper, we define a proof as a deductive argument that claims to show a 
conclusion is a logically necessary consequence from agreed upon assumptions. One 
contribution of this paper is exploring what types of arguments that mathematicians 
consider to be deductive and to be proofs. 
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undesirable. We suggest more nuanced instructional recommendations as the result of the 

arguments we present in this paper. 

(6) Most models of epistemic cognition are based on continuums contrasting undesirable 

epistemic beliefs with more sophisticated beliefs. Correspondingly, researchers contrast 

unproductive epistemic actions with more productive ones. The goal of instruction is then 

to have students reject poor epistemic beliefs and cease using unproductive epistemic 

actions and adopt more sophisticated beliefs and actions. We will argue that some 

purportedly undesirable epistemic beliefs and actions actually are appropriate in some 

circumstances for certain epistemic aims. We suggest a somewhat different goal of 

instruction for epistemic cognition: Rather than replace purportedly poor beliefs with 

better ones, it would be better to (a) expand the repertoire of epistemic actions available 

to a student and (b) develop in the student an appreciation both the limitations of different 

types of epistemic actions as well as situations in which they are useful and appropriate to 

invoke. 

(6) Recently, there has been interest in how epistemic cognition differs across domains 

(e.g., Greene, Torney-Puta, & Azevedo, 2010) with a particular interest in epistemic 

cognition in mathematics. Yet surprisingly, this research has not been informed by the 

careful study of mathematicians. The results of this paper will demonstrate that several 

received views about mathematicians’ epistemic beliefs are inaccurate. Consequently, we 

call for more research in expert practice to inform domain-specific models of epistemic 

cognition 

 

How expert practice informs instruction 
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 This paper is based on the premise that knowledge of how mathematicians obtain 

conviction can and should inform the goals and methods of mathematics instruction. 

Before doing so, we acknowledge that the link between expert practice and instructional 

design is not straightforward. We believe there are four reasons why research on expert 

practice is pertinent to instructional design. 

 (i) As noted above, many mathematics educators treat it as axiomatic that having 

students adopt mathematicians’ beliefs and practices with respect to proof should be a 

primary goal of mathematics instruction. If the goal of instruction is to have students 

engage in experts’ practices, then it is necessary to have an accurate understanding of 

what those practices are. 

 (ii) Some mathematics educators challenge the notion that mathematics 

classrooms should mirror mathematical practice. Staples, Bartlo, and Thanheiser (2012) 

argued that because the needs of a classroom community differ from those of a 

mathematical community, one would expect the role of justification and proof to differ 

within those communities as well. We agree that it might be appropriate for teachers and 

students to treat justification and proof differently than mathematicians if there are good 

pedagogical reasons for doing so. However, we also agree with Herbst and Balacheff 

(2009) that proof in the classroom should be “accountable to, if not compatible with, how 

it [proof] exists in the discipline” (p. 43, italics are our emphasis). To summarize our 

viewpoint, if justification and proving practices in a classroom differ from those of the 

mathematical community, the teacher should both be aware of this and have a reason for 

allowing or encouraging this inconsistency. Recognizing such inconsistencies requires 

having an accurate understanding of mathematical practice. Even if it is not problematic 
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for students to be ignorant of mathematical practice, it does not follow that it is 

acceptable for teachers, researchers, or curriculum designers to be similarly unaware. 

 (iii) The link between expert practice and instruction is not straightforward. 

Indeed, there are cases of instruction based on an accurate understanding of expert 

practice that resulted in little or even negative gains in achievement (e.g., see Schoenfeld, 

1985, chapter 3). All an understanding of expert practice can provide is a useful starting 

point for instructional design, where this instruction should be assessed and refined based 

on empirical studies. Nonetheless, it is worth emphasizing that using expert practice to 

inform pedagogy has led to the design of effective instruction in mathematics (e.g., 

Schoenfeld, 1985) and science (e.g., Chi & Van Lehn, 2012). Wineberg’s (1991) study of 

how historians read text is particularly illustrative of how studying expert practice can 

inform the goals and design of instruction. In his study, Wineberg found that students 

treated historical text as an unproblematic account of truth while historians viewed the 

accounts in all texts as influenced by the perspectives of their authors. Thus, unlike 

students, historians considered the source of a text in interpreting its meaning and 

accuracy. After Wineberg’s influential article was published, history educators 

recognized that having students consider the source of the arguments was important for 

interpreting texts and worked toward developing instruction that improved students’ 

ability to do so (e.g., Britt & Aglinskas, 2002).  

 (iv) Most importantly, some instruction based on purported but inaccurate 

conceptions of expert practice has been harmful to students. The New Math movement in 

the 1970s was founded on the inaccurate conception that mathematicians’ reasoning was 

based predominantly on set-theoretic axioms and formal notation, despite the fact that 
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mathematicians at the time “decried [the] empty abstraction and rigid formalism” in this 

instruction (e.g., Wu, 1997, p. 246). New Math is now regarded as a failure because it did 

not focus on the understandings that mathematicians attached to their formalism. Until 

recently, science classrooms preached that investigations should follow the “scientific 

method,” where the investigator proposes a hypothesis, conducts a study in which that 

hypothesis is tested, and then either rejects the hypothesis or strengthens his or her belief 

in the hypothesis based on the results of this study. As Hodson (1996) argued, this 

instructional paradigm is based on an inaccurate understanding of scientific practice and 

has been quite harmful to students, giving them a distorted view of science and leaving 

them unable to interpret the scientific evidence and claims that they read about in their 

day-to-day lives (see also Osborne et al, 2003). In this paper, we will argue that some 

instructional recommendations with respect to proof are based on an inaccurate view of 

mathematical practice and might also have undesirable consequences. 

Justification and proof in mathematics education 

 Justification and proof are central to the discipline of mathematics. Accordingly, 

numerous influential mathematics educators and organizations in mathematics education 

have argued that justification and proof should also play a central role in all mathematics 

classrooms (e.g., Dreyfus, 1990; Hanna, 1995; NCTM, 2000; Schoenfeld, 1994). Further, 

they believe that justification and proof should not be viewed as an isolated topic in its 

own right or only covered in high school geometry, but should permeate the K-12 

mathematics curriculum (e.g., NCTM, 2000; Schoenfeld, 1994; Stylianides, 2007). 

Students should continually be involved in the practice of justifying their mathematical 

claims. 
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 There is a vast literature in mathematics education on justification and proof; 

reviews of this literature have been offered by Harel and Sowder (2007), Mariotti (2006), 

Weber (2003), and Yackel and Hanna (2003). In the survey of the literature in this paper, 

we first discuss how many mathematics educators view students’ difficulties with proof 

as an epistemological problem and then summarize what is known about how students 

consider authoritarian, empirical, and deductive evidence. 

 Early mathematics education research on justification and proof was primarily 

concerned with the extent to which students could produce proofs and the cognitive 

processes that students needed to construct a justification or proof. Several large-scale 

studies (Coe & Ruthven, 1994; Healy & Hoyles, 2000; Senk, 1989) and numerous 

smaller ones (e.g., Bell, 1976; Moore, 1994; Weber, 2001) demonstrated that students of 

all ages have serious difficulties constructing proofs. For instance, Senk (1989) asked 

1520 students from a high school geometry class to prove four theorems, two of which 

required only a single deduction beyond the given information. She found that only 30% 

of the sample were able to prove three of these four theorems and 29% of the sample 

were unable to produce a single proof. Similar results were found for students at all levels 

of their education, including mathematics majors completing advanced mathematics 

courses (e.g., Weber, 2001; Weber & Alcock, 2004). Qualitative analysis has revealed 

that one reason for this difficulty is that students lack the proving strategies and heuristics 

to write proofs effectively (e.g., Moore, 1994; Schoenfeld, 1985; Weber, 2001). 

Consequently some researchers have outlined the heuristics and processes that experts 

use to successfully write proofs (e.g., Koedinger & Anderson, 1990; Schoenfeld, 1985; 

Weber, 2001), and instruction designed to explicitly teach students these heuristics and 
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processes have substantially increased students’ abilities to write proofs (e.g., Anderson 

et al, 1994; Schoenfeld, 1985; Weber, 2006). 

Reconceptualizing research on justification and proof as the epistemic commitments of 

students and mathematicians 

 In the 1990s, research on justification and proof in mathematics education shifted 

away from studying the processes that would enable students to produce successful 

proofs and toward understanding how students sought conviction in mathematical 

settings. This shift was precipitated by several factors, including mathematics educators 

moving from information-processing to constructivist theories of mind and the 

corresponding shift in their research focus from problem solving to conceptual 

understanding and task representation. Other mathematics educators became less 

concerned with the skills and facts that mathematics students knew and more concerned 

with how they participated in authentic mathematical activity (e.g., Lampert, 1990; 

Schoenfeld, 1992; Sfard, 1998). 

 Harel and Sowder (1998) published an influential paper that crystallized a 

research program focusing on how students sought mathematical conviction. They 

defined a proof as an argument that an individual uses to render a mathematical 

conjecture into a fact; that is, a proof is used to remove all personal doubts or to persuade 

others that the conjecture is true. An individual’s proof scheme represents how they 

produce these proofs with a specific emphasis on the types of evidence they use to 

become certain that mathematical assertions are true. In Harel and Sowder’s (1998) 

framework, what constitutes a proof and a proof scheme is subjective, relativistic, and 

student-centered. Nonetheless, Harel (2001) emphasized that “the goal of instruction 
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must be unambiguous—to gradually refine current students’ proof schemes toward the 

proof scheme practiced by mathematicians today” (p. 188). Since the publication of Harel 

and Sowder’s (1998) seminal paper, their approach has become the dominant paradigm 

for investigating justification and proof in mathematics education. Indeed, in their review 

of the literature, the authors argued that most contemporary research in this area can be 

viewed within their framework (Harel & Sowder, 2007). 

 From our perspective, Harel and Sowder’s contribution reconceptualized how 

mathematics educators perceived students’ difficulties with justification and proof; 

instead of being understood as a deficiency in problem-solving, mathematics educators 

viewed students’ shortcomings as an issue of epistemic cognition. The goal of 

mathematics instruction is to align students’ epistemic cognition in mathematics with that 

of mathematicians, with a specific emphasis on the types of evidence4 used to gain 

certainty in mathematical claims. It is assumed that if this discrepancy is addressed, 

students’ proofs, or the epistemic products of their reasoning, will be more similar to the 

proofs that mathematicians produce. 

Harel and Sowder (1998) presented a comprehensive taxonomy of the many types 

of evidence that students might use to gain complete conviction in a mathematical 

assertion. In this paper, we focus on three of the proof schemes that they posited that have 

been especially influential in mathematics education. A student with an authoritarian 

proof scheme believes a mathematical claim is true when an authoritative source such as 

a teacher or textbook says this is so. A student with an empirical inductive proof scheme 

believes a claim about an infinite number of objects is true when he or she verified it for a 

                                                
4 Throughout the paper, by “evidence,” we mean any data that an individual regards as 
supporting an assertion.  
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finite number of specific examples. A student with a deductive proof scheme believes a 

claim is true when he or she can see how this is a necessary logical deductive 

consequence from other claims that are known to be true. Within this framework, the goal 

of instruction is to have students reject authoritarian and empirical inductive proof 

schemes and adopt a deductive proof scheme because this is representative of how 

mathematicians think and behave (Harel & Sowder, 2007). 

