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SUMMARY 

Features are an established means of adding non-geometric information and extra geometric semantics to conventional 
CAD systems. It has been already realised that although feature-based modelling is necessary for the next generation of 
integrated design and manufacturing systems, inherent feature interactions pose a difficulty in representing and 
manipulating geometric design. This paper presents a structured multi-level geometric feature interaction classification 
scheme implemented within a Design-by Feature (DbF) system for representation validation analysis. Various feature 
interaction definitions and classification methods are first surveyed. The elements and the tests used for the 
identification process are presented. The classification encompasses existing feature interference cases found in the 
literature, uses a clear structure for the classification and, is applied at three different levels. 
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INTRODUCTION 
 
Design-by-features (DbF) is one approach for 
implementing Feature-based CAD systems and 
offers the designer a set of high level entities that 
can be used to describe and represent the desired 
component. Features are a means of incorporating 
knowledge of the form, behaviour, function and 
related manufacturing processes into a single 
representation. 
The DbF paradigm differs from that of traditional 
CAD systems where low level entities such as 
lines, arcs, and circles are used, or more recent 
CAD systems based on a Geometric Solid 
Modelling (GSM) core where solid primitives of 
various shapes are provided and combined in a 
Boolean fashion (with unions, intersections, and 
differences). 
DbF systems are also distinct from the Feature 
Recognition (FeR) approach where features are 
‘discovered’ after a session using traditional or 
GSM CAD systems. DbF is claimed to be a more 
promising and efficient way of working. 
In currently available DbF systems a lack of 
attention to formalising the concept of feature 
interaction can be seen even though this is a well-
known, important and active issue of research. 
Feature interactions occur when features cannot 
be considered in isolation within the model 
because some influence is exerted among them 
that must be dealt with due to its meaning and 
importance (especially for engineering purposes). 
Interactions between features are at the heart of 
any Feature-based Modelling (FBM) environment 

because "they are directly and inevitably produced 
while manipulating the model" [2]. Besides, 
“intended interferences” are common practice in 
engineering and can be found for example in 
tolerances, assembly relationships or when 
assigning distribution patterns of features ([9], see 
Figure 1). 
 

 
Non-Through Slot 
 
Figure 1: A pattern of four through fastening 
hole features. 
 

Furthermore, feature interactions are the cause of 
some of the most serious problems in the 
development of generative computer-aided 
process planning (CAPP) systems, and “are 
important for determining process sequences and, 
sometimes the manufacturing processes 
themselves” [5]. 
This paper presents a thorough analysis of feature 
interaction for prismatic parts in the DbF domain 
that goes beyond already well explored parent-
child relationships and geometric ‘interference 
cases’. Existing interaction classification schemes 
are surveyed, the use of a common-sense 
definition is claimed and, a classification scheme 



which is also a geometric analysis structure based 
on Boolean operators that is applied at various 
levels on a consistent basis is presented. Finally, a 
discussion of the classification scheme's 
advantages and use is given. 
The interaction classification herein presented 
establishes a high level feature interaction 
terminology and meaning. Related work will be 
referred to throughout this paper to emphasise that 
the classification encompass the classification 
scheme of others, but with a broader spectrum. 
 
DEFINITIONS 
 
Feature interaction means that a mutual action 
or influence exists between features. This 
definition emphasises that an interaction occurs 
when features cannot be considered isolated 
within the model and could happen for volumetric 
overlapping features as well as between non-
overlapping and even non-contacting features. 
Interference has sometimes been used to refer to 
interactions as a whole because it represents one 
(of many) very important analyses with a direct 
impact on manufacturing decisions. Some authors 
for example would claim that “interaction implies 
intersection between the entities of a feature” ([2], 
[4], [7], [8]). Interferences are special cases of 
interaction where destructive influences occur and 
possibly lead to a redundancy or loss of initial 
properties of a feature or its associated intents. 
The terms interrelation and relationship have also 
been used to mean (special cases of) feature 
interaction. 
 
RELATED WORK 
 
Feature interaction is an active and important 
issue but has principally been explored by 
researchers who are involved with FeR systems, 
and is considered as a challenge (the number of 
features may be finite but features resulting from 
their interaction are infinite). A consequence is 
that “no general approach to recognise all 
interactions is yet known” [1]. DbF systems have 
been misconsidering (or at least misrepresenting) 
feature interaction so that only simple and 
straightforward interrelationships can be found in 
the literature. 
This paper concentrates on feature-to-feature 
geometric interactions within the same “feature 
representation space” ([7]) and many other 

