

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288379781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 32nd International MATADOR Conference,
Editor A.A. Kochar, pp495-500,

UMIST, Manchester 10-11 July, 1997

STRUCTURED MULTI-LEVEL FEATURE INTERACTION IDENTIFICATION

M.S. HOUNSELL & K. CASE

Department of Manufacturing Engineering, Loughborough University
Loughborough, Leicestershire, LE11 3TU, UK

SUMMARY

Features are an established means of adding non-geometric information and extra geometric semantics to conventional
CAD systems. It has been already realised that although feature-based modelling is necessary for the next generation of
integrated design and manufacturing systems, inherent feature interactions pose a difficulty in representing and
manipulating geometric design. This paper presents a structured multi-level geometric feature interaction classification
scheme implemented within a Design-by Feature (DbF) system for representation validation analysis. Various feature
interaction definitions and classification methods are first surveyed. The elements and the tests used for the
identification process are presented. The classification encompasses existing feature interference cases found in the
literature, uses a clear structure for the classification and, is applied at three different levels.

Keywords: Feature-based Modelling, Design by Features Systems, Feature Interaction, Feature-based Reasoning,
Computer-Aided Design, CAD/CAM, Geometric Modelling, Concurrent Engineering.

INTRODUCTION

Design-by-features (DbF) is one approach for
implementing Feature-based CAD systems and
offers the designer a set of high level entities that
can be used to describe and represent the desired
component. Features are a means of incorporating
knowledge of the form, behaviour, function and
related manufacturing processes into a single
representation.
The DbF paradigm differs from that of traditional
CAD systems where low level entities such as
lines, arcs, and circles are used, or more recent
CAD systems based on a Geometric Solid
Modelling (GSM) core where solid primitives of
various shapes are provided and combined in a
Boolean fashion (with unions, intersections, and
differences).
DbF systems are also distinct from the Feature
Recognition (FeR) approach where features are
‘discovered’ after a session using traditional or
GSM CAD systems. DbF is claimed to be a more
promising and efficient way of working.
In currently available DbF systems a lack of
attention to formalising the concept of feature
interaction can be seen even though this is a well-
known, important and active issue of research.
Feature interactions occur when features cannot
be considered in isolation within the model
because some influence is exerted among them
that must be dealt with due to its meaning and
importance (especially for engineering purposes).
Interactions between features are at the heart of
any Feature-based Modelling (FBM) environment

because "they are directly and inevitably produced
while manipulating the model" [2]. Besides,
“intended interferences” are common practice in
engineering and can be found for example in
tolerances, assembly relationships or when
assigning distribution patterns of features ([9], see
Figure 1).

Non-Through Slot

Figure 1: A pattern of four through fastening
hole features.

Furthermore, feature interactions are the cause of
some of the most serious problems in the
development of generative computer-aided
process planning (CAPP) systems, and “are
important for determining process sequences and,
sometimes the manufacturing processes
themselves” [5].
This paper presents a thorough analysis of feature
interaction for prismatic parts in the DbF domain
that goes beyond already well explored parent-
child relationships and geometric ‘interference
cases’. Existing interaction classification schemes
are surveyed, the use of a common-sense
definition is claimed and, a classification scheme

which is also a geometric analysis structure based
on Boolean operators that is applied at various
levels on a consistent basis is presented. Finally, a
discussion of the classification scheme's
advantages and use is given.
The interaction classification herein presented
establishes a high level feature interaction
terminology and meaning. Related work will be
referred to throughout this paper to emphasise that
the classification encompass the classification
scheme of others, but with a broader spectrum.

DEFINITIONS

Feature interaction means that a mutual action
or influence exists between features. This
definition emphasises that an interaction occurs
when features cannot be considered isolated
within the model and could happen for volumetric
overlapping features as well as between non-
overlapping and even non-contacting features.
Interference has sometimes been used to refer to
interactions as a whole because it represents one
(of many) very important analyses with a direct
impact on manufacturing decisions. Some authors
for example would claim that “interaction implies
intersection between the entities of a feature” ([2],
[4], [7], [8]). Interferences are special cases of
interaction where destructive influences occur and
possibly lead to a redundancy or loss of initial
properties of a feature or its associated intents.
The terms interrelation and relationship have also
been used to mean (special cases of) feature
interaction.

