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ABSTRACT 

 

In naturally ventilated buildings, occupants play a key role in the performance and 

energy efficiency of the building operation, mainly through the opening and closing of 

windows. To include the effects of building occupants within building performance 

simulation, several useful models describing building occupants and their window 

opening/closing behaviour have been generated in the past 20 years. However, in 

these models, the occupants are classified based on the whole population or on sub-

groups within a building, whilst the behavioural difference between individuals is 

commonly ignored. This research project addresses this latter issue by evaluating the 

importance of the modelling and prediction of occupants’ window behaviour 

individually, rather than putting them into a larger population group.  

 

The analysis is based on field-measured data collected from a case study building 

containing a number of single-occupied cellular offices. The study focuses on the 

final position of windows at the end of the working day. In the survey, 36 offices and 

their occupants were monitored, with respect to the occupants’ presence and window 

use behaviour, in three main periods of a year: summer, winter and transitional.  

 

From the behaviour analysis, several non-environmental factors, namely, season, 

floor level, gender and personal preference, are identified to have a statistically 

significant effect on the end-of-day window position in the building examined. Using 

these factors, occupants’ window behaviour is modelled by three different 

classification methods of building occupants, namely, whole population, sub-groups 

and personal preference. The preference-based model is found to perform much 

better predictive ability on window state when compared with those developed based 

on whole population and sub-groups. When used in a realistic building simulation 

problem, the preference-based prediction of window behaviour can reflect well the 

different energy performance among individual rooms, caused by different window 

use patterns. This cannot be demonstrated by the other two models.         
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The findings from this research project will help both building designers and building 

managers to obtain a more accurate prediction of building performance and a better 

understanding of what is happening in actual buildings. Additionally, if the habits and 

behavioural preferences of occupants are well understood, this knowledge can be 

potentially used to increase the efficiency of building operation, by either relocating 

occupants within the building or by educating them to be more energy efficient.      
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 INTRODUCTION 1.

 

Over the past half century, global warming has become a principal issue in the world. 

The continuous increase of the average temperature near the earth’s surface leads 

to a number of problems such as coral reef bleaching, flooding and increased rainfall.  

As one important component of greenhouse gas, carbon dioxide (CO2) is the second 

largest contributor to the global warming (only after water vapour) (Kiehl and 

Trenberth, 1997). Substantial quantities of the gas are generated from various 

human activities, particularly the combustion of fossil fuels (USGCRP, 2009). In EU 

countries, buildings account for nearly 40% of final energy consumption, and 36% of 

greenhouse gas emissions (EC, 2013). Therefore, reduction in the energy consumed 

by buildings has the potential to make a significant impact on the current levels of 

society’s energy consumption and greenhouse gas emissions.  

 

In commercial buildings, heating, ventilation and air-conditioning account for about 43% 

of the total energy consumption and about 39% of the total carbon emissions (EIA, 

2013). In the UK, natural ventilation is commonly used when designing commercial 

buildings (CIBSE, 2004), aiming to save energy that is used to provide comfortable 

indoor thermal environment in summer, by increasing the air change rate between 

indoors and outdoors (Wallace et al., 2002, Kvisgaard et al., 1985). In winter, 

however, the use of natural ventilation will increase the load on the heating system 

for heating the cold air from outdoors. The control of natural ventilation is more 

challenging than for mechanical systems since they rely on wind driven and 

buoyancy effects, which are intermittent in nature. Some buildings are designed with 

automated controls that control the movement of air under a range of conditions. 

Manually controlled windows are, however, by far the most common means of 

connecting the indoor and outdoor spaces. The performance of buildings, both in 

terms of cooling in hot summer months and for controlling heat loss in winter, is 

directly related to the operation of windows. Where these are controlled manually, the 

occupants of the building have a key role to play in the performance and energy 

efficiency of the building operation (Haldi and Robinson, 2008b, Rijal et al., 2007). 
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Understanding people and their interaction with buildings is a widely researched topic 

(Gunay et al., 2013), and window operation and comfort in buildings has received 

significant attention in the literature (Fabi et al., 2012b, Roetzel et al., 2010). A key 

aspiration in the field of the modelling and simulation of building performance is to be 

able to use simulation to better predict the performance characteristics of a building, 

such as energy, thermal, lighting and acoustic. Where the building has windows 

operated manually, effective models are essential that describe not only the effects of 

the open window on the ventilation in the space, but also the occupants’ responses 

to stimuli that cause them to operate windows. In current building performance 

simulation, the prediction of window opening is generally based on deterministic 

processes, such as following a fixed schedule or using typical control rules 

(Borgeson and Brager, 2008). Over the past two decades, studies have shown that 

the interaction of people with window operation is much more complex and should be 

better predicted by stochastic processes (Nicol and Humphreys, 2004). These 

studies have developed useful window behaviour models based on the observed 

behaviour of occupants in actual buildings, with regard to their operation of windows. 

These models have been based on either modelling the occupants of a building as a 

whole, or by modelling sub-groups of the whole population, for example, developing 

different window behaviour models for occupants working on the ground floor and 

working on non-ground floors.  

 

The work presented here extends existing studies by investigating how people’s 

window behaviour can be understood and modelled in greater detail. The work is 

inspired by Friedrich A. von Hayek, a famous Austrian and British economist and 

philosopher, who wrote,  

 

“from the fact that people are very different it follows that, if we 

treat them equally, the result must be inequality in their actual 

position, and that the only way to place in an equal position 

would be to treat them differently” (Hayek, 1960).  

 

His words reflect the importance of considering the differences between people in the 

real life. In the field of planning, behavioural differences between individuals have 

been addressed by allocating them with different behavioural preferences (Son and 
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Pontelli, 2004). However, in current building performance simulation, these individual 

preferences are not considered, rather the individual is allocated to some larger 

groups who are all expected to behave in a similar manner. Building on this, the work 

presented here considers whether modelling occupants’ behaviour in buildings, such 

as window behaviour, based on some notion of individuality, or preference, has 

benefit over the more common approaches that are based on groups or sub-groups 

of a whole building population. 

 

Most existing studies focus on linking occupants’ window operation within 

environmental factors, such as indoor or outdoor air temperatures. In this study, 

however, the focus is changed to evaluating the importance of non-environmental 

factors on occupants’ window behaviour. There are three possible ways of viewing 

the non-environmental factors that can affect behaviour as attention extends from the 

whole building population to the individual: 

 

• factors affecting the whole building population; 

 

• factors classified by occupant sub-groups; and, 

 

• personal preference. 

 

The first defines the non-environmental factors that are common to all occupants 

within a building, such as time of day, room occupancy and season. In this thesis, the 

factors belonging to this level are named as ‘whole-population factors’. The second 

classification includes the factors that can further classify the building occupants into 

several sub-groups, beyond the influence from the whole-population factors. 

Therefore, these factors are named as ‘sub-group factors’. These factors are often 

related to the property of either the building itself, for instance, floor level, façade 

orientation, or the occupants within the building, taking into consideration of factors 

such as occupant gender and age. Consideration of the sub-group factors reflects 

the fact that occupants’ window behaviour may well be different between sub-groups 

of the whole building population. Personal preference might be expected to influence 

people’s behaviour, beyond the influence from other non-environmental factors, 
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namely, whole-population factors and sub-group factors. This thesis presents an 

investigation to assess this.  

 

To achieve this this work is based on a longitudinal study monitoring occupants’ 

window use in a non-air-conditioned office building. The influence of non-

environmental factors on the end-of-day window position is analysed, using a 

systematic approach. This is to minimise the influences of confounding factors on the 

factor being analysed. Then window behaviour models are developed using different 

occupant classification methods, namely, based on whole building population, based 

on sub-groups or based on personal preference. This window behaviour modelling is 

achieved by the logistic regression analysis, which is a popular statistical approach 

used in this research area. The three window behaviour models are then applied in a 

stochastic process to predict the observed end-of-day window position, based on 

which the models are validated and their predictive performances are compared. To 

demonstrate the impact of predicting window use by different occupant classification 

methods on the building performance prediction, a two-storey example building is 

developed and the three developed models are separately used to predict the end-of-

day window position for a whole summer month. Then the energy performance of the 

building with respect to night cooling is predicted by a steady-state ventilation model 

using the predicted end-of-day window positions by the three models, and the 

prediction results are compared.     

 

1.1 Research Aim and Objectives 

The research aims to establish whether a preference-based approach to the 

modelling and prediction of occupants’ window behaviour, in non-air-conditioned 

office buildings, has advantages over approaches based on whole-population or sub-

group classification, in terms of more accurately predicting the end-of-day position of 

windows.  
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The research questions of this project include: 

 

• Do non-environmental factors have a significant impact on occupants’ choice 

of the end-of-day window position? 

 

• Does personal preference play an important role on the end-of-day window 

position, beyond other influencing factors? 

 

• Does modelling window behaviour based on personal preference have a 

better predictive performance of occupants’ window behaviour than more 

conventional whole population and sub-group approaches? and, 

 

• Does predicting window behaviour based on personal preference have an 

impact on the building energy simulation, when compared with prediction 

based on whole population or sub-groups? 

 

The above research aim and research questions will be achieved and answered by 

the following objectives: 

 

• Execute a thorough review of relevant literature with respect to factors 

affecting occupants’ window behaviour in non-air-conditioned buildings, and 

the modelling and prediction of window behaviour for building performance 

simulation; 

 

• Design a field experiment to collect data from a non-air-conditioned office 

building, to evaluate the influence of potential non-environmental factors on 

occupants’ window operation, and to demonstrate the influence of personal 

preference on occupants’ choice of the window position; 
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• Develop and validate two window behaviour models based on whole-

population and sub-group classification approaches, from which to compare 

the performance of the new preference-based approach; 

 

• Develop and validate a new window behaviour model based on personal 

preference, and compare its performance on predicting the state of windows 

with the models developed by the traditional modelling approaches; and, 

 

• Develop a window state prediction approach, which implements the 

preference-based window behaviour model in a realistic building simulation 

application, and compare its simulation result with those by the whole-

population and sub-group models, in terms of energy consumption.   

 

1.2 Structure of the Thesis 

Chapter 2 provides a thorough review of relevant literature with respect to factors that 

influence occupants’ window operation in buildings, so as to identify the factors that 

need to be evaluated in this study, preventing influence of confounding factors in the 

analysis of window behaviour. The work then continues with a review of how 

occupants’ window behaviour is typically modelled for use in building performance 

simulation. In Chapter 3, a longitudinal monitoring programme is described to 

observe occupants’ use of windows in a case study building. This data focuses on 

the final position of the window at the end of the working day, and it provides the 

basis for the behaviour analysis in the thesis. Chapter 4 analyses the data in order to 

evaluate the influence of potential non-environmental factors on occupants’ choice of 

the end-of-day window position, using a systematic approach to minimise influence of 

confounding factors that might otherwise cloud the findings. In addition, the 

characteristics of the monitored building are validated against other published work in 

this area.  

 

In Chapter 5, two window behaviour models are developed using traditional 

modelling approaches that are identified in the review section, one based on whole 

building population and the other one based on sub-groups. In addition, their 
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predictive performances on window behaviour are validated using a new dataset 

collected from the case study building, in the following year. In Chapter 6, a new 

model based on the findings from the analysis in Chapter 4 is developed, validated, 

and its predictive performance is compared with the two models developed in 

Chapter 5. In Chapter 7, these models are applied to a realistic building 

modelling/simulation problem in order to evaluate the potential impact of model 

selection on the analysis of night-time ventilation. 

 

Finally, in Chapter 8 conclusions from this research project are drawn and further 

work is outlined.    
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 LITERATURE REVIEW 2.

 

In non-air-conditioned buildings, the windows are often under the control of the 

occupants. Therefore, identifying the characteristics of this is important in the field of 

building simulation, for more accurately predicting building energy consumption and 

performance. Understanding window use behaviour has been the focus of research 

for some years and this chapter provides a thorough review of the relevant literature. 

 

Firstly, the potential factors that can influence occupants’ window behaviour in 

buildings are reviewed, and this is then concluded with a discussion comparing the 

influencing factors identified for office buildings and residential buildings (Section 2.1). 

The existing modelling and prediction approaches that have been developed and 

used to model and predict occupants’ window behaviour in office buildings are then 

reviewed (Section 2.2). The chapter concludes with a summary of some of the gaps 

in the current research area (Section 2.3). 

 

2.1 Factors Influencing Window Behaviour 

In non-air-conditioned buildings, opening and closing windows is one of the most 

important adaptive actions, enabling occupants to adjust their indoor environment 

(Rijal et al., 2007). Occupants’ window behaviour has significant impact not only on 

the performance of buildings (Wallace et al., 2002), but also on the occupants’ 

expectations of thermal comfort within the building (Brager and De Dear, 2004). Work 

has been carried out in both office and residential buildings and so both are reviewed 

here. 

  

2.1.1 Office buildings 

Influence of outdoor climate: Many studies have identified that outdoor climate has 

a significant influence on occupants’ use of windows in a building, especially outdoor 

air temperature. Warren and Parkins (1984) carried out a longitudinal field 

measurement of window use in five British office buildings in the 1980s, and they 

found that the window state in office buildings was affected strongly by the outdoor 
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air temperature, solar gain and wind speed (in order of decreasing importance). In 

their survey, the states of windows were recorded twice a day by the photographic 

method over a three-month period (26th February to 25th May).  

 

The significant influence of outdoor air temperature on window use has also been 

identified by Nicol and Humphreys (2004), who carried out a series of studies on 

occupants’ window behaviour in a wide range of countries in the world. Their first 

survey was conducted in five cities in five climatic regions in Pakistan (Nicol et al., 

1999), and the survey result reflected that the opening of a window was highly 

correlated with outdoor air temperature. In this survey, the occupants’ window 

operation was recorded in a transverse survey that was carried out between April 

1995 and July 1996, by asking participants to fill out questionnaires during the day. 

Their second survey was carried out in two cities in the UK (Oxford and Aberdeen) 

between March 1996 and September 1997, and was introduced by Raja et al. (2001). 

This survey was conducted in 15 office buildings, containing both naturally-ventilated 

and air-conditioned buildings. In this survey, occupants’ window operation was 

recorded manually by the participants in both a longitudinal and a transverse sub-

surveys, and high correlations between occupants’ window behaviour and outdoor air 

temperature were observed in both sub-surveys. Meanwhile, they also observed a 

high correlation between indoor air temperature and concurrent outdoor air 

temperature in the non-air-conditioned buildings investigated. The third survey that 

was carried out by Nicol and Humphreys was in a European project, named SCATs 

(Smart Controls and Thermal Comfort). This survey was performed in 25 buildings in 

five different European countries, namely, the UK, France, Sweden, Greece and 

Portugal, as introduced by McCartney and Nicol (2002). In this study, 11 buildings 

were naturally ventilated, and the occupants in these buildings were also asked to 

manually record their window operation during the survey period. The collected data 

also reflected a high correlation between occupants’ window use and outdoor air 

temperature, the same as that had been observed in the first two surveys.  

 

Zhang and Barrett (2012) monitored one naturally ventilated office building located in 

Sheffield, UK, over a period of 16 months (from January 2005 to April 2006). In this 

study, the same methodology used by Warren and Parkins (1984) and Raja et al. 

(2001) was adopted. It was found that outdoor air temperature had the strongest 

correlation with the proportion of open windows, compared with other outdoor stimuli, 
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such as wind speed, rainfall, sunshine hours, solar radiation and relative humidity. In 

addition, the effect of indoor air temperature was found to be insignificant in the 

winter period, as users “will not open window even it is hot inside when the outdoor 

temp. is low” (Zhang and Barrett, 2012).  

 

In Germany, Herkel et al. (2008) performed a longitudinal field study from July 2002 

to July 2003, monitoring occupants’ use of different types of windows in 21 south-

facing offices, using particular measurement devices. Again, outdoor air temperature 

was found to have the highest correlation with the state of office windows, when 

compared with other factors such as indoor air temperature.  

 

In Switzerland, Fritsch et al. (1990) carried out an analysis of occupants’ window 

operation in one office building located in the Swiss Federal Institute of Technology in 

Lausanne, aimed at predicting the airflow rate in buildings. The field data was 

collected over two heating seasons in the early 1980s. In the survey, the opening 

angles of windows in 4 south-facing offices were recorded every half an hour with 

concurrent measurements of environmental factors, such as indoor air temperature, 

outdoor air temperature, wind speed and south vertical solar radiation. In this survey, 

the outdoor air temperature was also found to be the most effective in influencing 

occupants’ operation of windows. Additionally, they suggested that in the heating 

season this behaviour was weakly influenced by the wind speed and the south 

vertical solar radiation.  

 

Following the above study performed by Fritsch et al., Haldi and Robinson (2009b) 

carried out a window behaviour study in the same experimental building between 

2001 and 2008. In this study, 14 south-facing cellular offices were monitored 

automatically over a period of seven years, with respect to their occupants’ behaviour 

indoors, namely, the use of windows, blinds, doors and lighting. The monitored 

offices were located on three floors of the experimental building. Some of them were 

single occupancy, whilst others were double. Other parameters, such as indoor air 

temperature, occupancy and outdoor environmental data, were also measured 

concurrently. In this survey, the significant influence of outdoor air temperature on 

window operation was identified, as in the studies introduced above. Additionally, 
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rainfall was found to influence the state of windows, although the influence was not 

as significant as the outdoor air temperature.  

 

Influence of indoor climate: Warren and Parkins (1984) have suggested that there 

are two modes of window use: one mode is to “maintain adequate indoor air quality” 

and the other is to “control indoor air temperature”. Therefore, the influence of indoor 

climate, such as indoor air temperature, humidity, CO2 concentration, on occupants’ 

window behaviour has also been evaluated in several studies, and indoor air 

temperature was found to be the dominant influencing factor indoors, especially in 

the summertime.  

 

In many window behaviour surveys, indoor and outdoor air temperatures were 

monitored and analysed concurrently. Therefore, in some surveys expressed above, 

the influence of indoor air temperature on occupants’ window behaviour has been 

confirmed, such as those carried by Nicol et al. (1999), Raja et al. (2001), McCartney 

and Nicol (2002) and Haldi and Robinson (2009b).  

 

Yun and Steemers (2008) also carried out a longitudinal study monitoring occupants’ 

window behaviour in office buildings in the summer periods of 2006 and 2007, in 

Cambridge, UK. In this study, indoor air temperature was used solely to predict the 

operation of windows rather than outdoor air temperature, as “indoor air temperature 

varies with a range of factors, such as window orientation, the design of an envelope, 

the thermal mass of the building structure, internal heat gains, etc.”, and these 

variations could not be explained when outdoor stimuli were used. Based on a 

statistical analysis of their monitored data, they identified a high correlation between 

occupants’ window behaviour and indoor air temperature. Their survey was carried 

out in 6 offices with different orientation and type of windows, number of occupants 

and night ventilation strategy. In the survey, indoor air temperature, outdoor air 

temperature and the state of windows were measured and recorded automatically by 

particular measurement devices. The occupancy of the monitored offices during the 

survey period was deduced by assuming the occupants remained in their offices 

during working hours, according to a one-week observation.  
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Besides the above introduced field study, Yun and Steemers (2010) undertook a 

concurrent survey in the same city, analysing occupants’ window behaviour in night-

time naturally-ventilated offices. During this survey, the use of windows from three 

offices was monitored by state data loggers. Indoor air temperature, outdoor air 

temperature and the state of office doors were also measured and recorded by 

particular measurement devices. This time, the occupancy of these offices was 

deduced by the first door opening (regarded as the first arrival of the day) and the 

last door closing (regarded as the last departure of the day) for all working days. 

From this survey, they also found that indoor air temperature could be used as a 

good predictor of occupants’ window behaviour in office buildings.  

 

Yun did another study on occupants’ window behaviour in Korea from February 2010 

to January 2011, and the result of this study was expressed by Yun et al. (2012). In 

this study, four offices with a varying number of occupants, from three to seven, were 

monitored. Various measurement devices were used to measure and record 

parameters, such as indoor air temperature, indoor humidity, indoor carbon dioxide 

(CO2), outdoor air temperature, outdoor humidity, the state of doors and the state of 

windows. From the study statistical relationships between occupants’ use of windows 

and indoor environmental parameters, namely, indoor air temperature, indoor 

humidity and indoor CO2 concentrations, were established.     

 

In the summer of 2006 (13th June to 27th September), Haldi and Robinson (2008b) 

carried out another window behaviour survey in 8 office buildings in Switzerland. In 

this survey, 60 participants were recruited and were asked to manually record their 

window operation up to a maximum of 4 times a day during the working hours, by 

filling out electronic questionnaires. During the survey period, indoor air temperature 

was measured closely to participants’ workstations, and the outdoor climatic data 

was obtained from a local weather station. From the survey a high correlation was 

identified between occupants’ window behaviour and indoor air temperature.  

 

 

 



13 

 

Influence of non-environmental factors: Besides the above environmental factors, 

non-environmental factors further influence occupants’ window behaviour in office 

buildings.  These include season, time of day, occupant presence, previous state of 

windows, type of windows, orientation of windows, floor level and shared offices.  

  

Season has been found in many studies to be an important influencing factor on 

window behaviour. Herkel et al. (2008) suggested that occupants’ window behaviour 

“on a cold summer day differs from a warm winter day”, based on their survey carried 

out in the Germany. Additionally, they defined that the change from summer 

behaviour to winter behaviour occurred on the date when the daily mean outdoor air 

temperature dropped below 10.0°C for the first time, and the change from winter 

behaviour to summer behaviour was the first day when the daily mean outdoor air 

temperature exceeded 15.0°C. Similar conclusions were also obtained from studies 

performed by other researchers, such as Yun et al. (2012), Zhang and Barrett (2012) 

and Wallace et al. (2002).  

 

The time of day has been shown to affect window operation. The observed behaviour 

between arrival, intermediate and departure periods of the day is different 

significantly (Yun et al., 2012, Yun and Steemers, 2010, Haldi and Robinson, 2009b, 

Yun et al., 2008, Herkel et al., 2008, Warren and Parkins, 1984). These studies show 

that for a normal working day more window opening actions will be done by the 

building occupants when they firstly arrive at their offices, whilst more window closing 

actions will be done when they finally leave the offices. This is linked directly with the 

presence of an occupant, as described by Haldi and Robinson (2009a) and Herkel et 

al. (2005). 

 

Window position and action is state dependent and consequently the previous state 

of windows also plays an important role on window behaviour. Generally, once a 

window has been opened, occupants tend to prefer to leave it at that state for some 

time, until discomfort is reached (Rijal et al., 2007). Additionally, the factors driving 

occupants to open or close windows could be different as well, as suggested by Haldi 

and Robinson (2009b). The influence from the previous state of windows on 

occupants’ window behaviour has been confirmed by many researchers, such as 
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Yun et al. (2012), Haldi and Robinson (2009b), Yun and Steemers (2010), Yun et al. 

(2008), Herkel et al. (2008), Rijal et al. (2007) and Fritsch et al. (1990).     

 

In the study carried out by Herkel et al. (2008), it was also found that small openings 

were opened less frequently, compared with large openings. If opened, however, it 

remained open for a longer period of time. This reflects that window behaviour may 

also be dependent on the type of windows. 

 

In their seven-year survey of window behaviour, Haldi and Robinson (2009b) 

identified that floor level had an influence on occupants’ behaviour on departure. 

They observed that occupants working on the ground floor preferred to close more 

windows when finally leaving their offices on working days, compared with those 

working on upper floors.  

 

The orientation of windows was suggested to have an influence on window operation 

in non-air-conditioned office buildings, by Zhang and Barrett (2012), and this may be 

because of solar radiation and the prevailing wind direction.  

 

Cohen et al.  suggested that manual controls, such as for windows, blinds and lights, 

in open-plan offices tended to “lapse into default states that minimize conflict and 

inconvenience but are not optimal”, and this was referenced in the paper written by 

Fabi et al. (2012b). However, a totally different conclusion was proposed by Haldi 

and Robinson (2009b), as they found that “no obvious difference in behaviour related 

to total opening duration is distinguishable between offices with one or two 

occupants”. One possible explanation for the conflicting conclusions from these two 

studies could be that in the survey carried out by Haldi and Robinson, each occupant 

had a private window to control, so the sense of sharing offices may had been 

reduced.   
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Variability between individuals: Some researchers have demonstrated that 

occupants’ window behaviour differed between individuals, such as Haldi and 

Robinson (2009b), Yun et al. (2009) and Rijal et al. (2007). In their studies some 

occupants used windows very actively, whilst some did very passively. To reflect this 

difference occupants have been classified into either two levels (active and passive 

users) or three levels (active, medium and passive users). Haldi and Robinson 

(2009b) have considered it as ‘Variability between occupants’, but there are still no 

factors that have been defined to explain this variability. While it is clear that many 

factors influence observed behaviour, a possible criticism of these studies was that 

the grouping of the data did not account for possible variations due to other 

classifications, such as occupant age and gender. Hence it is not clear from these 

studies the extent to which they are just describing a variation in the data, or whether 

they have eliminated all other conceivable effects. An observation of a sample of ‘the 

same type’ of people is needed, into which differences in observations can be more 

confidently attributed to differences in behaviour between individuals. 