authors have concentrated on a sub-set of this 
domain with emphasis on their impact on 
manufacturing applications. Some of these 
interaction classification proposals include: 
Zhang ([9]) classified interferences into two 
categories (collision and cover) that basically 
represent volumetric interaction between features 
and the stock material. Zhang also used a 
complementary set of criteria at the face level for 
checking the validity of an operation. He 
suggested that an interference can be valid in one 
application but invalid in others. This raises the 
necessity to identify as many feature interaction 
cases as possible (including interferences), while 
leaving the selection and binding process to a 
subsequent reasoning process that has information 
concerning the designer, the product, standards 
with which to comply, manufacturing processes, 
etc. 
Bidarra ([2]) claimed to have encapsulated in each 
feature class definition the detection and reaction 
methods for the interaction phenomena which 
were classified as follows: Topological, the 
designer's intent is preserved and individuals 
feature parameter’s maintained, despite the 
overlapping of features (see Figure 2); 
Transmutation, the intended semantic behaviour 
of a feature is destroyed by feature manipulation 
(such as when the enlargement of a slot 
encroaches on an adjacent pocket and gives it the 
behaviour of a slot); Geometric, the feature’s 
geometry is affected without affecting its 
semantic behaviour (basically parameter-driven 
manipulations); Closure and Absorption, these 
occur when access to the feature is closed or the 
feature’s behaviour itself is absorbed by another 
feature. 
The few existing feature interaction classifications 
reported, although possibly very efficient, do not 
comply with any comprehensive classification 
scheme, are oriented towards specific applications 
and are thus, biased and constrained by that 
domain. 
Furthermore, “neighbouring” or "adjacency" ([6], 
[7]) of features has been considered to be of 
crucial importance for applications such as 
computing tool approach directions. However, 
these interactions are seldom represented in DbF 
systems because they are not considered to be 
interferences [1]. 
 



THE CLASSIFICATION FRAMEWORK 
 
Entities and Levels 
Form-features have a strong volumetric meaning 
and are concerned with the addition (positive) or 
removal (negative) of volumes (closed solids) 
which have been called Feature Produced 
Volumes (FPV, [6], [7]). FPV's can be the means 
by which features are analysed against each other 
to determine volumetric interactions. This aspect, 
called volumetric interaction (VI), must be part of 
a broader classification scheme that should be 
applied to, at least, three levels of interaction: 
volumetric (VI), boundary (BI) and facial (FI). It 
was found that various reasonings need to know 
the interaction between features (and their 
components) at all of these levels. Thus, similarly 
to FPVs, FPB is defined as the Feature's Produced 
Boundary and, FPS is the Feature’s Produced 
Surfaces or faces. 
The analyses consider a pair of elements at a time, 
called the joint A and B, from a specific entity set 
(∑) with a relative dimension (n), denoted by (A, 
B) ϵ ∑n. The classification is made according to 
the results of operations on the joint. Table 1 
exemplifies entity sets at various levels with their 
relative dimensions. The relative dimension is a 
term used here only to clarify and to distinguish 
between entities with some respect to their 
complexity and dimensional representation but no 
mathematical meaning or relationship is used or 
implied. 
 
Table 1: Entity sets and their examples 

Entity 
Set 

Entity 
Example 

Relative 
Dimension 

∑5 FPV (volume) n=5 
∑4 FPB (boundary) n=4 
∑3 FPS (face) n=3 
∑2 edges n=2 
∑1 vertices n=l 
∑0 NULL n=0 

 

Queries to the Underlying GSM 
 

Two Boolean operators are used to make 
enquiries to the geometric solid modeller (GSM): 
Non-regularised Boolean intersection (usually 
represented as ∩) and, regularised Boolean 
intersection (represented as ∩*). Boolean 
intersection is commonly available in GSM such 
as CSG, B-Rep and, hybrid systems. These 

operators are used to obtain: 
• C=A∩* B. 
• D=A∩B. 
Other enquiries are set membership tests such as: 
“which feature does the face F belongs to?'”, “is 
the entity X of the same type as entity Y ?”, “what 
is the entity W? (a volume, face, edge, vertex)”. 
Some of this information can be obtained from the 
FBM because it is usually kept in the FBM data-
base as a reverse reference (pointers from the 
FBM towards some entities in the GSM data-
structure). 
 

The Classification Process 
 

Thus, according to the result C, interacting 
entities can be classified into two types: 
Connected and, Disconnected. 
• Connected interacting cases occur when C is 

not NULL. The word “connected” was 
chosen to emphasise that the connection 
between entities will only occur if an entity of 
the same relative dimension as the inputs is 
used to establish the relationship (and the 
same can be said of the regularised Boolean 
intersection). Connected entities can be
 distinguished between coincident 
(conjoint) or partially overlapping (subjoint) 
cases. 

