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Abstract 

The losses in an internal combustion engine are dominated by thermal and parasitic 

sources. The latter arises from mechanical inefficiencies inherent within the system, 

particularly friction in load bearing conjunctions such as the piston assembly. During idle 

and at low engine speeds, frictional losses are the major contributor to the overall engine 

losses as opposed to the dominant contribution of thermal losses under other driving 

conditions. Given the relatively small size and simple structure of the top compression ring, 

it has a disproportionate contribution to the total frictional losses. This suggests further 

analysis would be required to understand the underlying causes of compression ring 

behaviour throughout the engine cycle. The available literature on tribological analyses of 

compression rings does not account for the transient ring elastodynamics. They usually 

assume a rigid ring for film thickness and power loss predictions, which is not representative 

of the ring’s dynamic response. A combined study of ring elastodynamic behaviour and its 

tribological conjunction is a comprehensive approach.   

Literature regarding incomplete ring dynamics has been available since the 1960s. However, 

most research contributions only provide predictions of mode shapes and natural 

frequencies. Furthermore, the complete ring dynamics under forcing conditions is rarely 

discussed. The thesis presents the methodology for the full ring elastodynamic response, 

both in-plane and out-of-plane (axial). The theory behind the coupling of ring dynamics and 

tribology is also developed and outlined. Transient tribodynamic results are then compared 

with those of a rigid ring. The effect of variation in engine speed is also discussed, as well as 

the variation with lubricant temperature. Where possible, verification of the numerical 

analysis is presented, comparing the predictions with experimental results and other 

published results. The comparisons show good correlation of the presented numerical 

methodology, verifying and confirming the aims set out at the start of the thesis. The thesis 

contributions to knowledge include combined ring elastodynamics and transient mixed 

thermo-hydrodynamics. The comprehensive combined experimental/numerical approach 

presented in the thesis is also novel. 

Keywords: Internal Combustion engine, Compression ring, Elastodynamics, Transient 

tribology 
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Introduction 
 

1 
 

1. Introduction 

1.1. Preamble 

The demand for motor vehicle production worldwide is increasing by the year. This trend is 

predominantly seen in developing countries, as well as in developed nations such as the UK. 

However, the majority of current vehicles rely on petrol or diesel as fuel for propulsion. 

Along with other fossil fuels, these resources are clearly limited in supply. Alongside their 

finite availability, the burning of fossil fuels releases carbon into the atmosphere as a by-

product of combustion, which is widely accepted as being a contributing factor to the global 

warming. A report by the Intergovernmental Panel on Climate Change (IPCC) stated that: 

“The observed widespread warming of the atmosphere and ocean, together with ice mass 

loss, support the conclusion that it is extremely unlikely that global climate change of the 

past 50 years can be explained without external forcing and very likely that it is not due to 

known natural causes alone” (IPCC, 2007). A very recent study, also by the IPCC, suggested 

that scientists are 95% certain that humans are the "dominant cause" of global warming 

since the 1950s (BBC, 2013). Due to these worldwide concerns, a number of legislations and 

studies have been undertaken, with the aim of reducing the emissions exhausted by motor 

vehicles, and improving their efficiency. 

 

Figure  1.1: Greenhouse Gas Emissions for leading nations in 1990 and 2010. Data from 
UNFCCC report, 2012 (www.unfccc.int) 
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The United Nations Framework Convention on Climate Change (UNFCCC) was adopted on 

9th May, 1992. The purpose of this Convention was to raise awareness of the problem of 

global warming, and to decide how best to deal with the inevitable temperature rises of the 

Earth’s surface. In addition to this, the more recent Kyoto Protocol was adopted in 1997, 

and entered into force in 2005 (UNFCCC.int/kyoto_protocol/items/2830.php). This Protocol 

sets emissions targets for 37 industrialised countries and the European community. The 

target greenhouse gas (GHG) reduction averages at 5% compared to 1990 levels between 

2008 and 2012. Figure 1.1 shows the GHG emissions for the leading industrialised nations in 

1990 and 2010. 

Whereas the UNFCCC simply encourages the United Nations members to address GHG 

emissions, the Kyoto Protocol signifies a commitment by the participating countries. This 

commitment pressurises all industry sectors to reducing their “Carbon footprint” as much as 

possible, and there is nowhere this is more applicable than in the automotive industry. 

The automotive sector represents a significant portion of the UK’s manufacturing industry, 

and so faces stringent measures to improve efficiency and GHG production. In Europe, the 

Euro 5 emissions Standards were introduced in an effort to restrict in particular the nitrogen 

oxide (NOx) and particulate matter, which can have an adverse effect on people’s health 

(http://www.euractiv.com/en/transport/euro-5-emissions-standards-cars/article-133325). 

Car manufacturers must meet these standards for their vehicles to be approved for sale 

within the European Union. Currently vehicles such as the Smart Car and the Volkswagen 

Polo BlueMotion are market leaders in terms of carbon dioxide emissions. As well as this, 

the King Review in 2007 highlighted the need for road vehicles to reduce carbon dioxide 

emissions (King, 2007). According to the review, in the year 2000 cars and vans were the 

cause of 7% of global carbon dioxide emissions, as well as making up almost half of all global 

transport emissions. Considering the projected increased demand for road vehicles in the 

future, particularly in developing countries, this represents a significant proportion of the 

world’s carbon dioxide emissions. Three goals were put forward to aid progression in the 

push for CO2 reduction. These were cleaner fuels, more efficient vehicles and smart driver 

choices. 
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This thesis is part of a project which is concerned with the development of more efficient 

internal combustion automobiles. As fossil fuels are a finite resource, this is viewed as a 

short-to-medium term solution, with vehicles powered by alternative fuels currently being 

researched. Some hybrid models are even in production today.  As approximately 3 million 

internal combustion engines are produced in the UK every year (King, 2007), an 

improvement in fuel efficiency would have a significant impact on the GHG emissions. It is 

also acknowledged that internal combustion engines will remain the dominant means of 

propulsion for the foreseeable future. Even at the point when a viable permanent 

alternative to the IC engine is established, the active vehicles and power stations worldwide 

will in all likelihood still be overwhelmingly reliant on fossil fuels. Figure 1.2 presents the CO2 

emission contributions from various vehicles, which demonstrates that cars and vans 

contribute significantly more than any other mode of transport. 

 

King, Julia. The King Review of low-carbon cars: part I: the potential for CO2 reduction, 2007 

(Chart 1.2) 

 

Figure  1.2: Global transport carbon dioxide emissions in 2000 (King, 2007) 

Figure 1.3 shows how engineering advancements have reduced CO2 emissions in new cars 

compared to older models (King, 2007). Modifications such as improved fuel injection mean 

the fuel is combusted more efficiently, whilst the introduction of cruise control reduces 

sharp increases in engine speed. These benefits have even overcome the average weight 

gain of 20% seen in midsize vehicles, showing a 0.6% improvement in fuel efficiency (Owen 

and Gordon, 2003). 

 

King, Julia. The King Review of low-carbon cars: part I: the potential for CO2 reduction, 2007 

(Chart 4.1) 

 

Figure  1.3: Average CO2 emissions from new cars and cars in use in the UK (King, 2007) 
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Table 1.1 shows a breakdown of different technologies, which can be applied to current IC 

engines to improve efficiency. If these improvements are able to be implemented on a large 

scale, the cost per vehicle will be relatively low. From this table, it can be seen that focusing 

on friction reduction could be the most cost effective method of improving engine 

performance, with a negligible cost per vehicle yet up to 5% reduction in friction. This thesis 

focuses on the reduction of mechanical friction within the engine, namely at the piston and 

ring-pack to cylinder-liner conjunction. Parasitic losses occur wherever moving parts are 

sliding against each other within the piston mechanism. 100% efficiency is impossible in real 

world systems, as all sliding surfaces will cause some losses, regardless of design or lubricant 

quality. These frictional losses account for approximately 25% of the power lost in a typical 

internal combustion engine. Of this, almost half of the frictional losses are accounted for 

within the piston mechanism. Therefore, the piston mechanism is responsible for 10-12% of 

power lost within the vehicle. 

 

 

Table  1.1: New Engine and Transmission Efficiency Savings, and Indicative Production Costs 
(King, 2007) 

King, Julia. The King Review of low-carbon cars: part I: the potential for CO2 reduction,  2007 

(Table 4.1) 

 

Frictional losses increase, proportional to the total friction lost, under stop-start conditions 

such as driving in urban, built up areas (Uras, 1983). When high volumes of traffic are 

present in populated areas, over 50% of travel time is done at speeds below 20mph 

(Eddington Transport Study, 2006); meaning frictional losses are significant contributors to 

engine inefficiencies. This suggests a promising scope for improvement, as very few 

previous attempts at improving efficiency include a comprehensive analysis of the piston. 

High performance engines place even higher loads upon the piston, which creates yet more 

losses. With directives such as the Kyoto Protocol demanding reduced emissions and 

improved efficiency, clearly conflicting requirements are present between the various 

aspects to consider in engine design. 
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Whilst this thesis is concerned with the ring pack-cylinder liner conjunction specifically, it is 

part of a larger research project, to be undertaken at a national level. This incorporates a 

number of disciplines such as tribology, dynamics, contact mechanics, lubricant rheology 

and surface engineering, with the goal of providing novel advances to the problem of 

piston-connecting rod-crankshaft engine losses. Due to the input of all these fields of 

expertise, this approach can be described as multi-physics. The project is described as 

Refinement of Engine in-cycle Losses of Parasitic and Errant Dynamic Nature, to be known 

as Encyclopaedic (Encyclopaedic.org, 2009). Investigations of the surface roughness and 

asperity interactions within the contact area will be on a scale of nanometres, whereas the 

displacement dynamics involved with the piston motion could be considered of orders of 

magnitude higher (mm for the piston primary motion and μm for its secondary motion). The 

project will therefore be taking a multi-physics, multi-scale approach, a method which has 

not hitherto been undertaken on such a scale. 

1.2. Project overview 

The power loss in Internal Combustion engines can be divided into two key categories, 

thermodynamic and parasitic. Thermodynamic losses include those due to heat, for 

example, heat expelled from the exhaust and heat losses from components due to the 

combustion process. These losses account for between 50-60% of the total engine losses. As 

mentioned previously, parasitic losses such as friction account for 25% of the power lost. 

These inefficiencies mean that only approximately 15% of the input power is available to 

propel the vehicle, overcoming road friction and any aerodynamic drag. Of the 25% lost due 

to friction, almost half is lost within the piston mechanism. Approximately one quarter is 

down to engine bearings, whilst around 15% is through valve train frictional forces. The 

remainder is accounted for with the sum of small inefficiencies within the system. 

Compression rings can be seen to be responsible for up to 5% of all losses in a standard 4-

stroke internal combustion engine (Andersson, 1991). This is a significant proportion, 

especially considering the size of the component in question, when compared to the engine 

and vehicle as a whole. It can therefore be assumed that insufficient research has been 

performed in this subject area. This project is concerned with frictional losses within the 

piston mechanism, specifically the ring pack. 
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On pistons found in typical 4-stroke engines, three rings are usually present. These are 

known, from top to bottom, as the compression ring, secondary compression (or wiper) 

ring, and the oil control ring. Figure 1.4 shows the assembly of the piston, along with the 

location of the ring pack. 

Image can be found at confident-instruments.com (http://confident-
instruments.com/images/piston_assy_sectioned_anno.JPG) 

Figure  1.4: Typical piston and ring-pack assembly (http://confident-
instruments.com/images/piston_assy_sectioned_anno.JPG) 

Each of these three rings is designed for oil control. However, this is a secondary function 

when considering the primary and secondary compression rings. As their name suggests, the 

key function of the compression rings is to seal the compression chamber. This is done to 

prevent a loss of pressure within the chamber, which would result in a loss of power. The 

escaping of gas down the side of the compression rings is known as blow-by. An effective 

compression ring must have good conformability with the bore, to minimise blow-by and 

excessive oil flow. As the compression ring is the closest ring to the chamber, it is subjected 

to the highest operating temperatures. These high temperatures result in thin film 

thicknesses compared to the other rings, as well as an increased deformation. At the top 

dead centre (TDC) the film thickness is reduced further, as it is difficult for the compression 

ring to scrape sufficient oil to form a complete film. This can cause surface contact in some 

cases, which leads to wear of the ring. This is also seen at the bottom dead centre (BDC), so 

it can also be attributed to the decrease in axial motion of the piston. At both the top and 

bottom of the piston’s stroke, the speed of the piston will instantaneously reach zero. This 

reduction in velocity would cause the piston to rock to the side and make contact with the 

bore. This deterioration of lubrication conditions is known as boundary lubrication. Figure 

1.5 shows the Stribeck curve, which indicates the different types of lubrication and when 

they occur. The symbol μ represents the friction coefficient, whilst λ is the film 

thickness/roughness height ratio.  
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Figure  1.5: A typical Stribeck Curve 

For the reasons analysed above, it can be understood that the compression ring suffers from 

the worst tribological conditions of the three rings. It is the compression ring to cylinder 

bore contact which is of most interest in this project, as the aforementioned problems give 

large scope for improvement. 

All objects are subject to vibration, regardless of their size or shape. However, when 

considering ‘thin’ objects, any vibrations will be more visible or pronounced. This is 

particularly true of steel rings, due to the flexible nature of the component. The natural 

frequencies of the ring contribute to its resultant shape when excitation occurs, alongside 

the rigid body motion within the groove. Due to the thinness of the compression ring, 

deflections of this nature are likely to be present. These displacements will clearly affect the 

contact area between the compression ring and the bore, as well as the end gap of the ring, 

and consequently should be considered in the ring analysis. Whilst many studies have been 

undertaken on the compression ring, very few take into account the deflection of the ring 

during the piston’s movement. One key element of the work to be undertaken in this thesis 

is to account for the complex motions of the ring, both in-plane and out-of-plane. The ring 

dynamics will then be superimposed onto the rigid body motion of the ring, thus giving a 

comprehensive ring elastodynamic model. 

Boundary 

Mixed 

Elastohydrodynamic 

Hydrodynamic 
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1.3. Aim and objectives 

The overall aim of the project is to develop combined analytical and experimental 

techniques to identify, predict and quantify sources of frictional and dynamic losses in the 

piston/ring-pack to connecting rod-crank sub-system.  The aim of this project is to present a 

methodology which enables the coupling of transient ring dynamics into the tribological 

analysis. The results from the proposed methodology will be presented alongside the 

currently accepted numerical analysis. The objectives of this thesis are: 

• To develop a model that predicts the inertial dynamics of the compression ring, 

capturing in-plane and out-of-plane modal behaviour 

• To determine the global elasto-dynamics of the compression ring, giving a full 

transient solution. The constantly changing force profile acting upon the ring during 

the engine cycle will cause global deformation, which affects its modal response, and 

therefore the conjunctional behaviour of the system 

• To complete an elastodynamic tribological analysis of the ring pack-cylinder liner 

conjunction. This would be coupled to the previous two points, before the addition 

of a combustion pressure profile. The friction and film thickness circumferentially 

around the ring will be calculated, with the effect of lubricant temperature also 

discussed. 

• These numerical models will be verified by experimental analysis, with a designed-

for-purpose test rig. Any relevant results published in literature will also be 

compared against, allowing for conclusions to be drawn. 

1.3.1. Contributions to Knowledge 

As stated previously, this project intends to undertake a multi-physics, multi-scale approach 

to solve the problem. This method has not hitherto been reported, and so will be a novel 

solution procedure. This thesis will contribute a numerical model, aiming to predict the 

dynamics and interactions of the compression ring to an acceptable level of accuracy. The 

inclusion of thermal effects on the system will give a comprehensive model, which in turn 

can be used to optimise the conditions found in the compression ring conjunction. The 

ultimate aim of the project is a novel solution which would point to improvements which 

may be made to the efficiency and power of the engine, creating a knowledge base which 
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can be used in future IC engine designs. Future research in this subject area will potentially 

build upon the progress made throughout this project, which will further advance the 

understanding of the piston ring pack. 

1.4. Structure of the thesis 

The current chapter discussed the present concerns of the automotive industry and 

developed nations regarding the improvement in efficiency of internal combustion engines. 

The various methods of achieving an improvement were highlighted, which provided the 

impetus and reasons for undertaking the research within this thesis. The objectives of this 

research were then set out, with the potential contributions to knowledge detailed. This 

thesis is divided into 7 chapters, including the current chapter. 

Chapter 2 presents a review of the currently available literature within the relevant area of 

interest. This review covers tribological analysis in a broader sense, as well as when applied 

to the piston ring-cylinder liner conjunction. Instances where the ring’s motion within the 

groove has been investigated are highlighted. Ring dynamics literature is also surveyed. This 

review allows for a clear demonstration of where further research is possible, which justifies 

the presented thesis. 

In chapter 3, the theory used to capture transient ring dynamics is discussed. The in-plane 

and out-of-plane dynamics methodologies are described, with finite element analysis (FEA) 

verification of the models also presented. This verification is for both the modal response 

and after applying a force to the ring model. The key references used to create this 

methodology are referred to throughout the chapter, alongside the modifications proposed 

which result in a comprehensive ring dynamics model. 

The various methodologies which contribute to the tribological analysis of the top 

compression ring are presented in chapter 4. The Reynolds Equation is derived from the 

Navier-Stokes and flow equations, with the assumptions and simplifications highlighted. The 

solution procedure for the Reynolds Equation is also presented. Further to this, the Energy 

equation for thermal effects on lubricant is discussed, as well as its validity in this study. The 

effect of asperities on the conjunction between two lubricated surfaces is also considered, 

before developing the final solution procedure when considering the tribological 

performance of a piston ring. 
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Chapter 5 presents the results of the numerical analysis, using the theory detailed in the 

previous chapters. The effect of engine speed, lubricant temperature and ring profile is 

investigated. The previously accepted method of solution is compared to the proposed 

inclusion of transient ring elastodynamics, and conclusions are drawn. 

In chapter 6, the results of the numerical analysis are compared to experimental friction and 

film thickness results. The experimental apparatus and procedure are explained where 

possible. Also, the results are presented alongside previously published experimental and 

numerical data from literature, with any limitations and assumptions detailed where 

necessary. 

Finally, chapter 7 presents the main conclusions from this research. Discussion of limitations 

in both the numerical analysis and experimental data is presented. The objectives and aims 

previously set out are referred to, explaining their fulfilment, with the perceived 

contributions to knowledge set out. Any potential future work is highlighted, with suggested 

areas of study which will further enhance the research presented in this thesis. 
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2. Literature Review 

2.1. Preamble 

This thesis is concerned with the tribo-dynamic analysis of the compression ring to cylinder 

bore conjunction. However, a broader spectrum of subject areas has been included in this 

literature review. This is intended to give the reader an appreciation of the various 

disciplines involved, as well as other applications where the theory is prominent. A review of 

the literature concerned with tribology in general is shown, highlighting the key equations 

that will be used in this study. Also, a discussion on the relevant dynamics literature is 

present. Since dynamics is such a large subject area, only the vibrations of curved arches 

and incomplete rings feature in this report. Finally, a review of literature related to the 

tribological analysis of the piston, and the compression ring in particular, is shown. This 

allows for conclusions to be drawn regarding any parts of the tribological analysis of the 

compression ring which have not been explored fully. In drawing these conclusions, the 

position of this report’s study within available literature can be seen. 

2.2. Tribology 

Osborne Reynolds (1895) derived his equation by simplification of the Navier-Stokes 

equations. He made a number of reasoned assumptions when deriving the equation, 

ignoring the inertial forces, and only retaining the viscous force of the lubricant. The 

Reynolds equation can be seen in equation (2.1). 
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𝜕𝑡
�  (2.1) 

The simpler derivation above is also based on viscous action only. Reynolds’ equation is 

used to obtain the pressure distribution in a conjunction, providing the other unknowns in 

the equation can be described. Early solutions, including Reynolds’ own, were for line 

contact geometry. He used a long roller of radius R on a flat surface, separated by a layer of 

lubricant. 

Some common assumptions when manipulating the Reynolds’ equation include a constant 

lubricant density and viscosity (although the latter is only reasonable for low pressures). 

One may also ignore side-leakage depending on the system so v = 0, and under steady state 

conditions there is no squeeze term, meaning ∂h/∂t = 0. Reynolds obtained the pressure 
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distribution from equation (2.1) when he assumed an infinitely long bearing. For his 

analytical solution he assumed a fully flooded inlet, so lubricant was readily available, and 

his exit boundary condition as: 𝑝 = 𝜕𝑝
𝜕𝑥

= 0 at x=xe, where xe is the film rupture position. 

Integrating the pressure distribution, Reynolds’ obtained the line contact lubricant reaction 

as: 

 𝑊ℎ
𝐿

= 4.9𝑢𝜂0𝑅
ℎ0

      (2.2) 

Where h0 is the minimum film thickness. It can be seen that the contact load is inversely 

proportional to the minimum film size. This meant that at certain loads, the film thickness 

would have theoretically been less than the surface roughness of the roller. However, 

absence of any visible wear contradicted this theory, meaning Reynolds had not completely 

solved the problem. 

At around the same time as Reynolds’ work above, Hertz (1881) considered localised 

deformation of revolving ellipsoidal solids under load. The subject is now known as contact 

mechanics and is closely related to tribology. When considering a ball in contact with a flat 

surface, Hertzian theory is applicable when the contact radius, a, is much larger than the 

local deformation, δ, but much smaller than the ball radius, R: δ<<a<<Rb. The elastic 

deflection can create a small gap, which may be occupied by a film of lubricant, separating 

the contacting surfaces. This was only described half a century after Reynolds’ 1896 paper 

by Grubin based on his work with Ertel (Grubin, 1949). The combined hydrodynamic action 

of the fluid film and elastic deformation of the contiguous surfaces was termed elasto-

hydrodynamic lubrication, or EHL.   

In the intervening period from 1896 to 1949, most tribological research was concerned with 

conjunctions such as journal bearings, which have relatively thick films and pressures of few 

tens of mega-pascals at most. The lubricant viscosity variation with pressure, generated in a 

narrow conjunction was described by Barus (1893) assuming isothermal conditions: 

 𝜂 = 𝜂0𝑒𝛼𝑝     (2.3) 

This relationship is now known as the Barus law, and α is the pressure-viscosity coefficient 

with the unit of Pa-1. When iso-viscous conditions are assumed, η = η0, which was the 
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solution used by Reynolds for his long roller and later with different boundary conditions by 

Sommerfeld (1904) for his long bearing approximation. The physical interpretation for αp = 

0 is that generated pressures do not affect the lubricant viscosity. However, it is evident that 

in lubrication with thin films, even those of a few tens of micrometres, such an assumption 

is untenable. 

Roelands (1966) developed the Barus law to give a more accurate model: 

𝜂𝑟 = 𝜂0𝑒
(𝑙𝑛(𝜂0)+9.67)��1+5.1×10−9𝑝�−1�     (2.4) 

Temperature can alter the properties of a lubricant dramatically. Coy (1998) used Vogel’s 

equation to model the effect of temperature on lubricant viscosity: 

𝜂0 = 𝜅
𝜀1

𝜀2+𝜃      (2.5) 

where κ, ε1 and ε2 are properties of the lubricant, and θ is a given temperature. Houpert 

and Leenders (1985) developed Roelands’ equation to include the effects of both pressure 

and temperature: 

𝜂𝑒 = 𝜂0𝑒𝑥𝑝 �[𝑙𝑛(𝜂0) + 9.67] �� 𝜃−138
𝜃0−138

�
−𝛽0(𝜃0−138)
𝑙𝑛(𝜂0)+9.67 �1 + 𝑝

1.98×108
�

𝛼0
5.1×10−9[𝑙𝑛(𝜂0)+9.67] − 1�� (2.6) 

Where β0 and α0 are constants and θ0 is the ambient temperature. 

Ertel and Grubin proposed that at the leading edge of the Hertzian footprint, the pressures 

rise to reach those of Hertzian, or αp = 1. This means that there is an inlet trail of lubricant 

from x→∞ for fully flooded conditions to x = -a where the trail merges to the ellipsoidal 

pressure distribution predicted by the classical Hertzian theory. Note that the viscosity of 

the lubricant then becomes η = eη0, nearly triple its value under ambient condition. This 

behaviour is known as piezo-viscous action. Grubin (1949) assumes that the lubricant film is 

then parallel in shape, following the deflection predicted by the Hertzian theory as the 

generated pressures are those of Hertz. Therefore, this piezo-viscous action as well as 

localised contact deformation can explain the absence of wear at moderate to heavy loads, 

the phenomenon that Reynolds was searching for. A subsequent analysis by Petrusevich 

(1951) confirmed the Ertel and Grubin (1949) supposition. However, there existed the 

concern that the classical Hertzian pressure distribution does not conform to the continuity 
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of flow condition. The Dowson and Higginson (1959) numerical solution detected a pressure 

spike in the vicinity of contact exit, where a dip in the minimum film thickness was also 

observed. This means that the lubricant upon entering into the contact with rising pressures 

has a significantly increased viscosity. It becomes almost like an amorphous solid, and is 

pushed along by the relative motion of the surfaces and the pressure gradient in the 

direction of entrainment. As the pressures are reduced from the peak Hertzian value (often 

termed as primary pressure peak in elasto-hydrodynamic contacts) the lubricant viscosity 

also reduces dramatically. This means that locally the load carrying capacity is reduced, 

giving rise to a secondary pressure peak and a decrease in the film thickness is noted 

(minimum exit film). The size of the secondary pressure peak and its positioning within the 

contact is related to the operating conditions; load and speed, the inlet meniscus (supply of 

lubricant), mechanical properties of contacting surfaces and bulk lubricant rheology, 

particularly viscosity (Evans and Snidle, 1982). 

2.2.1. Boundary and Mixed Lubrication 

In an ideal world, there would be sufficient lubrication in any conjunction to facilitate 

motion and reduce the chances of wear occurring. However, experience tells us that these 

‘perfect’ conditions occur rarely in any aspect of friction reduction. The gradual wearing of 

components suggests that contact between two surfaces can happen, even when the 

contact has been lubricated. Therefore, a method of predicting the effect of these contacts 

would enable any numerical analysis to be more accurate in its predictions. 

Greenwood and Tripp (1971) examined the contact between two rough surfaces. A 

distribution of asperities of different radii is implemented upon a nominally flat surface, 

giving an expression for the asperity pressure: 

𝑃𝑎 = 8√2
15
𝜋(ζ𝜅𝜎𝑅𝑀𝑆)2�𝜎𝑅𝑀𝑆

𝜅
𝐸′𝐹5 2⁄ (λ𝑠)          (2.7) 

In equation (2.7), ζ is the asperity distribution in the contact area, whilst κ represents the 

average asperity tip radius. E’ is the composite modulus of elasticity of the two surfaces. The 

dimensionless term 𝐹5 2⁄ (λ𝑠) is a statistical function assuming a Gaussian distribution of 

asperities on the contiguous contacting surfaces (Teodorescu et al, 2004). Patir and Cheng 

(1978) studied partially lubricated contacts, and derived an average Reynolds equation for 

rough surfaces. This approach used flow factors which vary throughout the area examined. 
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The method presented by Patir and Cheng enabled surface texturing to be modelled 

numerically, and therefore determine which patterns should be most effective in reducing 

friction. This analysis has become particularly adapted in studies of the piston ring-to-

cylinder liner conjunction. Some IC engine manufacturers add laser-etched patterns onto 

the piston, at the axial position where the ring would stop momentarily at the Top Dead 

Centre (TDC). As this is a position through the engine cycle where boundary interaction is 

most likely, extra efforts are made. For example through the mid-stroke, the film thickness 

between the ring and the bore is usually large enough to discount any contact between the 

two surfaces, and the hydrodynamic regime of lubrication is prevalent. 

