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SUMMARY: The UK along with the European Union has experienced a recent proliferation in design 

approaches for potential fixed firefighting systems. Such systems are installed to mitigate fire hazards in 

buildings and equipment. In the UK, for example there were five general design approaches to fixed firefighting 

systems protection in 1986. This had increased to eleven in 2011. This is against the backdrop of the current 

non-prescriptive regulatory frameworks including the Building Regulations, the repeal of so-called ‘local acts’, 

the Regulatory (fire) Reform Order and associated guidance (Approved Documents, standards, codes of practice 

and guides). 

In response to this trend, as was intended, the market place is becoming increasingly competitive. However, the 

capability of each technology remains limited to protection against certain hazards, rather than offering a 

solution to guard against all possible scenarios. When selecting a fixed firefighting system, fire hazards and 

interactions can be difficult to assess and describe and the inequality or absence of satisfactory methods is 

notable in many recently published guidance documents. The absence of good quality guidance for non-expert 

practitioners (specifiers) and regulatory changes means a good quality source of impartial and expert 

knowledge is increasingly desirable. The challenge is to amass this knowledge and render it in an accessible 

format to the non-expert user. This paper reports on progress to-date; understanding the problem, amassing and 

structuring the knowledge base and developing a suitable knowledge management tool. 
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1. INTRODUCTION 

1.1. Background  

Fixed firefighting systems are installed to meet legislative requirements (to protect life), and / or when identified 

as appropriate by some form of cost-benefit analysis process; for example to achieve risk reduction for business 

resilience purposes or to protect irreplaceable assets. The United Kingdom (UK) along with the European Union 

(EU) has witnessed a recent proliferation of design approaches for potential fixed firefighting systems for the 

mitigation of fire risks in buildings and equipment; from five in 1986 (BSI, 1986) to eleven in 2011(BSI, 2011a). 

This occurs at the same time as a trend of deregulation in relation to requirements invoking installation of, and 

for, fixed firefighting systems. The Fire Precautions Act (HMSO, 1971) generally followed a prescriptive 

regulatory model, whereas the Building Regulations (HMSO, 2010) and the Regulatory Reform (Fire Safety) 

Order (HMSO, 2005) provide a less prescriptive set of requirements. All Local Acts relating to requirements for 

buildings, some of which created the requirement to install fixed fire protection systems (i.e. sprinkler systems) 

were repealed on 9
th

 January 2013 (DCLG, 2012) as part of the Government’s ‘Red tape challenge’. Some 

absolute regulatory requirements to install fixed firefighting systems in the form of sprinkler systems to BS EN 

12845 (BSI, 2009a) have since been removed and are replaced with either a recommendation to install an 

unspecified type of fixed firefighting system or no such requirement at all.  

 

There is now increased potential in the fixed firefighting system industry for adopting similar approaches to that 

recommended by the fire engineering community, where client teams can adopt a fire engineering approach to 

overcome novel design challenges (Wilkinson et al. (2012), and/or reduce the costs of implementing fire 

protection (Sugden, 1998). The temptation to place too much emphasis on the latter is obvious and regulatory 

changes have paved the way to make this more likely.  

 

This research identified numerous instances of multi-million pound fire losses, where, had the suppression 

system been fundamentally better suited to the hazard; the fire loss would have been negligible. By way of 

examples, it was the view of the experts appointed to the court (Cadbury v ADT (2011)) that a gaseous system 

was installed where surrounding enclosures stood no chance of retaining the media as required to extinguish the 

fire. The selection of an inadequate system to mitigate the fire risk was thus, a key contributing factor that led the 

fire incident to escalate out of control. From other cases, forensic evidence suggests that the water mist systems 

have failed, when they have not been interlocked to air extraction systems of the equipment they protect. The 

result; the fire fighting media (the ‘water mist’) has been extracted to atmosphere (away from the location it 

needs to be in order to fight the fire) before it can take effect. In some instances, sprinkler systems, although 

installed only offered partial protection, because the provision of sprinkler heads had not been continued in to the 

building voids. Thus a decision, which is evidently made to cut costs (an effect of value engineering), can result 

in rapid, severe and extensive fire spread around a building; challenging the very ethos of active fire protection. 

The examples cited here, have been encountered during the course of this research, unfortunately these and 

similar instances are not always widely reported due to the sensitivity of the information and potential grounds 

for claims and litigation.  

 

This adverse effect of over value-engineering can be somewhat ameliorated if the motivations of the client 

(Sugden, 1998) and their subsequent impact on design decisions are clearly understood (e.g. selection of fixed 

firefighting systems) and examined. This constitutes the knowledge elicitation phase, with the help of which  

future recommendation(s) for a well-reasoned fixed firefighting system can be made. 

In the built environment, as opportunities for greater efficiencies are frequently sought, and with a proliferation 

in fixed firefighting system design approaches, it is unsurprising that there is increasing commercial competition 

between the vendors of each type of fixed firefighting system. However, it remains the case that each fixed 

firefighting system type is suited to offering protecting against certain hazards, rather than offering a solution to 

guard against all possible scenarios (e.g. water is incompatible with electronic equipment and gaseous 

extinguishing media is prone to escaping). When a fixed firefighting system is incorrectly matched to the 

characteristics of a hazard, the likelihood of an adverse outcome in the event of a fire will increase, resulting in 

damages to life and property. To safeguard against this, there are several guidance documents available to assist 

users and designers in choosing and specifying appropriate active fire protection measures. Examples of such 

guidance documents include, the BSi’s “Guide for selection of installed systems and other fire equipment” BS 
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5306-0 (BSI, 2011a), BRE’s “guide to the sprinkler installation standards and rules” (BRE Global, 2009), and 

BAFSA’s “Technical Guidance Note - Watermist Systems” (BAFSA, 2012). A desk study of these documents 

confirms that they vary in integrity, age, relevance, scope, quality, impartiality and suitability. None are deemed 

to be adequate to resolve the identified problems.  

