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ABSTRACT 

The primary aim of this research was to investigate the bending behaviour of helically 

wound steel cables of various types (i.e. normal spiral strands, sheathed spiral strands 

and locked coil cables) in the presence of friction and to propose more efficient 

computational models for their analysis under combined tension and bending. 

The proposed model fully takes into account interwire contact forces both in the 

radial direction (point contact between wires in different layers) and hoop direction 

(line contact within the wires in the same layer). Extensive theoretical parametric 

studies have been undertaken on a variety of cable constructions covering a wide 

range of geometrical and material parameters. Explicit formulations have been 

developed for the smooth transition of the bending stiffness from no-slip to full slip 

regimes, as a function of cable curvature. Based on these formulations, it is now 

possible to calculate the relative displacements of the wires, as well as the tensile, 

bending and hoop stresses in the individual wires of the cable. Furthermore, bending 

stiffness of the cable is shown to decrease by a factor of 2 to 16, depending upon the 

friction coefficient between wires and the type of cable construction. Wherever 

possible, the theoretical results have been compared with experimental results from 

the available literature and are found in very good agreement with them. 

A simple method for the determination of the bending stiffness of large diameter 

multi-layered cable has been developed. The simplified method is further shown to 

provide estimates of the bending stiffness which are very close to those calculated by 

the original theory, allowing hand calculations for an easier use in industry.  

The proposed formulations have been extended to cater for the effects of external 

hydrostatic pressure on sheathed spiral strands in deep water applications. These 

forces are shown to have a great influence on the pattern of interwire contact forces 

and hence the interlayer slippage between the wires in the strand. Numerical results 

have been obtained and analysed for three different 127 mm diameter strands with 

lay angles of 12°, 18° and 24° respectively, experiencing a wide range of external 

hydrostatic pressures of 0 to 2,000 metres. The significant increase in normal contact 
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force between wires is shown to suppress the slippage of wires in the cable. However, 

the no-slip and full slip values of the effective bending stiffness of the cable is shown 

to be independent of the level of hydrostatic pressure. 

A theoretical model is also proposed for estimating wire kinematics, pattern of 

interwire slippage, contact forces as well as the flexural rigidity of locked coil cables 

with outer layers made of shaped wires. In order to validate this model, numerical 

results are reported for two different locked coil cables. It is shown that the shaped 

wires in the outer layers of locked coil cables play an important role in the 

distribution of contact forces, slip initiation and cable unwinding. 
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   Helix radius of layer i in multi-layered strand after deformation 
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∆r  Change in helix radius after deformations 

Tistick  Tension force in the wire in stick state 

Tislip  Tension force in the wire in slip state 

Ti  Tension force in a wire in layer i 

T  Tension force in cable/strand 

ti  Thickness of layer i of shaped wires in locked coil cable 

XH Magnitude of the external hydrostatic pressure per unit length of the 

wire on the outermost layer 

XMSi Radial contact force per unit length in layer i of  multi-layered 

strand/cable 

XRCi Radial contact force per unit length in layer i of  multi-layered 

strand/cable 

x’ Tangential displacement between two wires 

αi’,αi Lay angles in layer i in deformed and undeformed states respectively  

∆α Change in lay angle 

βi Angle which locates the lines of action of line contact forces in layer i 

δ Relative slippage of the centres of contacting cylinders/wires under the 

action of a monotonically increasing tangential force 

∆l Tangential relative displacement between two neighbouring wires in 

line contact 

∆lmax Maximum tangential displacement between two wires at the onset of 

gross sliding (full-slip) 

εc, ϵx’ Cable axial strain 
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ϵx Wire axial strain 

ϵ11 Compliance of the orthotropic sheet in the direction parallel to wire 

axes 

ϵ11’ Compliance of the orthotropic sheet in the direction parallel to cable 

axis 

ϵy’ Radial contraction of a layer in the cable’s normal cross-section due to 

interwire contact deformations (Radial strain) 

ϵy The approach strain normal to ϵx between the centres of wires in line 

contact 

ϵ22 Normal compliance of two cylinders in line contact along wire axes 

ϵ22’ Normal compliance of two cylinders in line contact along cable axes 

ϵ33 Tangential compliance of two cylinders in line contact 

ϵyC’ Total radial strain in the cable’s normal cross-section (including rigid 

body component) 

ϵyR’ The rigid body radial strain in the cable’s normal cross-section in the 

absence of a rigid core 

ϵyT Tensorial shear strain 

γxy Shear Strain in along wire axes 

γxy’ Shear strain along cable axis 

κc Cable bending curvature 

κwr Wire bending curvature 

µ Coefficient of friction 

υ Poisson’s ratio 
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   Imposed radius of curvature 

   Water density 

σx Axial stress in the wire 

σx’ Axial stress on the cable’s normal cross-section 

σy Radial stress in the wire 

σy’ Hoop stress in the cable’s normal cross-section 

𝜏xy Shear stress in the wire 

𝜏 Cable rotation per unit length 

φ Polar angle of wire in cable cross-section 
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Chapter 1  

Introduction 

 

In this thesis, “wire rope” is defined as a flexible tension member consisting of  several 

helical strands laid together either in parallel pattern or twisted around a core of 

other strands or synthetic or natural fibre material in different concentric layers (with 

individual wires in the strand forming a double helix), generally intended for 

supporting heavy loads. One can get a lot of strength and flexibility out of wire ropes 

because the separate wires balance the applied force throughout (Costello, 1997).  

A “spiral strand” is likewise made of individual metallic wires wrapped helically in a 

series of concentric layers around the king wire. Each wire in a strand follows a simple 

helix. In addition to helical strands there are also parallel strands and locked coil 

cables, the wires in a parallel strands are laid in a parallel configuration without 

helical twist, resulting in a more axial stiffness and less bending/torsional stiffness, 

compared with helical strands. In a locked coil, shaped wires of usually z sections are 

used to achieve substantially higher fill factors with a proportional increase in mass 

for a given cross section over the basic spiral strand construction. The general term 

“cable” refers to both wire rope and spiral strand in this thesis. 

Core is the central part of a wire rope made in accordance with the best practice and 

design, which itself may be a small diameter fibre or independent wire rope or wire 

strand of either galvanized or ungalvanized wires. Wire rope/strand cores are 

available either as fibre or steel cores depending on application. Their principal 

function is being to provide support for the strands and to maintain their correct 

positions under working conditions. Fibre cores are manufactured from natural fibres 

such as sisal, hemp, jute, and cotton or, synthetic fibres such as polypropylene while 

steel cores are supplied in two types:  

i. Independent Wire Rope Core (IWRC) which is itself an independent wire rope.  
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ii. Wire Strand Core (WSC) used on smaller diameter ropes, and normally with 

the same construction as the outer strands. 

Fibre core (FC) has the advantage that it increases the flexibility of the rope, provides 

resistance to rotting with synthetic cores and also lubricates wires by squeezing out 

the lubricants in the pores under working conditions, (McKenna, et al., 2004). This 

reduces internal corrosion and wear between wires. On the contrary steel core has 

high resistance to crushing, distortion and heat and therefore, increases breaking load 

for the rope. Also steel core provides better support for the strands lying on it and can 

better resist shock loading and stretch. 

1.1 Lay of Wire Rope 

The lay of a wire rope describes the manner in which the wires are laid in a strand and 

the way its outer strands are laid around the core in a helix, as shown in Figure 1.3, 

(Costello., 1997). And, the angle that a strand makes with the rope axis is called lay 

angle of the wire rope. There are two main types of cable lay’s i.e. Ordinary/Regular 

lay and Lang lay. In ordinary lay rope the helix of wires in the strand is in the opposite 

direction to that of the strand in the rope. While in Lang’s lay the helix of the wires in 

the strand is in the same direction as that of the strands in the rope. Regular lay rope 

is more stable as compared to Lang lay and can be handed easily but, due to point 

contact on the crown wires in the strands it has low resistance to wearing and 

therefore, abrasive fatigue occur quickly at these points due to high contact stresses. 

On the other hand in Lang’s lay the surface pressure is spread over a longer length of 

wire of the strand which is in line contact with each other. Therefore, resistance to 

abrasion is more in comparison with regular laid ropes furthermore, bending of 

Lang’s laid rope over sheaves is much easier. But, it has the disadvantage of producing 

high torque value under working conditions. This may untwist the rope if the ends are 

not fixed to rotate. 
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Figure 1-1:  Various Components of Spiral Strand and Wire Rope. 

 

 

Figure 1-2: Typical Cross sectional Constructions of Spiral Strands/Wire Ropes 

(continued).  

Seven Wire Strand             6x19 Seale           Multi-Layered Strand   Multi-Layered Sheathed Strand 

31 Warrington Seale         46 Seale Filler Wire          43 Filler Wire Seale           49 Warrington 

Seale 
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Figure 1-2: Typical Cross sectional Constructions of Spiral Strands/Wire Ropes. 

Multi-Layered Strand         Locked Coil Cable         Locked Coil Cable  Multi-Layered Wire Rope 

Seven Strand         Seven Strand  

Wire Rope (WRS)       Wire Rope (WRS)        
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Figure 1-3: Typical Wire Rope Lays ; (a) Right Regular Lay; (b) Left Regular Lay; (c) 

Right Lang’s Lay; (d) Left Lang’s Lay; and (e) Right Alternative Lay Wire Ropes. 

Although spiral strand and wire rope is essentially an element normally used for 

transmitting tensile load, but based on cable construction individual wires in a rope or 

strand are subjected to bending and torsional moments and bearing loads, as well as 

tensile forces. The overall response of a rope or strand, in terms of axial 

displacement/extension and rotation is the magnitude and distribution of stresses 

resulting from these loading. Cable ends where the tensile load is transferred to 

another element is of particular interest to the researchers because the mechanism of 

transferring load from individual wires to the gripping medium of the termination can 

give rise to the stress concentration that will be discussed in this thesis later. Friction 

between wires makes the problem more complex making stress distribution more 

uneven and hence the cable response to the load unpredictable. Ideally the end fitting 

must be capable of transferring the breaking strength of the cable without exceeding 

its own yield strength.  

Due to high axial strength, high durability under large loads,  high strength to weight 

ratio and relatively low cost, wire ropes and spiral strands have many important 

applications both in the onshore and offshore structures: which include hangers for 

suspension bridges, overhead transmission lines, the main cables of cable stayed 

bridges, lift applications (i.e. crawler & truck cranes, dragline, clamshell, shovels and 
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logging), stays for guyed masts, use in aircraft control systems, ship rigging or aircraft 

carrier catapults, applications in oil wells dragging and mining draglines, mooring 

system for deep sea offshore platforms and for post and pre tensioning of concrete, 

are few to list here. 

1.2 Research Aim and Objectives 

This research aims to investigate the bending behaviour of various types of helically 

wound steel cables (spiral strands, sheathed spiral strands and locked coil cables) 

under different loading conditions. During bending of such cables, slippage takes place 

between individual wires, which is mainly governed by interwire frictional forces 

acting at the contact patches between wires. The non-linearity in the mechanical 

behaviour of the cable will be shown to be caused by the change in the state of the 

wires from stick state to slip state.  

To achieve the aim of the project, the research can be divided into the following 

distinct stages, one for each of the main objectives: 

1. To critically review the available literature in order to identify possible 

shortcomings as well as strengths in the previously reported models and to 

present, both on the experimental and theoretical sides, reliable information of 

direct practical use. 

2. To develop more efficient theoretical models, fully taking into account the 

effect of interwire frictional forces and contact deformations. 

3. To analyse and present the results for different cables under different loading 

different conditions, in order to get a sound understanding of the key 

parameters influencing the problem. 

4. To develop simple methods for bringing the theoretical solutions closer to 

practice. 

5. To draw conclusions in comparison with the previous research and give 

directions for future work. 
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1.3 Methodology 

In order to accomplish this research, a novel approach will be derived for the analysis 

of helically wound cables by combining the two selected non-linear models; Hong et 

al., (2005) and Hobbs and Raoof (1982). The first model provides explicit 

formulations for the smooth transition of the bending stiffness of the cable from no-

slip to full-slip regime during bending, whereas the second model fully takes into 

account interwire frictional forces and contact deformations both in radial and hoop 

directions. 

Based on the strain distribution on the curvature, three distinct stages will be 

addressed during the bending cycle of the helical cable: (a) no-slip; (b) partially slip; 

and (c) full-slip. In the first stage, all the wires in the cable will be shown to stick 

together forming a solid bar, such that the bending moment-curvature relationship is 

linear. Second will be the transitional stage, when some parts of the cable are sliding 

whereas others do not. The bending moment-curvature relationship will be shown to 

become non-linear in this case over a range of curvature, due to the variation of strain 

energy of slipped wires in the cable. In the final stage, for a critical curvature, the 

wires in the cable will be shown to slide everywhere in the presence of friction. 

After developing a more efficient novel approach, extensive theoretical parametric 

studies will be carried out to determine the key parameters that govern the contact 

deformations during bending of the cable. In order to perform the necessary 

numerical calculations and to carry out the parametric studies, a computer 

programme has been developed in Java. This programme will be used to analyse the 

response of helical cables to different loading; to calculate the bending stiffness of 

spiral strands; and to analyse certain effects of an external hydrostatic pressure 

applied to sheathed spiral strands. The results will be obtained for various types of 

cables (spiral strand in air-condition, deep water applications and locked coil cables) 

covering a wide range of cable geometrical parameters, and will be compared with the 

experimental data in the literature. 

After a sound understanding of the controlling parameters, the proposed improved 

theoretical solutions will be brought closer to the engineering practice, by means of 

simplifying them to the point where hand calculations are feasible. 
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1.4 Structure of the Thesis 

The completed research in this thesis comprises eight main chapters which forms the 

structure of the thesis: 

Chapter 1 gives an introduction and a general background to the wire ropes, spiral 

strands and locked coil cables. The main aim and objectives of the present research 

are also outlined here.  

The literature review in Chapter 2 highlights the shortcomings and some of the 

problems that the researchers have faced, attempting to analyse various aspects of 

helical cables. Both on the experimental and theoretical sides, reliable information of 

direct practical use are presented. 

In Chapter 3 an insight is given into the formulations used for predicting various 

structural characteristics of multi-layered helical cables. The two selected models 

have been analysed in detail and the ranges of their validity have been identified. 

After the proposed modifications in the formulations, Chapter 4 presents an 

extensive body of the numerical results obtained for a variety of spiral strand 

constructions subjected to different loading conditions. Effective bending stiffness of 

the cable is shown to be a function of the cable curvature. 

The findings presented in Chapter 4 are used in Chapter 5 to develop a simple 

method for the determination of the bending stiffness of multi-layered large diameter 

strands. 

In Chapter 6, the model formulated in Chapter 4 has been extended to cater for the 

effects of external hydrostatic pressures on sheathed spiral strands in deep water 

applications. Numerical results are reported for three different strands of 127 mm 

diameter with lay angles of 12°, 18°, and 24° respectively, subjected to a range of 

water depths (0-2000 m).  

In Chapter 7, a novel approach is presented for estimating the pattern of interwire 

contact forces and bending stiffness of locked coil cables. 
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Chapter 8 presents key conclusions and potential directions for future research. 
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Chapter 2  

Literature Review 

2.1 Introduction 

A large body of available literature is critically examined in this chapter and the 

possible shortcomings and strengths in the previously reported models are pointed 

out. Several analytical models based on different hypotheses (like curved beam 

theory, Poisson’s ratio effects, friction effects, diametral contraction and wires in pure 

tension) have been presented in the literature. Significant advances in the 

understanding of the behaviour of steel cables have been observed in the last three 

decades, various complex models have been developed for predicting with various 

degree of accuracy the mechanical response of helical strands and wire ropes under 

different loading conditions. Although the literature presented with these 

advancements in research on helical strand and wire ropes clarify the problems up to 

a great extent but still there are some research questions, which need to be answered. 

It is hoped that the research presented in this thesis will contribute to answer some of 

these questions. 

Although cable is an element normally used for transmitting tensile load, but due to 

the helical nature of individual wires in a cable are subjected to bending and torsional 

moments and bearing loads, as well as tensile forces. The overall response of a cable, 

in terms of axial displacement and rotation is the magnitude and distribution of 

stresses resulting from these loading. Cable ends where the tensile load is transferred 

to another element is of particular interest to the researchers because the mechanism 

of transferring load from individual wires to the gripping medium of the termination 

can give rise to the stress concentration. 

The work in this thesis is basically focused on the bending behaviour of spiral strands 

and the related problem of the fatigue lives of the strands under tension and bending 

condition. During bending of such cables, slippage takes place between individual 
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wires, which is mainly governed by interwire frictional forces acting at the contact 

patches between wires. 

2.2 Contact Forces and Geometry of Cable  

 

 

Figure 2-1: Interwire contacts in multi-layered spiral strands. 

2.2.1 Contact Phenomenon 

Two classes of interwire contact occur in a typical multi-layered spiral strand, as 

shown in Figure 2.1. The first one is the line contact within a given layer between 

adjacent parallel wires. The other class of interwire contact often occurs between the 

layers of a spiral strand, where to minimize the torque generated in the helically laid 

strand by an axial preload, successive layers of wires are laid in opposite directions. 

As a result, the wires in the two layers cross at an oblique angle, producing a point 

rather than a line contact. These contacts are described as 'trellis' contacts. Because 

they are localized, the contact stresses are much higher than on the line contacts 

within a layer.  

These two classes of interwire contact (line and trellis), the nature of the movements 

on them and the associated contact stress patterns are central to an understanding of 

the elastic, hysteretic and fatigue properties of spiral strands. The behaviour of the 

strand is perhaps best understood, because the single level (cf. ropes, double level) of 

twist in a given wire has made it possible to develop a strong body of analytical work 

(supported by experimental studies). This work has concentrated on assessing contact 

A- Line Contact 

Within Layers 

 

B- Point Contact 

Between Layers 
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forces and the associated relative displacements between individual wires, taking full 

account of frictional effects, in large multi-layered spiral strands undergoing a wide 

variety of loading regimes. 

2.2.2 Helix Geometry 

An individual wire in the strand follows a helical path around the core, where a single 

lay length of the helical wire in the cable can be always unwrapped to form a right-

angled triangle as shown in Figure 2.2b. Every wire in the cable has a specific value of 

polar angle, which describes the position of a wire in the cable cross-section. The 

position of an individual wire in the cable changes along the length of the cable, 

therefore the value of the polar angle of a wire varies from 0 to ±π, as shown in 

Figures 2.2a.  

 

 

Figure 2-2: (a) Illustration of the polar angle in the cable cross-section; (b) Geometry 

of a wire in an arbitrary layer of the cable, where a helix may always be unwrapped to 

form a right-angled triangle. 

In Figure 2.2b, L is length of the helical wire in the cable, r is the radius of helix, d is the 

outer diameter of the cable, α is the lay angle of the wire in the cable and   is the polar 

y’ 

   

   

d = 2r 

S 

2πr 

α 

z’ 
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angle of a wire the cable, which describes the position of wire in the cable cross-

setion.  

 

Figure 2-3: (a) Illustration of the global (cable) and local (wire) coordinates; (b) 

Geometry of a helical wire in the cable. 

In Figure 2.3a & b the helical coordinates used in this thesis are described with the 

polar angle in the (x, y, z) frame.  This angle rotates around the longitudinal axis of the 

helix and coincides with the centre line of the cable. In the current study,  x, y and z 

represent local (wire) axes, whereas   ,    and     are used for global (cable) axes as 

shown in Figure 2.3a. 

The parametric function for a wire having polar angle  , in any arbitrary layer is then 

given by: 

 ( )  {

       
        

    (    ) 
}      2.1 

Once the geometry of helix and the contact forces between the wires are defined in 

this section, a detailed literature review has been presented in the next section. The 

main motivation for this study arose from the interest that due to the helical nature of 

a wire interwire contact forces in the hoop direction are inherent in the cable, and 

have a great influence on interlayer slippage and overall contact deformations. 

y 

z 

x 

α 
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2.3 Mechanical Models 

In the last few decades, a series of attempts have been made to develop engineering 

models for predicting the mechanical behaviour of helically wound steel cables. These 

models vary in accuracy and complexity from Hruska’s simple model to the complex 

models of Lutchansky (1969), Costello (1977, 1978, 1983, 1997), Knapp (1975, 1979, 

1988), Raoof (1982, 1983, 1988, 1990, 1992), Papailiou (1997) and Hong (2005). Due 

to the development of computing power (FEM packages) calculation time has been 

reduced dramatically and this development motivates the use of FEM approach. 

However, a better use of FEM techniques could be made possible, if a more detailed 

insight is gained into the interwire contact deformations analytically. The various FEM 

models, however reported have been in good correlation with experimental results.  

As the vast majority, of available theoretical models for cables do not cater for the 

ever presence of interwire friction and contact deformations. 

2.3.1 Purely Tensile Models 

Hruska (1951) was the first researcher who made a fundamental approach at the 

theoretical modelling of a spiral strand. He published his first paper on the tensile 

forces in the wire ropes as a result of the strong desire to refute Hall’s (1951) 

assumptions. Hall took into account only the tensile forces in the component wires of 

a wire rope and concluded that the axial stresses in the outer wires of a rope were 

greater than the stresses in the inner wires. He neglected the effect of interwire 

friction.  

Hruska (1951) considered in his first paper the tensile forces in the wire ropes, and 

discussed the three important internal actions (i.e. tensile, radial and hoop forces) to 

be considered in the analysis of wire ropes subjected to tensile forces only. Hruska 

completely ignored the bending and twisting effects of helical wires in his analysis. 

Hruska totally disagreed with Hall’s (1951) results, and found that for axial load the 

core wires were more stressed than the outer wires. He also developed a formula for 

calculating the tensile stresses in each individual layer of a wire rope and concluded 

that tensile stresses in each layer is directly proportional to the square of the cosine of 

the lay angle for that particular layer. Hruska neglected the effect of slight changes in 
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lay angle and helix radii after the application of axial load. Hruska was also the first 

one who mentioned the importance of interwire friction in the wire rope, and argued 

that a broken wire will be able to take full share of its load within a distance of few lay 

lengths. 

In his second paper, Hruska (1952) tried to establish a relationship between radial 

and tensile forces in a layer of wire strand, ignoring once again the effect of slight 

changes in lay angle and strand diameter. The findings of this study were that the 

radial forces increased inward for each layer of rope construction and were therefore 

reached a maximum for core wires. 

Hruska (1953) then analysed the effects of the tangential forces in the wire ropes. In 

this paper Hruska showed the way to calculate internal moments and torques in the 

wire rope which were specifically generated by hoop forces in the wires due to inline 

contact with each other within the same layer of wire strand. Hruska however did not 

provide any experimental evidence. 

2.3.2 Thin Rod, Discrete Rod, Helical Rod or Curved Rod 

Models 

Owada (1952) proposed a method for estimating the axial and torsional stiffnesses of 

a simple strand by employing Kirchoff’s equations of equilibrium for smooth thin rods. 

In his model the contact deformations between adjacent wires and the core were 

taken into account when calculating changes of wire helix radius and core 

deformations. His model was supported by some limited experimental data. 

Leissa (1959) extended Hruska’s approach to find contact stresses in wire ropes.  He 

used the Hertzian contact stress theory to calculate the normal contact stresses in the 

rope. His analysis was based on the maximum shear theory and the maximum normal 

stress theory applied to the point at critical regions of contact between the core and 

outer wires. In order to make the analysis simple Leissa restricted his investigations 

to seven wire strand subjected to axial tensile load only. Although Leissa completely 

ignored the effect of interwire frictional forces and contact deformations, but his work 
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gave an insight to the complex study of contact stresses in the wire ropes. This 

inspired other researchers to deal with this problem. 

Chi (1971) prolonged Hruska’s method for the analysis of stresses in the wire ropes. 

Chi took into account the effect of diametric contraction of strand when loads were 

applied. Hruska didn’t cater for diametric contraction in his model and supposed that 

the diameter of the strand is the same before and after the application of load and also 

neglected the effect of end rotations and deformations. In order to deal satisfactorily 

with diametric contraction, Chi suggested a formula for finding the axial strains in all 

the wires of a strand catering for the effect of reduced cross sectional area of the 

wires. 

Chi (1972) analysed in another paper multi wire strands subjected to tensile force 

only and for the combination of tension and torsion both. Based on his analysis, Chi 

proposed a design procedure for a wire rope of three layers including core wires, 

without providing any experimental data to support his theory. 

Durelli et al., (1972) gave some fragile coating to the strand wires and mounted 

electrical resistance strain gauges on the wire surface in directions parallel to the wire 

axis and measured the direct strains in various helical wires of a seven wire strand. 

The strand was subjected to axial, bending or torsional loading with either both ends 

free to rotate or both ends fixed. Although the data was very dispersed but, the 

response of the strand was yet in agreement with the theory that they developed. 

Strains in some wires were however, not linearly proportional to load. Authors also 

concluded that the average longitudinal strain in the core was more than the 

longitudinal strain in the helical wires which confirmed Hruska’s findings. In addition 

to this, it was observed that repeated load didn’t change appreciably the non linear 

behaviour of wires nor the uneven distribution of load between wires. 

Machida and Durelli (1973) proposed certain linear expressions for the determination 

of tension and bending plus twisting moments in helical wires assuming that 

deformations are small enough to neglect the change in helix angle under load. The 

core was assumed to act as a simple rigid bar subjected to axial and torsional loads. 