To illustrate the types of evidence sought by a student holding each proof scheme, 

consider the following justifications that a student might give to justify the claim that the 

sum of two odd numbers is even: 

Authoritarian: Our textbook tells us that this is a theorem on page 233. Since the 

mathematics in the textbook is correct, I believe this claim is true. 

Empirical: I checked this claim with several examples. 3+5=8. 7+7 =14. 9+1 =10. 13+3 

= 16. 17+11 = 28. No matter which odd numbers I tried, their sum was always even. So I 

believe the claim is true. 

Deductive: If we have an odd number of objects, we can pair up all of these objects and 

have one object left over. If we have an even number of objects, we can pair up all these 

objects and have nothing left over. For the sum of two odd numbers, we can pair up all of 

the objects for the first number and have one left over, then pair up all of the objects for 

the second number and have one left over, then pair up the two objects that were left 

over. Since all the objects are now paired up, the resulting sum is even (adapted from Ball 

& Bass, 2000). 
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 Note the first argument is simply an appeal to authority apart from the 

individual’s reasoning, the second relies on the inspection of examples, and the third on 

logic and deduction. 

Authoritarian Evidence  

The role that authorities should and do play in students’ construction of 

knowledge extends beyond justification and proof in mathematics. Indeed, this issue is 

considered a central one in the broader topic of epistemic cognition. Most models of 

epistemic cognition include a dimension measuring the extent to which students believe 

that knowledge resides in authorities or is constructed by the knower (e.g., Hofer & 

Pintrich, 1997; King & Kitchener, 1994; Muis & Franco, 2009; Perry, 1970; Schommer, 

1990). In her summary of this research, Hofer (2000) claimed that, “at lower levels of 

most models, knowledge originates outside the self and resides in external authority, from 

whom it may be transmitted. The evolving conception of self as knower, with the ability 

to construct knowledge in interaction with others, is a development turning point of most 

models” (p. 381). In general, researchers studying epistemic cognition regard the belief 

that one should generate one’s own knowledge as “sophisticated” and a reliance on 

authority is considered to be “naïve,” in part because the former is correlated with more 

productive strategies for learning and more success in school (see Muis, 2004), although 

this viewpoint has been challenged recently (e.g., Bromme, Kienhues, & Porsch, 2009; 

Chinn, Buckland, & Samarapungavan, 2011).  

  In her review of the literature on epistemological beliefs in mathematics, Muis 

(2004) highlighted three main findings on beliefs with respect to authority. First, most 

students “believe mathematical knowledge is passively handed to them by some authority 
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figure, typically a teacher or textbook author, and that they are incapable of learning 

mathematics through logic and reason” (p. 330). Second, such beliefs have a harmful 

effect on students’ mathematical learning, leading students to focus on memorization and 

stifling understanding and creativity (e.g., Garafalo, 1989; Schoenfeld, 1985). Third, “it 

appears that environmental factors such as classroom context influence students’ beliefs 

about mathematics” (Muis, 2004, p. 338). Harel and Rabin (2010) linked a number of 

common classroom practices to students’ adoption of an authoritarian proof scheme, such 

as the teacher being the sole arbiter when there is a debate in the classroom and the 

teacher telling students if they are right or wrong without providing mathematical 

justification to support the evaluation.  

 In recent years, a number of researchers have sought to create instructional 

environments that encouraged students to build and justify their own knowledge rather 

than receive the knowledge from a teacher (e.g., Ball & Bass, 2000; Francisco & Maher, 

2005; Goos, 2004; Harel & Rabin, 2010; Rasmussen & Marrongelle, 2006; Yackel & 

Cobb, 1996). This instruction often involves teachers establishing social interaction 

patterns to set the expectation that students are expected to use reasoning, rather than 

authority, to gain mathematical conviction. For instance, Yackel and Cobb (1996) 

described an episode from a second grade classroom where a student correctly answers a 

question, but then changes her mind when the teacher repeatedly asks the class if her 

answer is correct. In response, the teacher repeatedly asks the student her name to which 

the student always replied Donna Walters. The teacher then asks if she would ever 

change her answer to Mary. When she replied no, the teacher said, “You know what your 

name is. If you’re not sure you might have said your name is Mary. But… you know your 
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name is what? Donna. I can’t make you say your name is Mary. So you should have said, 

‘Mr. K, [the answer is] six. And I can prove it to you’. I’ve tried to teach you that” (p. 

468-469). In this interaction, the teacher was attempting to make it normative that 

students base their answers on their own reasoning, not social cues from the teacher. In 

general, researchers have argued that students are more likely to rely on their own 

reasoning rather than authority in classroom environments where students are expected to 

justify their mathematical assertions, the students and not the teacher are the arbiter over 

whether a mathematical claim is correct or whether an argument is persuasive, and 

teachers attend not just to students’ answers but also to their reasoning and argumentation 

(e.g. Francisco & Maher, 2005; Harel & Rabin, 2010). 

Empirical Evidence 

 Schoenfeld (1983) noted that some of students’ difficulties with problem solving 

could be explained by an empiricist views of mathematics, where students believed that 

mathematical claims were true or the procedures they used were valid because they 

appeared to work; this is in contrast to the mathematician in Schoenfeld’s study who had 

what he coined was a rational5 perspective and justified his claims and methods with 

logical deduction. Several studies document that students with empiricist views of 

mathematics were more likely to exhibit desirable metacognitive and problem-solving 

behaviors (Lester & Garafalo, 1987; Muis, 2008; Schoenfeld, 1983). It is widely accepted 

that empirical evidence is limited, and it is inappropriate to use this type of evidence to 

                                                
5 One with a “rational” perspective is one who relies on deduction to establish 
mathematical claims. To avoid misinterpretation, we are following Schoenfeld’s use of 
the term and do not wish to judge those with an empiricist perspective to be “irrational.” 



Mathematicians and conviction 

 16 

gain certainty that a claim is true when one is in a mathematical context (e.g., Harel & 

Sowder, 1998; Recio & Godino, 2001)6. 

 Researchers in mathematics education have tried to systematically determine what 

types of evidence that students used for justification tasks (for a more thorough review, 

see Weber, 2010). Knuth, Choppin, and Bieda (2009) presented approximately 400 

middle school children with six justification tasks in number theory and found that 

students provided empirical justifications (i.e., they checked that these assertions were 

true for specific examples) 36% to 81% of the time, depending upon the task. Healy and 

Hoyles (2000) examined the responses of nearly 2,500 secondary students in the United 

Kingdom when they were asked to prove two conjectures in high school algebra. They 

found that 34% of the responses for a familiar conjecture and 43% for an unfamiliar 

conjecture were empirical arguments. It is noteworthy that in both the Knuth et al. and 

the Healy and Hoyles studies, the students were following curricula encouraging students 

to produce deductive arguments. Recio and Godino (2001) found a similar result at the 

university level. They asked over 400 first-year students to prove a statement from 

algebra and geometry and found that roughly 40% of the responses for these tasks were 

empirical. Such arguments appear to be less common amongst advanced mathematics 

majors. Iannone and Inglis (2010) asked 76 mathematics majors to attempt four proof 

production tasks, which yielded a total of 221 attempted proofs. Only two of these were 

empirical arguments. Weber (2010) conducted an interview study in which he presented 

                                                
6 Such a viewpoint is implicit in the Common Core Content Standards Initiative (2012) 
where students are expected to “make conjectures” and “make plausible arguments” by 
“reason[ing] inductively with data” but “build a logical progression of statements to 
explore the truth of these conjectures.” Here inductive data is a tool for making 
conjectures but ought not be used to explore the truth of these conjectures. 
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28 mathematics majors who had completed an introductory proof course with an 

empirical argument and asked if they found it to be convincing or to be a proof7. The 

mathematics majors largely rejected the argument; only one student found the argument 

to be fully convincing and only two found it to be an acceptable proof. Further, 26 of the 

28 participants explained their judgments by citing the limitations of empirical reasoning. 

 We find the methods used to investigate these issues to be somewhat problematic, 

essentially because we do not know the epistemic aims of the students as they formed 

their justifications. The experiments often did not make it clear whether the students were 

trying to obtain complete conviction that the mathematical assertion in question was true, 

a high level of conviction, or as much conviction was possible for them in the given 

situation. The students may also have had other non-epistemic aims such as obtaining 

partial credit or pleasing the interviewer (cf., Vinner, 1997). Knuth, Choppin, and Beida 

(2009) observed that their middle school students were more likely to provide empirical 

justifications for complicated statements than for simple ones and conjectured that 

students may have given empirical justifications because deductive justifications were too 

difficult. Healy and Hoyles (2000) noted that even though empirical justifications were 

common in their study, most students were aware of their limitations; an analogous result 

was obtained with pre-service teachers by A. Stylianides and G. Stylianides (2009). Thus 

we believe more research in this area with a more nuanced lens is needed. 

 Some researchers have designed instruction with the goal of changing students’ 

epistemic beliefs about empirical evidence (e.g., Ball & Bass, 2000; Harel, 2001; Maher 

& Martino, 1996; Martino & Maher, 1999; G. Stylianides & A. Stylianides, 2009). For 

                                                
7 Note that this differed from the previous studies in that students were asked to determine the status of an 
existing argument, rather than producing one.  
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instance, researchers commonly ask students if the statement “1141n2 + 1 is not a perfect 

square for all natural numbers n.” After trying several cases, students are convinced that 

the claim is true. Indeed the claim is actually true for all natural numbers less than 1025. 

However, there are very large counterexamples to this claim for integers greater than 

1025. Researchers expose students to this statement in the hopes that this experience will 

illustrate to students that one cannot be sure a mathematical assertion is always true from 

empirical evidence, even if one checks an extremely large number of cases. Ideally, this 

encourages students to search out new ways of verifying mathematical assertions (e.g., 

Harel & Sowder, 1998; G. Stylianides & A. Stylianides, 2009). 

Deductive evidence 

 Most mathematics educators (and presumably most mathematicians) believe that 

a valid deductive argument (i.e., a mathematical proof) should be, in principle, sufficient 

to guarantee that a mathematical assertion is true. With this assumption, if an individual 

produces a proof of a statement or accepts that a proof of that statement is correct, this 

obviates the need to seek any other evidence in favor of that statement. However, this is 

not how students always behave. Fischbein (1982) presented a large number of high 

school students with a proof that n3 – n was always divisible by 6. Many students who 

accepted the proof as valid still desired to check the claim with a large number to be sure 

the claim was correct. Chazan (1993) illustrated how some high school students believed 

that a proof of a geometry theorem applied only to the specific diagram that was drawn 

but not all figures that satisfied the hypothesis of the theorem. He also reported that some 

students viewed proof merely as evidence in support of a statement, rather than a 

guarantee that the statement must be true. Harel and Sowder (1998) and Simpson (1995) 
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independently remarked, in passing, that even after proving a theorem, undergraduates 

may still harbor some doubt that the theorem is true until they check it with examples; 

Harel and Sowder also claimed that some undergraduates might not be convinced by their 

own proof until an authoritarian source tells them that their proof is correct.  