RELATED WORK

Feature interaction is an active and important
issue but has principally been explored by
researchers who are involved with FeR systems,
and is considered as a challenge (the number of
features may be finite but features resulting from
their interaction are infinite). A consequence is
that “no general approach to recognise all
interactions is yet known” [1]. DbF systems have
been misconsidering (or at least misrepresenting)
feature interaction so that only simple and
straightforward interrelationships can be found in
the literature.
This paper concentrates on feature-to-feature
geometric interactions within the same “feature
representation space” ([7]) and many other

authors have concentrated on a sub-set of this
domain with emphasis on their impact on
manufacturing applications. Some of these
interaction classification proposals include:
Zhang ([9]) classified interferences into two
categories (collision and cover) that basically
represent volumetric interaction between features
and the stock material. Zhang also used a
complementary set of criteria at the face level for
checking the validity of an operation. He
suggested that an interference can be valid in one
application but invalid in others. This raises the
necessity to identify as many feature interaction
cases as possible (including interferences), while
leaving the selection and binding process to a
subsequent reasoning process that has information
concerning the designer, the product, standards
with which to comply, manufacturing processes,
etc.
Bidarra ([2]) claimed to have encapsulated in each
feature class definition the detection and reaction
methods for the interaction phenomena which
were classified as follows: Topological, the
designer's intent is preserved and individuals
feature parameter’s maintained, despite the
overlapping of features (see Figure 2);
Transmutation, the intended semantic behaviour
of a feature is destroyed by feature manipulation
(such as when the enlargement of a slot
encroaches on an adjacent pocket and gives it the
behaviour of a slot); Geometric, the feature’s
geometry is affected without affecting its
semantic behaviour (basically parameterdriven
manipulations); Closure and Absorption, these
occur when access to the feature is closed or the
feature’s behaviour itself is absorbed by another
feature.
The few existing feature interaction classifications
reported, although possibly very efficient, do not
comply with any comprehensive classification
scheme, are oriented towards specific applications
and are thus, biased and constrained by that
domain.
Furthermore, “neighbouring” or "adjacency" ([6],
[7]) of features has been considered to be of
crucial importance for applications such as
computing tool approach directions. However,
these interactions are seldom represented in DbF
systems because they are not considered to be
interferences [1].

THE CLASSIFICATION FRAMEWORK

Entities and Levels
Form-features have a strong volumetric meaning
and are concerned with the addition (positive) or
removal (negative) of volumes (closed solids)
which have been called Feature Produced
Volumes (FPV, [6], [7]). FPV's can be the means
by which features are analysed against each other
to determine volumetric interactions. This aspect,
called volumetric interaction (VI), must be part of
a broader classification scheme that should be
applied to, at least, three levels of interaction:
volumetric (VI), boundary (BI) and facial (FI). It
was found that various reasonings need to know
the interaction between features (and their
components) at all of these levels. Thus, similarly
to FPVs, FPB is defined as the Feature's Produced
Boundary and, FPS is the Feature’s Produced
Surfaces or faces.
The analyses consider a pair of elements at a time,
called the joint A and B, from a specific entity set
(∑) with a relative dimension (n), denoted by (A,
B) ϵ ∑n. The classification is made according to
the results of operations on the joint. Table 1
exemplifies entity sets at various levels with their
relative dimensions. The relative dimension is a
term used here only to clarify and to distinguish
between entities with some respect to their
complexity and dimensional representation but no
mathematical meaning or relationship is used or
implied.