Interwire contact deformations and Poisson’s effect on individual wires due to axial 
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strain were neglected. While normal contact force between wires was taken into 

account. In addition to this, circular cross sections were used both for helical and core 

wires to determine stresses in them. Elementary theories of bending and torsion were 

applied to determine stresses in helical wires and core. Although the equations given 

were initially used for seven wire strand only with small deformations but similar 

linear equations could be developed for a multi wire strand or strands with large 

deformations. Also, measurements on oversize epoxy model showed good correlation 

with the theory concluded that axial load had no effect on the effective torsional 

rigidity of the strand. Durelli and Machida (1973) observed that it was difficult to 

measure axial strain in the small wires. In order to overcome this problem, the 

authors tested some oversize plastic models of strands in tension, torsion and 

bending. It was found that in addition to electrical resistance strain gauges and brittle 

lacquer, Huggenberger gauges and rosette strain gauge could easily attach to the 

surface of oversize models. In spite of some discrepancies and uneven load sharing 

between identical wires the results were found in good correlation compared with 

theoretical values. 

Costello and Phillips (1973) studied the contact stresses in twisted wire cable and 

took a more fundamental approach than the previous modelling approaches for the 

analysis of wire ropes. They considered individual wires of the strand as thin rod 

cylinders, subjected to bending, twisting, contact and axial loads. For every separated 

thin rod six geometrically non-linear equations were developed and then solved for 

bending and twisting of the thin rod subjected to axial load. A single layer strand was 

considered and the frictional force between the wires was neglected. It was further 

assumed that the wires were just touching each other in the unloaded state and, that 

the core was compressible so that, the radial force exerted by core on the wire could 

be neglected. A simple procedure was then developed for determining the contact 

stresses in twisted wire ropes. Catering for the change in helix angle due to loading 

the authors found that the bearing load between the wires was increased with 

increasing axial load up to some extent and then started decreasing until the wires of 

the cable were straightened i.e. at helix angle 0. 
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Costello and Phillips (1974) derived some new expressions for the contact stresses in 

helically wrapped wire cables that were mainly dependent on the contact angle 

between the two adjacent wires in the cable. Phillips and Costello (1977b) extended 

their previous work to determine the dynamic behaviour of axially loaded twisted 

wire cables. Using Laplace transformations, equations of motion were linearized for a 

single lay twisted wire rope, catering for both, the axial and twisting moments in the 

cable element for some specific boundary conditions.  

Costello (1977) investigated the problem of large deflections in helical springs, 

subjected to bending only. The spring was considered as a thin wire and likewise, 

Costello previous work solution was sought out for the differential equations of 

equilibrium once again neglecting the friction force between the wires. 

Costello and Sinha (1977a) presented a frictionless theory for the determination of 

the static behaviour of a wire rope. The authors treated wire rope in the same way as 

wires were treated in the strand in previous papers. The bending, torsional and axial 

response of the strand was determined, and then incorporated all these in the 

equilibrium equations for a wire rope neglecting the effect of ever present frictional 

force. In another paper Costello and Miller (1979) proposed a theory for predicting 

the static response of regular and Lang lay wire rope. Investigating a variety of wire 

ropes, it was concluded that Lang lay rope had practically no torsional stiffness under 

tension and lay just unwrapped itself, when torsion was applied. Regular lay in 

contrast, tended to stiffen as load increased therefore, it was suggested that Lang lay 

rope should not be used in the case when the ends of the rope are free to rotate. 

Costello (1978) summarized the long history of wire rope properties and its 

applications, which make them useful structural elements. In his paper, he briefly 

discussed various theoretical models developed until 1978, based on various 

simplifying assumptions. It was pointed out that the available literature employed 

frictionless helical rod approach, and the future work should include the effect of 

friction between wires. 

Phillips, Miller and Costello (1979) for the first time considered contact stresses at the 

crossover points between wires of a rope. Results were shown for a rope of 1x19 
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constructions. It was found that the contact force was small enough in comparison 

with tensile force applied to the rope, but could be significantly increased with 

increasing tension in the wires and could get larger value than the tensile stresses in 

the wires. 

Costello (1990) presented theoretical formulations for analysing in detail wire rope 

based on Kirchhoff’s equations for the equilibrium of thin rods. The equations for a 

simple strand were linearized and applied to stranded wire ropes with IWRC. Forces 

and deformations on the cable were related through non-dimensional stiffness 

coefficients. The effect of interwire frictional forces was reported to have very small 

effect in wire ropes. He stated that in the case of pure tension either no sliding 

between the wires took place or only a very small level of sliding occurred. In the case 

of bending, tensile stresses in wire due to bending were found to be small enough to 

produce significant frictional effects. 

Huang (1978) examined the response of an elastic seven-wire strand with a central 

core wire subjected to tensile and torsional loads. The significance of this work was 

that it took into account the Poisson’s effects on helical wires. Before the application of 

loads core and helical wires were assumed just to touch each other.  It was observed 

that when a tensile load is applied to the strand, the core and strand wires came closer 

to each other resulted compressive stresses between core and helical wires. An 

opposing pressure was observed to develop between the wires that were in line 

contact with each other caused by the contact pressure which, caused wire slippage in 

the outer layers of the strand. Furthermore, it was found that the slippage of wires in 

outer layer is a function of the magnitude of contact pressure between wires and the 

magnitude of axial tensile load carried by outer wires. Analysis were carried out for 

the extension of the strand with a separation of outer helical wires and extension of 

the strand without separation of outer wires assuming two types of end conditions 

namely: fixed-fixed and fixed free to rotate. Recently, W.G Jiang (2005) discussed 

Huang’s model and pointed that by neglecting contact deformation in most of the 

previous discrete models including Huang’s (1978) might lead to incorrect conclusion 

and that the extension of the strand could never cause a separation between helical 

wires in line contact, even if the core and surrounding wires are made of the same 
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materials, which confirmed Hobbs and Raoof (1982) homogeneous strand model of 

lateral contact mode. 

Knapp (1979) derived a new stiffness matrix for armoured cables taking into account 

tension and torsion only. Due to the construction of spiral strand configuration, which 

consisted of different layers of different materials having totally different structural 

properties, Knapp treated the cable as a composite element in his analysis. Knapp 

assumed that helical wire diameter remained constant during interwire contact 

pressure but, at the same time he catered for the compressibility of central core wires. 

Based on these assumptions the author first developed geometrically non-linear 

equations for internal deformations i.e. axial displacement and rotation, which were 

then linearized to develop linear stiffness matrices both for tension and torsion in the 

cable. Experimental results were in good agreement with analytical values for 

geometrically compatible wire strands therefore, the author concluded that the 

predicted theory is applicable only for geometrically compatible wire strands and 

cables. 

Utting and Jones (1985) reported test results conducted on a different type of seven 

wire spiral strand. The test procedure was described in detail for obtaining the 

experimental results for a seven wire strand. The test results were compared with 

Machida and Durelli (1973) theoretical predictions, which neglect interwire friction 

forces, Poisson’s ratio effects, and wire flattening due to contact forces, and were 

found to agree reasonably well. Furthermore, it was found that the load sharing 

between nominally identical wires were unequal particularly in the regions near to 

the end grips, which may have considerable effect in the axial fatigue studies. The 

problem of end termination was resolved later for future tests and it was suggested 

that each wire should be bent through 360° before socketing 

Utting and Jones (1987a) carried out another set of experiments on straight single 

steel strands subjected to axial loads with various end restraints. The strand 

extension, torque, rotation, tension and bending moment were measured. The strand 

lay angle was ranged from 9.2° to 17°, with core and helical wires diameters of 3.94 

and 3.73mm respectively. A mathematical model was developed to investigate the 

change in helix angle under axial load, due to Poisson’s ratio effects in the wires, wire 
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flattening effect due to contact pressure and the effect of friction force between the 

core and helical wires. In a companion article Utting and Jones (1987b) compared the 

test results with previously published analytical work of Machida and Durelli (1973) 

and his own theoretical results. The strand extension for free end was observed 70℅ 

more than that in the fixed end conditions. Furthermore, strand extension was found 

to be larger for small helix angles in fixed end test conditions while rotations were 

greater for strands having small helix angles in free end tests. Uneven load sharing 

was observed between identical wires for surface strains and the unevenness of this 

loading remained unchanged under repeated loading. According to the computed 

results of this study in comparison with previous analytical work Poisson’s ratio 

effect, friction between wires and wire flattening at the contact surfaces increased 

elongation of cable up to 2.3℅ only with no effect on rotations. In addition slip 

between core and helical wires was not observed in the strand for the strand length 

tested. 

Utting and Jones (1988) further extended their previous work and carried out tests on 

multi-layer strands of nineteen wires that had a core and helical wire diameters of 

3.66 and 3.33 mm respectively. Tests were conducted for different end conditions e.g. 

fully fixed, partially restrained and totally free ends against torsion. The rate of 

elongation and strand rotation were found maximum for free end conditions and vice 

versa. The test values occurred for free end test largely deviated from theoretically 

predicted values for increasing axial load. However, the theoretical determined 

deformation of individual wires showed a more uniform distribution of load for fixed 

end conditions, which did not exist in reality and therefore, the deformation of a 

particular wire may be much greater than that predicted by existing theories. It was 

also observed that the change in the rate of bending moment varied with strand load 

such that increasing strand load tended to decrease the tensile stresses in the wire 

crown with less torsional restraints. Finally the results were compared with the 

experimental results of Velinsky et al., (1984), as well as their own test data (Utting 

and Jones, 1987a and 1987b). The main point, based on this comparison was that the 

theoretical predictions of the overall response of a seven wire strand were more 

accurate than those for a nineteen wire strand. 
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Kumar and Cochran (1987) applied Costello’s (1983) theory in conjunction with the 

assumption of small change and developed closed-form solutions for various elastic 

deformation characteristics of a more complex wire rope model with a metallic core, 

subjected to external tensile and torsional loads. A simple design procedure was 

established for non-rotating cables that were found quite well in predicting the rope 

stiffness against axial displacement and rotation of the rope. In addition, effects of the 

layout of layers, number of wires in each layer and the direction and magnitude of lay 

angles, on these deformations were also investigated. The effect of interwire frictional 

forces was ignored once again. 

Kumar and Cochran (1990) developed closed form solutions capable of predicting 

static deformations of the twisted wire ropes with fibrous cores subjected to axial and 

torsional loads.  The wires in the same layer were assumed to touch each other in line 

contact before the load was applied. The rope was analysed for two different cases: 

namely, when both ends are fixed against rotation, and when one end is free to rotate 

keeping other fixed. The importance of the number of helical wires was signified for 

both the cases and that when both the ends of the cable were fixed against rotation 

the steel Poisson’s ratio was found to have negligible effect on cable axial stiffness. In 

addition it was found that the lay angle of the wires has a strong effect on the axial 

stiffness of the cable. Finally numerical results were compared with the corresponding 

numerical results of Costello and Phillips (1976). 

Jolicoeur and Cardou (1991) numerically compared many of the previous 

mathematical models, which in turn were compared again with the experimental 

results of Utting and Jones (1987a, 1987b), McConell and Zemke (1982) and Knapp 

(1979). It was observed that the results of all models were quite accurate as long as 

axial stiffness of the cable was concerned. The degree of agreement between 

theoretical and experimental results was noted to vary, when the coupling coefficients 

were calculated. Also, it was discovered that all the models yielded comparable results 

as for as global stiffness of the cable was concerned, but they were not equivalent 

when it came to find local effects such as interwire or interlayer pressure and non-

linear behaviour. To address these cases more advanced model should be used, such 

as orthotropic sheet model of Hobbs and Raoof (1982). 
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Ramsey (1990) proposed a thin rod model for the analysis of steel cables experiencing 

extension and twist, taking into account both interwire frictional forces between the 

adjacent wires in the same layer, as well as between wires in the adjoining layers. It 

was stated that these forces existed only in the form of couples which oppose changes 

of the wire lay angles. 

Lee (1991) developed a mathematical model based on vector geometry to investigate 

the geometrical properties of rope helices. A computer programme was derived from 

the mathematical model for calculating the geometrical parameters of double and 

triple helical wires in the strands and ropes. The bending of strands and ropes over a 

sheave or around a drum was investigated. It was found that the wire curvature and 

torsion functions could be related to the bending stress in addition, it was discovered 

that the properties of these functions and their implications for bending and twisting 

stresses were dependent on the lay of the strand and wire rope. It was stated that the 

geometrical analysis presented in this paper could be applied to any rope with 

axisymmetric strands. 

Jiang (1995) gave some general formulations for the non linear and linear analysis of 

wire ropes, neglecting the effect of frictional forces between wires. In these 

formulations wires, strands and wire ropes were considered as a kind of identical 

structure, only with different values of stiffness and deformation constants. It was 

stated that the general formulations developed could be used for the analysis of wire 

ropes consisting of various complex cross sections as well as simple wire strands. It 

was further stated that in this way various strand and wire rope problems could be 

attacked with one general formulation. Jiang’s work was later discussed by Jolicoeur 

(1996), who pointed out some typing errors and a sign error in the formulation. 

Sathikh et al (1996) discussed the lack of symmetry in the stiffness matrix. It was 

proposed that in order to make the solution theoretically sound and consistent, the 

stiffness matrix should always be symmetrical. 

Sathikh et al., (1996) presented a symmetric linear elastic model for helical wire 

strand using discrete thin rod theory. The problem of asymmetry common to the 

majority of discrete models was solved. Analyses were carried out for seven wire 

strand with rigid core, having only core to wire contact, neglecting interwire contact 
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forces. The wire tension, torsion and bending was considered in the analysis. The 

predictions based on this approach were compared with those of other thin rod 

models and experimental results available on a variety of seven wire strand, and was 

found to provide reasonable results. The model was based on Ramsey (1988 and 

1990) - Wempner (1973) theory of generalized strains. Although this model identified 

the origin of the lack of symmetry in the stiffness matrix of earlier models, it is still a 

discrete model, and discrete model has always shown less favourable results than a 

semi continuous model particularly, when the number of wire in the spiral strand 

increases to say, more than nineteen. 

Kumar et al., (1997) extended Costello and Phillips, theory of wire rope and obtained 

analytical closed-form expressions for critical line contact stresses in a single seven 

wire strand cable with fibrous core.  It was observed that lay angle has a strong effect 

on the life span of a cable and using very large lay angles, e.g. 45°, would essentially 

promote a longer life span for a cable. In addition it was found that for wire ropes 

whose main function is dissipating vibrational energy, then, lay angle as large as 30° 

cause much larger contact stresses and hence, frictional hysteresis. However, as for as 

the knowledge of the present author is concerned, cables with lay angles of 30° and 

above are not used in practice. The practical lay angles being used are generally within 

the range of 11° ≤ α ≤ 24°. 

Sathikh et al., (2000) proposed a more generalized discrete thin rod model to study 

the pre-slip behaviour of a seven wire strand. The helical wires were assumed to be in 

contact with the core under Coulomb stick friction and the effect of rolling of wires on 

core was neglected. The main purpose of this study was to improve the 

characterization of the strand behaviour in free bending over other available discrete 

models.  Numerical comparison of various discrete models was made, and it was 

stated that the discrete models of Knapp (1988), Lutchansky (1969), Lanteigne 

(1985), LeClair and Costello (1988) were only the special cases of the present general 

model. As discussed earlier, such discrete models could only produce reasonable 

results for a wire strand up to say nineteen wires. This is because for a large number 

of wires, discrepancies in results increase by considering the equilibrium of individual 
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wires in the cable.   Advanced models, like orthotropic sheet model should be used for 

the analyses of multilayer helical strands of more than, say nineteen wires. 

Elata et al., (2004) proposed a new model for simulating the mechanical behaviour of 

a wire rope with an independent wire rope core subjected to axial load as well as axial 

torque. Unlike previous discrete models, this model fully took into account the double 

helix configuration of individual wire in the wire rope that was based on the 

kinematics of individual wires within the rope. Two different cases were considered 

namely: open sieves that had very low friction, and closed sieves that had infinite 

friction between adjacent wires. The axial stress predicted at the wire level for both 

the cases was considerably different. The rope stiffness matrix coefficients were 

compared with the experimental data collected, which were found in reasonable 

agreement. It was suggested that the model could be used to predict failure, fatigue 

and fretting at the wire level that could be used for designing rope cross sections with 

the properties of rotation resistant and uniform load distribution. Bending and torsion 

stiffness of the individual wires were completely neglected in the analysis. 

Yen and Chen (2006) developed a theoretical model for predicting the behaviour of 

axially loaded complex wire ropes. The model was based on the frictionless theory of 

Costello and others i.e. considering wire rope as an assembly of helical wires and in 

addition to this Love’s theory of thin rod was also applied. The results obtained for the 

relation of axial stress and strain by the presented theory were found less stiff than 

the results determined by Costello’s model. It was shown in the results that 

approximately linear relations existed between load and axial strain for zero 

rotational strain of the wire rope. This modified theoretical approach was used in the 

analysis 6x7 wire rope with an independent wire rope core, completely ignoring the 

effect of intewire frictional forces. Some comparisons to other research results were 

provided with no experimental data in support. 

In another paper Ghoreishi et al., (2007b) presented several closed form formulations 

to predict the behaviour of fibrous structures, made of six helical strands wrapped 

helically around a straight core. The helical strands were assumed as Kirchhofs-Love 

beams, by neglecting the effects of bending moments and shear forces. In addition to 

this, the friction effects and lateral contraction of the core was also neglected due to 
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the static load assumption and small lay angles. The model results were compared 

with an existing model of Leech that was found in reasonable agreement, except a 

notable difference for the torsional stiffness of the rope. The model was initially 

developed for metallic cables, which was then modified for synthetic wire ropes. It 

was stated that for the next higher level of the model, results from the previous level 

were used as input data and, by using this approach from lowest to higher the axial 

stiffness matrix of the rope was developed. Finally, test results on both fibre ropes 

with 25 tons and 205 tons rupture load, were reported to obtain experimentally the 

values of the rope stiffness matrix. A very close agreement was claimed to find 

between the model and experimental data at the low level of the input material 

characteristics. 

Kenta et al., (2007) investigated the mechanical behaviour of multi order helical 

structures in electrical cables and developed an analytical model for calculating the 

stress in second order helical structures fully taking into account frictional forces 

between wires. Stresses in every individual wire were calculated first and then by 

summing them up the overall response of the cable to bending was determined. It was 

found that the internal stress and number of slipping wires were the key properties 

for the life estimation of the cable. Furthermore, it was stated that the behaviour of the 

wires were not only affected by applied loading but also by the pressure from 

clamping jacket, insulation materials and other components, that resulted frictional 

force on the surface. The theoretical results from the model were compared with 

experimental data to estimate the unknown pressures developed from jacket and 

insulation materials. The transition from stick state to full slipping state was achieved 

by fully considering the effects of interwire frictional forces. 

Usabiaga and Pagalday (2008) developed a new theoretical procedure for modelling 

of wire ropes having wire strand core and subjected to tensile and torsional loading. 

The proposed theory was based on Love’s (1944), general thin rod theory with beam 

assumption by taking into account the double helix configuration of individual wires 

in the rope. It was further assumed that the friction between wires is high enough to 

prevent the slippage between the wires in the strands, which does not seem to be a 

practical assumption and the strand stiffness largely varies with relative slippage of 
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wires. It was stated that the wire contraction due to Poisson’s ratio had no significant 

effect on the overall stiffness of the rope. Based on Love’s curvature a simple 

procedure was developed for computing bending stresses for double helical wires. 

The predicted results from this model were compared with the previous analytical 

models of Costello, Ghoreishi et al. (2007a) and Ashkenazi et al. (2003) as well as 

experimental results reported by Utting and Jones (1987), which were found in 

reasonable agreement with some disagreements for local stress and torsional stiffness 

values of the strand. 

Ivan (2011) proposed a discrete mathematical model for calculating analytically the 

transverse contraction of the wire strand through Poison’s ratio and local contact 

deformations. It is shown that for small lay angles (less than 15) Poison’s ratio effect 

were more dominant over the effect of interwire contact.  For lay angles beyond 25, 

the impact of interwire contact (i.e wire flattening) effect dominates the Poison’s ratio 

effect. 

2.3.3 Semi-Continuous Models 

All the models discussed in the previous section are known as discrete models, as the 

compatibility equations are developed for every individual wire of the strand and then 

solved to find the internal actions. Semi-Continuous model approach is totally 

different, as in this case a strand consisting of a core and N layers of helical wires is 

mathematically represented by N concentric orthotropic cylinders, whose mechanical 

properties are averaged to form a continuum which matches the behaviour of their 

corresponding layer of wires. Since the properties of the strand are averaged in semi 

continuous models, the accuracy tends to increase with the number of wires in the 

strand. The other major advantage of semi continuous model is that the problem of 

interwire contact is sufficiently simplified to be mathematically tractable. Since there 

are a lot of uncertainties in calculating the interwire line contact stresses on a nominal 

basis due to irregularities in the fit of the wires, semi continuous models have also 

provided very good results to address the problem of statically indeterminate contact 

stresses between the wires of a spiral strand. Hobbs and Raoof (1982) were the first 

who developed the concept of orthotropic sheet theory known as the first semi-
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continuous model which was then described in detail by Raoof (1983) and later on, 

extended by Raoof and his associates over almost three decades. 

Currently, there are three types of semi continuous model approaches used for the 

analysis of wire ropes. The first was developed by Hobbs and Raoof (1982), and is 

known as orthotropic sheet model. It is postulated that each layer of wires in the 

strand has enough wires for the properties to be averaged so that, the layer can be 

treated as cylindrical orthotropic sheets, which is assumed to be thin and in plane 

stress state. The elastic properties of the sheet are then derived as a function of the 

external load perturbation, with reference to the principal axes parallel and 

perpendicular to the wires, using mechanical contact theories and assuming 

Coulomb’s friction between wires. Then Hearmon (1961) formulation can be used to 

transform the elastic properties of the sheet to values parallel and perpendicular to 

strand axis.  The compatibility equations are initially developed for a strand with its 

ends fixed against rotation, it is assumed that the wires in each layer are just touching 

each other in line contact in the unstressed configuration. As the theory is developed 

for strands with large number of wires say, more than 19 therefore, it is further 

assumed that the wire cross sections in a normal section of the strand will be treated 

as ellipses. It is postulated that in multi layered strand the diametric contraction of 

individual layers due the Poisson’s ratio effects in wire material is quite uniform over 

cable cross section and therefore Poisson’s ratio does not affect the contact stress 

between individual wires in different layers.  It is further assumed that twisting and 

bending moments of individual wires are negligible and that plane sections remain 

plane during strand deformations away from clamping points.  For a counter laid 

construction, the elastic stiffness in the radial direction across the trellis crossing of 

cylinders (wires) is quite smaller than in the hoop direction across line contact 

between cylinders (wires). 

Another semi-continuous model was developed by Blouin and Cardou (1989) that was 

later followed by Jolicoeur and Cardou (1994, 1996). This model shares some 

similarities with the model of Raoof and Hobbs (1982) but the two models rely on 

entirely different theoretical grounds and are different in the evaluation of strand 

stiffness and slip effects. Also in orthotropic sheet model the cylinders are considered 
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thin with negligible thickness of wires and the problem is two dimensional, while in 

this model the thickness of cylinders is considered that makes the problem 

tridimensinal. Both approaches however, are based on continuum mechanics and the 

elasticity of anisotropic material. The model was initially developed for ACSRs cables, 

which was then extended to other types of helical strands and wire ropes. Like 

orthotropic sheet model of Raoof, this model also replaces each layer of wires with a 

cylinder of orthotropic material. Stress-strain equations are derived for such a 

cylinder experiencing axisymmetric loading: axial force, twisting moment and uniform 

radial external and internal pressure forces. These equations were then generalized to 

a system of N co-axial cylinders with an isotropic core. The model was further 

extended by Joulicour and Cardou (1994) and some general analytical solutions were 

obtained for describing the behaviour of a system of co-axial orthotropic cylinders 

under tensile bending and torsion loads considering two types of boundary conditions 

at the interface between two cylinders: no slip and no friction. For simplification, it 

was further assumed that cylinders were cylindrically anisotropic, and the stresses 

and strains along the axis of the cylinder were constant. Lutchansky’s (1969) stress 

functions were used to form a system of two partial differential equations in terms of 

radial and tangential coordinates that were then solved analytically for stresses and 

displacements of one orthotropic cylinder. The two cases of no-slip and no friction, 

with respect to other cylinder were estimated by obtaining numerical results for a 

simple application. It was stated that under no slip case a positive radial stress 

appeared to develop at the interface between the cylinders, which should be 

counterbalanced either by axial pre-stressing force or by bonding between the 

cylinders in order to prevent separation. It was further postulated that under no end 

effects, no coupling between bending and tension-torsion was observed that lead to 

the conclusion that a cylinder subjected to bending would not elongate or rotate and 

vice versa. In addition it was stated that the bending moment caused a curvature in a 

plane perpendicular to the axis of the applied moment with no deviation observed. In 

order that the cylinder appropriately represents a layer of wires in the strand, 

Joulicour and Cardou (1996) developed a procedure for determining the elastic 

properties of the orthotropic cylinder. 
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Jolicoeur (1997) compared the two semi-continuous model approaches of Hobbs and 

Raoof (1982) and Jolicoeur and Cardou (1996). The similarities and differences in 

many important points were mentioned. After obtaining numerical results for a seven 

wire strand and a multi layered ACSR conductor cable, it was stated that both models 

produced same stiffness results for tension and torsion, when same values of 

orthotropic material properties were used. However, the torsional stiffness values 

obtained from Jolicoeur and Cardou (1996) model were higher than those predicted 

by orthotropic sheet model of Hobbs and Raoof (1982). It was claimed that Jolicoeur 

and Cardou model was more sensitive to bending stiffness of the cable in comparison 

with orthotropic sheet model and therefore could be used to accurately predict the 

important variations between maximum and minimum bending stiffness. It was 

further claimed that with a slight modification to orthotropic sheet model of Hobbs 

and Raoof reproduced very good results even for seven wire strands and ACSR 

conductor cables. 