2.3. The Dynamics of Incomplete Rings 

Dynamics is the study of motion by considering the cause behind any changes in the 

kinematics of bodies or particles. The following section looks at various studies undertaken 

regarding incomplete rings on a broad scale. Whilst some of the literature reviewed is 

relevant to the compression ring, most of the authors do not specify an application or case 

study. 

Early studies of ring dynamics took the form of analyzing curved bars. Lamb (1887) was 

among the first to perform this analysis. He discussed the in-plane flexure of a uniform bar. 

Based on previous work by Kirchoff, Clebsch, Thomson and Tait, a general equation for free-

free end conditions was derived and solved. However, Lamb’s work only considered beams 

with small curvatures. Den Hartog (1928) built on this work by deriving formulae for the first 

and second natural frequencies of an incomplete circular ring. He applied the Rayleigh-Ritz 

energy method to obtain these natural frequencies, for both hinged and clamped boundary 

conditions. Brown (1934) presented an approximate solution for the out-of-plane vibrations 

problem, using a modification of the Rayleigh method. He found that the calculated values 

using this method were higher than the ones obtained via experimentation; however they 

did fall within the level of expected error. Volterra and Morell (1961) later used the 

Rayleigh-Ritz method to find the lowest natural frequencies of elastic arcs, both in and out-

of-plane. Further to this, they applied the theory to elastic hinged arcs. 

Love (1944) obtained the classical equation of motion for an incomplete ring of small cross-

section. He assumed an un-deformed central radial axis in order to evaluate the global 
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deformation of an incomplete circular ring. Love obtained various natural frequencies using 

the previous work of Mayer (1921). The ring was considered with different types of applied 

normal loads, for example for a slightly bent ring with an applied couple at its free ends in 

the radial plane. Other studies included the ring ends being subjected to opposing tension, 

as well as a couple applied at its ends perpendicular to the plane of the ring. 

Archer (1960) studied the in-plane in-extensional vibrations of incomplete rings with small 

cross sections. The results were obtained using classical equations of motion, considering 

only in-plane forces. The results found by Archer between π and 2π were in agreement with 

den Hartog’s results. Shear deformation was neglected in his studies; however Timoshenko 

and Young (1955) proved that this was a valid assumption. Lang (1962) also studied the in-

plane ring deformations and expanded it to present the full dynamic solution methodology, 

for both extensional and inextensional rings. Figure 2.1 shows a diagram depicting the 

degrees of freedom considered in this problem. 

 

Figure  2.1: The degrees of freedom used by Lang (1962) 

The boundary conditions used by Archer were clamped-clamped; however Lang (1962) 

provided solution forms for a variety of boundary conditions. Within the context of a 

compression ring application, the ring would be assumed to be free-free. In other words, 

there is no clamp holding the ring ends in position. 

Following on from Archer’s work on in-plane vibrations, Ojalvo (1962) studied the out-of-

plane twist-bending vibrations of incomplete rings. He developed the equations of motion 

using Hamilton’s Principle, to provide complementary solutions to those found by Archer. 

Ojalvo also concluded that there is a mutual independence between the in-plane and out-

v 
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of-plane linear motions, after inspection of the resulting expressions shows no common 

degree of freedom present in both in-plane and out-of-plane equations of motion. This 

allows the in-plane and out-of-plane solutions to be treated as separate problems from a 

mathematical point of view, as the in-plane equations of motion are uncoupled from the 

out-of-plane equations. Results were given for clamped end conditions, with Ojalvo 

reporting good agreement with results from Brown (1934) and den Hartog (1927). A similar 

method is used by Morley (1957) to find the flexural vibrations of a thin cut ring. Non-

uniform beams of constant radius were examined by Lee and Chao (2000), again using the 

Hamilton Principle. Figure 2.2 shows the out-of-plane degrees of freedom used by Ojalvo. 

 

Ojalvo, I. U. "Coupled twist-bending vibrations of incomplete elastic rings, "International 

Journal of Mechanical Sciences 4.1 (1962): 53-72. (figure 1) 

 

Figure  2.2: Degrees of freedom used by Ojalvo (1962) 

A number of studies have since been carried out based on the papers above, in particular 

Ojalvo and Archer. Williams (1973) included warping effects when producing his equations 

of motion, and showed results for free vibrations for complete rings and segments. His focus 

for the ring segments was on out-of-plane vibrations, as the in-plane natural frequencies 

had been discussed by Lang (1962). Wang et al (1980) applied Ojalvo’s method to 

continuous curved beams, as opposed to single span. Rao (1971) analysed the coupled 

twist-bending vibrations seen in both complete and incomplete rings. He found solutions for 

free, supported and clamped conditions using Hamilton’s principle. Rotary inertia and 

shearing deformation were included, to compare with classical theory which omits these 

values. It was found that inclusion of the shear deformation effects gives a closer prediction 

of the experimental natural frequencies found. 

Auciello and De Rosa (1994) examined circular arches, assuming an inextensible centre axis 

and neglecting shear forces and rotary inertia. Their method was based on the equations of 

motion presented by Henrych (1981), and the results were compared to other method for 
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validation. These included finite element programs, the Rayleigh-Schmidt method, the Ritz 

and Galerkin method, and the Cells Discretisation Method. 

Kang et al (1996) used the Differential Quadrature Method (DQM) to find the fundamental 

frequencies of circular arches, both in-plane and out-of-plane, of circular arches. The author 

produced results for a number of cases, including a comparison with Ojalvo (1962), with all 

showing a good agreement. De Rosa and Franciosi (2000) used a modification of the DQM, 

which allows boundary conditions to be implemented exactly. High level of precision was 

achieved, and again good agreement was seen when compared with previous papers. Kang 

(2007) then used DQM to analyse thin-walled curved beams, and showed that this method 

was also valid, with comparisons to other works. Challamel et al (2009) applied different 

loading conditions to circular arches, using Hamilton’s Principle to find a solution. 

Apart from vibrations, compression rings are subjected to other motion. The grooves in the 

piston dictate the primary movement of the rings, effectively pushing them up and down 

within the bore. This contact with the bore can cause a phenomenon called ring flutter. Tian 

et al (1998) created a ring dynamics and gas flow model, designed for a ring-pack containing 

three rings. Studies on a spark ignition engine found that static twist (the relative angle 

between rings and their grooves) has great influence on ring/groove contact characteristics, 

ring stability, and blow-by. Figure 2.3 shows a cross-section of the ring within the piston 

groove. For Tian’s analysis, he assumed a layer of lubricant to be present on both surfaces of 

the groove, allowing a simplified Reynolds equation to be used to calculate the reaction 

force acting between the groove and the ring. 

Tian, T., "Dynamic behaviours of piston rings and their practical impact. Part 1: ring flutter 

and ring collapse and their effects on gas flow and oil transport." Proceedings of the 

Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 216.4 (2002): 

209-228. (figure 16) 

 

Figure  2.3: Diagram of the ring within the groove, highlighting ring twist (Tian, 2002a) 
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Tian (2002a) discussed how ring flutter and ring collapse effected gas and oil flow in both SI 

and diesel engines. He stated that the pressure difference between the top and bottom of 

the ring, referring to figure 2.3, can be given as: 

 𝑃12 = 𝑃1 − 𝑃2      (2.21) 

The critical pressure which causes ring collapse is defined as: 

  𝑃12,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝐹𝑡
𝐵1𝑅

     (2.22) 

Where Ft is the ring tangential force and R is the cylinder bore radius. B1 denotes the axial 

distance between the minimum film position and the upper edge of the face. 

2.4. Tribological Analysis of Compression Rings 

Due to the nature of the environment in which the compression ring is required to work, a 

study of the system can encompass a wide variety of methodologies. The lubricant 

properties, entraining velocity and load are constantly changing, creating a complex 

arrangement (Tung and McMillan, 2004). As many as 17 influential parameters must be 

considered when attempting to numerically replicate the ring-liner conjunction, in order to 

attain results which mirror the ‘real life’ scenario to an acceptable level of accuracy (Taylor, 

1998). 

Fox et al (1997) reported that the lubricant available to the compression ring - cylinder liner 

conjunction has reduced as restrictions on engine emissions have been enforced on vehicle 

manufacturers. This reduction in lubrication increases the friction contribution of the ring 

pack from approximately 13% in the 1980s, to around 27% today (Richardson, 2000). A 

contribution between 13-40% is generally seen, depending on the engine’s running 

conditions and specifications (Richardson, 2000). Clearly, any reduction in these frictional 

losses would be beneficial. If all parasitic losses are considered, a 10% improvement in 

mechanical losses would reduce fuel consumption by 1.5%, according to Priest and Taylor 

(2000). 

As stated by Smedley (2004), Ramsbottom and Miller pioneered the piston ring in the mid-

1800s. The work done by Miller, namely allowing the steam pressure to improve the sealing 

force, enabled more flexible rings to be designed. This meant improved conformability to 
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the cylinder bore, according to Priest and Taylor (2000). Furuhama (1959-1961) helped to 

pave the way for both numerical and experimental investigations into compression ring 

tribology, with many studies undertaken since then. 

Since Tribology encompasses a number of disciplines within the areas of physics and 

engineering, this section will be divided further. The following section discusses lubrication 

along the compression ring, along with ring and bore conformability, as well as phenomena 

such as blow-by. Section 2.4.2 will then review the literature concerned with frictional losses 

at the compression ring-bore conjunction, as well as lubrication concerns. This includes 

relatively recent technology relating to surface texturing, and how it can improve lubrication 

at the point of contact. 

2.4.1. Conformability and lubrication along the Compression Ring 

Conformability, in the context of a piston ring-liner system, describes how well the two parts 

fit together. Deformation of the bore and ring can be caused by thermal and mechanical 

loading, cylinder head bolt tightening and abrasion (Andersson et al, 2002). Due to its 

nature, the bore cannot be manufactured as a perfect cylinder. Running conditions can 

therefore worsen the conformance of the ring further. Whilst the in-situ ring will suffer from 

deformation, while the engine is running a constantly changing bore axial cross-section 

means flexibility is an important property of compression rings. Higher conformability 

between the compression ring and the cylinder means less gas will be lost through blow-by. 

The latter is the phenomenon where gases flow from the combustion chamber, past the ring 

pack to the crankcase. Figure 2.4 shows the paths these gases can follow during blow-by. 

The combustion gases greatly increase the bore and ring temperatures, as well as disrupting 

the lubricant film and separating the two surfaces. In addition to this contamination, blow-

by reduces the power of the engine, as the escaping gases cause a loss of pressure within 

the combustion chamber. Poor conformability may also cause excessive oil flow, which 

causes the oil to escape with the exhaust gases. 
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Figure  2.4: Blow-by in a poor fitting cylinder bore (Andersson et al, 2002) 

Contact pressure on the ring pack comes from two sources. These are ring compression 

when the rings are fitted into the bore and gas pressure. The tangential force on the piston 

rings depends on the piston ring type. For example, the theoretical contact pressure used in 

the calculation of the tangential forces of rectangular and half keystone rings made of steel 

is approximately 0.19 N/mm2. The spring force of the compression rings is lower than that 

of the oil ring (Dowson, 1993). Standards ISO 6621-4 state the values of nominal contact 

pressures and specific tangential forces for various piston rings. According to the work of 

Dowson, the loading caused by the elastic spring force on rings with gas pressure acting on 

the rear of the ring is typically 104–105 Pa. This pressure presents only about 1 % or less of 

the peak gas pressure (Dowson, 1993). 

Each of the rings within the ring pack is subjected to different pressures (Andersson et al, 

2002). Due to the cyclic nature of a 4-stroke engine, the gas pressure on the top 

compression ring varies with the cylinder pressure, and is dependent on the engine stroke. 

These variations decrease at the secondary compression ring, with the average pressure 

also decreasing. The gas pressure on the oil ring can be said to be constant, and is almost 

equal to that of the crank chamber. The gas pressure on the compression ring increases the 

contact pressure, which in turn improves conformity. However, Chittenden and Priest 

(1993) stated that gas pressures only bear any significance for a small proportion of the 

engine’s cycle.  

Top ring 

Piston 
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Tomanik, Eduardo. "Piston ring conformability in a distorted bore." SAE paper 960356 

(1996) (figure 2) 

 

Figure  2.5: An exaggerated example of bore cross-section deformation (Tomanik, 1996) 

Tomanik (1996) attempted to verify ring conformability criteria by experimentation. 

Deformed ring shapes were produced in a static jig, with areas of non-contact between the 

ring and the bore being measured. After processing the results, he produced a formula for 

calculating ring conformability. Figure 2.5 shows the areas of ring non-conformability in an 

example circular profile. Okamoto and Sakai (2001) presented a new calculation method for 

the pressure distribution on piston rings. Their method calculates the pressure from a given 

ring contour. This is based on a free ring, and uses the method of least squares to stabilise 

the results. Good agreement was found for different types of contact pressure distributions, 

namely strong and weak contact types, between the proposed methodology and 

experimental data. 

Dunaevsky has undertaken many studies on ring conformability. In one of his earlier papers, 

a criterion for piston ring conformability to distorted cylinders is described (Dunaevsky, 

1990). Fourier analysis was used to model the bore profile, and the results were supported 

by mass flow tests in compressors. 

Dunaevsky et al (2000a, 2000b) also considered three dimensional distortions of the piston 

rings. They concluded that installation of the piston ring into the bore causes distortion in 3 

dimensions, and that twist and ‘bulging’ occurs perpendicular to the ring’s plane. In addition 

to this, the authors enhanced the capabilities of this model by accounting for contact 

pressure, and showing its effects on ring twist (Dunaevsky et al, 2001). They then considered 

the torsional ring distortion, using a Fourier series representation to model the cylinder bore 

geometry. The calculated twist values were compared to measured data with good 

compatibility. So far, Dunaevsky et al had focused on piston rings with symmetrical cross 

sections. The authors have also considered the differences a non-symmetrical cross section 

would make to the system’s behaviour (Dunaevsky and Alexandrov, 2005). Therefore, a 

significant knowledge base has been created regarding piston ring conformability. 
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2.4.2. Friction and Lubrication Concerns within the Ring-Cylinder Contact 

Due to varying load and surface conditions, each of the rings is subjected to differing 

lubrication regimes. If reducing friction was the only prerogative of an internal combustion 

engine, then a fully flooded contact would be desirable. However, due to the demands on 

today’s engines regarding performance and power, this condition is not usually attainable. 

The most prominent lubrication regimes in the ring pack area are mixed and boundary 

(Andersson et al, 2002).  

The majority of piston ring lubrication models are based on the Reynolds equation. The four 

lubrication regimes, as seen in Figure 1.5, are hydrodynamic, mixed, boundary, and elasto-

hydrodynamic (EHL). Hydrodynamic lubrication usually occurs during the mid-strokes of the 

4-stroke cycle, when the surface velocity is at its highest. The problems regarding lubrication 

are noticed at the top dead centre (TDC) and bottom dead centre (BDC). At both positions, 

Han and Lee (1998) noted that the ring faces were not fully lubricated. This condition meant 

that the Reynolds boundary condition could not be applied, and so they developed a model 

where the inlet is starved and the outlet has an open-end assumption. However, this model 

used flooded conditions at TDC and BDC. Ma et al (1997) proposed a fully flooded model 

and a flow-continuity model, and concluded that the latter was a more appropriate solution. 

They compared the results obtained numerically with those via experimentation by 

Hamilton and Moore (1974). Ma et al concluded that bore distortion can considerably 

reduce the power loss, although this distortion increases the oil consumption. 

Castleman (1936) predicted that the lubrication regime surrounding piston rings was 

hydrodynamic, with a film thickness of approximately 5μm. This was in agreement with 

Eilon and Saunders (1957), who found similar values from friction measurements. These 

predictions were, however, undermined by the fact that piston rings were susceptible to 

wear, meaning that either metal-to-metal (asperities) contact or very thin lubricant films 

must occur. Wing and Saunders (1972) fitted inductance transducers to the piston for film 

thickness measurement. They found the oil-film thickness to be within the range 5-12μm. 

Hamilton and Moore (1974) introduced capacity gauges as a method of measuring film 

thicknesses and were able to resolve at much lower films, meaning more accurate film 

measurements were possible when the film thickness was approaching a mixed regime. 



Literature Review 
 

24 
 

They observed values of 0.4-2.5μm, which are more in line with expected values at TDC and 

BDC especially. 

Hill and Newman (1985) sought to reduce engine friction whilst maintaining performance. 

Their work was divided into four sections: 

• Theoretical considerations – Explored the nature of piston ring friction through the 

three lubrication regimes experienced (boundary, mixed and hydrodynamic). The 

implications of the lubrication regime on piston ring design is discussed, as well as 

the design limitations based on factors including theoretical sealing capability, 

durability requirements and manufacturing considerations 

• Low friction ring set design – referring to the theoretical considerations, the features 

of each ring pack component were reviewed 

• Test results with the low friction ring set – the reduced friction set was tested, with 

results given for friction, oil consumption, blow-by, fuel economy and power output 

• Future piston ring designs – further reductions in ring width, variation in the material 

composition and coatings, and the number of rings used were all examined, with any 

potential improvements highlighted.  

Hill and Newman (1985) gave estimates of the friction reduction capable, with nearly a 26% 

reduction predicted for the oil ring. However this was under the assumption that the oil ring 

causes 60% of the ring-pack friction, which is inaccurate. 

There have been many attempts to predict piston ring-to-cylinder bore tribological 

performance, based on pressure-induced localised deformation, caused by EHL. Ruddy et al. 

(1981) investigated the gas pressure within the ring pack for a large bore diesel engine, with 

the objective of overcoming the technical problems inherent in sealing a moving piston. The 

authors suggested that the ring gap could account for the gas leakage path, as a result of 

combined local and global deformations of the ring. Knoll and Peeken (1982) modeled the 

hydrodynamic lubrication of piston skirt and cylinder liner conjunction through an iterative 

method, using open end boundary conditions to estimate the reaction force due to the 

generated pressures. Balakrishnan and Rahnejat (2005) studied the transient conditions in 

the contact of piston skirt and ring-pack against cylinder liners during piston reversal. Their 

study showed changes in the regime of lubrication during reversal at or near the TDC. They 
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also showed that fluid film lubrication can be encouraged by the introduction of lubricant 

retaining surface features and modifications. Dwyer-Joyce et al (2007) verified this work via 

experimental analysis, where they used ultrasound to measure film thicknesses in a fired 4-

stroke engine. The piston skirt-cylinder liner values obtained were in agreement with 

Rahnejat et al (2006). Unfortunately the sensor’s resolution was not adequate for measuring 

the cylinder bore to compression ring film thickness. 

Mishra et al (2009) analysed the ring-bore conjunction, including conformability and in-

plane deformation of the ring. They assumed mixed and boundary conditions at TDC and 

BDC, and showed good agreement with Furuhama and Sasaki (1983). Spencer et al (2011a) 

investigated the effect of the liner honing angle on the piston ring-cylinder conjunction. 

Honing is used in the manufacturing process, to apply the surface finish to the cylinder liner. 

They concluded that the honing angle had very little effect on the film thickness during the 

mid-stroke, but stated further work could be to investigate this procedure at TDC and BDC. 

Baker et al (2011b, see Appendix B) demonstrated the effect of including thermal effects on 

the ring’s tribological performance. Internally generated (compressive heating and viscous 

shear) heating methods were accounted for, and comparisons made between the two 

methods. It was seen that when both heating mechanisms are incorporated (and the effect 

of combustion on lubricant temperature is not accounted for), a small difference is seen 

between the isothermal and thermal analyses. 

2.4.3. Surface Roughness, Modification and Topography 

Quan-bao et al (1988) presented a one-dimensional model of the piston ring-cylinder liner 

system which examined the effects of roughness on lubrication. It was concluded that 

inclusion of surface roughness effects would give a better approximation of the friction 

force values between the ring and the liner. Hu et al (1994) presented a theoretical model 

for a nonaxisymmetrical analysis of piston ring lubrication, which showed a variation in film 

thickness circumferentially. This in turn would affect the friction calculation 

circumferentially. 

Spencer et al (2011b) attempted to optimise the surface texture of a cylinder liner, using a 

two-dimensional roughness model. The liner surface was measured, and a mathematical 

algorithm was used to model the surface numerically. They concluded that accounting for 
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the global surface texture and roughness should be done separately. This approach also 

allowed for the potential to optimise the surface texture using a mathematical model. 

Morris et al (2012) used the method presented by Patir and Cheng (1978) to present an 

analytical flow model coupled with an analytical thermal model. Rahmani et al (2012) 

investigated the effect of an out-of-round bore on the tribological performance, as well as a 

worn ring compared to a new one. The bores out of roundness caused a reduction in 

minimum film thickness; however the worn ring was seen to encourage an increase in film 

thickness in all areas of the engine cycle apart from reversal. Mishra et al (2009) used 

Greenwood and Tripp’s method, along with measurements of a real cylinder bore, to 

perform a tribological analysis of a compression ring. A reasonable agreement was seen 

when comparing to experimental data presented by Furuhama and Sasaki (1983), as well as 

previous numerical analysis (Akalin and Newaz, 2001). The discrepancy between results was 

attributed primarily to the inherent bore our-of-roundness and ring dynamics. 

2.4.4. Ring Deformation 

A number of authors have attempted to account for ring deformation during the engine 

cycle. Namazian and Heywood (1982) created a ring dynamics model which included a gas 

flow model. However, ring twist was not included in their study. Dowson et al (1979) and 

Ruddy et al (1979) examined the influence of ring twist, suggesting a particular contact 

between the ring and groove could cause flutter to occur. Their study did not include gas 

flow, and assumed the axial ring motion followed the piston exactly once contact between 

the two bodies occurred. Tian et al (1998) included both ring twist and a gas flow model. A 

thin layer of lubricant was assumed to cover the piston groove, and the Reynolds equation 

used to calculate the pressure profile along the groove. A one dimensional, analytical 

solution is used. However, the ring dynamics described did not calculate the elastic response 

of the compression ring, or account for the motion in a transient manner. Tian (2002a, b) 

built upon this work by showing the effect of ring flutter on gas flow and oil transport. A 

formula was presented, showing the critical parameters to avoid ring radial collapse. Kurbet 

and Kumar (2004) created a 3D finite element model of the piston and compression ring, 

including ring twist and piston tilt. They concluded that piston tilt has a significant effect on 

ring dynamics. 
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More recently, as part of the research presented in this thesis, an effort has been made to 

examine the possibility of including transient ring dynamics in the tribological analysis of the 

compression ring. Baker et al (2011a, see Appendix A) discussed the in-plane modal 

response of incomplete rings, alongside the effect of ring fitment on tribological 

performance. Baker et al (2012, see Appendix C) also demonstrated the effect of including 

ring dynamics in a tribological model, with ‘snapshots’ of deflected ring profiles presented. 

These snapshots were the result of extracting the force profile acting upon the ring at key 

locations around the firing point, and applying it to the ring’s neutral profile. 

2.5. Closure 

There has been a vast amount of analysis performed on the dynamics of curved structures 

and incomplete rings. Both in-plane and out-of-plane vibrations have been solved with 

various analytical and numerical techniques. FEA and experimental work is largely used to 

verify the investigations, giving confidence that the methodologies used are sound. Similarly 

the area of tribology, particularly when concerning the piston cylinder-ring pack 

conjunction, has been the subject of numerous studies. However, a comprehensive model 

encompassing both ring dynamics and tribology is not yet available in the public domain. 

This suggests that such a model has not been created; therefore making it a potential 

novelty to be offered by this project.  

The quasi-static dynamics of the compression ring due to gas pressure and ring tilt have 

been described within the literature reviewed in this report. However, one area which 

hasn’t been considered thus far is the transient dynamic response of the compression ring 

within the piston groove. This is an area where a significant contribution to knowledge is 

possible. Whilst the displacements compared to the piston stroke would be small, these 

perturbations would be of significant size compared to the film thickness values seen. The 

effects of inertial dynamics on the present tribological numerical analysis are not known, 

and so a study on the matter would add to the knowledge base shown in this chapter. This 

will be further enhanced by the inclusion of thermal effects, demonstrating a novel program 

of numerical work. Experimental data will be gathered for verification and comparison, with 

the aim of verifying the numerical solution for the compression ring dynamic behaviour. 
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3. Compression Ring Dynamics 

3.1. Introduction 

The following chapter discusses the analytical methodology used to model the dynamics of 

the compression ring within the bore throughout the engine cycle. The motion of the ring 

can occur both in-plane and out-of-plane relative to its original position. However it is 

possible to treat these as separate problems, from a mathematical viewpoint. The in-plane 

dynamics are discussed first. Both methodologies are verified using an FEA model. 

3.2. Ring In-plane Dynamic Response 

The assumptions used in the analysis of the incomplete, circular ring are as follows: 

• Since the neutral radius of the ring is significantly larger than the ring’s thickness, the 

ring can be assumed to be thin. The variable 𝐼
𝐴𝑅2

≈ 1.248 10−5 ≪ 1, as stated by 

Lang (1962), is also a measure which agrees with this assumption. In this variable, A 

is the cross-sectional area of the ring and R is the ring’s nominal radius. 

• Rotary inertia is neglected in this analysis, due to the thin nature of the ring and its 

relatively small mass and rotation speed. 