Table 1: Entity sets and their examples

Entity
Set

Entity
Example

Relative
Dimension

∑5 FPV (volume) n=5
∑4 FPB (boundary) n=4
∑3 FPS (face) n=3
∑2 edges n=2
∑1 vertices n=l
∑0 NULL n=0

Queries to the Underlying GSM

Two Boolean operators are used to make
enquiries to the geometric solid modeller (GSM):
Non-regularised Boolean intersection (usually
represented as ∩) and, regularised Boolean
intersection (represented as ∩*). Boolean
intersection is commonly available in GSM such
as CSG, B-Rep and, hybrid systems. These

operators are used to obtain:
• C=A∩* B.
• D=A∩B.
Other enquiries are set membership tests such as:
“which feature does the face F belongs to?'”, “is
the entity X of the same type as entity Y ?”, “what
is the entity W? (a volume, face, edge, vertex)”.
Some of this information can be obtained from the
FBM because it is usually kept in the FBM data-
base as a reverse reference (pointers from the
FBM towards some entities in the GSM data-
structure).

The Classification Process

Thus, according to the result C, interacting
entities can be classified into two types:
Connected and, Disconnected.
• Connected interacting cases occur when C is

not NULL. The word “connected” was
chosen to emphasise that the connection
between entities will only occur if an entity of
the same relative dimension as the inputs is
used to establish the relationship (and the
same can be said of the regularised Boolean
intersection). Connected entities can be
 distinguished between coincident
(conjoint) or partially overlapping (subjoint)
cases.

• Disconnected entities occur when C is NULL
or, there is no relationship of the same
relative dimension between A and B.
Disconnected entities can be distinguished as
separate (disjoint) and adjacent (adjoint)
cases.

Conjoint connected cases are those where one
entity is completely superimposed or inserted into
another because the output of the Boolean
operation is one of the original entities (C = A or
B). Conjoint interaction occurs because the output
coincides with one or both inputs. Con joint cases
can be further divided into:
• Cases where the inputs A and B exactly match

each other (C = A and C = B, which means
that A and B are the same).

• Where one entity is completely inserted into
the other (C = A or C = B but, A ≠ B or
simply, if they are connected conjoint but do
not match).

Subjoint connected cases (the prefix “sub” when
added to nouns refers to a thing, C, that is part of
a larger one, the joint A and B, of the same
relative dimension), also called Overlapping

cases, occur when complex non-standard
topologies arise. Such interaction could not affect
the entity meaning itself but could have severe
impact on downstream applications. For instance,
if overlapping features (Figure 2) are not
identified and represented properly they will
result in redundant machining operations if they
have the same volumetric removal intention.
Subjoint connected cases can be sub classified
into:
• Enter, when one entity's end is completely

inserted into another entity. An entity's end is
of lower relative dimension than the entity
itself. For instance, a feature's end is a face, in
the same way as an edge's end is a vertex.

• Cross, when neither of the ends of an entity
are inside the other at the same relative
dimension (see Figure 2).

• A range of other cases that can be identified
for pragmatic purposes is left here as a
General sub-class for simplicity.

Figure 2: Cross subjoint connected VI case
(Zhang's collision, Bidarra's topological
interaction).

Disconnected interacting cases (represented as
disconnected) occur when C, the Regularised
Boolean Intersection result, is NULL and D is an
entity of an inferior relative dimension. Two
situations can occur: adjoint and disjoint
disconnected interaction.
Disjoint interaction occurs where there is no
intersection whatsoever, C and D are NULL and
features are considered separate (the prefix “dis”
is usually added to describe the opposite state of
something). Disjoint cases can be:
• Far when entities are "really" distant from

each other.
• Near when entities, although not touching, are

close to each other and with no other entity
in-between.

Conversely, adjoint (this word means next to each
other, adjacent, touching) cases happen when D is
not NULL and the input entities share a

topological entity of lower relative dimension- the
result D (Figure 3).

Counter-Bore= 2 nested Holes

Figure 3: Adjoint disconnected VI (touch),
inside conjoint FI case.

Disconnected VI cases can be further
distinguished according to their “spatial inter-
feature relationship” such as parallelism and,
coplanarity.
The operations and set membership tests
presented are reproduced in Figure 4 for clarity
purposes. Each arc represents a test and each box
represents either an operation or a status of the
interaction. A and B are the joint entities, C and D
the results of the operations and, m and n the
relative dimensions of D and the inputs,
respectively.