 

2.1.2 Residential buildings 

Although the target type of buildings for this study is office buildings, window 

behaviour in residential buildings is also reviewed, for two reasons:  

 

• To further evaluate the conclusions for office buildings. For example, if an 

influencing factor discussed in the previous section for office buildings is also 

confirmed to be an influencing factor for residential buildings, it strengthens 

confidence in those findings; and, 

 

• To identify any missing factors in studies of window behaviour in office 

buildings. For example, if a factor is confirmed to be influential in residential 

buildings but has not yet been evaluated for office buildings, this factor needs 

to be considered suitably in this study.        
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Influence of outdoor climate: As in office buildings, outdoor climate, especially 

outdoor air temperature, also influences occupants’ window behaviour in residential 

buildings, and many previous studies have confirmed this influence. In 1951, Dick 

and Thomas (1951) reported that 70% of the observed variance of open vents and 

casements could be accounted for by the outdoor air temperature, based on field 

measurements carried out in 15 houses during 26 winter weeks. Additionally, they 

suggested that another 10% of the observed variance was contributed by the wind 

speed. In their study, the wind speed and direction, the inside and outside air 

temperatures were measured and recorded automatically using particular devices, 

and the state of windows was recorded manually. 

 

The IEA Annex VIII project (Dubrul, 1988) includes a series of field studies that were 

carried out in five different countries: Belgium, Germany, Switzerland, the 

Netherlands and the United Kingdom. In these studies several measurement 

techniques were applied to capture occupants’ window behaviour in residential 

buildings, including: questionnaires, interviews, direct measurements, use of 

independent observers, photography, micro-switches and the use of diaries/log 

books. Generally, a linear correlation between window opening and outdoor air 

temperature was observed when the outdoor air temperature was between -10°C to 

+25°C. In the study carried out in Duisburg, Germany, an inverse linear correlation 

between window opening and wind speed was observed and the correlation 

appeared to be independent of the type of the room. Additionally, when the wind 

speed was over 8m/s, almost all windows were found to be closed. In the 

investigations undertaken in Belgium and the Netherlands, it was found that windows 

were opened more often and for a longer period of time when it was sunny outdoors, 

reflecting the influence from solar radiation on occupants’ use of windows. In these 

studies the level of precipitation was also observed to be a significant variable for 

window opening, especially for the bedroom and the living room.   

 

Brundrett (1977) carried out a survey in a number of houses in two estates to better 

understand the window-opening behaviour of families in residential buildings. In the 

survey the outdoor weather data was recorded by a weather station, six miles away 

from the survey site, and the state of windows was recorded every weekday over a 

period of a year (from October 1974 to September 1975). From the study it was 

found that the mean daily outdoor air temperature was the main factor affecting 
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occupants’ window behaviour, especially in the summertime. In addition, other 

factors also contributed to this behaviour, such as daily outdoor air temperature 

swing, outdoor humidity, wind speed and solar radiation. 

 

Erhorn (1986) carried out a study on occupants’ window behaviour in a 

demonstration building that was raised in 1983. The building was a row-house and it 

was composed of 3 blocks. In the study 24 apartments were monitored from the 

beginning to the end of 1984, and occupants’ window operation was monitored by 

contact sensors and recorded by central data loggers every 30 minutes. Additionally, 

relevant outdoor weather data (outdoor air temperature, wind speed, global 

irradiation) and indoor parameters (indoor air temperature, indoor humidity and 

energy consumptions for heating and appliances) were measured and recorded 

concurrently by particular devices. Based on the monitored data Erhorn established a 

correlation between the window opening time and outdoor air temperature. Besides 

this, he defined 12°C as the outdoor air temperature, at which occupants would 

change their ventilation behaviour for particular rooms in the house, namely, living 

rooms and children’s rooms. Furthermore, the window opening time was also shown 

to have a linear correlation with wind speed. To simplify the model, Erhorn introduced 

a temperature-based correction term to overcome the influence of wind speed, and 

the term is based on an average wind speed of 3m/s. In this study, the influence of 

global irradiation was found to be relatively weak when compared with the influence 

of outdoor air temperature.   

 

Weihl and Gladhart (1990) reported some results from a project named the Family 

Energy Project, which was carried out in the USA between 1983 and 1987. In this 

project microprocessor technologies were applied to monitor occupants’ thermostat 

settings of heating, ventilation and hot water automatically, and also to measure and 

record indoor and outdoor air temperatures and the energy consumption of the 

furnace and the water heater. In the first phase of this project, which was conducted 

between 1983 and 1985, seven houses with varying properties, such as house size, 

family size, occupant age and family income, were monitored. In the second phase, 

which started in 1986 and ended in 1987, ten houses with low-income occupants 

were observed. From this project, it was found that outdoor air temperature had a 

significant influence on both window and door uses in residential buildings in summer.  
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Johnson and Long (2005) undertook a pilot study monitoring occupants’ opening and 

closing windows in residential buildings in North Carolina, USA, between March 2003 

and October 2011. In the study the state of windows was recorded by the 

experimenters through observations, while other parameters such as outdoor air 

temperature, outdoor relative humidity, wind direction, wind speed, cloud cover and 

precipitation were measured by particular devices. From this study, they suggested 

that outdoor air temperature, outdoor relative humidity, wind speed and cloud cover 

could significantly influence the state of windows. The precipitation, however, was 

found to have no influence on occupants’ window behaviour in residential buildings.  

 

Nakaya et al. (2008) reported some data collected from 31 detached houses in 

Takarazuka City and 31 apartments in Takatsuki City, in Japan. The survey was 

carried out over a two-month period from August to September, in 2003. In the 

survey thermal measurements and questionnaires were conducted in each individual 

house by the experimenters. Through statistical analysis, correlations between 

occupants’ window behaviour and outdoor air temperature were established for the 

houses observed in both cities. 

 

In Denmark, Andersen et al. (2009) carried out questionnaire surveys in 4948 Danish 

residential buildings in the late summer of 2006, and again in the winter of 2007. 

These were conducted in order to identify the most important factors that can 

influence occupants’ interaction with building control systems, such as occupants’ 

window opening behaviour, use of heating, solar shading and electrical lighting. 

During the survey meteorological data was obtained from 25 measuring stations in 

Denmark, and the data measured by the closest station for each monitored house 

were used for that house in the data analysis. From the survey a considerable impact 

of outdoor air temperature on occupants’ window opening behaviour was identified. 

In addition, solar radiation was also found to influence the proportion of open 

windows. However, in this study, wind speed was found to have no influence on 

occupants’ window behaviour, which is not consistent with some findings from other 

studies. Andersen et al. explained that this could possibly be because the wind 

speed used in their study was not measured locally, and thus did not truly reflect the 

local wind conditions.   
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Following the work undertaken by Andersen et al. (2009), Fabi et al. (2012a) carried 

out a web-based questionnaire survey in 15 residential buildings in Denmark. In this 

study statistical approaches were applied for the analysis of window behaviour, from 

which outdoor air temperature was found to be one of the most important factors 

determining the probability of opening/closing windows. Another important outdoor 

environmental parameter, which was found to influence window behaviour in this 

study, was solar radiation. This confirmed the relationship between window opening 

and sunny weather. In weekdays, the wind speed appeared to influence occupants’ 

window opening behaviour, as Andersen et al. (2011) observed that higher wind 

speed led to less actions of opening windows. However, this influence was found to 

be very weak at the weekends. For the window closing behaviour, wind speed was 

identified as a positive factor.   

 

To model occupants’ window behaviour in residential buildings, Antretter et al. (2011) 

undertook a survey in 17 residential buildings, lasting for two years. In this study 

outdoor and indoor environmental conditions and the duration of open windows were 

measured hourly. Again, window opening was found to correlate highly with outdoor 

air temperature. In addition, outdoor air humidity was also found to have an influence 

on the state of windows, and wind speed was observed to impact the duration of 

window opening only.   

 

The last study with investigations into the influence of outdoor climate on occupants’ 

window behaviour in residential buildings was performed by Schweiker et al. (2012), 

based on field measured data in both Switzerland and Japan. In this study the 

monitoring of occupants’ window behaviour was carried out in two residential 

buildings in Switzerland and one student dormitory in Japan, for at least six months. 

From the study outdoor air temperature was found to be an influencing factor on 

occupants’ window behaviour, but the precipitation was identified as having no 

influence.  

 

Influence of indoor climate: Some researchers have suggested that indoor air 

temperature also has an influence on occupants’ window operation in residential 

buildings, such as Nakaya et al.(2008), Antretter et al. (2011), Schweiker et al. (2012) 

and Fabi et al. (2012a). In addition, indoor CO2 concentration, which was generally 
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used as a surrogate indicator of indoor air quality, was also suggested by Fabi et al. 

(2012a) to be a possible factor.  

 

Influence of non-environmental factors: As in office buildings, non-environmental 

factors also play an important role in residential window operation, and their influence 

in residential buildings is potentially more complex. Possible influencing factors 

investigated in previous studies include season, time of day, occupant presence, type 

of dwellings/buildings, type of the room, orientation of windows, type of windows, 

floor level, type of the heating system, occupant age, occupant gender, ownership of 

the property and smoking.  

 

Brundrett (1977) has observed a strong seasonal pattern of window operation in his 

study with “windows progressively closing with the approach of winter and then re-

opening with the warmer weather”. In addition, he also suggested that the factors 

influencing occupants’ window behaviour in residential buildings were also different 

for summer and winter times. This conclusion was supported by other researchers, 

such as Erhorn (1986), Weihl and Gladhart (1990) and Fabi et al. (2012a). In the 

study carried out by Johnson and Long (2005), it was found that more windows were 

open in April, May or June, when compared with other months of the year.  

 

Occupants prefer to use their windows differently at different times of day in 

residential buildings. Erhorn (1986) suggested that night ventilation happened less, 

compared with daytime ventilation, and this is supported by Encinas Pino and de 

Herde (2011), who modelled occupants’ ventilation behaviour for daytime and night-

time separately. In the IEA Annex VIII project (Dubrul, 1988), it was also observed 

that the number of open windows was maximum in the morning, and this number 

gradually decreased during the afternoon. Later, at about 17:00, another peak 

occurred, because at this time most occupants had returned from their daily work. 

After 17:00, the number would decrease again during the evening and remain at a 

fairly constant value during the night when people were sleeping. Fabi et al. (2012a) 

also reported that the maximum probability of opening windows happened in the 

morning, between 06:00 and 09:00, when people woke up. Considering the influence 

from this factor, that is, time of day, Johnson and Long (2005) developed different 
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transitional probabilities of the state of windows for different times of day, and this 

method was also applied later by Antretter et al. (2011).      

 

In the 1950s, Dick and Thomas (1951) suggested that in similar houses, “the 

increase due to occupancy of one air change per hour during the heating season 

may be taken as generally applicable”. This reflects the influence of occupant 

presence/occupancy on the ventilation of residential buildings. In later studies, 

Brundrett (1977) found that for the houses with women in full-time employment, the 

opening time of windows was only half of those houses in which women generally 

stayed at home. In the Belgian study of the IEA Annex VIII project (Dubrul, 1988), it 

was also observed that the number of open windows was directly proportional to the 

length of occupation time of the dwellings, and this relationship was also observed in 

the study carried out by Johnson and Long (2005). Nakaya et al. (2008) concluded 

that passive behaviour, such as opening/closing windows and using fans, was 

strongly affected by occupants’ entering/leaving rooms. Van Raaij and Verhallen 

(1983) established five behavioural patterns for the occupants in residential buildings, 

namely, ‘Conservers’; ‘Spenders’; ‘Cool’; ‘Warm’ and ‘Average’, based on their 

monitored data from 145 households in the Netherlands, from November 1976 

through November 1977. Within these categories, the ‘Spenders’ who maintained 

high ventilation levels in their homes were found to be more often at home.  

 

The influence of the previous state of windows on its current state was confirmed by 

Schweiker et al. (2012), and this factor was used popularly to predict occupants’ 

window behaviour based on Markov chains.   

 

The type of dwellings/buildings, whether a house or an apartment, influenced window 

opening time (Dubrul, 1988). However, this influence was dependent on the type of 

the room being considered. It was observed that the windows in living rooms and 

kitchens would be open for shorter periods in houses, when compared with those in 

apartments, whereas the windows in bedrooms were left open for longer periods. 

Fabi et al. (2012a) also suggested that apartments with a single family had a higher 

average frequency of opening windows than houses.   
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Occupants’ window behaviour in residential buildings is also affected by the type of 

the room. Newman and Day (1975) reported that people preferred to open the 

windows in bedrooms on winter nights in order to increase the ventilation to get a 

comfortable sleep. In the IEA Annex VIII project (Dubrul, 1988), different window use 

patterns were observed between the windows in living rooms and those in bedrooms. 

Erhorn (1986) made a ranking based on the popularity of windows being opened for 

different types of the room, and the windows in bedrooms were defined as the mostly 

opened ones, followed by the ones in children’s rooms and living rooms. This ranking 

is supported by many other researchers such as Brundrett (1977), Guerra-Santin and 

Itard (2010), Antretter et al. (2011) and Fabi et al. (2012a). Additionally, Brundrett 

(1977) also suggested that the opening of kitchen windows was not influenced 

significantly by the outdoor climate, unlike the windows in other rooms.  

 

The influence of the orientation of windows on residential window operation has been 

investigated and identified by Dubrul (1988) and Schweiker et al. (2012), but this 

influence seems to be caused mainly by the available solar gains obtained by the 

windows with different orientations. 

 

Occupants use various types of windows differently in residential buildings. Erhorn 

(1986) reported that in living rooms, bottom-hung windows were used predominantly 

for ventilation. In addition, for children’s rooms, the side-hung position was preferred 

in the first 6 months of the year, while the bottom-hung position was more often to be 

used in the last 6 months of the year. In the IEA Annex VIII project (Dubrul, 1988), it 

was also found that how the window was hung in its frame, and the direction of travel 

of the opening part, had an influence on occupants’ window opening behaviour. In 

the Belgian study, the bottom-hung windows that open inwards were used more 

frequently than other types of windows, and this was more obvious in living rooms 

and kitchens. In the Dutch study, it was found that fanlight windows were opened 

twice as frequently as side hung casement windows, and the ventilation grilles were 

observed to be left open nearly always. Guerra-Santin and Itard (2010) also 

suggested that grilles were kept open much often in residential buildings. Dubrul 

(1988) explained the influence of the type of windows on occupants’ window 

operation, as different window designs provided different areas of opening and so 

they were used generally for different purposes in actual buildings. 
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Schweiker et al. (2012) analysed the influence of floor level on residential window 

operation and suggested that it was another influencing factor.  

 

The influence from the type of the heating system has been evaluated in some 

previous studies. In the Belgian study of the IEA Annex VIII project (Dubrul, 1988), 

researchers found that windows in centrally heated houses were likely to be open for 

shorter periods, when compared with those in non-centrally heated houses, 

especially in bedrooms. The Dutch team reported that the windows in houses with 

warm-air central heating were open less than those in houses with radiator systems. 

Guerra-Santin and Itard (2010) also suggested that households using programmable 

thermostats preferred to open windows more in bathrooms, when compared with 

those using manual thermostats.   

 

The influence of the occupant age on residential window operation has been 

investigated by van Raaij and Verhallen (1983), who suggested that houses with 

elderly people performed a low ventilation level. This phenomenon was also 

observed in the studies carried out by Dubrul (1988), and, Guerra-Santin and Itard 

(2010). In addition, Guerra-Santin and Itard (2010) also reported that if there were 

children in the house the windows in living rooms were more likely to be closed.  

 

Studies also found that males and females had different patterns of window operation 

in residential buildings (Andersen et al., 2009, Schweiker et al., 2012), so occupant 

gender is another influencing factor. Furthermore, the ownership of the property can 

also influence occupants’ use of windows (Andersen et al., 2009, Fabi et al., 2012a). 

If the occupants smoked, a higher airing and ventilation of the living room was 

observed in the IEA Annex VIII project (Dubrul, 1988). 

 

Variability between individuals: In some studies carried out in residential buildings, 

such as those by Dick and Thomas (1951), Iwashita and Akasaka (1997), Dubrul 

(1988), Weihl and Gladhart (1990), Papakostas and Sotiropoulos (1997) and 

Andersen et al. (2011), individual differences were commented on as well. However, 

as for office buildings, these studies did not separate the influence of personal 

behavioural preference and from those of sub-group factors.       
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2.1.3 Factor discussion 

Work relating to both office and residential buildings has been reviewed for evidence 

about which factors affect window operation. The evidence is summarised in Table 

2.1, where the numbers refer to the number of reports in the literature that support 

the influence of the specified factor, for office buildings and residential buildings 

respectively. 

 

Table  2.1: Factors affecting window operation comparison of reports in evidence 
between office buildings and residential buildings. 

Factors Office buildings Residential buildings 

Outdoor climate 

(dominated by outdoor air temperature) 
 8 11 

Indoor climate 

(dominated by indoor air temperature) 
8 4 

Season 4 5 

Time of day 6 6 

Previous state of windows 7 1 

Occupant presence 2 6 

Type of windows 1 3 

Orientation of windows 1 2 

Floor level 1 1 

Shared offices 1 N/A 

  Type of dwellings/buildings N/A 2 

Type of the room N/A 9 

Type of the heating system N/A 2 

Occupant age N/A 3 

Occupant gender N/A 2 

Ownership of the property N/A 2 

Smoking N/A 1 
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The above review provides guidance on selecting influencing factors for investigation 

in future window behaviour studies. Outside air temperature has the strongest 

influence in both office buildings and residential buildings. Meanwhile, there are also 

some factors, namely, indoor air temperature, season, time of day and previous state 

of windows, that should be considered. This is because enough evidence has been 

provided by existing studies (these factors have been identified to influence window 

operation in both types of buildings, and the number of available studies for office 

buildings is at least three). For critical analysis, the influences of the remaining 

factors also need to be considered, as there is not enough evidence to suggest that 

these factors are irrelevant to window operation. For office buildings, however, the 

issue of property ownership and smoking can be generally ignored, because firstly, 

the occupants of an office building are commonly working in the building but are not 

the owners of the building; and secondly, smoking is commonly prohibited in office 

buildings.        

  

What is also important is that in the studies in both types of buildings, although 

observations of individual behaviour have been made, there are, potentially, multiple 

factors that could confound the results. Hence a study that treats the isolation of such 

effects more rigorously could be of use in understanding the effects of the individual 

on window operation. 

  

2.2 Predicting Window Behaviour in Office Buildings 

In building performance simulation and modelling, if occupants’ window operation is 

to be considered, the state of windows, either open or closed, must be defined for 

each timestep within the simulation. This task is achieved commonly by predicting 

window behaviour either deterministically or stochastically. A review of both 

techniques is given here. 

 

2.2.1 Deterministic prediction 

In building performance simulation tools, such as Energyplus (EERE, 2013), ESP-r 

(Environmental System Performance research) (ESRU, 2012), IES VE (Integrated 

Environmental Solution Virtual Environment) (IES, 2012) and DesignBuilder (2013), 

the common way to model occupants’ window behaviour is using a deterministic 
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approach (Brotas, 2004). Here a pre-determined pattern of window states is allocated 

to each window involved in the simulation. In this approach, the state of a window is 

defined as a binary variable, generally 1 for open and 0 for closed, for each 

simulation timestep. The value of this variable at each simulation timestep is 

determined either by allocating a particular value based on the tool users’ 

experience/preference or by calculating it, based on a conditional statement (IF-

THEN), dependent upon a particular variable or some particular variables, such as 

indoor air temperature and/or outdoor air temperature.    

 

 
a) Daily profile_01 

 
b) Daily profile_02 

 
c) Weekly profile 

 
d) Annual profile 

Figure  2.1: Deterministic profiles for window operation. 
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The basic unit of a deterministic pattern of window states is a daily profile defined 

from 00:00 to 24:00, as shown in Figure 2.1a and 2.1b, which come from a 

commercial building performance simulation tool, IES VE (IES, 2012). In Figure 2.1a, 

the state of windows at each simulation timestep is defined directly by the tool users 

(the window is only open during the working hours, which are from 09:00 to 17:00). In 

Figure 2.1b, the state of windows during the working hours is further determined 

according to the instant indoor air temperature of each simulation timestep (if the 

indoor air temperature is higher than 23°C, then the window is open, or it is closed); 

during the non-working hours the window is always closed. Various daily profiles 

could then be combined to establish a weekly profile from Monday to Sunday, as 

shown in Figure 2.1c. The weekly profiles can then be used to develop annual 

profiles, as shown in Figure 2.1d, in which different patterns of window use are 

allocated for the heating and cooling periods, respectively. 

 

2.2.2 Stochastic prediction 

The prediction of window behaviour by such deterministic approach has been 

criticised by many researchers because:  

 

• occupants’ window behaviour is complex and it cannot be determined by a 

limited number of parameters; and,   

 

• the occupants themselves are subject to many immeasurable influences that 

might affect their actions, some physiological and some psychological.  

 

Therefore, many researchers have suggested that this behaviour should be 

presented as “an algorithm for the likelihood of a control being used rather than a 

simple on/off condition” (Nicol and Humphreys, 2004).  
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Fritsch et al. (1990) used Markov chains to stochastically predict the opening angles 

of windows in office buildings, during the winter period. The data used for the model 

development was collected from four south-facing naturally ventilated offices 

occupied by either one or two persons. In their study outdoor air temperature was 

chosen to model the probability of moving the window from one angle to another 

angle. However, the interest in studying window behaviour began to grow 10 years 

later.  

 

One of the most important studies in this area was carried out by Nicol and 

Humphreys (2004). Their window behaviour model was developed by logistic 

regression analysis (Hosmer and Lemesbow, 2000). At the beginning, Nicol (2001) 

established a series of probability distributions (logistic regression models) that could 

be used to predict the state of windows. In this stage, indoor globe temperature and 

outdoor air temperature were used separately to build these window behaviour 

models and, in most cases, similar correlations were observed. Therefore, he 

suggested using outdoor air temperature, rather than indoor globe temperature, 

when predicting the state of windows, because outdoor air temperature was an input 

for any simulation, while indoor globe temperature was an output. However, in a later 

paper, Nicol and Humphreys (2004) reported that indoor globe temperature seemed 

to be a more consistent predictor of window operation, when compared with outdoor 

air temperature. In a later study, Rijal et al. (2007) developed two window behaviour 

models using indoor global temperature (Figure 2.2a) and outdoor air temperature 

(Figure 2.2b) separately, based on data collected from 10 naturally ventilated office 

buildings in the UK. Finally, they concluded that combining both indoor globe 

temperature and outdoor air temperature in one logistic window behaviour model can 

provide the best modelling of occupants’ window behaviour.  
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a) Window behaviour model based on indoor globe temperature 

 

 

b) Window behaviour model based on outdoor air temperature 

Figure  2.2: Window behaviour models developed by Rijal et al. 

(Source: (Rijal et al., 2007))  
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Using both indoor globe temperature and outdoor air temperature, Rijal et al. (2007) 

developed a comfort driven window state prediction approach, which is named as the 

‘Humphreys adaptive algorithm’. This approach mainly consists of two steps:  

  

• the indoor comfort temperature is firstly calculated by the adaptive thermal 

comfort model, which has been introduced in detail by Humphreys and Nicol 

in a previous paper (Humphreys and Nicol, 1998); and then, 

 

• occupants’ window behaviour is predicted using the calculated indoor comfort 

temperature and a ‘deadband’, which is defined as temperatures within 

±2.0°C from the calculated comfort temperature.  

 

The algorithm used here for the window behaviour calculation is that if the indoor 

globe temperature is within the ‘deadband’, the current state of the window will 

remain its previous state. If it is outside the range the window state will be 

recalculated, using a randomly-generated probability and the probability of window 

opening, which is calculated by the logistic window behaviour model using the instant 

indoor globe temperature and outdoor air temperature. Based on the data collected 

in Pakistan, Rijal et al. (2008) updated the ‘Humphreys adaptive algorithm’ by 

implementing the ‘deadband’ in the logistic window behaviour model, as defined in 

Equation 2.1, 

 

                             𝐿𝑜𝑔𝑖𝑡(𝑝𝑤) = 0.525 × [𝑇𝑜𝑝 − 𝑇𝑐 + (𝑆𝑊𝑆 − 0.5) ×𝑊𝐷],                  ( 2.1)  

 

where, 

 𝑝𝑤  probability of window opening, in percentages ( % ); 

 WD is the temperature ‘deadband’ regarding to the window operation, in 

degrees Celsius ( °C ); 

 SWS is the state of windows (1 for open, 0 for closed) ( − ); 

 𝑇𝑜𝑝 is the operative temperature, in degrees Celsius ( °C );  

 𝑇𝑐  is the adaptive comfort temperature, in degrees Celsius ( °C ).  
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Herkel et al. (2008) used data collected in 21 south-facing and naturally ventilated 

offices in Germany to build their model. The influencing factors considered in their 

prediction algorithm included outdoor air temperature, time of day, occupant 

presence, season, previous state of windows and type of windows. Herkel et al. 

chose to use quadratic equations (as shown in Equation 2.2), rather than logistic 

equations, to develop their probabilistic models that were used to predict the state of 

windows, 

 

                                               𝑝𝑤 = 𝑎 × 𝑇𝑜𝑢𝑡2 + 𝑏 × 𝑇𝑜𝑢𝑡 + 𝑐 ,                                    ( 2.2) 

 

where a, b and c are constants that are obtained by statistical methods, and Tout is 

outdoor air temperature.   