• The neutral axis is also assumed to be inextensible (𝑑
𝑅
≈ 0.0814 < 0.1), which is a 

valid assumption for analysing the ring’s forced response when modes lower than 

the fifth harmonic are only considered as important (Lang, 1962). Therefore, the 

following relationship couples the tangential and radial displacements:  

 

𝑤 = 𝜕𝑣
𝜕𝜕

      (3.1) 

 

Figure 3.1a demonstrates the degrees of freedom used in the dynamic analysis. Figure 3.1b 

shows a free body diagram of the ring, exhibiting all forces and moments acting upon a ring 

segment (Lang, 1962): 
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(a) 

 

(b) 

Figure  3.1: a) In-plane degrees of freedom of an incomplete ring and 

b) Ring segment free body diagram 

 

From figure 3.1b, Q(𝜑) is the transverse force, N(𝜑) is the circumferential normal force and, 

M(𝜑) is the bending moment. The force terms FR and FT correspond to the external 

excitations in the radial and tangential directions, respectively. Therefore, the equations of 

motion in both the tangential and radial directions are as follows (Lang, 1962): 
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Where E is the elasticity modulus, I is the second moment of inertia and R is the ring’s 

nominal radius. Equations (3.2-3.3) are coupled by the relationship w = dv/dϕ. It can be 

seen that equations (3.2) and (3.3) are of the same form. The eigenproblem is derived by 

first setting the right hand side of equation (3.2) to equal zero. A solution for v is assumed, 

for the nth mode: 

 

𝑣(𝜑, 𝑡) = 𝑉𝑛(𝜑)𝑒𝑖𝜔𝑛𝑡     (3.4) 

 

Where Vn(ϕ) is the mode shape for the nth mode. Therefore, assuming 𝑝 = 𝐼
𝐴𝑅2

 and 

𝜔0
2 = 𝐸

𝜌𝑅2
,  equation (3.2) becomes: 

 

𝜕6𝑉𝑛
𝜕𝜕6

+ 2 𝜕4𝑉𝑛
𝜕𝜕4

+ (1 − 𝜆𝑛) 𝜕
2𝑉𝑛
𝜕𝜕2

+ 𝜆𝑛𝑉𝑛 = 0    (3.5) 

where  

𝜆𝑛 = 𝑚𝑅4

𝐸𝐼
𝜔𝑛2     (3.6) 

 

Equation (3.5) has constant coefficients and it is a linear differential equation (Lang, 1962). A 

solution for equation (3.5) can, therefore, be assumed: 

 

𝑉𝑛 = ∑ 𝐴𝑛𝑖𝑒
𝑚𝑛𝑖𝜕6

𝑖=1     (3.7) 

 

Substitution of equation (3.7) into equation (3.5) leads to the following auxiliary equation 

(Lang, 1962): 

 

𝜎𝑛6 + 2𝜎𝑛4 + (1 − 𝜆𝑛)𝜎𝑛2 + 𝜆𝑛 = 0   (3.8) 
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Equation (3.8) is seen to be a cubic equation in σn
2, where σ is the root of the eignevalue 

problem. The solutions to equation (3.8) are used in the mode shape functions in the 

following section. These mode shape solutions to equations (3.2) and (3.3) have been solved 

in the past by several authors, including Love (1944), Archer (1960) and Ojalvo (1962), who 

provide examples of calculated natural frequencies and mode shapes. The solution forms 

(known as modal functions) are the same for both v and w degrees of freedom and depend 

on the value of the frequency parameter λn. 

If λn < λL, then: 

𝑉𝑛 = 𝐴𝑛1 cos𝑑𝑛 𝜑 + 𝐴𝑛2 sin𝑑𝑛𝜑 + 𝐴𝑛3 cos 𝑒𝑛 𝜑 + 𝐴𝑛4 sin 𝑒𝑛𝜑 + 𝐴𝑛5 cos𝑓𝑛 𝜑 +

𝐴𝑛6 sin𝑓𝑛𝜑  (3.9) 

and 

𝑊𝑛 = −𝐴𝑛1𝑑𝑛 sin𝑑𝑛𝜑 + 𝐴𝑛2 dn cos dnφ−𝐴𝑛3𝑒𝑛 sin 𝑒𝑛𝜑 + 𝐴𝑛4𝑒𝑛 cos 𝑒𝑛𝜑 

−𝐴𝑛5𝑓𝑛 sin𝑓𝑛𝜑 + 𝐴𝑛6𝑓𝑛 cos𝑓𝑛𝜑 (3.10) 

 

Where dn, en and fn are the modal function constants. If λL < λn < λU, then: 

𝑉𝑛 = 𝐴𝑛1 cos𝑑𝑛𝜑 + 𝐴𝑛2 sin𝑑𝑛𝜑 + 𝐴𝑛3 cos𝜇𝑛𝜑 cosh 𝛿𝑛𝜑 + 

𝐴𝑛4 sin𝜇𝑛𝜑 cosh 𝛿𝑛𝜑 + 𝐴𝑛5 cos 𝜇𝑛𝜑 sinh𝛿𝑛𝜑 + 𝐴𝑛6 sin𝜇𝑛𝜑 sinh𝛿𝑛𝜑  (3.11) 

and 

𝑊𝑛 = −𝑑𝑛𝐴𝑛1 sin𝑑𝑛𝜑 + 𝑑𝑛𝐴𝑛2 cos𝑑𝑛𝜑 

+𝐴𝑛3(−𝜇𝑛 sin𝜇𝑛𝜑 cosh 𝛿𝑛𝜑 + 𝛿𝑛 cos 𝜇𝑛𝜑 sinh 𝛿𝑛𝜑) 

+𝐴𝑛4(𝜇𝑛 cos 𝜇𝑛𝜑 cosh 𝛿𝑛𝜑 + 𝛿𝑛 sin𝜇𝑛𝜑 sinh𝛿𝑛𝜑) 

+𝐴𝑛5(−𝜇𝑛 sin𝜇𝑛𝜑 sinh𝛿𝑛𝜑 + 𝛿𝑛 cos 𝜇𝑛𝜑 cosh 𝛿𝑛𝜑) 

+𝐴𝑛6(𝜇𝑛 cos𝜇𝑛𝜑 sinh𝛿𝑛𝜑 + 𝛿𝑛 sin𝜇𝑛𝜑 cosh𝛿𝑛𝜑)   (3.12) 

 

Finally, if λn > λU, then: 

𝑉𝑛 = 𝐴𝑛1 cos𝑑𝑛𝜑 + 𝐴𝑛2 sin𝑑𝑛𝜑 + 𝐴𝑛3 cosh 𝑒𝑛𝜑 + 𝐴𝑛4 sinh 𝑒𝑛𝜑 + 𝐴𝑛5 cosh 𝑓𝑛𝜑 +

𝐴𝑛6 sinh 𝑓𝑛𝜑  (3.13) 

and 

𝑊𝑛 = −𝑑𝑛𝐴𝑛1 sin𝑑𝑛𝜑 + 𝑑𝑛𝐴𝑛2 cos𝑑𝑛𝜑 + 𝑒𝑛𝐴𝑛3 sinh 𝑒𝑛𝜑 + 𝑒𝑛𝐴𝑛4 cosh 𝑒𝑛𝜑  

 +𝑓𝑛𝐴𝑛5 sinh𝑓𝑛𝜑 + 𝑓𝑛𝐴𝑛6 cosh 𝑓𝑛𝜑  (3.14) 
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The condition λn < λL does not arise when considering an incomplete ring. It can only occur 

when α > 2π. The limits λU and λL are independent of the ring geometry, taking values of λL = 

0.1134 and λU = 17.637. These limit values are stated by Archer (1960) and are the 

boundaries across which the solution forms for Wn and Vn differ. The value of λn is 

determined by solving the characteristic equation (3.8). 

The constants dn, en, fn, δn and μn depend on the roots of equation (3.8). If λL < λn < λU, the 3 

roots take the form dn, δn + iμn, and δn - iμn, meaning the second and third roots are complex 

conjugates. If λn > λU, then the roots are of the form dn, ien, ifn. The expressions for 𝑉𝑛 and 

𝑊𝑛 are substituted into the ring boundary conditions (free-free in this case). Equations 

(3.11-13) represent the normal force, bending moment and its derivative, whose values 

equal zero for an incomplete ring, which is free at both ends. These equations are therefore 

implemented at the ring ends (for 𝜑 = 0 and 𝜑 = 𝛼, as substituted in the expressions for Vn 

and Wn): 

  

  𝑑2𝑉𝑛
𝑑𝜕2

+ 𝑑4𝑉𝑛
𝑑𝜕4

= 0     (3.15) 

 

  −𝜆𝑛
𝑑𝑉𝑛
𝑑𝜕

+ 𝑑3𝑉𝑛
𝑑𝜕3

+ 𝑑5𝑉𝑛
𝑑𝜕5

= 0     (3.16) 

 

   𝑑𝑉𝑛
𝑑𝜕

+ 𝑑3𝑉𝑛
𝑑𝜕3

= 0      (3.17) 

 

The above process gives a 6x6 matrix with respect to constants An1 – An6. The λn values are 

found when the determinant of this matrix vanishes. The natural frequency (in rad/s) is 

calculated by rearranging equation (3.6), since λn is now a known variable for each mode 

number, n. Therefore each natural frequency of the ring depends on the frequency 

parameter λn, as well as to the ring’s dimensions and material properties. However, it is 

worth noting that calculation of the frequency parameter itself is not a function of the ring’s 

material properties. The only dimension affecting the calculation of λn is the ring’s 

subtended angle, φ. 
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After calculation of the natural frequencies, the constants An1-An6 from equations (3.9-14) 

are required to determine the corresponding mode shapes. In order to calculate the An 

coefficients, the orthogonality conditions of the ring’s modal functions must be satisfied, 

thus (Inman, 2001): 

 

∫ 𝜌𝑅𝐴�𝑉𝑖𝑉𝑗 + 𝑊𝑖𝑊𝑗�𝑑𝜑
𝛼
0 = 0,   𝑖 ≠ 𝑗   (3.18) 

     

∫ 𝜌𝑅𝐴(𝑉2 + 𝑊2)𝑑𝜑𝛼
0 = 1, 𝑖 = 𝑗    (3.19) 

 

where i and j represent different mode numbers. The boundary conditions are used to 

obtain expressions for An1 – An5 with respect to An6. These are substituted into equation 

(3.19), which is solved for An6. Hence, the remaining constants can be calculated, allowing 

the determination of the corresponding mode shape at each natural frequency. 

Table 3.1 shows the modelled ring dimensions and material properties, whilst the FEA 

model properties are shown in table 3.2. The calculated natural frequencies are presented 

in table 3.3, for both the numerical method and FEA model. Excellent agreement can be 

seen. Figure 3.2 shows an example mode shape after applying the orthogonality conditions. 

A comparison is made against an FEA model of the ring for verification purposes. As shown 

in table 3.2, the FEA model was created using the software package NASTRAN/PATRAN, and 

comprises 1080 quadrilateral elements with 1355 nodes, each with 6 degrees of freedom 

(Baker et al, 2012). Free-free boundary conditions were assumed for the ends of the ring, as 

there is no restricting ‘clamp’ acting on the top compression ring. Again, very good 

agreement is observed. 

Table  3.1: Ring properties used in numerical and FEA analyses 
Parameter Value 

Elastic Modulus, E 203GPa 

Ring density, ρ 7800kg/m3 
Ring Thickness, d 3.5mm 
Axial Face-width, b 1.15mm 
Nominal Ring Radius, R 44.52mm 
Ring second moment of area, I 2.25X10-12m4 
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Table  3.2: FEA model properties 
  

Element type Quad Isomesh 
Number of elements 1080 
Number of nodes 1355 
Ring end boundary conditions Free-free 

 

Table  3.3: Natural frequency predictions for both numerical analysis and an FEA model 
Mode 

Number 
Analytical Method 

Natural Frequency (Hz) 
FEA model 

Natural Frequency (Hz) 
% Difference 

1 198.44 198.31 0.066 
2 432.8 432.35 0.104 
3 972.06 969.76 0.237 
4 1803.24 1795.40 0.437 
5 2892.18 2871.90 0.706 
6 4224.74 4181.70 1.029 
7 5793.44 5712.80 1.412 

 

 
 (a) (b) 

Figure  3.2: Mode shape comparison (a) Analytical (f = 972.06Hz) and (b) FEA (f=969.76Hz). 

 

The particular solution of equation (3.2) takes the following form (the solution of equation 

(3.3) is determined using the inextensibility condition (3.1)). Thus: 

   

  𝑣(𝜑, 𝑡) = ∑ 𝑉𝑛(𝜑)ξ𝑛(𝑡)∞
𝑛=1      (3.20) 
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The time varying term of equation (3.20), ξ𝑛(𝑡), is determined through the following 

solution (Lang, 1962), Damping effects are not considered, due to the thin nature of the 

lubricant film profile: 

 

  ξ�̈� + 𝜔𝑛2ξ𝑛 = 𝑄𝑛(𝑡)      (3.21) 

where: 

  𝑄𝑛(𝑡) = −
∫ 𝑉𝑛�

𝜕
𝜕𝜑𝐹𝑅(𝜕,𝑡)−𝐹𝑇(𝜕,𝑡)�𝑑𝜕𝛼

0

𝜌𝑎𝐴∫ �𝑊𝑛
2+𝑉𝑛2�𝑑𝜕

𝛼
0

     (3.22) 

 

The FT and FR terms in equation (3.22) represent forces acting in the tangential and radial 

directions, respectively. Equation (3.22) is derived from equation (3.2) after substitution of 

the particular solution (3.20), rearranging the result and applying the orthogonality 

condition (Lang, 1962). The solution of equation (3.21) is obtained analytically as: 

   

ξ𝑛(𝑡) = 1
𝜔𝑛
∫ 𝑄𝑛(𝜏′) sin𝜔𝑛(𝑡 − 𝜏′)𝑑𝜏′𝑡
0 + 𝐶𝑛1 sin𝜔𝑛𝑡 + 𝐶𝑛2 cos𝜔𝑛𝑡  (3.23) 

 

The terms Cn1 and Cn2 are calculated from the initial conditions, so let 𝑣(𝜑, 𝑡) = 𝑣0 and 

�̇�(𝜑, 𝑡) = 𝑣0̇, with the equivalent expressions applicable for the radial displacement. Lang 

(1962) found the value of these terms to be: 

 

𝐶𝑛1 = ∫ (𝑣0 ̇ 𝑉𝑛+𝑤0̇ 𝑊𝑛)𝑑𝜕𝛼
0
𝜔𝑛 ∫ �𝑊𝑛

2+𝑉𝑛2�𝑑𝜕
𝛼
0

      (3.24) 

 

𝐶𝑛2 = ∫ (𝑣0 𝑉𝑛+𝑤0 𝑊𝑛)𝑑𝜕𝛼
0
∫ �𝑊𝑛

2+𝑉𝑛2�𝑑𝜕
𝛼
0

      (3.25) 

 

Substitution of these terms in equation (3.23) gives the complete solution for the in-plane 

elastodynamic response of an incomplete ring. 

Timoshenko et al (1974) detailed the in-plane rigid body response of a closed circular ring. 

By definition, the rigid body response of an incomplete ring would not see any deformation 

of the neutral radius; the response corresponds to translation and rotation around the axis 
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crossing its centre, vertical to the ring plane. Therefore, it is assumed that the in-plane rigid 

body response takes the following form in equations (3.26-27): 

𝑉0 = 𝐴0 sin𝜑       (3.26) 

And: 

 

𝑊0 = 𝐴0cos𝜑      (3.27) 

Equations (3.26) and (3.27) are then used in the methodology for calculating the rigid 

dynamic response. The form of the transient solution, as shown by (Natsiavas, 2001): 

ξ0̈ = 𝑄0(𝑡)      (3.28) 

The solution to equation (3.28) is of a similar form to the elastodynamics solutions: 

ξ𝑛(𝑡) = ∫ ∫ 𝑄0(𝜏′)𝑡
0 𝑑𝜏′𝑡

0 𝑑𝜏′ + 𝐶1𝑡 + 𝐶2    (3.29) 

Where   𝐶2 = 1
𝛼 ∫ 𝑤0(𝜑)𝛼

0 𝑑𝜑,   and    𝐶1 = 1
𝛼 ∫ 𝑤0̇(𝜑)𝛼

0 𝑑𝜑 

Verification of the dynamic response methodology was achieved by applying excitation to 

the FEA compression ring model and comparing the results to those of the analytical theory. 

As dictated by equation (3.22), the force profile must be differentiable in terms of the ring 

angle ϕ so as not to excite extensional modes. The form of the force is as follows: 

 

𝐹𝑅 = 𝐹 ∗ cos 2𝜑 ∗ sin𝜔𝑓𝑡     (3.30) 

 

where ωf is the frequency of excitation, and F is the forcing amplitude due to pressure of 

1kPa applied on the ring FEA model. The pressure along the ring angle is constant. Since the 

in-plane load is applied radially in the case of the compression ring, applying the load as a 

function of the ring angle is necessary. Figure 3.3 gives a visual representation of the force 

profile described by equation 3.30. If the ring was to be unwrapped a sinusoidal profile 

would be seen, with two complete periods between the two ends of the ring. 
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Figure  3.3: Force distribution used in FEA model 

Figure 3.4 shows the displacement response at a point on the compression ring, opposite to 

the ring gap for two different excitation frequencies. A good agreement can be seen 

between the two results. Given the relatively small amplitudes seen in this study, the 

difference between the numerical and FEA results is within an acceptable margin of error. 

An example Fast Fourier Transform (FFT) of the two sets of data is shown in figure 3.5. The 

expected natural frequencies are shown to be present, with the excitation frequency also 

highlighted. The dominant natural frequency seen in figure 3.5a may explain why the shapes 

of the plots in figure 3.4a are slightly different, even if the amplitudes are in agreement. 

These results give confidence that the in-plane dynamic model has been built correctly. 

Results of this nature are not readily available in literature, with only the modal response 

analysis being usually presented. Therefore it was deemed necessary to verify the 

methodology in this manner. 
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(a) 300Hz 

 

(b) 3500Hz 

Figure  3.4: FEA versus numerical analysis ring deflection. Results correspond to the 

displacement of a point opposite the ring gap, with an excitation frequency of (a): 300Hz, 

and (b): 3500Hz. 
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(a) 

 
(b) 

Figure  3.5: FEA versus numerical analysis FFT. Results correspond to a point opposite the 

ring gap, with an excitation frequency of 300Hz. (a): FEA data, and (b): numerical data 

Both figures 3.5a and 3.5b show the excitation frequency to be present in the FFT response. 

However, figure 3.5a shows the response is dominated by one of the natural frequencies for 

the FEA analysis. This may be due to the shape of the force profile being similar to the 

excited mode shape. If this was the case, even if the excitation frequency is not near a 

natural frequency, the force profile may cause modal excitation to occur. The differences 

due to element size (as the numerical solution does not require elements, as such), and the 

slight difference in predicted natural frequency between the FEA and numerical 
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methodologies (as seen in table 3.3), explain why this occurrence has not been seen in both 

sets of results. The greater the number of elements used, the more accurate the FEA model 

should be. However, a compromise has to be made regarding computing time. Also, with 

simple structures such as an incomplete circular ring, a point is reached where additional 

elements make very little difference to the response of the model. It should be noted that 

the numerical methodology, which will be used in the compression ring analysis, gives the 

expected result of the excitation frequency dominating the FFT response. 

3.3. Ring Out-of-plane Dynamic Response 

Similarly to the case of the ring in-plane analysis, the following assumptions are made when 

considering the out-of-plane ring dynamics: 

• Since the neutral radius of the ring is significantly larger than the ring’s thickness, it 

can be assumed that the ring is a thin structure.  

• Rotary inertia is neglected in this analysis due to the thin nature of the ring and its 

relatively small mass and rotation speed. 

• The neutral axis of the ring is also assumed to be inextensible (𝑑
𝑅
≈ 0.0814 < 0.1). 

The same assumptions regarding inextensibility and shear deformation are used when 

discussing the out-of-plane ring dynamics, similarly to the in-plane analysis. Whereas the 

degrees of freedom when concerned with in-plane dynamics are the radial and tangential 

displacements, the out-of-plane degrees of freedom are the axial displacement, u, and twist 

about the neutral ring radius, β. The ring out-of-plane equations of motion take the 

following form (Ojalvo, 1962): 

 

𝜕4𝑢
𝜕𝜕4

− 𝑅 𝜕2𝛽
𝜕𝜕2

− 𝑘 �𝜕
2𝑢

𝜕𝜕2
− 𝑅 𝜕2𝛽

𝜕𝜕2
� = 𝑚𝑅4

𝐸𝐼𝑥
�𝜕

4𝑢
𝜕𝑡2

− 𝑌
𝑚
�    (3.30) 

 

𝜕2𝑢
𝜕𝜕2

− 𝑅𝛽 + 𝑘 �𝜕
2𝑢

𝜕𝜕2
+ 𝑅 𝜕2𝛽

𝜕𝜕2
� = 𝑚𝑅4

𝐸𝐼𝑥
�𝛷𝐹
𝑚
�    (3.31) 

 

where Y and ΦF are the out-of-plane forcing and torsional loading, respectively. 
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Once again, it is noted that no in-plane degrees of freedom appear in equations (3.30-31), 

meaning the two cases are uncoupled from an analytical point of view. The degrees of 

freedom used in equations (3.30-31) can be seen in figure 3.6. 

 

Ojalvo, I. U. "Coupled twist-bending vibrations of incomplete elastic rings, "International 

Journal of Mechanical Sciences 4.1 (1962): 53-72. (figure 1) 

 

Figure  3.6: Out-of-plane ring motion, exhibiting the relevant degrees of freedom (Ojalvo, 

1962) 

 

Since there is no torsional loading in the system we are studying, it is assumed that ΦF = 0. 

Rearranging equation (3.31) and substituting into equation (3.30): 

 

𝜕4𝛽
𝜕𝜕4

+ 2 𝜕2𝛽
𝜕𝜕2

+ 𝛽 = 𝑚𝑅4

𝐶𝑧
�1+𝑘

𝑅
� �𝜕

2𝑢
𝜕𝑡2

− 𝑌
𝑚
�    (3.32) 

 

Where m is the mass per unit length, Cz is the twisting stiffness and k is the stiffness 

parameter. As with equation (3.20), the out-of-plane dynamic response takes the form of a 

solution comprising a space-varying and a time-varying part. Also, since the force term 

varies spatially and with time, they have the solution form: 

 

𝑢(𝜑, 𝑡) = ∑ 𝑈𝑛(𝜑)𝜉𝑛(𝑡)∞
𝑛=1       (3.33) 

 

𝛽(𝜑, 𝑡) = ∑ 𝛽𝑛(𝜑)𝜉𝑛(𝑡)∞
𝑛=1       (3.34) 

 

𝑌 = 𝑓(𝑡)∑ 𝑄𝑛𝑈𝑛(𝜑)∞
𝑛=1       (3.35) 

 

Where Un(ϕ) is the mode shape and Qn is the forcing function. Equations (3.33-34) 

represent the solution form of the out-of-plane displacement and twist, respectively. 

Equation (3.35) shows the form of the force function, as it can vary with respect to both 
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time and position around the ring. Substitution of equations (3.33-35) into equation (3.32) 

yields: 

 

𝜉𝑛 �
𝜕4𝛽𝑛
𝜕𝜕4

+ 2 𝜕2𝛽𝑛
𝜕𝜕2

+ 𝛽𝑛� = 𝑚𝑅4

𝐶𝑧
�1+𝑘

𝑅
� �𝜉�̈� −

𝑄𝑛
𝑚
𝑓(𝑡)� 𝑢𝑛   (3.36) 

 

Separation of variables in equation (3.36) (Ojalvo, 1962) and after dividing by ξnun, it leads to 

the following equation: 

 

−𝜆𝑛 �
1+𝑘
𝑅
� = −𝜔𝑛2 �

1+𝑘
𝑅
�𝑚𝑅4

𝐶𝑧
     (3.37) 

 

Equation (3.37) provides the homogeneous and non-homogenous parts of the complete out 

of plane solution: 

 

𝜕4𝛽𝑛
𝜕𝜕4

+ 2 𝜕2𝛽𝑛
𝜕𝜕2

+ 𝛽𝑛 = −𝜆𝑛 �
1+𝑘
𝑅
� 𝑢𝑛     (3.38) 

 

𝜉�̈� + 𝜔𝑛2𝜉𝑛 = 𝑄𝑛
𝑚
𝑓(𝑡)     (3.39) 

 

Equation (3.39) is of the same form as equation (3.21) from the in-plane analysis. Therefore, 

the solution is expected to take a similar form. The term Qn represents the force term 

applied in the out-of-plane direction and depends on the force profile. In the piston ring-

cylinder liner conjunction, the out-of-plane force profile comprises the reaction force from 

the piston groove due to the piston’s motion, gas pressure acting on the top of the ring, 

friction forces due to lubricant and surface interactions, as well as the ring’s inertial 

response. Ojalvo (1962) presented solution forms for three different loading cases: time-

dependent distributed loading, time-dependent concentrated loading and a loading case 

where the boundary conditions vary with time. The most relevant case to that of a 

compression ring is the time-dependent distributed loading. The solution has similarities 

with equation (3.20) and is a function of the mode shapes, as well as the force term: 
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𝑄𝑛 = ∫ (𝑊(𝜕) 𝑢𝑛)𝑑𝜕𝛼
0

∫ 𝑢𝑛2𝑑𝜕
𝛼
0

      (3.40) 

 

Equation (3.40) shows the force profile as it varies spatially, whereas the f(t) term in 

equation (3.39) gives the response with respect to time. To calculate the characteristic 

equation of the out-of-plane problem, equation (3.31) is rearranged and integrated twice to 

find an expression for un: 

 

𝑢𝑛 = � 𝑅
1+𝑘

� �∬ 𝛽𝑛𝑑𝜑
𝛼
0 − 𝑘𝛽𝑛�    (3.41) 

 

A solution is assumed for βn: 

 

𝛽𝑛 = ∑ (𝐴𝑛𝐾 sin𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos𝜎𝑛𝐾𝜑)3
𝐾=1     (3.42) 

 

Substitution of equations (3.41) and (3.42) into equation (3.38): 

 

∑ (𝜎𝑛𝐾4 − 2𝜎𝑛𝐾2 + 1)(𝐴𝑛𝐾 sin𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos𝜎𝑛𝐾𝜑)3
𝐾=1 =

𝜆𝑛 ∑ � 1
𝜎𝑛𝐾
2 + 𝑘� (𝐴𝑛𝐾 sin𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos𝜎𝑛𝐾𝜑)3

𝐾=1   (3.43) 

 

All terms involving φ are linearly independent; therefore the characteristic equation can be 

derived: 

 

(𝜎𝑛𝐾6 − 2𝜎𝑛𝐾4 + 𝜎𝑛2) = 𝜆𝑛(1 + 𝑘𝜎𝑛2)    (3.44) 

 

As with equation (3.8), a cubic equation is formed, the solutions to which are in terms of λn. 

The form of the roots of these equations can vary, as with the in-plane methodology. 