 

Hazards and interactions can be difficult to assess and describe and the inequality or absence of satisfactory 

methods is notable in many recently published guidance documents. The absence of good quality guidance for 

non-expert practitioners (e.g. specifiers) and regulatory changes means a good quality source of impartial and 

expert knowledge is increasingly desirable. The challenge of this research is to amass this knowledge and render 

it in an accessible format to the non-expert user (e.g. clients and occupants). 

 

The Fire Protection Association (FPA) is the UK’s national fire safety organisation. It is recognised as an 

independent and authoritative source of information and advice relating to all aspects of fire safety, risk 

management and loss prevention. The FPA, and several leading insurers who participate in its risk management 

work, have identified the requirement for assistance with the decision making process of analysing fire hazards 

and matching to them appropriate types of fixed firefighting system choices. This is so that informed and 

impartial system selection recommendations are made. This has led to the undertaking of a four year research 

project aimed at developing a decision problem structuring method and a software tool (Expert System), for 

specifying and selecting fixed firefighting systems so that fire risks are better managed or mitigated. The aim is 

to develop a tool that will both; assist non-expert users in making an informed selection of a system that is likely 

to best suit their needs; and educate non-expert users by highlighting key selection principles. It is indented that 

the tool would thus; contribute to improvements in levels of fire safety and outcomes. This paper presents a 

summary of the work undertaken, focusing on the demand for the work, the criticality of system reliability, 

development and evaluation of the decision methodology and practical application and evaluation of the 

emerging Expert System. 

1.2. Fixed firefighting systems 

For the purposes of this research project, the term Fixed Firefighting System means any fire suppression, control 

or extinguishing system for use as a fixed installation in a building, protecting the whole or part of the building 

and/or objects within. Examples of such systems, as given by the National Fire Protection Association’s Fire 

Protection Handbook (Bendelius, 2008), would include; automatic fire sprinkler systems (the most common 

type) and other approaches such as deluge systems and water mist systems. The scope of this work also includes 

consideration of gaseous extinguishing systems, oxygen reduction systems and other installed fire fighting 

systems using alternative media.  

 

There are a variety of sources that report the financial and societal cost of fires within the UK, Europe and other 

developed nations. A summary of published figures is presented here. The Association of British Insurers (ABI) 

in its paper, “Tackling Fire: A Call for Action” (Association of British Insurers, 2009) estimates the insured cost 

of fire is £1.3bn. It also reports that 443 deaths and 13,200 casualties were caused by fire in 2007. The UK 

Government in its report, “The Economic Cost of Fire: Estimates for 2004” (Office of the Deputy Prime 

Minister, 2006) reports a projected figure of £7.03bn for the cost of fire for the year 2004. The corresponding 

projections for the years 2006 and 2008 are £8.2bn and £8.3bn respectively (Office of the Deputy Prime 

Minister, 2011a, Office of the Deputy Prime Minister, 2011b).  Whilst not markedly out of step with other  

developed nations (The Geneva Association, 2011), such figures illustrate that the risk, consequence and cost of 

fire remains significant to the built environment in the UK. 

 

During the course of this research, several documents purporting to offer potential users guidance on system 

selection have been identified. Examples include, BSi’s “Guide for selection of installed systems and other fire 

equipment” BS 5306-0 (BSI, 2011a), BSi’s fire engineering suit of standards BS 7974 series (BSI, 2001), 

specifically part PD 7974-4 (BSI, 2003b), BRE’s “guide to the sprinkler installation standards and rules” (BRE 

Global, 2009), and BAFSA’s “Technical Guidance Note - Watermist Systems” (BAFSA, 2012); among others. 

A review of these documents finds that none of the documents offer sufficiently complete or impartial guidance 

to achieve the objectives of this undertaking. Previous research by the authors (Bird et al., 2012) identified 

potential fixed firefighting system technologies for inclusion within the tool and developed an outline method for 

considering the applicability of each firefighting system type. No other work to further develop a solution to the 
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identified problem has been identified since.  This paper aims to bridge this gap through achieving a set of 

objectives as follows, by:  

 

 Understanding the need for fixed firefighting systems; 

 Understanding factors influencing current selection practices;  

 Identifying target hazard groups (i.e. building usage or occupancy process fire risk and 

consequence characteristics); 

 Identifying current sources of selection ‘knowledge’ (standards, guides, custom and good 

practices); 

 Identifying potential users;  

 Developing a knowledge-based tool to automate as far as possible system selection decision-

making steps; and 

 Addressing maintenance and upkeep considerations associated with the tool. 

 

2. METHOD 

A tangible and useful deliverable is sought in the form of the “Fixed Firefighting System Selection Tool” 

(FFSST) to enable a real improvement in system selection and outcomes to be made. To meet the projects 

objectives, Rapid Application Development (RAD) and Action Research (AR) approaches have been adopted. 