 

The flow chart of their prediction algorithm for the determination of the state of 

windows at each simulation timestep is shown in Figure 2.3, combining the 

influences of many factors that have been discussed in Section 2.1.3.   

 

 
Figure  2.3: The flow chart of Herkel et al.’s algorithm. 

(Source: (Herkel et al., 2008)) 
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Yun et al. (2009) also developed a ‘Yun algorithm’ for building performance 

simulation, containing a probabilistic occupant behaviour model and a deterministic 

heat and mass balance model. Data used for the model development was collected 

from six offices in two different naturally ventilated buildings, one with night cooling 

strategy and one without. Besides this, the six offices are also varying with respect to 

the window orientation, window type and number of occupants. To include the 

influence of the previous state of windows in the determination of the current window 

state, Markov chains were chosen for the algorithm. Corresponding transition 

probabilities from close to open, or from open to close, were developed using the 

logistic regression method, and indoor air temperature was used to define these 

transition probabilities. The ‘Yun algorithm’ is shown in Figure 2.4, reflecting how the 

probabilistic behaviour model is combined with a deterministic heat and mass 

balance model in building performance simulation.  

 

To reflect occupants’ various use of windows during the arrival period, which was 

explained by Yun et al. (2008) to be linked with the design of the building façade, Yun 

et al. (2009) classified the occupants of a building into ‘active’, ‘medium’ and ‘passive’ 

window users, for the arrival period only. However, they tried to use the behaviour 

models developed for these three classes of window users in one example room to 

demonstrate the influence of different window operation on the predicted 

performance of buildings. This model implementation is criticised in this study as their 

behavioural data were collected from offices with differing properties, such as 

different type and orientation of windows, different number of occupants and different 

night ventilation strategy. Therefore, these models were not suitable to be used for 

simulating the performance of one room without changing those properties.  
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Figure  2.4: The behaviour algorithm of the ‘Yun algorithm’. 

(Source: (Yun et al., 2009)) 

 

Until now, the most comprehensive study on window behaviour in office buildings 

was performed by Haldi and Robinson (2009b), using the data collected from their 

experimental building in the Swiss Federal Institute of Technology in Lausanne, 

Switzerland. The experimental building is naturally ventilated and their monitoring 

work was undertaken in 14 south-facing cellular offices (occupied by either one or 

two occupants), lasting for 7 years.  
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Using this dataset, Haldi and Robinson (2008a) applied three different statistical 

approaches to model and predict occupants’ window behaviour:  

 

• modelling and predicting based on logit distributions (used by Nicol and 

Humphreys (2004) as well);  

 

• modelling and predicting based on a discrete-time Markov process (used by 

Herkel et al. (2008) and Yun et al. (2009) as well); and,  

 

• modelling and predicting based on a continuous-time random process (not 

used previously by other researchers).  

 

In the first approach the occupants’ window behaviour was modelled as logit 

distributions (Figure 2.5), which were generated by the logistic regression method. In 

the simulation occupants’ operation of windows was represented as a Bernoulli 

process, in which the state of a window at each simulation timestep was affected by 

the current condition of that timestep only, not considering the previous state of the 

window. Environmental factors, which were demonstrated to affect occupant’ window 

behaviour in this approach, included indoor air temperature, outdoor air temperature, 

outdoor relative humidity, rainfall, wind speed level and wind orientation domain. 

Finally, outdoor air temperature was found to be the best predictor of the state of 

windows for a whole year period. In addition, they have used a polynomial logit to 

predict the observed decrease of proportions at high outdoor air temperatures, as 

shown in Figure 2.5. When outdoor air temperature was used as the basic 

environmental factor affecting the state of windows, an inclusion of indoor air 

temperature could help to increase the model performance significantly.   
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Figure  2.5: Haldi and Robinson’s window behaviour model based on logit distributions.  

(Source: (Haldi and Robinson, 2009a)) 

  

The above approach focuses on modelling and predicting the state of a window, 

whether a window is open or closed, at each simulation timestep, rather than 

modelling on occupants’ window operation, whether a window is to be opened or to 

be closed. Haldi and Robinson (2008a) pointed out that “it ignores the real dynamic 

processes leading occupants to perform actions”. Thus, in the second approach, 

Markov processes were applied in predicting occupants’ window behaviour, and this 

approach considered the effect of the previous state of windows in the determination 

of the current window state. The daily occupancy pattern was also applied in this 

approach, enabling the influences of the time of day and the occupant presence to be 

considered. Figure 2.6 shows the basic structure of this approach, with various 

transition probabilities defined for particular window operation events such as 

opening a window or closing a window, for different times of day (arrival, during 

presence and departure). 
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Figure  2.6: The definition of transition probabilities from Haldi and Robinson. 

(Source: (Haldi and Robinson, 2009b)) 

 

Table  2.2: Influencing factors for transition probabilities modelling window behaviour. 

Time of Day Opening to Closing Closing to Opening 

Arrival 

   1. indoor temperature 

   2. outdoor temperature 

1. preceding absence > 8 hours 

2. indoor temperature 

3. outdoor temperature 

4. rainfall 

During 
presence 

   1. outdoor temperature 

   2. indoor temperature 

1. on-going presence duration 

2. indoor temperature 

3. outdoor temperature 

4. rainfall 

Departure 

   1. following absence > 8 hours 

   2. daily mean outdoor temperature 

   3. window higher than ground floor 

   4. indoor air temperature 

1. daily mean outdoor temperature 

2. following absence > 8 hours 

3. window higher than ground floor 
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The factors that possibly influence the transition probabilities defined in Figure 2.6 

were evaluated, including indoor air temperature, outdoor air temperature, daily 

mean outdoor air temperature, rainfall, wind speed level, wind orientation domain, 

window higher than ground floor, on-going presence duration, preceding absence 

longer than 8 hours, and the following absence longer than 8 hours. Statistical 

analysis revealed that the influencing factors for each transition probability were 

different, as presented in Table 2.2.    

 

The last approach applied by Haldi and Robinson was based on a continuous-time 

random process, in which the duration of the window opening was treated, instead of 

the change of the state of windows. In this approach the duration of a window kept 

open was found to be correlated mainly with outdoor air temperature, while the 

duration of a window kept closed was influenced by both indoor and outdoor air 

temperatures. In their study, these correlations were defined by specific Weibull 

distributions for both window open and closed durations.   

 

Three statistical approaches were applied by Haldi and Robinson (2008a), to model 

and predict occupants’ window behaviour in office buildings. Based on this, they 

performed an executed parallel comparison between these approaches, and their 

conclusion is shown in Figure 2.7. Based on the comparison, they reported that these 

three approaches were different on both predictive quality and computational cost. 

The approach based on logit distributions was the simplest, but its prediction 

accuracy was also worse than the other two approaches. The approach based on a 

continuous-time random process had the best prediction accuracy, but it was the 

most complicated one. Therefore, they suggested that the choice of which approach 

to use should be dependent on both the required accuracy of the project, as well as 

the available computational resources.  

 

At the last stage of their study Haldi and Robinson (2009a) developed a hybrid 

approach, in which a discrete-time Markov model was used for the prediction of 

window openings and a Weibull distribution model was used to determine the 

duration of the window to be kept open. Finally, they found that this hybrid approach 

provided a better prediction result than using the three approaches individually. 
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Figure  2.7: Relationship of different window behaviour modelling approaches. 

(Source: (Haldi and Robinson, 2008a)) 

 

2.3 Summary 

This chapter has provided a thorough review of existing studies on occupants’ 

window behaviour in buildings. In Section 2.1, potential factors that can influence 

occupants’ window behaviour in both office buildings and residential buildings are 

reviewed, providing a list of factors that need to be considered in the later 

measurement and factor analysis. Section 2.2 introduces the currently available 

approaches that can be used to model and predict occupants’ window behaviour in 

office buildings. From the review, the following gaps in this research area can be 

identified:  

 

• previous studies focus on the arrival and intermediate periods in the day, 

whereas the window use behaviour at the end of day is less understood: “the 

behaviour of the occupants’ towards night ventilation is generally poorly 

understood” (Fabi et al., 2012b); 

 

• currently, the influence of personal preference on window behaviour has not 

been examined in such a way as to remove the presence of confounding 

factors; 

 

• current modelling approaches of occupants’ window behaviour focus on  

whole-population or sub-group approaches, but modelling behaviour based 

on personal preference has not been investigated; and, 
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• a suitable approach to allocate individual behaviour models in building 

performance simulation is needs to be developed, especially for simulation of 

buildings with multiple rooms.  

 

The rest of this thesis will explore these issues by using a case study building, 

focusing on the end-of-day window position. Careful monitoring will enable the effects 

of personal preference of a subset of the building population to be identified through 

analysis, while also identifying other non-environmental parameters that have 

statistically significant effects. The data will then be used to develop and validate a 

preference-based model that can be tested alongside traditional whole-population 

and sub-group modelling approaches. Finally, the effects of predicting occupants’ 

window behaviour based on personal preference in a realistic simulation environment 

will be tested and discussed. 
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 METHODOLOGY 3.

 

This chapter introduces the main methods that are used in this study to achieve the 

aims and objectives defined in Section 1.1. Section 3.1 provides a detailed 

introduction of the field study designed to monitor occupants’ window behaviour in a 

non-air-conditioned office building, focusing on the end-of-day window position. 

Section 3.2, 3.3 and 3.4 introduce separately the methods that are used to analyse 

the influence of potential factors, to develop and validate window behaviour models, 

and to demonstrate the impact of different occupant classification methods on the 

predicted energy performance of buildings, but not in detail. Detailed information 

about these methods is provided at the beginning of each particular chapter in the 

remaining part of the thesis.     

 

3.1 Design of the Field Study 

The previous review chapter of occupants’ window behaviour identified that in order 

to be able to explore the influence of personal preference on window opening 

behaviour, confounding factors need to be carefully considered in the analysis, and 

to this end a longitudinal study observing people’s window operation is designed in 

this chapter. The study focuses on a non-air-conditioned office building that has a 

number of floors, offices on different façades, and a mix of male and female 

occupants. The building has individually-occupied cellular offices each containing 

one window, and so eliminates issues surrounding the negotiation of window use, 

where there is more than one occupant in the office. In addition, all offices are very 

similar in size, shape and layout. The study focuses on the end-of-day window 

position since this has been identified to be an under-researched area in Chapter 2. 

In addition, it is also a pivotal moment in the day where the position of the window 

has no immediate effect on the occupant (since they are not present), but can have a 

significant impact on night-time ventilation. This in turn affects office comfort the 

following day in summer, or excessive heat loss overnight from the office during the 

winter. 
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3.1.1 The case study building 

The study was carried out in the building that houses the School of Civil and Building 

Engineering at Loughborough University, UK (52°45’54’’N, 1°14’15’’W, alt.70m). 

Figure 3.1 depicts the Southwest façade of the building and shows a typical office. 

The building is an ‘L’ shape with single-occupied cellular offices around the perimeter 

(as shown in Figure 3.2), all of which have nominally the same floor area (10.2m2). 

Each window shown in Figure 3.1 belongs to an individual office. The windows in 

each office are typically fully closed, fully open or slightly open (as shown in Figure 

3.3). When the window is slightly open, the lever that pulls the frame onto the seal is 

open and the window 'opening' appears to be about 10mm. However, the actual 

opening due to the seal is only approx. 5mm, and only over one side of the side hung 

frame. In addition, the windows sit in a recess, that is tight to the width of the window 

and hence there is very little air flow when the window is in this position, the only 

exception being on very windy days. For this reason, the windows when in the 

slightly open position have been considered to be closed – i.e. providing little cooling 

during the night time period. Although the outside of the building is curved, there are 

essentially only two facades, one facing Southwest and the other Northwest. The 

exterior of the building is covered by a mesh, which is designed to both shade the 

façade and provide a degree of security on the ground floor, allowing windows to be 

left open with reduced risk of theft. Each office has a door opposite the window, and 

the door opens onto communal spaces on each of the three floors, with all floors 

connected via a full height atrium. 

 

  
(a) Case study building (b) A typical single-cell office 

Figure  3.1: The case study building (left) and a typical single-cell office (right). 
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Figure  3.2: Floor plan of the case study building. 

 

   
a) Fully closed b) Slightly open c) Fully open 

Figure 3.3: Positions of the window in the surveyed building. 
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Typical office occupation is nominally 09:00 to 17:00, with each office being occupied 

by the same person hence promoting a sense of ‘ownership’ of each office by its 

occupant. Room occupancy varies significantly between individuals throughout the 

year, due to several factors that include teaching, research meetings and off-site 

visits. Often, absence from, and presence in, the office are not routine and at 

particular times of the year the building occupancy decreases, most notably in 

August, which is when most staff have less commitments and hence is a popular 

period to take a summer holiday. Over the winter holiday break in December/early 

January, the building closes for about 10 days. 

 

Each occupant has sole control over the environmental conditions in his/her office 

and typical adaptive opportunities are: window and door position, a window blind 

position and temperature control for a dedicated radiator (operative during the 

heating season). The building is mixed mode, supplying additional ventilation in the 

summer through swirl vents mounted in the floor of each office. Heating during winter 

is provided by a hydronic heating system, serving each office, and is switched on 

typically during the first week in October and switched off at the end of April, with 

some variation due to ambient temperature and work scheduling of the estates staff. 

The heating switch-on period usually coincides with the end of the daylight saving 

period in the summer months – British Summertime (BST) (Note BST = GMT+1hr, 

here GMT = Greenwich Mean Time).  

 

3.1.2 Data collection 

Longitudinal surveying (Singer and Willett, 2003) of window opening is required so 

that the appropriate characteristic dependencies can be observed, recorded and 

hence modelled, evidenced by (Rijal et al., 2007, Herkel et al., 2008, Haldi and 

Robinson, 2009b, Yun et al., 2008). For buildings this is typically over one year to 

capture the heating season, summertime effects and the transitional seasons that 

include a shift between GMT and BST. 

 

In this study, a total of 36 offices and their associated office occupants were 

monitored in three observation periods that were classified by season as summer, 

transitional (or swing) and winter. Table 3.1 gives the precise dates for the data 

collection together with other key dates in the operational cycle of the case study 
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building. It should be noted that the actual sequence of the observation periods was 

summer – winter – transitional, taking place over two years.  

 

Table  3.1: Observation periods and key dates. 

   Observation Periods   Key Dates 

   Summer 

20/06/2010  

to 

30/09/2010 

 

 Heating switch on 

03/10/2010  

and  

04/10/2011 

   Winter 

01/11/2010  

to  

26/03/2011 

 

 Daylight saving ends 

31/10/2010  

and  

30/10/2011 

Transitional 

10/10/2011  

to  

20/11/2011 

 

 Winter building closure 

24/12/2010  

to  

04/01/2011 

 

Figure 3.4 depicts how the seasonal observations recorded in 2010 and 2011 would 

have fitted into a 12 month period. There is an overlap between the winter and 

transitional periods. This is because the winter period is defined here as the period 

when the heating system is on and the national time is set to GMT. The summer 

period is defined as the period when the heating system is off and the national clocks 

are set to daylight saving. One month either side of the daylight changing was 

considered to be the transitional period, and the data for this period was collected 

purposefully either side of this point. 
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Figure  3.4: The building characterised by environmental and building operational 

factors. 

 

The parameters that were monitored in the survey are listed in Table 3.2, measured 

using a combination of automated measurement and human observations.  

 

Table  3.2: Measured key parameters in the survey. 

 Measuring Method Measuring Periods 

Indoor air temperature automated in all 3 periods 

Outdoor air temperature automated in all 3 periods 

Indoor globe temperature automated in the transitional observation 

period only 

Occupants’ daily presence human observations in all 3 periods 

End-of-day window position human observations in all 3 periods 
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Indoor air temperature ( 𝐓𝐚𝐢  ): The indoor air temperature was measured by a 

HOBO UA-001 temperature sensor (Figure 3.5a), located under the occupant’s desk 

at about the abdomen level, avoiding direct sunlight. This temperature measurement 

at one height, instead of at three different heights (ISO, 2001), was considered to be 

adequate, since thermal comfort was not the primary focus of the work. Detailed 

specifications of this sensor are listed in Table 3.3. Before the field measurement all 

temperature sensors were calibrated at 20°C by the equipment supplier. In addition, 

every six months, all the sensors were re-collected and their measurement 

consistency was checked to confirm that there were no sensors damaged during the 

observation period. In the consistency checking procedure the bias between the 

recorded value from each temperature sensor, and the mean value of all sensors, 

should be within ±0.2°C for each time point. In the transitional observation period 

another measurement of indoor air temperature was carried out by a calibrated Hobo 

U12-012 data logger attached to a shelf in the office, about 600mm above desk level, 

0.5-1.0 meters away from the occupant, so as to avoid the effects from the heat 

generated from people’s bodies and breathing. This measurement enabled a 

comparison between the air temperature and the globe temperature for the 

monitored offices. Detailed specifications of the HOBO U12-012 data logger are 

listed in Table 3.3. 

 

Indoor globe temperature ( 𝐓𝐠 ): The indoor globe temperature was measured in 

the transitional observation period by a HOBO TMC1-HD temperature sensor 

surrounded by a blackened, 40mm table-tennis ball, and the measured data was 

recorded by a HOBO U12-012 data logger (Figure 3.5b). This method has been 

recommended by Professor Michael Humphreys (Humphreys, 1977) for assessing 

the warmth of a room with low air movement, due to the rapid response and 

convenient size of a table-tennis ball. In this study the globe temperature sensor was 

located closely to the Hobo U12-012 data logger. Detailed specifications of the 

HOBO TMC1-HD temperature sensor are listed in Table 3.3. Before being used for 

field measurement, all HOBO TMC1-HD probes had been calibrated at 20°C by the 

equipment supplier. In addition, the globe temperature sensors thus created were 

calibrated against a manufactured 40mm globe temperature sensor (of accuracy 

±0.2°C) by the Grant Instruments, and were shown to give measurements within 

0.2°C.     
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Outdoor air temperature ( 𝐓𝐚𝐨 ): The outdoor air temperature was measured by a 

DELTA-T WS-GP1 weather station located on the roof of the case study building, as 

shown in Figure 3.5c. To minimise the effect from the heat extracted from the 

building on the temperature measurement, the weather station was mounted 3 

metres higher than the roof level. Detailed specifications of this weather station are 

provided in Table 3.3. Prior to the field measurement the temperature sensor had 

been calibrated by the equipment manufacturer. Furthermore, its temperature 

measurement was compared annually with one calibrated DELTA-T WS-GP1 

weather station, and 100% measurement variations were within ±0.2°C.    

 

In the case study building most departures from the work place occurred between 

15:00 and 18:00, hence the outdoor air temperatures at these times were recorded. 

Averaging these values (the difference of temperatures at these two time points was 

found to be typically less than 2°C based on the field measured data) gave a good 

estimate of the external air temperature at the time when occupants would have left 

their offices for the day.  

 

   
(a) (b) (c) 

Figure  3.5: Measurement devices in the study. 
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Occupants’ daily presence: Due to the flexible working hours, in order to determine 

occupants’ daily presence, the approach adopted in this study was personal 

observation by the experimenter. The observations were carried out at three times 

every day, namely, 10:00, 11:30 and 15:00, which maximised the chance of 

capturing presence. If occupancy was observed at any of these times, then occupant 

presence for that working day was recorded.  

 

End-of-day window position: The end-of-day window position (or window position 

on departure) of each office was noted by a further observation at 20:00, when most 

occupants had vacated the building (on a typical day).  

 

Table  3.3: Specifications of measurement devices. 

Product 
Measurement 

Range 
Measurement 

Accuracy 
Response time 

HOBO UA-001 

Temperature Data 

Logger 

-20°C to 70°C ±0.5°C 10 minutes 

Hobo U12-012 Data 

Logger (Tin) 
-20°C to 70°C ±0.4°C 6 minutes 

HOBO TMC-HD 

Temperature Sensor 
-40°C to 100°C ±0.3°C 2 minutes 

DELTA-T WS-GP1 

Weather Station 

(Tout) 
-30°C to 70°C ±0.3°C N/A 
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3.1.3 Ethics risk and data protection 

As the monitored subjects in this study are human participants, ethical implications of 

the research need to be considered. In the ethical review process, generally, there 

are two main tasks that need to be justified (KCL, 2008). Firstly, balance the benefit 

of the research to society and the risks involved to participants. Secondly, treat the 

monitored data confidentially, during and after the research study. To meet this 

requirement an ethical approval was undertaken prior to commencing this study, and 

approval was given both by the school, in which the researchers were working, and 

the Ethics Committee of Loughborough University. The ethical approval application 

carried out for this study has answered questions in the following aspects: 

 

• researchers’ scientific quality on doing the study; 

 

• basic information about the studied subjects, for example, participants’ age 

and pregnancy condition; 

 

• general questions about the methodology and the procedure of the study, 

such as how participants will be investigated or observed, how the 

measurement will be carried out; 

 

• consent and deception of the study to the participants; 

 

• how the data will be used and stored confidentially during and after the study; 

and, 

 

• will participants be provided with any incentives for the study.  

 

When doing the ethical approval, in order not to influence occupants’ window 

behaviour during the data collection period, occupants were only told that some of 

their behaviours indoors would be monitored for a period of time. However, if they 
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wanted to know some detailed information about the study or the results of the study, 

it can be provided to them after the study finished. 

   

As mentioned in the Data Collection section (Section 3.2), some measuring devices 

were used in the study for automated monitoring of important parameters. To ensure 

participants’ safety during the measurement, a risk assessment of these devices was 

also completed, which resulted in a ‘Low’ risk. This assessment has considered 

mainly the mechanical and electrical hazards; potential hazard of the workplace (both 

physical and environmental); potential hazard from substances; potential hazard of 

participants’ work activity during the experiment; potential hazard of radiation. In 

addition, before being allocated into the monitored offices, all the measurement 

devices had been tested carefully by professional electricity technicians in the School 

of Civil and Building Engineering, Loughborough University, making sure that they 

were in good working conditions.    

 

3.2 Factor Analysis 

Before modelling occupant window behaviour, influencing factors should be identified. 

In this study, the influence of potential factors on the monitored end-of-day window 

position in the case study building is analysed using a systematic approach, which 

addresses carefully the influence of confounding factors. The potential factors 

analysed are collected from the literature review carried out in Section 2.1, as listed 

in Table 2.1. The analysis is based on a notion of a ‘sample-day’, which is fully 

explained in Section 4.1. For the case study building, non-environmental factors 

analysed include season, change to daylight saving time, occupant absence in 

subsequent days, orientation of windows, floor level, occupant gender and personal 

preference. The influence of each factor is examined from its correlation with the 

proportion of windows left open on departure, on the basis of the outdoor air 

temperature, which has been identified in existing studies as the most important 

environmental factor on window use. Suitable statistical tests, namely, the Wald 

statistic test and the Likelihood ratio test, are carried out to identify the influence of 

each analysed factor from a statistical viewpoint. Detailed information about the 

methods that are used to analyse factors is provided in Section 4.1.    
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3.3 Model Development and Validation 

3.3.1 Model development 

An important objective of this research project is to explore whether modelling 

occupants’ window behaviour in non-air-conditioned buildings based on their 

personal preference has advantages over traditional approaches, namely, based on 

either the whole building population or based on sub-groups. Therefore, window 

behaviour models based on the three different occupant classification methods 

should be established, using the data collected from the field study with a 

consideration of influencing factors identified in the factor analysis. For the model 

development, logistic regression analysis, a widely used statistical approach in this 

research area (Rijal et al., 2007, Yun and Steemers, 2008, Haldi and Robinson, 

2009b), is adopted. Logistic regression models are used to model the probability of 

specific event happening, such as whether the window is open or closed, with a 

consideration of potential influencing factors that could be either numerical or 

categorical. In logistic regression analysis, several tests and properties are used to 

interpret the regression result, including the Score test, the Wald statistic test, the 

Likelihood ratio test, the Nagelkerke R2 , the Classification table, and the Median 

effective level. Detailed description about the methods used to develop window 

behaviour models can be found in Section 5.1.  

   

3.3.2 Model validation 

Window behaviour models need to be validated before being used to predict the 

state of windows in building performance simulation. The main purpose of validating 

the models is to make sure that the models developed in this study have captured 

the underlying nature of occupants’ behaviour on the end-of-day window position, so 

can be used to predict window state. For the model validation, occupants’ use of 

windows in the case study building is monitored in a following year, and the validation 

is carried out by comparing the models’ predictive performance for the observed end-

of-day window positions in this year and the performance for the ones used to 

develop the models. The window state prediction is achieved by a stochastic 

prediction process based on the Bernoulli process (Bertsekas and Tsitsiklis, 2002) 

and the inverse function method (Fritsch et al., 1990). If the model has consistent 

prediction results for the two datasets, it is judged as having captured the underlying 
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nature of occupants’ behaviour on the end-of-day window position, and hence can be 

used in the following model implementation chapter.  

 

3.4 Model Implementation 

Window behaviour models are developed based on different occupant classification 

methods, and the next step is to evaluate its impact on the simulated energy 

performance of buildings. To do this, a two-storey example building with 20 identical 

cellular offices is established and the developed window behaviour models are used 

to predict the end-of-day window positions of all offices. As the models developed in 

this study are only usable for predicting the end-of-day window position, the model 

implementation cannot be carried out in a traditional dynamic simulation application, 

which needs the state of windows at the arrival and intermediate periods as well. 