Burington (1958) described the general form of a cubic equation: 

 

𝑆𝑛3 + 𝑝𝑆𝑛2 + 𝑞𝑆𝑛 + 𝑟 = 0     (3.45) 

Let 

𝑎 ≡ (3𝑞 − 𝑝2)/3 
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𝑏 ≡ (2𝑝3 − 9𝑝𝑞 + 27𝑟)/27 

 

∆≡ �𝑏
2

4� � + �𝑎
3

27� � 

 

The three roots of the cubic equation (3.45) depend on ∆. The form of these roots varies as 

follows: 

If ∆ > 0, there is one real root and two complex conjugates, just as with the in-plane 

methodology: 

 

𝜎𝑛1 = 𝑠1,                      𝜎𝑛2 = 𝜇 + 𝑖𝜐,                    𝜎𝑛3 = 𝜇 − 𝑖𝜐 

 

The solution form is as follows: 

 

𝛽𝑛 =   𝐴𝑛1 sin𝜎𝑛1𝜑 + 𝐴𝑛2 sin𝜇𝜑 cosh 𝜐𝜑 + 𝐴𝑛3 cos𝜇𝜑 sinh 𝜐𝜑 + 𝐵𝑛1 cos𝜎𝑛1𝜑 +

 𝐵𝑛2 cos 𝜇𝜑 cosh 𝜐𝜑 + 𝐵𝑛3 sin𝜇𝜑 sinh 𝜐𝜑  (3.46) 

 

If ∆ = 0 then σn2 = σn3, meaning: 

 

𝛽𝑛 =   𝐴𝑛1 sin𝜎𝑛1𝜑 + (𝐴𝑛2 + 𝐴𝑛3) sin𝜎𝑛3𝜑 + 𝐵𝑛1 cos𝜎𝑛1𝜑 +    (𝐵𝑛2 + 𝐵𝑛3) cos𝜎𝑛3𝜑 

(3.47) 

 

If ∆ < 0, there are two possibilities. If kλn < 1, there are 3 positive, unequal roots: 

 

𝛽𝑛 = 𝐴𝑛1 sin𝜎𝑛1𝜑 + 𝐴𝑛2 sin𝜎𝑛2𝜑 + 𝐴𝑛3 sin𝜎𝑛3𝜑 + 𝐵𝑛1 cos𝜎𝑛1𝜑 + 𝐵𝑛2 cos𝜎𝑛2𝜑 +

𝐵𝑛3 cos𝜎𝑛3𝜑    (3.48) 

Finally, if kλn > 1, there is one real and two imaginary roots: 

 

𝛽𝑛 = 𝐴𝑛1 sin𝜎𝑛1𝜑 + 𝐴𝑛2 sinh𝜎𝑛2𝜑 + 𝐴𝑛3 sinh𝜎𝑛3𝜑 + 𝐵𝑛1 cos𝜎𝑛1𝜑 + 𝐵𝑛2 cosh𝜎𝑛2𝜑 +

𝐵𝑛3 cosh𝜎𝑛3𝜑  (3.49) 
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For equations (3.46-49), the expression for the out-of-plane displacement is: 

 

𝑈𝑛 = � 1
𝜎2

+ 𝑘�𝛽𝑛     (3.50) 

 

Archer (1960) stated that solutions to equation (3.47) were only valid when the total ring 

subtended angle was greater than 2π. Therefore, for the case of a compression ring, 

equations (3.46) and (3.48) are the relevant solution forms. These are substituted into 

equation (3.41), which is in turn substituted into the boundary conditions (Ojalvo, 1962). 

The constants cancel, leaving: 

 

𝑀𝑥 = �𝑅𝛽 − 𝜕2𝛽
𝜕𝜕2

�     (3.51) 

 

𝑀𝑧 = �𝑅 𝜕𝛽
𝜕𝜕

+ 𝜕𝑢
𝜕𝜕
�     (3.52) 

 

𝑉 =
𝜕�𝜕

2𝑢
𝜕𝜑2

−𝑅𝛽�

𝜕𝜕
− 𝑘 �𝜕𝑢

𝜕𝜕
+ 𝑅 𝜕𝛽

𝜕𝜕
�    (3.53) 

 

The boundary conditions (3.51-53) equal zero for φ = 0 and φ = α in the case of an 

incomplete ring, unrestrained at each end. Once more similarities with the in-plane analysis 

are seen, as this gives a set of 6 equations, each a function of the constants An1-3 and Bn1-3. 

Setting the determinant of this 6x6 matrix equal to zero and finding the roots, it gives the 

frequency parameter specific to each mode and natural frequency. 

As with the in-plane analysis, an FEA model can be used to verify the methodology 

discussed. Table 3.4 shows a comparison of the natural frequencies for both the numerical 

and FEA models. The same ring properties are used from the in-plane analysis. Figure 3.7 

shows a comparison between the analytical method and an FEA model of a free ring. As 

with the in-plane methodology, an excellent agreement is seen. 
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Table  3.4: Out-of-plane compression ring natural frequencies. 
Mode Number Analytical Method 

Natural Frequency (Hz) 
FEA model 

Natural Frequency (Hz) 
% Difference 

1 92.54 93.33 0.846 
2 254.29 256.42 0.828 
3 534.92 538.91 0.74 
4 903.02 908.57 0.611 
5 1357.72 1366.52 0.644 
6 1889.86 1901.72 0.624 
7 2506.75 2520.66 0.552 

 

 

(a) 

 

(b) 

Figure  3.7: Out-of-plane ring mode shape comparison, (a) Analytical method (f = 93.33Hz) 

and (b) FEA model (f=93.33Hz). 

The above methodology gives the out-of-plane elastodynamic response. Once again 

however, rigid body modes must be accounted for. A modal analysis of the FEA model 

shows three out of plane rigid body modes, as seen in figure 3.8. It can be seen that there is 

one purely translational mode and two ‘tilting’ rigid body modes, perpendicular to each 

other. Next to each FEA image, a graphical representation of the mode shape is shown, to 
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indicate the function which models the rigid body response in each case. The ring is 

‘unwrapped’, with circumferential position along the x axis. It can be seen that the out of 

plane translation is represented by a constant term, whilst the two rotational rigid body 

modes follow a sinusoidal and cosine curve respectively. 

 

(a) 

 

(b) 

 

(c) 

Figure  3.8: Out-of-plane rigid body mode shapes 

To account for these rigid body modes, an expression to describe their profile must be 

assumed, to replace equation (3.50), which describes the elastic mode shape un. For the 

translational mode in figure 3.8a, since the displacement is constant circumferentially, it is 

assumed that un = 1. For each of the tilting rigid body modes it can be seen that un = sin(φ) 

for figure 3.8b, and un = cos(φ)  for figure 3.8c. Normalisation of these rigid body modes, as 
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described for the in-plane case using Natsiavas (2001), can be performed, to ensure that the 

size of the mode shapes is coupled to the size of the elastic mode shapes. 

As with the in-plane analysis, known forces were applied to the numerical and FEA model, to 

verify that the numerical analysis can accurately predict the out-of-plane motion of the ring. 

The first test was to apply a load that varied with time only: 

 

𝐹𝑅 = 𝐹 sin𝜔𝑓𝑡     (3.54) 

 

A load profile such as this would be expected to excite a rigid body response predominantly 

when applied to a free-free ring, since the excitation frequency isn’t near any of the ring’s 

natural frequencies and the force profile is constant circumferentially. Figure 3.9 shows that 

FEA and numerical response have excellent agreement. Both the FEA and numerical results 

correspond to the motion of a point at the ring gap. Since the force profile doesn’t change 

circumferentially, this response is seen at each point around the ring. 

 
Figure  3.9: FEA and Numerical response when circumferentially constant load is applied. 

Max. Load equivalent = 10kPa, frequency of excitation = 700Hz. 

 

For further verification, more complex force profiles were applied. Equation (3.55) shows a 

force profile which varies with both space and time. Elastic modes will be excited more 

prominently, since the profile varies with respect to the ring’s circumference: 

𝐹𝑅 = 𝐹 cos 2𝜑 sin𝜔𝑓𝑡    (3.55) 
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Once again, very good agreement of the deflection amplitude is seen in the response of 

figure 3.10. However the rigid body modes are not as dominant as in the previous example. 

FFT analysis of the results of figure 3.10a is shown in figure 3.11. 

 
(a) 

 

(b) 

Figure  3.10: Numerical and FEA response for the force profile of equation (55) at (a) the ring 

gap and (b) part-way around the ring. The excitation frequency is 700Hz. 



Compression Ring Dynamics 
 

50 
 

 

(a)  

 

(b) 

Figure  3.11: FEA versus numerical analysis FFT. Results correspond to a point opposite the 

ring gap, excitation frequency = 700Hz (a) numerical, (b) FEA 

539Hz 

93Hz 

700Hz 

700Hz 

93.3Hz 537.32Hz 

254.41Hz 

256.61Hz 
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3.4. Coupling of the Ring Dynamics Methodology to the Tribological Analysis 

The ring dynamic response for both in-plane and out-of-plane cases, includes a forcing term 

which incorporates any excitation applied in the relevant plane of the ring. It is proposed 

that this force profile is extracted from the tribological analysis, after calculating the 

external and internal forces acting upon the ring. The forces acting upon a cross section of 

the ring are shown in figure 3.12. Initially considering the in-plane analysis, it can be seen 

that the forces contributing are the ring’s elastic (fitment) force, the combustion gas 

pressure and reaction forces from the lubricant and liner wall. 

 

Figure  3.12: Cross-sectional free body diagram of the top compression ring. 

In a quasi-static analysis with an assumed rigid ring (as it has been reported in literature), 

this net force is equilibrated by the generated conjunctional pressures. The latter are the 

result of instantaneous tribological conditions, which are determined according to the gap 

between the ring and the bore surface. A mixed hydrodynamic analysis is carried out, 

culminating in contact reactions due to the viscous action of the lubricant, 𝑊ℎ and asperity 

interactions, 𝑊𝑎. Thus:  

𝑊ℎ + 𝑊𝑎 = 𝐹𝑒 + 𝐹𝑔      (3.56) 

The inclusion of ring elastodynamics in the compression ring analysis requires an excitation 

force. Therefore, instead of balancing the in-plane forces, these should be added 

algebraically, giving a net force profile acting upon the ring, as depicted in equation (3.57): 

𝑊ℎ + 𝑊𝑎 − 𝐹𝑒 − 𝐹𝑔 = 𝐹𝑅                                                     (3.57) 

Wh 
Wa Fg 

Fe 

Fg 

mg 

Fh 

Rg 

Fgroove 
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The FR term in equation (3.57) is exported to the dynamics methodology in a compatible 

form with the analysis, as a Fourier series. The net force acting upon the ring can then be 

exported to the ring dynamics solution, which returns the deflections and local velocities on 

the ring surface. This deformed ring profile is then returned to the tribological analysis, 

updating the film profile (circumferentially) for the next crank angle increment. The 

expression for the ring-liner gap is shown in equation (3.58). 

ℎ(𝑥,𝑦, 𝑡) = ℎ𝑚(𝑡) + ℎ𝑠(𝑥, 𝑡) + Δ𝑠(𝑦, 𝑡) + Δ𝑡ℎ(𝑦, 𝑡) + Δ𝑑(𝑦, 𝑡) + 𝛿(𝑝) (3.58) 

where, the overall gap, h (film thickness) comprises several constituents; ℎ𝑚 represents the 

variations in the minimum film thickness with time. The parameter ℎ𝑠 is the ring face-width 

profile, which can vary with time due to the inclusion of ring twist. In equation (3.58) 𝛿  is 

the localised contact deformation (EHL), which is not included in this analysis.  𝛥𝑠, 𝛥𝑡ℎand 

𝛥𝑑 represent the ‘global’ elastostatic, thermoelastic and elastodynamic deformation of 

either the ring and/or the liner. The initial distortion which exists in a fitted liner within the 

engine block or due to the tightening of the cylinder head bolts, if not accommodated by 

the fitted ring in the liner will yield a non-zero value for 𝛥𝑠. A thermoelastic analysis may 

provide the thermally deformed bore profile for which the emerging gap can be included in 

𝛥𝑡ℎ. 𝛥𝑑 takes into account the change in the ring/liner gap due to deformations caused by 

mechanical  vibrations of the bore and/or the ring under transient loads. The inclusion of 

thermal distortions is not within the scope of the current analysis. In addition, the effects of 

static deformations and ring/liner conformability have already been comprehensively 

studied elsewhere (2012). The ring face-width used in this study is similar to that used in 

Rahmani et al (2012). The profile of a new ring is assumed for most of the presented results. 

However, a worn ring profile is also considered. The worn ring profile is measured after a 

150hr high speed engine test, representing 100,000 km normal vehicle use.  

Figure 3.12 shows the algorithm for the coupling of in-plane dynamics and the tribology 

code. This coupled tribo-dynamics methodology will be mainly used in this thesis when 

performing a tribological analysis of the compression ring instead of the common 

assumption of ring rigidity. The previous tribological analysis of the piston ring-cylinder liner 

conjunction requires an iterative loop when calculating the load. Inclusion of ring dynamics 

removes the need for this iteration. 
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The approach with which the out-of-plane methodology is coupled to the tribological 

analysis differs slightly from the in-plane solution. The free body diagram of figure 3.11 

shows the following relation: 

 

𝐹𝑔 + 𝑚𝑔 − 𝐹𝑎 − 𝐹ℎ − 𝑅𝑔 = 𝐹𝐴                                                 (3.59) 

 

where FA is the resultant out-of-plane force acting upon the ring. 

The ring’s weight is negligible when compared to the gas pressures involved, so it can be 

ignored in this analysis. The reaction force from the groove acting upon the ring is calculated 

using Tian’s method (1998). A layer of lubricant is assumed to be present on the groove’s 

surface. Tian has solved the 1D Reynolds’ equation analytically: 

𝑑
𝑑𝑥
�ℎ

3

𝜂
𝑑𝑝𝑜𝑖𝑙
𝑑𝑥

� = 12 𝜕ℎ
𝜕𝑡

                                                               (3.60) 

It can be seen that this approach neglects the effect of sliding between the ring and the 

groove face. If the ring is assumed to be rigid, then this assumption is reasonable. However 

with in-plane dynamics being included, a sliding effect can be included due to the radial 

motion of the ring. Therefore, equation (3.60) becomes: 

𝑑
𝑑𝑥
�ℎ

3

𝜂
𝑑𝑝𝑜𝑖𝑙
𝑑𝑥

� = 6�̇�(𝜑, 𝑡) 𝜕ℎ
𝜕𝑥

+ 12 𝜕ℎ
𝜕𝑡

                                                       (3.61) 

Solution of equation (3.61) by integrating between the edge of the groove and the inner 

edge of the ring gives the pressure profile. From this, further integration gives the force 

term needed for substitution into equation (3.59). 
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Figure  3.13: Coupled in-plane tribo-dynamics algorithm 

 

It should be noted that the term Fg is the net gas force, which is the difference between the 

cylinder and crankcase gas loads. Crankcase pressure is assumed to equal atmospheric 

pressure for this analysis, although an inter-ring gas pressure model would change this 

accordingly. As with the in-plane methodology, a Fourier series will be required to convert 

FA into a compatible form that can be included in the analytical solution. One of the key 

differences between the dynamics in the two planes is that the piston’s axial velocity will 

affect the response of the ring in the out-of-plane direction. The effect of this will be 

This conditions states that if the 
current film thickness is equal to 
the film thickness at the same 
point in the previous cycle, the 
results should be recorded 
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present in the initial conditions when solving the time-based section of the out-of-plane 

response.  

Whilst any in-plane deformations are returned to update the film profile, this will not be 

possible with the out-of-plane analysis, as the film profile is not measured in this plane. 

Instead, the out-of-plane deformations will affect the friction calculations at each crank 

angle increment. In addition to this, ring twist will affect the ring’s axial profile when solving 

Reynolds’ equation. The previous analysis (assuming a new compression ring, whose profile 

has had a polynomial function fitted to it) used equation (3.62) to calculate the ring’s axial 

profile: 

𝑦 = 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔                                    (3.62) 

Using matrix algebra, the expression in equation (3.62) can be manipulated to account for 

the ring’s twist: 

𝑦′ = 𝑧 sin𝜑 + 𝑦 cos𝜑                                                     (3.63) 

Where ϕ is the angle of twist calculated using the out-of-plane methodology, and z is the 

position along the ring’s axial profile. Figure 3.13 shows the solution algorithm for inclusion 

of ring dynamics in both planes.  
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Figure  3.14: Coupled tribo-dynamics algorithm for both planes of motion 
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3.5. Closure 

This chapter detailed the ring dynamics theory which will be used to model the compression 

ring’s dynamic deflections through the engine’s cycle. Elastic and rigid body solutions, in 

both planes, are included to give a complete elastodynamic model of the ring. Whilst the 

equations of motion in both planes are not new, the manipulation to account for the rigid 

body response in both planes has not previously been detailed or published in literature for 

incomplete circular rings. Verification for the elastic dynamic response has also not been 

previously available in literature, with results previously presented for the modal analysis 

only. 

The proposed coupling methodology is also described, stating how the dynamic analysis fits 

into the current tribological model. This approach of including ring dynamics in a transient 

manner has not previously been published, despite it appearing to be a logical progression 

to attempt to capture the ring’s deflection throughout the engine cycle. The algorithm 

demonstrating this coupling method is included, which allows the reader a greater 

understanding of where the ring dynamics will affect the current tribological methodology. 
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4. Tribology of the compression ring 

4.1. Introduction 

This chapter provides the methodology behind the equations used in the tribological 

analysis of the piston ring to cylinder bore conjunction. The lubricant rheology and 

parameters which affect it are discussed, as well as the regimes of lubrication encountered. 

The implementation of Reynolds equation is detailed for 2D transient analysis. Thermal 

effects due to shear and to a much lesser degree compressive heating are considered in 

some current analysis. The energy equation is discussed with the appropriate boundary 

conditions explained, with temperature rise predictions presented, showing whether the 

inclusion of the energy equation is justified. Thin films also mean that surface asperities 

interact on the counterfaces and affect the tribological performance of the conjunction. 

Therefore, asperity interactions should also be part of the solution. The solution for this 

allows for measured roughness data from the components, giving a more accurate 

prediction of the conditions encountered. 

4.2. Lubrication and Lubricant Rheology 

4.2.1. Regimes of Lubrication 

There are four categories of lubrication regime, all of which should be considered when 

analysing the piston ring-cylinder liner conjunction, which have been discussed in the 

previous chapters. The frictional contact of surfaces is known as boundary lubrication 

(Gohar and Rahnejat, 2008). In this regime, the coefficient of friction is relatively high due to 

lack of fluid film. Oxide films or additives may be present to aid friction reduction. If 

boundary lubrication was to occur during the combustion cycle, it would be at the reversal 

points of top and bottom dead centres. However, boundary lubrication is a rare occurrence, 

with a mixed regime of lubrication most likely.  

From a theoretical point of view, mixed lubrication occurs when the surface roughness 

equals the lubricant film thickness. This means that the contact load is supported by both 

the lubricant and asperities on both the cylinder and the ring. As with boundary lubrication, 

high frictional forces can occur, whilst debris may also result in asperity interactions. 
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An increase in load or film thickness moves the contact into the elastohydrodynamic or 

hydrodynamic regimes of lubrication. A characteristic of EHL is high pressures within the 

contact, which causes an increase in lubricant viscosity as well as local surface deformation 

of the contiguous solids. The lubricant occupies the space in these distortions, enabling high 

loads to be carried with relatively low frictional losses. This type of contact often occurs in 

bearings, gears or cam-tappet pairs where the contact is counterformal, with quite small 

footprint area and with high load intensity. Soft EHL occurs with materials of low elastic 

modulus, for example, in synovial joints in humans and other animals, and is seen as an 

ideal contact for high load – low wear performance (Dowson and Neville, 2006). 

Contacts with lubricant films of larger thickness fall into the hydrodynamic regime of 

lubrication. Under hydrodynamic conditions, the contact load is carried fully by the 

hydrodynamic pressures generated in the lubricant film. The loads encountered are lower 

than those under EHL conditions, such as those met at the mid-stroke of the engine cycle. 

4.2.2. Parameters Affecting Lubricant Properties 

4.2.2.1. Density 

The density of a material or substance is the mass per unit volume, with SI units of kilograms 

per cubic metre.  An increase in pressure sees very little change in the density of a lubricant, 

as verified by Dowson (1966), unless pressures are in the order of few hundred MPa. These 

results also indicate a linear change in density with pressure. The Dowson and Higginson 

(1959) relationship describing the effect of pressure on density is shown in equation (4.1): 

�̅� = 𝜌
𝜌0

= 1 + 0.6×10−9𝑝
1+1.7×10−9𝑝

     (4.1) 

Temperature variations have very little effect on the density of a lubricant. However, 

Stachowiak and Batchelor (2001) gave the following expression to show the change of 

density with temperature: 

𝜌 = 𝜌𝑎𝑡𝑚𝜉(𝜃−𝜃0)     (4.2) 

ξ is the density-temperature factor, whilst θ and θ0 represent the final and atmospheric 

temperatures respectively. Combining equations (4.1) and (4.2) gives the final expression for 

the density of the lubricant, accounting for the changes in contact conditions: 
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𝜌 = 𝜌𝑎𝑡𝑚𝜉(𝜃−𝜃0) �1 + 0.6×10−9(𝑝−𝑝𝑎𝑡𝑚)
1+1.7×10−9(𝑝−𝑝𝑎𝑡𝑚)�   (4.3) 

4.2.2.2. Viscosity 

Viscosity is the resistance of a fluid to flow. It can be expressed either as kinematic or 

dynamic viscosity. The dynamic viscosity of a fluid is the term most commonly seen in 

equations such as Reynolds. Dynamic viscosity is related to the shear modulus of a material, 

G: 

𝐺 =  𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛

= 𝜏
𝑑𝑥 𝑑𝑧⁄      (4.4) 

The dynamic viscosity, η, is a ratio of the shear stress against the rate of shear strain: 

𝜂 = 𝜏
𝑑𝑢 𝑑𝑧⁄       (4.5) 

where du is the velocity between the top and bottom surfaces of a layer of fluid. The 

kinematic viscosity gives the dynamic viscosity per unit density. Viscosity is a property of the 

lubricant, which is affected more significantly than the density by variations in working 

conditions. 

For an isothermal analysis, the Barus Law (1893) shows how viscosity changes with 

temperature: 

𝜂 = 𝜂0𝛼𝑝     (4.6) 

Where α is the pressure-viscosity coefficient, and is a property of the lubricant. However, 

equation (4.6) is inaccurate for sliding contacts due to viscous shear causing an increase in 

temperature. High pressure contacts also cause Barus’ equation to over-predict. A more 

accurate method of predicting the viscosity within a sliding contact was derived by Roelands 

(1966): 

𝜂𝑟 = 𝜂0
(𝑙𝑛(𝜂0)+9.67)��1+5.1×10−9𝑝�−1�    (4.7) 

This expression was developed by Houpert (1985) to include both pressure and thermal 

effects: 
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𝜂𝑒 = 𝜂0𝑒𝑥𝑝 �[𝑙𝑛(𝜂0) + 9.67] �� 𝜃−138
𝜃0−138

�
−𝛽0(𝜃0−138)
𝑙𝑛(𝜂0)+9.67 �1 + 𝑝

1.98×108
�

𝛼0
5.1×10−9[𝑙𝑛(𝜂0)+9.67] − 1�� (4.8) 

An example detailed by Gohar and Rahnejat (2008) compares equations (4.6) and (4.8) to 

show the inaccuracies of Barus’ equation. It is shown that ηBarus/ηRoelands = 188 for a given 

temperature and pressure change. This shows a significant difference in predicted results, 

with Houpert’s modification of the Roelands equation given much more reasonable values. 

4.3. The Reynolds Equation 

4.3.1. Derivation of the Reynolds Equation 

The Reynolds Equation is the basis of the lubrication theory, and it has been detailed by 

many authors on the subject area. Reynolds (1895) derived his expression for describing 

pressure distribution throughout a contact based on an equation derived by Navier (1823) 

and developed further by Stokes (in 1845). They produced a generalised equation for fluid 

flow, based on Newton’s slow viscous fluid model. Therefore, Reynolds equation is a 

simplified Navier-Stokes equation with dominant action of the viscous force and assumed 

laminar flow in narrow conjunctions.  

Figure 4.1a shows the fluid between a stationary surface and a surface moving parallel to it. 

With a constant flow and no change in the size of the area to flow in to, there is no pressure 

gradient along the surfaces. This alters when the gap shape is changed as shown in figure 

4.1b. As the gap narrows, the lubricant velocity profile increases. Just as water in a river runs 

quickest to an area of low pressure, a bulging velocity profile indicates a lower pressure in 

the contact. The reverse must therefore be true when the gap is widest and pressure is 

increasing. This infers that there must be a point along the surface where the velocity profile 

is linear, as in figure 4.1a, and at this point the pressure is at a maximum. This is the basic 

principle on which a bearing works, and is the cornerstone of Reynolds’ equation. 

Gohar, R. and Rahnejat, H., (2008) “Fundamentals of Tribology”, London: Imperial College 

Press (figure 6.2) 

 

Figure  4.1: Principle of the wedge film (Gohar and Rahnejat, 2008) 
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Figure 4.2 shows the axes to be used in the derivation of Reynolds equation. Generally, the x 

axis represents the contact width; y indicates contact length, whilst z is the distance 

between the two surfaces, usually the film thickness. The forces acting upon a small 

element of fluid are also shown, as both normal and shear stresses. 

Balakrishnan, S., “Transient Elastohydrodynamic Analysis of Piston Skirt Lubricated Contact 

Under Combined Axial, Lateral and Tilting Motion”, PhD Thesis (2002) (figure 4.5) 

 

Figure  4.2: Forces on a unit element of fluid (Balakrishnan, 2002) 

With reference to figure 4.2, the stress-strain relations for a unit element of fluid, assuming 

Newtonian flow, can be written as (Navier (1823), Stokes (1845)): 

𝜌 𝐷𝑢
𝐷𝑡

= 𝐹𝑥 −
𝜕𝑝
𝜕𝑥

+ 𝜕
𝜕𝑥
�2𝜂 𝜕𝑢

𝜕𝑥
+ 𝛾 �𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
+ 𝜕𝑤

𝜕𝑧
�� + 𝜕

𝜕𝑦
�𝜂 �𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥
�� + 𝜕

𝜕𝑧
�𝜂 �𝜕𝑤

𝜕𝑥
+ 𝜕𝑢

𝜕𝑧
�� (4.9) 

𝜌 𝐷𝑣
𝐷𝑡

= 𝐹𝑦 −
𝜕𝑝
𝜕𝑦

+ 𝜕
𝜕𝑦
�2𝜂 𝜕𝑣

𝜕𝑦
+ 𝛾 �𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
+ 𝜕𝑤

𝜕𝑧
�� + 𝜕

𝜕𝑧
�𝜂 �𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦
�� + 𝜕

𝜕𝑥
�𝜂 �𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥
�� (4.10) 

𝜌 𝐷𝑤
𝐷𝑡

= 𝐹𝑧 −
𝜕𝑝
𝜕𝑧

+ 𝜕
𝜕𝑧
�2𝜂 𝜕𝑤

𝜕𝑧
+ 𝛾 �𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
+ 𝜕𝑤

𝜕𝑧
�� + 𝜕

𝜕𝑥
�𝜂 �𝜕𝑤

𝜕𝑥
+ 𝜕𝑢

𝜕𝑧
�� + 𝜕

𝜕𝑦
�𝜂 �𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦
�� 

(4.11) 

where 𝐷
𝐷𝑡

 describes the flow with respect to time and is the complete covariant differential. 