Theoretical perspective and sources of evidence for this paper 

 The arguments in this paper are based on two theoretical assumptions on our part. 

The first is that claims about how mathematicians gain conviction and how students 

ought to gain conviction should not be based on philosophical inquiries into how 

mathematical claims should be justified. Rather it should be based on an examination of 

what mathematicians actually do (Rota, 1991). Until recently, philosophers of 

mathematics have ignored mathematicians’ practice. Cellucci (2009) claimed that in the 

last century the philosophy of mathematics was normative, dictating to mathematicians 

how they ought justify their claims; “mainstream” philosophers of mathematics are 

primarily concerned with how justification in mathematics should proceed within the 

analytic philosophy tradition. More recently, a growing number of philosophers have 

shifted their attention away from how mathematics should be justified and have begun 

studying how mathematics actually develops in the mathematical community. Cellucci 

(2009) refers to these philosophers as “dynamic,” noting they view mathematics as a 

growing body of knowledge and are concerned with how mathematical practice 

contributes to this growth. An increasing number of philosophers are adopting the latter 

perspective and their research illustrates how many widespread beliefs about 

mathematical practice are inaccurate (e.g., Buldt, Lowe, and Muller, 2008; Davis & 

Hersh, 1981; Lakatos, 1978; Rota, 1991; Tymoczko, 1986). We use recent advances by 
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these philosophers as well as a large number of empirical studies on mathematical 

practice that we have conducted to obtain a better understanding of mathematicians’ 

practice. Recently, several mathematics educators have drawn from this philosophical 

literature to provide insights about the nature of proof (e.g., de Villiers, 1990; Hanna, 

1991, 1995; Hanna & Barbreau, 2008; Harel & Sowder, 2007; Knuth, 2002; Mariotti, 

2006; Otte, 1994). In this article, we contribute to this movement in three ways. First, we 

present a more comprehensive synthesis of the philosophical literature on this topic than 

others have reported. Second, we complement these philosophical analyses with the 

results of many empirical studies that we have conducted to gain insight into their 

mathematical practice. Third, we use the insights gained from this analysis to provide 

instructional recommendations and encourage further research to determine if these 

recommendations are viable. 

 The second construct that informs our paper is the notion of epistemic aims. 

Chinn, Buckland, and Samarapungavan (2011) defined epistemic aims as “goals related 

to finding things out, understanding them, and forming beliefs” (p. 146). They argued 

that although epistemic aims are usually are ignored by educational psychologists who 

study students’ epistemic cognition, epistemic aims are essential to interpreting 

individuals’ behavior. Individuals with different epistemic aims may engage in different 

activities and use different sources of knowledge to achieve these aims. The notion of 

epistemic aims is recognized as important for mathematics, both in terms of how 

mathematicians interact with one another, including seeking and conveying information 

(Aberdein, 2006), and in how the quality of a mathematical contribution is valued (Tao, 

2007). Although there are a large number of distinguishable aims in mathematics, 
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(Aberdein, 2006; Tao, 2007; see also Rav, 1999; Steiner, 1978), in this paper we focus on 

four relatively straightforward epistemic aims: (a) convincing themselves that a 

mathematical assertion is true, (b) forming a deductive argument that would be 

sanctioned by his or her peers (i.e., produce a proof) establishing that the assertion is true, 

(c) verifying that their own proof or the proof of a colleague is correct, and (d) increasing 

their understanding of the mathematics behind the mathematical assertion8. We believe 

distinguishing between these epistemic aims is especially important. A key point made in 

this paper concerns why we want students to use deductive evidence rather than empirical 

and authoritarian evidence. We argue that it is not the case that empirical or authoritarian 

evidence cannot yield rational conviction in mathematical assertions and that it is not the 

case that mathematicians do not rely on these sources of evidence to gain conviction. 

Rather it is the case that relying exclusively on these sources of evidence and not using 

deductive evidence denies students learning opportunities that can generate substantial 

mathematical understanding. 

 The three sections that follow focus on the role of authoritarian, empirical, and 

deductive evidence. In each section, we describe fundamental values that we believe 

nearly all mathematicians hold. We then use the philosophical literature to illustrate that 

mathematicians enact these values in different ways than some mathematics educators 

claim. Next we provide further support for these philosophical insights with empirical 

                                                
8 A full account of epistemic aim (d) is beyond the scope of this paper. By understanding, 
we mean three things: providing an explanation for why a theorem is true (i.e., 
highlighting a specific connection that makes it obvious to the reader why the theorem is 
true; this is often contrasted with longer technical proofs that do not provide this insight)  
(Steiner, 1976), learning or creating new methods to solve problems (Rav, 1999), 
discovering new relationships between mathematical concepts (Rota, 1991), and finding a 
new way to represent a mathematical concept (Thurston, 1994). 
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studies that we conducted. Finally, we use these insights to offer instructional 

suggestions. 

 

Mathematicians’ use of authoritarian evidence 

Values in mathematics about authority 

 We believe that most mathematicians would agree with the following claims: If a 

mathematician wishes to advance a mathematical assertion as true, then it is incumbent 

upon that mathematician to present an argument that the claim is true. The argument that 

the mathematician presents should be impersonal and transparent-- that is, the argument 

should not be based on the mathematician’s personal experience but rather should be 

sufficiently clear that other mathematician can check the arguments themselves. In other 

words, it is unacceptable to say “trust me” within such an argument. Anyone in the 

mathematical community has the right to challenge this argument and the mathematician 

proposing the argument has the obligation to defend it. If an argument is presented by an 

eminent mathematician and a flaw is found, that argument should be rejected. 

 We believe each of these values is productive. Some mathematics educators have 

designed mathematical classroom environments that supported these values, creating 

communities of inquiry and cultures of argumentation in mathematics classrooms (e.g., 

Goos, 2004; Maher & Martino, 1996; Yackel & Cobb, 1996). We fully support these 

aims and consider the design of these environments to contribute significantly to 

improving mathematics education. What we focus on in this section is what these values 

do not imply:  In short, we argue that mathematicians frequently believe mathematical 

assertions are true on the testimony of others and that the perceived authority of the 
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mathematician advancing a claim influences which testimony mathematicians choose to 

accept. Some mathematicians use authority to determine what arguments they choose to 

read, how they read these arguments, and how persuasive they find them. 

Philosophical perspectives on authoritarian testimony in mathematics 

 We know much of what we know by what has been told to us by others (Coady, 

1992). This is certainly the case with our everyday knowledge; for instance, most people 

routinely take medicine that their doctor prescribes for them without verifying that the 

medicine is safe and effective simply because most do not have the time and scientific 

expertise to verify these things for themselves9.  Chinn, Buckland, and Samarapungavan 

(2011) contended that this is also the case with scientific knowledge. “Scientists’ 

knowledge of their own areas of expertise derives largely from the testimony of their 

colleagues, because they read and hear about many more experiments than they can 

conduct themselves” (p. 153). The authors further argued that this is even the case with 

results from a researcher’s own studies. We frequently trust that our research assistants 

used proper experimental techniques, accurately recorded the data, and did not fabricate 

or falsify data (cf., Lipton, 1988). 

 One could argue that mathematical knowledge is different in principle (e.g., Geist, 

Lowe, and Van Kerkhove, 2010; Weber & Mejia-Ramos, 2013a). If a scientist reads an 

experimental result in the literature, he or she may not have the equipment to replicate 

this study, and--even if the scientist did--he or she would not expect to obtain an identical 

result due to the vagaries of empirical sampling. However, if a mathematician reads the 

result of a certain calculation in a published paper, in principle that mathematician could 

                                                
9 Note that even if one uses medical websites to check that the medicine is safe, this is 
relying on the testimony of the author of that website. 
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perform that calculation himself or herself. One does not need to trust the author that he 

or she is correct. While perhaps true in principle, recent philosophical articles and 

reflections by mathematicians on their practice suggest that such personal verifications on 

published research articles are often not done (Auslander, 2008; De Millo, Lipton & 

Perlis, 1979; Geist, Lowe, & Van Kerkhove, 2010; Grcar, 2013). 

 It should be noted that it appears that some mathematicians actually personally 

verify every result that they use in their own research (or at least claim to do so). But 

many do not. Geist, Lowe, and Van Kerkhove (2010) noted: 

“we know a substantial number of mathematicians who want to understand all 

proofs that form a part of their papers and who will reprove even classical 

statements to be completely sure of their own results based on them; but we also 

know that many mathematicians are not as meticulous and accept results from the 

published literature as black boxes in their own research” (p. 158-159).  

Auslander (2008) corroborated that mathematicians frequently trust theorems published 

in journals without checking their proofs, arguing that mathematics could not be a 

coherent discipline without mathematicians trusting the reviewing process.  

 One reason that mathematicians accept published results is to make efficient use of 

their time. The complete proofs of some mathematical theorems are extremely long. For 

instance, one of the major accomplishments of 20th century mathematics was the 

classification of finite simple groups. This classification spanned many decades and 

dozens of papers. It has been estimated that a complete proof of the classification of finite 

simple proofs would run over 10,000 pages. Most mathematicians accept that the 

problem of classifying the finite simple groups has been solved, yet few mathematicians 
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have read a complete proof of this solution10. The preceding example is an extreme case, 

but it is not uncommon in mathematics for a useful result to be based on a lengthy proof 

that perhaps references several other papers containing lengthy proofs. If a mathematician 

wanted to use these types of results, then the mathematician would have no choice but to 

either invest a great deal of time verifying the results or accept them as true because they 

were published in the literature. 

 A second reason for relying on the correctness of published results is technical 

expertise. Mathematics is a fragmented discipline, and it is frequently the case that a 

mathematician studying one area of mathematics is unable to follow the proofs of another 

area of mathematics (e.g., Thurston, 1994). Consequently, many mathematicians do not 

have the background to verify many of the proofs of results that they read that are outside 

their areas of interest. In these cases, mathematicians often trust the experts and accept 

the proof as correct (Auslander, 2008). 

 In the preceding paragraphs, we claimed that mathematicians are willing to accept 

results as true because they underwent a peer review process. We further maintain that 

the reputation of the author influences how mathematicians review proofs that have not 

been published and that this happens in several different ways. First, mathematicians 

have to decide what unpublished proofs that they choose to read. As Aronson (2008) 

noted, if he read every preprint that was sent to him, he “wouldn’t have time for anything 

else,” so he is constantly weighing the risk of missing a significant mathematical advance 

against “spend[ing his] whole life proofreading the work of crackpots.” He noted “in 

deciding whether to spend time on a paper, obviously the identity of a paper plays some 

                                                
10 For a philosophical discussion of such complex proofs, see Aschbacher, 2005. 



Mathematicians and conviction 

 26 

role. If Razborov [an esteemed mathematician] says he proved a superlinear circuit bound 

for SAT, the claim on our attention is different than if Roofus McDoofus said the same 

thing.”  