Under this condition, a steady-state ventilation model is developed, and is used to 

predict the energy performance of the example building during the unoccupied night-

time period only. To evaluate the impact of different occupant classification methods 

on the predicted energy performance of the example building, the three window 

behaviour models are used to stochastically predict the end-of-day window position 

for a hottest month in an available weather data in IES VE (IES, 2012), a commercial 

building performance simulation package. Then the predicted end-of-day window 

positions by the three models are separately applied in the steady-state ventilation 

model and the predicted energy performances of the example building are compared.   

 

3.5 Summary 

This chapter has presented the methods that are used in this study to achieve the 

aims and objectives of the research project. The case study building and the 

methods that are used to monitor occupants’ window behaviour are introduced in 

detail, and this is to provide a dataset for analysing and modelling occupants’ window 

behaviour in office buildings. The methods that are applied to analyse the influence 

of factors, to develop and validate window behaviour models, and to demonstrate the 

impact of different occupant classification methods on the predicted building energy 

performance are briefly introduce. Detailed description about these methods is 

provided at the beginning of each particular chapter in the remaining part of the 

thesis.   
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 END-OF-DAY WINDOW POSITION 4.

 

This chapter evaluates the factors that influence the state of office windows at the 

end of working days, based on three seasons of data collected from the case study 

building. The statistical analysis applied is based on the notion of a ‘sample day’, 

which is described fully in Section 4.1. A systematic approach, which addresses 

carefully the influence of confounding factors, is then adopted for the factor analysis 

carried out in the following sections. In Section 4.2, the influence of outdoor air 

temperature, which has been identified in many previous studies to be a significant 

environmental factor of window states, is investigated, using the data collected from 

all monitored offices. Then in Section 4.3, the degree of influence of many non-

environmental factors, such as occupant gender and façade location, is investigated, 

beyond that of outdoor air temperature. Finally, in Section 4.4, the influence of 

personal preference on the end-of-day window position is analysed using the data 

obtained from a particular sub-group of the whole population. In the last section, 

Section 4.5, a summary and discussion on the implications for modelling is given. 

 

4.1 Analysis Method  

The analysis throughout has been based on the notion of a ‘sample-day’. Each 

seasonal observation period was made over a number of days, n. The sub-scripts, ns, 

nw and ntr denote the total number of days of observation in each of the summer, 

winter and transitional (swing) seasons, respectively. A sample-day is defined as a 

day during which the office must be occupied at some points to provide actuation of 

the window. Therefore, if an office is occupied for 3 days out of 5, the sample-day 

count for that period would be 3. In this study there is no distinction made between 

one office being occupied for 2 days and 2 offices being occupied for only one day; 

both would yield a sample-day count (n′) of 2. The sample-day count has been used 

to calculate a value for ∅ , defined as the proportion of windows left open on 

departure, using, 

 

                                                         ∅ = 𝑛𝑜𝑝𝑒𝑛′ /𝑛′ ,                                                  ( 4.1) 
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where,  

 nopen′  is the total number of sample-days where windows were left open on 

departure ( − ); 

 n′ is the total number of sample-days in the survey ( − ). 

 

A total of 36 people (in 36 offices) were observed over 72, 30 and 81 working days in 

summer, transitional and winter observation periods, respectively, namely, ns = 72, 

ntr = 30  and nw = 81 . The total number of sample-days for each period was 

ns′ = 1360, ntr′ = 292 and nw′ = 1842.  

 

The outdoor air temperature, Tout, has been demonstrated to be a strong indicator of 

window operation in a number of existing studies (Warren and Parkins, 1984, Fritsch 

et al., 1990, Herkel et al., 2008, Zhang and Barrett, 2012, Rijal et al., 2007, Haldi and 

Robinson, 2009b), for both summer and winter times, and so has been adopted here 

as the driving variable against which ∅ is plotted in all cases.  

 

The analysis of the individual factors presented in this study uses sub-sets of the 

total seasonal sample-day dataset, extracted based on the factors of interest such as 

occupant gender, or location of the office within the building. In order to estimate 

confidence in the results, the sample-day data was classified by binning the data in 

discrete 2K intervals of Tout, as used by other researchers (Nicol and Humphreys, 

2004). This interval was considered to be an appropriate trade-off between capturing 

useful characteristics in the data and minimising the uncertainty in the analysis. In 

addition, each temperature bin contained at least 30 sample-days and at least 80% 

of the people in the study were represented in each bin. Figure 4.1 depicts the 

binned daily mean Tout values from 08:00 to 18:00, and thus gives an overview of the 

ambient conditions that were presented over the three observation periods used in 

this study. The summer and winter periods have distinctly separate mean values and 

as expected the transitional period overlaps both. The overlapping of summer and 

winter data allows seasonal differences to be evaluated. 
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Figure  4.1: The binned daily mean values for 𝑻𝒐𝒖𝒕 for each observation period. 

 

The Wald statistic test of the logistic regression analysis is applied here (Hosmer and 

Lemesbow, 2000). This statistical method is reviewed fully in Section 5.1 of Chapter 

5. In the Wald statistic test, the significance of a parameter, or a predictor variable, is 

evaluated by applying the test and determining the P-value. A value of less than 0.05 

at the 95% confidence level implies that the predictor has a significant impact on the 

binary output of the model. Sometimes, the Wald statistic test may fail to reject the 

null hypothesis for specific predictors, especially when the sample size is small, 

resulting in the importance of a particular factor to be underestimated. Therefore, the 

result from another statistical test provided by the logistic regression analysis, that is, 

the Likelihood ratio test, is also provided in parts of the analyses, to strengthen the 

result of the Wald statistic test. The Likelihood ratio test is represented by two 

important statistical values, namely, the Change in -2Loglikelihood and the 

corresponding P-value. Detailed description about these two values can also be 

found in Section 5.1 of Chapter 5. As in Wald statistic test, a P-value less than 0.05 

from the Likelihood ratio test represents the factor’s influence is statistically 

significant.   
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4.2 Temperature Dependent Behaviour 

It is important to benchmark the results from this study against the published results 

of others, in order to determine whether the window opening behaviour in this 

building is significantly different from other buildings that have been observed, when 

treated as a whole. The data points in the left hand plot of Figure 4.2 show the 

relationship between the observed proportion of windows left open on departure and 

the outdoor air temperature on departure, ∅ = f(Tout), in the summer observation 

period; the mean bin value for Tout is used and the 95% confidence intervals are 

calculated by the Adjusted Wald Method (Sauro and Lewis, 2005), which is described 

in Appendix A. The 95% confidence interval used here represents the uncertainty 

that is caused by the number of samples used to calculate the proportion of each 

temperature bin.  

 

  
Figure  4.2: Proportion of open windows as a function of outdoor air temperature in 

summer, with comparisons of the data gathered in this study and the work of others. 

 

The data demonstrates that the proportion of windows left open on departure is 

generally proportional to the outdoor air temperature (the Wald statistic for Tout is 

65.593, and the corresponding P-value is 0.000), as expected. The solid line overlaid 

on these data points is the output from an S-shape logistic regression model 

generated from the summer data (R2 = 0.074), given by, 

 

                                                                  ∅𝑚𝑜𝑑𝑒𝑙 = 𝑒𝐴+𝐵×𝑇𝑜𝑢𝑡

1+𝑒𝐴+𝐵×𝑇𝑜𝑢𝑡
 ,                                       ( 4.2) 
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A and B in Equation 4.2 are coefficients of the logistic regression model. This model 

type has also been used by Haldi and Robinson (2009a) and Rijal et al. (2007) to 

model their data, and both are reproduced in Figure 4.2 as well, shown by the 

dashed line and the dot-dashed line, respectively. The model coefficients for all three 

models are given in Table 4.1.  

 

Table  4.1: Coefficients for the logistic regression model. 

Model A B 

Rijal et al. -2.76 0.181 

Haldi and Robinson -2.47 0.120 

Shen et al. (Summer) -4.09 0.155 

 

In the right hand plot of Figure 4.2, all three models shown in the left hand plot of 

Figure 4.2 are presented over a wider range of outdoor air temperature, showing the 

S-shape characteristic of logistic regression models. It should be noted that the 

characteristics generated by the model presented in this thesis have been 

extrapolated in the right hand plot of Figure 4.2, indicated by the dotted line, and the 

region of the model where data was available is highlighted by the solid section of the 

curve. It is also worth noting that in the Midlands in the UK, temperatures above 

30.0°C are rare in summer. The data in Figure 4.1 is quite typical for the region. 

 

Comparisons in Figure 4.2 show that the observed behaviours from all three sets of 

observations are broadly similar in terms of their relationship with Tout. This provides 

some evidence that the building under observation in this study is not significantly 

different from other buildings. One important difference, however, is that both Rijal et 

al. and Haldi and Robinson published observations based on window operation 

during normal working hours, as opposed to the end-of-day when people are 

departing the work place, as is the case in this study. It might be expected, therefore, 

that a higher probability of windows being closed at the end of the day would be 

observed. 
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Figure 4.3 shows the observed proportion of windows left open at the end of working 

days during the winter observation period, correlated with Tout  using the same 

method as for the summer data. It can be observed that in the wintertime the 

proportion of windows left open on departure is not strongly affected by Tout , 

supported by the Wald statistic test (the Wald statistic for Tout  is 2.411, and the 

corresponding P-value is 0.121). Other factors that have potential influences on this 

window behaviour will be discussed in following sections.   

 

 
Figure  4.3: ∅ = 𝒇(𝑻𝒐𝒖𝒕) in the wintertime for the whole building. 

 

4.3 Influence of Non-environmental Factors 

Table 4.2 lists 13 non-environmental factors that should be considered in studies of 

window behaviour in office buildings, coming from the review result introduced in 

Section 2.1 of Chapter 2. Some factors, such as time of day, type of windows, type of 

dwellings/buildings, type of the room, type of the heating system, occupant presence 

and shared offices, can be ignored in this study, as these properties are identical for 

all monitored offices. In addition, the influence of the previous state of windows can 

be also omitted, as the focus of this study is the state of windows at the end of the 

day, not occupants’ window operation, i.e. whether closing or opening the window, 

when finally leaving offices (refer to the first modelling approach that was introduced 

by Haldi and Robinson (2009b), see Section 2.2.2 of Chapter 2). Furthermore, since 

the age range of the monitored occupants is mainly between 35 and 55 years, the 

influence of the occupant age has also been ignored. This is because in previous 
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studies, people’s window operation behaviour in this age range has been considered 

to be similar. This leaves season, the orientation of windows, floor level and occupant 

gender to consider. As additions to these factors, the influence of the change to 

daylight saving time, and occupant absence in subsequent days, has been explored. 

The influencing factors, both environmental and non-environmental, evaluated are 

placed into five classifications and are presented in Table 4.3. The classification is 

introduced here to provide a framework, within which window use behaviour can be 

investigated.  

 

Table  4.2: Non-environmental factors having the potential to affect the end-of-day 

window position in office buildings. 

Season Time of day Previous state of windows 

Presence Type of windows Orientation of windows 

Floor level Shared offices Type of dwellings/buildings 

Type of the room Type of the heating system Occupant age 

Occupant gender   

 

 

Table  4.3: Classification of factors having the potential to affect the end-of-day window 
position in this study. 

Classification Factor  Classification Factor 

Environmental Outdoor air temperature  Building Orientation of windows 

Indoor air temperature  Floor level  

Seasonal,   
‘cultural’, 
policy 

Seasonal change   Individual Occupant gender 

Change to daylight saving time  Personal preference 

Operational Absence in subsequent days   
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Table  4.4: Data subsets and their use in the analysis. 

Data Subsets: 
Observation 

Period 
Building Feature People 

Factors (from Table 4.3) 
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Seasonal change           

Change to daylight saving time           

Absence in subsequent days           

Orientation of windows           

Floor level           

Occupant gender           

Personal preference           

 

Eliminating the confounding factors in this type of investigation is difficult. As 

demonstrated in the previous section, the strong dependency of window operation on 

Tout is ever-present. Accordingly, each factor considered in this study is plotted as a 

function of Tout. Where certain factors have demonstrated a significant influence on ∅, 

then the indoor air temperature (on departure), Tin, is brought into the analysis to 

identify whether this could be an influencing factor on the result and is discussed 

where appropriate. Seasonal changes have been investigated by comparing data 

from the summer and winter observation periods. A more detailed consideration of 

the possible influence of the change to daylight saving time was also carried out 

using the data from the transitional observation period. Building and operational 

factors were explored using sub-sets of the data from the summer and winter 

observation periods, respectively. Finally, the ‘individualistic’ factors were considered. 

Gender and personal preference, however, were examined. For clarity, the results 

are presented here in a particular sequence, but have been subject to a number of 
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iterations in order to sub-divide the data sets in such a way, so as to minimise 

unwanted influences from other factors. A summary of the dataset subdivision is 

presented in Table 4.4. 

 

4.3.1 Seasonal effects 

The sample-days count from the male-occupied offices on the first and second floors, 

and from both façades were utilised to maximise the available data (refer to Table 

4.4). Data from summer and winter was used to compare window behaviours in 

different seasons; the transitional data was not used because of the changes that 

take place during that period (shown in Figure 3.4) and the overlap in Tout (shown in 

Figure 4.1). In order to remove the effect of outdoor air temperature, the same 

temperature bins from each season were compared, and are shown in Figure 4.4. 

 

 
Figure  4.4: ∅ = 𝒇(𝑻𝒐𝒖𝒕), when the binned outdoor air temperatures in summer and 

winter times are the same. 

 

Although the temperature data in Figure 4.1 indicates that there are common values 

in the temperature ranges 11 ≤ Tout < 13 , 13 ≤ Tout < 15  and 15 ≤ Tout < 17  (all 

values in °C), there were not sufficient sample-days, that is, days when the offices 

were occupied during the daytime, available in the lowest range for the analysis. The 

number of sample-days in each outdoor air temperature bin in Figure 4.4 is small and 

hence there is a degree of uncertainty in the data, characterised by 95% level 
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confidence intervals included on the plot. However, the differences between summer 

and winter, which are greater than 10%, appear significant. Both the Wald statistic 

test and the Likelihood ratio test confirm this significance from the statistical 

viewpoint (Wald statistic test: Wald = 13.067, P-value = 0.000; Likelihood ratio test: 

Change in -2Loglikelihood = 13.380, P-value = 0.000).   

 

Reasons for the behavioural difference between summer and winter times could be 

that people use windows less in winter than in summer during the working days, 

which has been observed by Herkel et al. (2008). There may also be influences from 

the reduction in the number of daylight hours, as during winter in the UK it is often 

dark when occupants leaving their working place. There could be a degree of energy 

consciousness amongst the building occupants, giving them a propensity to shut 

windows. Whilst this discussion is largely conjecture, the important point that has 

been demonstrated from this comparison is that it is not just the environmental 

conditions that affect behaviour, other factors influence people and these influences 

can affect the operation of a building. 

 

4.3.2 Change to daylight saving time  

Many countries, including the UK, operate daylight saving time, and so the effect of 

this change on the end-of-day window position was investigated. The transitional 

season data was used here, comprised of data recorded three weeks prior to, and 

three weeks after, the clock change from daylight saving time (GMT + 1h) to GMT. 

The building heating system was on during the whole transitional observation period. 

Using the data collected from the transitional observation period (male-occupied 

offices, first and second floors, northwest façade), the proportions of the end-of-day 

window position before and after the clock change were compared in Figure 4.5, as 

given in Figure 4.4, but the differences between the GMT + 1h and the GMT data 

were less than 10% and these differences had no statistical merit (Wald statistic test: 

Wald = 0.365, P-value = 0.545; Likelihood ratio test: Change in -2Loglikelihood = 

0.366, P-value = 0.545).   
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Figure  4.5: ∅ = 𝒇(𝑻𝒐𝒖𝒕), the same binned outdoor air temperatures before and after the 

clock change time. 

 

 

In addition, the decreased proportion of windows left open on departure at the higher 

outdoor air temperature bin for the GMT period had been further explored. This is 

most likely because of a smaller percentage of sample-days collected from the 

offices whose occupants actively leave windows open overnight in that outdoor air 

temperature bin, compared with the lower outdoor air temperature bin (31% for the 

outdoor air temperature bin from 11°C to 13°C, and 24% for the outdoor air 

temperature bin from 13°C to 15°C), reflecting the influence from occupants’ personal 

behavioural preference on the result. However, this decrease is not big and it does 

not much affect the comparison result. 

 

To isolate any effects from the potential confounding issue of radiant field, additional 

measurements of the globe temperature were made in the transitional observation 

period to identify whether there were any changes to the heat radiation in the working 

space, due to the ‘earlier’ onset of darkness affecting glazing surface temperature. 

The results showed that the difference between the indoor air temperature and the 

indoor globe temperature was within ±0.3°C for greater than 99% of the samples, 

confirming observations by Nicol et al. (1999) in a thermal comfort study carried out 

in Pakistan, where the globe temperature is highly correlated with the air temperature 

indoors and the mean difference between these two values is about 0.5K. In order to 
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identify the effect of the observed variation between the indoor air temperature and 

the indoor globe temperature in this study, on occupants’ thermal comfort, a 

sensitivity analysis was carried out using the Fanger’s Predicted Mean Vote (PMV) 

model (Fanger, 1970). The analysis was based on an assumption that the indoor 

globe temperature was the same as the mean radiant temperature, and this 

assumption had been validated to be applicable for applications with low air 

movement, which was the case at the location where the Tg was measured during 

the transitional observation period. The analysis result revealed that people were not 

sensitive to this temperature variation. When the clothing insulation level was 

assumed to be 1.0clo for winter, the change of PMV by this variation was about 0.06 

(minimum 0.04 and maximum 0.06), indicating that the change from daylight saving 

time did not induce an obvious change in thermal comfort conditions in the offices. 

The above sensitivity analysis covered the range of indoor air temperature from 19°C 

to 27°C, indoor air velocity from 0.1m/s to 0.3m/s and indoor relative humidity from 

40% to 80%, and with the metabolic rate set as 1.2met for sedentary work in offices 

(ISO, 2005).  

 

4.3.3 Occupant absence in subsequent days 

It was postulated that if occupants knew they were going to be absent from the office 

for one or more days, then that might affect their window closing behaviour at the end 

of the day, the day before the absence. To avoid any potentially confounding effects 

of gender and the ground floor, data collected from male occupants on the first and 

second floors were therefore filtered to create two batches; one where each occupant 

was present in his/her office the following day, and the second one where each 

occupant was absent the following day. Again, the data for both summer and winter 

was tested in a similar manner to the data shown in Figure 4.4, as shown in Figure 

4.6, and no significant behavioural difference was identified in this case study 

building: comparing a ‘normal day with presence the following day’ to a ‘normal day 

and absence the following day’ was less than 5% for a given temperature range for 

both summer and winter times (Wald statistic test for summer: Wald = 0.243, P-value 

= 0.622; Likelihood ratio test for summer: Change in -2Loglikelihood = 0.243, P-value 

= 0.622; Wald statistic test for winter: Wald = 0.541, P-value = 0.462; Likelihood ratio 

test for winter: Change in -2Loglikelihood = 0.545, P-value = 0.460). 
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Figure  4.6: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for the presence and absence the following day for both 

summer (top) and winter (bottom) times.  

 

4.3.4 Orientation of windows 

Zhang and Barrett (2012) suggested that the orientation of windows was another 

factor influencing occupants’ window behaviour during working hours, due to 

influences from the solar radiation and prevailing wind direction. Based on the data 

collected from offices with male occupants on the first and second floors (so as to 

avoid any potentially confounding effects of gender and the ground floor) in the case 

study building, however, no evidence was found for any significant behavioural 

differences due to the orientation of windows, with respect to the end-of-day window 

position in the summertime (Wald statistic test: Wald = 1.138, P-value = 0.286; 

Likelihood ratio test: Change in -2Loglikelihood = 1.146, P-value = 0.284). However, 
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for all outdoor air temperature bins, the proportions of windows left open on 

departure for the windows on the northwest façade were a little bit higher than those 

on the southwest façade, as shown in Figure 4.7.  

 

 
Figure  4.7: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for southwest and northwest façades for the summertime. 

 

For the winter period, however, significantly different patterns of the end-of-day 

window position for the two building façades were observed, based on the data 

collected from the same offices used for the summer analysis (Wald statistic test: 

Wald = 21.517, P-value = 0.000; Likelihood ratio test: Change in -2Loglikelihood = 

49.513, P-value = 0.000), as shown in Figure 4.8. On the southwest façade, few 

windows were left open overnight during the winter observation period. However, 

there were still a number of windows (about 8% – 10%) on the northwest façade 

observed to be left open at the end of the working day, for all given temperature 

conditions. Further exploration on the monitored data revealed that more than 95% 

sample-days with windows left open on departure from the northwest façade were 

collected from two individual offices, reflecting that the influence of the orientation of 

windows is not general to most occupants in the building. Therefore, for the case 

study building, it is difficult to ascertain whether the end-of-day window position is 

dependent on the orientation of windows in the wintertime, which is contradicted from 

the conclusion drawn for the summertime. It is assumed that this behavioural 

difference could be due, possibly, to occupants’ personal preferences, which are 

discussed in Section 4.4. Further work in other buildings, or in the same building with 
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another set of occupants, is needed to strengthen the conclusion that the end-of-day 

window position is dependent on orientation of windows in winter.  

 

 
Figure  4.8: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for southwest and northwest façades for the wintertime. 

 

4.3.5 Floor level 

Haldi and Robinson (2009a) proposed that occupants’ window behaviour on 

departure on the ground floor is significantly different from those on other floors in 

office buildings. The data from our study supports this finding for both summer and 

winter times, as shown in Figure 4.9. The data used here was collected from offices 

with male occupants on the three floors (so as to avoid any potentially confounding 

effect of gender), and it was identified that people on the ground floor of the case 

study building closed their windows in the evening more often than those on the 

upper floors, in both summer and winter times (Wald statistic test for summer: Wald = 

55.018, P-value = 0.000; Likelihood ratio test for summer: Change in -2Loglikelihood 

= 64.581, P-value = 0.000; Wald statistic test for winter: Wald = 13.819, P-value = 

0.000; Likelihood ratio test for winter: Change in -2Loglikelihood = 57.037, P-value = 

0.000). In the wintertime, few windows were left open on the ground floor after 

occupants had left their offices at the end of the working day. 
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Figure  4.9: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for the ground floor and non-ground floor (1st and 2nd floors) 

offices for both summer (top) and winter (bottom) times. 

 

In this case study building, there is a noticeable difference in indoor temperatures 

between the offices on the ground floor and those on the upper floors throughout the 

year, and the first and second floors are similar in temperature (Figure 4.10 plots the 

internal air temperature on departure as a function of the corresponding outside air 

temperature, separately, for summer and winter). The difference is most likely due to 

a combination of a slightly higher floor to ceiling height of 3.5m on the ground floor, 

as opposed to 3.0m on the first and second floors; greater heat loss through larger 

windows (2.0m windows on the ground floor verses 1.6m windows on the upper 

floors), and cooler communal space at the bottom of the atrium onto which each 

office door opens. Therefore, the cooler indoor environment of ground-floor offices at 
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the same outdoor temperature conditions could be a reason for their occupants 

choosing to close more windows at the end of the working day, when compared with 

those on upper floors. However, when the end-of-day window position measured in 

the summer observation period was binned according to the indoor air temperature 

on departure, and the same statistical tests between the ground & non-ground-floor 

offices were carried out, it was found that the difference between ∅ = f(floor level) 

was still statistically significant (Wald statistic test: Wald = 13.655, P-value = 0.000; 

Likelihood ratio test: Change in -2Loglikelihood = 14.452, P-value = 0.000). This 

indicated that the measured lower indoor air temperature in the ground-floor offices 

was not the only possible driver of the window closing behaviour. 

 

  

Figure  4.10: 𝑻𝒊𝒏 = 𝒇(𝑻𝒐𝒖𝒕), for the ground floor and non-ground-floor (1st and 2nd floors) 

offices for both summer (left) and winter (right) times.  

 

It has been difficult to isolate the effects of these influences and, therefore, the 

conclusions drawn are that the ground floor in this building does influence window 

use. This appears to be caused by a combination of the indoor air temperature and a 

potential feeling of ‘security’, based on our observations and observations of others 

(Haldi and Robinson, 2009a). 
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Another finding from this study is that although the ‘security’ consideration is a likely 

reason that causes occupants of ground-floor offices to close their windows when 

leaving their offices at the end of the working day, there were still a reasonable 

proportion of windows on the ground floor left open during the night-time at higher 

temperature conditions. One comment for this is that the ‘architectural mesh’ (shown 

in Figure 3.1a in Chapter 3) surrounding the building may offer some perceived 

reduction in security risk. This comment is supported by the conclusion from Yun et 

al. that the use of night ventilation is strongly dependent on façade design and 

security issues (Yun et al., 2008).    