Davies (2000) presented a detailed comparative analysis between the original 

orthotropic sheet theoretical model of Raoof and Hobbs (RH), and a slightly modified 

version of the RH model (RH2), featuring the modifications proposed by Jolicoeur as 

well as including the proposed assumptions of original orthotropic sheet theory. After 

conducting an extensive series of theoretical parametric studies on a variety of spiral 

strand constructions, covering a wide range of wire and cable diameters and lay 

angles, it was stated that in spite of oversights in formulations by Jolicoeur, no 

practically significant difference in the results of RH model was found with those of 

RH2 model. Furthermore, Jolicoeur’s analyses were restricted to seven wire strands 

and one multi-layered strand, with a very narrow range of lay angles, which limited 

his findings. It would have been more helpful if the models had been compared by 

conducting a comprehensive analysis using larger diameter multi-layered spiral 

strands with varying lay angles, which is the key controlling geometrical parameter as 

long as strand stiffness is concerned (Raoof, 1997). The coupling coefficient A3 was 

found the main difference between the results from the two (RH and RH2) models and 

this difference was somewhat more pronounced for the no slip case, especially when 

the lay angle increased from 12° to 24°, however was not significant for the full slip 

layer stiffness coefficients.   It was further stated that in Jolicoeur’s model the ever 
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present curvature of the strand in the hoop direction was not taken into account for 

both the stiffness calculations and the calculation of ck, which in some cases lead to 

positive values of this parameter, which is not the practical case for the axially 

preloaded spiral strand. 

Ghoreishi et al., (2007a) developed a new non linear elastic continuum model for the 

analysis of axial stiffness of multi layered fibrous ropes with a large number of twisted 

components, subjected to static monotonic axial load. The material has been assumed 

to behave linearly by neglecting the effects of inter-fibre frictional forces. It is further 

assumed that due to small lay angles (less than 15°), there is no overall diametral 

contraction in the rope. Unlike previous semi-continuous model approaches the model 

does not consider multi-layered geometry as an assembly of layers, but rather treats it 

as a continuum formed by a set of coaxial helixes, with the same number of turns per 

unit length of the cable. It is further observed that due to the lack of consistency in 

various simplifying hypothesis, the stiffness matrix of all the previous models deviate 

slightly from symmetry.  Finally, the authors compared the results of their model with 

models of Leech, Hobbs and Raoof, which were found in close agreement with them. 

However, a significant difference was observed with respect to the torsional stiffness 

of the rope. 

2.3.4 Finite Element Models 

Finite element analysis (FEA) is basically a computer model of a material or design 

that is loaded and analysed for specific load conditions that could be used for the 

design of new structure or reinforcement of the existing structure. The mechanism of 

FEA is that the whole structure is divided into small elements forming a mesh such 

that the continuity of displacements between the elements is enforced. The elements 

are connected at specific points called nodes. The mesh is then programmed to 

contain the material and structural properties, which can predict the response of a 

structure to certain loading conditions. Generally, two types of analysis are used in 

FEA namely: 2-D modelling and 3-D modelling. The 2-D modelling analysis is usually 

simpler, faster but less accurate compared with those of 3-D modelling. The accuracy 

of model increases with a decrease in the size of elements in the mesh and increasing 
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number of nodes. Linear systems usually do not take into account the plastic 

deformations while non-linear systems fully take into account plastic deformations of 

the material and can be used for testing a material all the way to testing node 

(Nicholas, 1988). 

 

Figure 2-4: Finite Element Mesh after Jiang et al., (2008). 

Chiang (1996) proposed some finite element methods and statistical design of 

experiments to explore the characteristics of simple stranded wire ropes subjected to 

axial loading. The effect of six design factors (radius of core wires, radius of helical 

wires, helix angle, strand’s length, contact condition between core and helical wires 

and boundary conditions) was studied on the axial stiffness and axial stress rises at 

the ends of the cable as well as at middle cross section. Conclusion to this paper 

included the comparison of the results from both statistical predictive model and 

finite element analysis, which were found to be in good correlation for both axial 

stiffness and axial stress. Furthermore, it was stated that although the method 

presented is for 1x7 simple stranded cable, but it could be used for the analysis of 

more complex cross sections.  

Jiang et al., (1999) developed an accurate general strand model using finite element 

method (FEM), which took full advantage of the helical symmetry features of a strand. 
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It was stated that the model is capable of taking into account the non-linear effects of 

tension, torsion, bending, shear, friction, contact as well as the effect of local plastic 

yielding, which were quite difficult to address theoretically. The model was 

successfully used to predict the global response of the straight wire rope strand and 

the stress distribution within the wires under axial loading conditions. Accurate 

boundary conditions were established during the implementation of the finite 

element analysis. The finite element analysis results of the model were compared with 

the analytical theory of Costello and experimental results of Utting and Jones, which 

were found to show an excellent agreement with them. Jiang and Henshall (2000) 

addressed the problem of extension and torsion in helical springs subjected to axial 

loads, and developed an accurate finite element model for predicting the behaviour of 

helical springs. It was observed that for small helical angle and the ratio of wire radius 

to coil radius, finite element analysis results agreed very well with the analytical 

models predictions for tension and torsion springs. While the disagreement between 

FEM results and analytical models was found to increase with the increase in helical 

angle and the ratio of wire radius to coil radius that was thought to be due to 

neglecting higher order terms in the series expansion.  

Saevik and Bruasth (2005) proposed a finite element model and an algorithm for 

predicting the behaviour of complex umbilical cross sections, subjected to tension, 

torsion, internal and external pressure as well as external contact forces. The effects of 

material non linearities, hoop contact between wires and wires, gap formation and 

curvature change were taken into account. It was stated that the model could estimate 

the stresses and displacements of individual structural elements/wires as well as the 

overall response of the cable. Simulation results for a value of 100 Mpa axial tensions 

were presented and tested with both previously published data and new experiments. 

A very close agreement was found between the test and simulations results, when 

applying this value of axial tension. The effects caused by gap formation between the 

wires and other structural elements were managed by a surface stiffness penalty 

parameter applied to the contact elements. It was suggested that the model is very 

good especially for the range of umbilical cross sections used in the experiments, 

which might be lead towards more optimized design procedures for umbilicals in 

future. 
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Figure 2-5: Typical Finite Element Model of an Umbilical Cross-Section after Saevik 

and Bruasth (2005) 

Jiang et al., (2008) presented a simple finite element model to predict more accurately 

the behaviour of a simple strand, made from only one layer of circular wires helically 

wrapped around a circular straight core, subjected to axial tensile load only. It was 

observed that contact could take simultaneously between the core and helical wires, 

and between adjacent neighbouring helical wires, which form a statically 

indeterminate contact problem. Analysis for cyclic axial load was performed taking 

into account the effect of frictional forces between helical wires. It was shown 

numerically that the assumption of an elliptical cross section of a helical wire in a 

plane perpendicular to the strand symmetric axis was quite accurate compared with 

the exact shape of the wire, when lay angle was less than 20°. The contact stresses in 

radial direction were found higher than those in hoop direction by about 19%. The 

problem of statically indeterminate contact between the wires in a spiral strand has 

already been discussed by Raoof and his associates in some more details and 

analytical formulas for determining contact stresses both in radial and hoop 

directions have been presented. 
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Zhu and Meguid (2007) reported a finite element model to quantify the dynamic 

behavior and flexural damping of slacking wire cables. The cable was fixed at one end 

and vibrated at the other and the shapes of the vibrating cable were captured by high 

speed digital camera. These images were then analysed by using photogrammetry to 

determine the flexural damping coefficient of slacking wire cable. It is stated that a 

high flexural damping is observed to occur when there was no tension force applied to 

the cable. Further, the cable was also analysed using the non-linear curved beam 

element and Rayleigh damping. The results from the finite element model were found 

in good correlations with the experimental measurements.  

Erdonmez and Imrak (2011) proposed a three dimensional modelling approach and 

finite element analysis for the double helix of a wire rope subjected to axial loads. The 

proposed model fully accounted for frictional and plastic behaviour of the wire strand. 

Taking into account of the wires real helical geometry, wire by wire based results 

were obtained by using the proposed modelling and analysis method under various 

loading conditions. For a simple straight strand, numerical results were obtained for 

both frictionless elastic and frictional elastic–plastic analyses. It was stated that wire 

contraction due to Poisson’s ratio effect has a very little role over the whole model 

analysis. The results from the FE model were compared with the analytical model of 

Costello (1990) and available test results of Utting and Jones (1987), and were found 

in good agreement. 

Judge et al., (2012) developed a 3D elasto-plastic finite element models for multi-layer 

large diameter cables with complicated geometry and contact conditions. The authors 

stated that the developed models can not only predict the global responses of the 

cable, but also capable of predicting the highly non-linear local effects in the wires. 

The key geometrical parameters identified for governing these properties were: lay 

angle, the number layer in the cable, the number of wires in the layer, lay length, and 

the diameters and locations of wires in specific layer. The authors also stated that the 

quality of the cable end terminations has a paramount for the cable to achieve its 

designed loading capacity. 
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2.4 Axial and Torsional Stiffness Characteristics of 

Cables 

Costello and Phillips (1976) considered the elongation of the wire strand in the 

compatibility equations and found that, the stiffness of the cable was high when its 

ends were fixed against rotation and therefore the authors concluded that the type of 

end conditions plays an important role in the cable stiffness (except for those having 

initial helix angle near to ninety degrees). Furthermore, for fixed-end cables, change in 

axial load didn’t affect the stiffness of the cable, on the other hand for those cables 

whose ends were free to rotate, the stiffness was observed to increase sharply with 

increasing axial load. However, the supposed values of axial strain for the analysis of 

the strand were very large and not applicable practically. The authors used value of 

axial strain .02 and above which does not exist in reality and 0.008 is thought to be 

maximum strain observed in the cable. 

Costello and Sinha (1977b) started from Costello’s previous assumptions reported 

elsewhere (Costello, 1977), and investigated the torsional stiffness of a single layer 

wire cable. It was observed that the torsional stiffness of the cable was not remarkably 

affected by the axial load or twisting moment applied at the ends of the cable.  

Hobbs and Raoof (1982) showed the torsional and axial stiffness’s of a wire rope as a 

function of the applied torque and axial load perturbations that varied between full 

slip and no slip limits. The degradation of the axial and torsional stiffness was 

associated with the development of interwire slip (Hobbs and Raoof, 1986). A simple 

relationship between the no slip and full slip limits was presented graphically, full slip 

limit was found to be a function of lay angle only. Raoof and Hobbs (1988a) extended 

their previous work (Hobbs and Raoof, 1982) and presented some experimental 

results on the torsional characteristics of the axially preloaded large spiral strands. 

Contact forces and the associated relative displacements between the wires were 

carefully assessed, taking fully into account interwire frictional forces with the ends of 

the wire rope fixed against rotation. The experimental results were found in great 

conformity with theoretical predictions for torsional stiffness of the cable, using the 

same value of the co-efficient of friction. The strand axial stiffness was found to be a 
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non-linear function of the applied load perturbations, due to interwire frictional 

effects. 

Raoof and Hobbs (1989) investigated the response of a multi-layer strand to an 

externally applied torque for a mean axial load. The full slip histories on the interwire 

contact patches, from micro slips on the periphery at low loads to onset of gross slip at 

higher loads were predicted, taking fully into account the interwire frictional forces. 

The torsional stiffness was found to be a function of the applied torque and mean axial 

load. The torsion modulli for the two limits (no slip and full slip) were observed to be 

independent of the interwire friction coefficient. The theory also predicts the torsional 

energy dissipation quotient under continued cyclic loading, with experimental 

verification discussed in detail elsewhere by Raoof and Hobbs (1988b). 

Raoof (1990e) developed simple design formulations for predicting various structural 

characteristics of both the spiral strands and multi-strand ropes, which can be 

adopted for engineering design applications. Using orthotropic sheet theory, these 

formulations were derived after a series of extensive parametric studies on a variety 

of spiral strands, having different wire diameters, lay angles and cable diameters. 

Reliable estimates were obtained for the no slip and full slip limits to the axial modulli 

of the spiral strands and related maximum level of logarithmic decrement under 

sustained axial uniform repeated loading, and their corresponding load range/mean 

ratio. The numerical results from the formulae were compared with experimental 

results on a spiral strand of 127 mm outer diameter, and a close agreement was found 

between the numerical and experimental results.  The upper and lower bounds to the 

axial stiffness of multi strand rope were predicted by an extended version of 

orthotropic sheet theory. A very encouraging agreement was found between the 

theoretical full slip stiffness prediction and experimental results on a newly 

manufactured 40 mm outside diameter multi strand rope, which was found to be 

independent of the life history and level of bedding in of the wire rope. The no slip 

prediction was however, found to be dependent on the wire ropes with a stabilized 

pattern of interwire contact, which normally develops after thousands times repeated 

axial loading phases. The no slip prediction, for a newly manufactured strand was 

observed to provide a very helpful upper bound to the experimental data. 
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Tabatabai et al., (1995) published a series of full-scale axial fatigue tests on stay cables 

with epoxy coated, as well as uncoated, seven-wire strands conducted by Construction 

Technology Laboratories. Test specimens of various lengths varying from 4.6 m to 

14.6 m were tested for different anchorage systems. It was found that for a load range 

of 36% to 45% of the ultimate breaking load, most cables experience wire fracture 

during 2 million-cycle. It was further stated that the percentage of broken wires after 

two million cycles range from 0% to 27%, whereas in some tests failure occurred at 

the corroded areas of the strand. 

Conducting another series of extensive parametric studies on a wide range of spiral 

strand constructions, Raoof (1992d) provided some simple formulations for 

estimating various kinematical characteristics of the spiral strands, and specifically for 

wire axial strains and stresses, slippage over the line contact patches in each layer and 

rotations over trellis points of interlayer contact. Simple routines were also provided 

for estimating axial and free bending stiffnesses of a preloaded spiral strand that 

varied between two limits of no slip and full slip, depending on the magnitude of the 

applied axial load or free bending perturbations. In addition strand lateral contraction 

under axial load from first principles could be easily predicted.  It was stated that the 

formulations presented could be used as a simple tool for calculating the associated 

relative interwire/interlayer displacements within the strand, which is used as an 

input data to the interwire fretting fatigue experiments. 

Raoof and Kraincanic (1995a) reported the results from an extensive series of 

theoretical parametric studies based on orthotropic sheet theory, for multi-layer 

strands. The results covered a wide range of cable and wire diameters and lay angles. 

A simple method was proposed for predicting reliable estimates of the 2x2 stiffness 

matrix, relating to the axial/torsional coupling of large diameter and axially preloaded 

spiral strands. Simple routines were developed for obtaining the no slip and full slip 

limits to the stiffness coefficients. The proposed formulations were simple enough to 

do calculations by hand, using a pocket calculator, which are quite useful for 

practicing engineers. 

Using the orthotropic sheet model, Raoof and Kraincanic (1995b) presented some 

theoretical results for predicting the behaviour of the constituent helical strands of a 
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large diameter wire rope, taking fully into account frictional forces between helical 

wires. It was stated that the model provided a very simple means for predicting the no 

slip and full slip limits to the effective axial stiffness of the wire rope. The model 

results were compared with experimental data reported elsewhere, that were found 

in reasonable agreement. 

Kraincanic and Hobbs (1998) studied the axial stiffness and torsional effects in a 76 

mm wire rope based on orthotropic sheet approach. Experimental results were 

obtained for 7 m long specimen, whose ends were fixed against rotation and subjected 

to axial loads ranging up to 1.4 MN. The no-slip and full slip axial stiffness of the cable 

was determined from the considerations of the frictional phenomena whereas; the no-

slip torsional stiffness of the rope is shown to greatly depend on the axial load. Over 

all, the theoretical model and experimental data were in good agreement for a large 

rope reported here. 

Raoof and Davies (2003) developed two slightly different models for the 

determination of the axial stiffness of large diameter wire rope both with IWRC or 

fibre core. In their work, they used Hruska’s simple parameter to estimate the overall 

axial stiffness of the cable. The lay angles (both of the wires in the strand and of strand 

in the rope) were found to be the controlling parameter in the axial stiffness of the 

wire rope. A slight increase in lay angle is found to decrease axial stiffness of the cable. 

Similarly, the cross-sectional areas of the individual wires also play an important role 

in the axial stiffness.  The available experimental data for three different wire rope 

constructions have been found to provide encouraging support for the theoretical 

predictions of their model.  

2.5 Hysteretic Characteristics of Helical Cables 

For many engineering applications where structural cables are subjected to aero-

hydrodynamic actions, e.g. wind gust, ocean waves or traffic load, the amount of 

energy dissipation exhibited by the cable is of key importance. The nonlinear 

properties of the cables are mostly caused by internal damping in the cable. In modern 

bridges, the major sources of damping in the deck system of earlier designs has been 

greatly reduced due to the bridge deck being integrated with the main load bearing 
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members and the extensive use of welding. Therefore, cable used as hangers in 

suspension bridges and cable stayed bridges, can form a much larger part of the total 

damping in the recent structures. 

Hobbs and Raoof (1984) developed a new method for predicting the axial hysteresis 

in the spiral strand. It was stated that the method could predict the significant 

variations in the hysteresis with pre load as well as load range for any type of spiral 

strand construction. The theoretical predictions of full slip stiffness for a number of 

spiral strands were compared with the experimental results reported elsewhere 

founding an encouraging agreement. The level of energy dissipation found was quite 

low than the results reported by Roberts and Severn (1968).  

The authors mentioned that under random loading conditions, the level of axial and 

torsional hysteresis of a spiral strand could significantly increase. A notable reduction 

in the energy dissipation was observed with the increasing working life of a spiral 

strand, with a high value found for newly manufactured strand. Therefore, it was 

suggested that the hysteresis measurements on such a newly manufactured strand 

could be misleading for long-term applications. In addition, it was concluded that the 

energy dissipation in spiral strand could be easily increased, with a small increase in 

the lay angle of the strand, which will slightly decrease the stiffness of the spiral 

strand. The variation in the damping, by modification of friction coefficient was shown 

theoretically. Damping was observed to reduce for certain load ranges by increasing 

coefficient of friction, However it was suggested that the peak values of damping are 

independent of the degree of bedding in and friction coefficient. 

Raoof (1990a) discussed the hysteretic behaviour of a newly manufactured spiral 

strand and an old and fully bedded in helical strand. It was shown theoretically that 

the damping characteristics of newly manufactured strand could vary in a very 

complex fashion, due the nature of the internal structure of the spiral strand. 

According to Raoof, the gradual nature of interwire/interlayer fretting, helical strands 

required a long time to bed in before their internal structure becomes reasonably 

stabilised. It was stated that the hysteretic measurements for such strands and ropes 

might be misleading however, the full slip axial and tosional stiffnesses are 

independent of the degree of bedding in. 
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Raoof and Huang (1991) proposed an analytical model for obtaining an upper bound 

to single layer strand damping under repeated bending for constant radius of 

curvature. Unlike traditional Coulomb rigid-plastic model, this theory provided an 

alternative interwire/interlayer friction formulation that fully catered for no slip to 

full slip friction transition over the individual contact patches. Results for two types of 

cable constructions were presented i.e. the cable in which the helical outer wires only 

touched the core wires and the cable whose outer wires just touched each other in 

line contact with no contact to the core wires. Results for both types of cable 

construction showed that the Coulomb rigid-plastic model tends to grossly 

overestimate cable damping for large radii of curvature. However, for small radii of 

curvature, full slip interwire movements predominates over the entire length of the 

cable and predictions of Coulomb’s rigid plastic model were found similar to the 

proposed model of Raoof and Huang (1991) model. The analysis results also indicated 

that cable damping may be increased by increasing number of wire or decreasing the 

helix angle (within certain ranges) and hence for very large radii of curvature and 

cable axial strains, increasing helix angle caused an increase in cable damping, which 

may only be predicted using no slip to full slip interwire/interlayer friction model. 

Using orthotropic sheet model, Raoof and Davies (2006) conducted an extensive 

series of parametric studies on a variety of spiral strand constructions and developed 

simple hand based formulations for predicting the maximum values of the axial and 

torsional energy dissipation in an old, axially preloaded multi layered strands, 

subjected to steady repeated loading. The reported results were suggested to be of 

great value to the design of hydrodynamic stabilities of cable supported bridges, 

offshore platforms and overhead transmission lines. It was shown that the axial 

specific loss of a strand could be easily increased by slight increases in the lay angle, 

which will essentially cause some reduction in the strand axial stiffness. Also for a 

given spiral strand construction, increasing maximum axial specific loss, by increasing 

lay angle resulted a reduction in the maximum level of torsional specific loss. It was 

pointed that modification to the coefficient of friction µ could also increase frictional 

damping, but the coefficient of friction was found difficult to modify, hard to predict 

and harder to control. In addition axial and torsional specific losses for a fully bedded 

in strands were found two or three times as large as those predicted by orthotropic 
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sheet theory and therefore, the presented simple formulations for old spiral strands 

gave a lower limit to the maximum specific loss for random loading conditions. 

Furthermore, increasing mean axial strain of the strand also caused a very slight 

increase in the torsional specific loss for a given spiral strand construction, which was 

believed to be of no practical significance. 

Rawlins (2009) presented an analytical model for estimating internal damping of 

overhead electrical transmission conductors in flexure. It was stated that fatigue of 

cable occurred at the location of supporting towers due to vibration wave created by 

wind action, where the reflection of these waves caused concentrated localized flexure 

of the conductor. The relative movements caused by flexure between wires of the 

cable were constrained by friction between the wires. Although the frictional forces 

between the wires in overhead transmission line conductors were found enough to 

prevent gross sliding, under normal conditions but instead a micro slip at the edges of 

contacts was observed that caused frictional dissipation. In addition, shear strains 

were developed at the contact patches by frictional forces that caused material 

damping. The model results were found in reasonable agreement with available data 

on inherent-damping for a limited range of axial load. 

Impollonia et al., (2009) proposed a model for the dynamic characterization of stay 

cables with viscous rotational dampers at the ends. Their model cast a significant light 

on the effectiveness, as well as the limitations of the rotational viscous dampers 

mounted at the two ends of a taut cable. Complex modal analysis was carried out and 

a numerical procedure for time-step integration was applied. Furthermore, a 

comparison with reference to intermediate dampers was reported with the 

limitations and advantages of the proposed mechanism being highlighted. It was 

stated that the vibrations in the short length stay cables could be significantly reduced 

by means of such viscous dampers that cause damage to the cable. The model was 

applied to a cable exposed to wind action. 

2.6 Bending of Steel Cables 

Lutchansky (1969) studied the behaviour of armoured cables bent over sheaves and 

proposed a simple mathematical model for determining the axial stresses induced in 
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helically wound armour wires of the cable. Distributed shear stiffness was assumed 

for the interaction of outer layer wires and the core, which depends on the material 

properties of the core and wires diameter, while the core itself was assumed to suffer 

no shear distortion. Using the proposed model, simple estimation of the axial stress 

concentration at the end terminations or apparatus housing was obtained. 

Expressions for the stresses in the free field were also obtained for the two limits of 

interactions, i.e. frictionless slip and infinite interaction shear stiffness. It was found 

that beamlike extreme fibre stresses were produced for an infinite interaction case as 

well as the case, when infinitely long lay lengths thin wires were running parallel to 

cable axis. Lutchansky did not provide any experimental data in support of his model, 

rather than he only quoted tentative values for the shear stiffness coefficient. In 

addition, the model is unable to predict interwire slippage, which is very important in 

the analysis of interwire fretting process near the terminations. The model of 

Lutchansky was extended by Raoof and Hobbs (1984), Raoof (1990b), to allow 

predicting interwire slippage occurrence in the cable. 

Raoof and Hobbs (1984) addressed the problem of bending of spiral strands and 

armoured cables and offered simple means of determining the strand behaviour near 

the clamp as well as in the free field. Special emphasis was given to the situation 

where pulleys and other restraints were not provided. Unlike Lutchansky’s model this 

model was capable of predicting the variations of the secant shear stiffness between 

the wires from no-slip to full slip regimes and beyond. No interwire/interlayer 

slippage was observed at the clamping positions and therefore, it was stated that 

interlayer stiffness is independent of the imposed radius of curvature for a given mean 

axial load. The no slip shear stiffness values of the model for multi layered steel 

strands were very high than those selected by Lutchansky in his study for large 

diameter under water cable systems. However, it was stated that the variation of 

shear stiffness over the full practical range of the cable axial loads was not very 

significant. The interesting conclusion to this paper was that the first wire fracture 

near end terminations occurred near the neutral axis rather than extreme fibres, 

which verified as well as theoretically explained the experimental observation of 

Hobbs and Ghavami (1982) in bending fatigue tests on a 39 mm outer diameter wire 
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strand. The proposed model is also capable of exploring fully interwire movements 

and fretting in multi layered strands. 