 𝜌 𝐷𝑢
𝐷𝑡

, 𝜌 𝐷𝑣
𝐷𝑡

 and 𝜌 𝐷𝑤
𝐷𝑡

 are reliant on initial conditions, and the right hand side of equations 4.9-

4.11 comprise the viscous terms, pressure gradient and body forces acting upon the fluid 

element in figure 4.2. The forces acting upon the same unit of fluid during flow are shown in 

figure 4.2. For continuity of flow and conservation of mass (Navier (1823), Stokes (1845)): 

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌𝑢) + 𝜕
𝜕𝑦

(𝜌𝑣) + 𝜕
𝜕𝑧

(𝜌𝑤) = 0   (4.12) 

Reynolds derived the equation governing pressure distribution in a Newtonian lubricant 

film. In doing so, assumptions had to be made whilst manipulating the Navier-Stokes 

equations: 

• The lubricant viscosity and density are assumed to be constant across the film, from 

one surface to the other. Equations (4.9)-(4.11) can then be simplified as follows: 
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𝜌 𝐷𝑢
𝐷𝑡

= 𝐹𝑥 −
𝜕𝑝
𝜕𝑥

+ (𝜂 + 𝛾) 𝜕
𝜕𝑥
�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧
� + 𝜂 �𝜕

2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

+ 𝜕2𝑢
𝜕𝑧2

�  (4.13) 

𝜌 𝐷𝑣
𝐷𝑡

= 𝐹𝑦 −
𝜕𝑝
𝜕𝑦

+ (𝜂 + 𝛾) 𝜕
𝜕𝑦
�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧
� + 𝜂 �𝜕

2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑣
𝜕𝑧2

�  (4.14) 

𝜌 𝐷𝑤
𝐷𝑡

= 𝐹𝑧 −
𝜕𝑝
𝜕𝑧

+ (𝜂 + 𝛾) 𝜕
𝜕𝑧
�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧
� + 𝜂 �𝜕

2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑧2

� (4.15) 

• The dilation term can be neglected for incompressible fluids, meaning: 

�𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧
� = 0     (4.16) 

• The oil is a thin film, and as such has negligible mass. This means gravitational forces 

are negligible: 

𝐹𝑥 = 𝐹𝑦 = 𝐹𝑧 = 0     (4.17) 

• Due to the small element size, the inertial forces acting on the fluid can be ignored: 

𝜌 𝐷𝑢
𝐷𝑡

= 𝜌 𝐷𝑣
𝐷𝑡

= 𝜌 𝐷𝑤
𝐷𝑡

= 0    (4.18) 

These assumptions reduce equations (4.13)-(4.15) as follows: 

𝜕𝑝
𝜕𝑥

= 𝜂 �𝜕
2𝑢

𝜕𝑥2
+ 𝜕2𝑢

𝜕𝑦2
+ 𝜕2𝑢

𝜕𝑧2
�    (4.19) 

𝜕𝑝
𝜕𝑦

= 𝜂 �𝜕
2𝑣

𝜕𝑥2
+ 𝜕2𝑣

𝜕𝑦2
+ 𝜕2𝑣

𝜕𝑧2
�    (4.20) 

𝜕𝑝
𝜕𝑧

= 𝜂 �𝜕
2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑧2

�    (4.21) 

• A thin film means the assumption that the pressure across the film (the z-direction) 

is constant is a valid one, meaning 𝜕𝑝
𝜕𝑧

= 0. 

• As the film thickness is considered small compared to surface areas, velocity 

variations with respect to the z axis are larger than those in the x and y directions. 

Therefore: 

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

= 0; 𝜕
2𝑣

𝜕𝑥2
+ 𝜕2𝑣

𝜕𝑦2
= 0; 𝜕

2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑧2

= 0   (4.22) 

• The lubricant flow through the contact is laminar. 

• The fluid is Newtonian, and there is no slip at the surfaces. This assumption gives the 

following boundary conditions: 

𝑧 = 0;𝑢 = 𝑢𝐴, 𝑣 = 𝑣𝐴 = 0; 𝑧 = ℎ;  𝑢 = 𝑢𝐵, 𝑣 = 𝑣𝐵 = 0  (4.23) 

Where A and B are the two surfaces, and u and v are surface velocities. These assumptions 

reduce equations (4.13)-(4.15) to the following expressions: 
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𝜕𝑝
𝜕𝑥

= 𝜂 𝜕2𝑢
𝜕𝑧2

     (4.24) 

𝜕𝑝
𝜕𝑦

= 𝜂 𝜕2𝑣
𝜕𝑧2

     (4.25) 

Integrating the above equations twice with respect to z, whilst using the boundary 

conditions in (4.23), gives the velocity distribution solutions. Coupling with equation (4.12) 

gives the full Reynolds equation: 

𝜕
𝜕𝑥
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝑥
� + 𝜕

𝜕𝑦
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝑦
� = 12 �𝑢𝑎𝑣

𝜕
𝜕𝑥

(𝜌ℎ) + 𝑣𝑎𝑣
𝜕
𝜕𝑦

(𝜌ℎ) + 𝜕
𝜕𝑡

(𝜌ℎ)� (4.26) 

The Reynolds equation is the fundamental equation of fluid film lubrication theory. The 

terms on the left hand side of equation (4.26) are known as the Poiseuille terms, which 

incorporate the pressure-induced terms. The right hand side terms are known collectively as 

the Couette terms, which describe the film wedge and squeeze actions. 

A commonly used assumption when dealing with piston ring-cylinder liner contacts is that 

any entraining velocity circumferentially can be assumed to be small when compared to the 

axial entraining velocity. This means that vav = 0, and equation (4.26) simplifies as follows: 

𝜕
𝜕𝑥
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝑥
� + 𝜕

𝜕𝑦
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝑦
� = 12 �𝑢𝑎𝑣

𝜕
𝜕𝑥

(𝜌ℎ) + 𝜕
𝜕𝑡

(𝜌ℎ)�  (4.27) 

Equation (4.27) is a standard form of the Reynolds equation, and it can be applied to many 

problems concerning lubricant pressure distribution and flow. 

4.3.2. Solving the Reynolds Equation 

Whilst equation (4.26) is in a standard form, further manipulation of the Reynolds equation 

is required to yield a usable solution form. Ultimately, the Reynolds equation is used to 

calculate the pressure distribution throughout a contact. Figure 4.3 shows the forces which 

act upon the compression ring. 
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Figure  4.3: Cross-section diagram of the compression ring-cylinder liner conjunction, 

highlighting the forces present 

In the case of a piston ring-cylinder liner analysis, the pressure distribution both 

circumferentially and axially must be found. The method of solution involves dividing the 

surface area between the ring and the liner into finite, discrete points in a grid form. Density 

(ρ), viscosity (η) and local deformations (δ) are all affected by the pressure distribution 

within the contact, meaning all these terms must be considered during discretisation 

(Rahmani et al, 2012): 

𝜕Ψi
𝜕𝑥𝑘

= �𝜕Ψi
𝜕𝑝
� � 𝜕𝑝

𝜕𝑥𝑘
�             ; �𝑖 = 1,2,3

𝑘 = 1,2       (4.28) 

Where Ψ1 = ρ, Ψ2 = η, Ψ3 = δ and x1 = x, x2 = y. Using a central difference method to perform 

the finite difference discretisation, the pressure at node (i,j) is described as (Rahmani et al, 

2012): 

𝑝𝑖,𝑗 = 𝐴𝑖,𝑗+𝑄𝑖,𝑗�𝑝𝑥2+𝑝𝑦2�+3�𝑀𝑖,𝑗𝑝𝑥+𝑁𝑖,𝑗𝑝𝑦�−6𝑅𝑖,𝑗

2� 1
∆𝑥2

+ 1
∆𝑦2

�
 ; 𝜕𝑝

𝜕𝑥
= 𝑝𝑖+1,𝑗−𝑝𝑖−1,𝑗

2∆𝑥
, 𝜕𝑝
𝜕𝑦

= 𝑝𝑖,𝑗+1−𝑝𝑖,𝑗−1
2∆𝑦

 (4.29) 

The notation px and py indicates the pressure gradients 𝑑𝑝
𝑑𝑥

 and 𝑑𝑝
𝑑𝑦

 respectively. Where A, Q, 

M, N and R are as follows (Rahmani et al, 2012): 

𝐴𝑖,𝑗 = 𝑝𝑖−1,𝑗+𝑝𝑖+1,𝑗

∆𝑥2
+ 𝑝𝑖,𝑗−1+𝑝𝑖,𝑗+1

∆𝑦2
     (4.30.i) 
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𝑄𝑖,𝑗 = �1
𝜌
�𝜕𝜌
𝜕𝑝
� − 1

𝜂
𝜕𝜂
𝜕𝑝

+ 3 1
ℎ
𝜕𝛿
𝜕𝑝
�
𝑖,𝑗

     (4.30.ii) 

𝑀𝑖,𝑗 = �1
ℎ
𝜕ℎ𝑠
𝜕𝑥

− 2𝑈 𝜂
ℎ2
�𝜕𝜌
𝜕𝑝

+ 1
ℎ
𝜕𝛿
𝜕𝑝
��
𝑖,𝑗

     (4.30.iii) 

𝑁𝑖,𝑗 = �1
ℎ
𝜕Δ
𝜕𝑦
− 2𝑉 𝜂

ℎ2
�𝜕𝜌
𝜕𝑝

+ 1
ℎ
𝜕𝛿
𝜕𝑝
��
𝑖,𝑗

     (4.30.iv) 

𝑅𝑖,𝑗 = � 𝜂
ℎ2
��𝑈 𝜕ℎ𝑠

𝜕𝑥
+ 𝑉 𝜕Δ

𝜕𝑦
� + 2 �1

𝜌
𝜕𝜌
𝜕𝑡

+ 1
ℎ
𝜕ℎ0
𝜕𝑡
���

𝑖,𝑗
    (4.30.v) 

Where U and V are the axial and tangential velocities respectively (the latter is assumed to 

equal zero). The symbol h0 denotes the minimum film thickness, whilst hs is the ring’s axial 

profile. The solution to equation (4.28) requires an initial guess. Hoffmann and Chiang 

(1993) described the Point Gauss-Seidel Successive Over-Relaxation iterative method, by 

which the pressure is updated using a relaxation factor: 

𝑝𝑖,𝑗𝑛 = (1 − 𝛾)𝑝𝑖,𝑗𝑜 + 𝛾𝑝𝑖,𝑗𝑛        ; (0 < 𝛾 < 2)    (4.31) 

The relaxation factor γ is dependent on the problem, with a measure of trial and error 

required to find the optimum value. 

Convergence of the pressure at each node is determined with the use of the following 

convergence criteria: 

𝐸𝑟𝑟𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
∑ ∑ �𝑝𝑖,𝑗

𝑛 −𝑝𝑖,𝑗
𝑜 �𝐽

𝑗=1
𝐼
𝑖=1

∑ ∑ 𝑝𝑖,𝑗
𝑛𝐽

𝑗=1
𝐼
𝑖=1

≤ 1 × 10−5   (4.32) 

An increase in the value of the right hand side of equation (4.32) leads to quicker 

convergence. However, this in turn decreases the accuracy of the calculated pressure, as it 

does not yield to a fully converged solution. The full solution method will be discussed later 

in this chapter. 

4.4. The Energy Equation 

Due to the nature of sliding surfaces, even those with a lubricant film, preventing solid-to-

solid contact, a temperature increase within the contact is an inevitable outcome, mostly 

due to viscous shear of a thin film of lubricant. At significantly high pressures, some heating 

of lubricant also takes place through its compression to enter into a diminishing gap. In 
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some cases, an isothermal analysis gives a reasonable film thickness prediction. However, 

when high shear rates are present, such as those between the piston ring and the liner, 

thermal effects within the contact may affect any numerical results. This increase in 

temperature affects the viscosity of the lubricant, as described previously. Internal heating 

of the lubricant occurs via two mechanisms: compression of the contact, and the viscous 

shearing of the film, caused by a high entraining velocity. There are also two methods by 

which heat can be taken away from the system: convection and conduction. Cameron 

(1967) presented a full derivation of the energy equation. Since neglecting side leakage is a 

reasonable simplification: 

𝜐𝑈𝑒𝑛𝑡𝜃
𝜕𝑝
𝜕𝑥

+ 𝜂 �𝜕𝑈𝑒𝑛𝑡
𝜕𝑧

�
2

= 𝜌𝑈𝑒𝑛𝑡𝑐𝑝
𝜕𝜃
𝜕𝑥
− 𝑘𝑡

𝜕2𝜃
𝜕𝑧2

   (4.33) 

where θ is the temperature rise in Kelvin, υ is the coefficient of thermal expansion, kt is the 

thermal conductivity, and cp is the specific heat. The four terms in equation (4.33) are 

conveniently divided in two heating and two cooling terms, with compressive heating and 

viscous shear on the left hand side of the equation, and convection and conduction cooling 

terms on the right hand side. Figure 4.4 shows the temperature distribution at the contact. 

 

Gohar, R. and Rahnejat, H., (2008) “Fundamentals of Tribology”, London: Imperial College 

Press (figure 6.12) 

 

Figure  4.4: Temperature distribution at the contact (Gohar and Rahnejat, 2008) 

 Throughout the full cycle of a four-stroke engine, these terms take greater or less 

significance, depending on the position of the piston ring. For example, at positions such as 

the TDC and BDC, the film thickness greatly reduces, along with the entraining velocity, 

meaning convection by the lubricant film has less of an effect. Therefore, convection may be 

neglected, when compared with conduction through the adjacent bounding solid surfaces. 

However, during the mid-stroke motion, the film thickness is such that convection must be 

considered when applying the energy equation. Different solution forms can be obtained by 

considering various thermal models. 
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4.4.1. Convection Only 

Relatively speaking, the compressive heating term is insignificant in a typical contact. 

Assuming that any heat generated within the contact is displaced only via convection (thick 

film assumption), whilst letting the average fluid velocity equal, Uent1 = Uent/2 and the 

maximum average temperature rise be Δθ/2, equation (4.33) becomes: 

𝜌𝑐𝑝
𝑑𝜃
𝑑𝑥
𝑑𝑥 ∫ 𝑈𝑒𝑛𝑡 𝑑𝑧

ℎ
0 = 𝜌𝑐𝑝 �

𝑑𝜃
𝑑𝑥
� �𝑈𝑒𝑛𝑡1ℎ

2
� 𝑑𝑥   (4.34) 

Inspection of figure 4.4 shows that x = B, dθ/dx = Δθ/2B. The total heat convected away 

from the contact is therefore: 

𝜌𝑐𝑝𝑈𝑒𝑛𝑡1ℎ
2

�∆𝜃
2𝐵
� ∫ 𝑑𝑥𝐵

0 = 𝜌𝑐𝑝𝑈𝑒𝑛𝑡1ℎ∆𝜃
4

= �𝑈𝑒𝑛𝑡1𝜌ℎ
2

�× 𝑐𝑝 × ∆𝜃
2

   (4.35) 

A simpler way of recalling the right hand side of equation (4.35) is to read the mass flow per 

second x specific heat x temperature rise. 

4.4.2. Conduction Only 

Depending on the system being analysed, it can also be assumed that all the heat within the 

contact is lost through conduction only. Analysis by Gohar and Rahnejat (2008) showed very 

little convection for thin films, with conduction losses being over an order of magnitude 

larger in some instances. Assuming a linear temperature gradient across the film, from zero 

on the moving surface (z=0) to δθ/h on the stationary surface, gives a parabolic temperature 

distribution across the film. Integrating equation (4.33) with respect to z: 

𝑘𝑡 ∫
𝑑2𝜃
𝑑𝑧2

𝑑𝑧ℎ
0 = 𝑘𝑡𝑑𝑥

𝛿𝜃
ℎ

    (4.36) 

Letting δθ = xΔθ/B, the total conducted heat through the top surface is: 

𝑘𝑡∆𝜃
𝐵ℎ ∫ 𝑥𝑑𝑥𝐵

0 = 𝑘𝑡∆𝜃𝐵
2ℎ

     (4.37) 

4.4.3. The Peclet Number 

The determining factor in whether convection or conduction should be included in an 

analysis is the heat flow ratio, also known for fluid flow studies as the Peclet number: 

𝑃𝑒 =
𝑈𝑒𝑛𝑡1ℎ

4 𝜌𝑐𝑝∆𝜃
𝑘𝑡∆𝜃𝐵
2ℎ

=
𝑈𝑒𝑛𝑡1ℎ2

2𝐵

� 𝑘𝑡
𝜌𝑐𝑝

�
    (4.38) 
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The Peclet number is the ratio of convected to conducted heat. Whenever Pe < 1, it is 

reasonable to assume convection is negligible within the contact. For all other cases, both 

methods of heat transfer must be accounted for. 

A complete cycle in a four-stroke engine envelopes conditions where both conduction and 

convection are dominant at different stages of the cycle. Karthikeyan et al (2010) included 

thermal effects when analysing grease-lubricated bearings. Neglecting convection, they 

found the following analytic solution: 

−𝑘𝑡
𝜕𝜃
𝜕𝑧

= 𝜐 𝜕𝑝
𝜕𝑥 ∫ 𝜃𝑈𝑒𝑛𝑡𝑑𝑧

ℎ
0 + 𝜂 ∫ �𝜕𝑈𝑒𝑛𝑡

𝜕𝑧
�
2
𝑑𝑧ℎ

0    (4.39) 

Note that kt has units of kJm-1s-1(°K)-1. Assuming a linear heat transfer across the film, θ = θ0 

+ ∆θ, where θ0 is the inlet temperature. Substituting this into equation (4.33) and 

rearranging: 

𝛿𝜃(𝑥) =
𝜃0𝜐

𝜕𝑝
𝜕𝑥 ∫ 𝑈𝑑𝑧ℎ

0 +𝜂 ∫ 𝑈𝑧2𝑑𝑧
ℎ
0

𝑘1ℎ−𝜐
𝜕𝑝
𝜕𝑥 ∫ 𝑈𝑑𝑧ℎ

0
     (4.40) 

Equation (4.40) shows the temperature change within a contact when only considering 

conduction, and is valid for thin elastohydrodynamic films (Gohar and Rahnejat, 2008). Each 

term in the modified energy equation was integrated individually. However at the mid-span 

of a piston cycle, convection must be accounted for. Using the same approach as 

Karthikeyan et al (2010), but accounting for convection: 

𝛿𝜃(𝑥) =
𝜃0𝜐

𝜕𝑝
𝜕𝑥 ∫ 𝑈𝑑𝑧ℎ

0 +𝜂 ∫ 𝑈𝑧2𝑑𝑧
ℎ
0

𝜌𝑐𝑝
1
𝑙 ∫ 𝑈𝑑𝑧ℎ
0 +𝑘𝑡

1
ℎ−𝜐

𝜕𝑝
𝜕𝑥 ∫ 𝑈𝑑𝑧ℎ

0
    (4.41) 

Equation (4.41) accounts for both conduction and convection, and is valid for hydrodynamic 

films. 

Figure 4.5 shows the resultant temperature increases due to the analysis above in a piston 

ring-cylinder liner system. With a starting lubricant temperature of 40°C, a rigid ring is 

assumed. As mentioned previously, it is valid to include both conduction and convection in 

any internal thermal analysis when studying the compression ring. However, the actual 

temperature rise throughout the engine cycle when including both methods is relatively 

small. At the point of combustion, both at 2000rpm and 4000rpm, the internal heat 
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generated is less than 10°C. It is clear that the temperature increase due to the combustion 

itself will be significantly higher than this. Also, if the starting temperature of the lubricant is 

higher than the 40°C used here, the effect of internal heating mechanisms would be 

reduced even further. It is, therefore, reasonable to assume that internal heating methods 

can be neglected if actual liner temperatures can be used, or if the lubricant temperature is 

set to a more realistic value in the numerical analysis. The inclusion of transient ring 

dynamics would not alter these results so as to make this assumption unreasonable. 

 

Figure  4.5: Average temperature rise throughout the engine cycle for a rigid ring analysis 

4.5. Asperity Interaction 

In contacts of lower film thickness, there is an increased chance that the roughness features 

of both surfaces will affect the tribological performance of the contact. Greenwood and 

Tripp (1970) proposed a model for calculating the asperity loads within a contact (Priest, 

2000): 

𝑊𝑎 = 8√2
15
𝜋(𝜁𝜅𝜎)2�𝜎

𝜅
𝐸′𝐴𝐹5 2⁄ (𝜆)    (4.42) 

In equation (4.42), the terms (ζκσ) and (σ/κ) are dimensionless roughness parameters 

obtained through surface roughness measurements. κ is the asperity radius of curvature, ζ 

equals the number of asperities per unit area, and σ represents the composite surface 

roughness. A is the apparent area considered, in other words the flat area before 

considering the effect of surface roughness. The lambda value is used in plotting the 
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Stribeck curve, and is the film ratio of film thickness to surface roughness average. F5/2(λ) is 

the probability distribution of asperity height. In the studies described in this thesis, a fifth-

order polynomial curve is fitted to this distribution (Teodorescu, 2004): 

𝐹5 2⁄ (𝜆) = −0.0046𝜆5 + 0.0574𝜆4 − 0.2958𝜆3 + 0.7844𝜆2 − 1.0776𝜆 + 0.6167 (4.43) 

Equation (4.42) gives the radial asperity load. However, out-of-plane frictional forces must 

also be considered. 

𝑓𝑡 = 𝑓𝑣 + 𝑓𝑏      (4.44) 

The total friction is a summation of viscous and boundary friction. Priest (2000) defined the 

boundary friction as follows: 

𝑓𝑏 = 𝜏0𝐴𝑒 + 𝜉𝑊𝑎     (4.45) 

τ0 is known as the Eyring stress, while ξ is the pressure coefficient for the boundary shear 

strength in asperities. This coefficient is considered to equal approximately 0.17 for steel. 

The actual pressure coefficient of the compression ring was also measured for this study. 

The values were found to be 0.3038 and 0.2012 for a brand new and end-of-life ring 

respectively. The values used are given along with other relevant information in the 

numerical models. Ae is the effective area of the contact, accounting for asperities: 

𝐴𝑒 = 𝜋2(𝜁𝜅𝜎)2�𝜎
𝜅
𝐸′𝐴𝐹2(𝜆)     (4.46) 

Further to the boundary friction, viscous friction must also be considered: 

𝑓𝑣 = 𝜏(𝐴 − 𝐴𝑒)     (4.47) 

Where τ is the viscous shear: 

𝜏 = �𝜏𝑥2 + 𝜏𝑦2�
1 2⁄

= �± ℎ
2
∇��⃑ 𝑝 + 𝑉�⃑ 𝜂

ℎ
�    (4.48) 

4.6. Method of Solution 

As stated previously, Equations (4.28-4.32) are implemented to solve the Reynolds 

equation.  A two-stage convergence process is sought before a solution can be accepted. 
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Firstly, the generated pressures and lubricant rheological states are deemed to have 

converged, when:  

𝐸𝑟𝑟𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
∑ ∑ �𝑝𝑖,𝑗

𝑛 −𝑝𝑖,𝑗
𝑜 �𝐽

𝑗=1
𝐼
𝑖=1

∑ ∑ 𝑝𝑖,𝑗
𝑛𝐽

𝑗=1
𝐼
𝑖=1

≤ 1 × 10−5              (4.49) 

And: 

𝐸𝑟𝑟𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =
∑ ∑ �Ψ𝑖,𝑗

𝑛 −Ψ𝑖,𝑗
𝑜 �𝐽

𝑗=1
𝐼
𝑖=1

∑ ∑ Ψ𝑖,𝑗
𝑛𝐽

𝑗=1
𝐼
𝑖=1

≤ 1 × 10−3         (4.50) 

Secondly, the quasi-static balance of applied forces on the ring is sought through: 

𝐸𝑟𝑟𝑙𝑜𝑎𝑑 = |𝐹(𝜕)−𝑊(𝜕)|
𝐹(𝜕) ≤ 1 × 10−3         (4.51) 

Where F(ϕ) and W(ϕ) are the external and internal loads respectively. If this criterion is not 

met then the minimum nominal gap is adjusted and the entire iterative procedure is 

repeated:  

ℎ𝑚𝑛 = (1 + 𝛽𝜒)ℎ𝑚𝑜                (4.52) 

χ is the adjusting parameter: 𝜒 = 𝑊(𝜕)−𝐹(𝜕)
𝑚𝑎𝑥{𝑊(𝜕),𝐹(𝜕)}. Superscripts n and o denote new and old 

steps in the iteration process. A damping coefficient for load convergence, β, is used to 

affect faster load convergence, whilst avoiding numerical instability. 

Finally, a typical analysis cycle requires an initial guess as the nominal minimum clearance. 

This means that the analysis should continue until cyclic behaviour in minimum clearance is 

achieved between successive engine cycles. Thus: 

𝐸𝑟𝑟𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = |ℎ𝑚(𝜕)−ℎ𝑚(𝜕−720)|
ℎ𝑚(𝜕−720) ≤ 1 × 10−3   (4.53) 

An algorithm of the solution process used is shown in figure 4.6. Note that this is the 

methodology for the tribological analysis only; with no ring dynamics included. 
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START

Define variables, 
Read data (cylinder 

pressure etc)

Gas Pressure acting on 
ring

Update pressure

END

YES

NO

Load balance?

Asperity pressure distribution

Elastic fitment + gas force

Elastic deformation of ring 
calculated, and corresponding 

elastic pressure

Initial and Boundary conditions 
set for pressure (varies for 

each crank angle)

Thermal analysis (if 
included)

h(x,y,t) = hm(t) + hs(x) + 
Δ(y) + δ(x,y)

Viscosity and density 
updated

Viscous pressure distribution

Total load capacity

Pressure gradient, 
viscous shear, friction 

force, power loss

Pressure convergence 
test – converged?

NO

Update h0

YES

Engine cycle 
finished?

NO

YES

Print results

 

Figure  4.6: Flowchart of the solution procedure 

4.7. Closure 

In this chapter, expressions to define lubricant properties and their variations due to contact 

conditions were highlighted. The Reynolds equation was derived from the Navier-Stokes 

equations, with any assumptions stated. The discretised solution form of the Reynolds 

equation is also presented. Thermal effects are accounted for by manipulation of the Energy 

equation, concluding in an expression valid for hydrodynamic films. The effects of surface 

asperities within the contact are also explained, both in load carrying and frictional terms. 
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This outlines the tribological analysis methodologies which are applied to the top 

compression ring to determine frictional losses and film thickness predictions. 
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5. Tribodynamic Numerical Analysis of the Top Compression Ring 

5.1. Introduction 

This chapter presents the results of the tribodynamic analysis of the top compression ring. 

Various engine conditions are presented, comparing the proposed method of transient ring 

dynamics with a rigid ring analysis. These include different oil temperatures, ring profiles 

and engine speeds. Initially, quasi-static force balance results are presented, which highlight 

the need for including transient ring dynamics. Then, the in-plane transient elastic motion of 

the ring is coupled with the tribological analysis and the results are compared. Finally, the 

out-of-plane ring dynamics are also coupled to the methodology, to give a fully 

elastodynamic compression ring tribological model. 

5.2. Rigid Ring Tribology 

The system which is modelled throughout this chapter is based upon a V12 high 

performance gasoline engine. The lubricant used in the analysis is SAE 10W40. Table 5.1 lists 

the lubricant rheological parameters. The surface roughness parameters used in the 

boundary friction calculations are listed in table 5.2. 

Table  5.1: Lubricant Parameters 

Parameter Value Unit 

Pressure-viscosity coefficient 2×10-8 m2/N 

Thermal expansion coefficient 6.5×10-4 1/°K 

Lubricant density 833.8 at 40 [°C], 783.8 at 100 [°C] kg/m3 

Lubricant kinematic viscosity, ν 59.99 at 40 [°C], 9.59 at 100 [°C] ×10-6 m2/s 

 

Table  5.2: Roughness parameters for initial numerical results 

Parameter Value Unit 

Ra for the liner 0.26 µm 

Ra for a new ring 0.408 µm 

Ra for a worn ring 0.235 µm 

Roughness parameter (ζκσc)c 0.073672 - 

Measure of asperity gradient (σc/κ)c 0.309288 - 

Pressure coefficient 0.3038 - 
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The combustion gas pressure curve at different engine speeds and 100% throttle are 

provided by industrial collaborators of research. Figure 5.1 shows the gas pressure profiles 

for some example engine speeds (for a fired engine). 