 

4.3.6 Occupant gender 

Considering the offices on the first and second floors only (so as to avoid any 

potentially confounding effect of the ground floor), 8 female and 18 male subjects 

were available for the study. Although the number of women is small, the possibility 

of gender as a significant factor was considered worthy of exploration. Figure 4.11 

depicts the results. Gender appears to have a significant impact on the window 

position at the end of the working day for both summer and winter times; differences 

between female occupants and male occupants are more than 10% for all given 

temperature conditions in summer, and more than 8% for most given temperature 

conditions in winter (Wald statistic test for summer: Wald = 69.385, P-value = 0.000; 

Likelihood ratio test for summer: Change in -2Loglikelihood = 82.919, P-value = 

0.000; Wald statistic test for winter: Wald = 17.879, P-value = 0.000; Likelihood ratio 

test for winter: Change in -2Loglikelihood = 49.961, P-value = 0.000). In addition, in 

the wintertime, there were nearly no windows left open overnight in the offices 

occupied by females. 
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Figure  4.11: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for differences in gender for both summer (top) and winter 

(bottom) times. 

 

Figure 4.12 gives Tin = f(Tout) and there is little difference between the internal air 

temperatures in the offices occupied by males and females, and hence the internal 

air temperature can be considered to have no influence on the results from Figure 

4.11. 
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Figure  4.12: 𝑻𝒊𝒏 = 𝒇(𝑻𝒐𝒖𝒕), for differences in gender for both summer (left) and winter 

(right) times. 

 

As the research presented here is the first to formally identify gender as a significant 

factor influencing occupants’ window operation in office buildings, some previous 

studies are provided to support the finding that behaviour can be gender-dependent. 

Both Schweiker et al. (2012) and Andersen et al. (2009) have suggested that 

occupants’ window behaviour differs between males and females in residential 

buildings, as already described in the Section 2.1.2 of Chapter 2. In addition, 

Fishman and Pimbert (1982) reported that, in commercial buildings, females had 

greater flexibility in choosing their clothing insulation than males. Consequently, they 

were able to be more tolerant of higher temperatures than men. Karjalainen (2007) 

carried out a quantitative interview survey to analyse occupants’ use of thermostats 

in homes, offices and in a university. Significant gender difference (females used 

thermostats less in households than males did) was identified in that study. Parsons 

(2002) examined how people maintain their thermal comfort by adjusting clothing 

insulation levels, and found that females tended to make more changes of clothing 

insulation than the males in his experiment. The preceding discussion would support 

the suggestion that the gender of occupants of office buildings may have a significant 

impact on building operation and performance.  
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4.4 Personal Preference 

It was observed that there were apparent differences in window positions during the 

night-time between individual occupants, in both summer and winter periods. Some 

windows were rigorously closed at the end of almost every day, whilst others would 

be left open across a very large range of temperature conditions; particularly 

apparent during the summer observation period. In this study, this difference is 

considered to be caused by people’s personal preferences, which may be based on 

a number of factors. The resultant observed window behaviour is then the action that 

is affected by the occupants’ ‘personal preference’. Differences such as these have 

been observed previously by researchers in the summertime operation of windows at 

the arrival and intermediate periods of the working day (Rijal et al., 2007, Haldi and 

Robinson, 2009b, Yun et al., 2009). In their studies, window users have been termed 

‘active’, ‘medium’ and ‘passive’. These descriptors suggest that an active user is one 

who adjusts the window position constantly, whereas this study is more concerned 

with seeing if individuals leave windows open at the end of the day, or whether they 

close them habitually regardless of the environmental conditions. Three new 

descriptors are introduced here that better reflect the findings of this study. 

Individuals can be classified as those who:  

 

• ‘Habitually close’ windows (observed to be largely independent of 

temperature);  

 

• ‘Leave open’ windows extremely often (some dependency of action on 

temperature was observed); or, 

 

• ‘Adjust’ windows depending on the experiencing thermal conditions (more 

dependent on Tout).  

 

Based on the summer data gathered in this study, an attempt has been made to 

define these classes based on a notion of mean outdoor air temperature and by 

threshold setting. The approach can be repeated for other studies, so that the 

observed behaviours can be compared. 
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The mean outdoor air temperature (end-of-day) during the summer observation 

period was calculated as T�out = 19.4℃ . The sample-days with an outdoor air 

temperature above this were selected to identify to which classification each 

individual, α, belonged. The challenge is to determine the value of the thresholds 

used to differentiate between the classes of users. To effect this, symmetrical 

thresholds, θ, were used and the following rules were applied: 

 

   IF αi is found with an open window more than θ% of the time, THEN nLO = nLO + 1  

 

and, 

 

   IF 𝛼𝑖 is found with a closed window more than θ% of the time, THEN nHC = nHC + 1 

 

where i = 1 to 36 representing the number of rooms in the survey; nLO is the number 

of users classified as one who ‘leaves open’ the window, and nHC is the number of 

users classified as one who ‘habitually closes’ their windows. These counts are then 

normalised by the number of users (36 in this case), that is, ψLO = nLO 36⁄ , and then 

the proportion of the group who ‘adjust’ their windows is given by, 

 

                                                             𝜓𝐴 = 1 − (𝜓𝐿𝑂 + 𝜓𝐻𝐶) ,                                           ( 4.3) 

 

applying the rule IF ψA < 0 THEN ψA = 0 (that is, IF ψA < 0, it means individuals 

have been counted twice). This was done for incremental values of θ and the values 

are plotted in Figure 4.13. A range of potential thresholds are indicated by the vertical 

dashed lines that represent what has been observed, in that some individuals leave 

their windows open, some leave them closed and some vary. For the classification 

here, the centre of this range has been selected as θ = 80%. 
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Figure  4.13: Threshold selection criteria. 

 

Figure 4.14 shows the significantly different window use patterns between these 

types of window users for the summertime (Wald statistic test: Wald = 128.526, P-

value = 0.000; Likelihood ratio test: Change in -2Loglikelihood = 369.104, P-value = 

0.000). The above classifications were used, based only on the male subjects on the 

first and second floors of the case study building (so as to avoid any potentially 

confounding effects of gender and the ground floor). What is interesting is that there 

are three very different types of window users, and it was found that the temperature 

difference indoors between offices with different types of window users is very small; 

the mean difference between ‘Leave Open’ and ‘Habitually Close’ groups was 0.2K, 

with maximum difference of 0.3K. Therefore, this behavioural difference is proposed 

to be caused by individuals’ personal preference, as the influences from confounding 

factors, namely, occupant gender, floor level and indoor air temperature, have been 

eliminated in the analysis. However, whether these actions are due to intent, habit or 

forgetfulness, is difficult to determine, but clearly a bias of one of these groups in a 

building could have a significant impact on the building thermal and energy 

performance, particularly for individual offices. 
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Figure  4.14: ∅ = 𝒇(𝑻𝒐𝒖𝒕), categorised by window user type for the summertime. 

 

During the winter observation period, 24 occupants, 66% of the whole monitored 

population, closed their windows always at the end of the working day. There were 

12 rooms whose windows had been found to be left open after departure, in at least 

one sample-day. For those 12 rooms, the number of sample-days with windows left 

open on departure was compared with the total number of sample-days collected, for 

each individual office, as shown in Figure 4.15. It can be observed that the first 10 

rooms, Room 01 to Room 10, had an extremely small number of sample-days with 

windows left open on departure, at most 2 days. This makes an extremely small 

proportion in the total number of sample-days collected from each room during the 

winter observation period (the maximum proportion is 5.9% for the Room 06). 

Therefore, it can be proposed that occupants of those 10 rooms left their windows 

open after departure in winter unconsciously, possibly because of forgetfulness. 

Contrary to this, there are two rooms shown in Figure 4.16 (Room 11 and Room 12) 

showing obviously different window use patterns, compared with the other 34 rooms 

(24 always closed windows at the end of working days; 10 had been observed to 

leave windows open at least for one sample-day, but the proportion is extremely 

small compared with the total number of sample-days during the winter observation 

period). The windows in these two rooms were found to be left open on departure for 

more than 50% sample-days during the winter observation period. This suggests that 

their occupants seemed to intend to leave their windows open overnight in the 

wintertime. 
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Figure  4.15: Comparisons between the number of days with windows left open on 

departure and the number of total sample-days for the 12 offices having at least one 
day with window left open overnight in winter. 

 

In the winter observation period of this study the total number of sample-days 

gathered from Room 11 and Room 12 was very limited (90 days in total), as 

indicated in Figure 4.15. Therefore, a correlation between their occupants’ window 

behaviour and the outdoor air temperature was impossible to be built on the basis of 

2K intervals of Tout . An evaluation, however, of the influence of outdoor air 

temperature on the occupants’ choices of end-of-day window positions was carried 

out by grouping the sample-days collected from those two rooms at every 20 sample-

days, starting from the day with the lowest outdoor air temperature on departure to 

that with the highest. This grouping method provided a relatively reasonable number 

of sample-days for each outdoor air temperature bin. The result is shown in Figure 

4.16, in which each outdoor air temperature bin is represented by its mean 

temperature of the 20 samples inside, and the vertical line shows the corresponding 

proportion of windows left open on departure for that bin. Although the number of 

sample-days in each group is small, and the temperature bin contains a large range 

of outdoor temperature conditions, it still reflects, to a certain extent, a trend that the 

window behaviour of these two occupants is generally proportional to the outdoor air 

temperature on departure. To strengthen this conclusion more data is needed from 

future studies. 
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 Figure  4.16: ∅ = 𝒇(𝑻𝒐𝒖𝒕), for two special window users in the wintertime (20 sample-

days in each temperature bin). 

 

Due to the limited number of sample-days collected from occupants who intended to 

leave windows open overnight, the classification of window users for the wintertime 

was defined on a two-level basis, namely, ‘Habitual closers’ and ‘Intend openers’, 

instead of three levels as for the summertime. This was to maximise the available 

data for behaviour analysis. The criterion for this classification is also based on a 

notion of mean outdoor air temperature (T�out = 6.9℃) and by threshold setting (10%). 

Using this criterion, the occupants of Room 11 and Room 12 shown in Figure 4.15 

were classified as ‘Intend openers’, whose window behaviour seems to be dependent 

on the outdoor air temperature. All the other occupants were classified as ‘Habitual 

closers’, those who close windows after departure every day, or almost every day, in 

the wintertime. The two rooms occupied by ‘Intend openers’ were all located on the 

second floor, and the northwest façade of the case study building, and both rooms 

were occupied by males. This leads to the overall behavioural differences shown in 

Figure 4.8, Figure 4.9 and Figure 4.11 in Chapter 4, for the analysis of the orientation 

of windows, floor level and gender, respectively, for the wintertime. 
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4.5 Summary    

Chapter 4 has analysed the factors that influence the end-of-day window position of 

the case study building. For this building, the behaviour of the building occupants as 

a whole is similar to that of other researchers reported in the literature. The 

dependency of the state of windows on outdoor air temperature was established and 

then applied in the investigation on the influence of the non-environmental factors. 

The following factors were found to have a significant effect: 

 

• season, which could be related to comfort, daylight hours, or a prevalence of 

a more energy-conscious attitude in winter; 

 

• floor level, possibly related to a combination of indoor temperature difference 

and security issues; 

 

• occupant gender, females appear more likely to close their windows at the 

end of the working day, when compared with males.; and finally,  

 

• personal preference was found to play a role in the determination of window 

states, beyond the influence of other factors. 

 

Although further work in a greater number of buildings is still needed to strengthen 

the findings of this study, the main outcome of this investigation is that there appears 

to be sufficient evidence to suggest that non-environmental factors may well play a 

role in determining the end-of-day window position. This merits further investigation. 

Should this be confirmed, there are important implications for the modelling and 

predicting of occupant behaviour in building simulations, as well as the possibility of 

incorporating occupants as ‘unwitting agents’ in the management of building thermal 

and energy performance.  
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 MODEL DEVELOPMENT BASED ON WHOLE 5.

POPULATION AND SUB-GROUPS 

 

Statistical models of window behaviour commonly fall into two categories, those that 

treat building occupants as a whole and those that consider sub-groups of the whole 

population. The former approach has been adopted by many researchers in previous 

studies (Herkel et al., 2008, Yun and Steemers, 2010, Rijal et al., 2007). The latter 

subdivides the whole population into groupings that are likely to have some influence, 

such as floor level (Haldi and Robinson, 2009b) and orientation of windows (Zhang 

and Barrett, 2012).  

 

This chapter firstly gives an overview of the appropriate statistical modelling methods 

(Section 5.1) and then applies these to develop models of the window behaviour 

observed in the case study building (Section 5.2). The models are characterised 

using data collected from the observations that have been introduced in Section 3.2 

of Chapter 3, and then the predictive performance of these models is tested using a 

second year’s data gathered from the case study building (Section 5.3). Finally, a 

summary is given in Section 5.4.  

 

5.1 Modelling Methods 

Logistic regression analysis (Hosmer and Lemesbow, 2000) is a widely used 

statistical approach when modelling occupants’ window behaviour in office buildings 

(Rijal et al., 2007, Yun and Steemers, 2008, Haldi and Robinson, 2009b). A logistic 

regression model defines the probability of specific event happening, such as 

opening a window, according to various influencing factors, such as air temperature. 

Therefore, the outcome variable in the logistic regression analysis should be a 

categorical value, which defines two or more levels, for example, 0 and 1 or 0, 1 and 

2. The variables that are used to predict the outcome variable, namely, predictor 

variables, could be either numerical (such as temperature) or categorical (such as 

occupant gender), or a combination of them. In logistic regression analysis, there are 

no restrictions on the distributions for the predictor variables. This makes them 

particularly suitable for modelling behaviour or actions that result from a combination 
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of environmental and non-environmental factors. A logistic regression model defines 

the probability of falling into one particular level of the outcome variable for different 

conditions, defined by one predictor variable (ordinary logistic regression) or a 

combination of several predictor variables (multiple logistic regression). Equation 5.1 

represents a basic logistic equation for a two level outcome variable with several 

involved predictors (Hosmer and Lemesbow, 2000), 

 

                                 𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑛 � 𝑝𝑖
1−𝑝𝑖

� = 𝐴 + 𝐵1,𝑖 × 𝑥1,𝑖 + ⋯+ 𝐵𝑘,𝑖 × 𝑥𝑘,𝑖 ,                 ( 5.1)  

 

where, 

 pi is the estimated probability falling in one particular level for the ith 

subject, in percentages ( % ); 

 A is the intercept (a constant) ( − ); 

 x1,i to xk,i  are the predictors in the logistic regression model for the ith subject 

( − );  

 B1,i to Bk,i are the regression coefficients for each predictor xk,i ( − ). 

 

Equation 5.1 builds a linear relationship between the natural log of the odds and 

involved predictors, in which the odds is defined as the probability of being in one 

particular level ( pi ) divided by the probability of not being in that level ( 1 − pi ). The 

regression coefficient of each predictor reflects the contribution of the corresponding 

predictor to the output probability. By solving Equation 5.1, the probability of falling 

into a particular level is determined by Equation 5.2, 

 

          𝑝𝑖 = 𝜋(𝑥1,𝑖, … , 𝑥𝑘,𝑖) = 𝑒A+𝐵1,i×𝑥1,𝑖+⋯+𝐵𝑘,𝑖×𝑥𝑘,𝑖 /(1 + 𝑒𝐴+𝐵1,i×𝑥1,𝑖+⋯+𝐵𝑘,𝑖×𝑥𝑘,𝑖 ) ,       ( 5.2) 

 

Figure 5.1a shows how a logistic regression model fits the hypothetical binary data 

based on one numerical predictor. The dots in Figure 5.1a represent whether the 

specific event happens or does not happen (1 means happening, while 0 means not 

happening).  
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a) One numerical predictor b) A numerical and a categorical predictors 

Figure  5.1: Effects of predictor type to a logistic regression model and how the 

model fits the hypothetical binary data.   

 

Figure 5.1b shows how a categorical predictor performs in a logistic regression 

model, based on the model shown in Figure 5.1a. Generally, a categorical variable 

categorises the data into two or more groups. In Figure 5.1b, Group 1 and Group 2 

are categorised by a two-level categorical predictor. Then specific logistic regression 

models are generated for each group, based on the data of that group. 

 

In linear regression, the classical method used to fit the model to the observed data 

is called Least Square method. In this method, the coefficients are chosen when they 

make the sum of the squared deviations of the observed values from the predicted 

values minimum. However, this method is not applicable for the logistic regression 

analysis, whose outcome is generally binary. The method that is used in the logistic 

regression is called Maximum Likelihood Estimation (MLE), through which the 

coefficients of predictor variables are chosen when they maximise the probability of 

obtaining the observed set of data. In this method, a function called the likelihood 

function is constructed, expressing the probability of the observed data as a function 

of the coefficients, and is defined in Equation 5.3 (Hosmer and Lemesbow, 2000), 

 

                              𝑙(𝐵) = ∏ 𝜋(𝑥1,𝑖, … , 𝑥𝑘,𝑖)𝑦𝑖𝑛
𝑖=1 × �1 − 𝜋(𝑥1,𝑖, … , 𝑥𝑘,𝑖)�

1−𝑦𝑖 ,                   ( 5.3) 
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where B is the vector of parameters: B = (Ai, B1,i, … , Bk,i). π(x1,i, … , xk,i)yi  provides 

the conditional probability that the model output (Y ∈ {0,1}) equals to 1 (yi = 1) for 

given (x1,i, … , xk,i) , and �1 −π(x1,i, … , xk,i)�
1−yi  provides the conditional probability 

that the model output equals to 0 (yi = 0) for given (x1,i, … , xk,i). The log of Equation 

5.3, which is called log likelihood, is commonly adopted because it is easier to 

operate, as defined in Equation 5.4, 

 

      𝐿(𝐵) = 𝑙𝑛[𝑙(𝐵)] = ∏ �𝑦𝑖 × 𝑙𝑛�𝜋(𝑥1,𝑖, … , 𝑥𝑘,𝑖)� + (1 − 𝑦𝑖) × 𝑙𝑛�1− 𝜋(𝑥1,𝑖, … , 𝑥𝑘,𝑖)��𝑛
𝑖=1 ,                 

( 5.4)    

 

The value of B that maximises L(B) is denoted as B�, that is, the maximum likelihood 

estimate. It is derived by differentiating L(B) with respect to each parameters and 

then setting the resulting expressions equal to zero. These equations are called 

likelihood equations.  

 

In real applications, a logistic regression analysis usually contains four main stages 

(Peng et al., 2002):  

 

Overall model evaluation: examines whether the involvement of predictor 

variables provides a better fit to the data, when compared with an intercept-only 

model, also called a null model. Three statistical tests can be used to achieve 

this goal; the Likelihood Ratio test, the Score test and the Wald test.  

 

Statistical test of individual predictors: evaluates the significance of the predictor 

variable to the outcome variable. The Wald chi-square statistic test is an 

inferential method in real applications. Sometimes, however, the Wald statistic 

test might fail to reject the null hypothesis for specific predictors, especially 

when the sample size is small (Bewick et al., 2005). This leads to important 

predictors being ignored in the logistic regression model. Therefore, it is good 

to import the result from another test, such as the Likelihood ratio test, to 

strengthen the result from the Wald statistic test.  
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Goodness-of-fit statistics: the Goodness-of-fit statistics assess the logistic 

regression model against actual outcomes. The Cox & Snell R2 and Nagelkerke 

R2  are two descriptive measures of goodness-of-fit of a logistic regression 

model, and the Nagelkerke R2  is often preferred in real applications, as it 

covers the full range from 0 to 1, hence similar to the R2 value (the multiple 

correlation coefficient), which is popularly used in the linear regression analysis. 

 

Validations of predicted probabilities: evaluates the degree of the agreement of 

predicted probabilities against actual outcomes. The Classification table is an 

appropriate method that can be used in this stage. 

 

These stages involve many useful statistical tests, evaluating both the contribution of 

individual predictors and the overall performance of the logistic regression model 

(Bewick et al., 2005). A brief introduction about these tests is provided here. 

 

Score test 

The Score test evaluates whether the inclusion of predictors can improve the model’s 

fit to the actual data, compared with an intercept-only model (a model with a constant 

only). The value of the Score test is obtained by Equation 5.5 (Hosmer and 

Lemesbow, 2000), 

 

                                                       𝑆𝑇 = ∑ (𝑥1,𝑖,…,𝑥𝑘,𝑖)×(𝑦𝑖−𝑦�)𝑛
𝑖=1

�𝑦�×(1−𝑦�)×∑ (�𝑥1,𝑖.,…,𝑥𝑘,𝑖�−�̅�)2𝑛
𝑖=1

 ,                                 ( 5.5)  

 

where y� = n1/nt, in which n1 is the total number of output with value 1, nt is the total 

number of output; x� is the mean value of the predictor.  

 

An easy way to interpret the result from the Score test is to use the two tailed P-value 

based on a chi-square distribution. Its significance is obtained by comparing the P-

value with a particular significance level, such as 5% (0.05) for the 95% confidence 

level. If the P-value is smaller than the selected significance level, it means the Score 

test provides a significant statistical result, and hence indicates that the logistic 
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regression model with predictors shows a better fitting to the data, when compared 

with an intercept-only model. 

 

Wald statistic test (Wald chi-square statistic test) 

The Wald statistic test is based on the Wald statistic calculated for each predictor 

variable in the logistic regression model, in order to test the significance of its 

contribution on the model output. The Wald statistic is defined as the ratio of the 

square of the maximum likelihood estimate of the coefficient of each predictor and its 

Standard Error (S.E.), as represented by Equation 5.6 (Hosmer and Lemesbow, 

2000), 

 

                                                                     𝑊𝑎𝑙𝑑𝑖 = 𝐵�𝑖
2

𝑆𝐸�2(𝐵�𝑖)
 ,                                                 ( 5.6) 

 

The Wald statistic also has a chi-square distribution, the same as in the Score test. 

Therefore, a significant two tailed P-value of a particular predictor reflects that this 

predictor plays an important role in the logistic regression model. Contrary to this, if 

the P-value is insignificant, it indicates that the predictor can be deleted from the 

logistic regression model.   

 

Likelihood ratio test 

The Likelihood ratio test examines whether a (set of) predictor(s) improves the model 

fit to the real data, by comparing the change of -2ln(likelihood ratio) between two 

logistic regression models, one with the predictor(s) and one without. In the 

Likelihood ratio test the change of -2ln(likelihood ratio) is denoted as statistic G, 

which is calculated by Equation 5.7 (Hosmer and Lemesbow, 2000), 

 

       𝐺 = −2𝑙𝑛(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) − (−2𝑙𝑛(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)) , 

( 5.7) 
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As in the Score test and the Wald statistic test, the statistic G also follows a chi-

square distribution, and a significant P-value represents that the predictor is 

important for the logistic regression model.  

 

Nagelkerke 𝐑𝟐 

The Nagelkerke R2 is an adjusted version of the Cox & Snell R2, covering the full range 

from 0 to 1, just like the multiple correlation coefficient used in the classical 

regression analysis (Rao, 1973). It measures the proportion of variance ‘explained’ 

by the logistic regression model, as defined in Equation 5.8 (Nagelkerke, 1991), 

 

                                   𝑅2 = 1 − 𝑒𝑥𝑝 �− 2
𝑛
�𝑙(𝐵�) − 𝑙(0)�� = 1 − �𝐿(0)/𝐿(𝐵�)�2/𝑛𝑡 ,              ( 5.8) 

 

where l(B�) = log L(B�) and l(0) = log L(0); L(B�) and L(0) denote the likelihoods of the 

estimated and the null model, respectively; nt is the total number of samples. 

 

Classification table 

The Classification table is used to validate the predictive performance of the logistic 

regression model against the observed data (Hosmer and Lemesbow, 2000). This 

table contains the statistical results from a cross-classifying of the binary outcomes (0 

or 1), using a dichotomous variable, whose values are generated based on the 

estimated logistic probabilities. To get the values for the dichotomous variable, a 

cutpoint cl is defined and compared with each estimated probability. Commonly, the 

default cutpoint is set as 0.5 in the logistic regression analysis. If the estimated 

probability is higher than cl, then the value of the dichotomous variable is set as 1; 

otherwise, it is set as 0. Finally, the estimated outcome is compared with the actual 

outcome obtained from the field measurement. The evaluation results contain the 

percentages of correct prediction of each low/high outcome conditions and the 

percentage of correct prediction of all samples.  

 

Median effective level (𝐄𝐋𝟓𝟎) 

The Median effect level reflects the value of a predictor at which the predicted 

probability p equals 0.5 (representing 50%), that is, the two possible outcomes are 
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equally likely (Hosmer and Lemesbow, 2000). This value enables a numerical 

comparison between two logistic regression models. For the logistic regression 

model shown in Figure 5.1a, the median effect level of predictor x is 0, at which the 

probability is 0.5. The EL50 can be directly calculated by the intercept, A, and the 

coefficient of the predictor, B, using Equation 5.9,  
 

                                                        𝐸𝐿50 = −𝐴/𝐵,                                                   ( 5.9) 

 

5.2 Model Development 

In this study, the logistic regression analysis was carried out in the IBM SPSS 

Statistics V19 (IBM, 2012). Table 5.1 lists some definitions of parameters that were 

used in the logistic regression analysis.  

 

Table  5.1: Parameter definitions in the logistic regression analysis. 