The RAD approach is often used when a degree of incremental development is acceptable (or desirable i.e. 

where requirements change often) rather than an approach whereby whole new systems are developed each time 

there is a change (Avison and Fitzgerald, 2003). This technique has the potential to facilitate iterative system 

developments with more efficient resource usage and allowing a solution to be incrementally developed and 

improved with the experience gained of practical application of the preceding version of the development.  

Action Research (AR) is defined by Stringer (2007) as “a systematic approach to investigation that enables 

people to find effective solutions to problems they confront in their everyday lives”. Denzin and Lincoln (2003, 

p. 28.) introduce the word “participatory” to form the concept of “participatory action research” to reflect the 

perceived diminution of the number of aloof observers’ content to let the research pass without comment. 

“Participatory action research is a contested concept applied to a variety of research approaches” (Denzin and 

Lincoln, 2003, p. 336) in essence they argue special acknowledgement should be given to action research where 

a high degree of stakeholder input is to be expected. It is anticipated this will be the case here, given the level of 

commercial vested interest in the fire protection industry, disparate stakeholders (e.g. owners, specifiers, 

users/benefactors, regulators and insurers) and the value of the assets dependant on being protected by such 

technology. 

 

Drawing further on the work of Stringer (2007), his “action research interacting spiral” is adapted to describe the 

broad development cycles of this project (see Fig. 1).  

Development cycle 1

 Literature review

 Proof of concept tool

Development cycle 2

 Detailed evidence 

gathering 

 Reliability study

 Input in to further tool 

development

Development cycle 3

 Tool release

 User feedback

 Refine tool

 

Fig. 1 – Adaptation of “Action Research interacting spiral” (Stringer, 2007)  
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In practice, the research has employed the following techniques: Initial and on-going literature review, 

quantitative and qualitative methods. Quantitative methods being defined as those which gather evidence which 

is measureable and quantifiable, being characterised by having adopted “scientific method” (Calado et al., 2009).  

Whereas qualitative methods  are said to be more suited to in depth study of opinions, origins of opinions and 

associated consequences (Easterby-Smith et al., 2002) being ‘subjective’ in nature emphasising meanings, 

experiences and descriptions. The former has been achieved through review of regulations (The Regulatory 

Reform (Fire Safety) Order (HMSO, 2005), The Building Regulations (HMSO, 2010)), standards (national, 

international and sector specific fixed firefighting design, installation and components standards; for sprinkler 

systems (FPA, 2011, BSI, 2009a, BSI, 1999), water mist systems (BRE Global, 2012, BSI, 2011d, BSI, 2010), 

foam-based systems (BSI, 2009b), gaseous systems (LPCB, 2005, BSI, 2003c, BSI, 2008b), oxygen reduction 

systems (BSI, 2011e) and aerosol systems (BSI, 2009c) to name a few)  guides and practice documents (BRE 

Global, 2009, BSI, 1986, BSI, 2011a, The Fire Protection Association, 1999, Williams, 2009). The latter 

includes interactions with several subject experts (Building Control Officers, Fire Engineers, Architects, Fire and 

Rescue Services, Organisational risk manager, Project Managers (Design and Build Contractors), Insurance 

Surveyors and Consultants and expert colleagues) and undertaking a survey by questionnaire to gather input 

from a much wider audience on aspects of the research. These subject area experts have been engaged with in 

various ways: day-to-day discussions with expert colleagues in the course of undertaking the research and in the 

conduct of the sponsoring organisations (the FPAs) business. In conducting the business of the FPA, quarterly 

meetings between insurance industry risk surveyors (drawn from ABI membership), fixed firefighting system 

industry and representatives from applicable test and certification house convened by the researcher. This yields 

much insight in to the successes and failures of the industry.   

 

Wider contact with experts was sought by means of a survey. The survey aimed to identify the requirements of a 

fixed firefighting system, with input from those with expertise and experience in the area of fixed firefighting 

system selection. Participation was widely invited via a variety of means, including the following: 

 

 Existing network of relevant business contacts; 

 

 Via trade associations and organisations: 

o Risk Engineers Data Exchange Group (REDEG); 

o British Automatic Fire Sprinkler Association (BAFSA); 

o Fire Industry Association (FIA); 

o RICS building control professional group; and 

o Building Research Establishment (BRE). 

 

 Via ‘Social networking’ website Linkedin groups: 

o National Fire Protection Association (NFPA); 

o Society of Fire Protection Engineers (SFPE); 

o Fire Industry Association (FIA); 

o Centre for Innovative and Collaborative Construction Engineering (CICE); and 

o Underwriters Laboratories (UL)'s Global Fire Service Leadership group. 

 

A total of 64 responses were received, which exceeded the ambition of achieving 50 responses (a figure arrived 

at by estimation and considering the degree of specialism of the subject area). Responses were received from the 

following groups: Building Control Officer, Fire Engineer, Fire and Rescue Service, Organisational risk 

manager, Project Manager (Design and Build Contractor). Other notable self-identifying groups were recorded: 

Insurance Surveyors and Consultants. 

3. REQUIREMENTS CAPTURE 

The requirements capture phase has considered the following issues: the need for fixed firefighting systems, 

factors influencing selection, current selection practice, identification of target hazard scenarios, identification of 

current sources of knowledge and target system user groups.  