• Disconnected entities occur when C is NULL 
or, there is no relationship of the same 
relative dimension between A and B. 
Disconnected entities can be distinguished as 
separate (disjoint) and adjacent (adjoint) 
cases. 

 
Conjoint connected cases are those where one 
entity is completely superimposed or inserted into 
another because the output of the Boolean 
operation is one of the original entities (C = A or 
B). Conjoint interaction occurs because the output 
coincides with one or both inputs. Con- joint cases 
can be further divided into: 
• Cases where the inputs A and B exactly match 

each other (C = A and C = B, which means 
that A and B are the same). 

• Where one entity is completely inserted into 
the other (C = A or C = B but, A ≠ B or 
simply, if they are connected conjoint but do 
not match). 

Subjoint connected cases (the prefix “sub” when 
added to nouns refers to a thing, C, that is part of 
a larger one, the joint A and B, of the same 
relative dimension), also called Overlapping 



cases, occur when complex non-standard 
topologies arise. Such interaction could not affect 
the entity meaning itself but could have severe 
impact on downstream applications. For instance, 
if overlapping features (Figure 2) are not 
identified and represented properly they will 
result in redundant machining operations if they 
have the same volumetric removal intention. 
Subjoint connected cases can be sub- classified 
into: 
• Enter, when one entity's end is completely 

inserted into another entity. An entity's end is 
of lower relative dimension than the entity 
itself. For instance, a feature's end is a face, in 
the same way as an edge's end is a vertex. 

• Cross, when neither of the ends of an entity 
are inside the other at the same relative 
dimension (see Figure 2). 

• A range of other cases that can be identified 
for pragmatic purposes is left here as a 
General sub-class for simplicity. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Cross subjoint connected VI case 
(Zhang's collision, Bidarra's topological 
interaction). 
 

Disconnected interacting cases (represented as 
disconnected) occur when C, the Regularised 
Boolean Intersection result, is NULL and D is an 
entity of an inferior relative dimension. Two 
situations can occur: adjoint and disjoint 
disconnected interaction. 
Disjoint interaction occurs where there is no 
intersection whatsoever, C and D are NULL and 
features are considered separate (the prefix “dis” 
is usually added to describe the opposite state of 
something). Disjoint cases can be: 
• Far when entities are "really" distant from 

each other. 
• Near when entities, although not touching, are 

close to each other and with no other entity 
in-between. 

Conversely, adjoint (this word means next to each 
other, adjacent, touching) cases happen when D is 
not NULL and the input entities share a 

topological entity of lower relative dimension- the 
result D (Figure 3). 
 

 
Counter-Bore= 2 nested Holes 
 

Figure 3: Adjoint disconnected VI (touch), 
inside conjoint FI case. 
 

Disconnected VI cases can be further 
distinguished according to their “spatial inter-
feature relationship” such as parallelism and, 
coplanarity. 
The operations and set membership tests 
presented are reproduced in Figure 4 for clarity 
purposes. Each arc represents a test and each box 
represents either an operation or a status of the 
interaction. A and B are the joint entities, C and D 
the results of the operations and, m and n the 
relative dimensions of D and the inputs, 
respectively. 

 
Figure 4: The basic framework for classifying 
feature interactions. 
 

The sub-cases most likely to occur at each leaf of 
the classification tree are presented in the table at 
the bottom of Figure 4. Some of them are links or 
pointers to a lower level of interaction. These are 

Through_Slot_2 
 



identified at the table by the symbol “→” and the 
interaction level. The arrows basically says that 
the classification can go deeper (if required) in 
order to distinguish between different cases that 
otherwise will be treated equally. Adjoint FI cases 
are identified as limit because they identify that 
one feature is actually being limited by another. 
The interactions presented are not always 
commutative thus, the interaction relationship will 
have an active or passive response according to 
which input entity (A or B) was considered as a 
reference. Hence, interactions include Crossing or 
Crossed, Inside or Outside, Limiting or Limited. 
The exceptions are the commutative interactions: 
Match, Near and Far. 
 