Name Type Label Values 

WINDOW_POSITION Numeric 
End-of-day window 

position 

  0: Closed 

  1: Open 

TEMP_OUT_DEPARTURE 

(Tout in later equations) 
Numeric 

Outdoor air temperature 

on departure 
  N/A 

GENDER Numeric Male or Female 
  0: Female 

  1: Male 

GFLOOR Numeric 
Ground floor or Non-

ground floors 

  0: Non-ground floor 

  1: Ground floor 

USER_TYPE_SUMMER Numeric 
Type of window user in 

summer 

  0: Habitual closer 

  1: Adjuster 

  2: Leave opener 

USER_TYPE_WINTER Numeric 
Type of window user in 

winter 

  0: Habitual closer 

  1: Intended opener 
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‘Name’ defines the proposed name of the variable that was considered in the logistic 

regression analysis; ‘Type’ defines the type of that variable, for example, numeric, 

string and date; ‘Label’ defines an explanation for a particular variable, acting as a 

reminder of that variable in the analysis procedure; and ‘Values’ defines the values 

for a categorical variable, for example, for the variable GENDER, ‘1’ represents males 

and ‘0’ is for females. 

 

5.2.1 Model development based on whole population 

From the factor analysis carried out in Chapter 4, only one whole-population non-

environmental factor was identified to influence occupants’ choice of end-of-day 

window positions, that is, Season. Therefore, two whole population models can be 

developed, one to represent summer behaviour and the other one for winter 

behaviour. The outdoor air temperature on departure (that is, at the end of the 

working day) is used as a predictor of the window position. The whole population 

models for the summer and winter times are defined by Equation 5.10 and 5.11, 

following the mathematical form defined by Equation 4.2 in Section 4.2 of Chapter 4. 

 

                                             𝑝𝑤ℎ𝑜𝑙𝑒−𝑝𝑜𝑝_𝑠𝑢𝑚𝑚𝑒𝑟 = 𝑒−4.093+0.155×𝑇𝑜𝑢𝑡

1+𝑒−4.093+0.155×𝑇𝑜𝑢𝑡
 ,                              ( 5.10)  

 

                                               𝑝𝑤ℎ𝑜𝑙𝑒−𝑝𝑜𝑝_𝑤𝑖𝑛𝑡𝑒𝑟 = 𝑒−3.413+0.043×𝑇𝑜𝑢𝑡

1+𝑒−3.413+0.043×𝑇𝑜𝑢𝑡
 ,                               ( 5.11) 

 

Important statistical properties of these two logistic regression models are listed in 

Table 5.2. In Figure 5.2, these models are plotted (the summer model is plotted in the 

left hand image as a red solid line; the winter model is plotted in the right hand image 

as a blue solid line), with the observed proportions of windows left open on departure 

against outdoor air temperature on departure. The error bars plotted with the 

observed proportions in Figure 5.2 were calculated by the Adjusted Wald Method 

(Sauro and Lewis, 2005), representing the uncertainty due to the number of samples 

that were used to calculate the probability.     
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(a) Summer logistic regression model (b) Winter logistic regression model 

Figure  5.2: Logistic behaviour models for the summer and winter times with observed 
proportions of windows left open on departure for the whole building. 

 

Table  5.2: Statistical properties of the whole population model. 

 
Whole population model  

(summer) 

Whole population model 

 (winter) 

Score test 

𝛘𝟐 68.754 2.412 

𝐝𝐟 1 1 

P-value 0.000 0.120 

Nagelkerke 𝐑𝟐 statistic 0.074 0.004 

% of correct prediction 74.0% 95.7% 

Variable Tout 
Constant 

(Intercept A)  
Tout 

Constant 

(Intercept A) 

Independent 
variable test 

Coefficient 0.155 -4.093 0.043 -3.413 

S.E. 0.019 0.390 0.028 0.237 

Wald 65.593 110.393 2.411 206.977 

P-value 0.000 0.000 0.121 0.000 

 



90 

 

The observed proportions of windows left open on departure in Figure 5.2a reflect 

that the proportion of windows left open on departure in the summertime is affected 

strongly by the Tout (Wald statistic test: Wald = 65.593, P-value = 0.000; Likelihood 

ratio test: Change in -2Loglikelihood = 70.841, P-value = 0.000), so the available 

data collected from the summer observation period is concentrated on the middle 

part of the developed S-shape logistic regression model (summer). 

 

In Figure 5.2b, however, it can be observed that in winter the observed proportions of 

windows left open on departure are not influenced significantly by the change of the 

outdoor temperature conditions (Wald statistic test: Wald = 2.411, P-value = 0.121; 

Likelihood ratio test: Change in -2Loglikelihood = 2.443, P-value = 0.118). 

Consequently, the available data from the winter observation period is generally 

spread at the lower part of the developed S-shape logistic regression model (winter). 

Although the results from both statistical tests, namely, the Wald statistic test and the 

Likelihood ratio test, reveal that the end-of-day window position in winter is not 

affected strongly by Tout in this model type, this predictor is still kept in the winter 

model, due to its high importance in the prediction of window use. Section 6.1 of 

Chapter 6 will show how the Tout affects occupants’ use of windows in winter.  

 

5.2.2 Model development based on sub-groups  

Section 4.3.5 and 4.3.6 of Chapter 4 have provided evidence that occupants’ choice 

of their end-of-day window positions is dependent on both the gender of the occupant 

and whether they occupy the ground floor. These two sub-group factors can split the 

occupants in a building into four sub-groups, as presented in Table 5.3.  

 

Table  5.3: Sub-groups of building occupants classified by gender and ground floor 

occupancy. 

Factors Males Females 

Ground floor Males on the ground floor Females on the ground floor 

Non-ground floors Males on non-ground floors Females on non-ground floors 
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When both occupant gender and the ground floor are used as predictors, together 

with Tout, to model occupants’ window behaviour, using the dataset obtained in the 

summer survey and winter survey, two sub-group models for different seasons can 

be generated using logistic regression analysis, as defined by Equation 5.12 and 

5.13, 

 

                        𝑝𝑠𝑢𝑏−𝑔𝑟𝑜𝑢𝑝_𝑠𝑢𝑚𝑚𝑒𝑟 = 𝑒−5.085+0.16×𝑇𝑜𝑢𝑡+1.49×𝐺𝐸𝑁𝐷𝐸𝑅−1.35×𝐺𝐹𝐿𝑂𝑂𝑅

1+𝑒−5.085+0.16×𝑇𝑜𝑢𝑡+1.49×𝐺𝐸𝑁𝐷𝐸𝑅−1.35×𝐺𝐹𝐿𝑂𝑂𝑅 ,               ( 5.12)  

 

                           𝑝𝑠𝑢𝑏−𝑔𝑟𝑜𝑢𝑝_𝑤𝑖𝑛𝑡𝑒𝑟 = 𝑒−5.708+0.038×𝑇𝑜𝑢𝑡+3.039×𝐺𝐸𝑁𝐷𝐸𝑅−3.748×𝐺𝐹𝐿𝑂𝑂𝑅

1+𝑒−5.708+0.038×𝑇𝑜𝑢𝑡+3.039×𝐺𝐸𝑁𝐷𝐸𝑅−3.748×𝐺𝐹𝐿𝑂𝑂𝑅 ,           ( 5.13) 

 

Some important statistics of properties of these two logistic regression models are 

listed in Table 5.4.  

 

In Equation 5.12 and 5.13, both GENDER and GFLOOR have significant influence on 

the state of windows, according to the testing results from the Wald statistic test 

(Wald statistic test for summer: Wald = 69.887 for GENDER, P-value = 0.000; Wald = 

55.084 for GFLOOR, P-value = 0.000; Wald statistic test for winter: Wald = 17.880 for 

GENDER, P-value = 0.000; Wald = 13.820 for GFLOOR, P-value = 0.000). 

 

As defined in Table 5.1, GENDER = 1 is for males and GENDER = 0 is for females; 

GFLOOR = 1  represents the ground floor and GFLOOR = 0  represents non-ground 

floors. When these values are substituted into Equation 5.12 and 5.13, particular sub-

models can be obtained for the sub-groups that are defined in Table 5.3, for both 

summer and winter times. These models correlate the end-of-day window position 

with the outdoor air temperature on departure (following the mathematical form 

defined by Equation 4.2 in Section 4.2 of Chapter 4). The coefficients of these sub-

models are summarised in Table 5.5.  
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Table  5.4: Statistical properties of the sub-group model. 

 
Sub-group model  

(summer) 

Sub-group model  

(winter) 

Score test 

𝛘𝟐 174.727 74.304 

𝐝𝐟 3 3 

P-value 0.000 0.000 

Nagelkerke 𝐑𝟐 statistic 0.187 0.162 

% of correct prediction 75.9% 95.7% 

Variable Tout GENDER Tout GENDER 

Independent 
variable test 

Coefficient 0.160 1.490 0.038 3.039 

S.E. 0.020 0.178 0.027 0.719 

Wald 63.906 69.887 1.928 17.880 

P-value 0.000 0.000 0.165 0.000 

Variable GFLOOR 
Constant 

(Intercept A) 
GFLOOR 

Constant 

(Intercept A) 

Independent 
variable test 

Coefficient -1.350 -5.085 -3.748 -5.708 

S.E. 0.182 0.442 1.008 0.738 

Wald 55.084 132.641 13.820 59.899 

P-value 0.000 0.000 0.000 0.000 
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Table  5.5: Coefficients for the sub-models based on 𝑮𝑬𝑵𝑫𝑬𝑹 and 𝑮𝑭𝑳𝑶𝑶𝑹. 

Sub-model A B 

Sub-model for males on the ground floor (summer) -4.945 0.160 

Sub-model for females on the ground floor (summer) -6.435 0.160 

Sub-model for males on non-ground floors (summer) -3.595 0.160 

Sub-model for females on non-ground floors (summer) -5.085 0.160 

Sub-model for males on the ground floor (winter) -6.417 0.038 

Sub-model for females on the ground floor (winter) -9.456 0.038 

Sub-model for males on non-ground floors (winter) -2.669 0.038 

Sub-model for females on non-ground floors (winter) -5.078 0.038 

 

It is worth noting that the sub-models listed in the above table include models for 

females on the ground floor, for both summer and winter times. However, in the field 

survey, no females working on the ground floor of the case study building were 

monitored. Therefore, whether the inclusion of this sub-group population in the 

behaviour models will influence the predictive performances of Equation 5.12 and 

5.13 need to be evaluated. The method used here compares the predictive 

performances (represented by the % 𝑜𝑓 𝐸𝑀𝐷𝑠 introduced in the later Section 5.3) of 

Equation 5.12 and 5.13 with those of the logistic behaviour models developed based 

on particular subsets of the whole data, namely, data collected purely from males on 

the ground floor, from males on non-ground floors and from females on non-ground 

floors. The comparison results reveal that the differences between their predictive 

performances are extremely small (about 0.1% for both summer and winter times). 

Consequently, the missing data from females on the ground floor has no obvious 

influence on the performance of the window behaviour models developed in this 

section.  
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Figure 5.3 plots the window behaviour models for males on the ground floor and non-

ground floors, using the coefficients listed in Table 5.5, and also with the observed 

proportions and the corresponding error bars. The plot shows that the model for 

males on the ground floor is different from the model for males on upper floors, for 

both summer and winter times. The significance of the difference between two 

logistic regression models can be identified by looking at two statistical properties 

from the logistic regression analysis, namely, the P-value of the Wald statistic test 

and the Mean effective level (see Section 5.1 for detail information). The P-value of 

the Wald statistic test reflects the significance of the difference between two or more 

logistic regression models that are classified by a categorical parameter, such as the 

parameter GFLOOR  used in Figure 5.3. The Mean Effective Level is a statistical 

property representing the value of the predictor, at which the predicted probability 

equals 0.5 (50% probability). Therefore, the difference of the mean effective levels of 

two or more logistic regression models can be used to quantify to which degree these 

models are different. In a logistic regression model with only Tout as predictors of 

window positions, the mean effective level represents the temperature at which half 

of the windows are left open on departure, and it is denoted as θ50 in this study. It is 

significant to note that the mean effective level is a property of the logistic regression 

model, so the θ50  calculated in the later analysis could possibly be outside the 

reasonable range of outdoor air temperatures. 

 

  
(a) Summer logistic sub-models (b) Winter logistic sub-models 

Figure  5.3: Logistic behaviour sub-models for male occupants classified by 𝑮𝑭𝑳𝑶𝑶𝑹 

for the summer and winter times, with observed proportions of windows left open on 
departure. 
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As shown in Table 5.4, the P-values of the Wald statistic test for the predictor 

GFLOOR for both summer and winter models are 0.000, representing that the window 

behaviour of occupants on the ground floor is statistically different from that of 

occupants on non-ground floors. To quantify the difference between sub-models, the 

θ50 of each sub-model was calculated and compared. For the summertime, the θ50 is 

30.9°C for males on the ground floor and is 22.5°C for males on non-ground floors, 

with a difference of 8.4°C. For the wintertime, the θ50 is 168.7°C for males on the 

ground floor and is 70.2°C for males on non-ground floors; the difference has 

reached 98.5°C.  

 

Figure 5.4 plots the sub-models for males and females on non-ground floors, 

together with the observed proportions and the corresponding error bars.  

 

  
(a) Summer logistic sub-models (b) Winter logistic sub-models 

Figure  5.4: Logistic behaviour sub-models for occupants on non-ground floors 

classified by 𝑮𝑬𝑵𝑫𝑬𝑹 for the summer and winter times, with observed proportions of 

windows left open on departure. 

 

From Figure 5.4 an obvious behavioural difference between males and females (on 

non-ground floors only) can be observed, for both summer and winter times. As for 

male occupants on different floors, the P-value of the Wald statistic test and the θ50 

of each sub-model are used here to identify the significance of the behavioural 

difference between males and females, on non-ground floors. For both summer and 

winter times, the P-values of the Wald statistic test for the predictor GENDER are 

0.000, reflecting that the window behaviours between males and females are 
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significantly different from a statistical view point. For the summertime the sub-model 

for males on non-ground floors has a θ50 of 22.5°C, and this value is 31.8°C for 

females on non-ground floors, with a difference of nearly 10.0°C. For the wintertime, 

the θ50 is 70.2°C for males and 133.6°C for females, all on non-ground floors, and 

the difference is higher than 60.0°C. 

 

5.3 Model Validation 

In the Section 5.2.1 and 5.2.2 above, whole population models and models based on 

sub-groups have been presented separately, based on data collected from the case 

study building (as introduced in Section 3.2 of Chapter 3). Outdoor air temperature 

has been used as a dependent variable. The data and subsequent models have 

been classified by season, gender and floor level. The dataset that was used to 

develop window behaviour models is regarded as a model development dataset.  

 

In order to validate the performance of these window behaviour models, a second 

survey was carried out in the same case study building, establishing a new dataset 

for the validation of the models developed in this study, named as the model 

validation dataset. The model validation dataset contains data that was collected 

between 20th June and 18th September in the summer of 2011, and between 17th 

January and 24th March in the winter of 2012. Table 5.6 lists some properties of the 

model validation dataset and the model development dataset, for both summer and 

winter times. For the summertime, the model development dataset and the model 

validation dataset were collected almost at the same period of the year, that is, from 

the end of June to the end of September. They covered similar ranges of ambient 

temperature when occupants left their offices at the end of working days. In addition, 

the temperature range of the model validation dataset is within the range of that of 

the model development dataset. The wintertime temperatures are also comparable, 

and the model validation can encompass the conditions when the outdoor air 

temperature on departure is above 0°C. 
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Table  5.6: Properties of the model development dataset and the model validation 

dataset, for both summer and winter times. 

Summertime 

 Model development dataset Model validation dataset 

Observation period 20/06/2010 to 30/09/2010 20/06/2011 to 18/09/2011 

No. of working days 72 63 

No. of sample-days 1360 1130 

Range of outdoor air 
temperature on departure 

11.3°C – 26.9°C 13.0°C – 26.2°C 

Wintertime 

 Model development dataset Model validation dataset 

Observation period 01/11/2010 to 25/03/2011 17/01/2012 to 24/03/2012 

No. of working days 76 46 

No. of sample-days 1842 1089 

Range of outdoor air 
temperature on departure 

-4.4°C – 16.2°C 0.1°C – 15.9°C 

 

In this study, the predictive performance of the developed window behaviour models 

was evaluated by a parameter called the percentage of exact matched days, noting 

as a % of EMDs. Table 5.7 lists four possible relationships between the predicted end-

of-day window position and the observed end-of-day window position. These four 

relationships are then categorised into two groups to represent the possible 

prediction result for each prediction day, that is, either a correct predicted day or an 

incorrect predicted day. A correct predicted day means that the predicted end-of-day 

window position is the same as the observed end-of-day window position, that is, 

both of them are open or both are closed. Conversely, an incorrect predicted day 

indicates that the predicted end-of-day window position is different from the observed 

end-of-day window position, namely, the predicted end-of-day window position is 

open but the observed end-of-day window position is closed, or vice versa.  
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Table  5.7: Possible combinations of the predicted and the observed end-of-day window 

positions with the categorised prediction result. 

Observed position  

(1 for open; 0 for closed) 

Predicted position 

(1 for open; 0 for closed) 

Prediction result 

1 1 
Correct predicted day 

0 0 

1 0 
Incorrect predicted day 

0 1 

  

Based on the categorised prediction results that are listed in Table 5.7, the 

% of EMDs for the whole prediction is calculated by Equation 5.14, 

 

                                                     % 𝑜𝑓 𝐸𝑀𝐷𝑠 = 𝑛𝑐
𝑛𝑡

 ,                                              ( 5.14) 

 

and the two values, nc and  nt, have the following relationship, 

 

                                                         𝑛𝑡 = 𝑛𝑐 + 𝑛𝑖𝑛,                                                ( 5.15) 

 

where,  

 nc is the number of Correct predicted days ( − ); 

 nin is the number of Incorrect predicted days ( − ); 

 nt is the total number of prediction days ( − ). 

 

5.3.1 Stochastic prediction of window state 

In order to validate the window behaviour models, a stochastic approach to 

reproduce the observed end-of-day window positions is required. The stochastic 

approach applied here combines the Bernoulli process and the inverse function 

method.  
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The Bernoulli process (Bertsekas and Tsitsiklis, 2002) has been adopted widely in 

previous studies (Haldi and Robinson, 2009a, Rijal et al., 2007), as it is a discrete-

time stochastic process dealing with a sequence of binary random variables. This 

method is considered to be more suitable for this study, rather than the Markov 

process. This is because the modelling based on Bernoulli processes makes 

behavioural comparisons between individual occupants easier. For each occupant, 

the Markov process models his/her window behaviour with a consideration of two 

behavioural aspects (behaviour on opening a window and behaviour on closing a 

window), whilst the Bernoulli process only considers one behavioural aspect, that is, 

the state of windows.     

 

In a Bernoulli process, all Bernoulli variables denoted as Xt , for time points t =

{1, … , n}, are identical and independent, which means that one specific variable in a 

Bernoulli process is not influenced by other variables in the process. For each t, 

Xt ∈ {0,1}, and P(Xt = 1) = p. A mathematical expression of the Bernoulli process is 

represented by Equation 5.16, 

 

                 𝑃(𝑋𝑖+1 = 𝑠𝑖+1|𝑋𝑖 = 𝑠𝑖, 𝑋𝑖−1 = 𝑠𝑖−1, … ,𝑋1 = 𝑠1) = 𝑃(𝑋𝑖+1 = 𝑠𝑖+1) = 𝑝 ,     ( 5.16)  

 

where  i = {0, … , t − 1}, representing each step in the Bernoulli process, and s is the 

outcome state of each time step. In building performance simulation, the process P 

can be considered as the dynamic time series of the simulation period.  

 

The independence of all Bernoulli variables implies that the Bernoulli process is 

memoryless: the next state, si+1, is only dependent on the condition at that particular 

state, without any consideration of the current state and past states. This 

memoryless property is considered to be suitable for this study, as the prediction 

process considered in this study is not built on a continuous time scale (only treating 

the state of windows at the end of the day).    

 

The prediction of the end-of-day window position for each time step within the 

Bernoulli process is achieved by the inverse function method (Fritsch et al., 1990), 

using the modelled probability distribution functions generated by the logistic 
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regression analysis. In this method a random number generator with a uniform 

distribution between 0 and 1 (U(0,1)) is needed. For every time step in the prediction, 

the generated random number, which is between 0 and 1, is compared with the 

probability distribution functions. If the random number is within the range of the 

probability of a window to be left open on departure, the end-of-day window position 

is set as open for that time step; otherwise it is set as closed.  

 

A computational algorithm predicting the end-of-day window position has been 

implemented in Matlab (Matrix Laboratory) and is described here: 

 

Stage 1: Initialisation 

 Set the initial end-of-day window position for the prediction day: State = 0 (1: 

window open and 0: window closed) 

Stage 2: Reading inputs  

 Read essential inputs requested by the logistic behaviour model for the 

prediction day 

Stage 3: Probability calculation and Random number generation 

 i. Calculate the probability of windows left open on departure by substituting the 

essential inputs obtained in Stage 2 into the logistic behaviour model (popen) 

 ii. Generate a random number following prandom~U[0,1] (prandom) 

Stage 4: Evaluation 

 Determine the end-of-day window position based on the following criteria 

  a. IF prandom ≤ popen , THEN the end-of-day window position for the 

prediction day is set as open  

  b. OTHERWISE, the end-of-day window position for the prediction day is 

set as closed  
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Stage 5: Prediction forward 

 Repeat Stages 1 to 4 for the next prediction day until it reaches the end of the 

prediction process 

 

Stage 1 is purely initialisation. Stage 2 reads input variables that are obtained from 

either building performance simulation (if the algorithm is embedded in the simulation 

process), or from a predefined file (if the algorithm is working as a third party tool for 

the simulation process). The latter method is adopted in this study. In Stage 3, two 

numerical values are generated. The first value is the probability of the window to be 

left open on departure for the prediction day (popen), calculated by substituting the 

essential inputs obtained in Stage 2 to the logistic behaviour model. The second 

value is a random number (prandom), which is generated stochastically based on a 

continuous uniform distribution from 0 to 1 (Park and Bera, 2009). In Stage 4, the 

end-of-day window position is predicted/determined according to the relationship 

between popen and prandom, that is, if prandom ≤ popen, then the end-of-day window 

position for this prediction day is set as open; OTHERWISE, it is set as closed. 

Apparently, a higher popen provides a higher probability to set the window state as 

open in the prediction. Finally, in Stage 5, the prediction process checks whether the 

prediction has reached the end, and, if not, the process will move to the next 

prediction day.  

 

5.3.2 Validation of summertime models 

Figure 5.5 compares the % of EMDs, when the whole population model and the sub-

group model developed for the summertime are used to reproduce the observed end-

of-day window position, in both the model development dataset and the model 

validation dataset, for the summertime.  
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Figure  5.5: Validation results for the whole population model and the sub-group model 
(summer). 

 

Figure 5.5 shows that the two window behaviour models developed in Section 5.2.1 

and 5.2.2 for the summertime provide consistent prediction results using the two 

different datasets (the variations of the % of EMDs between the two datasets are all 

less than 3%), when all sample-days from the field studies are considered. This 

implies that the whole population model, and the sub-group model, for the 

summertime have captured the underlying nature of occupants’ behaviour on the 

end-of-day window position.   

 

Usually, when validating a model, it would be expected that the prediction result 

based on the data used to develop the model would be better than the prediction 

based on the validation dataset. However, this is not the case in this study, as the 

model appears to represent the validation dataset better. In Table 5.8, it can be seen 

that for both models, the predictions for Habitual closers are similar for both datasets. 

The predictions for Adjusters and Leave openers, however, appear to be better for 

the validation dataset (generally greater than 1%). Figure 5.6 illustrates the whole 

population model (red-solid line) and the observed proportions of windows left open 

on departure for both the Adjuster and Leave opener groups. It can be seen that the 

observed proportions in the model validation dataset (blue stars) are closer to the 

whole population model, when compared with the observed data used to train the 
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model (black crosses). This causes the reported results to appear to be counter 

intuitive. This explanation also applies to the sub-group models. 

 

Table  5.8: Predictive performances of the whole population model and the sub-group 

model for different types of window users for summer. 

 

% of EMDs for Habitual closers 

 

 Whole population model Sub-group model 

Model development 
dataset 

73.5% 76.4% 

Model validation 
dataset 

73.5% 76.0% 

 

% of EMDs for Adjusters 

 

 Whole population model Sub-group model 

Model development 
dataset 

55.1% 56.5% 

Model validation 
dataset 

58.7% 58.6% 

 

% of EMDs for Leave openers 

 

 Whole population model Sub-group model 

Model development 
dataset 

35.3% 43.4% 

Model validation 
dataset 

41.0% 47.9% 
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(a) Adjusters  (b) Leave openers  

Figure  5.6: The whole population model with the observed proportions of windows left 

open on departure in two datasets for different window users in summer. 

 

 

Figure  5.7: Validation results for the whole population model and the sub-group model 

(winter). 

 

5.3.3 Validation of wintertime models 

Figure 5.7 compares the predictive performances of the whole population model and 

the sub-group model that were developed for the wintertime. The figure shows that 

the whole population model and the sub-group model for the wintertime also provide 

almost equivalent prediction results, based on both the model development dataset 

and the model validation dataset. The variations of the % of EMDs  for the two 
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datasets are less than 3%, when all occupants are considered as a whole. Here it is 

considered that the developed models for the wintertime have captured the 

underlying nature of occupants’ choice of end-of-day window positions. 

 

5.4 Summary 

In this chapter two window behaviour models have been generated, one based on 

whole building population and the other one based on sub-groups within the building. 