The need for Fixed Firefighting Systems 

As a result of the longstanding threat posed by fire, the majority of built or manufactured objects and buildings 

have fire safety provisions incorporated within them. These include, among other examples, fire guards to 

protect from open household fires, over-current fuses protecting electrical appliances, use of non-combustible 
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materials, thermal cut-out devices, gas safety shut-off valves, compartmentation in buildings, manual first aid 

(such as fire extinguishers, fire blankets, hose reels), fire service intervention and fixed firefighting systems 

(such as local application systems, whole building protection systems). These examples vary in scale, 

complexity and approach. The Institution of Fire Engineers define Fire Engineering as “The application of 

scientific and engineering principles, rules [Codes], and expert judgement, based on an understanding of the 

phenomena and effects of fire and of the reaction and behaviour of people to fire, to protect people, property and 

the environment from the destructive effects of fire” (Institution of Fire Engineers, 2011). BS ISO 31000 “Risk 

management - Principles and guidelines” states that “Organizations manage risk by identifying it, analysing it 

and then evaluating whether the risk should be modified by risk treatment in order to satisfy their risk criteria” 

(BSI, 2009d, p. v.). Fixed firefighting systems are one of the approaches (or ‘risk treatments’) that may be 

employed when one seeks to engineer improvements to fire safety provisions. They may offer considerable 

benefit when used alone, or, better when used as an integrated approach as is more often the case (Bird et al., 

2012). As such they are one of the tools available to help manage the exposure of society to the hazard and the 

consequence arising from a fire. Deployed correctly they have a significant beneficial role to play in reducing the 

direct and indirect costs, terms used by Roy (1997) and many others to describe the costs arising following the 

material damages arising from a fire and the often greater costs and disruption caused by the aftermath of fire. 

According to the BRE Global (2009) guide, fixed firefighting systems are installed mostly; to meet legislative 

requirements, or to achieve risk reduction for business resilience purposes. These ideas may be supplement and 

developed further in the context of current requirements and practice; fixed firefighting systems are installed to: 

 

 Meet the intent of the Building Regulations (HMSO, 2010) and Regulatory Reform (fire safety) order 

(HMSO, 2005). The primary objectives being to protect life of those (all potential occupants including 

fire fighters and those in the vicinity) exposed to the structures should a fire occur. Routes to achieve  

this can be further subdivided as follows:  

o By following the prescribed guidance on how to achieve acceptable levels of ‘life safety’ 

protection using “Approved Document B” (Department for Communities and Local 

Government, 2010); and 

o By demonstrating at-least-as-good protection by following one of the fire engineering 

approaches set out by BS 9999 (BSI, 2008a) or BS 7974 (BSI, 2003a) series of documents. 

 

 To manage risk for commercial or operational reasons (The Fire Protection Association, 1999), which 

could be broken down as: 

o In support of obtaining fire insurance or obtaining a discount for an element of risk (Hall and 

Watts, 2008) (or for organisations who self-insure as a fire risk management measure);  

o In support of obtaining business interruption insurance (or for organisations who self-insure as 

a business continuity measure) (Watts, 2008); 

o For process continuity (where fires occur ‘routinely’ and need to be dealt with – i.e. some 

types of industrial frying); and 

o Where the object(s) or building to be protected is irreplaceable and of sufficient value 

(financial or cultural, i.e. historic) to justify the outlay. 

 

Assuming fixed firefighting systems are correctly specified, designed, installed and maintained, they have a very 

good reputation for reliability. A United States based organisation, the National Fire Protection Association 

(NFPA), publish reliability data on some types of fixed firefighting systems. It states that overall when 

considering all possible modes of failure (a key concept, discussed at length within the work), wet sprinkler 

systems are 91% reliable (Hall, 2010). This reputation for reliability is further attested to by the fact that large 

and high consequence fires, where active fire protection is featured are currently quite rare events as determined 

by the distribution of data collected by the FPA in its “Large Loss Database”. The database is held in trust by the 

FPA on behalf of a group of UK insurers. Contractual requirements exist which require insurance loss adjusters 

to input data following a fire. The eligibility criteria for reporting are simple; the database aims to capture reports 

on all fires where the financial cost of the fire is £100,000 or greater and/or where one or more fatalities have 

occurred. The database clearly demonstrates the trend that for every large and high consequence (high profile) 

fire in a warehouse building featuring a suppression system there will have been many others where the fire was 

suppressed or controlled in its incipient stages and thus, a large scale catastrophic event was averted (Glockling, 

2012).  
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3.1. FACTORS INFLUENCING CURRENT SELECTION PRACTICE 

Many of the factors influencing fixed firefighting selection practice can be summarised in Fig. 2, an extract from 

PD 7974-4 (BSI, 2003b).  

Figure 2 highlights various essential aspects to consider and the issues they give rise to. By way of a limited 

number of examples:  

“At what stage of fire growth will discharge be initiated by?” this question should trigger the specifier to 

consider how involved the fire might be, how much heat needs to be removed, how much media might be 

required and of what type, how it might be applied, to name a few considerations.  

“What will the impact of a false discharge be?” Inevitably, although rare, unintended system activations do occur 

from time to time. To minimise as far as possible the consequence of such an event the specifiers should 

consider this issue. This may, for example, give rise to a gaseous media being selected in place of a water-based 

system if the (very remote) prospect of water damage to electronic equipment is unacceptable. This scenario 

commonly occurs in facilities such as datacentres.  

To support this research, supplementary annotations have been added to the figure where desk review has 

determined that insufficient published data exists (for systems other than sprinkler and gaseous systems) for 

users to reasonably be expected to follow the guidance outlined. The supplementary annotations are assigned the 

following meanings:   

 

 Blue circles, discontinuous line = limited guidance available; and   

 Blue circles, continuous line = no guidance available. 