Vinogradov and Atatekin (1986) investigated the friction losses due to wire twist in 

single layer bent cable. The slippage due to twisting of wires was assumed to be the 

main source of internal friction. Based on this assumption it was observed that 

slippage between wires started near the clamp and then propagated along the cable 

with the increase in load. Furthermore, it was stated that load deflection 

characteristics of the cable were linear when no slippage between the wires occurred 

and become non linear for some critical load when the wires of the cable slipped. It 

was found that the post slippage characteristics of cable were strongly dependent on 

helix angle. Two types of hysteretic loops were analyzed in this paper: local, 

associated with wires cross sections and global, associated with the point of load 

application. The local hysteretic loop was found to be symmetrical and closed but, a 

very different correspondence in terms of load twisting curves for the wires cross 

sections were observed between simple bending and cyclic bending. The boundaries 

of slipping wire segment were found to vary between two extremes in a symmetrical 

way. Also, it was shown in the numerical analysis that the total friction losses in a 

cable depend on helix angle and tightness of the wires; as long as these two 

parameters were increased the losses in the cable were also increased. 

LeClair and Costello (1988) proposed a theory for determining the axial and bending 

response of a single layer spiral strand, taking into account the effect of frictional 

forces between the wires. It was assumed that the axial load was large enough to 

maintain the contact between the outer helical wires and the central king wire, when 

the strand was bent. Like Costello’s previous work solution was sought out for 

bending of cable by satisfying six non linear equations of equilibrium for individual 

wires in the cable. Two cases for the curvature and twist were investigated and the 

tensile forces in outer wires for both the cases were found very small in comparison 

with the usual tensile loads in the axially loaded cable. In addition to this the 

maximum tensile stresses in outside wires were found to occur at the crossing points 

of neutral axis, which confirmed the experimental observation of Hobbs and Ghavami 

(1982) as well as the theoretical findings of Raoof and Hobbs (1984). It was further 
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stated that the tensile forces due to bending were very small, when compared with 

tensile loads in the strand and could be therefore, neglected in stress determination. 

Raoof (1992c) addressed the problem free bending fatigue life estimation of axially 

preloaded spiral strands with its ends clamped. The possible shortcomings in the 

existing modelling approaches were pointed and a new parameter was proposed to 

overcome these limitations and make an accurate estimate of the free bending fatigue 

life of axially preloaded spiral strands. It was stated that the model is capable of 

predicting the considerable reductions in free bending fatigue life of sheathed spiral 

strand subjected to high level of hydrostatic pressures, which was completely ignored 

by designers in past. It was further stated that interwire/interlayer fretting was the 

main mechanism that caused wire fractures under cyclic loading. Also in the light of 

experimental observations it was once again indentified that the location of first wire 

fracture occurred in the vicinity of neutral axis near the socket. Finally, the new model 

was found in close agreement with available experimental data on fatigue on some 

substantial spiral strands. 

Nabijou and Hobbs (1994) studied the frictional behaviour of wire ropes bent over 

sheaves, with 6x36, 28 mm and 35 mm diameters, IWRC and fibre core, subjected to 

heavy load. It was observed that the coefficient of friction falls with increasing tension 

in the rope and decreasing sheave diameter. It was further stated that the nature of 

the rope didn’t considerably affect the pulley coefficient of friction, when subjected to 

higher bending stiffness with IWRC. The value of the coefficient of friction for a bright 

rope was found higher than the galvanized rope. The surface contaminants were 

found to play an important role in the frictional behaviour of the wire rope such that 

the sand could be used to enhance the friction but at the cost of accelerated damage. 

Finally, it was shown that two apparently identical sheaves manufactured by different 

manufacturers showed different frictional performance, therefore the data provided 

by two different organizations should be handled carefully. 

Papailiou (1997) proposed a very interesting theoretical model for axially preloaded 

spiral strands undergoing non-plane section bending. According to his model, the 

interlayer slippage starts near the neutral axis, with the predictions of strand bending 

stiffness exhibiting a smooth transition from a no-slip (maximum) to a full-slip 
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(minimum) state. The propoed model catered for interwire slippage and friction 

during bending of the cable. His model quantified the non-linear behaviour of the 

cable bending stiffness with varying cable curvatures. The theoretical results obtained 

from this model were compared with test results obtained from an innovative 

measurement setup “cable scanner”. It is stated that cable scanner method detects the 

displacement and the curvature of the conductor axis without touching the conductor 

surface. The effect of line contact forces between the wires in the same layer is 

however, ignored in this model. 

Giglio and Manes (2003) reported some test results on free bending fatigue of a 

metallic wire rope used for aircraft rescue hoists. It is observed that the swinging of 

the rope end caused bending near end termination, leading to wire fracture due to the 

resultant fatigue stress. It is further stated, that the bending angle of the rope played 

an important role in the fatigue life estimation of the rope. For angles from 40° to 60° 

a progressive failure has been observed for the external wires in contact with the 

sheaves. For increasing bending angle, a progressive separation of fractured wires and 

strands was found due to internal breakage. It is argued that by conservative 

extrapolation, an angle of less than 28° should not cause severe damage to the rope. 

Finally, it was concluded that the breakage of inner strands not only happened but, at 

high angles, involved most of the inner rope. 

Raoof and Davies (2004) studied the bending behaviour of the spiral strand and 

presented a novel experimental method for obtaining reliable measurements of the 

effective bending stiffness of axially preloaded spiral strands. It was stated that 

beyond certain limit of lateral deflection/span ratio, plane sections didn’t remain 

plane and interlayer slippage occurred, starting from the outer layer and spreading 

towards the centre of the strand, which was in turn dependent on the magnitude of 

axial load and imposed radius of curvature. The method was claimed to relatively 

inexpensive and very simple to use in practice, even for very large outside diameter 

spiral strands. Using the proposed method effective bending stiffness values of a 164 

mm outside diameter spiral strand were obtained for axial load up to 3MN that was 

supported by a detailed theoretical analysis. A significant difference for the bending 

stiffness measurements was found between experimental and predicted values for the 
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first and final runs, which were believed to be due to the gradual nature of bedding in 

of the strand. 

Hong et al., (2005) extended the earlier model of Papailiou (1997) and proposed a 

mechanical model. The oversight in Papailiou’s conjecture that the bending stiffness of 

the cable would approach a minimum value independent of the cable tension force 

and coefficient of friction has been correctly pointed out. Hong’s model correctly 

predicts that the bending stiffness of the cable for large curvatures approaches a 

constant value depending on the tension force in the cable and coefficient of friction 

between the wires. Unlike Papailiou’s model the assumptions and approximations 

made in the derivation are explicitly stated and numerically validated for Jessamine 

conductor cable. The derivation properly account for variation of the differential 

angular extent of wires in different layers. The formulations are also extended to 

cables having varying lay angles, which commonly occur in practice. The derivation 

provides a new and clear description and better understanding of the kinematic 

behaviour of the cable as wire slippage propagates with increasing curvature. In their 

model they examined in detail the bending behaviour of helically wound steel cables 

and proposed a mechanical model that takes into account the slippage of wires under 

friction and increasing imposed curvature of the cable. Wire slippage has been shown 

to start near neutral axis expanding symmetrically towards the extreme fibre 

positions, causing a decrease in the effective bending stiffness of the cable. However 

the effect of line contact forces in the hoop direction has been ignored this model.  

2.7 Conclusions 

A large body of available literature on wire ropes and spiral strands has been 

examined, and an attempt has been made to highlight some of the gaps in previously 

reported models. This literature survey indicates the lack of experimental data in the 

field, which may be due to the high cost of testing and hardships in measuring 

deformations of small individual wires. It is also noted that most of the earlier 

researchers ignored the effect of interwire friction and contact deformations in their 

analysis. After the pioneering effort of Hruska, various other authors proposed 

different models of varying complexities and accuracy, to predict the response of wire 
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ropes and spiral strands to various loading conditions. Lutchansky, Knapp, LeClair, 

Costello, Phillips, Durelli, Machida, Velinsky, Satikh, Kumar, Ramsey, Chun, Kenta and 

Ghoureshi are a few to list here.  

All the models presented by these authors are discrete models and they do not include 

interwire contact deformations in their analysis, which is very important in strand 

modelling. Kenta and Elata included interwire friction and double helix configuration 

in their analysis. Costello and his associates studied reasonably in depth the static 

response of spiral strands and wire ropes under various loading (tensile, bending and 

torsional) conditions. But the main problem with Costello’s work was that he 

neglected the effect of interwire frictions and limited his research to single layered 

small spiral strands. Therefore, all the discrete models which neglect the effect of 

interwire friction and contact deformations can only predict accurately the behaviour 

of small single layered spiral strands and when the number of wires in the strand 

increases the accuracy of these models decreases and may lead to wrong conclusions.  

In order to overcome this problem, Hobbs and Raoof developed a very different 

homogenization approach by considering each layer of wires mathematically 

equivalent to an orthotropic cylinder, whose mechanical properties are averaged to 

match the behaviour of its corresponding layer of wires, known as orthotropic sheet 

model. The problem of contact is sufficiently simplified to be easily dealt with 

mathematically. Unlike the discrete model approach the accuracy of this model 

increases as the number of wires in the spiral strand increases, because the properties 

of the strand are averaged over a greater number of wires. Another semi-continuous 

model has been developed by Jolicoeur and Cardou that shares some similarities with 

the orthotropic sheet model, but essentially relies on entirely different grounds and 

evaluates the spiral strands stiffness and slip effect in a different way. However, both 

of these semi-continuous approaches provided superior results in comparison with 

discrete models for large diameter multi-layered spiral strands. Ghoreishi et al 

recently developed a non-linear elastic continuum model after following the semi-

continuous model approach of Hobbs and Raoof, and recognized that homogenization 

approach is very good approximation for the analysis of multi-layered fibrous or 

metallic wire ropes. 
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The work in this thesis is focussed on the bending behaviour and the related 

formulations of the interwire contact problem in multi-layered strands, and the non-

linear behaviour of the cable to large deflections which is presented in detail in the 

next chapter.  
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Chapter 3  

An Insight to the Formulations Used For Analysing 

the Helical Cables and Spiral Strands. 

3.1 Introduction 

In this chapter a substantial effort has been made to assess the magnitudes of contact 

forces and their associated displacements between wires, fully taking into account the 

interwire friction. From the technical and scientific literature, it appears that these 

aspects are practically important when analysing helical cables in bending, a common 

engineering situation. Typical examples include: suspension and cable-stayed bridges, 

tall guyed towers to power transmission lines and flexible electrical conductors. 

Fatigue failures caused by aero or hydrodynamic loading in such structures near end 

terminations are very common. The interaction between the wires in a rope is 

extremely difficult to determine accurately by either theory or experiments, as in 

addition to other parameters it depends upon the manufacturing process and also the 

response varies with time. Among other parameters, the interaction between the 

individual wires of a cable depends on the magnitude of the axial or torsional load 

perturbations and applied moment. For sufficiently small perturbations, the wires are 

stuck together due to frictional forces but large perturbations mobilize the wires and 

cause slippage. Similarly, increasing bending near the clamp will also lead to interwire 

slippage in the due course.  

In the last few decades a series of attempts have been made to develop engineering 

models for predicting accurately the mechanical behaviour of helically wound steel 

cables, which vary in accuracy and complexity. In design analysis, cables are 

traditionally assumed to carry tensile loads only; therefore, there is very little 

information available to investigate the bending behaviour of cables. In this chapter an 

insight is given to basic formulations of the two models used for analysing the bending 

behaviour of helically wrapped steel cables. These two models are: Hong et al., (2005) 

and orthotropic sheet theory of Hobbs and Raoof (1982). The reason for selecting 
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these two models is that the first model provides explicit formulations for the 

transition of bending stiffness from no-slip to full slip for spiral strands, whereas the 

second model fully takes into account interwire frictional forces and contact 

deformations both in radial and hoop directions. The work in this thesis is basically 

focused on the bending behaviour of cables and the related problem of the fatigue 

lives of the cable under tension and bending condition. Therefore, based on these 

formulations, it is now possible to describe the cable sag at specific tension force and 

cable curvature along its axis. The relative displacement of the wires, the tensile, hoop 

and the bending stresses in the individual wires of the cable can be determined. 

Finally, no theory can be used with confidence without appropriate experimental 

support which reveals the real limitations of idealizations adopted during the 

development of the mathematical model. For this purpose, the results from both the 

models have been compared with the experimental observations of Raoof, 1992 (a 

&b). 

3.2 Hong’s Model 

Hong et al., (2005) reported a mechanical model to describe the behaviour of helically 

wound steel cables subjected to tension and bending forces. The effective bending 

stiffness of the cable is shown to vary between two extremes, corresponding to no-slip 

and full-slip cases. Initially, when all the wires are in stick state, the cable behaves as a 

solid bar and therefore bending stiffness of the cable is maximum. Under increasing 

bending curvature, effective bending stiffness of the cable decreases, and eventually 

reaches a constant value in the case of full slip. The final stiffness corresponds to 

essentially fully slipped state of the cable with all its wires slipping in the presence of 

friction. All the wires in slip state behave as an independent helical springs bending 

about their own axis. The final value of the bending stiffness of the cable after slippage 

depends on the coefficient of friction between the wires and the type of cable 

construction and is independent of the tension force in the wires. 
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3.2.1  Improvements Made to Papailiou’s Model. 

Hong et al., (2005) model is based on the earlier model of Papailiou (1997), with some 

significant enhancements: 

 Unlike Papailiou’s model, the assumptions and approximations made in the 

derivation are explicitly stated and numerically validated for Jessamine 

conductor cable. 

 The oversight in Papailiou’s conjecture that the bending stiffness of the cable 

would approach a minimum value independent of the coefficient of friction has 

been correctly pointed out. 

 The derivation properly accounts for the variation of the differential angular 

extent of wires in different layers. The formulations are also extended to cables 

having varying lay angles, which commonly occur in practice. 

 The derivation provides a new and clear description and better understanding 

of the kinematic behaviour of the cable as wire slippage propagates with 

increasing curvature. 

The full derivation of the formulation is given in the paper by, Hong et al., (2005) and 

will be not repeated here but, the key features are reported here for the sake of 

completeness. Before going into more detail, the basic assumptions made in the 

derivation of this model are: 

1. All wires are made of the same material and all the contact surfaces have the 

same coefficient of friction. 

2. Interwire frictional forces between wires in the same layer are neglected, and it 

is assumed that contact only occurs between wires in the two adjacent layers, 

with negligible torsional stiffness. Furthermore, the wires are unable to carry 

any compressive force. 

3. The strain in each wire is continuous along its length. 

4. In the fully stick state, when the centreline of the cable is subjected to an axial 

strain of εc, all the wires in the cable must necessarily be in tension and the 

cable behaves according to Bernoulli Euler Navier (BEN) beam theory. 
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5.  In partially slip state, the portion of the cable that remains in the stick state 

continuous to behave according to the BEN beam theory. Whereas, the tension 

and bending of the cable is limited to the cases where the centreline of the 

cable always remains in stick state with respect to the innermost layer with its 

axial strain being εc. 

6. Finally, the wire axial strains due to the tension force only, after the slippage 

remains equal to εc not only for wires in stick state, but also for wires in the slip 

state. In other words, due to variable bending strain in different wires, all the 

wires in the cable experience different strains, but the strain due to tension 

force in the wires remain the same both for wires in stick and slip state. 

 

Figure 3-1: Illustration of polar angle φ, and the postulated behaviour of wire 

slippage with φ after Hong et al., (2005). Wires in stick (unshaded) and slip (shaded) 

regions. 

3.2.2 Normal and Friction Forces Acting on Wire 

To develop expressions for the frictional forces acting on the wire, the complex 

geometry of helically wound wire cable has to be carefully examined. To define the 

geometry of the cable, the layers are numbered from inside out, i= 1,….N, where layer 

1 is the innermost layer wounded around the core (which is composed either of a 

single straight wire or an assembly of a number of equal lay wires i.e. equal lay core) 

and N denotes the outermost layer. Also ni denotes the number of wires in the ith 

layer, ri denotes the radial distance/helix radius from the centre of the cable to the 
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centre of the wire in the ith layer of the cable and φ is the polar angle of wires on cable 

cross section as shown in Figure 3.1. 

 

Figure 3-2: Forces acting on differential wire element after Hong et al., (2005). 

Figure 3.2a shows the differential segment of the cable under axial tension T and 

bending moment M. When the cable is subjected to an imposed curvature, a 

differential force arises because of the difference    between the vertical distances of 

the two ends of the wire element from the centreline of the cable. This differential 

tension force     tends to slide the wire along its axis. Normal forces are used to 

describe the conditions for slip and stick states of each wire. The normal force 

develops at the interface between two neighbouring wires in different layers gives 

rise to the friction force. In stick state, the unbalanced force in the wire is balanced by 

friction force acting on the wire as shown in Figure 3.2b. When     exceeds the 

maximum friction force generated at the contact patches between the wires, the wire 

is mobilized, and slides along its axis. Once the wire starts slippage, forces acting on 

the wire redistribute and slippage continuous until equilibrium is reached. 

(a) (b) 
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Figure 3-3: Differential wire element in deformed cable after Hong et al., (2005). 

First a differential element of wire in the outermost layer is considered and the 

normal distributed force   acting in the radial direction on the wire element is 

obtained as: 

                  (3.1) 

where     is the curvature of wire in radial direction and is given by,      
      

  
, 

with    and    being the lay angle and radial distance of outermost layer N 

respectively, and the radial distance    for any arbitrary layer i, can be calculated as: 

    
         

  ⁄         (3.2) 

where Di and ni are the diameter and number of wires in the ith layer of the cable 

respectively. Multiplying Eq. (3.1) by the arc length of the wire element as shown in 

Figure 3.3,      
    

     
  the total normal force acting on the wire element is obtained 

as: 

                     (3.3) 

Eq. (3.3) is valid as long as wire is under tension, if wire is not under tension, no 

normal force acts on the wire. For large values of curvature, wires on the concave side 

of the cable are compressed and essentially take no tension force. 

Differential wire element 

Differential cable element 

dx’ 

rd  α dx 
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Now if we consider a wire in an  th inner layer,      , such a wire is subjected to 

normal forces on both its inner and outer surfaces. The normal force on the outer 

surface of wire is the accumulation of all the normal forces resulting from tensions in 

the wires of layers     to  . The normal forces acting on the outer surface of the 

wire are ruled by: 

          ∑        
         

         
                                               (   )

 

     

 

where, (                     ) is the variation of forces transferred from one layer to 

the other due to variation of lay angles and wire diameters from one layer to other. In 

special case when the lay angles and wire diameters are invariant, this term becomes 

unity and the expressions simplifies accordingly. 

The normal contact force acting on the inner surface of wire in the ith layer is the sum 

of Eq. (3.4) plus the contribution from the tension force in the wire itself. 

          (        ∑        
         

         

 

     

)                               (   ) 

where,    and   denote the number of wires in layer i and j=i+1.  

3.2.3 Stick and Slip Tension in the Wire 

In the fully stick state, if the centreline of the cable is subjected to an axial strain of    

and an imposed curvature   , the longitudinal strain in the wire along the axis of the 

cable is calculated as follows: 

   
                          (3.6) 

Where   is the polar angle of an individual wire which shows its position in the cable 

cross section. The value of polar angle varies from 0 to ±π, for the wires of any 

arbitrary layer i of the cable as shown in Figure 3.1.  
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Eq. (3.6) is the axial strain along the cable axis that make an angle    with the wire 

axis, in order to transform the strain tensor into the axial direction of the wire, the 

axial strain of the wire is determined.  The axial strain of the wire along its own axis is 

then given by: 

  
             (            )      (3.7) 

After getting wire axial strain, the tension force in the wires is then obtained by 

multiplying this with the Young modulus and cross-sectional area of the wire: 

  
             

   (            )     (3.8) 

The second term inside parenthesis on the right hand side of Eq. (3.8) is the 

contribution from imposed bending curvature of the cable. For wires on the concave 

(   ) side of the cable this term becomes negative and experience less tension, 

whereas wires on the convex side of the cable wires are more stressed. Similarly in 

case, if the cable is straight (i.e.     ) this term becomes zero. 

Now if the wire is subjected to imposed curvature, there is an unbalanced tension 

force acting on the wire. For a differential wire segment in the  th layer, the 

unbalanced tension force in the stick state is obtained by differentiating Eq. (3.8) with 

respect to  : 

   
                 

             (3.9) 

This unbalanced force in the wire must be in equilibrium with friction force generated 

at the contact patches of the wire. Slippage begins, when the unbalanced force in the 

wire segment exceeds the maximum friction generated at the wire surfaces. Once the 

wire slips, the forces in the wire re-distribute until equilibrium is achieved. Therefore, 

the condition of a differential wire segment in the outermost layer of the cable to be in 

the slip state is given as: 

   
         

                  (3.10) 
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In Eq. (3.10),   is the friction coefficient between wires with    being lay angle of 

wires in the outermost layer. The solution to this first order differential equation is 

then given as: 

  
       

    (        )      (3.11) 

where   
  is the constant of integration and can be obtained by satisfying a boundary 

condition. From assumption 6, by putting the value of zero polar angle in Eq. (3.11), 

  
    ( )          

    and thus   
          

   . 

Next, considering a wire in an inner layer  , such that the normal forces are acting on 

both inner and outer surfaces of the wire: 

   
     (   

            ∑   
         

         

         

 

     

)     (    ) 

It is clear in the above equation that the solution can be proceed further by solving it 

for the wire forces from outer to inner layers. Thus it is assumed that the solutions for 

the forces in the outer slipped wire are available. The solution for this first order 

differential equation consists of two parts: homogeneous (first part) and particular 

(second part).  

  
        

    
       (3.13) 

The solution of the homogeneous part is then given as: 

  
     

    (       )              (3.14) 

where the integration constant for this solution   
  is obtained again by satisfying 

boundary condition at    . The solution for the particular part of the equation is 

  
   ∑    

 

 

     

   (       )                                              (    ) 
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where the constants    
  is determined by satisfying the differential Eq. (3.12). As 

mentioned earlier, by considering the ith layer, we assume the solutions for all the 

outer layers are available. The slip tension force in the inner  th layer is then given by: 

  
        

    (       )  ∑    
 

 

     

   (       )              (    ) 

Note that the constant of integration for the particular part is zero for the outermost 

layer i.e.    
    as is clear from Eq. (3.11) whereas for the inner layers the constant 

   
  is obtained by satisfying Eq. (3.12). Using Eq. (3.15) and (3.16) in conjunction with 

Eq. (3.12), summing the homogeneous and particular solutions after some algebra and 

equating the terms on the two sides, one gets: 

   
  

      
         
         

  
  ∑      

         
         

   
        

 

           
 

              (3.17) 

In the above expression, the second term in the numerator drops out when the 

penultimate layer,      , is considered. The constant of integration for the 

homogeneous part in Eq. (3.14) is then obtained by satisfying the boundary conditions 

   ,   
    ( )     

 ( )    
 ( )    

  ∑    
  

              
    therefore, 

  
          

    ∑    
 

 

     

                                                        (    ) 

The above solution is applicable only when, the lay angle of the two layers are not the 

same otherwise the corresponding constant in Eq. (3.17) becomes infinite. Thus for 

the cable with same lay angles the homogeneous solution remains the same as in Eq. 

(3.14) but, the particular solution then takes the form 

  
     (       )  ∑    

  

 

     

                               (    ) 
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Using this form of particular solution, one gets 

   
        ∑

    
    

  
 

 

     

                                                             (    ) 

  
          

        (3.21) 

3.2.4 State of a Wire 

Using the formulation summarised in the previous subsection, forces in all the wires 

of the cable can be determined that are either in stick or slip state. 

The state of a wire in the  th layer is obtained by setting unbalanced tension force 

equal to the maximum friction force 

          
         (  

            ∑   
         

         

         

 

     

)      (    ) 

For a given layer, the unbalanced tension force is maximum at neutral axis 

i.e.        and this decreases with increasing     such that it becomes zero at 

   
 

 
. Therefore, slippage in each layer begins at neutral axis and propagates 

almost symmetrically into the lower and upper halves of the cable with increasing   . 

According to the assumption (2) in subsection 3.2.1, for large values of imposing 

curvature, the entire lower half of the cable on the concave side of the bending is in 

slip state. The reason for this is that increasing bending curvature of the cable causes 

negative bending stress in the wires on the concave side of the cable, according to Eq. 

(3.8). Therefore, for sufficiently large values of imposed curvature the all the wires on 

the concave side of the cable are compressed and considered in slip state.   

3.2.5 Resultant Tension Force on Cable 

In order to calculate the corresponding resultant tension force in the cable, the forces 

in all wires are added together, after projecting them along the cable axis. The tension 

force    in the individual wire depends on the state of the wire and it may be either 

  
        

     or zero. The resultant tension force on the cable is then obtained by: 
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  ∑        
         

                                                                    (    ) 

In Eq. (3.23) T is the resultant tension force on the cable. During bending the wires in 

the cable experience different tension force depending on its location in the cable 

cross section as well as the state of the wire. 

The bending moment in the cable cross-section caused by the tension force in 

individual wires is given by: 

   ∑          
         

                                                                      (    ) 

The above equation clearly shows that as the polar angle of a wire in the layer 

increases bending moment increases and vice versa. Similarly, tension force in 

individual wires also changes with polar angle, for wires on convex side it increases, 

concave side it decreases whereas for wires on neutral axis it does not change.  The 

resultant bending moment in the cable is the above (i.e. Eq. 3.24) plus the bending 

moment of each individual wire, including those having zero axial force, and the core. 