Models were generated for summer and winter times, respectively, using statistical 

methods. Both models have been validated with a new dataset established by a 

following-year data collected from the case study building, and have been shown to 

capture the underlying nature of occupants’ behaviour of window operation. These 

models represent current practice and provide the basis on which to evaluate the 

preference-based approach described in the following chapter. 
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 MODEL DEVELOPMENT BASED ON PERSONAL 6.

PREFERENCE 

 

It was shown in Section 4.4 of Chapter 4 that occupants’ personal preference relating 

to window use plays a role in determining the end-of-day window position, beyond 

the influences of occupant gender and floor level. Also in that section, three types of 

window users, namely, Habitual closers, Adjusters and Leave openers, were defined 

for the summertime, and two types of window users, namely, Habitual closers and 

Intend openers, were defined for the wintertime. These classifications were based on 

the observed behaviour for each office falling into one of these categories, defined by 

a temperature threshold and on the probability of an event occurring (either windows 

being open or closed). 

 

In Chapter 5 two window behaviour models were generated, using the current 

modelling approaches, that is, based on the whole building population and grouping 

data from sub-groups for the modelling. As occupants’ observed preference has 

been demonstrated to influence window behaviour, beyond the factors that are used 

in the current modelling approaches, it is important to evaluate whether grouping the 

monitored data based on personal preference increases the accuracy of modelling 

window behaviour. In Section 6.1, therefore, a window behaviour model based on 

occupants’ personal preference and outdoor air temperature is developed, for the 

summer and winter times, respectively, and validated. Section 6.2 evaluates the 

performance of the new modelling approach with conventional approaches. Section 

6.3 discusses the advantages and limitations of modelling the end-of-day window 

position using a preference-based approach. 
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6.1 Model Development and Validation 

6.1.1 Model development 

Logistic regression models are characterised using the classified data, with outdoor 

air temperature as a driving variable, and splitting the data into winter and summer 

subsets. Equations 6.1 and 6.2 define the preference model for the summer and 

winter times, respectively, using parameters that are defined in Table 5.1 in Section 

5.2 of Chapter 5. 

 

𝑝𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑢𝑚𝑚𝑒𝑟 = 𝑒−8.582+0.244×𝑇𝑜𝑢𝑡+3.632×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑆𝑈𝑀𝑀𝐸𝑅(1)+5.946×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑆𝑈𝑀𝑀𝐸𝑅(2)

1+𝑒−8.582+0.244×𝑇𝑜𝑢𝑡+3.632×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑆𝑈𝑀𝑀𝐸𝑅(1)+5.946×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑆𝑈𝑀𝑀𝐸𝑅(2) , 

                                                                     ( 6.1) 

 

                      𝑝𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑤𝑖𝑛𝑡𝑒𝑟 = 𝑒−5.712+0.105×𝑇𝑜𝑢𝑡+6.074×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑊𝐼𝑁𝑇𝐸𝑅

1+𝑒−5.712+0.105×𝑇𝑜𝑢𝑡+6.074×𝑈𝑆𝐸𝑅_𝑇𝑌𝑃𝐸_𝑊𝐼𝑁𝑇𝐸𝑅 ,                ( 6.2) 

 

According to the definitions in Table 5.1, the variable USER_TYPE_SUMMER defines 

the three types of window users in the summertime, namely, Habitual closers, 

Adjusters and Leave openers. To classify these three user types in one logistic 

model, two dummy variables, USER_TYPE_SUMMER(1) and USER_TYPE_SUMMER(2), 

are generated in Equation 6.1, following the definitions in Table 6.1. 

 

Table  6.1: Definitions of dummy variables for the 𝑼𝑺𝑬𝑹_𝑻𝒀𝑷𝑬_𝑺𝑼𝑴𝑴𝑬𝑹. 

 𝐔𝐒𝐄𝐑_𝐓𝐘𝐏𝐄_𝐒𝐔𝐌𝐌𝐄𝐑(𝟏) 𝐔𝐒𝐄𝐑_𝐓𝐘𝐏𝐄_𝐒𝐔𝐌𝐌𝐄𝐑(𝟐) 

Habitual closers 0 0 

Adjusters 1 0 

Leave openers 0 1 

 

Some important statistics of properties of these two logistic regression models are 

listed in Table 6.2. 
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Table  6.2: Statistical properties of the Preference model. 

 
Preference model 

(summer) 

Preference model  

(winter) 

Score test 

𝛘𝟐 626.683 1102.046 

𝐝𝐟 3 2 

P-value 0.000 0.000 

Nagelkerke 𝐑𝟐 statistic 0.600 0.656 

% of correct prediction 87.0% 98.0% 

Variable Tout 
Constant 

(Intercept A) 
Tout 

Constant 
(Intercept A) 

Independent 
variable test 

Coefficient 0.244 -8.582 0.105 -5.712 

S.E. 0.027 0.628 0.041 0.452 

Wald 81.191 186.757 6.520 159.886 

P-value 0.000 0.000 0.011 0.000 

Variable USER_TYPE_SUMMER(1) USER_TYPE_WINTER 

Independent 
variable test 

Coefficient 3.632 6.074 

S.E. 0.255 0.390 

Wald 202.135 242.401 

P-value 0.000 0.000 

Variable USER_TYPE_SUMMER(2) N/A 

Independent 
variable test 

Coefficient 5.946 N/A 

S.E. 0.362 N/A 

Wald 269.708 N/A 

P-value 0.000 N/A 
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From the P-values of the Wald statistic test, it can be found that personal preference 

performs a significant contribution to the binary outcome, that is, end-of-day window 

position (either open or closed), for both winter and summer times (Wald statistic test 

for summer: Wald = 202.135 for USER_TYPE_SUMMER(1), P-value = 0.000; Wald = 

269.708 for USER_TYPE_SUMMER(2), P-value = 0.000; Wald statistic test for winter: 

Wald = 242.401 for USER_TYPE_WINTER, P-value = 0.000).  

 

According to the definitions in Table 6.1, for the summertime: 

 

• when both USER_TYPE_SUMMER(1)  and USER_TYPE_SUMMER(2)  are 0, the 

window behaviour model is for Habitual closers;  

 

• when USER_TYPE_SUMMER(1) = 1 and USER_TYPE_SUMMER(2) = 0, it is for 

Adjusters; and,  

 

• when USER_TYPE_SUMMER(1) = 1 and USER_TYPE_SUMMER(2) = 1, it is for 

Leave openers.  

 

For the wintertime, as defined in Table 5.1 in Section 5.2 of Chapter 5, 

USER_TYPE_WINTER = 1  represents Intend openers and USER_TYPE_WINTER = 0 

means Habitual closers (according to the definitions in Table 5.1). After substituting 

these values into Equation 6.1 and 6.2, particular sub-models are obtained for each 

type of window users, correlating their window behaviour with the outdoor air 

temperature on departure (following the mathematical form defined by Equation 4.2 

in Section 4.2 of Chapter 4). The coefficients of these sub-models are summarised in 

Table 6.3. 
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Table  6.3: Coefficients for the sub-models based on window user type. 

Sub-group model A B 

Sub-model for Habitual closers (summer) -8.582 0.244 

Sub- model for Adjusters (summer) -4.950 0.244 

Sub-model for Leave openers (summer) -2.636 0.244 

Sub-model for Habitual closers (winter) -5.712 0.105 

Sub-model for Intend openers (winter) 0.362 0.105 

 

The development of the above preference model was based on the whole dataset, 

combining the data from different sub-groups of the whole building population. This 

combination enables the later comparison among the three developed models as 

they are developed using the same dataset. However, it ignores the influences of 

sub-group factors, such as GENDER and GFLOOR, on the modelling accuracy. This 

data combination was based on an assumption that the window use patterns of the 

same type of window user were similar, regardless of their gender or their location 

within the building. For example, Habitual closers of males on non-ground floors have 

similar window use patterns when compared with those of females on non-ground 

floors. This assumption had been validated to be reasonable by comparing the 

behavioural difference of each type of window user in different sub-groups, either 

males on the ground floor, males on non-ground floors or females on non-ground 

floors. Logistic regression analysis was used, and the results shown that GENDER 

and GFLOOR had no statistical merit on the modelling.  

  

Figure 6.1 plots the sub-models for various types of window users in the same 

diagram (the summer models are plotted in the left hand image; the winter models 

are plotted in the right hand image), in order to visualise the influence of personal 

preference on window behaviour; with the observed proportions and the 

corresponding error bars representing the uncertainty due to the number of samples 

used for the proportion calculation. 

 



111 

 

  
(a) Summer logistic regression models (b) Winter logistic regression models 

Figure  6.1: Sub-group models for various types of window users for the summer and 

winter times with observed proportions of windows left open on departure. 

 

Comparisons between the sub-models shown in the above figure reveal clearly 

different window use patterns between various types of window users, for both 

summer and winter times. As for the sub-group model discussed in Section 5.2 of 

Chapter 5, the P-value of the Wald statistic test and the models’ θ50 (the Median 

effective level of the sub-models) are used to identify the significance of the 

behavioural difference between types of window users. For the summertime, the P-

values of the Wald statistic test for both USER_TYPE_SUMMER(1)  and 

USER_TYPE_SUMMER(2) are 0.000, reflecting the window behaviour for the classified 

types of window users is statistically different. In order to quantify this difference, the 

θ50  of the logistic regression models for Habitual closers, Adjusters and Leave 

openers were calculated individually, for the summertime. These are 35.2°C, 20.3°C 

and 10.8°C, with minimum temperature difference of 9.5°C. For the wintertime, the P-

value of the Wald statistic test for USER_TYPE_WINTER is 0.000, demonstrating that 

the window behaviour of Habitual closers is statistically different from that of Intend 

openers. In addition, the θ50 of the logistic regression model for Habitual closers in 

winter is 54.4°C, whilst it is -3.4°C for Intend openers; indicating significantly large 

temperature differences.     
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6.1.2 Model validation  

Figure 6.2 and 6.3 compare the % of EMDs when the preference models are used in 

the statistical approach, introduced in Section 5.3.1 of Chapter 5, to reproduce the 

observed end-of-day window positions in both the model development dataset and 

the model validation dataset, for the summer and winter times, respectively.  

 

 

Figure  6.2: Validation result for the preference model (summer). 

 

 

Figure  6.3: Validation results for the preference model (winter). 
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The above comparisons show that both models provide almost equivalent prediction 

results using the two different datasets (the variations of the % of EMDs between the 

two datasets are all less than 1%), when all sample-days from the field studies are 

considered. This implies that the preference model developed for both summer and 

winter times have captured the underlying nature of occupants’ behaviour on the 

end-of-day window position, the same as the two models developed in Chapter 5.   

 

6.2 Comparison of Performance 

The importance of this chapter is to evaluate whether grouping the data based on 

personal preference when modelling window behaviour helps to increase the 

modelling accuracy, compared with other grouping strategies, that is, considering the 

building population as a whole or using sub-groups. In this section, therefore, the 

predictive performance of the preference model developed in this chapter is 

compared with the predictive performances of the two window behaviour models 

developed in Chapter 5, for both model development and validation datasets. The 

comparison for the summertime is shown in Figure 6.4 and the one for the wintertime 

is shown in Figure 6.5. 

 

 

Figure  6.4: Model comparisons for the summertime.  
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Figure  6.5: Model comparisons for the wintertime. 

 

For the summertime it can be seen that the preference model performs much better 

than the whole population model and the sub-group model, showing an increase of 

more than 14% of % of EMDs based on the model development dataset and more 

than 11% of % of EMDs  based on the model validation dataset. It can also be 

observed that the sub-group model provides a better prediction result when 

compared with the whole population model, but the improvement seems to be 

moderate; a 3% improvement on the % of EMDs based on the model development 

dataset and 1.9% improvement based on the model validation dataset. Similar 

conclusions can be obtained for the wintertime, as shown in Figure 6.5.  

 

6.3 Summary 

In this chapter the preference-based modelling approach was introduced and the 

models were generated, based on occupants’ personal behavioural preference 

classified in Section 4.4 of Chapter 4. The validation results demonstrated that the 

preference model had captured the underlying nature of occupants’ behaviour on the 

end-of-day window position, for both summer and winter times.  
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A model comparison was performed between the preference model and the two 

window behaviour models developed in Chapter 5. The comparison results revealed 

that the preference model had a better performance on predicting the observed end-

of-day window positions, when compared with the other two behaviour models, for 

both summer and winter times. Hence, classifying the data in this way better 

describes the characteristics of the end-of-day window position, than more common 

approaches employed currently.  

 

In real practice personal preference is not a known aspect of an individual’s 

behaviour, unlike the factors that are used in the other two approaches. Currently, 

researchers have used various methods to classify building occupants with respect to 

their frequency of using windows, either deduced by real measured data (Haldi and 

Robinson, 2009b, Yun et al., 2009) or by occupants’ self-statement (Rijal et al., 2007). 

Thus, the development of a standard method to classify window users in terms of 

‘personal preference’ is still required. In this thesis, whilst the author has provided a 

method for classifying occupants’ window use based on the measured data to 

determine personal preferences, a practical approval still needs to be devised and 

validated in future studies.  
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 MODEL IMPLEMENTATION 7.

 

In Chapter 5 and Chapter 6, three window behaviour models, a whole population 

model, a sub-group model and a preference model, were established, using different 

grouping strategies of building occupants in the modelling. For both summer and 

winter periods the preference model can better reproduce the monitored state of 

windows, when compared with the other two models. In this chapter these three 

models are applied within a practical building simulation context. This is to 

demonstrate the impact of using window behaviour models developed by various 

grouping strategies on the predicted performance of a building.  

 

Section 7.1 introduces the analysis problem, including the example building, whose 

energy performance is predicted by the three window behaviour models, respectively, 

for the approach comparison, and the outdoor weather data chosen for the prediction. 

In this study the energy performance of the example building is predicted using a 

building ventilation model, which is introduced in Section 7.2. As described at the last 

part of Chapter 6, personal preference is in practice not generally a commonly known 

factor about a building occupant. Therefore, in Section 7.3, a preference-based 

prediction method is developed and introduced, enabling a suitable allocation of 

behavioural preference to the occupant of each room involved in the prediction. 

Section 7.4 and 7.5 evaluate the impact of using the models developed by different 

grouping strategies of building occupants on the prediction result, from two aspects. 

Firstly, influence on individual rooms, and secondly, influence on rooms occupied by 

sub-groups. This is utilised when comparing the predicted energy performance of the 

building using the three developed window behaviour models for different prediction 

scenarios. A summary is provided in Section 7.6.  

 

7.1 Analysis Problem 

7.1.1 Example building 

Most existing window behaviour studies used a single room in the simulation to 

demonstrate the implementation of their models. This is mainly because the 

researchers in those studies were interested in presenting the algorithm of their 
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window prediction, rather than in comparing the predicted performance of individual 

rooms. This chapter, however, aims to demonstrate that if the window behaviour 

model in the simulation procedure is allocated to each particular room based on 

personal preference, rather than for the whole population or sub-groups within it, 

what the impact will be on the predicted performance of buildings. Therefore, an 

example building with 20 single-cell offices is established, as shown in Figure 7.1, 

similar to the case study building that was used to collect the data for both model 

development and validation.  

    

 
Figure  7.1: An example building for model implementation. 

 

The 20 single-cell offices are spread equally on two floors, with similar construction 

conditions. In each single office (length: 5m; width: 5m; height: 4m), there is a 

1𝑚 × 1𝑚 side-hung weather strapped casement window located at the middle of the 

west wall, with a maximum opening angle of 30°.  

 

It is assumed that only one person is working in each office, and his/her working 

hours are from 08:00 to 18:00 from Monday to Friday.  

 

In the summertime, the building adopts a natural ventilation strategy and the heating 

system is always off. Night ventilation is available in this building by leaving windows 

open when departing offices at the end of the working day. There is no mechanical 

system in this building to control the opening and closing of the office windows. They 

are controlled manually by the room occupants and hence the window behaviour 

models developed in Chapter 6 and Chapter 7 can be used to determine the end-of-

day position of the windows in the building. The determination of the end-of-day 

window position follows the rule that, if the room occupant is present during the day 
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time, the state of the window during the night-time is determined by the developed 

window behaviour models, based on the stochastic approach introduced in Section 

5.3.1 of Chapter 5. If the room is unoccupied during the day, the end-of-day window 

position for that day remains that from the previous day. 

 

7.1.2 Outdoor weather data 

Outdoor weather data is a crucial element of dynamic building performance 

simulation. The outdoor air temperature used here was obtained from available 

weather data in IES VE, a commercial building performance simulation package (IES, 

2012), for London Heathrow, UK (51.48°N, 0.45°W, alt.24m). The model 

implementation considered a summer month, in order to investigate the influences of 

different prediction approaches on building performance simulation with night 

ventilation. As one of the main purposes of applying night ventilation is to reduce the 

overheating risk during the daily working hours, the month with the highest average 

outdoor air temperature during the working hours (08:00 to 18:00) was selected for 

the model implementation, as shown in Figure 7.2.  

 

 
Figure  7.2: Average outdoor air temperatures during the occupied hours by month. 
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7.2 Steady-state Ventilation Model 

A steady-state ventilation model is established here, and is used to predict the 

energy performance of the example building, based on the predicted state of 

windows by the three window behaviour models. This model estimates the extracted 

cooling energy from the outdoor environment when the room is unoccupied during 

the night-time. Two equations are used to calculate the ventilation through a window. 

One is for the condition with an open window and the other one is for the condition 

with a closed window. To simplify the calculation, only the buoyancy-driven air 

exchange between indoors and outdoors is considered here. Under this condition, 

the ventilation rate through an open window can be determined by Equation 7.1 

(CIBSE, 2006),   

 

                                                   𝑄 = 𝐴𝑜𝑝𝑒𝑛×𝐶𝑑
3

�𝑔×ℎ×∆𝑇
𝑇�

 ,                                           ( 7.1) 

 

where, 

 Q is the air rate through the opening, in cubic metres per second ( m3/s ); 

 Cd is the discharge coefficient of the opening ( − ); 

 Aopen   is the flow area through the opening, in square metres ( m2 ); 

 g   is the gravitational acceleration, in metres per square second ( 9.81m/s2); 

 h   is the total height of the opening, in metres ( m ); 

 ∆T   is the temperature difference between indoors and outdoors, in degrees 

Celsius ( ℃ ); 

 T�   is the mean temperature of indoors and outdoors, in degrees Celsius 

( ℃ ). 

 

The deduction of Equation 7.1 from basic ventilation equations is provided in 

Appendix B.  

 

When the window is closed, the air exchange between indoors and outdoors is 

achieved mainly by infiltration through the cracks along the window perimeters. The 

infiltration rate is calculated by (CIBSE, 2006), 
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                                                     𝑞𝑣𝑐 = 𝐼𝑐 × 𝑘𝑙 × (∆𝑝)𝑛𝑒 ,                                        ( 7.2)  

 

where, 

 qvc is the volumetric flow rate through the crack, in litres per second ( L/s ), 

and 1L/s = 0.001m3/s; 

 Ic   is the total length of the crack, in metres ( m ); 

 kl   is the flow coefficient per unit length of the crack, in litres per second 

metre pascal ( L/(s ∙ m ∙ Pa−n) ); 

 ne is the flow exponent ( − ). 

 

The pressure difference ∆p in Equation 7.2 is determined by (CIBSE, 2006), 

 

                                     ∆𝑝 = 𝜌0 × 𝑔 × 273 × ℎ × � 1
𝑇𝑎𝑜+273

− 1
𝑇𝑎𝑖+273

� ,                      ( 7.3)    

 

where, 

 ρ0   is the density of air at 0°C, in kilograms per cubic metre ( 1.292kg/m3 ); 

 

However, as Equation 7.3 is used for the application with two vertically displaced 

openings at a certain distance h, driven by stack effect, it is suitable for the flow rate 

calculation for the upper edge and lower edge of the window. When this equation is 

applied to the left and right edges, it will overestimate the ventilation rate because the 

height difference on those two edges is generally smaller than the total height of the 

window. However, if the left and right edges are not considered in the calculation, the 

ventilation rate will be underestimated. The method adopted here, to balance this 

effect on the calculated ventilation rate, is to average the calculation results with and 

without the left and right edges of the window.      

 

The estimated daily cooling energy extracted by the night ventilation, Hc (kWh), is 

determined by Equation 7.4 (Moss, 1998),  

  

                                                𝐻𝑐 = 𝑚 × 𝐶𝑎 × 𝑑𝑡 × 𝑡𝑖𝑚𝑒 ,                                        ( 7.4) 
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where, 

 m is the mass transfer of air through the building by natural ventilation, in 

kilograms per second ( kg/s ); 

 Ca   is the specific heat capacity of air, in kilojoules per kilogram Kelvin 

( kJ/(kg ∙ K) ); 

 dt   is the average temperature difference between indoors and outdoors over 

the night, in Kelvins ( K ); 

 time is the number of hours during the unoccupied night-time ( − ). 

 

In Equation 7.4, the mass transfer of air through the opening by natural ventilation is 

calculated by (Moss, 1998), 

 

                                                            𝑚 = 𝑄 × 𝜌 ,                                                   ( 7.5) 

 

where ρ is the density of air in (kg/m3). The average temperature difference between 

indoors and outdoors over the night is calculated by the log mean temperature 

difference, defined by Equation 7.6 (Moss, 1998), 

 

                              𝑑𝑡 = 𝐿𝑀𝑇𝐷 = (𝑑𝑡𝑚𝑎𝑥 − 𝑑𝑡𝑚𝑖𝑛)/𝑙𝑛 (𝑑𝑡𝑚𝑎𝑥/𝑑𝑡𝑚𝑖𝑛) ,                      ( 7.6)      

                   

where, 

 dtmax   is the maximum temperature difference of indoors and outdoors during 

the night, in Kelvins ( K ); 

 dtmin is the minimum temperature difference of indoors and outdoors during the 

night, in Kelvins ( K ). 

 

Equation 7.4 calculates the extracted cooling energy from the outdoor environment 

through a one-night period. In this study, the total extracted cooling energy, from 

each room, during the night-time in the simulated summer month was calculated, and 

used to reflect the contribution of night ventilation to the energy performance of each 
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individual room in the simulation. The calculations were based on a number of 

assumptions: 

 

• the design indoor air temperature was assumed to be 25°C and the design 

outdoor air temperature was chosen to be the average outdoor air 

temperature during the night-time, that is, between 18:00 and 08:00 + 1 day;  

 

• the lowest indoor air temperature during the night-time was assumed as 21°C 

when the office window was left open on departure, and as 23°C when the 

office window was closed during the night-time, and this temperature was 

proposed to occur at 08:00, which was the end of the night-time period; 

 

• the discharge coefficient of the opening was Cd = 0.61;  

 

• the total length of the crack for infiltration was Ic = 4m, the perimeter of the 

window;  

 

• the flow coefficient per unit length of the crack was kl = 0.21L/(s ∙ m ∙ Pa−n𝑒), 

where 𝑛𝑒 is flow exponent introduced in Equation 7.2; and, 

 

• the number of hours during the unoccupied night-time was time = 14hours, 

from 18:00 to 08:00 + 1 day.  

  

7.3 Allocation of Preference Models  

An occupant’s personal preference with regard to window operation is not generally 

available in practice, so a key challenge before the simulation is to determine suitably 

which person has which window behavioural type and in which room they are to be 

located. To achieve this task, a preference-based prediction approach is developed 

here, enabling the allocation of one of three window behavioural types, that is, 

Habitual closers, Adjusters and Leave openers, to each individual room in the 
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example building in the simulation procedure, thus allowing the preference model to 

be used.  

 

Figure 7.3 proposed a tree structure, showing various populations classified by the 

non-environmental factors identified in this study, namely, occupant gender, the 

ground floor and personal preference, for the summertime.  

 

 

Figure  7.3: A hierarchy of building population classification based on window 

behaviour. 

 

The effect of sub-group factors, such as occupant gender and the ground floor, is 

represented by the second tier populations and the effect of personal preference is 

reflected by the third tier, beyond the effect of whole population and sub-group 

factors. Therefore, in each sub-group classified by sub-group factors, occupants can 

be further classified into Habitual closers, Adjusters and Leave openers, based on 

their personal preference of window use. The field data described in Chapter 3 

reflects that the distribution of types of window users is dependent on the sub-group 

factors identified to influence window behaviour, namely, occupant gender and the 

ground floor, as shown in Table 7.1. Therefore, in the early stage of the design of a 

new building, the relative proportions of the user types from the observation of a 

similar building can be used to link sub-group factors and occupants’ personal 

preference. This enables the allocation of behavioural preferences for each ‘occupant’ 

of the simulated rooms.  
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Table  7.1: User groupings by floor level for male subjects (left) and by gender for non-
ground-floor subjects (right). 

 Floor Habitual 

Closer 

Adjuster Leave 

Opener 

  Gender Habitual 

Closer 

Adjuster Leave 

Opener 

 Ground  80% 20% 0%   Female 75% 25% 0% 

 Non-ground 39% 39% 22%   Male 39% 39% 22% 

 

The individuals and their behavioural preference in each sub-group can be 

‘hypothetically’ placed in offices either randomly or in a more contrived way, in order 

to explore the potential effects on performance. Once the individuals and their 

preferences have been allocated to all the rooms in the simulation, the respective 

window behaviour pattern predicted by the preference model can be applied to each 

simulated room, and used for the whole simulation process.  