 
 

Fig. 2 - A Reproduction and Adaptation of “Fire Suppression System Choice Matrix” (BSI, 2003b, p. 20)  
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A notable omission from Fig. 2 is any direct mention of the specifier giving consideration to the overall ‘fire 

performance of suppression technology against hazard to be protected’. This is important with any system, but a 

frustrated objective as this data is often scant or not available at all. The only credible data identified is that 

previously of the NFPA, which states that overall when considering all possible modes of failure (including 

failures at the design stage), wet sprinkler systems are 91% reliable (Hall, 2010). None of the other system types 

are dealt with. Ideally, such data obtained on an equitable basis across a range of fixed firefighting system types 

would allow a ready evaluation of their performance. The usefulness of such data for reliable cost-benefit 

analysis is unquestionable. However, such data is currently unavailable and not considered to be readily 

obtainable.   

 

Active fire protection systems are unlike many other systems in that failure, when they are called upon to 

operate, is highly likely to give rise to dire consequences. In practice, it is common knowledge that many lives 

and billions of pounds worth of assets are protected from fire by fixed firefighting systems. By way of one 

example, several of the high-rise buildings at Canary Wharf in London are sprinkler protected for both life safety 

and property protection purposes. Each building houses thousands of people and enterprises worth multiple 

millions and/or billions of pounds. Without sprinkler protection, in the event of a fire, a total loss of one or more 

of the buildings is entirely conceivable. The ambition to maximise reliability of the necessary fixed fire fighting 

systems must therefore bear very considerable weight when considering options. To complicate things further 

and unlike many other systems fixed firefighting systems are mostly only required to function once, having 

remained dormant for an unspecified, but very challenging period (e.g. 1, 2, 5, 10, 25, >25 years) for an 

engineered system.  

 

It therefore seems appropriate to consider reliability in the context of this project in greater detail. ‘Reliability,’ 

i.e. the ability to be trusted, predictable or dependable ((Collins, 1994)); and ‘resilience’ i.e. the quality of 

recovering easily from a shock, illness and hardship ((Collins, 1994)); are found to be key attributes of the 

performance of a system in the application of fixed firefighting. The concept of reliability and resilience of such 

systems is perhaps better expanded to ‘RAM’ (Reliability, Availability, and Maintainability) (DoD, 2005) or as 

more commonly expressed in the UK ‘ARM’ (Availability, Reliability and Maintainability) (BSI, 1991). 

Clearly there is a need to consider system ‘ARM’ when making a fixed firefighting system choice, but currently 

there is no ready means to do so. As obtaining such historic data is not feasible, an alternative means is required. 

It is proposed that as a future step of this work a methodology be developed (for incorporation into the selection 

tool) to consider factors likely to have a bearing upon system ARM, when comparing available fixed firefighting 

system types.   

3.2. IDENTIFY TARGET HAZARD SCENARIOS  

Any attempt to design a system to mitigate against a hazard must be underpinned by information about the 

nature of the hazard. To illustrate the point, as a general rule, dwelling houses tend to pose more or less the same 

fire challenge as one another. These challenges differ from those posed to warehouses, schools and factories. 

Building usage type provides a useful initial clue as to the likely magnitude and nature of the fire hazard to be 

controlled. The prototype development work has proved that this is a useful way to start to systematically assess 

and describe the hazard. The usage groups and sub-groups proposed for adoption within the tool are based upon 

the Department for Communities and Local Governments (DCLG) Incident Recording System (IRS) (Home 

Office, 1994). Fig. 3 illustrates the usage groups and sub-groups considered to be most applicable to this 

research. In Figure 3 sector headings and sub-division headings are derived the from Department for 

Communities and Local Governments (DCLG) Incident Recording System (IRS) (Home Office, 1994) and the 

examples/limits are derived from a review of fixed firefighting system design standards (Bird et al., 2012). 
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Residential Commercial

Industrial Other

House

Flat

HMO & Hostel, 

sheltered housing

≤3 storeys

4 to 9 storeys

>9 storeys

≤2 storeys

>2 storeys

Other

Caravan, mobile 

home, houseboat, 

Hotel, Motel, B&B, 

Youth Hostel
Caravan, mobile 

home, houseboat, 

Residential care 

homes

Offices and call 

centres

Retail

Other

Single shop

Shopping centre

Warehouse

Supermarket

Department store

Indoor market

Petrol station

Factory / 

processing plant

Sector

Sub-division

Examples / limits

Oil refinary

Recycling

Chemical

Other factory

Public utility

Public utility

Warehouse

Commodities 

Other

Other
Other high hazard

Education

Car Park

Car Park

Sector

Sector Sector

Sub-division

Sub-division

Sub-division

Examples / limits

Examples / limits

 

Fig. 3 – Available Building Purpose Groups (adapted from Incident Recording System  (Home Office, 1994)) 

 

It is intended that protection of all ‘hazard groups’ identified in Figure 3, will be provisioned for within the tool. 

It is hoped that adopting a pre-existing convention will ease some aspects of the uptake and integration of the 

tool into the established framework within which everyone operates.  
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3.3. IDENTIFY CURRENT SOURCES OF SELECTION ‘KNOWLEDGE’ 

The ’knowledge’ discussed here is that which underpins the design of fixed firefighting systems. It includes such 

considerations as: firefighting media suitability for various combustible materials/scenarios, system efficacy 

against scenario type, media application rates and methods and all other design considerations. The on-going 

literature review has identified:  

 

 Fire safety provisions in the context of the UK legislative position; 

 The regulatory framework; 

 Key standards which are typically used to contribute to the demonstration of compliance with sound 

engineering practice; 

 Various approaches to Knowledge Management (KM) and Expert Systems (ES); and 

 Underpinning knowledge (partial) in support of the ES. 