  ( ∑     

         

      )   ∑          
         

                                  (    ) 

where,       
     is the moment of inertia of each wire in layer   and     moment 

of inertia of the core. 

The resultant tension force and bending moment are the non-linear function of    and 

   after the initiation of wire slippage, whose application shows that the behaviour of 

the cable under constant tension and increasing imposed curvature is similar to the 

behaviour of elastic plastic material. 

3.3 Orthotropic Sheet Theory 

The orthotropic sheet model was initially developed by Hobbs and Raoof  (1982) for 

the analysis of multi-layered spiral strands with counter-laid layers. The theory is 

based on the main assumption that the gaps between the wires under zero external 
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load are small enough to be neglected. According to this approach a strand consisting 

of a core and N layers of helical wires is mathematically represented by N concentric 

orthotropic cylinders, whose mechanical properties are averaged as a continuum to 

match the behaviour of their corresponding layer of wires. Since the properties of the 

strand are averaged, the accuracy of the model increases with increasing the number 

of wires in the strand. The elastic properties of the sheets, whose principal axes run 

parallel and perpendicular to the individual wire axes, are determined as a function of 

the external load perturbation. Using Hearmon (1961) formulations, the elastic 

properties are transformed to values parallel and perpendicular to the strand axis. It 

is postulated that for a counter-laid construction, the stiffnesses in hoop direction are 

much greater than the ones in the radial direction. The core of the strand is assumed 

to resist the rigid body movement which would occur in its absence due to change in 

the lay angle. This causes wires to assume a closer packing formation.  

List of the basic assumptions that underly orthotropic sheet theory is as follows: 

1. In the unloaded condition the wires within the layer are just touching each 

other. 

2. During deformation, twisting and bending of individual wires is negligible and 

thus wires carry only pure tension. 

3. Centre line of wire forms a helix both before and after deformation. 

4. When considering a large number of wires in a layer, > 19, and small lay-

angles, < 30, the cross-section of a wire can be reasonably approached as an 

ellipse. 

5. The influence of the transverse contraction is negligible for the derivation of 

the wire slippage in the presence of a rigid core. 

6. The helical strands are approached as being straight. 

7. The strand tensile load is uniform over the whole strand cross-section because 

the lay-angles in different layers are very similar. 

The notations used for strain tensor compliances are given are as follows: 

[

  
  
   

]  [
       
       
     

] [

  
  
𝜏  

]                (3.26) 
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Where    and     are the direct strains parallel and perpendicular to the wire axis 

respectively;     is the shear strain;    and   are the are the axial and radial 

stresses in the wires respectively; and 𝜏   is the shear stress. 

Note that X, Y and XY represent the directions parallel, perpendicular and 

tangential (shear) along the axis of the wire respectively as shown in Figure 3.4. 

Furthermore, the notations with x, y and xy represent local (wire) deformations, 

whereas notations with   ,    and      are used for global (cable) strains (axial, 

radial and shear strains) respectively. 

 

Figure 3-4: Symmetry planes of the orthotropic tensor of a wire layer after Erik 

(2011). 

3.3.1 Calculation of Strand Layer Deformations 

The model uses a set of compatibility equations to establish the kinematics of the 

cylinder. Using these compatibility equations the cylinder local (wire) strains are 

obtained from the global (cable) strains.  

For a given axial strain (global) of the cable   , an expression for the axial strain in 

individual wire has been derived from experimental data after Raoof (1988) for the 

(local) wires strains:  
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 (                 

         
 ) 

   (    ) 

where    is the strand axial strain with    being the lay angle of wire in layer   

expressed in radians. Eq. (3.27) can be used to estimate the axial strain in a wire due 

to tension force only. When the cable is subjected to combine tension and bending; the 

combine axial strain of the wire can be estimated by replacing         in Eq. (3.7) by 

polynomial given in Eq. (3.27). The difference between calculations based on the Eq. 

(3.7) and Eq. (3.27) is given in Chapter 4, Figure 4.1. 

The two dimensional element rotated at an angle          
  after the application 

of load as shown in Figure 3.5a, where    is the lay angle of ith layer in the 

undeformed state,   
  is the lay angle of ith layer after deformation. 

From Figure 3.5a for an un-deformed cable: 

      
   
  
                                                                        (    ) 

where    is the length of the wire along the cable axis and    is the length of the wire 

along its own axis. The same relation for deformed lay angle is then given as: 

     
  

   
 

  
  

  (    )

  (    )
                                                       (    ) 

 Dividing Eq. (3.29) by (3.28), the deformed lay angle of the wire can be determined 

as:  

  
       [     (

    
    

)]                                                             (    ) 
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Figure 3-5: (a) Helix geometry before and after cable deformation (b) Description of 

helix radius in cross-section of an elliptical wire normal to cable axis after Hobbs and 

Raoof (1982). 

 

Following Phillips and Costello (1973) the helix radius for a layer of wires before 

deformation is given as: 

    
  
 
√(  

    (
 
  

 
  
)

      
)                                           (    ) 

where    is the wire diameter and    is the number of wires in ith layer. For the loaded 

configuration Eq. (3.31) becomes: 

  

  
   

  
 
√(  

    (
 
  

 
  
)

      
 

)                                            (    ) 

Or alternately, 

    
    (      )                                                             (    ) 

where      is the radial strain in the cable cross-section due to the change in helix 

radius. From Eqs (3.31) and (3.33): 
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])                                 (    ) 

where    is the lay angle of ith layer in the undeformed state,   
  is the lay angle of ith 

layer after deformation. 

The strand axial strain    results a change in lay angle   
  accompanied with a change 

in helix radius   . Thus the total diametral strain     , in the cable cross-section is 

calculated as: 

      (    )
     

 

     
                                                    (    ) 

where    is the cable axial strain. 

Since the strain      is caused as a result of rigid body movements, it does not 

contribute to line-contact forces and deformations, and therefore it has been 

subtracted from      to find net diametral strain    . Using Eqs. (3.34) and (3.35), the 

contraction in the cable cross-section     due to the interwire deformations is then 

calculated as: 

                    (    ) 

As shown in Figure 3.6, the wires in the corresponding layer experience a slight 

decrease in their axial strain due to change in lay angle (i.e. diametral strain), which 

may be found by setting axial strain equal to zero.  

     (     √  (     
 )

 
      )                                            (    ) 
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Figure 3-6: Illustration of ∆ϵx as a result of strand tensile strain εc = 0. 

 

Using global strains of the strand, the hoop strain in the wire is obtained by: 

    
     

 

 
      

  
     

 

 
                                                             (    )   

The tensorial shear strain in the layer is then given by: 

     
 

 (    )
[     (              

 )]                               (    ) 

In the above    and    are the wire strains along the axis, parallel and perpendicular 

to the wire axis respectively.  

For a given cable axial strain   , these eight non-linear equations [Eq. (3.27), (3.30), 

(3.34)-(3.39)] are solved simultaneously for the eight unknowns (  ,   
   

   
 ,    

 ,   
 ,         and     ). These equations are solved by treating    as the 

primary unknown, using the same order as they are presented above. 
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Figure 3-7: Resultant radial load transfer from an outer layer to adjacent inner layer. 

3.3.2 Radial and Circumferential (Hoop) Contact Forces in 

the Strand 

There are two types of contact forces acting in a multi-layered spiral strand. The first 

one is the line contact force within a given layer between adjacent parallel wires. The 

other type of interwire contact force occurs in the successive layer of wires which, are 

laid usually in opposite directions. The radial force exerted on any layer is due to the 

tension in the wire itself plus the clenching effects of outer layers (Hobbs and Raoof, 

1982). The effect of the radial force grows inwards, starting with the outermost layer.  

The radial force     acting as a body force in the wires in ith layer, assuming that the 

wire axial strain    is known can be given by (Hobbs and Raoof, 1982): 

      
        

   
  

                                                     (    ) 

where    
   

 

      
 is the cross-sectional area of a wire in ith layer with its diameter   . 

Two types of line contact force between two wires in hoop direction (      and     ) 

are introduced for each wire layer. Thus      is the tangential line contact force 

generated due to the tension force in the wire itself, whereas      is line contact force 

in the layer when in addition to     , the effect of all outer layers are also taken into 

account. As part of the radial force transferred from previous layers goes to line 

contact force. 
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For each wire layer  , it is possible to determine the normal line contact force     , 

between the wires. The equation for normal contact forces are derived with the 

assumption that a rigid core is present and there are no other forces acting upon the 

layer. Resulting forces in one layer acting upon the next one thus still need to be taken 

into account and are denoted as      and     . The force equilibrium describing the 

whole strand is a statically indeterminate problem. The resulting radial contact force 

    can finally be determined and the next layer can be evaluated.  

 

Figure 3-8: Cross-section of two wires in line-contact showing the diametral 

deflection δn as a result of the line-contact force PRCi after Erik (2011). 

The line contact force     between two adjacent wires in ith layer subjected to 

diametral strain     that results from strand axial strain   , is given by Hobbs and 

Raoof (1982) as: 

      
     (    )

  
(
 

 
   

  
  
)                                              (    ) 

where the subscript RC refers to the rigid core being present,   is the Poisson’s ratio,   

is the Young modulus of the material,     is the diametral strain in the hoop direction 

in ith layer and     is the width of the rectangular contact area in the ith layer as shown 

in Figure 3.8 and  is given by: 

      (√(
      (    )

 
))                                             (    ) 



 

Page | 71  

 

Using Eqs. (3.41) and (3.42) it is chosen to make a guestimate of line contact width    

that depends on the wire diameter. Using this guestimate, line contact force is then 

calculated. With the knowledge that the contact width is a small fraction of the wire 

diameter, Erik (2011) suggested that if    
  

   
 is chosen as first guestimate, only few 

iteration are needed to find the final values of line contact force     . 

From Figure 3.7 the resultant radial load transfer from an outer layer       to the 

neighbouring inner layer   is calculated as: 

                                                                      (    ) 

In the above equation, the subscript MS refers to multi-layered strand, where      is 

the total radial (radial force transferred from outer layers plus contribution from the 

tension force in the wire itself) body force in multi-layered strand, given by equation 

(3.45),     is the line contact hoop force between two adjacent wires when all the 

outer layers are taken into account for the statically indeterminate problem, given by 

Eq. (3.46), and    is the angle between the line of action between these two forces as 

shown in Figure 3.7 and is given by Eq. (3.44) 
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where    is the lay angle and    is the number of wires in ith layer. 

Then the total radial body force      experienced by each wire in the inner layer of a 

multi-layered strand can be calculated as: 
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                                       (    ) 

First part on the right hand of Eq. (3.45) is the radial force generated due tension force 

in wire whereas the second part is the contribution of radial force from the outer 

layars. 

The line contact force      can be then determined with the force ratio within the 

layer i: 

      
        
    

                                                                       (    ) 

It is worth mentioning that not only does each wire layer   have a certain PRCi/ XRCi 

ratio, the ratio also changes for different strand tensile strains   . It is, therefore, 

necessary to calculate the PRCi and XRCi forces for each tensile strain perturbation for 

each layer and use their ratio to determine the multi-strand line contact force PMSi: 

The process is then repeated, moving to another layer each time, until the whole 

strand has been analysed. 

3.3.3 Compliances of Orthotropic Sheet Theory 

In the orthotropic sheet approach, the wires in each layer of a strand are considered 

as prestressed cylindrical sheets. The properties of the orthotropic sheets in the 

principal directions (parallel and perpendicular to the wire axes) of orthotropy are 

estimated from contact stress theory.  Using Hearmon’s (1961) notations the strains 

and stresses in the strand along the principal directions 1, 2 and 6 (parallel, 

perpendicular and tangential to the wire axes) are given by: 

  
                              

                             

                         𝜏                            (   ) 
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The axes of wire makes an angle   to the strand axis therefore, the corresponding 

compliances in the principal directions relating to strand axes can be found by 

rotation of axes by an angle  . Assuming         and         the compliances of 

the strand in the principal directions are given as: 

             
                     

             (     )                    

                 (     )              (     )    

             
                     

                 (     )              (     )    

                                ( 
    )      (        ) 

The gross area     for each shell   is approximated by approaching each wire as a 

square with sides equal to the diameter    of the wire. In order to conserve the 

effective axial stiffness of a wire layer, the area ratio needs to be taken into account by 

determining a Young’s Modulus      compliant with this stiffness. The stiffness per 

unit length of a wire layer i in the direction of orthotropy is thus equal to        . The 

compliance of the sheet in the direction parallel to wire axes,     is expressed as the 

ratio between the sheet area and the wire cross-sectional area: 

    
 

 
    
      

 
 

 
                                                        (    ) 

    
 

    
 

 

  
                                                               (    ) 

where,   is the actual Young modulus of the material and     is the effective Young 

modulus of the material after the application of load. 

Similarly the coupling compliance         in the presence of axial load in the wires 

is then: 
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where   is the Poisson’s ratio of the wire material. The negative sign indicates that the 

cross-section of the strand shrinks in the presence of axial load.  

Following Hobbs and Raoof (1982), for individual wires in line contact their normal 

compliances    are given as: 

    
 

 
(           

   
    

)                                                       (    ) 

In the above    is the diameter of wires in ith layer whereas      is the line contact 

force per unit length in the ith layer of multi-layered strand. 

The tangential compliance     is also given by Hobbs and Raoof (1982), as: 

    
   
   

(√(  
  

      
))                                       (    ) 

where    is the tangential displacement between the centre-lines of the wires, with 

      being the maximum value at the onset of gross sliding (full-slip). Whereas, 

       is the implitude of the sliding corresponding to uniform cyclic loading, with 

reversed tangential displacements taking place. This limiting displacement is obtained 

as: 

      
 

 

     
   

                                                                      (    ) 

where, the above equation is valid for          , with     becoming infinite at the 

limit. For larger values of   ,     can be taken as infinitely large corresponding to the 

case of full-slip, whereas for no-slip case     . 

3.3.4 Effective Young Modulus of the Layer 

To derive an expression for the effective Young’s modulus of a cable     , the shear 

strain is assumed to be zero (     ). Following Hobbs and Raoof (1982) it is stated 
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that the ratio of the stresses in the axial direction to the stresses in the circumferential 

direction is equal for both local (wire) and global (cable) co-ordinate system of the 

layer i.e. 

   

   
 
  

  
                                                                             (    ) 

This condition applies both to no-slip and full-slip conditions.  

Eqs (47a-c) can be solved to yield the relation for strand tensile strain and stress 

respectively. 
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The non-dimensional stiffness coefficient for each layer of the strand is then 

expressed as: 

    
 

  
(
   

  
)                                                                   (    ) 

and, 

                                                                               (    ) 

where,    represents the constitutive constant (   ) for the axial direction of the 

strand.  

The effective Young modulus is then given by Hobbs and Raoof (1982) as follows: 

     
   
      

                                                                      (    ) 

Similarly to derive an expression for torsional stiffness it is assumed that pure torsion 

exists in a layer of the cable (i.e.         . From Eqs. 3.47(a-c), the tangential shear 

flexibility is obtained as: 
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The non-dimensional shear stiffness coefficient for each layer of the strand is then 

expressed as: 

    
 

  
(
𝜏   

    
)                                                               (    )  

           
                                                                    (    ) 

The effective shear modulus is then obtained by: 

     
   

         
                                                                      (    ) 

With the above formulations, it is now possible to determine  the forces that are at 

play within a strand.  
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3.4 Conclusion 

This chapter presents two alternative analytical formulations for calculating wire 

kinematics, pattern of interwire frictional forces and bending stiffness of the cable 

subjected to tension and bending. The first model (Hong et al, 2005) presents explicit 

formulations for the smooth transition of the flexural rigidity from no-slip to full-slip 

regimes of the cable as a function of bending curvature, neglecting the effect of line 

contact forces in the same layer. The second model (OST) fully takes into account 

interwire friction both in radial and hoop directions as well as contact deformations. 

Since the line contact forces have a great influence on the pattern of wire slippage and 

contact deformations. Therefore, using contact mechanics of the OST, the Hong et al, 

2005 (HDS) model has been modified and enhanced to include the effect of interwire 

line contact forces within the same layer. The combination of the two models results 

in an improved and enhanced (MHDS) model for analysing large diameter multi-

layered cables. The proposed modification and implementation of newly developed 

model will be the subject of the next chapter, where results have been presented for a 

variety of cable constructions. 
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Chapter 4  

Bending Behaviour of Helically Wound Steel Cables, 

Subjected to Tension and Bending. 

4.1 Introduction 

Chapter 3 presents a detailed analysis of the mathematical formulations and their 

limitations of the two selected non-linear theoretical models used in this study. The 

aim of this chapter is to investigate the mechanical behavior of helically wound steel 

cables under tension and bending, using the new modified model. During bending of 

such cables, slippage takes place between individual wires, which is mainly governed 

by interwire frictional forces acting at the contact patches between wires. As a result 

of this slippage, the effective bending stiffness of the cable cross section varies 

between two extremes. These two extremes are: no slip (i.e. when all the wires are 

stuck together and act as a solid bar) and full slip (i.e. when all the wires in the cable 

act independently and bend about their own axis). As long as the unbalanced forces on 

the cable cross-section are smaller than the friction forces, all the wires in the cable 

behave as a solid rod and its response is almost linear. When the cross-sectional 

forces overcome the interwire/interlayer friction, sliding occurs between the layers 

and the structural response becomes non-linear. 

The motivation for this study arose from the interest that interwire normal hoop 

contact forces have a significant effect on the values of interlayer radial contact forces 

over the trellis contact patches and hence the interlayer slippage for the given value of 

mean axial strain and imposed curvature. As in the case of multi-layered large 

diameter spiral strands the radial load transfer from one layer to another is found to 

decrease tremendously, when line contact hoop forces were taken into account. 

Cardou and Cloutier (1989) have shown that wires breakages at the trellis contact 

patches between wires of two different layers are about ten times more than wires of 

the same layer, in line contact with each other. Keeping in mind their significant 

influence on interwire contact deformations, the effect of the line contact forces has 
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been taken into account. Explicit formulations describing the variation of the bending 

stiffness of a helical cable as a function of cable curvature, friction coefficient and 

interwire/interlayer contact forces from the no-slip to the full-slip stiffness have been 

developed. 

The study in this chapter also throws some light on the validity of the traditional 

assumption of a constant effective bending stiffness for predicting the minimum radii 

of curvature, at the fixed terminations to spiral strand; and whether it provides 

accurate predictions to be used as an input into the subsequent design calculations 

against restrained bending fatigue. Although the small curvature assumption of the 

cable may be valid in the parts away from termination, but the possible development 

of a large curvature at the bearings and end terminations cannot be ignored nor 

avoided. Related to this, the term restrained bending fatigue refers here to those cases 

where spiral strand fatigue failures occur in the vicinity of partially or fully restrained 

terminations caused by hydrodynamic or aerodynamic cyclic loading. Based on the 

new insights gained here into the internal cable deformation mechanisms, the present 

study provides a foundation for solving conductor fatigue problems, which depends 

on bending stiffness of the cable as a function of friction, cable curvature and tensile 

force on the cable, including the displacement behaviour of the wires in the cable 

construction. 

Building upon an extensive theoretical parametric studies, using a corrected and 

subsequently extended version of Hong et al., (2005) model, it has been established 

that beyond a certain level of imposing curvature, the assumption of constant effective 

bending stiffness is unreasonable. Depending on the level of mean axial load of the 

cable, increasing bending near the end termination will lead to interwire/interlayer 

slippage. As a result, the flexural stiffness of the cable reduces by a factor of 2 to 16, 

depending upon the co-efficient of friction between the wires and the type of cable 

construction. For the present purposes, much attention is devoted to the 

interwire/interlayer contact forces and the associated slippage between the wire 

under frictional interaction. The effective bending stiffness of the cable is shown to be 

amplitude dependent, changing significantly as a function of changes in the cable 

curvature. 
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The effect of different geometrical parameters is also demonstrated, e.g. a slight 

increase in lay angle leads to decrease clench forces in the radial direction with a 

notable increase in normal contact forces in hoop direction. Thus increasing lay angle 

delays the initiation of wire slippage in the outer layers, but due to less radial load 

transfer into the inner layers slippage penetrates quickly into the inner layers of the 

strand. Similarly, the interlayer slippage is found to start at alarmingly small values of 

imposed curvature for large diameter multi-layered strands. This is because the 

unbalanced force on a wire is directly proportional to the radial distance of the wire 

from the centre of the strand. It is noticed that the ratio of the strand to wire diameter 

(d/D) also plays an important role in the pattern of interwire slippage and contact 

deformations, with larger wire diameters showing a slight delay in the initiation of 

wire slippage in the cable. The theoretical results obtained from this model are found 

in good correlation with the full scale test results reported by Raoof (1992) for 39 and 

41 mm diameter strands with rather different lay angles. Regarding the magnitude of 

the bending stiffness of the strand, the no slip and full slip bending stiffness test 

results for a 164 mm diameter strand have been compared with theoretical 

predictions, showing a good agreement with. It is then concluded that the fatigue 

design curves based on a constant effective bending stiffness could be misleading. 

4.2 Background 

Costello and Butson (1982) proposed a theoretical model for predicting the static 

response of wire ropes subjected to tension, torsion and bending. It was assumed that 

under axial loading condition there was no contact between the core and outer wires. 

The maximum tensile stress was shown to occur in the core wire, which receives the 

largest axial and bending strain. LeClair (1989) reported a model for predicting the 

upper bound of the relative movements between the wires in bending. The wires were 

assumed to slip under frictional forces in the bent cable over a sheave for a seven wire 

strand. 

Raoof (1989, 1990 and 1992) has shown in a series of publications that for the case of 

cross laid, large diameter spiral strands fretting between the outermost and 

penultimate layer is the prime initiator of fatigue cracks leading to wire breakages in 
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the vicinity of neutral axis as opposed to the extreme fire positions. Although outer 

wire strain measurements show that maximum strain occurs at the extreme fibre 

position (in bending terms). 

Raoof and Hobbs (1984) and Raoof (1990a) explained analytically the unexpected 

experimental observations of Hobbs and Ghavami (1982) that the first wire fractures 

invariably occurred at the neutral axis (in terms of bending) rather than at the 

extreme fibre position. Raoof (1990b) has proposed a theoretical model for estimating 

axial fatigue life of multi-layered spiral strands undergoing uniform axial repeated 

loading. Raoof and Huang (1992) have shown that even with infinite shear stiffness 

between the layers of an axially preloaded spiral strand, interwire slippage within the 

wires in line contact can take place throughout the strand. This causes some 

reductions in the effective bending stiffness of the strand. 

Raoof and Davies (2005) showed that the effective fixed end of the spiral strands 

undergoing cyclic bending is not located on the face of the socket but within the socket 

at some distance away (approximately 1.5 diameters) from the face of the socket. It 

has been suggested that for calculating the effective bending stiffness of the strand, 

plane section bending may reasonably assume for spiral strands with mean axial 

strains εc ≤ 0.0025 and outside diameter d ≤ 40 mm such that the ratios of the 

estimated minimum radii of curvature at the fixed end of the strand ρ, to the strand 

outside diameter d, is greater than 630. For a strand under free bending the radius of 

curvature is greatest at the fixed end and reduced very rapidly as one moves away 

from the point of restraint.  

In correlation with Raoof’s experimental results, Papailiou (1997) proposed a very 

interesting model for axially preloaded spiral strands undergoing non-plane section 

bending. According to his model, the interlayer slippage starts near neutral axis, with 

the predictions of strand bending stiffness exhibiting a smooth transition from no-slip 

(maximum) to full-slip (minimum) state. Kraincanic and Kebadze (2001) proposed 

analytical formulations for the determination of the bending stiffness of a helical layer 

in unbonded flexible pipes. After certain levels of bending curvature, the non-linearity 

of the layer caused by slippage of individual helical wires between the layers were 

fully taken into account. Hong et al. (2005) examined in detail the bending behaviour 
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of helically wound steel cables and proposed a mechanical model that takes into 

account the slippage of wires under friction and increasing the imposed curvature of 

the cable. Wire slippage has been shown to start near the neutral axis expanding 

symmetrically towards the extreme fire positions, causing a decrease in the effective 

bending stiffness of the cable. However, the effect of line contact forces in the hoop 

direction has been ignored in this model. 

4.3 Theory 

As part of the present research, two aspects of Hong et al.’s original model have been 

improved. Firstly, the present work fully caters for the ever presence of line contact 

hoop forces in various layers as predicted by the orthotropic sheet theory of Raoof 

(1982). These forces have a very significant influence on the values of the radial load 

transfer over the trellis contact patches and hence interlayer slippage, as shown in 

Figs 4.4 (a-f). Secondly, the influence of geometrical non-linearities on the estimates of 

the axial strains in the individual helical wires in various layers has been considered. 

This gains importance for sufficiently large values of the lay angle within the 

manufacturing range of 11° ≤    ≤ 24° as shown in Figure 4.2. Although Hong’s model 

provided a base for estimating the reductions in the effective bending stiffness of the 

strand in the free field to increasing values of curvature, when interwire/interlayer 

slippage takes place, but failed to cater fully for interwire contact deformations.  