 Further, mathematicians treat difficulties that they encounter in a proof differently 

depending on who wrote the proof. In the mathematical community, there are some 

authorities who have a reputation for producing reliable work without errors. When 

another mathematician reads a part of an argument that seems to be dubious or confusing, 

that mathematician will be more likely to give the benefit of the doubt to the author, 

either by investing more time to try to figure out why the argument is correct or, in cases 

where the reader lacks the expertise to follow the argument, simply assuming that the 

argument is correct (Auslander, 2008; Muller-Hill, 2010). To take a recent high-profile 

example, Shinichi Mochizuki, a highly-regarded mathematician, announced a proof of 

the abc Conjecture (a well-known unsolved problem). The proof turned out to be 

extremely complex and hard to follow, and several months after Mochizuki publicly 

posted his work, it had still not been verified by colleagues. Rehmeyer (2013) 

commented that the proof is "so peculiar that mathematicians might have dismissed it as 

the work of a crank, except that Mochizuki is known as a deep thinker with a record of 

strong results.”  

Recent empirical studies  

  Recently, we conducted two empirical studies on how and why mathematicians 

read published proofs in journals. The first was an interview study with nine highly 

successful mathematicians from one of the top mathematics departments in the United 

States (Weber & Mejia-Ramos, 2011). The second was a survey sent to 118 research-
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active mathematicians (Mejia-Ramos & Weber, in press). In the interview study, we 

found one mathematician who refused to believe a theorem because it was sanctioned by 

other mathematicians. When asked why she read proofs that were published in journals, 

she responded, “I would like to find out whether their asserted result is true, or whether I 

should believe that it’s true. And that might help me, if it’s something I’d like to use, then 

knowing it’s true frees me up to use it. If I don’t follow their proof then I would be 

psychologically disabled from using it. Even if somebody that I respect immensely 

believes that it’s true” (Weber & Mejia-Ramos, p. 334). However, several 

mathematicians expressed the opposite viewpoint, stressing that they do not check these 

published proofs for correctness. For instance, one mathematician said, “Now notice what 

I did not say. I do not try and determine if a proof is correct. If it’s in a journal, then I 

assume it is” (p. 334). Another noted that while he has “certainly encountered mistakes in 

the literature, it’s not high on [his] mind” when reading a proof. Rather, he acts on the 

assumption that the proof is correct.  

 To test the generality of these findings, 118 mathematicians were shown the 

following three items on a survey and asked whether they agreed, disagreed, or were 

neutral to the statements using a five-point Likert scale: 

C1: It is not uncommon for me to believe that a proof is correct because it is 

published in an academic journal. 

C2: When I read a proof in a respected journal, it is not uncommon for the quality of 

the journal to increase my confidence that the proof is correct. 
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C3: When I read a proof in a respected journal, it is not uncommon for me to be very 

confident that the proof is correct because it was written by an authoritarian source 

that I trust. 

We found that 72% of the participants agreed with C1 (12% disagreed), 67% agreed with 

C2 (17% disagreed), and 83% agreed with C3 (7% disagreed). This suggests that, for at 

least some mathematicians, that the source of a mathematical argument influences their 

judgment of it (Mejia-Ramos & Weber, in press). In summary, the majority of 

mathematicians claim that they will believe some proofs are correct because they were 

published in respected journals or written by an authoritarive source. 

 We also conducted studies on whether the author of an argument affects how 

mathematicians evaluate it. Inglis and Mejia-Ramos (2009) asked 190 research-active 

mathematicians to read a mathematical argument and rate how persuasive they found it 

on a scale of 0 through 100. Half the mathematicians were randomly assigned to the 

“anonymous group” and given the argument, but they were not told who wrote it. The 

remaining mathematicians were assigned to the “named group” and given the same 

argument, except these participants were notified that the argument had been taken from 

a textbook by J.E. Littlewood, a well-known mathematician. The named group’s rating of 

the persuasiveness of the argument was more than 17 points higher than that of the 

anonymous group, a statistically significant difference (which was replicated in a 

subsequent study). One limitation to this study was that the argument discussed above 

was not a mathematical proof, although it was considered to be highly persuasive by the 

famous mathematician who produced it. Indeed, when mathematicians were shown 

deductive proofs in this study, the effect of authority vanished (although the authors 



Mathematicians and conviction 

 29 

conjectured that this may have been due to the relative simplicity of the proofs). Hence, it 

is plausible that all this study demonstrates is that mathematicians only consider the 

authority of the author when evaluating non-deductive arguments but not deductive ones. 

However, we have conducted another interview and survey study that suggests this is not 

the case. 

 In the interview study, Weber (2008) explored how eight mathematicians 

determined if a proof was correct. The interview was mostly task-based, where the 

participants were asked to evaluate the validity of eight purported proofs, but participants 

were also asked open-ended interview questions about how they determined the validity 

of a proof. One question asked if the author of the deductive argument that they were 

reading would influence how they read the argument. Six of the eight mathematicians 

claimed that it would. For instance, one mathematician responded: 

There’s something about trusting the source.  My assumption would be when 

reading a proof generated by a mathematician friend and they were pretty sure it 

was true, my assumption would be that the steps are correct and that I need to work 

hard to make sure that I can understand and justify every step. In a student proof, 

I’m less inclined to work through things that strike me as odd (Weber, 2008, p. 448; 

italics were from the original manuscript).   

This finding corroborates the claims by Muller-Hill (2010) that mathematicians are less 

likely to dismiss a dubious argument if it came from an authoritative source. We tested 

the generality of this finding with a survey sent to 54 mathematicians who had experience 

refereeing mathematical papers. One survey item was: 

When I referee a manuscript, it is not uncommon for me to be very confident that 
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the proof is correct because it was written by an authoritative source that I trust. 

The response to this survey item was mixed; 39% of the surveyed mathematicians agreed 

with it while 41% disagreed with it (Mejia-Ramos & Weber, in press). These data do 

reveal that many, although not all, mathematicians claim to consider the reputation of the 

author of a proof when refereeing a manuscript. 

 Finally, we note that although many mathematicians assumed the published proofs 

they were reading were correct, they nonetheless frequently read proofs published in 

journals. Indeed, 74% of the 118 surveyed mathematicians agreed that they sometimes 

did not check a published proof for correctness, but read the proof to increase their 

understanding (Mejia-Ramos & Weber, in press). This corroborates a common claim in 

the philosophical literature: conviction is one purpose of proof for mathematicians, but 

expanding one’s understanding is also a very important function of proof (e.g., Rav, 

1999; Steiner, 1976). 

Implications 

 In mathematics education, there are some authors who believe that students should 

not accept claims as true because an authority told them that this was the case and that 

one should not consider who wrote the argument while evaluating its validity. For 

instance, Harel and Sowder (2005) described the authoritarian proof scheme, i.e., seeking 

conviction from authority, as “an undesirable, yet common way of thinking” and 

instruction must attempt “to suppress the authoritarian proof scheme” (p. 42); Selden and 

Selden (2003) claimed, “mathematicians seem to treat proof as being independent from 

its author” (p. 6). Shanahan, Shanahan, and Misischia (2011) also hypothesized that 

mathematicians actively ignore the author of a mathematical argument and suggested that 
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prospective teachers should be made aware that mathematicians read mathematics in this 

way. We believe that these suggestions are useful because they encourage students to 

take more autonomy in their learning, but that they are also oversimplified. 

 Some mathematics educators have emphasized the role of authoritarian evidence in 

the growth of mathematicians’ knowledge. Notably, Hanna (1991) claimed the reputation 

of an author influenced whether a proof of a mathematical theorem was accepted, and 

Housman and Porter (2003) claimed that mathematicians sometimes use an authoritarian 

proof scheme in areas outside of their expertise. However, to our knowledge, researchers 

have yet to discuss the pedagogical relevance of these insights. Below we offer the 

following suggestions: 

 (i) Mathematicians often accept a published result as true without verifying the 

result for themselves. It should therefore not be surprising, or even disappointing, that 

students will accept a theorem as true because their teacher or textbook said it was so. To 

avoid misinterpretation, we emphasize that we strongly agree with mathematics educators 

that it is highly problematic if authorities are the only sources of students’ mathematical 

knowledge, and we consider the design of mathematics classrooms that lead students to 

rely on their own resources to be valuable. However, as teachers and textbooks are 

usually correct, we claim that the students are not behaving irrationally or different from 

mathematicians if they believe what their teachers or textbooks tell them. 

 (ii) Some mathematicians will believe and use a result without checking its proof 

because they lack the technical expertise to do so. This finding is relevant for 

instructional practice. In many mathematics classes, there are claims of fundamental 

importance that we would like our students to know and use, even though these students 
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do not yet have the sophistication to follow a demonstration that these claims are true. As 

a clear example, we expect high school students to know that π is irrational, but the proof 

would be challenging to most with a bachelors degree in mathematics. Also, calculus 

teachers require students to use the Fundamental Theorem of Calculus-- an indispensible 

tool for computing integrals-- even though they acknowledge that students are unable to 

understand why this theorem is true11 (Weber, 2012). If we want students to know that π 

is irrational or to use the Fundamental Theorem of Calculus, we require them to rely on 

authoritarian evidence. 

 (iii) Some mathematicians will not check a published result for the sake of time. 

This finding may also be relevant for instructional practice. There are some important 

results in high school mathematics, such as the fact that the derivative of the sine function 

is the cosine function or the trigonometric addition formulas, whose justifications might 

be potentially comprehensible to secondary students. Nonetheless, the proofs of these 

statements are conceptually difficult for this population. In these cases, the instructor or 

curriculum designer needs to weigh the benefits that students would get from observing 

these justifications against the length of time it would take to present them, just as 

mathematicians make the same judgment when they choose which proofs to read. 

 (iv) Mathematicians are often willing to give the benefit of the doubt when an 

argument comes from a trustworthy source. We believe it would be useful for students to 

adopt the same stance when reading a proof that they find dubious that was given from a 

                                                
11 Here some mathematics educators might object that it would be possible to understand 
this theorem if calculus instruction was structured differently. We agree, but also 
acknowledge that most calculus teachers presently do not have the capability to do so. At 
present, most calculus instructors need to simply tell students the Fundamental Theorem 
of Calculus is true, present a proof that students are not capable of understanding, or not 
have students engage in integration.  
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trustworthy source. They should not immediately dismiss the proof by a teacher or 

textbook as wrong because they cannot understand it or it seems to contain a mistake. 

Rather, they should act on the assumption that the proof is likely correct and attempt to 

resolve their failure to understand it. To avoid misinterpretation, we are not saying that 

textbooks or teachers never make mistakes or that students should simply accept the 

proofs from each source as true. Students should of course have the right to ask their 

teacher to explain the proof if they are unable to resolve their disagreement with it. 