 

Figure  5.1: Gas pressure profiles at given engine speeds 

The compression ring details are listed in table 5.3. 

Table  5.3: Ring Properties for initial numerical results 

Property Value 
Elastic modulus, E 203 GPa 
Ring density, ρ 7800 kg/m3 
Ring thickness, d 3.5 mm 
Axial face-width, b 1.15 mm 
Nominal fitted ring radius, R 44.52 mm 
Ring second moment of area, I 2.25X10-12 m4 
End gap size (free ring) 10.5mm 

 

A fully flooded inlet condition is assumed for the presented analysis. The lubricant 

temperature is considered to remain constant throughout the engine cycle for each analysis. 

This is because the internally generated temperature rise due to compression and viscous 

shear was shown to be small, when compared to the measured liner and combustion 

temperatures, as shown previously in this thesis. For the rigid ring analysis, the film 
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thickness at each crank angle is calculated through an iterative process based on quasi-static 

equilibrium of forces acting on the ring. The external gas and elastic fitment forces act 

normal to the inner rim of the ring in the radial outward direction, with lubricant and 

asperity reaction forces acting radially inwards. The film thickness affects these reaction 

forces and their values are iterated upon until equilibrium is reached. Frictional losses are 

due to asperity interactions as well as viscous shear of the lubricant film. Greenwood and 

Tripp model for asperity interactions is used for asperity interactions. 

Initial results are presented for the compression ring tribology without considering any ring 

dynamics (i.e. an assumed rigid fitted ring). Figure 5.2 shows the minimum film thickness 

variation over an engine cycle, at various engine speeds. The oil temperature is assumed to 

be constant at 40°C, and the contact inlet is regarded as fully flooded. As expected, an 

increase in engine speed results in higher sliding velocity and a thicker minimum film 

thickness. However, the parameter ∆𝑈 ℎ�  effectively increases, therefore the viscous shear 

stress and consequently the viscous friction (as shown in figure 5.3) increase also. The 

lubricant flow rate is also enhanced with an increase in the engine speed, which is 

demonstrated in figure 5.4. The power stroke is where the most extreme conditions are 

encountered by the compression ring, with the maximum combustion pressure occurring 

about 20° crank angle past the top dead centre (TDC). This is reflected by a notable drop in 

the film thickness and an increase in frictional power loss throughout the power stroke, in 

comparison with the rest of the engine cycle. 
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Figure  5.2: Minimum film thickness variation (rigid ring analysis) at various engine speeds 

 

Figure  5.3: Total friction power loss variation (rigid ring analysis) at various engine speeds 

 

Figure  5.4: Lubricant mass flow rate variation (rigid ring analysis) at various engine speeds 

Figures 5.2-5.4 show expected trends with reasonable values for each parameter presented, 

which suggests that the numerical methodology is representative of the actual noted 

practical conditions. Preliminary simulations were performed to highlight any differences 

between the ‘rigid’ ring analysis and that incorporating ring dynamics. Force profiles around 

critical positions in the engine cycle were extracted and applied to the ring dynamics 

methodology. The resulting deformation was used in the tribology code and frictional losses 

were evaluated. This method does not include the time history of ring oscillations, so it may 

be described as a quasi-static analysis. It is intended as a first step towards complete 
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coupling with the tribological analysis. The results in figures 5.5 and 5.6 were presented in 

Baker et al (2012, see Appendix C). 

5.3. Quasi-static ring deformation 

The force profile in ring dynamics is introduced as a Fourier series. An example is shown in 

figure 5.5. The force profile around the ring is determined by integrating the pressure 

distribution obtained in the tribological analysis. In the results presented, the ring’s profile 

comprises 64 circumferential nodes and 80 axial nodes (along the ring’s facewidth) during 

the numerical analysis. The computation time and memory size is a determining factor in 

the number of nodes used. However, the accuracy of the results is not compromised. This 

gives an 80x64 mesh, which covers the ring’s facewidth area. Integration across the 80 axial 

points at each circumferential step results in the circumferential force profile. This results in 

a circumferential profile as shown in figure 5.5, which can be used in the dynamics 

metholodgy with the use of a Fourier series. A negative value indicates that the net force 

acts radially outwards. 

 

Figure  5.5: Force profile and corresponding Fourier series 
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(a): 3o before TDC           (b): TDC 

 

(c): 3o past TDC    (d): 10o past TDC 

 

     (e): 20o past TDC, firing point     (f): 22o past TDC 

Figure  5.6: Film profile and ring deflection at various crank angle intervals around the TDC 

and firing point (engine speed = 2000rpm).  rigid film shape, ring 

deflection,   elastic film shape 

Figure 5.6 shows various ring deformation profiles, as well as film thickness comparison with 

the traditional tribological analysis (i.e. for a rigid, fitted ring). The significant difference 

between the rigid and elastic profiles suggests that inclusion of ring dynamics is an 
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important consideration. It also suggests that static conformability analysis is not a realistic 

approach, because when the piston commences to move, the ring’s global deformation 

constantly alters its conformability to the bore. 

It should be stated that this is a quasi-static analysis. Lubricant and asperity carried loads are 

affected not only by the film thickness at each circumferential point, but also by the local 

velocity of the ring contributed by the squeeze film term when solving the Reynolds 

equation. This term embodies the “history” of the lubricant film thickness. The results 

presented in figure 5.6 demonstrate that ring deformation occurs and the way to account 

for this effect is by the inclusion of its deformation in a transient numerical analysis. 

5.4. In-plane transient ring dynamics 

Whereas the previous section deals with ‘snapshots’ of the compression ring’s dynamic 

response to excitation experienced within the piston-ring system, a fully transient  method 

is required for complete coupling between tribology and dynamics. An initial minimum film 

thickness is assumed, as is the case with the rigid ring methodology and the analysis is 

complete when this minimum film value has converged in the iterative process over the 

four-stroke cycle. Therefore, the minimum film thickness at the start of a cycle equals to 

that of the next cycle. This ensures the continuity of the analysis. Figures 5.7-5.9 show a 

comparison between the rigid and transient elastic ring methodologies. The minimum film 

thickness, total frictional power loss, and lubricant flow rate are presented. It is interesting 

to note that the film thickness predictions are lower with the elastic ring analysis, apart from 

those corresponding to the power stroke. The axial and circumferential film profiles for the 

points A and B of Figure 5.7 can be seen in Figure 5.10, for the elastic analysis. These points 

correspond to the TDC and at the mid-stroke and they have been highlighted to illustrate 

how the pressure profile varies. It can be seen that the circumferential film profile does not 

change much for either region. However, when the minimum film thickness assumes small 

values, even these small variations can cause significant changes in the pressure profile 

around the ring. Observation of figure 5.10a shows that the film profile variation in the 

circumferential direction is very small. However, pressure changes by over 1MPa from one 

side of the ring to the other. The assumption of a right cylindrical bore geometry is most 

probably the reason for the small change in the circumferential film profile, as the force 

profile acting upon the ring is relatively uniform. A similar plot for the rigid ring case would 
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show a uniform force circumferentially, whereas the dynamic analysis shows variations due 

to the ring’s dynamic deflection (modal behaviour).  

 

Figure  5.7: Minimum film thickness comparison of rigid and elastic ring analysis 

 

Figure  5.8: Frictional power loss comparison of rigid and elastic ring analysis 

A  

B 
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Figure  5.9: Lubricant mass flow rate comparison of rigid and elastic ring analysis at ring’s 

middle cross section. Temperature = 40°C 

 

(a) 

 

(b)  

Figure  5.10: Circumferential and axial profiles of the lubricant pressure and film shape at 

points A and B of figure 5.7 
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The effect of engine speed on the parameters shown in Figures 5.7-5.9 can also be seen in 

Figures 5.11-5.13. The rigid ring analysis predicts an increase in the minimum film thickness 

values at the mid-stroke with increased engine speed (Figure 5.10). This increase is also seen 

in the elastic ring analysis. Rising speed causes higher frictional losses, as it can be seen in 

Figure 5.12 (due to increased lubricant shear, the service parameter ∆𝑈 ℎ� ). The lubricant 

flow rate follows the trend of the minimum film thickness predictions (Figure 5.13). 

 

Figure  5.11: Effect of engine speed on the minimum film thickness predictions for both rigid 

and in-plane elastic ring analysis 

 

Figure  5.12: Effect of engine speed on frictional power loss predictions for both rigid and 

elastic ring analysis 

Compression Combustion Exhaust Intake 

Compression Combustion Exhaust Intake 
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Figure  5.13: Effect of engine speed on lubricant flow rate predictions for both rigid and 

elastic ring analysis 

The effect of oil temperature on the tribological performance of the system is shown in 

Figures 5.14-5.16. As expected, the film thickness decreases when temperature increases 

due to lower effective lubricant viscosity. The difference between the rigid and elastic ring 

analysis appears to be reduced when the lubricant temperature is increased, as shown in 

figure 5.14. When the film thickness is as thin as that in figure 5.15 at 120°C, any small 

deviation in film thickness can have a significant effect on the frictional losses. This is due to 

the contribution of asperity friction, as surface-to-surface contact occurs (spike in the 

calculated loss in Figure 5.16). Again, the lubricant flow rate depends mainly on the film 

thickness, so the same trend is noted in figures 5.15 and 5.17. 

Compression Combustion Exhaust Intake 
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Figure  5.14: Effect of lubricant temperature on the minimum film thickness at different 

engine speeds for both rigid and elastic analysis. Lubricant temperature = 80°C 

 

Figure  5.15: Effect of temperature on the minimum film thickness (elastic ring analysis).  
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Figure  5.16: Effect of temperature on friction power loss (elastic ring analysis) 

 

Figure  5.17: Effect of temperature on lubricant mass flow rate (elastic ring analysis)  

Figure 5.18 presents a comparison of the frictional power loss for both rigid and elastic ring 

analyses, as a percentage of the total energy available. The power loss is calculated over a 

complete engine cycle for different engine speeds and effective temperature values. Over 

the whole cycle a greater power loss is seen for the elastic analysis, particularly under more 

demanding conditions. It should be noted, however, that the maximum frictional power loss 

throughout the engine cycle occurs at the point of maximum pressure. The rigid ring 

analysis shows a higher peak at these points as shown in figure 5.8. However, over the 

course of the whole engine cycle, the elastic ring analysis predicts greater frictional losses. 
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The inset graph to figure 5.18 exhibits the same results, but rotated through 180° for clearer 

visibility. 

 

Figure  5.18: Power loss comparison between rigid and in-plane elastic ring analysis, with 

respect to oil temperature and engine speed 

5.5. Ring dynamics in two planes 

The inclusion of in-plane ring dynamics is a relatively simple solution to envisage. The in-

plane deformation acts in the radial direction of the ring, as does the film thickness 

measurement. This means that the radial ring deflection can be added to the previous 

profile algebraically to determine the updated film thickness profile. Ring dynamics in the 

axial plane of the ring are more complicated to couple with the tribological analysis than the 

in-plane case. The out-of-plane deformation is not accounted for by being simply added to 

the film thickness value. Instead, the ring’s out-of-plane velocity is used to update the speed 

of entraining motion when solving Reynolds’ equation and the incurred twist affects the 

ring’s axial profile with respect to the liner. Figure 5.19 shows an example of this, with the 

ring profile at two different time steps after undergoing some twisting motion. Without the 

inclusion of the out-of-plane dynamics, the ring’s axial profile will not twist throughout the 

- Rigid Ring 

- Elastic Ring 
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engine cycle. An alteration to the ring profile will affect the pressure distribution within the 

contact. 

The inherent assumption, when including ring elastodynamics, is that the lubricant still 

completely fills the ring-bore conjunction after the ring has undergone deformation. This 

assumption may not hold true in practice because of lack of lubricant availability or rupture 

of a meniscus bridge with an increasing gap size between the contacting solid surfaces. 

However, as fully flooded conditions are used in the tribological analysis, this assumption is 

seen as reasonable. 

 

Figure  5.19: Twist of a worn ring’s axial profile 

Figures 5.20-5.21 show the minimum film thickness and frictional power loss profiles 

calculated using the rigid ring methodology, the in-plane-only ring dynamics, and the 

dynamics in both planes. The previous results presented in this chapter showed that the 

general trend was that the inclusion of in-plane dynamics reduced the film thickness values 

at the mid-stroke. Since there is no entraining motion at TDC and BDC, the film thickness at 

these locations for the rigid analysis are thicker than that expected. Inclusion of the out-of-

plane response yields lower film thickness predictions at reversal as well as the in-plane 

methodology, which suggests this to be a more realistic model. The film thickness profiles 

for both elastic ring analyses are very similar, with the fully dynamic ring yielding slightly 

lower values. This reduction in film thickness, particularly at reversal, causes asperity 

interactions to occur, causing ‘spikes’ in the frictional power loss around TDC and BDC. This 

is especially noticeable away from the high pressure reversal point just before combustion. 



Tribodynamic Numerical Analysis of the Top Compression Ring 
 

90 
 

 

Figure  5.20: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 1000rpm, lubricant temperature = 40°C 

 

Figure  5.21: Total friction power loss comparisons for the rigid, in-plane and full dynamic 

analyses at 1000rpm, lubricant temperature = 40°C 

Figures 5.22-5.25 show the same results as in figures 5.20-5.21, but at higher engine speeds. 

The expected trends are present, with a higher speed of entraining motion resulting in a 

thicker lubricant film. Inclusion of the ring dynamics in both planes gives a similar film 

thickness result to that with just the in-plane case. This is reflected in the frictional power 

loss predictions, with very little difference noted between the two methodologies. 
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Figure  5.22: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 1500rpm, lubricant temperature = 40°C 

 

Figure  5.23: Total friction power loss comparisons for the rigid, in-plane and full dynamic 

analyses at 1500rpm, lubricant temperature = 40°C 
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Figure  5.24: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 2000rpm, lubricant temperature = 40°C 

 

Figure  5.25: Total friction power loss comparisons for the rigid, in-plane and full dynamic 

analyses at 2000rpm, lubricant temperature = 40°C 

Comparisons between the rigid, in-plane and fully dynamic methodologies with higher 

lubricant temperatures are shown in figures 5.26-5.28, which use oil temperatures of 80°C 

and 120°C. A very close agreement in prediction is seen between the two dynamic 

methodologies. This should be expected, since the angle of twist is small, as shown in figure 

5.19, meaning that its effect on the ring-liner conjunction is also small. The presented 

methodology does not include any prediction of gas flow through the ring pack, which 
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would affect the gas pressure behind the ring. If out-of-plane ring dynamics were included, 

this gas pressure would alter as the ring moves from the bottom face of the groove to the 

top. This would subsequently affect the lubricant film thickness. Additionally, accounting for 

lubricant starvation may also result in a difference between the in-plane and fully dynamic 

analyses. The combination of higher engine speed and lubricant temperature shows a 

slightly larger difference between the in-plane and fully dynamic ring analyses, as shown in 

figure 5.28. 

 

Figure  5.26: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 1500rpm, lubricant temperature = 80°C 
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Figure  5.27: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 2000rpm, lubricant temperature = 80°C 

 

Figure  5.28: Minimum film thickness comparisons for the rigid, in-plane and full dynamic 

analyses at 2000rpm, lubricant temperature = 120°C 

Inclusion of out-of-plane ring dynamics allows for any lateral axial movement with respect 

to the piston to be taken into account. The piston groove restricts the movement of the ring 

in the axial direction of the piston. However, there is room for the ring to move rigidly and 

elastically throughout the engine cycle. From the engine data available, a gap of 

approximately 89μm remains when the ring’s axial height is subtracted from the groove’s 
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axial height. It is assumed that a layer of lubricant of thickness 10μm would be present on 

both faces of the ring. Since fully flooded conditions are assumed for the piston ring-cylinder 

liner conjunction, it is also assumed that sufficient lubricant is available on the upper and 

lower faces of the groove. Using Tian’s method (1998), the groove lubricant reaction force is 

calculated when the gap between the ring and the groove becomes less than 10μm. If the 

gap is greater, the cylinder (top of the ring) or crankcase (bottom of the ring) pressure is 

used. 

 

(a) 

 

(b) 

Figure  5.29: Compression ring motion within the groove throughout the engine cycle. Engine 

speed = 1500rpm 

Figure 5.29a shows the position of the ring within the groove throughout the engine cycle at 

1500rpm, alongside the difference in velocity between the piston and the ring. The overall 
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ring velocity is shown in figure 5.29b, and is seen to largely follow the piston’s velocity 

profile, as would be expected. However, in the instances immediately after the point of 

maximum velocity in each stroke, there is a deviation from an otherwise smooth curve. 

These ‘spikes’ are shown in the net velocity results in figure 5.29a, and occur due to the 

piston’s axial velocity slowing upon approaching the dead centres prior to reversal. The 

compression ring continues moving at a higher velocity and loses contact with the groove 

lubricant film. As the ring approaches the opposite face of the groove, lubricant present on 

this groove surface creates a reaction force which acts upon the ring. This force slows the 

ring, so that it once again follows the velocity profile of the piston, with some slight local 

variations. The movement of the ring away from the either grooves’ faces causes loss of 

sealing, as some gas pressure would be lost through the gap behind the ring. This would 

increase the probability of ring axial oscillations (flutter) and blow-by. Figure 5.30 shows 

some example ring deformations at different positions throughout the engine cycle. Note 

the scale in each of the deformed ring profiles, which suggests that there is greater 

deformation when the ring is in transition between the two groove faces. 

   

Figure  5.30: Compression ring 3D profiles at different stages of the engine cycle. Engine 

speed = 1500rpm 

Whilst it is seen that the piston speed is the primary cause behind the resultant motion of 

the ring, certain cases are affected by the combustion pressure, in the results presented. 
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Figure 5.31 shows the groove displacement and net velocity at 1000rpm and 40°C. At the 

combustion point, the ring displaces from the top of the groove, even though the piston is 

still accelerating towards the mid-stroke. This suggests conditions which are even more 

likely to result in some loss of power, as some of the power from the point of combustion is 

lost through displacing the compression ring.  Therefore, there is a loss of sealing effect. 

 

 

Figure  5.31: The 3D profile when the ring is forced from the groove face due to combustion 

pressure, even when the piston is increasing in axial velocity. This causes a larger ring 

deformation (note the scale). Engine speed = 1000rpm, lubricant temperature = 40°C 

The effect of an increase in temperature is also shown. Figures 5.32 and 5.33 show the 

minimum film thickness at 1500rpm and 2000rpm with varying lubricant temperatures. As 

would be expected, the film thickness decreases with increased temperature, which 

increases the risk of mixed regime of lubrication and surface interactions. This is shown in 

figure 5.34, where the frictional power losses are markedly larger than those at lower 

temperatures at reversal and in the power stroke. The lower lubricant viscosity at higher 

temperatures means lower viscous friction through the mid-stroke, when comparing the 

results at the same engine speed. However, friction peaks at reversal and at the point of 

combustion there are areas where localised wear would be likely. 

40
50
60
70



Tribodynamic Numerical Analysis of the Top Compression Ring 
 

98 
 

 

Figure  5.32: The effect of lubricant temperature on film thickness with a fully dynamic ring. 

Engine speed = 1500rpm 

 

Figure  5.33: The effect of lubricant temperature on film thickness with a fully dynamic ring. 

Engine speed = 2000rpm 

A difference can be observed between the rigid ring, in-plane and full elastodynamic ring 

results. However, the variation of engine speed affects the results for each of these cases in 

different ways. Figure 5.35 shows the full dynamics’ results, with a lubricant temperature of 

80°C, at different engine speeds. 
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Figure  5.34: The effect of lubricant temperature on friction power loss with a fully dynamic 

ring. Engine speed = 2000rpm 

 

Figure  5.35: The effect of engine speed on film thickness with a fully dynamic ring. Lubricant 

temperature = 80°C 

Figure 5.36 shows the groove displacement profile at an engine speed of 1500rpm with a 

lubricant temperature of 120°. At the point of combustion the ring is forced away from the 

top of the groove, losing some of the sealing of the combustion chamber. As shown in figure 
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5.36, this behaviour causes an increase in ring deformation in the out-of-plane direction. A 

loss of pressure in the combustion chamber is again likely to occur.  

 

Figure  5.36: Ring displacement throughout the engine cycle. Engine speed = 1500rpm, 

lubricant temperature = 120°C 

Figure 5.37 shows a comparison of the fully dynamic numerical analyses at difference 

engine speeds (up to 6000rpm), with a lubricant temperature of 120°C. It can be seen that 

over an engine speed of 3000rpm, the piston acceleration towards the mid-stroke causes 

some drastic motion of the ring. This motion prevents the minimum film thickness from 

following the expected trend of increasing with an increase in the engine speed, with lower 

film thickness values predicted for 4000-6000rpm. The corresponding frictional power loss 

values are shown in figure 5.38. At engine speeds above 3000rpm, significant power loss is 

predicted just after reversal points, particularly through the power stroke.  

Due to the increasing harshness of the conditions at higher engine speeds, the result 

appears to be a change in the usual trend of increasing film thickness with increasing engine 

speed. The rigid ring analysis gives results which follow the previously observed trends, as 

seen in figures 5.39 and 5.40. It can be seen that the power loss predictions are an order of 

magnitude above those predicted using the rigid ring analysis. As these numerical results 

have been produced assuming a new compression ring axial profile, it may be indicative of 

the wear which occurs during the running in period. 
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Figure  5.37: The effect of engine speed on film thickness with a fully dynamic ring. Lubricant 

temperature = 120°C 

 

Figure  5.38: The effect of engine speed on friction power loss with a fully dynamic ring. 

Lubricant temperature = 120°C 
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Figure  5.39: The effect of engine speed on film thickness with a rigid ring. Lubricant 

temperature = 120°C 

 

Figure  5.40: The effect of engine speed on friction power loss with a rigid ring. Lubricant 

temperature = 120°C 

The ring profile data provided as part of this project was for a brand new, unused 

compression ring, as well as a ring which had undergone certain “accelerated harsh” 

running conditions for 150 hours, thus considered to have reached its useful life. To 

demonstrate the importance of the ring’s axial profile, as well as providing results which 
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may represent an intermediate stage of the ring’s life, the new measured profile was 

modified by halving the axial ring profile. This is shown in figure 5.41. 

 

Figure  5.41: Modified new ring axial profile to represent a ring part-way through its life cycle 

The modified ring profile in figure 5.41 was used to obtain results at the high load, high 

temperature conditions which yielded the large perturbations in figures 5.37 and 5.38. 

These results are shown in figures 5.42-5.43. A more stable result is seen, which is more in 

keeping with the results obtained at lower speeds and temperatures. This shows that the 

ring’s axial profile plays a significant part in the tribological performance of the compression 

ring. 

 

Figure  5.42: Film thickness results using an ‘intermediate’ ring profile. Lubricant 

temperature = 120°C 
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Figure  5.43: Power Loss results using an ‘intermediate’ ring profile. Lubricant temperature = 

120°C 

Following visual inspection, it can be seen that compression rings suffer through wear of 

their axial profile (along their face-width) during their useful life. This wear gives an 

improved film profile through gradual and bedding-in wear when compared with the 

numerical analysis with a new ring. Figure 5.44 shows the profiles for a new and a worn ring.  

The worn ring profile is measured after a 150hr high speed test, representing an ‘end of life’ 

condition. A clear difference between the profiles can be observed. 

 

Figure  5.44: New and worn ring axial profiles 
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The results presented compare a measured new compression ring with a ring at the end of 

its useful life. With the rigid ring analysis, an improved film thickness is seen through the 

whole engine cycle. Compared with the new ring analysis for a cold lubricant running 

condition, a fully dynamic ring analysis with a worn axial profile shows improved film 

thickness throughout the engine cycle. This is shown in figure 5.45. Correspondingly, figure 

5.46 shows the reduced frictional losses due to this worn axial profile. It can be seen that 

the friction ‘peaks’ at reversal due to asperity interactions are not present for the worn ring 

case, giving a smoother power loss curve with lower maximum values at the mid-strokes.  

 

Figure  5.45: Minimum film thickness results for the elastic analysis comparing new and worn 

ring profiles. Lubricant temperature = 40°C  
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Figure  5.46: Frictional power loss results for the elastic analysis comparing new and worn 

ring profiles. Lubricant temperature = 40°C 

The fact that a worn ring profile shows an improvement in the minimum film thickness is a 

reasonable result. Most new contact conjunctions with sharp geometrical features go 

through a running-in wear period, which serves to conform the moving mating parts. In the 

case of the piston ring-cylinder liner system, it is impossible to manufacture and fit a 

perfectly circular bore. There may also be imperfections in the connecting rod mechanism. 

The running-in period allows for these imperfections to be somewhat palliated. For 

example, at a particular axial position asperity friction may peak due to a loss of film. This 

would cause the compression ring to wear, therefore removing a small portion of its rough 

topography. This change of profile may improve the film formation as seen in figure 5.45. 

Alternatively, the process of frictional losses-to-worn profile continues until the lubrication 

is sufficient. An “equilibrium” is reached, in which the lubrication at most points around the 

ring is sufficient to avoid asperity interaction, due to the altered profiles caused by wear. 

However, when the lubricant temperature is increased the effect on film thickness due to 

ring profile is reduced. For the elastic ring analysis, the effect of a worn ring profile is not 

noted, with similar film thickness values obtained in all cases. This suggests that to a certain 

extent, the lubricant temperature has a greater impact on the film thickness than the axial 

profile of the ring, provided an inlet wedge shape is still maintained through the process of 
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gradual wear. This is highlighted in figure 5.47, where a more pronounced difference in film 

thickness can be seen for the rigid ring analysis, with a minimal change when considering an 

elastic ring. 

 

Figure  5.47: Comparisons between rigid and elastic results for a new and worn ring. 

Lubricant temperature = 80°C, engine speed = 2000rpm  

The results shown in figures 5.37-5.40 were then compared with those under the same 

conditions, but with a worn ring. It can be seen (figures 5.48-5.49) that the use of a worn 

ring profile gives a much smoother film thickness profile, and subsequently less friction is 

generated, provided that a sufficient film thickness is maintained to guard against asperity 

interactions. The adverse effect of increasing the lubricant film thickness is that the chance 

of blow-by between the ring and liner is increased. However in the cases presented, it 

appears that the film thickness is sufficiently thin so as to not dramatically increase this 

possibility. The first half of each piston stroke, up to the point of maximum sliding velocity, 

shows an area where wear remains a possibility due to a combination of thin film thickness 

and increasing entraining velocity. Once this wear has occurred, the rings axial profile 

changes such that the tribological performance is improved, at least initially. This is shown 

in figure 5.50, with the power loss from the worn ring analysis being significantly lower than 

that shown in figure 5.38 for the new ring profile. 
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Figure  5.48: Comparison between new and worn ring results. Engine speed = 4000rpm, 

lubricant temperature 120°C 

 

Figure  5.49: Comparison between new and worn ring results. Engine speed = 6000rpm, 

lubricant temperature 120°C 
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Figure  5.50: Comparison between worn ring power loss results at various engine speeds. 