 

The review has also identified gaps in:  

 The technical knowledge base that will be used to derive the ‘rules’ to be used in the KM system; 

 Meaningful data allowing comparison of performance of different approached to active fixed automatic 

firefighting systems; and 

 Guidance on active fixed automatic firefighting system selection or evaluation.  

 

While the identified knowledge gaps do require work to address the issues, none are thought to prevent the tool 

from coming to fruition.  

3.4. IDENTIFY TARGET USERS 

To identify the primary target user groups (i.e. groups who have a role in fixed firefighting system selection) a 

survey was undertaken. The 64 collated responses identified the following groups as those who are involved 

with fixed firefighting system selection (illustrated in Fig. 4): 

 

 Building Control Officers (3 responses); 

 Fire Engineers (27 responses); 

 Fire and Rescue Service (enforcement) (7 responses); 

 Organisational risk managers (5 responses); 

 Project Managers (Design and Build Contractors) (6 responses); and 

 Other notable self-identifying groups (16 responses): 

 

 Insurance Surveyors; and 

 Consultants. 
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Fig. 4 – Distribution of Respondents’ Roles in Specifying Fixed Firefighting Systems  

 

The tool is intended for users from any one of the groups identified here. It is notable that almost anyone of any 

competence level may assume the role ‘organisational risk manager’ or ‘consultant’. Considering this, any tool 

that is developed for such a diverse user group, would need careful consideration, especially since technical 

(expert) information would be exchanged between the tool and a non-technical (non-expert) user.  

4. DEVELOPMENT OF THE FIXED FIREFIGHTING SYSTEMS SELECTION 

TOOL 

The problem was identified as one belonging to the KM domain in the early stages. Various approaches to KM 

were investigated and Expert Systems (ES) were found likely to be the most suitable vehicle for encapsulating 

the requisite knowledge, managing the information exchange with the user and culminating in a set of outputs 

consistent with the project objectives.  
 

The research completed so far has allowed the outline system architecture shown in Fig.  5 to be created.   

User input: Hazard

Decision making process

User input: Objective

Gather hazard description

 Building purpose group(s)

 Special features

Determine protection ambition

 Purpose of protection

 Extent of protection

 Target level of performance

Start

Decision engine processing

Compare user input to Knowledge base

 Design options and parameters

 Reliability

 Media 

 Capability

System outputs

Report: 

 Recommendations

 Assumptions

 Points to consider

 Limitations

 

Fig.  5 – Fixed Firefighting System Selection Tool Architecture 

Building Control Officers

Fire Engineers

Fire and Rescue Service
(enforcement)

Organisational risk
managers

Project Managers (Design
and Build Contractors)

Other notable self-
identifying groups
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An underpinning assumption is that the process is initiated by a user who has already identified the need for a 

fixed firefighting system. User input on the hazard and protection objective is then required. This information is 

then used by the processing part of the tool, with reference to the systems knowledge base (the part of the system 

that contains the expert knowledge; derived from standards, guides, custom and practice) (Medsker and 

Liebowitz, 1993). Unsuitable options are eliminated and surviving system choice option(s) are presented as 

solutions.  Each of the steps is considered in more detail, as follows: 

 

User Input: Hazard 

Building Purpose Group: The user is asked to choose from a limited selection of commonly found building 

purpose groups. The available purpose groups would be those illustrated in Fig. 3. All that apply should be 

selected.  

Special Features: The user would be asked whether the hazard to be protected includes any special features 

(which would preclude certain fixed firefighting system approaches). As a few examples: buildings of areas 

containing substances which expand on contact with water may not normally be protected by fixed 

firefighting systems that use water or water based fire fighting media (BSI, 2009a). It may also be 

undesirable in some (but not all) cases to protect areas densely populated with high value IT and or high 

voltage equipment by systems using water based firefighting media (BSI, 2011c). Systems using CO2 as a 

firefighting media may not be suitable for use in occupied spaces, as CO2 at firefighting concentrations 

would always be toxic (BSI, 2011b). 

Another consideration would be if the fabric of all or part of the building itself were of a moderate to high 

level of combustibility. It is generally known that polystyrene (which may be used as an insulator) is highly 

flammable and that buildings incorporating such materials cannot expect the same levels of efficacy from 

fixed firefighting system as those without.  

 

User Input: Objective 

Purpose of Protection: It shall be determined here what the purpose of the protection is, the two 

significant distinctions being ‘life safety’ (protection sufficient to allow safe evacuation of a building) 

and ‘property protection’ (unconditional protection of property and business continuity) in parlance 

consistent with that used by the Department for Communities and Local Government (2010, p 11.) and 

The Fire Protection Association (1999, p 1.) respectively.  

Extent of Protection: Another key piece of information that must be garnered is whether the intention is 

to protect part or the whole of a building, part or the whole of a piece of equipment or some 

combination of these options.  

Target Level of Performance: A separate (unpublished) study (Bird, 2012) on the need for and role of 

reliability in fixed firefighting systems, highlights an issue the sector is yet to come to terms with; it 

ought to be difficult for anyone to justify anything but the most reliable form of fixed firefighting 

system from a choice of reasonably practical solutions. This may prove to be a dominant factor in the 

determination process.  