 (v) Finally, the issue of epistemic aims when reading proofs is important. When 

reading a published proof, mathematicians are often not reading the proof to check it for 

correctness or gain conviction in the theorem (Rav, 1999; Steiner, 1978; Weber & Mejia-

Ramos, 2011). Rather, they are using it to gain mathematical understanding. (The 

importance of the multifaceted role of proof has been stressed by many mathematics 

educators, such as de Villiers (1990), Hanna (1990), Harel (2001), Healy and Hoyles 

(2000), and Knuth (2002), among others). This has an important implication for 

classroom instruction. The reason we present proofs to students or ask them to prove 

results themselves is not just so they can gain certainty that the result is true. They may 

already be convinced because the teacher told them that this was true. It is to expand their 

mathematical understanding. The largest problem with students relying predominantly on 

authorities to generate mathematical knowledge is not that students will come to believe 

things that are not true. It is that this practice is denying students many opportunities to 

generate mathematical understanding. 

Mathematicians’ use of empirical evidence 

Values in mathematics about empirical evidence. 
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 We believe that most mathematicians would agree with the following claims: 

Empirical evidence has significant limitations. There are mathematical claims that hold 

true for a large number of cases that are false in general. For this reason, verifying that a 

claim holds true for several examples, even an extremely large number of examples, is 

not necessarily sufficient for mathematicians to believe the claim is true. Further, 

empirical evidence is never sufficient for a claim to be regarded as proven, and 

mathematicians regard conjectures as open even if there is overwhelming empirical 

evidence in support of them. 

 We support instruction that is based on these values. Students should be aware that 

empirical arguments have limitations and are not an acceptable form of proof. Further, 

they should be critical in deciding the strength of empirical evidence in support of a 

mathematical claim (i.e., they should not believe a claim is true simply because they 

verified it for a small number of examples). However, we argue that it does not follow 

from these values that mathematicians are never convinced by empirical evidence and we 

challenge instruction that aims for students to never seek conviction in this way. 

Philosophical perspectives on empirical evidence in mathematics  

 Empirical or inductive knowledge has been a central problem in the philosophy of 

science at least since David Hume. If a proposition has always been true in the past, even 

in a very large number of instances, what assurance do we have that it will continue to be 

true in the future? While empirical observations appear to be a necessary evidence for 

most scientific claims, they are, in principle, avoidable in justifying mathematical 
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results12. A mathematician can prove that a claim about a mathematical concept is true by 

demonstrating that it is a necessary logical consequence of how that concept is defined. 

 Most published claims in mathematics are justified by mathematical proof; further, 

a claim is not sanctioned as a theorem by the mathematical community until it has been 

proven. Nonetheless Paseau (2011) stressed that this does not imply that mathematicians 

do not gain conviction via inductive evidence as well: 

“Mathematicians prefer deductive evidence and actively look for it even in the 

presence of overwhelming inductive evidence. The reason for this is that they are 

mathematicians and as such value deduction […] Given that the ends of 

mathematical activity are not solely to raise rational degree of belief in 

mathematical truths, it is accordingly not a cogent objection to our argument that 

mathematicians go on seeking proofs of [conjectures] in the presence of 

overwhelming inductive evidence. Compare marathon-running, whose ends are to 

get to a destination 24 miles away [sic] and to run there. If our sole end is to reach 

the final destination than any means will do; in particular, we may drive 24 miles 

by car. It is not a cogent objection to driving that if one had marathon-runners’ ends 

one would shun the car in favor of running” (p.  144). 

In short, to mathematicians, the epistemic aim of proof is not only to gain conviction (and 

some philosophers claim it is not even primarily to gain conviction—e.g., Cellucci, 2009; 

de Villiers, 1990; Rav, 1999).  Proof satisfies other epistemic aims such as promoting 

                                                
12 There are arguably instances where this is not true, such as weighing the plausibility of 
a new axiom or an undecideable statement, but such a discussion is beyond the scope of 
this paper. 
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mathematical understanding13, and mathematicians view proof as an end in and of itself. 

Hence, one cannot use the fact that mathematicians attempt to prove their assertions as a 

basis to claim that mathematicians do not obtain conviction via non-deductive arguments. 

In short, the act of proving has other epistemic aims beyond obtaining conviction. 

 Philosophers have used Goldbach’s Conjecture to illustrate how mathematicians 

justifiably gain certainty in statements by empirical evidence. Goldbach’s Conjecture 

asserts that every even number greater than 2 can be written as the sum of two primes. 

For instance, 4 can be expressed as 2 + 2, 6 can be expressed as 3 + 3, 8 can be expressed 

as 3 + 5, 10 can be expressed as 3 + 7 or 5 + 5, and so on. This conjecture is unproven 

and, indeed, mathematicians do not anticipate a proof in the foreseeable future (Baker, 

2009). However, there is strong empirical evidence in favor of Goldbach’s Conjecture. 

First, the conjecture has been empirically tested for an extremely large number of cases 

(4 x 1018, at the time that this paper was written). Second, we can define a function G(n) 

to express the number of distinct prime pairs that add up to n; for instance, G(10) = 2 

because there are exactly two prime pairs that sum to 10, 3 + 7 and 5 + 5. G(n) tends to 

increase as n increases, although not monotonically. For all numbers n greater than 

100,000 that have been empirically tested, G(n) is greater than 500. The notion that for 

some extremely large untested n that G(n) would not only dip below 500 but have a value 

of 0 (which is what would be needed to disprove the Goldbach Conjecture) seems 

inconceivable. Most mathematicians believe this empirical evidence is overwhelming and 

regard Goldbach’s Conjecture as true, even in the absence of a proof (e.g., Baker, 2009; 

                                                
13 In an influential mathematics education article, de Villiers (1990) listed other purposes 
of proof, such as systematizing a theory, discovering new theorems, and facilitating 
communication and debate. 
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Echeverria, 1996; Paseau, 2011). Echeverria claimed, “the certainty of mathematicians 

about the truth of GC [Goldbach’s Conjecture] is complete” (p. 42).  

 While some philosophers of mathematics contend that there are instances where 

empirical evidence is sufficient to gain conviction, two important caveats should be 

noted. First, mathematicians gain this conviction based on a large number of examples. 

Indeed, Borwein (2008) noted that the development of powerful computing devices that 

can check a large number of cases greatly increased mathematicians’ abilities to secure 

mathematical knowledge by inductive evidence. Second, mathematicians use their 

understanding and intuition about mathematics to determine when, and what types, of 

empirical evidence would be compelling. For instance, Baker (2009) argued that 

empirical evidence is arguably appropriate to gain full conviction in Goldbach’s 

Conjecture because if a counterexample were found, it would likely be a rather small 

number; if the first counterexample to a mathematical claim was likely to be an extremely 

large number, empirical evidence would not be persuasive. For further examples of 

mathematicians being persuaded by empirical evidence and the conceptual considerations 

that enabled this conviction, see Putnam (1979, p. 55-57) who discussed why empirical 

evidence convinces mathematicians that the Twin Primes Conjecture is true, and du 

Sautoy (2004), who described a similar instance with the Reimann Hypthesis14. In short, 

it is not always the case that checking a mathematical proposition for an extremely large 

number of instances will provide compelling evidence that the proposition is true; there 
                                                
14 It is interesting to note that Baker (2009) argued that he was not convinced that the 
existing empirical evidence establishes that the Reimann-Zeta Hypothesis is true and 
Putnam (1979) did not find the empirical evidence in favor of Goldbach’s Conjecture to 
be compelling. This illustrates an observation from our empirical studies—that there is 
substantial variance amongst mathematicians in how persuasive a specific collection of 
empirical evidence is. 
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must also be conceptual reasons for why empirical evidence is appropriate. 

 As a final note, de Villiers (1990) and Polya (1954) suggested that mathematicians 

are usually highly confident that a result is true before they attempt to prove it, with de 

Villiers (1990) noting that it is unlikely that mathematicians would invest the time in 

searching for a proof of a theorem if they did not believe the theorem was true. 

Empirical studies 

 We have conducted several studies on how convincing mathematicians find 

empirical arguments. Weber (2013) investigated what types of empirical evidence that 

mathematicians found convincing. Weber’s hypothesis was that mathematicians would 

find empirical evidence showing that a set of numbers has an uncommon property more 

persuasive than empirical evidence to showing that a set of numbers lacks an uncommon 

property. For instance, this hypothesis would predict that mathematicians would be more 

persuaded by empirical evidence showing that a set of numbers is prime than a set of 

numbers is composite as the latter is more likely to occur by chance.  

To test this hypothesis, Weber (2013) conducted a study in which 97 

mathematicians were randomly assigned to a Property or a Non-Property Group. The 

mathematicians in the Non-Property Group read an argument that all the terms in a 

particular sequence were never perfect squares. They were not explicitly told how this 

sequence was defined, but were informed that the sequence was “recursively defined 

using a small number of basic operations from arithmetic and combinatorics, specifically, 

addition, multiplication, and combinations.” The first 12 terms of the sequence were 

listed, as well as their square roots. None of the square roots were integers, which clearly 

implies that the corresponding sequence terms were not perfect squares. Participants were 
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also told that a computer program checked the first 10,000 terms of the sequence and no 

perfect squares were found. The mathematicians in the Property Group read a similar 

argument in support of the same claim. However, instead of seeing the square root of the 

first 12 terms of the sequence, they were shown that the first, third, fifth, and odd-

numbered terms were all of the form 4k + 2 and the even-numbered terms were all of the 

form 4k + 3. They were also informed that a computer verified that this trend continued 

for the first 10,000 terms of the sequence. Since perfect squares are only of the form 4k or 

4k + 1, this implied that these terms of the sequence were not perfect squares. Participants 

in each group were asked how persuasive they found the argument on a scale of 0 

through 100. They were also asked how persuasive the argument was using a multiple 

choice format, where the choices were (a) completely persuasive, (b) highly persuasive, 

as persuasive as I find some proofs that I read (especially if they are long and technical), 

(c) somewhat persuasive, and (d) not very persuasive (my confidence in the claim is not 

much higher as a result of reading this argument). Weber predicted that the 

mathematicians in the Property Group would find their argument more persuasive since 

being of the form 4k + 2 or 4k + 3 was an uncommon property (each happens only one 

quarter of the time), whereas not being a perfect square was a common property of 

numbers. 

The results of Weber’s study revealed three things about the way mathematicians 

regard empirical evidence. First, there was substantial variance in how the 

mathematicians in the Property Group evaluated their argument. Their mean persuasion 

rating was 44.0 but their responses ranged between 0 and 100. A histogram of 

participants’ responses is given below. On their multiple choice responses, 1 
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mathematician indicated that he or she found the argument completely persuasive, 7 

found it highly persuasive and as persuasive as some proofs that they read, 30 found it 

somewhat persuasive, and 11 found it not very persuasive. Hence, mathematicians show 

considerable variance in how they regard empirical evidence. Second, this evidence 

provides an existence proof that at least some mathematicians find some empirical 

evidence as convincing as some mathematical proofs that they read. Further evidence 

came from mathematicians’ responses to a question at the end of the study. After their 

evaluations, all 97 participants were asked if “there were ever instances in their 

professional work in which they were convinced a mathematical claim was true because 

it had been verified with a large number of examples.” The majority responded no, but 26 

(27%) answered affirmatively. This illustrates that some mathematicians can find 

empirical evidence to be as persuasive as a proof or even completely persuasive. Third, as 

predicted, the Property Group found their argument to be more persuasive than the Non-

Property Group. The Non-Property Group gave their argument a mean persuasion rating 

of only 16.0, significantly less than the 44.0 mean rating given by the Property Group; 

only two participants found the argument to be completely or highly persuasive and 36 of 

the 48 (75%) participants found the argument to be not very persuasive. This illustrates 

that mathematicians do not treat all empirical evidence equally. They use their conceptual 

understanding—in this case, how likely it was for numbers to not be perfect squares 

versus how likely it was to be of the form 4k + 2 or 4k + 3—to weight the strength of this 

evidence. 
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Figure 1. A histogram of mathematicians’ persuasion ratings from the Property Group 

 A similar result was found in a separate study by Inglis and Mejia-Ramos (2009). 