Lubricant temperature 120°C 

As shown for the in-plane ring dynamic analysis, the power loss for various engine speeds 

and lubricant temperatures for rigid, in-plane and fully dynamic cases are shown in figure 

5.51. The fully transient ring analysis predicts greater power loss throughout the engine 

cycle in most instances, when compared with the rigid ring analysis. This is to be expected, 

due to greater asperity interactions at reversal and a thinner film during the mid-stroke. The 

percentage total energy lost for all cases falls within the range of 0.06-1.5% reported by 

Richardson (2000), showing the results to be in line with test results and rational 

observations. 
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Figure  5.51: Power loss comparison between rigid, in-plane and fully dynamic elastic ring 

analysis, with respect to oil temperature and engine speed 

The Stribeck curve shows the various lubrication regimes which can be encountered in a 

tribological analysis. Mixed and boundary lubrication give the greater risk of asperity 

interaction, which can cause wear of the solid surfaces. The compression ring goes through 

these regimes during the engine cycle. Considering the forces seen by the compression ring, 

elastohydrodynamic lubrication is unlikely apart from at TDC before the power stroke and 

the point of maximum pressure (combustion). However, the points indicating reversal in 

figure 52 show the compression ring appearing to pass through the EHL regime of 

- Fully dynamic ring 

- In-plane dynamic ring 

- Rigid ring 
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lubrication. A temporary stationary point during reversal would mean the coefficient of 

friction reduces, as there is no sliding motion to generate any friction. Also, the pressures 

seen may not be significant enough to alter the lubricant viscosity, apart from at the point of 

combustion. It should be noted that an EHL analysis is not included in the methodology 

presented. 

The power stroke of the engine cycle is depicted by the spike at the left-hand side of figure 

5.52, where the coefficient of friction dramatically increases. Hydrodynamic lubrication is 

dominant throughout the mid-stroke, as seen at the right-hand side of figure 5.52, whilst 

mixed lubrication regime is seen during reversal. 

Figure 5.52 shows the Stribeck curve for both the rigid and elastic ring analysis. The engine 

speed is 1000rpm with 40°C lubricant temperature. Through the engine cycle, the elastic 

ring generally has a higher coefficient of friction than the rigid analysis at the corresponding 

crank angle. 

 

Figure  5.52: Stribeck curve comparisons between rigid and elastic ring analysis. Engine 

speed = 1000rpm, temperature = 40°C 

Figures 5.53 and 5.54 show comparisons between the rigid and elastic ring analyses at 

2000rpm for various lubricant temperatures. Again, the Stribeck plots of the elastic analysis 

have a higher coefficient of friction, usually due to a lower film ratio. A significant difference 

can be seen when higher temperatures are introduced, with the film ratio remaining at a 

lower value throughout the engine cycle. The peak coefficient of friction, however, at TDC 
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before combustion, remains almost the same. Typically, a film ratio between 1 and 3 

indicates a mixed regime of lubrication. An increase in the film ratio moves the regime of 

lubrication in the elastohydrodynamic region, whilst anything above that demonstrates 

hydrodynamic lubrication. It can be observed from these results that even for lower 

temperatures and engine speeds that the compression ring moves through these lubrication 

regimes almost on a perpetual basis. This is seen for the rigid ring analysis as well. However, 

the friction coefficient predicted using an elastic ring is higher throughout most of the 

engine cycle. 

 

Figure  5.53: Stribeck curve comparisons between rigid and elastic ring analysis. Engine 

speed = 2000rpm, temperature = 40°C 
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Figure  5.54: Stribeck curve comparisons between rigid and elastic ring analysis at higher 

temperatures. Engine speed = 2000rpm, temperature = 120°C 

Figures 5.55 and 5.56 exhibit the individual friction coefficient contributions due to both 

asperity and lubricant viscous friction. The engine speed is 1000rpm with 40°C lubricant 

temperature. As expected, friction through the reversal point, approaching combustion, is 

dominated by asperity interactions, whereas at the mid-stroke it shows that hydrodynamic 

losses are prominent. The highest friction coefficients are found when asperity interactions 

take place, which are also the points where wear is likely to occur. Inclusion of the elastic 

ring dynamics in both planes of the ring geometry indicates that in most of the engine cycle, 

a mixed regime of lubrication occurs, with lower film ratios also predicted. Separation of the 

friction mechanisms in this manner may look different to the composite Stribeck curves. The 

calculations for the coefficient of friction are as follows: 

𝜇𝑎𝑠𝑝 = 𝐹𝑎𝑠𝑝
𝑊𝑎𝑠𝑝

       (5.1) 

𝜇ℎ𝑦𝑑𝑟𝑜 = 𝐹ℎ𝑦𝑑𝑟𝑜
𝑊ℎ𝑦𝑑𝑟𝑜

      (5.2) 

𝜇𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑎𝑠𝑝+𝐹ℎ𝑦𝑑𝑟𝑜
𝑊𝑎𝑠𝑝+𝑊ℎ𝑦𝑑𝑟𝑜

      (5.3) 

It can still be concluded from figure 5.54 that asperity interactions dominate the frictional 

losses at the TDC before combustion. Although the total friction coefficient results show a 

higher peak value for an elastic ring, comparing asperity interactions only shows a similar 

coefficient of around 0.3. 
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Figure  5.55: Friction coefficient contributions from viscous and asperity losses, for a rigid 

ring. Engine speed = 1000rpm, temperature = 40°C 

 

Figure  5.56: Friction coefficient contributions from viscous and asperity losses, for an elastic 

ring. Engine speed = 1000rpm, temperature = 40°C 

Figure 5.57 shows both the viscous and asperity coefficients of friction at a higher engine 

speed and lubricant temperature in the case of rigid ring case. The higher film thickness 

predictions are evident in this result, since for a significant portion of the engine cycle, a 

hydrodynamic lubrication regime is predicted. The lower film thickness values of the elastic 
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ring analysis are evident in figure 5.58, with a much shorter range of film thickness ratios. A 

mixed regime of lubrication is predicted for much of the cycle, with asperity interactions 

occurring at every reversal point. 

 

Figure  5.57: Friction coefficient contributions from viscous and asperity losses, for a rigid 

ring. Engine speed = 2000rpm, temperature = 120°C 

 

Figure  5.58: Friction coefficient contributions from viscous and asperity losses, for an elastic 

ring. Engine speed = 2000rpm, temperature = 120°C 

The effect of a worn ring profile can be seen on the Stribeck curves in figure 5.59. The 

increase in film thickness throughout the cycle is sufficient to mitigate any asperity 

interaction. This is shown by the absence of a sharp increase in friction as the ring reaches 

Reversal points 

Mid-stroke 
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the TDC before combustion. The maximum film ratio seen is also larger due to the increased 

film thickness through the mid-stroke. 

 

Figure  5.59: Stribeck curve comparisons between new and worn ring analyses, for a fully 

dynamic ring. Lubricant temperature = 40°C 

5.6. Closure 

This chapter presents results obtained through implementation of the proposed 

methodology for transient ring elastodynamics. It has been demonstrated that the 

implementation of this methodology is possible, giving an analysis which has not been 

hitherto reported in literature. In addition to this, the results presented in this chapter 

follow expected trends regarding film thickness, with high engine speeds and low lubricant 

temperatures resulting in higher film thickness predictions, and a mixed regime of 

lubrication at reversal points. These trends suggest that the results are within an acceptable 

range. The ring’s axial profile is seen to have a significant effect on the film thickness 

between the ring and the liner, which affects the predicted friction. This is mainly because 

of alteration in the inlet wedge shape as well as surface topography. The results suggest that 

the running-in period undertaken during engine testing and manufacture is justified, as the 

worn profile showed a reduction in friction. The increased likelihood of blow-by and oil 

consumption with a worn ring was also seen due to the increase in film thickness when 

applying a worn ring profile to the analysis. The effect on the Stribeck curves for rigid and 

elastic cases, as well as the contribution of both asperity and viscous friction are also shown. 

TDC before power stroke 

Other reversal points 
Mid-strokes 
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The next chapter attempts to verify this methodology using data and results from both 

literature and experimental test rigs. 
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6. Verification of the Numerical Methodology 

6.1. Introduction 

In this chapter, the developed methodology including ring dynamics is validated against 

direct experimental measurements of lubricant film thickness and in situ in-cylinder friction. 

Predominantly, this verification process uses experimental data, available in open literature. 

It also includes some results obtained test rigs fitted with sensors for both friction and film 

thickness measurements. Furthermore, the developed models using the finite element 

method allow comparisons with different methods to those presented in this thesis. 

Agreement of predictions, using completely different methodologies such as numerical and 

finite element solutions also serves as a form of validation of certain methods. 

6.2. Results available in the Literature 

The validity of the numerical results presented in previous chapters was sought by 

comparing them with experimentally obtained data. Takiguchi et al (2000) have provided 

film thickness predictions and measurements, as well as the required input data to replicate 

the same system with numerical predictions. Compression ring film thicknesses and axial 

ring motion were measured using a capacitance method. Electrodes were imbedded into 

the rings to obtain the film thickness between the ring and the liner. They were also 

embedded into the top groove face to capture ring motion. Takiguchi et al (2000) have also 

presented numerical predictions compared with their experimental data using an electrode 

fitted to the thrust side of the compression ring. The cylinder temperature was measured 

for a variety of speeds and loads, varying around 120°C. Sakhrieh et al (2010) and Nikian et 

al (2006) performed studies on compression ignition engines of similar size, reporting 

cylinder temperatures of 400K and 370K, respectively. Figure 1 shows the resulting 

temperature prediction from Nikian et al (2006) for the cylinder wall. Therefore, a wall 

temperature of 120°C (393K) was assumed for the numerical analysis here for comparisons 

with Takiguchi’s work. In addition, Howell-Smith (2011) stated that wet aluminium liners in 

four-stroke high performance engines produce an internal liner temperature of 

approximately 25°C above that of the coolant temperature. So if the coolant temperature is 

controllable in a particular experimental setup, the liner temperature can be assumed to 

within a reasonable degree of reliability. The cylinder used by Howell-Smith (2011) was a 
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modified Honda 450 CRF single cylinder motocross motorbike gasoline 4-stroke engine. It 

was modified to a wet liner arrangement from its usual mono-block form. The wet liner 

arrangement essentially comprises a cylinder block with easily replaceable liner inserts. This 

arrangement introduces a water jacket surrounding the liner insert which for experimental 

purposes can ensure a liner temperature of around 120°C where the compression ring 

passes (inferring a coolant temperature of 95°C). This suggests that 120°C is a reasonable 

assumption for the liner temperature, and may be even lower if the coolant is controlled to 

a lower temperature. Clearly, the liner temperature will not be equal to the average 

temperature of the piston head. Howell-Smith (2011) used heat transfer coefficients from 

Abbes et al (2004) to create a thermal distribution throughout the piston for the CRF engine. 

It was predicted to have significantly higher temperatures, rising up to 225°C above the top 

ring groove. Again, this is an averaged temperature throughout the engine cycle. The 

temperature which is important with regard to the current analysis is that of the lubricant 

temperature between the ring and the liner. The compression ring’s temperature influences 

the temperature of the lubricant. However, the liner’s larger mass with respect to the ring 

suggests that the liner temperature is dominant when assuming the oil temperature. Morris 

et al (2012) reported a control volume thermal mixing model and showed that the critical 

temperature for the entrant lubricant flow into the contact conjunction is that of the liner 

surface. 

Nikian, M., M. Naghashzadegan, and S. K. Arya. "Modeling of heat losses within combustion 

chamber of Diesel engines." IUST International Journal of Engineering Science 17.3-4 (2006): 

47-52. (figure 10) 

Figure  6.1: Predicted time-averaged temperature distributions on the cylinder liner wall 

(Nikian et al, 2006) 

Figures 6.2 and 6.3 show a comparison between the experimental results of Takiguchi et al 

versus the tribodynamic analysis presented here (for both rigid and elastic rings). It can be 

seen that the inclusion of in-plane transient ring dynamics gives a better agreement with 

experimental measurements throughout the engine cycle, when compared with the rigid 

ring methodology. Even in the power stroke, where the greatest differences between 

experimental and numerical results appear, the elastic ring methodology proposed in this 
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thesis provides better agreement. It should also be noted that whilst the film thickness 

values found through numerical analysis correspond to the least conjunctional separations 

(thrust or anti-thrust sides), the experimental measurements are confined to those at the 

cylinder thrust side. Therefore, with the experimental data the minimum film thickness 

during the power stroke is unlikely to be those reported by Takiguchi et al as the piston is 

forced to the anti-thrust side during its downward sense. This would cause the lubricant film 

at the thrust side to become larger. Since in the present study, piston dynamics are not 

coupled to the compression ring model, this effect cannot be captured. 

 

Figure  6.2: Experimental data in comparison with the presented methodology (2000rpm). 

 

Figure  6.3: Experimental data in comparison with the presented methodology (2400rpm). 

Compression Combustion Exhaust Intake 

Compression Combustion Exhaust Intake 
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Figure 6.4 shows a comparison between the data presented by Takiguchi (2000) and the 

numerical predictions carried out here, including the out-of-plane ring dynamics. It can be 

seen that the film thickness prediction is improved through the compression stroke when 

compared with the case with in-plane dynamics alone. However, a significant difference in 

film thickness is seen throughout the power stroke, with the inclusion of only in-plane 

dynamics giving the closest prediction. As previously stated, the measurements by Takiguchi 

were taken at the thrust side of the liner, whilst during the power stroke the piston would 

be forced to the anti-thrust side. This tilt and displacement (lateral piston motions) would 

most likely affect the measurements, especially considering that most literature agree that 

lower minimum film thickness values are expected during combustion. 

 

Figure  6.4: Comparison between experimental data (Takiguchi (2000)) and rigid ring, in-

plane and full dynamic analysis. Engine speed = 2000rpm, lubricant temperature = 120°C 

The groove displacement profiles shown in the numerical results from the previous chapter, 

such as those in figure 6.5, are comparable to similar results presented in open literature, 

both from experimental measurements and FEA predictions. Figure 6.6 shows the ring’s 

position within the groove at four positions, 90° apart, as modelled by Kurbet and Kumar 

(2004) using the finite element method. They investigated piston tilt, which is why such a 

large difference can be seen between the various sections of the ring. Since the results in 

this thesis do not account for piston tilt, nor thrust or anti-thrust sides, there is not as much 

difference circumferentially as would be seen if tilt was included. The general trend gives 

Compression Combustion Exhaust Intake 
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excellent agreement between the two methods, with the translation between lower and 

upper groove surfaces occurring when the piston starts to slow down as it approaches dead 

centre reversal. This result gives confidence in the groove displacement trends predicted by 

the current numerical analysis, which shows that the piston motion dominates the ring’s 

dynamic response.  

 

 

Figure  6.5: Ring displacement throughout the engine cycle, alongside ring axial velocity and 

cylinder gas pressure. Engine speed = 1500rpm, lubricant temperature = 120°C 

Kurbet, S. N., and R. K. Kumar. "A finite element study of piston tilt effects on piston ring 

dynamics in internal combustion engines." Proceedings of the Institution of Mechanical 

Engineers, Part K: Journal of Multi-body Dynamics218.2 (2004): 107-117. (figures 3, 6a) 

Figure  6.6: Compression ring lift through TDC from an FEA model (Kurbet and Kumar, 2004). 

The trend shown is the same as predicted by the numerical model 
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Figure 6.7a shows the experimental setup used to measure piston ring motion, whilst figure 

6.7b shows the results of these measurements in Takiguchi (2000). The motion of the 

second compression ring is shown, during a cycle with no load. Although these results are 

from the second ring, the same trend is shown when comparing with the results of the 

present work. As with the ring-to-liner film thickness measurements, there is a difference 

between the thrust and anti-thrust sides which cannot be seen in the presented 

methodology. An additional similarity is seen when examining Takiguchi’s result for an 

engine speed of 2400rpm. At the point of combustion, the ring is forced away from the top 

groove surface, which would cause loss of sealing. This effect can be seen in figure 6.5.  

Although the engine speeds are different, it should be no surprise that engine-to-engine 

variation will take place, dependent on the dimensions of the ring and piston assembly, as 

well as gas pressure profiles. An increase in engine speed also shows more stable results, as 

can be seen when comparing figures 5.30 and 5.31 in the previous chapter. The results in 

figures 6.6 and 6.7 are important in terms of verifying the presented numerical results. 

Although they are from the analysis of a different engine, and in the case of Takiguchi (2000) 

show the second compression ring, the movement of the ring within the groove has not 

previously been presented for a fully transient case. Additionally, having results from 

experimental data and an additional FEA model, both in agreement with the numerical 

analysis, provides additional credence to the developed analysis.  

Takiguchi, M., Sasaki, R., Takahashi, I., Ishibashi, F., Furuhama, S., Kai, R., and Sato, M., "Oil 

film thickness measurement and analysis of a three ring pack in an operating diesel 

engine." SAE paper (2000): 01-1787. (figure 5) 

(a) 

Takiguchi, M., Sasaki, R., Takahashi, I., Ishibashi, F., Furuhama, S., Kai, R., and Sato, M., "Oil 

film thickness measurement and analysis of a three ring pack in an operating diesel 

engine." SAE paper (2000): 01-1787. (figure 14) 

(b) 

Figure  6.7: (a) – Experimental schematic diagram and (b) results of the measured groove 

position of the second compression ring (Takiguchi, 2000). 
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Verification of the methodology presented in this chapter comes in a variety of forms. 

Currently available literature enables a comparison between experimental data and the 

presented methodology, although assumptions may have to be made due to limited 

information supplied by the other contributors. Similarly, any publications which discuss 

results from a finite element model of the compression ring within the groove could be 

useful for comparative purposes, providing that suitable verification of the same had taken 

place. Internally generated experimental data (as a part of the EPSRC Encyclopaedic 

Program Grant) allow for a more direct comparison, due to the greater knowledge of the 

system parameters for the data obtained. A number of test rigs were used to measure film 

thickness and frictional data using different methods. 

6.3. Experimental Validation 

In order for reasonable comparisons to be made between numerical and experimental data, 

a modified CRF 450 single cylinder engine was used. The modified wet liner arrangement 

instead of the usual mono-block cylinder allows the use of replaceable liner inserts (Gore, et 

al, 2012). Therefore, a floating liner is used, as described by Gore et al (2012) to directly 

measure in situ in-cylinder friction. Furthermore, a liner was used by Littlefair et al (2014) 

which was instrumented with thermocouples for temperature measurement and ultrasonic 

film thickness measurement sensors (Dwyer-Joyce et al, 2007) to obtain film thickness 

profiles. The test rig allows control of the engine speed and coolant temperature, meaning a 

parametric analysis of the system can be carried out. The engine used was a Honda CRF bike 

engine which could be both motored and fired. This engine was used due to the extreme 

running conditions which were possible. The high engine speeds, along with high torque and 

power values, mean that the tribological conditions capable of replicating in this engine will 

encapsulate those seen in most road vehicle engines. Details of this engine are shown in 

table 6.1.  
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Table  6.1: Honda CRF450 engine properties 

Property Value Unit 
Engine Type 4 stroke/4 valve single cylinder - 
Bore/Stroke 96/62.1 mm 
Compression Ratio 11.5:1 - 
Max rated power/torque 41kW@9000rpm/49.8@7000rpm  
Piston top land diameter 95.4 mm 
Top ring groove depth 3.38 mm 
Top ring groove height 0.98 mm 

 

Table  6.2: Ring and lubricant properties used in numerical analysis 

Property Value Unit 
Ring Nominal Radius 44.025 mm 
Ring Axial Height 0.894 mm 
Ring Radial Width 3.075 mm 
End Gap 10.92 mm 
Ring Elastic Modulus 203 GPa 
Poisson Ratio 0.3 - 
Coating Elasticity Modulus 400 GPa 
Coating Poisson Ratio 0.2 - 
Ring Ra value 0.369 Μm 
Pressure-viscosity coefficient 1×10-8 m2/N 

Thermal expansion coefficient 6.5×10-4 1/°K 

Lubricant density 873.0 at 15 [°C]  kg/m3 

Lubricant kinematic viscosity, ν 95.3 at 40 [°C] ×10-6 m2/s 

 

Running the engine under motorised condition (without combustion) allows for more 

control over the system, without a plethora of other interactions as the result of cylinder 

firing. No combustion means the temperatures reached within the cylinder are lower than 

those with a fired engine, allowing the limit of the sensors and wires to be found gradually. 

The pressure within the cylinder can be measured for a typical cycle at each engine speed, 

as can the coolant and oil temperatures. Knowledge of the system’s dimensions and 

lubricant properties coupled with these allows for a reasonable model of the system to be 
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created. Table 6.2 shows the ring and lubricant properties used in the experimental 

verification.  

6.4. Film Thickness Measurement 

Film thickness measurements of the compression ring were made using ultrasonic sensors. 

The sensors were placed on the exposed side of the liner, as shown in figure 6.8. The 

sensors used were ultrasonic pulser-receivers (UPR), as described by Avan et al (2010). 

These sensors were mounted on the outside of the cylinder liner, with the ultrasonic wave 

applied through the wall towards the piston. As the sensors can act as both a transmitter 

and a receiver, the ‘echo’ of the transmitted signal is captured when the ring passes the 

sensor’s axial position. This echo is captured and amplified, with post-processing allowing 

for the calculation of the distance between the cylinder and the ring surface, which is the 

film thickness within the contact. 

Avan, Emin Yusuf, Robin Mills, and Rob Dwyer-Joyce. "Ultrasonic Imaging of the Piston Ring 

Oil Film During Operation in a Motored Engine-Towards Oil Film Thickness 

Measurement." SAE International Journal of Fuels and Lubricants3.2 (2010): 786-793. (fig. 4) 

Figure  6.8: The ultrasonic transducer attached to the wet side of the liner (Avan et al, 2010) 

These sensors’ width was approximately 10% larger than the ring’s axial face-width for the 

initial experimental results, meaning an average film thickness was obtained at each point 

due to inadequate resolution. This is shown in figure 6.8. To convert this to a minimum film, 

a de-convolution process is required, where the measured film thickness is related to an 

offset of the undeformed ring profile. This allows the ‘true’ film thickness to be found, as 

opposed to the initially measured film thickness, as shown in figure 6.9. 
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Figure  6.9: Oil film measurement between the ring and the liner. The sensor’s size means an 

‘average’ film thickness is measured, resulting in a de-convolution process being required to 

find the minimum value. MOFT = Minimum Oil Film Thickness 

Figure 6.10 shows experimental data from the engine test rig, when compared with both 

rigid and elastic ring numerical analyses. The engine was run at 3200rpm with a load of 

36Nm, and an oil sump temperature of 73°C was measured. Inclusion of elastic ring 

dynamics shows an improvement in the film thickness prediction for the majority of the 

data points. Although only a small difference in film thickness is found, this may have a 

significant effect on the predicted friction, culminating in a significant difference in power 

loss prediction over many cycles. Negative experimental film thicknesses are found due to 

the de-convolution processing of the raw data. Whilst a negative film thickness is clearly not 

possible, this result may indicate very low film thickness values. The temperature used in 

the numerical analysis was measured when obtaining the numerical results, as was the gas 

pressure profile used. The low film thickness values observed experimentally at reversal 

suggest that asperity interaction is likely to occur. 
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Figure  6.10: Rigid and elastic ring numerical analysis compared to measured data. Engine 

speed = 3200rpm, Load = 36Nm, lubricant temperature = 73°C 

The measured sump oil temperature would not be the same as the temperature within the 

compression ring-liner contact. Figure 6.11 shows the same load case, but with a more 

realistic lubricant temperature of 100°C. Whilst the film thickness predictions at reversal do 

not show much change, the values through the piston stroke are reduced due to lower 

lubricant viscosity. Once again, the elastodynamic ring analysis gives a lower minimum film 

at TDC, providing a closer conformance to the experimental values. 
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Figure  6.11: Rigid and elastic ring numerical analysis compared to measured data. Engine 

speed = 3200rpm, Load = 36Nm, lubricant temperature = 100°C 

The lubricant film thickness was measured for a different load condition at the same engine 

speed. Figure 6.12 shows the film thickness comparisons with a load of 25Nm. Again, an 

improvement in film thickness prediction is seen for the elastic ring analysis. When 

considering figures 6.10-6.12, it is important to note that there will be a degree of error in 

both the experimental and numerical data, either due to equipment and measurement 

limitations, or assumptions made when constructing the numerical model, such as a fully 

flooded inlet. Clearly in figure 6.10, the difference between both numerical predictions and 

the experimental data is significant. However, these numerical assumptions are recognised 

as potential future investigations, and accuracy is part of every experimental measurement 

in all subject areas. Assumptions such as fully flooded conditions are made, when in reality 

there would be a degree of starvation, particularly during reversal at the TDC. The inclusion 

of a starvation model would invariably reduce the film thickness predictions, moving them 

closer to the measured data. The experimental results in figures 6.10-6.12 all suggest that 

contact between the two surfaces may occur. This is to be expected due to wear patterns 

which can be seen from used piston rings and liners. It also reinforces the point that TDC is a 

critical area when attempting to improve the efficiency of the system and that it is 

reasonable to include asperity reaction and friction forces in the numerical analysis. 
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Figure  6.12: Rigid and elastic ring numerical analysis compared to measured data. Engine 

speed = 3200rpm, Load = 25Nm, lubricant temperature = 73°C 

Further film thickness measurements were undertaken, using new sensors in different 

positions both axially and circumferentially. However, these were made using larger sensors 

than the previous tests, meaning that the measurement resolution was reduced when 

compared with figures 6.10-6.12. Previous results were obtained using sensors which were 

10% wider than the ring itself, meaning deconvolution of the results would be reasonably 

accurate. Figure 6.13 demonstrates the difference in sensor size between the two sets of 

results. The sensor was approximately twice the width of the ring itself, which means the 

deconvolution method used to attain the ‘real’ film thickness from the observed data 

becomes less reliable. This change to sensor width was made to improve the resolution for 

measurement of the piston skirt film thickness, for the benefit of studies that are out of the 

scope of this thesis. However, trends in the circumferential film profile, as well as with 

respect to crank angle, may be observed. 
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Figure  6.13: Representation of the sensor size for both sets of film thickness results. A 

sensor width approximately 10% larger than the ring’s width (a) allows for reasonable de-

convolution results, whereas double the ring’s width (b) reduces the reliability of these 

results. 

6.5. Friction Measurement 

As well as film thickness values, friction was measured in the Honda CRF engine. A floating 

liner with a wet barrel arrangement was used, allowing the friction due to motion of the 

liner to be captured from the bore. As described by Gore et al (2012), the floating liner 

principle suspends the cylinder liner so that any points of contact are with load cells. 

