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1 Introduction 

Inspection of parts for manufacturing defects or in-service damage is often carried 

out by full-field optical techniques (e.g., digital speckle pattern interferometry, 

digital holography) where the high sensitivity allows small anomalies in a load-

induced deformation field to be measured. Standard phase shifting and phase u n-

wrapping algorithms provide full-field displacement and hence strain data over the 

surface of the sample. The problem remains however of how to quantify the spa-

tial variations in modulus due, for example, to porosity or damage-induced micro-

cracking. Finite element model updating (FEMU) is one method to solve problems 

of this type, by adjusting an approximate finite element model until the responses 

it produces are as close to those acquired from experiments as possible.  

An alternative approach is the Virtual Fields Method (VFM) [1]. The ad-

vantage of the VFM over other methods is its ability to solve inverse problems of 

this type without iterative computation. Several approaches based on polynomial 

virtual fields with the material properties considered as to be single valued within 

the domain have been developed [2-5]. The first attempt to parameterize the mate-

rial properties as a function of spatial variables was proposed in [6]. 

In this paper, we retain the basic concepts of the VFM but approach the param-

eterization of the material properties in the spatial frequency, rather than spatial, 

domain by performing a 2-D Fourier series expansion of the stiffness distribution 

over the region of interest. Furthermore, the virtual fields are not selected as poly-

nomials of spatial variables as in the previous VFM literature, but from a set of 

simple cosine or sine functions of different spatial frequencies . This Fourier ver-

sion of the VFM will be denoted the F-VFM. An example of its successful appli-

cation to the identification of an unknown stiffness distribution under known 

boundary conditions is summarized here; further details are given in [7]. 
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2  

2 Theoretical  

2.1 Virtual Fields Method formulation 

For a thin 2-D sample made of an isotropic material, subject to known traction dis-

tributions around its boundary and negligible volume forces, the fundamental 

equation underlying the VFM may be written [1,7]: 

       






 




duTuTdSQ yyxx

S

xxssssyyxxyyxxyyxx
*****

2

1



  (1) 

where S is the area of interest over which the experimental data are available;   is 

the part of the boundary of S on which tractions exist; 
xx

 and 
yy


 
are the normal 

strains as measured along the x- and y-axes of a Cartesian coordinate system, 
ss


 

is the engineering shear strain; (Tx, Ty) are the components of the traction vector 

defined over  ; 
*

xu
 
and 

*

yu  are the components of the virtual displacement field 

with 
*

xx , 
*

yy  and 
*

ss  the corresponding virtual strain field components. The un-

known stiffness distribution ),( yxQxx  is related to Young’s modulus and Pois-

son’s ratio   (assumed to be a constant) by )1/(
2

 EQxx . 

2.2 Fourier series expansion of stiffness distribution  

The stiffness distribution ),( yxQxx  in Eq. 1. may be expanded as a 2-D Fourier 

series and written in matrix form as follows: 
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where cosine and sine functions with non-dimensional spatial frequency compo-

nents (m, n), where m, n = 0,1,2,…,N, are represented by the shorthand notation 
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respectively. The column vector on the right hand side of Eq. 2. is the sought solu-

tion vector, consisting of  21N  nma ,  coefficients associated with the cosine 

functions and   11
2
N  nmb ,  coefficients associated with the sine functions. 

The total number of degrees of freedom in the identification problem is therefore 

   112
2
 NNF  (3) 

2.3 Selection of virtual fields in the F-VFM 

The natural choice for the virtual fields in the F-VFM is an arrangement of simple 

cosine and sine functions. Eq. 1. involves area integrals of terms of the form 

xxQ *
 (α, β = x, y, s); the use of different spatial frequencies in the virtual 

fields therefore allows a given spatial frequency in the measured strain field   

to be linked in turn with different coefficients in the xxQ expansion.  

The approach taken here was to choose the *
xx  and 

*
yy  fields to consist of a 

set of cosine waves (with spatial frequency components (p, q) where p, q = 

0,1,…,N, giving (N+1)
2
 independent virtual fields), and a set of corresponding sine 

waves (in which the trivial case p = q = 0 is excluded, giving an additional (N+1)
2
 

– 1 fields). The total number of chosen cosine and sine virtual fields will therefore 

be equal to NF, which is the required number to determine uniquely the unknown 

Fourier series coefficients of Eq. 2.  

Substituting these virtual fields into Eq. 1. results in the matrix equation: 

 MX = Y (4) 

where M is an FF NN   matrix whose elements are calculated from the experi-

mental strain fields, X is the desired 1FN  solution vector of Fourier coeffi-

cients, and Y is an 1FN  column vector calculated from the tractions. Eq. 4 can 

be inverted by the MATLAB ‘pinv’ function. 