They presented 180 mathematicians a more sophisticated empirical argument in support 

of the claim that the decimal expansion of π has, somewhere, one million 7’s in a row15. 

The histogram of mathematicians’ responses to this question is given in Figure 2 below. 

Figure 2 also reveals wide variance in mathematicians’ evaluations. Some 

mathematicians found the argument to be highly persuasive or even completely 

persuasive (five participants rated the argument to be 100% persuasive) while others 

found the argument to be hardly persuasive at all (23 rated the argument to be 0% 

persuasive). 

                                                
15 This argument is based on the fact that empirical evidence suggests that most 
“ordinary” irrational numbers, including π, appear to have the mathematical property of 
being normal, which would imply that π would have one million 7’s in a row at some 
point. 
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Figure 2: A histogram of mathematicians’ levels of persuasion for an argument about the 

existence of a million consecutive 7s in the decimal expansion of π. 

 

Implications 

 We contend the belief that mathematicians do not gain conviction from empirical 

evidence is inaccurate. Consequently, we believe the instructional goal of having students 

reject empirical evidence as a source of conviction—an explicit goal of several 

instructional programs (e.g., Harel, 2001; Stylianidies, 2007; G. Stylianides & A. 

Stylianides, 2009)—is problematic. We offer the following more nuanced suggestions: 

 (i) Empirical evidence is generally not recognized by mathematicians as an 

acceptable form of proof. Clearly students should be aware of this. 

 (ii) Nonetheless, there are instances where some mathematicians are convinced a 
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claim is true on the basis of empirical evidence. These mathematicians still desire proofs 

of these claims, not for conviction but for other epistemic aims, including the 

mathematical understanding a proof might generate and because constructing proofs is a 

mathematical end in its own right. Thus, we believe that there are cases where students 

may gain legitimate conviction from empirical evidence. This is particularly relevant with 

dynamic geometry software, where both students and mathematicians regularly claim 

certainty in unproven geometric claims because the software allows the user to check 

these claims for a large number of cases (see de Villiers, 2004). It is not problematic that 

students are persuaded by this evidence, but students should know this evidence does not 

constitute proof and the quest for proof is still useful for the understanding a proof might 

generate. 

 (iii) Mathematics educators sometimes express concern that students believe things 

that are untrue based on empirical evidence (e.g., G. Stylianides & A. Stylianides, 2009). 

However, in these reported cases, students are usually basing their beliefs on a small 

number of empirical checks. In our view, the problem is not that students relied on 

empirical evidence; it is that they relied on flimsy empirical evidence. We agree that 

students should be dissuaded from accepting claims on such evidence, but believe 

students should be made aware of when it is appropriate to draw conclusions from 

empirical evidence, as well as what types of evidence and what amounts are compelling 

and why, rather than trying to persuade students to abandon accepting claims on 

empirical evidence altogether. 

 (iv) Mathematics educators commonly cite the claim “1141n2 + 1 is never a perfect 

square for all natural numbers n” as a paradigmatic reason for why students should not 
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trust empirical evidence. The claim is false in general, but the first counterexample does 

not occur until n is greater than 1025. Given the analysis above, this is not a very good 

reason for abandoning empirical evidence entirely. Mathematicians are skeptical of 

empirical evidence showing that a set of numbers lacks an unusual property, such as 

being a perfect square, but more accepting of other types of evidence. Rather that contrast 

the limitations of empirical evidence with the certainty of deductive evidence, we suggest 

it might be more worthwhile to develop curricula to show how the two can work in 

tandem. 

Deductive evidence 

Values in mathematics about deductive evidence and proof 

 We believe that most mathematicians would agree with the following claims: 

Deductive evidence and proof are extremely important, both in the culture and history of 

mathematics and in the practice of contemporary mathematicians. One of the benefits of 

proof is that proof offers a conditional guarantee that a theorem is true (Fallis, 1997). If 

the reasoning in the proof is valid and the conceptual system in which the proof is 

couched is sound16, the theorem is necessarily true. No other types of evidence can offer 

this type of conditional guarantee. Proof is also particularly valued for its generality. 

Proofs are of finite length but nonetheless offer a conditional guarantee that an infinite 

number of assertions are true. (e.g., the claim that every odd integer squared is odd 

                                                
16 The phrase “conceptual system is sound” masks a deep and difficult philosophical 
issue that is beyond the scope of this paper. The main point here is that a theorem can be 
false even it is supported by a proof that is logically correct. This can happen, for 
instance, if the logical theory in which the proof is couched is mathematically 
inconsistent (i.e., one can prove both a statement and its negation in the theory), the 
definitions of concepts do not accurately capture the meanings of those concepts (a point 
discussed in detail in Lakatos, 1976), or the assumed background knowledge of true 
results and sound methods of inference is unreliable.  
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implies “1 squared is odd,” “3 squared is odd,” and so on). Proof alone is how a claim 

can be sanctioned by mathematicians as a theorem. One feature of proof is that there are 

certain methods of inference that are clearly invalid and would be rejected by all (or 

nearly all) mathematicians. For instance, even though the theorem “all differentiable 

functions are continuous” is true, it would be unacceptable to use this theorem to infer 

that a function f(x) was differentiable because it was continuous. This is because “if A, 

then B” and “B” is not logically sufficient to conclude “A.” 

 We fully support instruction that is based on these values. Students should 

appreciate the importance of proof in mathematics culture and practice; they should value 

the high levels of conviction that proofs can provide and understand the generality of 

proof. Students should also recognize some forms of reasoning are invalid and 

unacceptable within a proof. The points that we wish to emphasize here are that a 

purported proof only offers a conditional guarantee, not an absolute guarantee, that a 

mathematical claim is true, proof has epistemic aims beyond providing conviction, and 

mathematicians do not always agree on what methods of inference are valid within a 

proof. 

Philosophical perspectives on deductive evidence in mathematics 

 In the United States, much of a non-mathematician’s conceptions of proof are 

formed in their high school geometry course, as this is typically the only course in which 

most students have extensive experience with proof (e.g., Moore, 1994; Stylianides, 

2007). In these courses, proofs are typically written in a two-column format (see Herbst, 

2002), where every statement in a proof is something known to be true (e.g., an axiom, a 

definition, an assumption from the theorem being proven) or is a direct deduction from 



Mathematicians and conviction 

 46 

earlier assertions in the proof using a rule of inference that is explicitly stated. In the two-

column format, the statements within the proof are given on the left side and how these 

statements were deduced is given on the right side. This format for proof codifies what 

many believe is the essence of proof—each statement in the proof is a direct logical 

consequence from previous statements. Using this format, we can see how a proof 

guarantees the truth of a theorem, and it is relatively unproblematic to check that a proof 

is correct. Recent developments in the philosophy of mathematics, as well as empirical 

studies, challenge these claims about proof. 

 In mathematical practice, the proofs that mathematicians write are not nearly as 

structured or detailed as the typical two-column geometry proof. Most proofs have 

substantial gaps, where it is not immediately obvious why some statements in these 

proofs are necessary logical consequences of previous statements. Sometimes it is 

claimed that these gaps are merely omissions of details that a knowledgeable reader could 

easily fill in, but Fallis (2003) denied that all gaps could be explained in this way. Instead 

Fallis claimed that some gaps in the proof were bridged neither by the author of the proof 

nor any reader of the proof. This implies that verifying a proof does not merely involve 

checking that specific explicitly stated rules of inference were correctly applied17. 

 As verifying a proof is not mechanical, this opens up the possibility that a 

mathematician might mistakenly believe a step within a proof is correct because he or she 

failed to detect an error; consequently, the mathematician might accept an invalid 

                                                
17 As a dramatic example, Aschbacher (2005) noted that a full proof of the classification 
of finite simple groups would run over 10,000 pages and would, with probability 1, 
contain deductive errors that have not yet been detected, but nonetheless he considers the 
theorem to be proven. This implies that the conviction that the proof was valid cannot be 
entirely attributed to checking that each deduction in the proof was valid. 
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argument as a proof. De Milo, Liptus, and Perlis (1979) argued that even if we are 

reasonably confident that each individual step in a proof is correct, as proofs become 

increasingly lengthy, the possibility that none of the steps contains an undetected error 

becomes non-trivial. As a result, we cannot be sure that the proof, and therefore the 

theorem that it purports to establish, is correct. This concern was noted as far back as 

1739 by David Hume, who noted:  

“There is no Algebraist or Mathematician so expert in his science, as to place entire 

confidence in any truth immediately upon his [sic] discovery, or regard it as 

anything, but a mere probability. Every time he runs over his proof, his confidence 

increases; but still more by the approbation of his friends; and is raised to its utmost 

perfection by the universal assent and applauses of the learned world” (quoted by 

Nathanson, 2009, p. 8). 

Note that Hume is arguing that the certainty that one obtains in a theorem is not the result 

of producing a proof of it, but also by having friends and scholars check the proof for 

correctness. Paseau (2011) expressed a similar argument as follows: “That we are in 

possession of a proof of p does not imply we should be certain of p […] The proof may 

be long and hard to follow, so that any flesh-and-blood mathematician should assign a 

non-zero probability to its being invalid. The longer and more complex the proof, the less 

secure its conclusions” (p. 143). Inspection of proofs published by actual mathematicians 

reveals that this is not merely a philosophical concern. Davis (1972) estimated that half of 

published proofs contain errors, and Devlin (2003) discussed recent examples of proofs 

of important theorems that were thought to be valid by the mathematical community 

before a flaw was discovered. In an empirical study of the number of corrections 
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published in various disciplines, Grcar (2013) found that mathematics papers were not 

significantly less likely to contain errors than papers from other disciplines. Due to 

findings such as these, Nathanson (2008) expressed a stronger concern that the 

mathematics literature was unreliable. In short, although deductive evidence is an 

extremely powerful source of justification in mathematics, a given deductive proof is 

often insufficient to gain full certainty in the truth of an assertion. Nathanson (2008) and 

Grcar (2013) both noted that mathematicians’ refereeing practices, including sometimes 

checking the proof in terms of its high-level ideas but not its details18, may contribute to 

the proliferation of errors. 