Figure 4: The basic framework for classifying
feature interactions.

The sub-cases most likely to occur at each leaf of
the classification tree are presented in the table at
the bottom of Figure 4. Some of them are links or
pointers to a lower level of interaction. These are

Through_Slot_2

identified at the table by the symbol “→” and the
interaction level. The arrows basically says that
the classification can go deeper (if required) in
order to distinguish between different cases that
otherwise will be treated equally. Adjoint FI cases
are identified as limit because they identify that
one feature is actually being limited by another.
The interactions presented are not always
commutative thus, the interaction relationship will
have an active or passive response according to
which input entity (A or B) was considered as a
reference. Hence, interactions include Crossing or
Crossed, Inside or Outside, Limiting or Limited.
The exceptions are the commutative interactions:
Match, Near and Far.

A “FRIEND” THAT UNDERSTANDS
HOW FEATURES INTERACT

A DbF prototype system called FRIEND (an
acronym for Feature-based Reasoning for Intent-
driven ENgineering Design) has been
implemented with special attention being paid to
representation validation of the feature-based
models [3]. In order to carry out such validation
processes a complete scenario of interactions is
built identifying each interaction case between
every single pair of features and, if required, its
components (lower levels). The interaction case is
of crucial importance because, together with the
feature properties and parameters (rather than the
GSM data), it is used as the “vocabulary” to
express validity conditions and to verify the
scenarios.
A first level of interaction scenario is analysed
considering only FPV's as entities. At this stage,
some reasonings can be already applied. If
conjoint VI cases are encountered then FPB's are
considered as the source for further classification.
If adjoint VI or adjoint disconnected BI cases are
encountered then, for practical reasons, these
interaction cases are linked to many FI interaction
relationships as required for each face of the
feature’s realisation but FI disjoint cases are
discarded (because they are the most frequent
ones and they do not add further information for
the present reasoning).
Boundaries are considered to be closed sets of
faces so, there is no way that two conjoint VI
features would have a subjoint BI interaction (the
intersection operation would return an open
boundary) thus it is marked in the table of Figure
4 as Non-Applicable (N/A).
This scenario is then analysed by a

knowledgebased system in search for compliance
of the model with pre-defined general validity
properties. If an invalid representation is detected
the reasoning fires actions to revalidate the
representation. FRIEND stores the interactions at
each level in order to use this information in the
reasoning. The classification structure gives
crucial information to help the decision-making in
these actions.

Using Feature Interaction

High levels of identified interaction act as filters
or approximations for further low level reasonings
and can be used promptly for some specific
reasoning before lower level analyses are
performed. Among adjoint VI cases there will be
a possible merging operation (if a matching
conjoint FI case happens) or a change on the
feature's properties from “blind” to “through” (if
an inside conjoint FI case occurs). Disjoint BI
interactions, as an example of reasoning, means
that one feature is contained within another and
analysing their FPB will lead to a near or far case.
The threshold between near and far should be
computed by a separate “thin-wall reasoning”. If
near then it is possible that an “internal thin-wall”
problem may have occurred and, if far (and if the
feature happens to have no other interaction) it
can be interpreted as a hollow in the part, which
should be eliminated.
It can be inferred that besides helping to obtain
more reliable feature-based representation for
further “Design for X” analysis some
manufacturability, assemblability, etc. analyses
can be anticipated and performed at FRIEND's
stage because the feature interaction classification
is very expressive and powerful. For instance,
various “thin-wall”, obstruction, precedence and,
accessibility problems can be easily detected
through the proposed feature interaction
identification scheme. Now phrases like “a slot VI
entering a pocket” is a valid, meaningful and
measurable statement in that a FBM system can
process and produce.