In this thesis, the original Hong’s model will be referred to as HDS model hereafter, 

(from the surnames of the three authors, Hong, Der-Kiureghian and Sackman), 

whereas after the proposed modifications, the new model developed in this chapter 

will be referred as to MHDS (i.e. modified HDS) model.  
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4.3.1 Tension in a Wire 

Two types of tension forces are introduced namely: stick tension and slip tension 

corresponding to the state of the wire. It is now possible to calculate the ordinary 

bending strain plus tensile strain in all the wires of a multi-layered cable.  

When the strand is subjected to an axial strain εc, and bending curvature    then, using 

Hong et al., (2005) model the  strain in individual wire along the cable axis can be 

calculated after rearranging Eq (3.6): 

   
        (   

        

  
)                                                        (   ) 

where    is the helix radius of wire in  th layer and is given by Eq. (3.31). 

In conjunction with Hobbs and Raoof (1982), after proper tensorial transformation 

the axial strain of the wire along its own axis is then given: 

   
        (   

        

  
)                                                          (   ) 

where     is the axial strain in the wire in straight configuration (κc = 0) and can be 

calculated using Eq.(3.27). 

Equation (4.2) gives the exact wire strain (axial+bending) in fully stick state, where 

the wire is supposed to have a bent helix configuration in the deformed cable. In Eq. 

(4.3), the first contribution in the right hand side is the axial strain due to the tension 

force on the wire, whereas the second contribution is due to the bending of the cable. 

This second part in Eq. (4.2) depends on the polar angle   , in the cable cross-section 

of the cable. For negative polar angle (   ), this term becomes negative and thus 

the wires on concave side experience less tension and vice versa for the wires on the 

convex side. If there is no bending i.e.     , the second part on the right hand side of 

Eq. (4.2) vanishes. The positive curvature is assumed to cause maximum stress at the 

extreme fibre position in bending term. Thus, frictional forces on wires in different 

layers increase or decrease rapidly under increasing curvature. 
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In the fully stick state, tension force in the wire is obtained by multiplying axial strain 

in the wire with the Young modulus and cross-sectional area of the wire Hong et al, 

(2005): 

  
           (   

        

  
)                                                      (   ) 

where    is the Young modulus of the material, and      
   

 

      
  is the cross-sectional 

area of individual wire,    polar angle of the wire describes the position of wire in 

cable cross-section,    is the helix radius of the wire layer i,    is the axial strain of the 

wire in straight configuration calculated by Eq. (3.27), and    is the axial strain along 

the centreline of the cable. 

According to Hong et al, (2005), a differential force arises on the wire, when the cable 

is subjected to bending. For a differential wire segment in the  th layer, the 

unbalanced tension force in the stick state is obtained by differentiating Eq. (4.3) with 

respect to   , which then replaces Eq. (3.9) in original HDS model. 

   
       

              

  
                                                             (   ) 

This unbalanced force in the wire must be in equilibrium with friction force generated 

at the contact patches of the wire. Slippage begins, when the unbalanced force in the 

wire segment exceeds the maximum friction generated at the wire surfaces. Once the 

wire slips, the forces in the wire re-distribute until equilibrium is achieved. Therefore, 

the condition of a differential wire segment in the outermost layer of the cable to be in 

the slip state is given by Eq. (3.10). 

And the constant of integration and can be obtained the same way by satisfying a 

boundary condition, by putting the value of polar angle zero. 

Next, considering a wire in an inner layer  , such that the normal forces are acting on 

both inner and outer surfaces of the wire. 

   
     (   

               
  

     

       

       
)                                         (   ) 
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The solution for this first order differential equation is given as (which replaces Eq. 

(3.16): 

  
           (       )  

      

          

       

       
                                    (   ) 

where, the integration constant for this solution    is obtained again by satisfying 

boundary condition at      and solving for   , we get 

           
    

      

          

       

       
                                                 (   ) 

where    and    are the number of wires in layer   and       respectively, and     

is the radial load transfer from the outer layer, where the effect of all outer layers has 

been taken into account in case of multi-layered cable Hobbs and Raoof (1982). 

Note that in the above equation account has been made for different lay angles in 

different layers of the cable. This analysis provides the forces in all wires in tension 

that are either in stick state or slip state. 

4.3.2 Contact Forces and State of Wire 

It is important to mention here that the magnitude of unbalanced force is negligible 

for small curvatures, but increases exponentially as bending increases. Now, if the 

unbalanced force in the wire exceeds the maximum friction force generated at the 

contact patches between the wires interlayer slippage starts.  Also, as the polar angle 

φ varies along the axis of a given wire, there is a curvature range, where parts of the 

same wire have slipped while others have not. The state of any individual wire for 

given value of polar angle in the cable cross section can be determined by: 

           (                 
         

 )   

  (  
              

  

     

       

       
)                                                   (   ) 
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It is clear from the above equation that slippage in any layer begins near the neutral 

axis (   ) and propagates almost symmetrically to the upper and lower halves of 

the cable (    increasing). 

4.3.3 Calculation of the Theoretical Bending Stiffness 

As described earlier, effective bending stiffness of the cable depends on 

interlayer/interwire slippage, as wire starts slippage according to Eq.(4.8), the 

effective bending stiffness of the cable decreases until all the wires in the cable are 

slipped. The bending moment in the specific support cross-section is proportional to 

the cable curvature of the cross-sectional area at that position. The resultant bending 

moment in a cable cross-section can be calculated under a given imposed curvature 

  , Hong et al. (2005): 

  ( ∑    
         

        )    ∑          
         

                                     (   ) 

In the above    is the strand curvature,    is the tension force in individual wire in 

layer  ,    is the helix radius in layer  ,    is the lay angle with   being the polar angle of 

a wire in layer  , represents its position in the cross-section of the strand. Whereas 

       
     is the moment of inertia of each wire in the ith layer and       is the 

moment of inertia of the core.  

Note that the first term inside parenthesis on the right-hand side of the Eq. (4.9) 

accounts for the bending stiffness of each individual wire, including those having zero 

axial force, and the core. The second term represents the contribution to the bending 

moment due to the tension force in each of the wires. 

Finally, the bending stiffness of the cable is determined from the slope of the moment 

versus curvature curve. The resultant bending moment of the cable is a non-linear 

function of cable axial stain and curvature. 

In the final MHDS model in this chapter, Eq. (3.9) in HDS model is replaced by Eq. (4.4) 

taking into account the geometrical non-linearities and Poisson’s ratio effect on the 

estimates of tension force in the wires. The difference between two models for this 
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effect is demonstrated in Figures 4.1. Similarly, Eq. (3.12) is replaced by Eq. (4.5) in 

MHDS model after catering for the effect of line contact force between the wires in the 

same layer. Furthermore, slip tension force in the wires depends on the contact force 

and the friction coefficient between the wires. The influence of line contact forces on 

the estimates of radial load transfer is presented in Figures 4.3 (a-f). Finally, the 

equilibrium equation for a wire is changed accordingly in MHDS model, Eq. (4.8) 

replaces Eq. (3.22), demonstrated in Figures 4.4 (a-f). 

4.4 Experimental Observations 

There are various experimental techniques, as discussed by Malinovsky (1993), 

available for the determination of a cable’s effective bending stiffness. It is noted that 

large scale experimental data is always very expensive and time consuming to acquire, 

and the results are usually of restricted application in the absence of adequate 

theoretical interpretation. It is further, noted that even for the same diameter and 

loading, different cable constructions are found to have different characteristics. 

Malinovsky (1993) used two different methods for the determination of the bending 

stiffness using a 34 mm outside diameter fibre-core wire rope. These two methods 

were; the frequency method, and the method of static bending, and the bending 

stiffness was found to be 3000 and 534 Nm2 respectively. The difference between the 

experimental results is very significant; with the value of the bending stiffness 

determined by frequency method being 5.6 times greater than as determined by using 

the method of static bending. The problem with the experimental determination of the 

effective bending stiffness using different methods is mainly due to the experimental 

conditions and depends on the level of imposed curvature. 

Works by Costello and his associates were also supported by some limited 

experimental data obtained from static tests on two types of wire ropes. Phillips and 

Costello (1985) reported test results for the effective Young modulus of a wire rope 

with IWRC.  Velinsky (1985b) reported test results for a fibre-core wire rope, to 

measure the axial stiffness and radial contraction of a single specimen under static 

monotonic loading. However, the correlation between test data and theory were 

found encouraging. Utting and Jones (1987a, and b) reported a variety of test data on 
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seven wire strands subjected to an axial load with various end restraints, in order to 

measure the strand extension, rotation, torque and bending moment. Later on in 

another paper Utting and Jones (1988) reported similar test results for nineteen wire 

strand. On comparing the test results with the theoretical model of Machida and 

Durelli (1973) it was stated that axial strain measurements on helical wire surfaces 

revealed unequal load sharing between identical helical wires. This phenomenon was 

particularly observed in the region close to end terminations, which is considered to 

have severe implications in fatigue studies. Strzemieki and Hobbs (1988) carried out 

static and dynamic tests on a number of spiral strands and wire ropes which were 

subjected to cyclic axial or bending load perturbations. It was shown that the effective 

axial stiffness of the cable change from no-slip to full-slip limit as a function of 

variations in the range/mean ratio of the axial load. 

Recently, Wood and Frank (2009) investigated experimentally bending fatigue 

performance of grouted stay cables and reported the results from twelve bending 

fatigue tests. In line with previous results of Raoof, they stated that the risk of bending 

fatigue damage was low at the tension rings, along the free length of the stays, 

whereas, fretting of adjacent wires within a strand was the dominant cause of bending 

fatigue damage in the tested specimens. It is further stated that the damage tended to 

increase at the end terminations and other locations where concentrated loads were 

applied to the specimens. 

The majority of theories developed based on these experimental results have 

previously assumed either plane-section bending or in many cases have totally 

ignored the ever-present interwire friction, assuming that the individual helical wires 

act as simple helical springs. It is particularly noteworthy that for large diameter 

multi-layered spiral strands, the difference between the two limits of bending 

stiffness, corresponding to zero and infinite interlayer friction is unacceptably large. 

This can be given approximately by the square of the strand/wire diameter ratio. 

There was, therefore, a pressing need to develop reasonably more accurate methods 

for estimating the bending stiffness of particularly large-diameter spiral strands. 

Very often, experiments have been carried out on small diameter strands, consisting 

of only six or seven wires with a single layer. In the present case, the previously 
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reported experimental results of a series of free bending tests on 39 and 41 mm 

diameter strands have been compared with theoretical predictions. For 39 mm strand, 

the deflected shapes of the strand were obtained for mean axial loads of 0.205, 0.41 

and 0.61 MN. Similarly, experimentally determined bending stiffness for a 164 mm 

outside diameter spiral strand has been compared with the bending stiffness 

predictions based on the recently proposed new method by the present author.  

4.4.1 Test Specimen and Equipment 

Full details of the large scale experiments are reported elsewhere (Raoof, 1992a), and 

will be not repeated here, but a few of the most relevant observations will be repeated 

here for completeness. The free bending tests of Raoof (1983) were carried out on a 

7.9m long axially pre-loaded 39 and 41 mm spiral strands with the construction 

details given in table (4.1a) and (4.1b). Two different 7.9 m long galvanized specimens 

of both the strands with axial loads of 0.215, 0.41 and 0.615 MN for 39 mm and 0.22, 

0.44 and 0.66 MN for 41 mm strand were used respectively. These correspond to 

16.7%, 33.3% and 50% of the ultimate load for 39 mm strand and 15.9%, 31.7% and 

47.8% of the ultimate load for the 41 mm strand. Both were terminated with zinc-

poured sockets to BS463: 1958 except for an elongated jaw. The 39 mm specimen had 

seen 15 years’ service as part of a 170 m long guy, and hence its characteristics were 

thought to closely resemble those of other strands in long-term applications. The 

random external loads over a period of years cause significant interwire abrasion and 

compaction which is not easy to simulate under laboratory conditions. The 41 mm 

strand was newly manufactured with some noticeable gaps in its outer layer. Sixty 20 

mm Tokyo Sokki wire on polyester base electrical resistance strain gauges were 

placed in two different locations on the individual outer wires of both 39 and 41 mm 

outside diameter strand specimens. One set of the gauges, were placed close to the 

mouth of the socket while the other were deployed at some distance two meters away, 

in the free field on a similar section. In a series of experiments conducted by Raoof, the 

test set-up enabled Raoof to obtain certain test data regarding the Poffenberger-Swart 

to differential displacements in the vicinity of the socket. 
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The limitations for these experiments were that the behaviour of practical sockets was 

highly complex, and it was not easy to accurately determine the degree of end fixity on 

individual wires, which were collectively (as a bunch) imbedded in the relatively soft 

zinc matrix. Furthermore, the exact location of the cable interface was unknown, 

occurring at some distance inside the conical housing from the face of the socket. 

Raoof and Davies (2005) later showed that actual fix end to the cable occur at a 

distance around 1.5 times the diameter of the cable from the face of the socket. For an 

axially preloaded spiral strands, the end of the cable are supposed to be ideally fixed 

at the face of the socket. Also, the main thrust of these experiments was on torsional 

and bending measurements of the above two strands under various steady mean axial 

loads. Therefore, the equipment used was unsuitable for axial hysteresis 

measurements of the cable. 

As a result of these tests, Raoof (1992a) has shown experimentally that axially pre-

loaded spiral strands undergo plane-section bending only for sufficiently small levels 

of lateral deflections. Beyond a certain level of lateral deflection interlayer slippage 

takes place starting from outer layer and spreading towards the centre of the strands, 

depending on the level of axial tension and imposed curvature. Thus the theoretical 

predictions for the proposed model have been compared with the large scale 

experimental data for 39 and 41 mm outside diameter strands. The plotted test data 

points in Fig. (4.4a & 4.4b) verify the validity of the proposed modified theory. Guided 

by the test results presented in Fig.4.4a & b and theoretical predictions for different 

strand constructions, it is concluded that the lay angle in different layers of the strand 

plays an important role in the bending behaviour of the strand. Increasing lay angle 

delays the initiation of wire slippage in outer layers, but the slippage penetrates more 

rapidly towards the centre of the strand, as radial load transfer for large angles is 

much less compared to small lay angles. 
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Table 4-1a: Construction Details for the 39 mm Outside Diameter Spiral Strand. 

 

Table 4.1b: Construction Details for the 41mm Outside Diameter Spiral Strand 

  

Layer 

No 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter 

D(mm)

Lay Angle 

(degrees)

Helix 

Radius 

r(mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area Ag 

(mm²)

1 30 RH 3.54 17.74 17.73 310.010 394.717

2 24 LH 3.54 16.45 14.1 246.297 313.595

3 18 LH 3.54 15.93 10.57 184.236 234.577

4 12 RH 3.54 14.9 7.04 122.217 155.611

5 7 RH 3.54 15.42 4.19 71.469 90.997

King 1 - 5.05 - - - 20.030

Acore = 20 mm2                           Anet = 954 mm2

Layer 

No 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter D 

(mm)

Lay Angle 

(degrees)

Helix 

Radius r 

(mm)

Net Steel 

Area   An 

(mm²)

Gross 

Steel 

Area Ag  

(mm²)

1 24 RH 4.57 12.45 17.93 403.151 513.308

2 18 LH 4.57 11.96 13.45 301.805 384.270

3 12 RH 4.57 11.25 8.99 200.692 255.529

6 RH 3.43 7 - - 54.210

Core 6 RH 3.43 7.7 - - 32.694

6 RH 3.38 4 - - 53.444

1 - 3.38 - - - 8.973

Acore = 150 mm
2
                            Anet = 1054.9 mm

2        
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Table 4.1c: Construction Details for the 127 mm Outside Diameter Spiral Strand, (α = 

12°). 

 

Table 4.1d: Construction Details for the 127 mm Outside Diameter Spiral Strand, (α = 

18°).

 

Layer 

No 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter 

D(mm)

Lay Angle 

(degrees)

Helix 

Radius 

r(mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area 

Ag(mm²)

1 56 RH 6.6 12 60.17 1958.67 2493.86

2 50 LH 6.6 12 53.73 1748.81 2226.66

3 44 LH 6.6 12 47.29 1538.96 1959.46

4 38 RH 6.6 12 40.85 1329.10 1692.26

5 32 LH 6.5 12 33.89 1085.58 1382.20

6 26 RH 6.5 12 27.56 882.03 1123.04

7 20 LH 6.5 12 21.23 678.49 863.88

8 14 RH 6.6 12 15.15 489.67 623.46

7 - 4 8.57 - 85.05 -

Core 7 - 5.2 8.03 - 144.33 -

7 - 5.2 4.92 - 147.02 -

1 - 7.1 - - 39.59 -

Acore = 415.99 mm2                         Anet = 10127 mm2        

Layer 

No 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter 

D(mm)

Lay Angle 

(degrees)

Helix 

Radius 

r(mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area 

Ag(mm²)

1 54 RH 6.55 18.01 59.22 1913.31 2436.10

2 48 LH 6.55 18.01 52.64 1700.72 2165.42

3 42 LH 6.55 18.01 46.07 1488.13 1894.74

4 36 RH 6.55 18.01 39.5 1275.54 1624.07

5 31 LH 6.55 18.01 34.02 1098.38 1398.50

6 25 RH 6.55 18.01 27.46 885.79 1127.82

7 19 LH 6.55 18.01 20.9 673.20 857.15

8 14 RH 6.3 18.01 14.85 458.90 584.29

7 - 3.9 13.07 - 77.29 -

Core 7 - 5.1 12.2 - 133.53 -

7 - 5.25 7.62 - 142.55 -

1 - 7 - - 38.48 -

Acore = 391.85 mm2                            Anet = 9779.4 mm2
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Table 4.1e: Construction Details for the 127 mm Outside Diameter Spiral Strand, (α = 

24°). 

 

Table 4.1f: Construction Details for 164 mm Outside Diameter Spiral Strand, (α = 

18°). 

 

Layer 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter 

D(mm)

Lay Angle 

(degrees)

Helix 

Radius 

r(mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area 

Ag(mm²)

1 54 RH 6.4 24 60.23 1901.57 2421.16

2 48 LH 6.4 24 53.54 1690.29 2152.14

3 42 LH 6.5 24 47.58 1525.58 1942.43

4 36 RH 6.5 24 40.79 1307.64 1664.94

5 30 LH 6.6 24 34.53 1123.49 1430.47

6 24 RH 6.6 24 27.64 898.79 1144.38

7 18 LH 6.8 24 21.38 715.57 911.09

8 14 RH 6.1 24 14.94 447.87 570.24

7 - 3.9 17.89 - 72.07 -

Core 7 - 5.1 16.75 - 125.56 -

7 - 5.25 10.58 - 143.94 -

1 - 7 - - 38.48 -

Acore = 380 mm
2
                            Anet = 9990.7 mm

2

Layer 

Number 

of Wires 

nw

Lay 

Direction

Wire Diameter 

D(mm)

Lay Angle 

(degrees)

Helix 

Radius 

r(mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area 

Ag(mm²)

1 72 RH 6.5 18.01 78.34 2512.276 3198.73

2 66 LH 6.5 18.01 71.81 2302.920 2932.17

3 60 RH 6.5 18.01 65.29 2093.564 2665.61

4 54 LH 6.5 18.01 58.77 1884.207 2399.05

5 48 RH 6.5 18.01 52.24 1674.851 2132.49

6 42 LH 6.5 18.01 45.72 1465.495 1865.93

7 36 RH 6.6 18.01 39.8 1295.086 1648.95

8 30 LH 6.6 18.01 33.18 1079.238 1374.13

9 24 RH 6.6 18.01 26.56 863.391 1099.3

10 18 LH 6.6 18.01 19.95 647.543 824.477

14 6 17.99 - 340.575 -

7 - 3.7 12.98 - 69.641 -

Core 7 - 4.85 12.15 - 120.824 -

7 - 4.95 7.53 - 131.254 -

1 - 6.7 - - 35.257 -

Acore = 697.55 mm2                            Anet = 20140.8 mm2
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4.5 Results and Discussion 

Tables 4.1 (a & b) give the construction details of 39 and 41 mm (outside) diameter 

strands used in the large scale experiments reported by Raoof (1992 a &b) whereas 

Tables 4.1 (c-f) give the construction details of three different 127 mm (outside) 

diameter strands with lay angles of 12°, 18° and 24°, with nominally similar values for 

the other geometrical parameters. The first two multi-layered axially preloaded spiral 

strands have different lay angles of around 17 and 11 degrees respectively with 

approximately same outer diameters. For the 164 mm diameter strand with lay angle 

of 18°, experimentally determined values of the effective bending stiffness are 

reported in this Chapter, taken from Raoof and Davies (2005). 

 

Figure 4-1: Tension force versus lay angle measurements in individual wire of 127 

mm diameter strand using HDS and MHDS models. 

 

Figure 4.1 shows the influence of geometrical nonlinearities on the axial strains in the 

individual helical wires in various layers. Since the curvature is zero therefore, all the 

wires in the cable are equally stretched. The difference between the two models 

particularly gains importance for sufficiently large values of the lay angle(s) within the 

manufacturing range of ( 11° ≤ αi ≤ 24°). Here, MHDS model based on the previously 

reported orthotropic sheet model, not only takes the effects of geometrical 
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nonlinearities on the axial wire strains but also the important reductions in cable 

diameter due to both interwire normal contact deformations and the Poison’s ratio 

effect of steel. For lay angles beyond 15°, the significant difference between the two 

models has shown in the Figure 4.1. For lay angle of 28°, the difference between the 

two models exceeds 1820 N for a single wire, which when sum up for all the 268 wires 

of the cable becomes 487 KN. Furthermore, material non-linearities due to the 

presence of friction between wires and non-linear nature of the elastic contact 

problem is also considered in this work. 

The associated tension force in individual wires based on HDS and MHDS models is 

presented in Figures 4.2 (a-c), for three same diameter strands with different lay 

angles of 12°, 18° and 24° respectively. The results in Figures 4.2 (a-c) clearly 

demonstrate the difference in the estimates of tension force in individual wires for the 

two models increases with increasing lay angles. These values have been obtained for 

the case, when the bending curvature is zero and all the wires in the cable are equally 

stretched. For lay angle of 24° for example, tension force in a wire for an axial strain of 

0.006, is 13540, 16424 N for HDS and MHDS models respectively. This shows a 

percentage difference of 21.3 % for the selected axial strain of εc = 0.006 for a single 

wire in the cable. 
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Figure 4-2: (a-c): Theoretical predictions of tension force in the wire  of three same 

diameter strands with varying lay angles of: (a) 12°; (b) 18°; and (c) 24° respectively. 
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Figures 4.3 (a-f) present comparisons between the theoretical values of radial contact 

forces per unit length for all the layers of the above six different strand constructions 

for HDS and MHDS models respectively. These are the values obtained for the case 

when the wire strains due to tension force in the wires are much greater than the wire 

strains due to bending. Keeping in view the helical nature of the individual wires in 

axially pre-loaded spiral strands, the radial contact forces are minimum at the 

interface between outermost and penultimate layer and increase towards the centre 

of the strand as shown in Fig. 4.3 (a-f). Unlike HDS model, the proposed MHDS model 

fully takes into account normal contact forces both in the hoop and radial directions, 

following orthotropic sheet theory formulations. The crucial effect of including line 

contact hoop forces on the estimates of interlayer friction results in reducing the 

bending stiffness with increasing curvature is clearly demonstrated.  

This difference in radial load transfer at the trellis contact patches for the two models 

is shown to increase tremendously for inner layers as well as for an increasing axial 

strain of the strand. And thus in the case of MHDS model, interlayer/interwire 

slippage in the inner layers is observed to occur at relatively small values of imposed 

curvature for multi-layered strands. A slight increase in lay angle leads to decrease 

clench forces in the radial direction with a notable increase in normal contact forces in 

hoop direction. The effect of lay angle on the estimates of radial contact forces is 

demonstrated in Figures 4.3 (c-e) for the three same outer diameter strands with 

different lay angles of 12°, 18° and 24° respectively. 
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Figure 4-3a: Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 39 mm outside diameter strand. 

 

Figure 4.3b-Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 41 mm outside diameter strand. 
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Figure 4.3c-Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 127 mm (α = 12°) outside diameter strand. 

 

Figure 4.3d-Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 127 mm (α = 18°) outside diameter strand. 
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Figure 4.3e-Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 127 mm (α = 24°) outside diameter strand. 

 

Figure 4.3f-Comparison of XRi versus εc plots, for the MHDS and HDS models, for all 

the layers of 164 mm (α = 18°) outside diameter strand. 