 A widely held belief about proof is that mathematicians have an unusually high 

level of agreement as to whether a deductive argument constitutes a valid proof19. For 

instance, McKnight, Magid, Murphy, and McKnight (2000) asserted that “all agree that 

something is either a proof or it isn’t and what makes it a proof is that every assertion in 

it is correct.” (p.1). Selden and Selden (2003) remarked on “the unusual degree of 

agreement about the correctness of arguments and the truth of theorems arising from the 

validation process” (p.7); they also claimed that validity is a function only of the 

argument and not of the reader: “Mathematicians say that an argument proves a theorem, 

not that it proves it for Smith and possibly not for Jones” (p. 11). It is not only 

mathematics educators who make this claim. The philosopher Azzouni (2004) attempted 

to explain why “mathematicians are so good at agreeing with one another on whether 

                                                
18 Whether mathematicians actually read a proof for its high-level ideas is currently under 
debate in the mathematics education community (e.g., Inglis & Alcock, 2012, 2013; 
Weber & Mejia-Ramos, 2013b). 
19 Note that we are not talking about alleged proofs whose validity is considered 
problematic by some members of the mathematical community, such as probabilistic 
proofs, picture proofs, or computer assisted proofs (cf., Aberdein, 2009). 
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some proof convincingly establishes a theorem” (p. 84). However, other philosophers 

have recently challenged the view, arguing that due to the wide range of mathematical 

practices, the notion that there is a single criterion on which proof is judged is 

implausible (e.g., Auslander, 2008; Rav, 2007). 

Empirical studies. 

 We have conducted several studies that challenge the notion that mathematicians 

agree on what constitutes a proof and that their processes for evaluating a proof are 

sufficient to obtain certainty in its correctness. Our investigations into mathematicians’ 

validation of proofs stemmed from an influential article that Selden and Selden (2003) 

published on mathematics majors’ proof validations. In their study, Selden and Selden, 

both published research mathematicians, asked students to evaluate an argument from 

elementary number theory they labeled “the real thing,” which they presented as a 

transparently valid proof, and another they labeled “the gap,” which they evaluated as 

invalid.  In a pair of independent studies, Weber (2008) and Inglis and Alcock (2012) 

presented these proofs to 20 mathematicians (8 in Weber’s study and 12 in Inglis and 

Alcock’s) and asked them to determine whether or not they were valid. Collectively, only 

14 of the 20 mathematicians judged “the real thing” to be valid and only 12 judged “the 

gap” to be invalid. As these proofs were short, came from an elementary mathematical 

domain, and were chosen by former research mathematicians because of the ostensible 

transparency in their validity, we considered it highly surprising that they generated 

disagreement among the 20 mathematicians in our studies. 

 To explore this issue further, Inglis, Mejia-Ramos, Weber, and Alcock (2013) 

presented 109 mathematicians with an argument purporting to prove that 
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x −1dx = ln(x) + c.∫  They were told that this argument was submitted to the expository 

mathematics journal, the Mathematical Gazette, and were asked to judge whether or not 

the argument was valid. The argument established this theorem by commuting the limit 

and integral sign, a mathematical technique that is not valid in general. The technique 

was applicable in this particular context, but the justification for why it was applicable in 

this context was absent from the proof. When asked if the argument was valid, 29 

mathematicians (27%) agreed that it was and 80 (73%) said it was not, with applied 

mathematicians significantly more likely than pure mathematicians to judge the argument 

to be valid (50% vs. 17%). To ensure that the differences in participants’ judgment were 

not merely due to performance error, we asked a follow-up question. Participants were 

informed that a mathematician critiqued this argument by noting that the limit and 

integral sign were commuted; they were asked if such a criticism was reasonable and if 

this alone was enough to render the argument invalid. For both groups, over 80% of the 

participants found the critique to be reasonable. Of the 29 who judged the argument to be 

valid, 24 (83%) claimed this critique was not sufficient to render the argument invalid. 

Only 24% of those who initially judged the argument to be invalid made this judgment. 

This suggests that mathematicians do not agree about whether particular inferences 

within an argument are permissible without justification, even in a domain as basic as 

elementary calculus.  

 In a separate line of studies, we explored how mathematicians checked the validity 

of an argument. Weber (2008) presented eight mathematicians with six to eight 

arguments and asked them to determine if these proofs were correct. In reading these 

arguments, there were 77 instances in which participants were not sure if a particular 
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assertion within the proof was correct. In 15 instances, participants constructed a sub-

proof verifying the assertion, arguably using deductive evidence to make certain the 

assertion was true. However, it was more common for participants to give informal 

arguments (33 instances) where general approaches to proving the assertion were stated 

but significant details were not carried out or with empirical evidence (19 instances) in 

which they verified that the assertions were true by checking them with specific 

examples. This empirical evidence usually consisted of looking at only a small number of 

examples, sometimes even a single example, so these empirical checks most likely did 

not provide the mathematicians with complete certainty that the assertion they were 

verifying was necessarily correct. To test the generality of these observations, Mejia-

Ramos and Weber (in press) asked 54 mathematicians who had experience refereeing 

papers if they agreed, disagreed, or were neutral to the following statement: 

When I referee a paper and I am not immediately sure that a statement in the proof 

is true, it is not uncommon for me to gain a sufficiently high level of confidence in 

the statement by checking it with one or more carefully chosen examples to assume 

the claim is correct and continue reading the proof. 

Forty three percent of the surveyed mathematicians agreed with the statement, while 28% 

disagreed. This illustrates, by mathematicians’ self-report, that some are not using a 

validation process to guarantee the correctness of a proof with absolute certainty.  

 In general, based on our interviews with mathematicians, mathematicians highly 

value empirical evidence in making sense of, and gaining confidence in, the proofs that 

they read (Weber & Mejia-Ramos, 2011). As one mathematician described to us, he 

“always” considered examples when checking proofs: “I always use examples to make 
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sure the theorem makes sense and the proof works. I’m sure there are some 

mathematicians that can work at an abstract level and never consider examples, but I’m 

not one of them. When I’m looking through a proof, I can go off-track or believe some 

things that are not true. I always use examples to see that makes sense” (p. 338). When 

we checked the generality of this finding with the survey for the 54 mathematicians who 

had experience refereeing, we asked if they agreed, disagreed, or were neutral to the 

following statement: 

When I referee a proof, it is not uncommon for me to see how the steps in the proof 

apply to a specific example. This increases my confidence that the proof is correct. 

Most surveyed participants (74%) agreed and only two of the 54 mathematicians (4%) 

disagreed. To these mathematicians, making sense of and checking deductive evidence 

was done, at least in part, by considering empirical evidence. 

Implications 

 Based on our arguments above, we believe that some mathematicians do not gain 

complete conviction from some of the deductive arguments that they read. Although 

some mathematics educators have arrived at a similar conclusion (e.g., Hanna, 1991; 

Otte, 1994), others have argued that mathematicians do gain complete conviction via 

proof (e.g., Harel & Sowder, 1998). We do not believe that we should expect students to 

gain complete conviction from the proofs that they produce but instead offer the 

following more nuanced suggestions: 

 (i) Deductive evidence can be highly persuasive evidence in favor of an assertion. 

This is also the type of evidence that mathematicians use to sanction theorems. Students 

should be led to appreciate the power and generality of a proof and its role in establishing 
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theorems. That students think of proof as merely evidence in favor of an assertion or a 

general proof as applying to a special case (cf., Chazan, 1993) is indeed problematic. 

 (ii) However, proofs, in general, do not provide mathematicians with absolute 

certainty that a theorem is true because often mathematicians cannot be absolutely certain 

that the proof is correct. With students who frequently struggle mastering the nuances of 

proof, we would expect proof to provide them with even less certainty. Consequently we 

do not consider it irrational or problematic that students desire further evidence in favor 

of a statement that they have proven. Asking an authority if their proof is correct or 

continuing to check the proven statements with examples does not seem to be irrational; 

indeed, we consider this consistent with mathematicians’ practice. 

 (iii) Unlike the two-column proofs that students observe in some high school 

geometry courses, the proofs that mathematicians produce have gaps. Indeed, the two-

column proofs that students counter in geometry are arguably not even idealized versions 

of the proofs that mathematicians produce (e.g., Baker, 2009; Fallis, 2003).  

 (iv) Whether a deductive argument is a valid proof is (sometimes) not an objective 

feature of the argument, but depends on the mathematician reading it, among other 

factors. While some arguments are clearly invalid (e.g., arguments based on blatantly 

false assertions or containing computational errors), other arguments’ validity is more 

problematic to determine because one cannot be sure how large of a gap in a proof is 

permissible. This has an important implication for the teaching of mathematics majors; 

mathematicians often do not agree on what level of detail should be included in proofs 

they present to students (Lai, Weber, & Mejia-Ramos, 2012) and, we hypothesize, on the 

level of detail that students should provide on proofs that they submit for credit. 
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 (v) In mathematics education, deductivist and empiricist epistemological beliefs are 

often placed in opposition to one another (e.g., Muis, 2004, 2008). Students are expected 

to abandon the empiricist beliefs that they frequently hold in favor of the deductive 

beliefs valued by mathematicians. We find this to be a conceptual error. Many 

mathematicians seek conviction in mathematical statements from deductive evidence and 

empirical evidence, and indeed, gain the most when these two sources of evidence are 

used in tandem. It is telling that in Muis’ (2008) study of students’ epistemological 

beliefs, students who held empirical and deductivist beliefs exhibited the same positive 

problem-solving behaviors as those who only evinced deductivist beliefs. The moral here 

is that mathematics students should develop an appreciation for the power, utility, and 

appropriateness of deductive evidence, but this does not entail completely abandoning 

empirical evidence. 

Summary 

Implications for mathematics education 

 In mathematics education, with respect to justification and proof, it is widely 

believed that the goals for instruction should be for students to have the same beliefs and 

justification practices as mathematicians. We agree with this premise, but believe that for 

this to be feasible, we need to have an accurate understanding of what mathematicians’ 

practice is and we are concerned that current instructional goals are based on a somewhat 

shallow view of what mathematicians do. 

 In this paper, we set out to establish four claims about mathematical practice and to 

discuss their implications for the goals of mathematics instruction. These claims were: (1) 

mathematicians sometimes gain high levels of conviction from authoritarian sources or 
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empirical evidence; (2) the sources that mathematicians consider depend upon their 

epistemic aims; (3) the quality of authoritarian and empirical evidence influences its 

persuasive power; and (4) there is substantial heterogeneity in how persuasive 

mathematicians find different types of evidence. 

 Regarding claim (1), we have argued that many mathematicians, by necessity, 

frequently accept mathematical results because they have been published in respected 

journals and gain confidence in these results because they were written by authoritarian 

sources. We have demonstrated that there were instances in which some mathematicians 

gained very high levels, or even complete certainty, in mathematical statements based on 

empirical evidence. Finally, we have argued that there are instances in which proofs do 

not and cannot provide mathematicians with complete certainty. Ergo, the instructional 

goal of having students gain absolute certainty from deductive evidence, and deductive 

evidence alone, is not consistent with mathematical practice. 