Discussion

The feature interaction classification presented
here has several advantages: (i) It is a DbFaware
scheme and subsumes existing classifications
(both from FeR systems as well as from narrow
DbF domains). (ii) It adds a comprehensive
coverage and a clarification of the interference
and interaction terms to avoid misunderstanding.
(iii) It is multi-level which facilitates its

integration with hybrid GSM modellers and
allows reasoning to be performed at all these
levels. (iv) All levels share the same structure and
concept of classification promoting the
consistency of the scheme. This also avoids
misunderstandings because there is no mixing up
of entities at each level. (v) Its categories are well
defined through simple rules using commonly
available GSM Boolean operators and tests. (vi)
No concave/convex nor planar/non-planar
assumption is made to the minor detriment of
efficiency but, many of the operations and tests
can be quickly and accurately predicted using
Bounding Boxes. (vii) The cases are as more
detailed as required allowing specific actions to be
taken for apparently similar cases.

CONCLUSION

A feature-based CAD system has been
implemented with special attention paid to
“representation validation” of the feature model
and is concerned with various aspects such as
functionality, morphology, manufacturability, etc.
The validation of a feature-based model is driven
by all sorts of interactions between features (not
only adjoint and overlapping, see [2]) thus,
identifying interaction cases is essential to the
forthcoming validation analysis to be applied.
Besides, feature interactions identify many
engineering-oriented tasks in a Design-by Feature
system. The interaction framework presented here
has been adopted as part of a “vocabulary” used to
express the validation reasoning in a prototype
system called FRIEND (an acronym for Feature-
based Reasoning for Intent-driven ENgineering
Design). It is accurate (even using Bounding Box
data), powerful (identifies complex cases), elegant
(easy to understand), structured (has a
welldefined structure that repeats itself), multi-
level (works at volumetric, boundary and, face
levels), simple (uses simple GSM-based operators
and tests) and requires almost no knowledge of
the intricacies of the GSM representation schemes
(although some efficiency can be lost because of
this). Although the methodology was
implemented for convex and planar Bounding
Boxes of features, for efficiency reasons, it is
general in nature and can be applied to concave
and non-planar geometries.

REFERENCES

1. V. ALLADA and S. AMAND (1995) Feature-

based Modelling Approaches for Integrated
Manufacturing: State-of-the-art survey and
future directions. International Journal of
Computer Integrated Manufacturing 8(6), p.
411-440.

2. R. BIDARRA and J. C. TEIXEIRA (1994) A
Semantic Framework for Flexible Feature
Validity Specification and Assessment.
(ASME) Computers in Engineering
Conference’94 1, p. 151-158.

3. M. S. HOUNSELL and K. CASE (1996)
Representation Validation in Feature-based
Modelling: A Framework for Design
Correctness Analysis and Assurance.
Proceedings of the 12th National Conference
on Manufacturing Research, p. 256-261.

4. T. D. MARTINO and F. GIANNINI (1994)
The role of feature recognition in future CAD
systems. IFIP Int. Conf. on Feature Modelling
and Recognition in Advanced CAD/CAM
Systems 1, p. 343-355.

5. F. G. MILL, J. C. SALMON, and A. G.
PEDLEY (1993) Representation problems in
feature-based approaches to design and
process planning. International Journal of
Computer Integrated Manufacturing 6(1-2), p.
27-33.

6. M. J. PRATT (1988) Synthesis of an optimal
approach to form feature modelling. (ASME)
Computers in Engineering Conference’88 1 p.
263-274.

7. J. J. SHAH and M. MANTYLA (1995)
Parametric and Feature-Based CAD/CAM:
Concepts, Techniques and Applications. John
Wiley & Sons Inc.

8. R. E. D. SILVA, K. L. WOOD, and J. J.
BEARMAN (1990) Representing and
Manipulating Interacting Interfeature
Relationships in Engineering Design for
Manufacture. (ASME) Advances in Design
Automation DE-32-1, p. 1-8.

9. K. F. ZHANG and H. H. ELMARAGHY
(1993) Validity Check for a
Functionaloriented Modeler. (ASME)
Advances in Design Automation DE-65-2, p.
293-300.