0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250 300 350 400 450

S
tr

a
n

d
 a

x
ia

l 
st

ra
in

, ε
c 

Radial contact force per unit length, XRi(N/mm) 

HDS Model

MHDS Model

(3) (4) 

(6) 

(5) 

(8) (7) (8) (6)   (5)   (4) (7) 

(2) (1) 

Innermost layer = 1 

(3) 

(2) (1) 

α = 24° 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 50 100 150 200 250 300 350

S
tr

a
n

d
  a

x
ia

l 
st

ra
in

, ε
c 

Radial contact force per unit length, XRi( N/mm) 

MHDS Model

HDS Model

(1)  (2) 

(3) 

(4) 

(5) (6) 

(7) 

(10) (10) (9) 

(3) (5) (8) 

(4) (2) 

Innermost layer = 1 
(9) 

(8) (7) (6) 

(1) 

α = 18° 



 

Page | 101  

 

 

Figure 4-4 (a-c): Experimental support for the predictions of the MHDS model in the 

case of two different cable constructions: (a) 39 mm; (b) 41 mm diameter strands; and 

(c) theoretical predictions of interwire slippage at neutral axis for164 mm strand. 
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Figs 4.4 (d-f) Values of critical curvature for various layers of three different cable 

constructions of: (d) 127 (α =12°); (e) 127 (α =18°); and (f) 127 (α =24°) mm 

diameter strands at which interlayer slippage initiated near neutral axis for different 

strand tension forces. 
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The plots based on the MHDS model, in Figures 4.4 (a-f) show the critical curvatures 

at which interwire slippage initiated at the so called neutral axis throughout the 

strand for all the layers of different strand constructions given in tables 4.4 (a-f) 

respectively. The results in Figures 4.4a and 4.4b present the encouraging large scale 

experimental support for the predictions of the MHDS model for the two 39 and 41 

mm spiral strands covering a wide range of cable mean axial strains 0.0015 ≤ εc ≤ 

0.044 and 0.00115 ≤ εc ≤ 0.0023, respectively. These correspond to mean axial loads 

equal to 16.7%, 33.3% and 50% of their ultimate loads for 39 mm, as well as 15.9% 

31.7% and 47.7% for the 41 mm strand. Each pair of triangle horizontally inline is 

obtained for the above selected cable axial strains for both the cables. The two 

horizontally inline triangular points show the values of curvature at which interwire 

slippage in the outermost layer begins near neutral axis and extreme fibre position 

respectively. Therefore,the first triangular point is the curvature at which interwire 

slippage begins at neutral axis of the cable, whereas the second point shows the 

curvature at which wire near extreme fibre position in the outermost layer slips for 

the selected axial strain.  

Increasing lay angle delays the initiation of wire slippage in the outer layers but due to 

less radial load transfer into the inner layers slippage penetrates quickly into the 

inner layers of the strand. Hence, the resulting predictions of reductions in bending 

stiffness with increasing curvature, with the errors for the two models increasing 

substantially with modest increases in lay angle, αi ,within the current manufacturing 

range of 11° ≤     ≤ 24°. Similarly, increasing strand diameter caused wire slippage to 

occur at small values of curvature, as the unbalanced force on wire increases with 

increasing radial distance from the centre of the strand.  

Figures 4.5 (a-c) present the boundaries between stick and slip regions versus 

curvature on the cross section of three same diameter spiral strands with different lay 

angles of 12°, 18° and 24° respectively. For the cable mean axial strain εc = 0.003, the 

mean axial loads for these three cables are 5560, 4708 and 3560 kN respectively. 

Here, interlayer slippage in any layer begins in the vicinity   = 0 and propagates with 

| | increasing. For the ith layer, the boundary between the no-slip and full-slip states 

is denoted by    and    for the upper and lower halves of the cross section, 
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respectively. In the case of the 127 mm (α = 12°) cable, for example, as the strand 

curvature increases, wires in the outermost layer start slipping (near the neutral axis) 

at around κc = 0.0014 m-1. Slippage in the penultimate layer starts at around κc = 

0.0038 m-1 and in the remaining six inner layers slippages start at κc =0.0063 m-1, κc = 

0.0082 m-1, κc = 0.01 m-1, κc = 0.014 m-1, κc = 0.021 m-1  and κc = 0.03 m-1 respectively. 
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Figure 4-5(a-c): Boundaries between stick and slip regions vs curvature, on cross 

section of three 127 mm dia strands with lay angles of: (a)  12°; (b) 18°; and (c) 24° 
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Figure 4-6a: Moment versus curvature plots for 39mm diameter strand for selected 

axial strains. 

 

Figure 4-6b: Moment versus curvature plots for 41mm diameter strand for selected 

axial strains. 
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Figure 4-6c: Moment versus curvature plots for 127 mm (α = 12°) diameter strand 

for selected axial strains. 

 

Figure 4-6d: Moment versus curvature plots for 127 mm (α = 18°) diameter strand 

for selected axial strains. 
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Figure 4-6e: Moment versus curvature plots for 127 mm (α = 24°) diameter strand 

for selected axial strains. 

 

Figure 4-6f: Moment versus curvature plots for 164 mm (α = 12°) diameter strand for 

selected axial strains. 
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Figures 4.6 (a-f) show the moment versus curvature plots for the above six different 

strand constructions, using the proposed modified model, MHDS. It is shown that 

initially, the bending moment of the cable is linearly proportional to the imposed 

curvature, when all the wires in the cable are stuck together. After the initiation of the 

wire slippage, bending moment becomes a non-linear function of the strand 

curvature. However as shown, when all the wires slip, the bending moment of the 

cable gets a constant trend for a given axial strain, as slip tension force   
    , is 

independent of the imposed curvature. After applying a small curvature increment, 

the strain energy of the stick wires is changed while the strain energy of the slipped 

wire remained constant. The non-linearity in the bending moment is caused by the 

change in the state of the wires from stick state to slip state.  

Based on the strain distribution on the curvature, three distinct stages are created 

during the bending cycle of the helical cable: (a) no-slip; (b) partially slip; and (c) full-

slip. In the first stage, all the wires in the cable are stuck together and the stiffness of 

the cable is at its maximum with the bending moment-curvature relationship linear. 

Second is the transitional stage, when some parts of the cable are sliding whereas 

others do not. The bending stiffness of the cable gradually decreases in this case over 

a range of curvature. When the curvature reaches a critical value such that the wire in 

the cable slide everywhere, this corresponds to the third stage. At this final stage the 

stiffness of the cable drops to a minimum constant value depending on the assumed 

coefficient of friction. It is worth to mention that the state of the wires at the neutral 

axis does not have a significant effect on the bending moment values of the cable 

whereas the state of the wires at the extreme fibre position greatly affects the overall 

bending moment of the strand. The results also highlight the limitations of assuming a 

uniform state of axial strain in all wires.  
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Figure 4-7(a & b): Plots of EIeff versus strand curvature, covering 0.001 ≤ εc ≤ 0.005 , 

for two different cable constructions: (a) 39; and (b) 41 mm diameter spiral strands. 
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Figures 4.7 (c & d) Plots of EIeff versus strand curvature, covering 0.001 ≤ εc  ≤ 0.005 , 

for two 127 mm diameter different cable constructions: (c) lay angle 12°; and (d) lay 

angle 18° respectively. 
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Figures 4.7 (e & f) Plots of EIeff versus strand curvature, covering 0.001 ≤ εc  ≤ 0.005 , 

for two different cable constructions: (e) 127 (α = 24°); and (f) 164 (α = 18°) mm 

diameter spiral strands. 
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Based on MHDS model, Figures 4.7 (a-f) show the reductions in the magnitude of 

bending stiffness of the strands as a function of cable curvature for different axially 

preloaded strands. This covers the practical range (0.001 ≤ εc ≤ 0.005) of strand axial 

strains. Initially, the bending stiffness of the strand is constant at EImax, when all the 

wires are sticking together. As the wires slip, the bending stiffness of the strand 

decreases and eventually approaches a constant value, depending on the assumed 

coefficient of friction and the type of cable construction. This constant value always 

remains above the absolute minimum value EImin, corresponding to the case of zero 

coefficient of friction. In the later case of zero friction, all the wires in the strand 

bending about their own neutral axis, as a collection of individual helical springs. It is 

found that the difference between two extreme stiffness values for any cable depends 

on the coefficient of friction between the wires and the type of cable construction, but 

is independent of the tension force in the cable. Increasing strand tension only delays 

the initiation of interlayer slippage, resulting bending stiffness to remain constant 

under large values of imposed curvature. After the initiation of interlayer slippage, the 

flexural stiffness of the strand drops to same constant value for different load 

perturbations.  

The numerical results obtained for different cable constructions confirmed that the 

full slip bending stiffness value increases with increasing the value of friction 

coefficient between the wires. Strand outer diameter is shown to play an important 

role on interlayer contact deformations and slippage pattern. It is readily seen that for 

the larger strand diameters EImax remain constant for very small values of strand 

curvature. The reason for this is that the unbalanced force on wires in the outer layer 

of large diameter cable increases tremendously, due to increasing radial distance from 

the centre of the strand. For a selected axial strain of εc = 0.001, the bending stiffness 

for the two strands of 39 and 127 mm diameter strands with approximately same lay 

angles, EImax remain constant under the imposed curvature values of 0.0029 and 

0.0008 (m-1) respectively. In other words, the wires in the outer layer of 39 mm strand 

slipped at a curvature value almost three times larger than that for 127 mm strand, 

which is almost equal to the ratio of the outer diameter (127/39) of the two strands.  
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Lay angle of wires in different layers of the strand not only play an important role in 

the pattern of wire slippage and other contact deformations, but the value of EImax 

notably decreases with increasing lay angle. The results for the three same diameter 

strands with different lay angles of 12°, 18° and 24°, have EImax values of 2006667, 

1625090 and 1256250 Nm2 respectively.  

As regards the magnitude of the bending stiffness, Figure 4.4f gives the comparison of 

the theoretical predictions and experimentally determined values of the bending 

stiffness for 164 mm outside diameter cable. The experimental values of the bending 

stiffness of the cable were obtained for both the first (♦) and final (◊) loading runs 

respectively, as reported by Raoof and Davies (2005). It is claimed that the values of 

different material parameters (coefficient friction, modulus of elasticity, Poisson’s 

ratio etc.) were similar as assumed in this study. As mentioned earlier, the difference 

between two extreme bending stiffness values is unacceptably large. Comparing the 

experimentally obtained full slip bending stiffness value for the final loading run 

shows a difference by a factor of 13, with experimentally determined value being 

thirteen times less than the no slip bending stiffness value. The theoretical full slip 

value for 164 mm diameter cable is Efull-slip = 356700 Nm2, whereas the experimentally 

determined value is Efull-slip = 361100 Nm2. The results in Figure 4.4f shows very 

encouraging support for the predictions of the MHDS model for a multi-layered large 

diameter cable of 164 mm. 
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Table 4-2a: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand 

for all the layers of 39 mm outside diameter spiral strand. 

 

Table 4.2a: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand 

for all the layers of 41 mm outside diameter spiral strand. 

 

0.0005 0.0015 666.67 17094 0.0035 285.71 7326 0.006 166.67 4274 0.011 90.91 2331 0.02 50.00 1282

0.001 0.003 333.33 8547 0.007 142.86 3663 0.012 83.33 2137 0.022 45.45 1166 0.04 25.00 641

0.002 0.0045 222.22 5698 0.013 76.92 1972 0.023 43.48 1115 0.043 23.26 596 0.078 12.82 329

0.003 0.007 142.86 3663 0.019 52.63 1350 0.034 29.41 754 0.06 16.67 427 0.11 9.09 233

0.004 0.009 111.11 2849 0.025 40.00 1026 0.045 22.22 570 0.085 11.76 302 0.13 7.69 197

0.005 0.011 90.91 2331 0.032 31.25 801 0.053 18.87 484 0.1 10.00 256 0.16 6.25 160

Rad: of 

curvature, 

ρ (m)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc(m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

Mean 

Axial 

Strain 

εc 

Curvature, 

κc(m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc(m
-1

)

Curvature, 

κc(m
-1

)

1 2 3 4 5

Curvature, 

κc(m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d ρ/d

Layer Number

0.0005 0.0008 1250.00 30488 0.0025 400 9756.10 0.0065 153.85 3752

0.001 0.0015 666.67 16260 0.005 200 4878.05 0.013 76.92 1876

0.002 0.0031 322.58 7867.8 0.0098 102.04 2488.80 0.023 43.48 1060

0.003 0.0046 217.39 5302.2 0.014 71.43 1742.16 0.034 29.41 717.4

0.004 0.0061 163.93 3998.4 0.019 52.63 1283.70 0.043 23.26 567.2

0.005 0.0076 131.58 3209.2 0.024 41.67 1016.26 0.053 18.87 460.2

Layer Number

1 2 3Mean 

Axial 

Strain
Curvature, 

κc(m
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curvature, 

ρ (m)

ρ/d
Curvature, 

κc(m
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curvature, 

ρ (m)

ρ/d
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curvature, 
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 Table 4.2b: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand for all 

thelayersof127mmoutsidediameterspiralstrandwithlayangle,α=12°. 

 

 

Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0005 0.00027 3703.70 29163 0.0006 1666.67 13123 0.001 1000.00 7874 0.0016 625.00 4921

0.001 0.00043 2325.58 18312 0.0013 769.23 6057 0.0021 476.19 3750 0.0031 322.58 2540

0.002 0.0009 1111.11 8749 0.0024 416.67 3281 0.0041 243.90 1920 0.0056 178.57 1406

0.003 0.0013 769.23 6057 0.0038 263.16 2072 0.0061 163.93 1291 0.0081 123.46 972

0.004 0.002 500.00 3937 0.0048 208.33 1640 0.0075 133.33 1050 0.011 90.91 716

0.005 0.0025 400.00 3150 0.006 166.67 1312 0.01 100.00 787 0.0145 68.97 543

Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0028 357.14 2812 0.0035 285.71 2250 0.004 250.00 1969 0.006 166.67 1312

0.0056 178.57 1406 0.007 142.86 1125 0.0082 121.95 960 0.012 83.33 656

0.0078 128.21 1009 0.012 83.33 656.2 0.015 66.67 525 0.023 43.48 342

0.0092 108.70 855.9 0.015 66.67 524.9 0.02 50.00 394 0.03 33.33 262

0.014 71.43 562.4 0.019 52.63 414.4 0.024 41.67 328 0.036 27.78 219

0.018 55.56 437.4 0.023 43.48 342.3 0.029 34.48 272 0.041 24.39 192

Mean 

Axial 

Strain 

εc

Layer No

1 2 3 4

5 6 7 8
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Table 4.2c: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand 

for all the layers of 127 mm outside diameter spiral strand with lay angle, α = 18°. 

 

 

Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0005 0.00032 3125.00 24606 0.001 1000.00 7874 0.0015 666.67 5249 0.002 500.00 3937

0.001 0.00065 1538.46 12114 0.002 500.00 3937 0.003 333.33 2625 0.004 250.00 1969

0.002 0.0013 769.23 6056.9 0.0036 277.78 2187 0.0059 169.49 1335 0.0077 129.87 1023

0.003 0.002 500.00 3937 0.0054 185.19 1458 0.0084 119.05 937.4 0.011 90.91 715.8

0.004 0.0026 384.62 3028.5 0.0071 140.85 1109 0.011 90.91 715.8 0.0145 68.97 543

0.005 0.0032 312.50 2460.6 0.0092 108.70 855.9 0.014 71.43 562.4 0.019 52.63 414.4

Curvature, 

κc (m
-1

)
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curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)
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curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0025 400.00 3149.6 0.0035 285.71 2250 0.0046 217.39 1712 0.007 142.86 1125

0.0052 192.31 1514.2 0.007 142.86 1125 0.0093 107.53 846.7 0.014 71.43 562.4

0.0098 102.04 803.47 0.013 76.92 605.7 0.018 55.56 437.4 0.026 38.46 302.8

0.014 71.43 562.43 0.018 55.56 437.4 0.025 40.00 315 0.035 28.57 225

0.018 55.56 437.45 0.022 45.45 357.9 0.029 34.48 271.5 0.039 25.64 201.9

0.023 43.48 342.35 0.027 37.04 291.6 0.034 29.41 231.6 0.046 21.74 171.2

Mean 

Axial 

Strainεc

Layer No

1 2 3 4

5 6 7 8
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Table 4.2d: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand 

for all the layers of 127 mm outside diameter spiral strand with lay angle, α = 24°. 

 

Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0005 0.00041 2439.02 19205 0.001 1000.00 7874 0.0015 666.67 5249 0.0024 416.67 3281

0.001 0.00082 1219.51 9602 0.002 500.00 3937 0.003 333.33 2625 0.0038 263.16 2072

0.002 0.0017 588.24 4632 0.0039 256.41 2019 0.0053 188.68 1486 0.0065 153.85 1211

0.003 0.0024 416.67 3281 0.0055 181.82 1432 0.0073 136.99 1079 0.0089 112.36 885

0.004 0.0034 294.12 2316 0.0071 140.85 1109 0.0095 105.26 829 0.011 90.91 716

0.005 0.0042 238.10 1875 0.0086 116.28 915.6 0.011 90.91 716 0.0135 74.07 583

Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m-1)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0028 357.14 2812 0.0032 312.50 2461 0.004 250.00 1969 0.007 142.86 1125

0.0045 222.22 1750 0.005 200.00 1575 0.007 142.86 1125 0.012 83.33 656

0.0076 131.58 1036 0.012 83.33 656.2 0.016 62.50 492 0.023 43.48 342

0.011 90.91 715.8 0.017 58.82 463.2 0.021 47.62 375 0.029 34.48 272

0.014 71.43 562.4 0.021 47.62 375 0.026 38.46 303 0.035 28.57 225

0.017 58.82 463.2 0.025 40.00 315 0.03 33.33 262 0.04 25.00 197

Mean 

Axial 

Strain 

εc

Layer No

1 2 3 4

5 6 7 8
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Table 4.2e: Values of imposed curvature for MHDS model at which interlayer/interwire slippage initiated at the neutral axis of the strand 

for all the layers of 164 mm outside diameter spiral strand with lay angle, α = 18°. 

 

Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0005 0.0003 3333.33 20325 0.0005 2000.00 12195 0.0007 1428.57 8711 0.0012 833.33 5081 0.0015 666.67 4065

0.001 0.00006 16666.67 1E+05 0.0013 769.23 4690 0.0016 625.00 3811 0.0026 384.62 2345 0.0032 312.50 1905

0.002 0.0011 909.09 5543 0.0025 400.00 2439 0.0032 312.50 1905 0.0051 196.08 1196 0.0061 163.93 1000

0.003 0.0017 588.24 3587 0.0038 263.16 1605 0.0048 208.33 1270 0.0075 133.33 813 0.0094 106.38 649

0.004 0.0023 434.78 2651 0.005 200.00 1220 0.0064 156.25 953 0.0095 105.26 642 0.013 76.92 469

0.005 0.0029 344.83 2103 0.0062 161.29 983.5 0.008 125.00 762 0.012 83.33 508 0.0155 64.52 393

Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d
Curvature, 

κc (m
-1

)

Rad: of 

curvature, 

ρ (m)

ρ/d

0.0019 526.32 3209 0.0023 434.78 2651 0.003 333.33 2033 0.004 250.00 1524 0.005 200.00 1220

0.004 250.00 1524 0.005 200.00 1220 0.0062 161.29 983 0.008 125.00 762 0.012 83.33 508

0.008 125.00 762.2 0.01 100.00 609.8 0.012 83.33 508 0.015 66.67 407 0.02 50.00 305

0.012 83.33 508.1 0.015 66.67 406.5 0.018 55.56 339 0.022 45.45 277 0.029 34.48 210

0.015 66.67 406.5 0.02 50.00 304.9 0.025 40.00 244 0.03 33.33 203 0.039 25.64 156

0.02 50.00 304.9 0.024 41.67 254.1 0.03 33.33 203 0.036 27.78 169 0.048 20.83 127

Mean 

Axial 

Strain 

εc 

Layer No

1 2 3 4 5

106 7 8 9
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Tables 4.2 (a-f) offer the values of the critical curvature at which interlayer slippage 

starts at the neutral axis in different layers of the above six strands. The results in 

these tables cover a wide range of cable axial strains, 0.001 ≤ εc ≤ 0.005. 

4.6 Conclusions 

The earlier model reported by Hong has been modified and the effect of ever present 

line contact forces between the wires in the same layer has been included in the 

formulations. After the proposed modifications, a large set of numerical data have been 

obtained for a variety of spiral strand constructions covering a wide range of 

geometrical parameters. Based on those results, effective bending stiffness of the cable 

is shown to be a function of bending curvature, interlayer friction coefficients and 

interlayer normal contact forces. It is further shown that the bending stiffness of a 

cable drop down by a factor of 2-16 depending on the assumed value of coefficient of 

friction and the type of cable construction. The results for different cables confirmed 

that the full slip bending stiffness value of the cable increases as the value of the 

friction coefficient between the wires increases, whereas       decreases, as lay angle 

increases. The transition of bending stiffness from no slip to full slip value is shown as 

a function of the imposed cable curvature. Regarding the magnitude of the effective 

bending stiffness of the cable theoretical results for a large diameter cable of 164 mm 

were compared with test data. Similarly, regarding contact deformations and slippage, 

the theoretical results of the model have been compared with the previously available 

experimental results for two different cable constructions of 39 and 41 mm diameters 

respectively. In both cases, a very good correlation is found between test data and 

theoretical predictions. Finally, it is found possible to develop a simple method for 

predicting the effective bending stiffness of any strand construction under any given 

curvature, which will be the subject of the next chapter. 
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Chapter 5  

Simple Method for the Determination of the Bending 

Stiffness of Large Diameter Multi-Layered Spiral 

Strands. 

5.1 Introduction 

This chapter focuses on the development of a simple dimensionless parameter for the 

determination of the effective bending stiffness of a cable.  In Chapter 4, a very 

accurate theoretical model for calculating the bending moment-curvature relationship 

of large diameter multi-layered spiral strands has been developed. But the potential 

problem is that it consists of very lengthy mathematical formulations and involves 

certain iterative procedures.  With this in mind, it is desirable to have a simple yet 

reliable method to accurately predict the effective bending stiffness of the cable under 

varying cable curvatures. The reliability of any restrained bending design procedure is 

based on a reasonably accurate estimation of the minimum critical radii of curvature at 

the fixed end(s). Such values of curvature and the corresponding bending stiffness are 

then used as an input into the fatigue design model. 

Having gained a sound understanding of the controlling parameters, it is now possible 

to develop and describe a simplified method for calculating the effective bending 

stiffness of the strand under varying cable curvatures. The practical implications of 

assuming a constant effective bending stiffness for calculating the deflected shape of 

the cable has already been addressed in the previous chapter. It is however, a point of 

concern that the steel cable design and manufacture, is the area where still the rule of 

thumb reigns supreme with the past commercial experience being largely limited to 

the performance of cables with small diameters. Although cable manufacturers are 

now able to manufacture helically wound steel cables with diameters well in excess of 

100 mm. In order to use such large diameter cables with confidence, reliable 

performance data for large diameter constructions under realistic conditions must be 

obtained.  
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For the free bending of long steel cables subjected to an approximately steady mean 

axial load, it has been shown in Chapter 4 that the effective bending stiffness of the 

cable vary greatly between two extremes. The theoretical results from Chapter 4 will 

be used in the following to develop a straightforward yet accurate method for 

estimating the bending stiffness of the strand. Thus the proposed method is backed by 

a large body of numerical results obtained for a variety of realistic multi-layered large 

diameter (e.g. 100mm) spiral strands, bending in the absence of sheaves or other 

formers, so that the radius of curvature of the strand is not predetermined.  

Therefore, a dimensionless new parameter has been determined for design against 

such rather common and often very costly fatigue failures. Using this newly proposed 

parameter, it is now possible to determine the effective bending stiffness of the strand 

under any given cable curvature, for any cable construction subjected to any load 

perturbations. The proposed formulations are very simple in nature for direct 

engineering applications and the effective bending stiffnesses of the cable can be 

determined easily, even with a pocket calculator. 

5.2 Background to the Simple Methods Developed 

Different attempts have been made to simplify with acceptable accuracy the complex 

mathematical formulations used for the analysis of cables.  Hruska (1951) proposed a 

simple formula for calculating the effective axial stiffness of the cable. Cable axial 

stiffness was shown to be a weighted function of the lay angles of the wires in the 

strand. In another publication Hruska (1952) tried to establish a relationship between 

radial and tensile forces in a layer of wire strand. The findings of this study were that 

the radial forces increased inward for each layer of helical cables and are therefore 

reached a maximum for core wires. 

 Strzemiecki and Hobbs (1988) extended Hruska’s approach and proposed a general 

form of Hruska’s formulations for estimating the full-slip axial stiffness of a wire rope. 

Raoof and Davies (2003) extended further the work of Strzemiecki and Hobbs (1988) 

and develop simple formulations for calculating the no-slip and full-slip axial 

stiffnesses of wire ropes either with IWRC or fibre cores. 
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Lanteingne (1985) proposed a simple means for the estimation of the degradation of 

the flexural rigidity of the cable under gradual increases in the cable curvature. In his 

model, he used Hruska’s (1952) formula to obtain the estimates of radial contact force 

at trellis contact patches i.e. line contact forces between the wires in the same layer 

were ignored. Later, Raoof (1994) showed that for small radii of curvature, interlayer 

slippage occur on the contact patches, and plane sections do not remain plane during 

the bending cycle. An attempt has been made to predict no-slip and full slip values of 

the bending stiffness as a function of increasing cable curvature. It is argued that the 

magnitude of interlayer slippage between wires at extreme fibre position considerably 

lags behind those near to the neutral axis. There are also attempts in the literature to 

extrapolate test results on small scale model strands to predict the properties of large 

diameter cables (Chien, LeCair and Costello, 1988). A similar attempt has been made 

by Yeung and Walton (1985) to simplify and make economically acceptable axial 

fatigue tests, for large diameter cables used in the offshore platforms. Hong et al, 

(2005) proposed a theoretical model which was not only capable of calculating the no-

slip and full slip bending stiffness values but the smooth transition between these two 

extremes is shown to be a function of the strand radii of curvature. However, the effect 

of interwire contact forces between the wires in the same layer was ignored in this 

model. Hong’s model was subsequently modified and extended to cater for the ever 

present line contact forces in the same layer. The salient features of which have 

already been reported in Chapter 4: the proposed formulations are found to predict 

with a fairly good degree of accuracy, the mechanical characteristics of helical cables.  