2.4 Fast Fourier VFM implementation 

When applying Eq. 1. to experimental data, the measured strain fields xx , yy  

and ss  are normally sampled on a regular grid and the integrals are replaced by 
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summations. If the experimental strain fields have yx NN   pixels, then a single 

contributory term to one of the elements of M requires a minimum of NxNy addi-

tion plus multiplication operations. The computational effort to calculate M there-

fore scales as yxF NNN 2 . For example, the application in the next section, with Nx 

= Ny = 1000 and NF = 881 (N = 20), took approximately 5.5×10
3
 s to set up the 

matrix M on an Intel® Core™ i7 CPU 2.79 GHz machine with 8GB of memory. 

A much more efficient algorithm can be implemented, however, using 2-D fast 

Fourier transforms. The fact that both the expansion of Qxx and the virtual fields 

are represented as sine and cosine functions means that the integrals can be ex-

pressed as 2-D Fourier coefficients of a linear combination of the experimental 

strain fields. It can be shown [7] that a total of only four 2-D Fast Fourier Trans-

forms (FFTs) are required to assemble all the terms in M. For large matrix sizes, 

the computational effort becomes essentially independent of the resolution of the 

experimental strain fields, with a theoretical reduction in computational effort by a 

factor of NxNy by using the fast algorithm over the direct (i.e., element by element) 

method of assembling the matrix M.  

The computation time for the other steps in the algorithm, i.e. evaluation o f the 

terms in the vector Y; the inversion of Eq. 4.; and reconstruction of the elastic 

stiffness distribution from the solution vector, is normally short compared to that 

for calculation of M. The reconstruction can be handled very efficiently by per-

forming a single 2-D inverse Fourier transform on a 2-D array of complex num-

bers that is obtained directly from X. 

For the problem considered in the next section, the total calculation time for the 

stiffness identification using the fast algorithm when implemented as a MATLAB 

script, on an Intel® Core™ i7 CPU 2.79 GHz machine with 8GB of memory, was 

~2.5 s and 250 s for problem sizes N = 20 and N = 80, respectively. This may be 

compared with values of 6.1×10
3
 s and 3.7×10

6
 s, respectively, for the direct 

method. A time saving of 3-4 orders of magnitude is therefore clearly achievable 

in practice. 

3 Example application 

In this section we give proof-of-principle results from the F-VFM method present-

ed above with a complex stiffness distribution under uniform loading conditions. 

The input data to the F-VFM method were provided by a forward calculation from 

known stiffness distributions by the finite element (FE) method, thus providing a 

benchmark to compare the reconstructed stiffness maps against . The FE model 

used to generate the input strain fields consisted of a thin square plate of size 

Lx×Ly = 10×10 mm
2
 and of thickness t = 1 mm. The geometry was meshed in 

Mentat2010 using 1000×1000 linear quadrilateral elements with full integration. 

Two vertical edges of the plate perpendicular to the x-axis were loaded with a uni-

formly distributed stress σxx = 1MPa pointing outwards. The origin of the coordi-
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nate system is at the centre of the plate. The material was chosen to be linear elas-

tic isotropic with the reference elastic modulus distribution given by  an ‘egg-box’ 

pattern of spatially varying stiffness distribution: 
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and a constant Poisson’s ratio   = 0.3. Plane stress conditions are applicable in 

this case since the plate thickness is small compared to the other dimensions. 

Some of the main results are shown in Fig. 1. Ripples in the recovered stiffness 

map are observed but can be largely removed by smoothing with a uniform square 

kernel of size equal to the pitch p (= 50 pixels) of the highest frequency fringes. 

The edge effect region of 25 pixels wide (half of the kernel window size) resulting 

from the convolution is masked out from the reconstructed stiffness as in Fig. 1(c). 

The residual in the error map (Fig. 1(d)) represents a difference of about 0.5% be-

tween the reference and recovered stiffness  distributions. 

4 Conclusions 

The paper presents a development of the virtual fields method by implementing a 

novel parameterization of the stiffness distribution with a full 2-D Fourier series 

expansion. An example stiffness distribution has been reconstructed after a single 

computation step without any iteration. A highly efficient numerical algorithm 

based on the fast Fourier Transform allows an identification problem with ~10
3
 

degrees of freedom to be solved in just a few seconds. The spatial resolution of the 

recovered stiffness by F-VFM is directly controllable through the choice of maxi-

mum spatial frequency. In this study the reconstructed modulus fields were o b-

tained under the assumption that the traction distributions are known over the 

boundaries. In the future the F-VFM will be extended to cope with the cases 

where boundary conditions are unspecified over at least a part of the boundary of 

the domain of interest. Other important remaining issues are application of the 

method to the case of anisotropic materials such as carbon-fiber reinforced com-

posites. 
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Fig. 1. Recovery of the ‘egg-box’ stiffness distribution by the F-VFM with N = 20 (881 degrees 

of freedom, units: MPa). (a) Reference stiffness map (1000×1000 pixels); (b) Recovered stiffness 

map by F-VFM; (c) as (b) after smoothing by a 50×50 pixel kernel; (d) Error map  
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