 

The preference-based prediction approach has been developed as a third party tool 

in Matlab (MathWorks, 2012), and can be used to predict end-of-day window 

positions for building performance prediction and simulation, as described in 

Appendix C.  

 

7.4 Influence on Prediction of Individual Rooms  

In this section, each of the three behaviour models developed in Chapter 5 and 

Chapter 6 is applied to two problems: 

 

• the prediction of the end-of-day window position in summer; and  

 

• the impact the prediction has on the simulated airflow rate through the 

building at night. 
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The prediction using the whole population model and the sub-group model adopts 

the same approach as in existing simulation procedures, whist the prediction using 

the preference model advances current practice by considering the behavioural 

difference between individuals. In order to avoid the effects of occupant gender and 

the ground floor, the analysis here was carried out for the first-floor rooms and all 

rooms were assumed to be occupied by males only. Full occupancy every day was 

assumed based on a Monday-Friday working week in the summer.  

 

7.4.1 Bias in window state prediction  

The predicted positions of windows by the three behaviour models can be found in 

Appendix D. To compare their prediction results, the corresponding proportion of 

working days with windows left open on departure to the overall working days within 

the prediction period was calculated, for each room on the first floor of the example 

building, occupied by males only. The result is shown in Figure 7.4. A higher 

percentage indicates that the occupant had more days with his window left open on 

departure during the summer simulation period.   

 

 

Figure  7.4: Predicted percentages of days with windows left open on departure for 
each simulated room by the three window behaviour models. 
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From the prediction, based on either the whole population model or the sub-group 

model, Figure 7.4 shows that the predicted percentages of days with windows left 

open on departure are similar between individual rooms. The prediction result from 

the whole population model reflects that all ‘occupants’ in the example building left 

their windows open on departure for only a small number of days (varying between 

20% – 40% of all working days). The prediction result from the sub-group model 

gives a slightly higher number of days with windows left open on departure, when 

compared with the whole population model. However, the ‘occupants’ still perform 

similar window use patterns (also varying between 20% – 40% of all working days). 

These prediction results are not consistent with what was observed in the building 

monitored in this study, where some windows were closed rigorously at the end of 

almost every day, whilst others were left open across a very large range of 

temperature conditions (see the discussion in Section 4.4 of Chapter 4). Looking at 

the prediction result by the preference model, it can be found that it reproduced well 

the observed behavioural difference between individuals, and much significant than 

the other two approaches. Some occupants left windows open on departure rarely 

(Room 1 to Room 4 have almost 0% of days with windows left open on departure), 

some left windows open frequently on departure (Room 9 and Room 10 have high 

percentages, with variances between 80% – 100%), and some in the middle (Room 5 

to Room 8 have percentages varying between 40% – 60%).  

 

7.4.2 Impact on the estimation of night-time cooling   

The above section evaluates the influence of using occupants’ behavioural 

preference when predicting the position of windows. It reproduced well the observed, 

significantly different window use patterns. In this section, the impact of this bias on 

building energy performance is investigated using the steady-state ventilation model 

described in Section 7.2, for each simulated room, together with the outdoor weather 

data introduced in Section 7.1.2.  

 

Figure 7.5 shows the estimated total cooling energy extracted from the outdoor 

environment through night ventilation during the simulation period (the hottest 

summer month in the weather data), for each room on the first floor of the example 

building, using the end-of-day window positions predicted by the three window 

behaviour models for males (see Appendix D).  
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Figure  7.5: Estimated extracted cooling energy during the night for each room in the 
simulation period based on the window positions predicted by the three window 

behaviour models. 

 

Figure 7.5 demonstrates that the different window use patterns among occupants 

(separated by the dashed lines) have an obvious impact on the calculated efficiency 

of night cooling. According to the prediction result using the predicted state of 

windows by the preference model, Room 1 to Room 4 had a very little cooling energy 

from the outdoor environment, as their ‘occupants’ performed as Habitual closers. 

Contrary to this, Room 9 and Room 10 received a much larger amount of cooling 

energy than the other rooms, especially when compared with Room 1 to Room 4, as 

they were occupied by Leave openers. The highest estimated extracted cooling 

energy was 349.1kWh for Room 9, which was 347.4kWh higher than the lowest 

value of 1.7kWh for Room 1 to Room 4. This extra amount of extracted cooling 

energy could affect the indoor thermal environment in the next working day. 

Considering the simulation results, using the state of windows predicted by the whole 

population model and the sub-group model, the magnitude of the difference between 

individual rooms was much smaller, compared with that by the preference model. 

The biggest difference between individual rooms was 79.9kWh for the whole 

population model and was 70.9kWh for the sub-group model.         
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7.5 Influence on Prediction of Sub-groups  

The above prediction scenario demonstrates that when using the preference model, 

the significantly different window use patterns observed in actual buildings can be 

reproduced well. This has an impact on the predicted energy performance of 

buildings, and cannot be achieved by traditional methods. However, sub-group 

factors, such as occupant gender and the ground floor, can also influence window 

behaviour in office buildings, as discussed in Section 4.3.5 and 4.3.6 of Chapter 4. 

Therefore, the prediction using the preference model should also be able to reflect 

this influence. This characteristic, however, was not demonstrated in the above 

prediction scenario, in which all occupants were restricted to a particular sub-group, 

that is, males on the first floor. In this section, all occupants on the first floors are 

changed to females and the predicted window use patterns are compared with those 

when all the rooms are occupied by males.  

 

The comparisons of the predicted window use patterns when the first-floor rooms are 

occupied separately by males and by females are shown in Figure 7.6, for all three 

window behaviour models developed in this study (the predicted position of windows 

by the three window behaviour models for the female-occupied scenario can also be 

found in Appendix D).  

 

 

Figure  7.6: Comparison of the predicted percentage of sample-days with windows left 
open overnight, for male-occupied scenario and female-occupied scenario. 
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Figure 7.6 demonstrates that both the sub-group model and the preference model 

reflect effectively the different window behaviour between males and females. The 

prediction using the whole population model, however, cannot reflect this behavioural 

difference, as it considered all occupants as a whole. This conclusion also applies to 

the effect of the ground floor.   

 

7.6 Summary 

This chapter demonstrates the implementation of the window behaviour models, 

which have been generated in the previous chapters, in building performance 

simulation, and evaluates the impact of considering individuals’ preferences of 

window use on the simulated energy performance of buildings.  

 

As individuals’ preference of window use is generally unknown during the early 

design stage of a new building, a preference-based prediction approach was 

developed and introduced in this chapter. This approach enabled the preference 

model to be applied in predicting the position of windows in building performance 

simulation. Essentially, this assumes that the building occupants behave as found in 

observations of the case study building examined. Data from a wider group of people 

can, in future, help to refine this approach. The implementation results revealed that 

the consideration of individuals’ preferences of window use can generate significantly 

different window use patterns, compared with existing approaches for predicting 

window behaviour, which are based on either the whole building population or sub-

groups within it. Importantly, these different window use patterns were demonstrated 

to have an obvious impact on the predicted energy performance of buildings.   

 

According to the discussions in Section 7.4 and 7.5, a comparison among using the 

three modelling approaches to predict occupants’ window behaviour is made, as 

shown in Figure 7.7.  
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Figure  7.7: Comparison of various models to predict window behaviour. 

 

The sub-group model considers the behavioural difference between sub-groups of 

occupants, when compared with the whole population model. The preference model 

imports a further level, as shown in Figure 7.3, in which the behavioural difference 

between individuals is addressed. The use of the sub-group model, however, 

requires a good knowledge of the building occupants, such as their gender and 

location in the building, during the design stage of a building, which is recommended 

strongly by the BSRIA (2013) in the Soft Landings framework. In addition, to allow 

use of the preference model, further personal knowledge of occupants is required. 

For now, the thinking of this study offers a suitable starting point.       

 

Based on the analysis in this chapter, during the design stage of a building the 

building designers should be aware that the future building occupants may perform 

various operations on available cooling strategies, such as the use of night ventilation, 

even between those having similar personal characteristics. This behavioural 

difference has a direct impact on the energy performance of individual rooms.  

 

Building managers should be aware that if one or more rooms have unacceptable 

indoor thermal environment when compared with the other rooms, or do not meet the 

anticipated performance during the design stage of the building, this is possibly 

because the room occupant(s) do not use the available cooling strategies in the 

building efficiently. Under this condition, proper interventions need to be taken to help 

the room occupant(s) control their indoor environment more efficiently, by means of 

behavioural education or mechanical control of windows.  
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 CONCLUSIONS AND FUTURE WORK 8.

 

8.1 Conclusions 

Natural ventilation is used popularly in British buildings to cool down the indoor 

environment for summer and to provide fresh air in winter, mainly by linking the 

indoor and outdoor environment through an open window. A great many buildings 

adopt such a ventilation strategy, having manual control only by the building 

occupants. The performance of these buildings is more challenging to predict, 

compared with buildings controlled by mechanical ventilation systems. This is not 

only because of the variability of the natural driving forces, but also because 

occupants’ behaviour is hard to capture, accurately. In the past two decades, studies 

based on understanding window opening behaviour in office buildings have 

generated useful models for use in building simulation. However, these studies 

classified building occupants either based on the whole population or based on sub-

groups within a building, and the behavioural difference between individuals was 

commonly ignored. This thesis has evaluated whether modelling and predicting 

window operation based on personal preference has advantages over these 

traditional classification approaches.     

 

The study focused on the final position of the window at the end of the working day, 

and the data was collected from a case study building with identical cellular offices 

occupied by the same person. 36 offices and their occupants were monitored, with 

respect to their use of windows, through a combination of automated monitoring and 

human-led observations. Based on the data, several factors that can influence 

occupants’ choice of end-of-day window positions were identified. Three window 

behaviour models were developed using these factors, classifying the occupants 

differently when modelling their behaviour, namely, based on whole population, sub-

groups and personal preference. The performance of these models for predicting the 

state of windows was validated using a new dataset that was collected from the 

same offices that were monitored for developing the models.      

 

 



132 

 

To identify the advantage of modelling window behaviour based on personal 

preference over traditional modelling approaches, the three models were used to 

reproduce the monitored end-of-day window positions stochastically for both model 

development and model validation surveys, and their predictive performance was 

compared. Finally, the influence of this advantage on the predicted building 

performance was demonstrated in an example building, using a steady state 

ventilation model that calculated the cooling energy extracted from the outdoor 

environment during the unoccupied night-time, for the two conditions of windows left 

open overnight and closed on departure.    

 

The main conclusions from this study are as follows: 

 

(1) Non-environmental factors do have a significant impact on occupants’ 
choice of the end-of-day window position: Existing window behaviour 

models take account more of how the state of windows is affected by 

environmental factors, such as indoor and outdoor temperatures, when 

occupants firstly arrive at the offices and during the intermediate working 

hours. This thesis has demonstrated the importance of non-environmental 

factors on occupants’ window behaviour towards night ventilation. 

 

(2) Personal preference does play an important role on the end-of-day 
window position, beyond other influencing factors: In actual buildings 

occupants’ window behaviour can be significantly different between 

individuals, and this can be explained by their varying personal preference of 

window states.   

 

(3) Modelling window behaviour based on personal preference can have a 
better predictive performance, when compared with the more 
conventional whole population and sub-group approaches: Haldi and 

Robinson (2008a) have discussed how to use different stochastic approaches 

to improve the modelling of occupants’ window behaviour in office buildings, 

as introduced in Section 2.2.2 of Chapter 2. This study explored this issue 

from another angle, that is, grouping building occupants differently (whole 
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population, sub-groups and personal preference). Modelling window 

behaviour based on personal preference appeared to be significantly helpful 

in improving the predictive performance. This finding should not only be 

applicable for modelling window behaviour, but also for modelling other 

behaviours in buildings.      

 

(4) For building performance simulation, predicting the state of windows 
based on personal preference can have a significant impact on the 
predicted energy performance of buildings: The preference-based 

prediction of window states can reproduce the significantly different window 

use patterns that have been observed in actual buildings. This has been 

demonstrated to have a significant impact on the predicted energy 

performance of buildings. 

 

This study can contribute to existing knowledge for this research area: 

 

(1) Previous studies do not pay much attention to evaluating the role of personal 

preference in the modelling and prediction of occupants’ window behaviour. In 

this study, personal preference has been formally addressed and its 

importance for a better understanding of window use has been demonstrated.  

 

(2) Previous window behaviour studies focus on occupants’ window behaviour 

when firstly arrive at the offices and during the intermediate working hours. To 

date, occupants’ window behaviour at the end of the day, and its potential 

influence regarding night ventilation, has been a poorly-understood research 

area (Fabi et al., 2012b). This thesis has addressed this gap in knowledge.     

 

(3) Previous window behaviour models take account more of how the state of 

windows is affected by environmental factors, such as indoor and outdoor air 

temperatures. In this study, the importance of non-environmental factors has 

been demonstrated.  
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(4) An approach allocating personal preference in the simulation of multi-room 

buildings has been developed, as personal preference is generally unknown 

during the early design stage of a new building.  

 

A good understanding of occupants’ personal preference of window use is helpful for 

both building designers and building managers to obtain a more accurate prediction 

of building performance and a better understanding of what is happening in a real 

building. In addition, there are also some new possibilities that arise as a result of the 

findings from this research project, which could be used to enhance the energy 

efficiency of a building. These possibilities are summarised as follows:  

 

(1) Relocating people with a consideration of their window use preferences 
and hence offering some degree of control of the whole built 
environment: Cross-ventilation could help to increase the air change rate of 

buildings. Therefore, if the building occupants could be located according to 

their personal preference of window use (locating two Leave openers at the 

opposite two sides of a building/room), especially in open offices. It would be 

helpful for increasing the ventilation, and thus promote the energy efficiency 

of the building in summer. This approach could easily be extended to, for 

example, the use of computing equipment, the provision of lighting, and the 

heating set point preference. By grouping or placing people according to their 

natural behaviours, it may be possible to impact on productivity, as well as 

building performance.  

 

(2) Educating people to change their window use behaviour to enhance the 
performance of buildings: It has been demonstrated that occupants’ 

different preference of the end-of-day window position has a potential impact 

upon the efficiency of the building services systems. Therefore, another way 

to increase the energy efficiency of buildings is by educating occupants to 

change their window use from a less energy efficient type to a more energy 

efficient type, for example, changing from a Habitual closer to an Adjuster or a 

Leave opener in summer. Similarly, this possibility should be able to be 

applied to other types of behaviour as well.   
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8.2 Future Work 

This study critically analysed factors that could influence the end-of-day window 

position in office buildings, and demonstrated the importance of treating occupants 

individually, for both behaviour model development and building performance 

simulation. Based on the work carried out in this study, there is still considerable 

scope for further investigation through future studies as:  

 

(1) This study was carried out in a limited study period, and so more data needs 

to be collected from the same offices observed in this study to increase the 

accuracy of the developed behaviour models;  

 

(2) All the data used in this thesis, for both model development and model 

validation, were collected from the same offices in the same building. For 

similar types of buildings the behaviour models developed in this study offer a 

first step for predicting building performance, inclusive of personal preference 

of window use. More data from other types of buildings, however, is still 

required to build and extend the application of this approach to the majority of 

buildings; and 

 

(3) Occupants’ window behaviour was predicted using Bernoulli processes in this 

study, as it is easier for behavioural comparison between individuals. 

However, as mentioned by Haldi and Robinson (2008a), modelling occupants’ 

window behaviour using Bernoulli processes “ignores the real dynamic 

processes leading occupants to perform actions”. Therefore, modelling 

window behaviour using Markov chains is a more popular approach (Haldi 

and Robinson, 2009b, Yun et al., 2008, Herkel et al., 2008), in which 

occupants’ behaviour towards opening and closing windows is treated 

separately. The modelling using Markov chains, however, is more complex 

than that using Bernoulli processes. Consequently, how to enable the 

consideration of personal preference in modelling based on Markov 

processes needs to be studied further.  
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APPENDICES 

 

Appendix A: Adjusted Wald Method 

The Adjusted Wald Method is used to estimate the accuracy of an estimated 

population proportion with respect to the sample size of the survey, and it is 

quantified by the confidence interval for different confidence levels. It comes from the 

Wald Confidence Interval, also called Wald Method (Bowerman et al., 2002), as 

defined by Equation A.1, 

 

                                                     ��̂� ± 𝑧𝛼/2 × �𝑝�×(1−𝑝�)
𝑛𝑡

� ,                                         (A.1) 

 

where, 

 p� is the estimated population proportion, in percentages ( % ); 

 zα/2   is a coefficient corresponding to the confidence levels ( − );  

 nt is the total number of samples ( − ). 

 

The population proportion, p� , is determined by Equation A.2 based on the number of 

interested samples (ni) and the total number of samples (nt).  

 

                                                                                   �̂� = 𝑛𝑖
𝑛𝑡

 ,                                                    (A.2) 

 

Definitions of the coefficient zα/2 are listed in Table A.1 for different confidence levels: 
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Table A.1: Specifications of measurement devices. 

𝐳𝛂/𝟐 Confidence level 

1.645 90% 

1.96 95% 

2.576 99% 

 

However, the Wald Method is generally suitable for applications with large sample 

sizes (nt ≥ 150). For applications with small samples, that is, nt < 150, it was found 

that the Adjusted Wald Method provides a better coverage (Sauro and Lewis, 2005). 

In the Adjusted Wald Method, Equation A.1 is also used to calculate the confidence 

interval, while the difference from the original Wald Method is that the estimated 

population proportion p�  and the sample size nt  need to be recalculated using 

Equation A.3 and A.4, before being used in Equation A.1.  

 

                                                        �̂� =
(𝑛𝑖+𝑧𝛼/2

2 /2)
(𝑛𝑡+𝑧𝛼/2

2 )
 ,                                                  (A.3) 

 

                                                        𝑛𝑡 = 𝑛𝑡 + 𝑧𝛼/2
2 ,                                                  (A.4) 

 

 

  



143 

 

Appendix B: The deduction of Equation 7.1  

 

The flow due to buoyancy through a large opening is determined by the pressure 

difference due to temperature difference across the opening, as defined by Equation 

B.1: 

 

                                                   ∆𝑝(𝑧) = ∆𝜌 × 𝑔 × 𝑧 ,                                              (B.1) 

 

where, 

 ∆ρ is the difference of density across the opening, in kilograms per cubic 

metre ( kg/m3 ); 

 z is the height to a reference level, in metres ( m ); 

 

Also, v(z) = �2 × ∆p(z)/ρ (v is the air velocity crossing the opening, in metres per 

second (m/s)). Hence, v(z) ∝ z1/2, and 

 

                                                          𝑣(𝑧)
𝑣𝑚𝑎𝑥

= �𝑧
𝐻
�
1/2

 ,                                                (B.2) 

 

Therefore, the mean velocity (v�) through an opening of height (H) is: 

 

                               �̅� = 𝑣𝑚𝑎𝑥
𝐻1/2 ∫ 𝑧1/2𝑑𝑧 = 𝑣𝑚𝑎𝑥

𝐻1/2 × 2
3

× 𝐻3/2 = 2
3

× 𝐻 × 𝑣𝑚𝑎𝑥 ,                (B.3) 

 

Then the volume flow rate through the opening (Q) is:  

 

                  𝑄 = 𝐶𝑑 × 𝑤 × �̅� = 2
3

× 𝐶𝑑 × 𝑤 × 𝐻 × 𝑣𝑚𝑎𝑥 = 2
3

× 𝐶𝑑 × 𝐴𝑜𝑝𝑒𝑛 × 𝑣𝑚𝑎𝑥 ,      (B.4) 
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where, 

 w is the width of the opening, in metres ( m ). 

 

However, in a buoyancy-driven flow, equal masses of air enter and leave through the 

same opening. If H is the total height of the opening, then the influx or efflux flow is, 

 

                                                         𝑄 = 𝐶𝑑×𝐴
3

× 𝑣𝑚𝑎𝑥 ,                                           (B.5) 

 

As vmax is the velocity at the height of  H/2 (the flow going in and the flow going out 

of a large opening are each through only H/2), it is v(H/2) = �2 × ∆p(H/2)/ρ . 

Substituting Equation B.1 into it, it becomes, 

 

                                        𝑣𝑚𝑎𝑥 = 𝑣(𝐻/2) = �∆𝜌 × 𝑔 ×𝐻/𝜌 ,                                  (B.6) 

 

Based on the ideal gas low, the density of air is a function of temperature and 

pressure, 

 

                                                               𝜌 = 𝑝
𝑅×𝑇

 ,                                                    (B.7) 

 

where, 

 T is the air temperature, in Kelvins ( K ); 

 p is the air pressure, in Pascals ( Pa ); 

 R is the specific air constant, ( − ). 

 

If the pressures for the indoor air and outdoor air are assumed to be the same, then 

Equation B.8 is established, 

 

                                                    𝜌𝑖𝑛 × 𝑇𝑖𝑛 = 𝜌𝑜𝑢𝑡 × 𝑇𝑜𝑢𝑡 ,                                        (B.8) 
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where, 

 ρin is the indoor air density, in kilograms per cubic metre ( kg/m3 ); 

 Tin is the indoor air temperature, in Kelvins ( K ); 

 ρout is the outdoor air density, in kilograms per cubic metre ( kg/m3 ); 

 Tout is the outdoor air temperature, in Kelvins ( K ); 

 

Then the indoor air density could be determined by the outdoor air density, outdoor 

air temperature and indoor air temperature, 

 

                                                            𝜌𝑖𝑛 = 𝜌𝑜𝑢𝑡 × 𝑇𝑜𝑢𝑡
𝑇𝑖𝑛

 ,                                          (A.9) 

 

Substituting Equation A.9 into Equation A.6, in which ρ  is proposed to be the 

average density of indoor and outdoor air, 

 

                       𝑣𝑚𝑎𝑥 = �𝑔 × 𝐻 ×
(𝜌𝑜𝑢𝑡−𝜌𝑖𝑛)
(𝜌𝑜𝑢𝑡+𝜌𝑖𝑛)

2
= �𝑔 × 𝐻 ×

2×�𝜌𝑜𝑢𝑡−𝜌𝑜𝑢𝑡×𝑇𝑜𝑢𝑡
𝑇𝑖𝑛

�

�𝜌𝑜𝑢𝑡+𝜌𝑜𝑢𝑡×𝑇𝑜𝑢𝑡
𝑇𝑖𝑛

�
 

                                   = �2 × 𝑔 × 𝐻 ×
𝑇𝑖𝑛−𝑇𝑜𝑢𝑡

𝑇𝑖𝑛
𝑇𝑖𝑛+𝑇𝑜𝑢𝑡

𝑇𝑖𝑛

= �𝑔 × 𝐻 × ∆𝑇
𝑇�

 ,                            (A.10) 

 

 

Substituting into Equation A.5, and the flow rate through an orifice opening such as a 

window, could be determined by, 

 

                                                     𝑄 = 𝐴×𝐶𝑑
3

�𝑔×𝐻×∆𝑇
𝑇�

 ,                                              ( 0.1) 
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Appendix C: The tool for the Preference-based prediction 

approach  

 

Figure C.1 shows the user interface of the tool.  

 

 

Figure C.1: Preference-based end-of-day window position prediction tool. 
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The approach splits males/females and ground/non-ground floors, and differentiates 

between winter and summer. It uses the mean outdoor air temperature between 3pm 

and 6pm and a binary indicator of whether the room has been occupied during the 

day time. There is one pair of temperature data per day and this is established from 

the simulation weather data files. The occupancy indicator is a design decision, or by 

other occupancy modelling techniques.   
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Appendix D: The predicted end-of-day window positions  

 

The predicted end-of-day window positions using the three different prediction 

approaches are listed here for the following conditions: 

 

• end-of-day window positions predicted by the whole building population 

model (males, 1st floor, summertime); 

 

• end-of-day window positions predicted by the sub-group model (males, 1st 

floor, summertime); 

 

• end-of-day window positions predicted by the preference model (males, 1st 

floor, summertime); 

 

• end-of-day window positions predicted by the whole building population 

model (females, 1st floor, summertime); 

 

• end-of-day window positions predicted by the sub-group model (females, 1st 

floor, summertime); and, 

 

• end-of-day window positions predicted by the preference model (females, 1st 

floor, summertime); 
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Room 1 Room 2  Room 3  Room 4  

    
Room 5 Room 6 Room 7  Room 8  

  

  

Room 9  Room 10    
 

Figure D.1: Predicted end-of-day window positions using the whole population model (males, 1st floor, summertime). 
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Figure D.2: Predicted end-of-day window positions using the sub-group model (males, 1st floor, summertime). 
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Figure D.3: Predicted end-of-day window positions using the preference model (males, 1st floor, summertime). 
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Room F1 (Habitual closer) Room F2 (Habitual closer) Room F3 (Habitual closer) Room F4 (Habitual closer) 

    
Room F5 (Habitual closer) Room F6 (Habitual closer) Room F7 (Habitual closer) Room F8 (Habitual closer) 

  

  

Room F9 (Adjuster) Room F10 (Adjuster)   

Figure D.4: Predicted end-of-day window positions using the whole population model (females, 1st floor, summertime). 
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Figure D.5: Predicted end-of-day window positions using the sub-group model (females, 1st floor, summertime). 
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Figure D.6: Predicted end-of-day window positions using the preference model (females, 1st floor, summertime). 
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