Throughout the engine cycle, any forces applied to the liner will be captured by the load 

cells, allowing friction to be measured (O’Rourke et al, 2010). The inertial force, being equal 

to the total friction less pressure loading on the top rim of the floating liner, was captured 

by load cells. It is important for any side loading that may occur to be removed from the 

results. Also, any gas pressure acting on the cylinder liner top surface should be accounted 

for when processing the results, so the remaining results are due to friction only (Gore et al, 

2012). 

The friction was measured using quartz piezo-electric miniature force transducers. The load 

cells were positioned 120° apart as shown in figure 6.14, with 3 pairs of two sensors 

positioned as shown. This was undertaken to negate stiffness variation between the cylinder 

and the block (Howell-Smith, 2011). 

  

 

(a) (b) 
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Gore, M., Howell-Smith, S. J., King, P. D. and Rahnejat, H., “Measurement of In-cylinder 

Friction using the Floating Liner Principle”, Proceedings of the ASME ICED Spring Technical 

Conference, ICES2012-81028 (2012) (figure 1) 

Figure  6.14: Sensor position for friction measurements. The transducers were arranged 

in pairs (two above, two below) 120° apart 

The force applied to the liner is calculated using equation (6.1) (Gore et al, 2012): 

∆𝐹 = (∆𝐹𝑇1+∆𝐹𝐵1)
2

+ (∆𝐹𝑇2+∆𝐹𝐵2)
2

+ (∆𝐹𝑇3+∆𝐹𝐵3)
2

    (6.1) 

This equation takes into account the difference between both upper (T) and lower (B) 

sensors at each point, producing a force value at each position. To prevent the gas pressure 

within the chamber directly affecting the sensors a labyrinth seal was used. This ensures a 

de-coupling of the seal clamping load from the liner, allowing the liner to ‘float’ in an 

unconstrained manner (Gore et al, 2012). This setup is shown in figure 6.15. The alternative 

to this is using a spring-damper system to negate liner loading other than friction, however 

this would mean losses through the spring-damper which are unaccounted for. The 

labyrinth seal solves this issue but it may allow for side leakage of the gas pressure through 

the leakage orifice. This leakage is measured using a pressure transducer, and it is used to 

update the actual pressure applied to the ring. 

Gore, M., Howell-Smith, S. J., King, P. D. and Rahnejat, H., “Measurement of In-cylinder 

Friction using the Floating Liner Principle”, Proceedings of the ASME ICED Spring Technical 

Conference, ICES2012-81028 (2012) (figure 3) 

 

Figure  6.15: Cross-section view of the floating liner assembly, showing the seal ring in green 

(Gore et al, 2012) 

Verification of the testing process is shown by Gore et al (2012). The experimental results 

presented in this chapter have been smoothed using a 11-point moving average to reduce 

the noise and allow for better comparisons of trends. This is demonstrated in figure 6.16. 

The equation used for averaging the points is shown in equation (6.2): 
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𝐹𝑎𝑣𝑔(𝜑) = 𝑆𝑈𝑀�𝐹(𝜕−5):𝐹(𝜕+5)�
11

      (6.2) 

Where Favg is the averaged friction value, and ϕ is the crank angle. 

 

Figure  6.16: Experimental data before and after averaging. Engine speed = 2000rpm, 

motored running conditions 

6.5.1. Motored Case 

Figure 6.17 shows friction data captured from the engine and compared with numerical 

predictions for the top compression ring, both for elastic and rigid ring analyses. The test rig 

was run at 2000rpm using a transient dynamometer which can drive the engine in motored 

configuration, while the lubricant temperature was assumed to be at 35°C, which is a 

reasonable representation of the temperature seen under short-test motored conditions. It 

must be noted that the friction measured is a total friction value, which includes the piston 

skirt and the oil control ring, as well as the compression ring in this 2-ring engine. Therefore, 

an exact agreement between experimental and numerical values would not be expected. In 

both cases the order of magnitude of the numerical results appears to be reasonable, with 

the increase at 0° crank-angle (TDC position in transition from compression to power stroke, 

in this case with developed pressure due to the swept volume of air)  seen. The asperity 

friction predictions at the reversal points are not captured through experimental analysis, 

however the numerical analysis shows asperity interaction at reversal points. This gives a 

difference between both the rigid and elastic ring methodologies and the experimental 

data, as the ‘spikes’ at reversal are not measured. This may be down to measurement 
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inaccuracies or assumptions within the numerical analysis which misrepresent the 

conditions at reversal. However, thin films would be expected when axial motion of the ring 

temporarily ceases, which would cause asperity interaction. Observation of all the strokes, 

excluding that of compression show higher friction as the piston accelerates towards the 

mid-stroke, with this reducing as the piston approaches reversal. This may be due to an 

offsetting of the experimental results, which would explain why the graph does not pass 

through zero at the expected crank angles (-180°, 0°, 180°, 360°). It may also be the skirt 

contribution, which cannot be captured in the numerical analysis presented. Whilst the 

experimentally measured friction results are for both ring and skirt contributions, the 

numerical results from the presented methodology show top ring predictions only.  

 

Figure  6.17: Friction comparison between numerical analysis and total measured friction in 

a motored engine. Engine speed = 2000rpm, Lubricant temperature = 35°C 

Regarding the comparison of both numerical methodologies, there is very little difference 

between the predicted friction values through the mid-stroke. However, the elastic ring 

analysis shows asperity friction at the reversal points. The peak created by this asperity 

friction is comparable in magnitude to the measured experimental friction at TDC before the 

power stroke. The difference would certainly be within the experimental margin of error, 

meaning a conclusive improvement in friction prediction cannot be claimed from these 

results. However, film thickness comparisons shown previously in the chapter would suggest 

that the elastic ring methodology gives a more accurate lubricant film prediction. This 

Boundary friction Hydrodynamic friction 
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suggests that the elastic ring friction predictions would also be more accurate. The peak 

friction force predicted is higher for a rigid ring analysis at low temperatures; however an 

increase in temperature causes the elastic ring methodology to predict greater friction, 

closer to the experimental data. It is important to note that the measured friction data 

accounts for the full ring pack and skirt frictional losses, so the numerical friction predictions 

should be less than the measured data. 

 

Figure  6.18: Friction comparison between numerical analysis and total measured friction in 

a motored engine. Engine speed = 2500rpm, lubricant temperature = 25°C 

Further motored results were obtained using the Honda CRF engine at higher speeds. 

Figures 6.18 and 6.19 show the experimental friction data for the full ring pack and piston 

skirt, compared with the numerical results with rigid and elastic ring analyses. The engine 

speed in figures 6.18 and 6.19 is 2500rpm and 3000rpm, respectively. As these results were 

obtained without long engine operation, and as these correspond to motored conditions, a 

low temperature was measured in the oil sump and outside the liner. This meant a low 

temperature lubricant was assumed in the numerical analysis. 



Verification of the Numerical Methodology 
 

136 
 

 

Figure  6.19: Friction comparison between numerical analysis and total measured friction in 

a motored engine. Engine speed = 3000rpm, lubricant temperature = 25°C 

It can be seen from the experimental data obtained that engine speed has very little effect 

on the measured friction, apart from at the point of maximum pressure. Figure 6.20 shows 

the measured friction results at different speeds. It should also be noted that above an 

engine speed of 3000rpm, the accuracy and reliability of the experimental data is less 

certain. With the use of a floating liner with a labyrinth seal as described above, an increase 

in piston speed and load will likely cause more gas to leak into the environment, affecting 

the assumed pressure loading of the floating liner as well as placing more stress on the 

transducers. This situation pertains to a lack of reliability under extreme conditions. What 

can be seen however is that the results are repeatable to an acceptable degree with the 

friction values following piston velocity through the engine cycle. 
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Figure  6.20: Measured friction results for different engine speeds 

Whilst the individual friction values at each crank angle are a good indication of the accuracy 

of the numerical analyses through the cycle, examination of the average friction value in 

each case may also give insight into the results. Table 6.3 shows the average friction values 

for the results presented in figures 6.17-6.19. In each case the elastic ring methodology 

yields a closer average value than the rigid ring analysis. Figure 6.21 shows the results of 

both methodologies as a percentage of the measured friction value. Again, the inclusion of 

ring elastodynamics gives a closer approximation of friction throughout the four-stroke 

cycle. It must be reiterated that the measured friction is a total value, including losses due 

to oil control ring and piston skirt contributions. The numerical analyses consider the top 

compression ring only. However, inclusion of the full ring pack and piston skirt would 

dramatically increase the complexity and therefore the computation time of any numerical 

analysis. If a reasonable approximation of the average friction for a particular engine set up 

was possible, it may be beneficial to manufacturers even if the skirt and oil ring are not 

included in the analysis. Referring to figure 6.21, if one can predict with reasonable accuracy 

the average friction at a certain speed, this could allow for power loss calculations without 

the costs incurred through use of engines or other experimental test rigs.  

Gas pressure loading applied behind the inner rim of the compression ring increases its 

contribution to overall piston-cylinder friction. Therefore, under motored conditions the 

contribution of compression ring to friction would be less than that under engine fired 
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conditions with higher gas pressures. The difference between the numerical results and 

those measured in table 6.3 is an indicative of this trend, as the ring friction is less than the 

measured friction. It is, therefore, important to make comparisons under fired conditions.  

Table  6.3: Average friction comparison between experimental measurements and numerical 

analyses, motored case 

Engine Speed (rpm) Experimental Data (N) Rigid Ring (N) Elastic Ring (N) 

2000 33.86 20.37 20.76 
2500 34.96 20.31 31.79 
3000 31.27 22.35 29.59 

 

 

Figure  6.21: Numerical comparisons to motored experimental data as a percentage of 

average friction 

6.5.2. Engine fired case 

Fired friction data were also obtained from the Honda CRF with fitted floating liner. Figure 

6.22 shows the results from a low load case at an engine speed of 2000rpm with the liner 

being relatively cold. Therefore, a lubricant temperature of 40°C was assumed in the 

numerical analysis. Lower friction is measured than from the motored case due to the low 

loading. The peak measured friction has moved to just after the top dead centre due to the 

point of combustion. The predicted friction from both numerical analysis methods peaks at 

approximately the same value; however the elastic analysis again predicts a higher friction 

value.  
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Figure  6.22: Friction comparison between numerical analysis and total measured friction in 

a fired engine. Engine speed = 2000rpm, lubricant temperature = 40°C, dyno load = 30Nm 

Figures 6.23-6.24 show the same load cases but at higher engine speeds, 2500rpm and 

3000rpm respectively. The measured friction increases at the point of maximum pressure. 

An increase is seen for both rigid and elastic analyses at the mid-stroke. However, the rigid 

ring analysis does not show any asperity interaction at reversals at these higher speeds. 

Furthermore, the friction value measured at 3000rpm does not show the expected trend 

between approximately 90° and 270° past TDC, even when the averaging of results has 

occurred. This suggests results at higher speeds may not be as reliable as in lower speed 

cases. 
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Figure  6.23: Friction comparison between numerical analysis and total measured friction in 

a fired engine. Engine speed = 2500rpm, lubricant temperature = 40°C, dyno load = 30Nm 

 

Figure  6.24: Friction comparison between numerical analysis and total measured friction in 

a fired engine. Engine speed = 3000rpm, lubricant temperature = 40°C, dyno load = 30Nm 

Figures 6.22-6.24 show that asperity friction is predicted from the elastic ring analysis, as 

represented by the ‘spikes’ at reversal. This phenomenon is not demonstrated in the 

experimental data. However, when the averaging of the experimental results is removed, 

the peak friction value is seen to be closer to the numerical analysis for an elastic ring. 

Figures 6.25-6.27 show the experimental data without the moving average applied, in 

comparison with the elastic ring numerical analysis. This suggests that whilst the ‘spike’ in 
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numerical data is not captured when the moving average is plotted, it is not an 

unreasonable result when compared with the raw experimental data, particularly around 

the point of maximum pressure.  

 

Figure  6.25: Comparison between numerical analysis and un-averaged friction from figure 

6.26. Engine speed = 2000rpm, lubricant temperature = 40°C, dyno load = 30Nm 

 

Figure  6.26: Comparison between numerical analysis and un-averaged friction from figure 

6.27. Engine speed = 2500rpm, lubricant temperature = 40°C, dyno load = 30Nm 
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Figure  6.27: Comparison between numerical analysis and un-averaged friction from figure 

23. Engine speed = 3000rpm, lubricant temperature = 40°C, dyno load = 30Nm 

Further to these results, when the numerical data is averaged using the same moving 

average, the experimental and numerical results show reasonably good agreement. This can 

be seen in figure 6.28. 

 

Figure  6.28: Comparison between averaged numerical analysis and un-averaged friction 

from figure 6.25. Engine speed = 2000rpm, lubricant temperature = 40°C, dyno load = 30Nm 

Figure 6.29 gives the same friction comparison as for the motored data, with the numerical 

results presented as a percentage of the measured friction value. As opposed to the 
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motored comparisons, the average friction predicted from the elastic ring analysis is higher 

than the averaged measured value. This corroborates the argument that increased pressure 

loading of the compression ring increases its contribution to the overall piston-cylinder 

friction as noted in the previous section. In each case, the predicted value is closer to the 

experimental measurements for the elastic ring analysis than when a rigid ring is 

considered. Table 6.4 gives the numerical values for the cases in figure 29. The results show 

that the compression ring may almost account for the entire friction when its elasticity 

conforms it to the liner surface. With the rigid ring the compression ring contribution is 

around 50% of the overall average friction. In practice, the compression ring contribution 

may reside somewhere between these extremes as noted measured by Federal Moghul, 

who have not published their work or their method of measurement. 

Table  6.4: Average friction comparison between experimental measurements and numerical 

analyses, fired case 

Engine Speed (rpm) Experimental Data (N) Rigid (N) Elastic (N) 

2000 23.82882 14.12903 29.66429 

2500 26.19526 15.43266 27.60714 

3000 26.01748 16.63153 34.67723 

 

 

Figure  6.29: Numerical comparisons to experimental fired data as a percentage of average 

friction. Lubricant temperature = 40°C, dyno load = 30Nm 
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Further experimental data was gathered at the same engine speed range as previously, with 

a higher applied load. With increased loading one would expect greater applied gas pressure 

to the compression ring and consequently a greater contribution from it to the overall 

cylinder friction. Figure 6.30 shows the results at an engine speed of 2500rpm, with a dyno 

load of 130Nm (actual engine load of approximately 32.5Nm, because the engine is driven 

through an engaged clutch with a transmission ratio of 4.02:1). The increase in load can be 

seen to have a significant effect on the generated friction force through the power stroke. 

As with previous results, the elastic ring analysis gives a closer approximation to the 

measured friction than the rigid ring analysis. 

 

Figure  6.30: Comparison between numerical analysis and averaged friction. Engine speed = 

2500rpm, lubricant temperature = 40°C, dyno load = 130Nm 

With increasing engine speed, the difference between rigid and elastic ring analyses 

increases. This increase brings the friction value closer to the experimentally measured 

results as would be expected and discussed above. However, an increase in load also 

significantly increases the experimentally measured results, moving the peak friction away 

from the numerically predicted values. The results presented above, from both rigid and 

elastic numerical methodologies, do not give 100% agreement with the experimental and 

previously published data. However, there is consistency throughout the numerical results, 

with increases in frictional losses seen for higher engine speeds and loads. 
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6.6. Closure 

This chapter compares the numerical predictions with those available in open literature. An 

improvement in film thickness prediction was seen when attempting to replicate published 

results, compared with the previous rigid ring analysis. As the out-of-plane ring motion is 

captured using this methodology, it was possible to compare any published ring motion 

predictions within the groove. The trend shown is in excellent agreement with both 

experimental and FEA results, with the ring’s motion mostly dominated by the piston speed, 

as well as occasions where the cylinder gas pressure is sufficient to force the ring from the 

groove, reducing sealing. This result suggests correct coupling of the out-of-plane dynamics 

methodology to the tribological model. 

The methodology was then compared with experimental measurements from a Honda CRF 

engine. Film thickness and frictional measurements were obtained. Again, the 

elastodynamic model showed an improvement in film thickness prediction when compared 

with the rigid ring analysis. Comparisons with friction measurements were made, showing 

ring friction numerical analysis against the total friction force data, which includes skirt and 

ring pack contributions. The magnitude of the numerically predicted friction was reasonable 

for both rigid and elastic ring analyses, even though the results did not follow the same 

exact profile through the four-stroke cycle as the experimental data. This was consistent 

even when the engine load was increased. However, limitations and assumptions used in 

both experimental and numerical analysis mean that complete conformance between the 

results is highly unlikely. When the average friction per crank angle was compared with 

experimental and numerical cases, the elastic ring analysis produced a closer average than 

when ring dynamics were not included. This result was consistent for all cases examined; 

indicating again that the inclusion of ring elastodynamics is beneficial to the numerical 

modelling of the compression ring. 
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7. Conclusions 

7.1. Overall conclusions 

The research undertaken as part of this thesis has drawn attention to the complex nature of 

the compression ring’s dynamic behaviour throughout the engine cycle. The solution 

combines two different disciplines (tribology and dynamics), which are coupled to yield a 

solution. Therefore, it can be described as a multi-physics approach. 

Modelling of the ring elastodynamic behaviour is based on previous literature using an 

analytic approach to determine the modal response of curved bars and incomplete rings. It 

has been noted that the in-plane (radial plane) and out-of-plane ring modal responses can 

be de-coupled, due to non-common degrees of freedom in their corresponding equations of 

motion, as well as relatively small deflections. This enables the overall ring dynamics 

solution to be treated as two distinct problems from a mathematical viewpoint. The 

solutions in each plane are then modified to augment rigid body responses of the ring in the 

radial and axial directions, verified by equivalent FEA results. This verification has shown 

that the mode shapes and natural frequencies show remarkable agreement between the 

analytical and FEA results. Application of a force function to the ring also provided good 

correlation between the two methods, giving confidence that the stand-alone dynamics 

models can be regarded as accurate. 

The dynamics models in both planes were then coupled with the tribological analysis. 

Essentially, the forces acting upon the ring throughout the engine cycle are algebraically 

summed to give a net resultant, in both the ring’s planes. These force profiles were 

extracted for application as the excitation force. The resultant deformed ring profiles, along 

with localised ring-bore kinematics are used in the tribology models to update the film 

thickness and squeeze velocity profiles. For the out-of-plane case, the film thickness and 

squeeze velocity values also include the ring-piston groove lands’ conjunctions. A layer of 

lubricant was assumed to be present between the ring and the groove lands, as had been 

previously assumed by Tian (1998). This is considered to be a reasonable assumption. Due 

to the relatively small amount of radial movement with respect to the piston, the primary 

cause of the groove lubricant reaction force is the squeeze between the ring and piston, 

caused by the piston’s primary motion and any localised twisting motion. This method gives 
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the ring’s out-of-plane velocity, which largely follows that of the piston as would be 

expected. However, as the piston velocity decreases upon its approach to the dead centre 

reversals, the ring appears to ‘jump’ from one piston groove face to the other, due to its 

acceleration as the piston reaches the mid-stroke. The ring’s local velocity values are used in 

the calculation of friction between the ring and the cylinder liner, giving a more accurate 

representation of the generated contact friction. 

Overall, the results show that a hydrodynamic regime of lubrication is usually seen prevalent 

through the mid-strokes in an engine cycle. At reversals, a mixed regime of lubrication is 

encountered as the film thickness decreases, with EHL conditions potentially occurring 

around the point of maximum pressure. 

The inclusion of ring elastodynamics generally resulted in an improved film thickness 

prediction, when compared with the alternative methods. Generally, the elastic ring analysis 

returned more accurate minimum film thickness values, bringing the predictions closer to 

those seen experimentally. The verification was achieved by comparison with results 

available in open literature, as well as experimentally obtained data using test rigs designed 

as part of this body of research. Friction predictions also compared favourably with the 

elastic numerical analysis. Although it must be noted that the numerical analysis represents 

the top ring only, whereas the measured friction is that of the entire piston assembly, the 

inclusion of ring dynamics improves the correlation between numerical and experimental 

results with respect to the previous methodology. Furthermore, the average friction 

predicted shows a closer agreement to the experimental data. 

The out-of-plane motion of the top compression ring is a source of power loss, as the sealing 

capability of the ring is lost when it moves between the upper and lower groove faces. This 

suggests that the ability to limit both the ring’s motion, and the distance between the lands, 

would reduce the time when the chamber is not adequately sealed. Further investigation 

into the design of the compression ring and piston groove, with this result in mind, may 

yield an improvement in the sealing capabilities of the ring. 

7.2. Achievement of aims 

The major aim of research was the inclusion of transient compression ring elastodynamics 

into the tribological analysis of the ring-liner interface. Previous reported analyses of the 
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compression ring-cylinder liner conjunction had not considered the ring’s transient 

deflection throughout the engine cycle. Instead, a force balance between the external (gas 

and elastic/ring tension) and internal (lubricant and asperity reaction) forces is usually 

assumed, with the minimum film thickness predicted, corresponding to this state of 

instantaneous equilibrium (quasi-statics). 

The aim of this thesis was to incorporate transient ring dynamics, both in-plane and out-of-

plane, when considering the tribological performance of the compression ring. This aim has 

been achieved. Not only has this primary aim been achieved, but also the inclusion of ring 

dynamics has been shown to improve film thickness predictions, reasonable ring motion 

within the groove, and friction predictions of similar magnitude to those seen 

experimentally. Therefore, the aim of the research has been realised. 

7.3. Contributions to Knowledge 

The points raised herein are regarded as the key contributions of the thesis, although these 

may not be entirely exhaustive. 

The verification of a transient ring dynamics model has not hitherto been presented in 

literature, and can therefore be considered as novel in its detail and thorough 

implementation and reporting. Previous publications in open literature had shown some 

verified mode shapes and natural frequencies. However, a systematic study including both 

modal and forced responses had not been demonstrated as it is presented in this thesis. The 

thesis demonstrates verified forced response results, both in-plane and out-of-plane, with 

the inclusion of rigid body modes, achieved through modification of the elastodynamic 

equations of motion. 

Furthermore, the coupling of transient ring dynamics and transient mixed hydriodynamic 

analysis of the compression ring-to-cylinder liner conjunction is a methodology generated in 

this thesis, and it represents a unique solution for the fully transient behaviour of the top 

compression ring. It is the culmination of two separate theoretical areas of research, 

coupled within a unified methodology which reflects the physical reality in a plausible 

manner. The thin nature of compression rings means that they are highly likely to behave in 

an elastic manner. Aside from any verification, the methodology is novel on its own accord. 
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Verification of the presented methodology was possible, both from results available in open 

literature and experimental data collection as part of this research. The results presented 

(comparisons with other sources, and conclusions from this study) are novel. The ring’s 

position within the groove had previously been observed experimentally and predicted 

using an FEA model of the ring’s dynamic response. However, a closed form analytical 

method studying this phenomenon has not hitherto been produced, providing further 

contribution to knowledge.  

7.4. Suggestions for future work 

The work carried out in this thesis leaves a number of areas of research which can be 

investigated in addition to the inclusion of ring dynamics. Previous studies on the 

tribological performance of the top compression ring have taken into account many 

different aspects, all of which could be combined with the above research to yield further 

interesting results and conclusions. 

Mechanical bore distortion and ring conformability was discussed by Ma et al (1997). The 

inclusion of a variable liner profile, both circumferentially and axially, would give an added 

complexity to the ring elastodynamics. This would likely be shown in the ring’s response 

throughout the engine cycle, as a more complex liner shape gives a constantly changing 

force profile, which would excite a larger variety of ring mode shapes. The phenomenon of 

blowby is attributed to gaps between the ring and the liner, as well as around the back of 

the ring, which allows gas to escape from the combustion chamber causing a loss of power. 

A study which includes both ring and bore deformation would give better indication of the 

conditions at which blowby and ring flutter can occur. Therefore, a further addition to this 

work, allowing for improved analysis of the piston ring pack, would be a gas blowby model. 

The gas pressure acting upon the back of the ring would vary as a percentage of the cylinder 

pressure throughout the engine cycle, depending on the ring’s position within the groove. 

Previous attempts to create a gas flow model use quasi-static, rigid ring motion, which is a 

simplistic view of the ring’s likely motion. Incorporating transient ring elastodynamics would 

provide a more complex, but realistic model, leading to improved understanding of gas 

blowby. 
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Other future work concerns the lubricant models used within the tribodynamic analysis. The 

presented results in this thesis assume fully flooded conditions in the numerical analysis (an 

assumption which is also used when deconvoluting the film thickness ultrasound 

measurements). In reality, there would be a finite amount of lubricant available to the ring-

liner contact, particularly at reversal points. Han and Lee (1998) implemented a starvation 

model, which would be a potential area of research in conjunction with ring elastodynamics. 

The entraining lubricant affects the hydrodynamic reaction force, and consequently the 

generated friction. There may also be the potential to account for the lubricant on each 

groove face. This would affect the ring’s axial motion within the groove, and may influence 

the predicted sealing capabilities of the system. 

EHL analysis of the piston ring was carried out by Ruddy et al (1981). Localised deflections of 

the cylinder liner would only occur when high pressures were seen; meaning the majority of 

the piston’s cycle would not encounter EHL conditions. However, the point of maximum 

pressure is a critical area when considering the tribological performance of the compression 

ring. Ruddy et al (1981) suggested that localised deformations may be a source of blowby. 

Inclusion of transient ring dynamics would help to further investigate this supposition, with 

the amalgamation of ring and bore localised deflection. 

The conditions described above were not considered for this thesis, as the focus on ring 

dynamics was the key area of interest. Many previous studies of piston ring tribology do not 

include EHL analysis, so this was deemed a reasonable assumption for this research. Each 

factor increases the complexity of the analysis, but providing a more accurate 

representation of the real conditions which would affect the ring throughout the engine 

cycle. The inclusion of research areas such as these will further contribute to the 

understanding of the piston ring pack assembly. 

Aside from the previously explored areas of research concerned with the piston ring pack, 

an area where progression would be possible is with the implementation of the groove 

lubricant reaction force. The results presented in this thesis applied a one-dimensional 

analytical Reynolds’ equation solution, integrated along the ring’s radial width to find the 

force at each circumferential position. The development into a transient, two-dimensional 

analysis would represent a further enhancement of the methodology. This could potentially 
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be coupled with the lubricant starvation model, to give a more accurate approximation of 

the available lubricant on each groove face. 

The research presented was undertaken in conjunction with a number of industrial partners, 

who provided information such as the piston ring pack dimensions, lubricant properties and 

engine running conditions. Sample compression rings were also provided, allowing for more 

accurate measurement of the ring’s dimension. This is particularly important in the case of 

the ring’s axial profile. The axial profile is altered via the mechanism of wear throughout the 

ring’s working life, and relatively small changes to the profile can have a significant effect on 

the friction predictions. A brand new and an end-of-life compression ring were provided, to 

allow measurement and comparison of results, which is seen to be significant. Any future 

research in this area may be enhanced by a more comprehensive range of top ring axial 

profiles. This would allow the wearing of the ring to be documented, if measurements were 

taken after known running times. The ring’s axial profile could be plotted at each instance, 

as well as the corresponding friction/power loss predictions. A methodology such as this 

would improve the understanding of how the ring wears over its useful time, as well as the 

effect of gradual wearing upon the power output of the engine. 
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