 Regarding claim (2), mathematical proof is valued by mathematicians, both for the 

mathematical understanding that it provides, as an end in and of itself, and the conditional 

guarantee that it can provide (i.e., if the proof is correct and the supporting theory is 

sound, the theorem must be true). Empirical evidence and authoritarian sources cannot be 

used to sanction a theorem in the absence of a proof and do not provide the gains in 

understanding that a proof can provide. However, when it comes to gaining conviction 

that a theorem is true or checking the validity of an argument, empirical evidence and 

authoritarian sources are frequently used by mathematicians. This claim has an especially 

important consequence for instruction. Deductive evidence should not be valued over 

empirical or authoritarian evidence because deductive evidence can provide certainty in 
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mathematical statements while the other types of evidence cannot. Rather, deductive 

evidence should be valued because it can provide mathematical understanding that the 

other types of evidence cannot and because it is the only means that mathematicians use 

to sanction theorems in their professional practice. 

 Regarding (3), we have shown that mathematicians consider the quality of a journal 

in estimating the truth of its theorems. We have also shown that some types of empirical 

evidence (e.g., showing some members of an infinite set all have an unusual property) is 

more persuasive than other types of evidence (e.g., showing some members of an infinite 

set all lack an unusual property). Blanket claims about the persuasive power of 

authoritarian or empirical evidence are difficult to make. 

 Regarding (4), we have acknowledged that there are core values about conviction, 

justification, and proof that we believe are shared by most mathematicians. However, we 

have also shown that mathematicians disagree both on how persuasive they found 

specific empirical arguments and on whether a specific proof from calculus is valid. We 

have also found that the majority of mathematicians state that they rely on authority in 

accepting a published theorem as true but some mathematicians claim not to do this. 

 The view that students should gain conviction from deductive evidence, but not 

empirical or authoritarian evidence, is in some respects a very worthy one for 

mathematics instruction. An exclusive reliance on authority severely limits students’ 

autonomy. A failure to appreciate the potential weaknesses of empirical reasoning will 

lead students to believe some mathematical statements that are not true. An inability to 

appreciate or understand deductive argumentation will deny students a valuable source of 

mathematical understanding and prevent them from participating in authentic 
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mathematical discourse. Consequently, in our view, the instructional recommendations of 

focusing on deduction and limiting appeals to authoritarian or empirical evidence has a 

great deal of merit.  However, as we argue above, we think the basis for these 

instructional recommendations is oversimplified and not based on an accurate 

understanding of mathematical practice. 

 For each of the main claims that we posit in this paper, we have outlined 

instructional recommendations that move beyond the view that students should gain 

complete conviction from deductive evidence and deductive evidence alone. We believe 

that these instructional recommendations are not only more consistent with 

mathematicians’ practice, but also are more realistic and provide greater learning 

opportunities for students. Some of these recommendations concern what the goals of 

mathematics instruction should be. If we accept the assumption that students should 

develop epistemic beliefs and actions that are consistent with the practice of 

mathematicians, the theoretical and empirical arguments that we present in this paper 

provide strong support for these recommendations. Other recommendations are based on 

classroom practices that we would like students to engage in to develop their 

mathematical understanding. Clearly these pedagogical suggestions should be tested. One 

test could be seeing if classrooms that follow our recommendations (e.g., classrooms 

where some, but not all, claims are justified and it is acceptable for a student to check 

with a teacher to see if his or her justification is correct) lead to better or worse 

achievement than classrooms following recommendations common in the mathematics 

literature (e.g., classrooms where all claims are justified and students cannot check their 

work with an authority). 
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Implications for research on epistemic cognition 

 We believe that our research makes a number of claims that are important for 

research on epistemic cognition. 

 Experts rely on the testimony from authoritative sources. We have shown that some 

mathematicians frequently do this to decide which claims they accept and build upon in 

their work. We concur with Chinn, Buckland, and Samarapungavan (2011) and Bromme, 

Kienheus, and Porsch (2009) that it is simply inaccurate to claim, as some models of 

epistemic cognition do, that expert mathematicians and scientists always rely on their 

own reasoning to decide what is true. With mathematicians, this is even when they have 

the capacity to make this decision themselves. 

 Developing understanding is an important epistemic aim for expert practitioners. 

We have shown that mathematicians are often willing to accept a claim as true and a 

proof as correct if it was written by an authoritative source or published in a respectable 

outlet. Nonetheless, most mathematicians study these proofs. This is often not to increase 

their conviction in the correctness of the claim or the validity of the proof. Instead, they 

read the proof to increase their mathematical understanding. 

 Evaluating epistemic cognition requires understanding individuals’ epistemic aims. 

We have argued that the epistemic actions that mathematicians take (and that students 

should take) are dependent upon their epistemic aims, which as Chinn, Buckland, and 

Samarapungavan  (2011) argued was not present in many models of epistemic cognition. 

Empirical evidence and appeals to authority are often useful for the epistemic aim of 

finding out what is true, but less useful in mathematics for sanctioning claims or 

expanding one’s understanding. 
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 It is important to test our beliefs about experts’ epistemic cognition with empirical 

studies. We discussed claims that some mathematics educators made about 

mathematicians’ epistemic cognition that we found to be inaccurate and oversimplified. It 

is important to emphasize that the claims that we challenged were not generated 

randomly or haphazardly by these researchers; rather these were based on what these 

researchers felt was substantial evidence, including the writing of individual 

mathematicians as well as their own experience doing mathematics. Of course, this type 

of evidence is both appropriate and necessary for forming hypotheses about mathematical 

practice. The empirical studies we present in this paper caution us that our claims about 

experts’ mathematical cognition, claims that may appear intuitively obvious, are 

sometimes wrong. Before using beliefs about experts’ epistemic cognition as a basis for 

instructional design, we contend that it is important to conduct empirical studies to 

increase our confidence that these beliefs are correct. However, such empirical studies are 

notably absent from domain-specific research on epistemic cognition. Our claim is based 

on a simple premise: If we want to make claims about how mathematicians or scientists 

behave, what they claim, and what they value, it is useful both to actually talk to a large 

number of mathematicians and scientists and to systematically observe their behavior. 

An alternative framework for models of epistemic cognition. 

 In an influential paper, Smith et al (1993) reconceptualized how the science 

education community viewed students’ misconceptions about scientific phenomena. The 

traditional view was that there were normatively correct ways of understanding scientific 

phenomena and common incorrect ways that students frequently used to understand these 

same phenomena. These incorrect ways were labeled as misconceptions. The goal of 



Mathematicians and conviction 

 60 

instruction was to have students abandon these misconceptions and adopt the normatively 

correct ways of understandings. Smith et al (1993) challenged this viewpoint and offered 

an alternative perspective. The so-called misconceptions that students held were usually 

perfectly viable in students’ previous experience. The problem was not that students 

believed such things but that they were applying them in a domain where they did not 

apply. For instance, the belief that “one needs to continually exert force on an object to 

keep it in motion” is not wrong. Indeed, it applies in nearly every real-world situation that 

a student will encounter. If you are driving and take your foot off the gas, your car will 

eventually stop. This belief is only inaccurate when working in a frictionless 

environment.  The goal of science education should not be to eradicate misconceptions 

but rather to have students appreciate the scope of their viable conceptions and empower 

students by developing new conceptions that can be used to answer different types of 

questions. 

 We believe an analogy can be drawn with most traditional models of epistemic 

cognition. In these models, there are primitive naïve beliefs that students frequently 

accept and more sophisticated beliefs that are held by scientists and other enlightened 

individuals. The goal of education, according to these models, is to lead students to reject 

the common naïve beliefs and adopt the more sophisticated ones. For example, students 

should reject the notion that knowledge is handed down by authorities and accept that 

knowledge is generated by the individual. Students should not accept mathematical 

results because they appear to work but because they can be logically deduced. We 

believe this is a conceptual error. Many purportedly naïve epistemic beliefs and epistemic 

actions are both natural and correct for some epistemic aims and indeed are held and used 
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by expert practitioners. The goal of instruction should not be to have students reject naïve 

epistemic beliefs; indeed, the notion that students should never believe something 

because an authoritative source told them that it was true is utterly infeasible for practical 

life. Rather, students should understand how to implement these epistemic actions 

effectively (for instance, how does one determine what constitutes reliable testimony from 

an authoritative source?) and for what epistemic aims these actions are useful. Further, 

students should expand their repertoire of epistemic actions to include those that are 

valued by researchers in epistemic cognition. 

 At a broader level, we find that educators often desire that students participate in 

some desirable behavior or hold some desirable belief (call it X) but instead observe that 

students predominantly engage in some other type of behavior or hold some other belief 

(call it Y). While we agree that the absence of X in students’ reasoning may be a 

problem, it does not necessarily follow that the presence of Y is as well. That is, the 

behaviors that students do engage in and the beliefs they do hold are not necessarily 

problematic. This can explain what an apparent inconsistency between the literature on 

epistemic cognition and the results of our paper. For instance, Muis (2004) wrote that 

students “believe mathematical knowledge is passively handed to them by some authority 

figure, typically a teacher or textbook author, and that they are incapable of learning 

mathematics through logic and reason” (p. 330) and she observed that students holding 

these beliefs tended to have lower achievement than those who believed they could learn 

mathematics through logic and reason. Yet in this article, we argue that mathematicians 

do and students should rely on the testimony of authority figures in some situations. The 

quoted excerpt is a compound sentence containing two assertions: (i) students do not 
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believe they can use deduction and reason to learn mathematics and (ii) students believe 

mathematical knowledge can be handed to them by an authority, with the implication that 

(i) and (ii) are both problematic. We agree that (i) is a significant problem. However, we 

think it is a fallacy to infer that (ii) is problematic as well. It is our hypothesis that the 

correlation with lower achievement reported above is not the presence of the belief that 

the testimony of authorities is a useful source of knowledge, but the absence of the belief 

that using one’s own reasoning is also a valuable source of knowledge.  

 As we noted in this paper, Muis (2008) reported evidence that directly supports 

our hypothesis when describing students’ empiricist and deductivist views of 

mathematics. Students who held strict empiricist views (i.e., the students primarily 

judged mathematical truth on what looks right or works) had lower achievement than 

students with strict deductivist views (i.e., the students primarily judged truth through 

mathematical logic). However, students who held a hybrid of empiricist and deductivist 

views were no worse off than those with strict deductivist views. In this case, the problem 

with holding strict empiricist views is not the presence of empirical beliefs, but the 

absence of appropriate beliefs about the value of logical deduction. 

 A consequence of this argument is that measuring individuals’ epistemic 

cognition along a single continuum might not be viable. Indeed, as Greene, Torney-Purta, 

and Azevedo (2010) argued that if “students consider many different kinds of warrants 

(e.g., appeals to authority, logic, coherence) when justifying logic claims, attempts to 

quantitatively measure those beliefs about knowing on a single continuum are unlikely to 

succeed. Restricting justification to a single factor may be one reason that numerous 

studies of personal epistemology measures have found little evidence of construct 
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validity and poor data-model fit” (p. 236). We believe more nuanced models considering 

how different types of evidence are used for different epistemic aims may provide a more 

accurate and coherent account of students’ personal epistemology in mathematics. 
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