 

Decision Engine Processing 

This is a decision gate. It then becomes the job of the ‘decision engine’ to systematically compare the 

input(s) of the user with the knowledge base within the system to recommend ‘system outputs’.  

 

System Outputs 

The system will conclude its assessment by delivering, where possible, a report detailing recommended 

fixed fighting system choice(s), confirmation of the underpinning assumptions used to arrive at this 

conclusion, additional points to consider (based upon historic experience of selection failures) and any 

limitations associated with the recommendation(s).  
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5. THE EVALUATION OF THE SYSTEM 

The work completed so far has focused on developing one module of the tool for warehouse fire protection (see 

Fig. 3). This work has shown it is necessary to develop a more fully formed technical definition to properly 

describe and identify this type of risk.  Notable further distinctions of interest to fire protection include; type of 

goods stored, fire risk posed by goods and storage configuration, geometry of storage and automation features 

within the risk. This further level of definition has been accomplished by reviewing available fixed firefighting 

system design standards and adopting elements from the most useful hazard classification system(s) within these 

documents for use in the ES. In the process of doing so, it was noted that the only documents that deal with 

hazard classification with any level of rigour were the BS EN 12845 (BSI, 2009a) and the LPC Rules (FPA, 

2010). With understanding of the information that must be elicited from the user to match against system 

suitability as determined by the knowledge elicitation phase, it is possible to assemble the ‘questions’ in to a 

flow chart. Fig. 6 illustrates a small section of the decision flow diagram used for the prototype system; 

concerned with ‘High Hazard Storage’ scenarios) and then input this information in to a proprietary Expert 

System development environment.  

 

Does your risk 

contain storage in 

any amount? 

Are any 

compartments larger 

than 126 m
2

Yes

No

Are you sure? How do 
you define storage? 

Is this risk an office ?Yes

Is this risk any of the 

following? 

No

School

PrisonGoto prison module

Goto school module

Goto HHP moduleIs this risk a factory, 

laboratory or other 

production facility?

No

Does the office have 

any storage? 

(shelves, cupboards, 

stock rooms)

Yes

No

Yes

Goto small office 

module

None of these

Goto Error module

Is anything more 

hazardous than 

‘office material’ 

stored? 

Yes

Yes

Are blocks of storage 

2.1m high or less?

Is this risk a 

warehouse, storage 

or distribution 

facility?

No

Are shelves and 

storage cupboard 

useable heights 1.7m 

or less? 

Yes

No

No

Yes

Goto med/large 

office module

No

Yes

Goto Error moduleYou appear 

to have HHS 

risk

Start
 (“jumping in” 

point)

Subject to a full review of the scope

 of intended use, you may use: 

{ref suitable standards}

END

Office

Yes

Do you have storage 

blocks greater than 

50m
2
? (NB blocks must 

be less than 50m2 or 

have 2.4m or greater 

clearance required OR 

passive separation) 

No

Do you have goods 

stored in excess of the 

limits imposed by 

“TB228.T1” and 

associated methodology? 

Yes

No

No

Is it any other special 

risk? i.e. TB217.A.1, 

or unsuitable for 

contact with water 

(chemical 

compatibility, HV or 

historic artifacts)

Is it a shop / retail 

unit ?

No

Yes

No

Determine the worst 

case goods hazard 

category likely to be 

stored

No

Do you have storage blocks 

greater than 50m
2
? (NB blocks 

must be less than 50m2 or have 

2.4m or greater clearance required 

OR passive separation) 

No

Yes

Goto shop module No

Yes

Yes

Declare 

assumptions, 

limitations, 

disclaimer  etc

Do blocks exceed

Cat 1 – 4.0m high

Cat 2 – 3.0m high

Cat 3 – 2.1m high

Cat 4 – 1.2m high

Do all other storage configurations 

exceed

Cat 1 – 3.5m high

Cat 2 – 2.6m high

Cat 3 – 1.7m high

Cat 4 – 1.2 m high

 
Fig. 6 - Prototype System ‘Logic’. 

 

The “Corvid” development environment by “Exsys” was used for this phase of the research project. This 

development environment was found to be comparatively simple to use and incorporated all features required to 

efficiently develop this phase of the system. The compiled output may be hosted on a web page and requires a 

computer with internet access and JAVA support to run it. Fig. 7 shows a screenshot of ‘variables’ and a ‘logic 

block’ as input in to the development environment. Fig. 8 shows the system output obtained after the ‘user’ has 

input data about a (fictitious in this case) warehouse building.  In this case the output is achieved having 

followed the simplest path through the question set (the ES ensures that as the user answers questions, 

subsequent questions rendered redundant are not asked (unless there is a reason to do so). The simplicity of this 

case is in the extreme, but is used to illustrate the principles of operation of the system.  
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Fig. 7 - Screenshot of ‘Variables’ and a ‘Logic Block’ 

 

 

Fig. 8 - Screenshot of Expert System Output 

 

The Fixed Firefighting System Selection Tool has been developed to a limited scope prototype at this stage. This 

prototype was used to validate the concept and capture evaluation feedback (from a small group of expert 

colleagues; the Technical Director of the FPA, the Principal Consultant of the FPA). In summary the findings of 

the prototype evaluation were:  

 

 The concept was proven successfully as achievable; 