A “FRIEND” THAT UNDERSTANDS 
HOW FEATURES INTERACT 
 
A DbF prototype system called FRIEND (an 
acronym for Feature-based Reasoning for Intent-
driven ENgineering Design) has been 
implemented with special attention being paid to 
representation validation of the feature-based 
models [3]. In order to carry out such validation 
processes a complete scenario of interactions is 
built identifying each interaction case between 
every single pair of features and, if required, its 
components (lower levels). The interaction case is 
of crucial importance because, together with the 
feature properties and parameters (rather than the 
GSM data), it is used as the “vocabulary” to 
express validity conditions and to verify the 
scenarios. 
A first level of interaction scenario is analysed 
considering only FPV's as entities. At this stage, 
some reasonings can be already applied. If 
conjoint VI cases are encountered then FPB's are 
considered as the source for further classification. 
If adjoint VI or adjoint disconnected BI cases are 
encountered then, for practical reasons, these 
interaction cases are linked to many FI interaction 
relationships as required for each face of the 
feature’s realisation but FI disjoint cases are 
discarded (because they are the most frequent 
ones and they do not add further information for 
the present reasoning). 
Boundaries are considered to be closed sets of 
faces so, there is no way that two conjoint VI 
features would have a subjoint BI interaction (the 
intersection operation would return an open 
boundary) thus it is marked in the table of Figure 
4 as Non-Applicable (N/A). 
This scenario is then analysed by a 

knowledge-based system in search for compliance 
of the model with pre-defined general validity 
properties. If an invalid representation is detected 
the reasoning fires actions to revalidate the 
representation. FRIEND stores the interactions at 
each level in order to use this information in the 
reasoning. The classification structure gives 
crucial information to help the decision-making in 
these actions. 
 

Using Feature Interaction 
 

High levels of identified interaction act as filters 
or approximations for further low level reasonings 
and can be used promptly for some specific 
reasoning before lower level analyses are 
performed. Among adjoint VI cases there will be 
a possible merging operation (if a matching 
conjoint FI case happens) or a change on the 
feature's properties from “blind” to “through” (if 
an inside conjoint FI case occurs). Disjoint BI 
interactions, as an example of reasoning, means 
that one feature is contained within another and 
analysing their FPB will lead to a near or far case. 
The threshold between near and far should be 
computed by a separate “thin-wall reasoning”. If 
near then it is possible that an “internal thin-wall” 
problem may have occurred and, if far (and if the 
feature happens to have no other interaction) it 
can be interpreted as a hollow in the part, which 
should be eliminated. 
It can be inferred that besides helping to obtain 
more reliable feature-based representation for 
further “Design for X” analysis some 
manufacturability, assemblability, etc. analyses 
can be anticipated and performed at FRIEND's 
stage because the feature interaction classification 
is very expressive and powerful. For instance, 
various “thin-wall”, obstruction, precedence and, 
accessibility problems can be easily detected 
through the proposed feature interaction 
identification scheme. Now phrases like “a slot VI 
entering a pocket” is a valid, meaningful and 
measurable statement in that a FBM system can 
process and produce. 
 

Discussion 
 

The feature interaction classification presented 
here has several advantages: (i) It is a DbF-aware 
scheme and subsumes existing classifications 
(both from FeR systems as well as from narrow 
DbF domains). (ii) It adds a comprehensive 
coverage and a clarification of the interference 
and interaction terms to avoid mis-understanding. 
(iii) It is multi-level which facilitates its 



integration with hybrid GSM modellers and 
allows reasoning to be performed at all these 
levels. (iv) All levels share the same structure and 
concept of classification promoting the 
consistency of the scheme. This also avoids 
misunderstandings because there is no mixing up 
of entities at each level. (v) Its categories are well 
defined through simple rules using commonly 
available GSM Boolean operators and tests. (vi) 
No concave/convex nor planar/non-planar 
assumption is made to the minor detriment of 
efficiency but, many of the operations and tests 
can be quickly and accurately predicted using 
Bounding Boxes. (vii) The cases are as more 
detailed as required allowing specific actions to be 
taken for apparently similar cases. 
 
CONCLUSION 
 
A feature-based CAD system has been 
implemented  with special attention paid to 
“representation validation” of the feature model 
and is concerned with various aspects such as 
functionality, morphology, manufacturability, etc. 
The validation of a feature-based model is driven 
by all sorts of interactions between features (not 
only adjoint and overlapping, see [2]) thus, 
identifying interaction cases is essential to the 
forthcoming validation analysis to be applied. 
Besides, feature interactions identify many 
engineering-oriented tasks in a Design-by Feature 
system. The interaction framework presented here 
has been adopted as part of a “vocabulary” used to 
express the validation reasoning in a prototype 
system called FRIEND (an acronym for Feature-
based Reasoning for Intent-driven ENgineering 
Design). It is accurate (even using Bounding Box 
data), powerful (identifies complex cases), elegant 
(easy to understand), structured (has a 
well-defined structure that repeats itself), multi-
level (works at volumetric, boundary and, face 
levels), simple (uses simple GSM-based operators 
and tests) and requires almost no knowledge of 
the intricacies of the GSM representation schemes 
(although some efficiency can be lost because of 
this). Although the methodology was 
implemented for convex and planar Bounding 
Boxes of features, for efficiency reasons, it is 
general in nature and can be applied to concave 
and non-planar geometries. 
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