 Further gaps in the underpinning knowledge base were identified (e.g. absence of standardised hazard 

assessment methodologies); and 

 The desirability (and associated difficulties) of some cost-benefit analysis forming part of the 

assessment was highlighted. 
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As has been identified, the tool will draw upon material from multiple sources, many of which are subject to 

periodic review. The underpinning knowledge (source material) is drawn from a wide variety of sources 

(regulations (The Regulatory Reform (Fire Safety) Order (HMSO, 2005), The Building Regulations (HMSO, 

2010)), standards (national, international and sector specific fixed firefighting design, installation and 

components standards; for sprinkler systems (FPA, 2011, BSI, 2009a, BSI, 1999), water mist systems (BRE 

Global, 2012, BSI, 2011d, BSI, 2010), foam-based systems (BSI, 2009b), gaseous systems (LPCB, 2005, BSI, 

2003c, BSI, 2008b), oxygen reduction systems (BSI, 2011e) and aerosol systems (BSI, 2009c))  guides and 

practice documents (BRE Global, 2009, BSI, 1986, BSI, 2011a, The Fire Protection Association, 1999, 

Williams, 2009) to name a few of the published sources). Each of these source documents is subject to a periodic 

review and update process. To ensure the tool remains current it would therefore be necessary devise an on-

going regime of identifying changes, evaluating the consequences (if any) of such changes upon the knowledge 

and rules used within the tool. Depending on the implementation route adopted for the development of the tool, 

the upkeep regimes would vary. For example, in the simplest implementation of the tool imaginable, periodic 

reviews of the ‘Scope’ sections of the underpinning documents may suffice. For example the British Standard for 

Residential and Domestic Sprinkler systems (BS 9251) (BSI, 2005) is currently under review. Currently a 

stipulation in the Scope is that the standard may only be applied to buildings less than 20m in height. The review 

panel is considering if this height limit should be relaxed to 30m. If this change were to go ahead, then it can be 

envisaged that such a change may render it necessary to re-word question(s) and rule(s) used in the tool; such 

that the tool responds appropriately when it learns the height of a Residential or Domestic building. Formerly it 

would not have been possible to make a recommendation that one may protect a building using a BS 9251 

system if it were, say 22m in height but if the change were to go ahead it may become possible to do so. If a 

more complex implementation was arrived at, which might seek to obtain considerable quantitative technical 

information from users (such as, for example some kind of hazard evaluation or survey technique) and match it 

against detailed requirements of the source documents; then it may be necessary to review both the ‘Scope’ 

sections and the remainder of the documents (building on the example of BS 9251 just given it may be that there 

is some interplay between the requirements given in the Scope section of the document (e.g. the 20 or 30m 

height limit) and requirements given elsewhere in the document pertaining to fire hazard evaluation and 

quantification (such height limits may subsequently be modified by the standard if it is discovered there is 

another reason to do so e.g. unusually high fire load being present). This would be a much more involved 

process. Initial and on-going interpretation of the source material and the translation of it in to the ‘rules’ that 

form the backbone of the system will require consultation with the identified stakeholders (Building Control 

Officers, Fire Engineers, Architects, Fire and Rescue Services, Organisational risk manager, Project Managers 

(Design and Build Contractors), Insurance Surveyors and Consultants and expert colleagues) who will all have 

an interest in ensuring that the derived interpretations are acceptable and workable from their perspectives. This 

will place a considerable burden upon the upkeep task associated with the tool.  

 

At this stage, the system is to be developed with maintainability and upkeep in mind and this objective will carry 

forward through the life of the project.  

 

6. CONCLUSIONS AND DISCUSSION 

It has been demonstrated in numerous ways that there is a need for the research; consultation with and survey 

responses obtained from experts found agreement that current fixed firefighting system selection practice are 

fundamentally deficient. It has been found that having determined the need for fixed firefighting system, the 

subsequent hazard analysis may be absent or flawed. The next step in specifying a system, linking the hazard 

(however well it is described) with a suitable fixed firefighting system by way mitigation is then hampered by 

the absence of any system performance and reliability data; a choice of fixed firefighting system is offered by the 

market place and for example by BSI selection guide BS 5306-0 (BSI, 2011a). However, this document is 

merely a list with no specific guidance on, or method for, practitioners to discern the merit or otherwise of each 

available option in their specific circumstances.  

 

At this stage a prototype fixed firefighting selection system has been developed and used to gather feedback 

from a closed group of experts. The prototype has proven the concept and also demonstrated that off-the-shelf 

development environments exist that are suitable for pursuing the development of the tool. Intended as a de-

risking step, the prototype has a very limited scope and functionality. The next steps in the project are to develop 
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and release a full ‘beta’ version of the selection tool, capture in-use feedback from a broader group of experts 

(insurance industry risk surveyors), implement changes as required and to release the first full release of the tool. 

A further more in-depth audit of available development environments and techniques will be undertaken to guide 

the process of the future development of the tool. Once the development environment has been determined it will 

be possible to efficiently begin to fully structure and order the knowledge required to develop the rules and 

outputs of the tool.   

 

The progress achieved so far demonstrates that the tool has much potential to provide a way for an informed, 

responsible and independent body to impart aggregated knowledge and experience to the subject area. This may 

benefit a broad base of users. There is a real opportunity here to contribute to a change for the better in the 

selection and subsequent performance of fixed firefighting systems. This would result in improved outcomes 

where fires occur in buildings and equipment protected by fixed firefighting systems. In turn this would mean 

financial, environmental and societal impact of fire losses was lessened.  
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