5.3 Theoretical Parametric Studies 

In order to simplify the formulations proposed in Chapter 4, theoretical parametric 

studies were carried out on a variety of structural strands with their construction 

details given in Tables 4.1 (a-f). These geometric parameters cover a wide range of lay 

angles, number of wires, number of layers and wire and strand diameters. Using the 

original formulations proposed in Chapter 4, interwire contact deformations in terms 

of the parameters describing overall strand deformations, moment-curvature plots 

were obtained for each of the six different strand constructions.  It is shown that the 

helical cables exhibit large non-linearities during bending because of the wire slippage 
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under frictional forces. The plots for the smooth transition of the bending stiffnesses of 

the strands from no-slip to full slip were produced from the slope of the deflection 

curves. Based on the results from these extensive theoretical parametric studies, it has 

been shown that the effective bending stiffness of the strand mainly depend on the 

axial load perturbations and the imposed curvature. Thus, a new parameter has been 

developed composed of radius of curvature times the axial strain of the strand divided 

by the strand outer diameter,       . Using this parameter it is now possible to 

estimate the effective flexural stiffness of the cable subjected to any bending curvature.   

5.3.1 Range of Parameters Used 

In the present analysis, the following values of the various material parameters are 

used: Young Modulus for Steel Esteel = 200 kN/mm2, Coefficient of friction µ = 0.12, 

Poisson’s Ratio υ = 0.28. The full range of various strand geometrical parameters used 

in the present analysis is given below in Table 5.1. Whereas the full construction 

details of various structural strands are given in Chapter 4, Tables 4.1 (a-f). 

Table 5-1: Full range of various geometrical strand parameters used in the present 

analysis. 

Parameters Range of Parameters 

Strand diameter, d (mm) 41 ≤ d ≤ 164 

Number of layers, N 3 ≤ N ≤ 10 

Number of wires in each layer, ni 12 ≤ ni ≤ 74 

Total number of wires in the strand, NT 19 ≤ NT ≤ 522 

Lay angle, αi, (degrees) 11 ≤ αi ≤ 25 

Wire diameter, D (mm) 3.54 ≤ D ≤ 6.55 
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Figure 5-1 (a & b): Simple design curves based on the theoretical parametric studies, 

using the MHDS model with mean axial strains of; (a) 0.001; (b) 0.002 respectively. 
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Figures 5.1 (c & d) Simple design curves based on the theoretical parametric studies, 

using the MHDS model with mean axial strains of; (c) 0.003; (d) 0.004 respectively. 
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Figures 5.1 (e & f) Simple design curves based on the theoretical parametric studies, 

using the MHDS model with mean axial strains of; (e) 0.005; (f) εc varies. 
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5.4 Results 

Figures 5.1 (a-e) present the plots of ρcεc/d versus EIeff/EImax for all the six strand 

constructions, using MHDS model with axial strains of 0.001, 0.002, 0.003, 0.004 and 

0.005 respectively. These plots have been obtained for a number of structural strands 

with their construction details presented in Tables 4.1 (a-f). The bending stiffness of 

the cable is shown to be a non-linear function of the newly proposed dimensionless 

parameter. Thus the reasonable estimate of the newly proposed parameter is sufficient 

for obtaining fairly accurate estimates of the effective flexural stiffness of the cable. 

The range of geometrical parameters used in this study is shown in Table 5.1. For 

modest curvature, when the wires in cable have not slipped yet, there is an upper 

bound limit of the new parameter given for these plots (i.e. 10). Beyond this value the 

simple method given in this chapter is not applicable, and if the value of the proposed 

parameter is greater than 10, the flexure rigidity of the cable will be at its maximum i.e. 

EImax. These plots have been obtained for the selected friction coefficient, Poison’s ratio 

and modulus of elasticity values of 0.12, 0.28 and 200 kN/mm2 respectively.  

It is also worth mentioning here that the values of this parameter are approximately 

same for different loading perturbations. This is because the radius of curvature 

decreases with increasing tension force in the strand. As predicted by the theory, 

increasing tension force in the cable delays the initiation of wire slippage, and hence 

imposed radius of curvature decreases, as a result the two parameters (εc and ρc) 

balances the effect of each other. All the figures for different mean axial loads show 

good correlations between the available more involved theory results and the fitted 

curves. The correlation coefficient R2 for all the above plots is above 0.9 which is a 

measure of the accuracy of the curve. The closer is the value gets to 1 the closer are the 

data points around the fitted curve and therefore, more accurate is the curve. 

Microsoft excel has built in function for the correlation coefficient, therefore, in Figures 

5.1 (a-e) the values of the correlation coefficients are calculated automatically by 

Microsoft excel for the given curves. 

Finally, in Figure 5.1f a unified single plot of ρcεc/d versus EIeff/EImax, irrespective of the 

specific cable construction, imposed curvature and mean axial strain has been 
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obtained. It covers all possible cases in practice and the correlations between the test 

data and the unified plot in Figure 5.1f, suggests the plot to be accurate and reliable. 

The slight discrepancy between test data and theoretical predictions for the innermost 

layer is due to reason that; theoretical plots are obtained from the critical curvature 

values at which wires on the neutral axis starts slippage; whereas, the test results 

show the curvature values at which wires on extreme fibre position slide in the 

outermost layer. The pattern of wire slippage is already discussed in quite detail as 

shown in Figure 3.1.  

Since the contact forces accumulate inward and, are larger for wires in the inner 

layers. Therefore, interlayer slippage initially starts between outermost and 

penultimate layers near the so called neutral axis and gradually moves towards the 

centre of the strand. In other words, a wire in an inner layer will slip only if all outer 

wires in its sector have slipped. On the other hand, unbalanced force acting on a wire is 

maximum at the neutral axis (i.e.       ) and is observed to be minimum for wire 

on extreme fibre positions (       
 

 
)  Therefore, for large cable curvature, it is 

possible for the innermost layer to experience some form of interlayer slippage in the 

vicinity of neutral axis prior to the occurrence of slippage between outermost layers 

around the extreme fibre positions. In Figure 3.1, the unshaded wires are in stick state 

whereas shaded wires are shown to be slipped according to the pattern explained 

above.   
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5.5 Simple Formulations 

Using the results presented in the previous section, a very simple method for 

calculating the bending stiffness of the cable can be developed by simply fitting various 

non-linear curves through the data. In Figures 5.1 (a-e) the newly proposed simple 

dimensionless parameter         , can be simply calculated by multiplying the 

cable radius of curvature by given cable axial strain divided by cable outer diameter. 

Once this parameter is calculated, the effective bending stiffness of the cable may be 

found using the second order polynomial of the general form. 

     

     
                                                                                (   ) 

where, the constant coefficients A-C are given in Table 5.2 and correspond to the 

situations when the cables are subjected to different values of mean axial strains 

ranging 0.001 ≤ εc ≤ 0.005. The fitted polynomials for Figures 5.1 (a-f) show that 

individual numerical results are almost independent of the level of mean axial load on 

the cable.   

Table 5-2: Values of the constant coefficients A-C in equation (5.1) for all the fitted 

curves in Figures 5.1 (a-f), along with correlation coefficients R2. 

Reference A B C R2 

Fig 5.2a 

Fig 5.2b 

Fig 5.2c 

Fig 5.2d 

Fig 5.2e 

-0.0074 

-0.0080 

-0.0079 

-0.0080 

-0.0077 

0.1671 

0.1744 

0.1715 

0.1721 

0.1679 

0.0646 

0.0304 

0.0509 

0.0595 

0.0654 

0.9536 

0.9250 

0.9352 

0.9318 

0.9158 
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Table 5-3 (a &b): Numerical results and calculation routines of the simple method for 

39 and 41 mm outer diameter cables. 

 

 

 

 

 

 

0.001 15.99 0.039 0.003 333.33 8.55 16454 1

0.001 15.99 0.039 0.005 200.00 5.13 11900 0.723

0.001 15.99 0.039 0.007 142.86 3.66 10000 0.608

0.001 15.99 0.039 0.01 100.00 2.56 8333.333 0.506

0.001 15.99 0.039 0.03 33.33 0.85 3900 0.237

0.001 15.99 0.039 0.07 14.29 0.37 3000 0.182

Effective 

bending 

stiffness, 

EIeff (Nm2)

EIeff/EImax

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

diameter, 

di (m)

Strand 

curvature, 

κc (m-1)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)

ρcεc/d

0.001 12 0.041 0.0023 434.78 10.60 22500 1

0.001 12 0.041 0.003 333.33 8.13 18842 0.837

0.001 12 0.041 0.004 250.00 6.10 16346 0.726

0.001 12 0.041 0.005 200.00 4.88 14200 0.631

0.001 12 0.041 0.0065 153.85 3.75 11587 0.515

0.001 12 0.041 0.008 125.00 3.05 9500 0.422

0.001 12 0.041 0.01 100.00 2.44 7600 0.338

0.001 12 0.041 0.04 25.00 0.61 5000 0.222

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm
2
)

EIeff/EImax

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

diameter, 

di (m)

Strand 

curvature, 

κc (m-1)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)
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Tables 5-3 (c-e): Numerical results and calculation routines of the simple method for 

three 127 mm outer diameter cables with lay angles: (a) 12°; (b) 18°; (c) 24°.

 

0.001 12 0.127 0.00078 1282.05 10.09 2006666 1

0.001 12 0.127 0.0013 769.23 6.06 1640000 0.817

0.001 12 0.127 0.003 333.33 2.62 799000 0.398

0.001 12 0.127 0.005 200.00 1.57 446000 0.222

0.001 12 0.127 0.007 142.86 1.12 308000 0.153

0.001 12 0.127 0.035 28.57 0.22 154800 0.077

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

curvature, 

κc (m-1)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm2)

Strand 

diameter, 

di (m)

EIeff/EImax

0.001 18 0.127 0.00085 1176.47 9.26 1625090 1

0.001 18 0.127 0.0015 666.67 5.25 1303423 0.802

0.001 18 0.127 0.0025 400.00 3.15 1023452 0.630

0.001 18 0.127 0.004 250.00 1.97 780000 0.480

0.001 18 0.127 0.006 166.67 1.31 526000 0.324

0.001 18 0.127 0.009 111.11 0.87 298000 0.183

0.001 18 0.127 0.027 37.04 0.29 129600 0.080

Effective 

bending 

stiffness, 

EIeff (Nm2)

EIeff/EImax

Strand 

diameter, 

di (m)

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

curvature, 

κc (m-1)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)

ρcεc/d

0.001 24 0.127 0.00092 1086.96 8.56 1256250 1

0.001 24 0.127 0.0015 666.67 5.25 1048000 0.834

0.001 24 0.127 0.0025 400.00 3.15 780000 0.621

0.001 24 0.127 0.004 250.00 1.97 504000 0.401

0.001 24 0.127 0.006 166.67 1.31 289000 0.230

0.001 24 0.127 0.024 41.67 0.33 101600 0.081

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

curvature, 

κc (m-1)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm
2
)

EIeff/EImax

Strand 

diameter, 

di (m)
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Tables 5-3f: Numerical results and calculation routines of the simple method for 164 

mm outer diameter cable. 

 

  

0.001 18 0.164 0.0006 1666.67 10.16 4576667 1

0.001 18 0.164 0.0009 1111.11 6.78 4120000 0.900

0.001 18 0.164 0.0012 833.33 5.22 3707100 0.810

0.001 18 0.164 0.0018 555.56 3.39 3005000 0.657

0.001 18 0.164 0.0026 384.62 2.35 2406000 0.526

0.001 18 0.164 0.0033 303.03 1.85 1988000 0.434

0.001 18 0.164 0.006 166.67 1.02 1350000 0.295

0.001 18 0.164 0.01 100.00 0.61 765000 0.167

0.001 18 0.164 0.03 33.33 0.20 331500 0.072

Strand 

axial 

strain, εc

Lay 

angle     

αi (°)

Strand 

diameter, 

di (m)

Strand 

curvature, 

κc (m
-1

)

Rad: of 

curvature    

(ρc = 1/κc) 

(m)

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm2)

EIeff/EImax
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5.6 Discussion 

Tables 5.3 (a-f) present a summary of the calculation routines of the final estimates of 

the bending stiffnesses, based on the original formulations of the MHDS model, for 

each of the six different cable constructions.  For a given strand geometry, the 

interaction between the wires is found to be a function of the axial strain and the 

imposed curvatures. Although, the data in these tables are obtained for the cable axial 

strain of εc = 0.001 for all the cables, but the value of the newly proposed parameter is 

found to be insensitive to cable axial strain values. This is because for increasing axial 

strains the radius of curvature decreases and its effect is neutralized. Even for a given 

cable axial strain, the  data for the three same diameter strands with different lay 

angles of 12°, 18° and 24° show slight scatter. The upper bound value of the proposed 

parameter for these three different cables are for example 10.06, 9.26 and 8.56 

respectively. 

Numerical results based on MHDS model in Chapter 4, has been used in relation to the 

effective flexural stiffness of the cable for different cable constructions. As predicted by 

the theory, it is demonstrated that the bending stiffness of the cable mainly depends on 

the interwire contact forces and imposed curvature. In order to develop a simple 

method, one needs to perform a rigorous analysis of all the material and geometrical 

parameters that affect the overall bending behaviour of the cable. Therefore, a new 

parameter composed of two geometrical parameters (radius of curvature and cable 

diameter) and a mechanical parameter (axial strain) has thus been developed. 

Comparing Figures 5.1 (a-e) it is found that theoretical data is less scattered around 

the fitted curves, when 41 mm diameter strand with IWRC core was removed. The data 

is found even more closer to the fitted curves when 127 mm strand with lay angle of  

24° was not considered. Cables with moderate lay angles (15-18°) are noted to best fit 

in the curves, whereas the cables having lay angles less than 12° were found to give 

lower bending stiffness values. In contrast to this, cables with lay angles greater than 

18° give higher bending stiffness values than as predicted by the simple method. Thus 

it is concluded that the overall scatter of the data from the fitted curves depend on the 

magnitude of lay angle and the ratio of the strand to core diameter. For example in the 
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case of 41 mm outer diameter cable with an IWRC core of 13.5 mm, the scatter is 

maximum. This is because not only the ratio of cable to core diameter is maximum for 

it but also the average lay angles of wires in all the three layers of the cable is small (i.e. 

12°). 

5.7 Numerical Example 

To further explain the use of the simple method developed in this chapter, a numerical 

example is presented here. A 39 mm outside diameter spiral strand with geometrical 

details given in table 4.2a, subjected to a mean axial strain of    = 0.001 is chosen as an 

example for the numerical example. With                 (as calculated by the 

MHDS model) is the maximum bending stiffness of the strand. For a given value of 

imposed curvature, say κc = 0.01 calculate the radius of curvature, (ρc =1/0.01= 100 

m), with d =39 mm, being the outside diameter of the strand, gives the value of the 

newly proposed parameter, 
    

 
       . Read the value of effective bending 

stiffness of the strand from the simple curve in Fig 5.2a for this value or put this value 

in the second order polynomial equation. This gives the value of 7315 Nm2, whereas 

the exact value of the bending stiffness calculated by original formulations is 7750 

Nm2. Due to the other sources of uncertainties affecting the problem, this discrepancy 

can be deemed as acceptable for design purposes.  

5.8 Conclusion 

As discussed earlier, a simple method has been proposed by means of which the 

effective bending stiffness of large diameter multi-layered cables may be estimated 

under any loading condition and applied bending. The proposed method is based on a 

large body of the numerical results obtained from MHDS model applied to a variety of 

cable constructions. The newly proposed parameter can be expressed as the ratio of 

the axial strain to two times bending strain of the cable. This study clearly 

demonstrates that using the simple formulations, nominally very close values of the 

bending stiffness are obtained when compared to the original formulations of MHDS 

model. 
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Chapter 6  

Response of Multi-Layered Sheathed Spiral Strands in 

Deep Water Applications, Subjected to Combine 

Tension and Bending. 

6.1 Introduction 

Due to high axial strength, high durability under large loads,  high strength to weight 

ratio and relatively low cost, wire ropes and spiral strands have many important 

applications both in the onshore and offshore structures. In recent times, wire ropes 

and spiral strands have been used in a variety of deep water applications such as 

mooring system for deep sea offshore platforms, floating platforms, towing of underwater 

vehicles and mobile drilling units etc. It is observed that in the majority of the mooring 

systems, due to corrosion the life of the cable is less than the installation, unless 

properly protected. In order to protect the large diameter spiral strands from 

corrosion in marine applications the strands are encased in impermeable protective 

polythene sheaths with the gaps between the wires filled with lubricants. This has 

been proved useful to stop corrosion and enhance the lives of cables significantly. In 

the last two decades, considerable interest has been shown in the mechanical 

characteristics of sheathed spiral strands and wire ropes for the use in under-water 

applications. In majority of the cases, cable is subjected to cyclic bending and 

fluctuating tension. As a result, high contact stresses and longitudinal sliding at points 

of contact with sheaves and winch drums occur.  

The purpose of the present chapter is to extend the previously reported MHDS model, 

to cater for the effects of external hydrostatic pressure on sheathed spiral strands, 

which greatly influence the pattern of contact forces between wires in the strand. 

There has been a significant increase in the size of steel cable being used, particularly 

in the offshore industry. The suspended weight of steel mooring components is 

becoming a challenge as well, as floating exploration and production facilities are 

moving into increasing water depth raising the issue of perceived limits for steel 
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cables. Since the rope has to support much of its own weight, as the water depth 

increases, and only a small proportion of the tension in the rope may be usefully 

employed to run the rig to its station. Raoof (1990c) has shown theoretically that high 

external hydrostatic pressures significantly influence the patterns of interwire contact 

forces in sheathed spiral strands. Under such external pressures, the contact forces 

caused by the hydrostatic water pressure become more significant compared with 

contact forces inside the cable by the tension force in the cable. The significant 

increase in normal contact forces between wires suppressed the slippage of wires in 

the cable. Under such conditions, interwire fretting actions are accompanied with high 

levels of localized heating. Consequently, the fatigue life of the cable is becoming a 

more challenging issue, particularly in the vicinity of end terminations, where abrupt 

changes in curvature are found to occur. The substantial increases in the stresses at 

the contact patches is therefore found to lead significant reductions in the axial and 

restrained bending fatigue life of the cable in long term applications.  

To address this problem, an extension of the previously reported MHDS model (fully 

catering for interwire contact forces in the strand from external hydrostatic pressures) 

has been presented for predicting flexural stiffness of the strands subjected to 

different water depths.  The proposed theory is believed to be useful in giving an 

insight into the manner in which the effect of hydrostatic pressure from outside is 

determined moving towards the centre of the strand, in connection with clench forces 

due to the tension force in the strand. In deep water applications, the cables are 

assumed to be subjected to uniform external pressures. Using the proposed theory, 

numerical results have been obtained for three different 127 mm strands with lay 

angles of 12°, 18° and 24° experiencing a wide range of external hydrostatic pressures 

of 0 to 2000 m. It is important to mention here that the formulations presented in this 

chapter are applicable only to the cables with an impermeable polythene sheaths 

provided to seal the exterior of the cable from outside. It is then reasonable to assume 

that such plastic sheaths cause full hydrostatic pressure to act as a contact force in the 

outer layer of the cable.  In the absence of such sheaths, it is possible that water enters 

into the cable and water pressure gets all around the wires and consequently no 

significant contact forces due to external pressure will develop. 
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Gecha (1989) presented results of the stresses, strains and displacements, for both 

theoretical and experimental studies carried out on sheathed spiral strands. Interwire 

frictional force was neglected in his formulations; however, the radial compressibility 

of the cable and Poisson’s effect had been taken into account. Raoof (1990c) gave an 

insight into the effects of high external hydrostatic pressure on axial/torsional 

stiffnesses, hysteresis and fatigue behaviour of multi-layered sheathed spiral strands. 

Raoof and Kraincanic (1994) proposed a simple method for estimating the 2x2 no-slip 

and full-slip stiffness matrices for large diameter sheathed spiral strands. 

6.2 Effect of Hydrostatic Pressure on the Cable 

The salient features of the proposed MHDS model have been already reported in 

considerable detail in chapter 4, and will be not repeated here. Using the orthotropic 

sheet theoretical model, the estimates of interwire contact forces in the axially pre-

loaded sheathed spiral strands have been obtained for various water depths. The 

externally applied hydrostatic pressure to sealed spiral strand has a significant effect 

on the pattern of interwire/interlayer contact forces. Thus in the case of deep water 

applications,  XMSi and XRCi for outermost layer, N (and hence, PMSi and PRCi) are no 

longer the same. The radial and circumferential forces in various layers of the sheathed 

spiral strand, with the load transfer between layers included, can be calculated as: 

                      (6.1) 

The above equation defines the magnitude of the radial force in the outermost, N layer 

of the strand, with      the radial force due to tension force in the wire, and    being 

the magnitude of the external hydrostatic pressure per unit length of the wires and is 

given by Raoof (1990d): 

     
      

       
                                                                                    (   )  

In Eq. (6.2), d is the outer diameter of the strand, h is the depth of water,    is the 

water density,    is the number of wires in the outermost layer, g is the gravitational 

acceleration and    is the lay angle of wires in the outermost layer. With the effect 

hydrostatic pressure taken into account, the radial force in any arbitrary inner layer 
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can be calculated by the previously summarized method in chapter 3 (i.e. Eq. 3.43). 

Similarly, the normal forces in the hoop direction can also be estimated exactly the 

same way as explained in chapter 3, using Eq. (3.46). 

The procedure for the calculation of interwire/interlayer contact forces is applicable to 

fully bedded-in spiral strands in which the individual wires are closely packed and the 

contact between the wires in the same layer is fully developed. Ideally, for newly 

manufactured strands (in the absence of external pressure), the assumption of no gaps 

between the wires in the individual layers, is not entirely true, and certain gaps exist 

between the wires in the same layer and the line contact forces are only partially 

developed. In marine applications, the external hydrostatic pressure brings the wires 

closer together and full contacts between the wires in the same layers are developed.   
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Figure 6-1 (a-d): Theoretical predictions of the interlayer radial contact forces at the 

interface of different layers of 127 mm outside diameter spiral strand, with lay angle, 

(α = 12°) for various water depth of (a) 500 m; (b) 1000 m; (c) 1500 m; and (d) 2000 

m respectively. 
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Figures 6.1 (e-h) - Theoretical predictions of the interlayer radial contact forces at the 

interface of different layers of 127 mm outside diameter spiral strand, with lay angle, 

(α = 18°) for various water depth of (e) 500 m; (f) 1000 m; (g) 1500 m; and (h) 2000 m 

respectively. 
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Figures 6.1 (i-l) - Theoretical predictions of the interlayer radial contact forces at the 

interface of different layers of 127 mm outside diameter spiral strand, with lay 

angle,(α = 24°) for the various water depth of (i) 500 m; (j) 1000 m; (k) 1500 m; and 

(l) 2000 m respectively. 
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6.3 Results 

Figures 6.1 (a-d), (e-h) and (i-l) show the plots for normal contact forces at the 

interface of wires between different layers of three 127 mm outside diameter strands 

with lay angles of 12°, 18° and 24° respectively. The construction details of these three 

strands are already given in Tables 4.1 (c-e), but in the present case, an impermeable 

polythene sheaths are provided around them. For each strand, four plots are obtained 

for water depths of 500, 1000, 1500 and 2000 m respectively. It can be readily seen in 

the figures, that under high water depths the effect of hydrostatic pressure becomes 

more significant in comparison to axial load in the cable. For high levels of hydrostatic 

pressure, it is shown in these figures that interlayer contact forces is higher in 

magnitude compared with the radial contact forces inside the strand caused by the 

mean axial load.  At zero cable axial strain, interwire contact forces are highest in the 

outer layer and lowest in the inner layers. As the tension force on the cable increases, 

the interlayer radial contact force grows in magnitude. Thus for higher levels of axial 

force, interlayer contact forces in inner layers increase at a higher rate than the outer 

ones, and for sufficiently large values of tension force, the outer layers have the lowest 

contact force compared with all other layers in the strand.  

Lay angle of wires in the strand is found once again to play an important role in the 

distribution of interwire/interlayer contact forces. For large values of lay angle, the 

maximum fraction of the external hydrostatic pressure is taken by interwire line 

contact force and a very small fraction is transferred as radial contact force to the 

innermost layer. Another observation is that, increasing cable tension, for a given level 

of external hydrostatic pressure, brings the predictions of  (radial + hoop) contact 

forces closer together for outer and penultimate layers. As in the case of 0 m water 

depth (i.e. corresponding to in air-condition) large lay angles are found to have higher 

values of  (radial + hoop) contact force for the outermost and penultimate layers, 

decreasing tremendously moving towards the centre of the strand. For example for a 

given water depth of 1000 m, the  contact force for the outermost layer of the three 

strands are 87, 91 and 89 N/mm for 12°, 18° and 24° respectively. The reason for this 

is that contact forces between wires due to the tension force, increases with increasing 

lay angle, but the contact forces due to hydrostatic pressure on the outer layer of the 
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cable, decreases with increasing lay angle. This indicates that when hydrostatic 

pressure is included in the analysis, the lay angle ceases to be the only first order 

parameter influencing the contact forces between the wires. The external pressure on 

these sealed strands is readily seen to suppress the slippage of wires in the strand by 

increasing the frictional forces. Based on these contact force distributions, the 

transition of bending stiffness from no-slip to full-slip are calculated as a function of 

imposed curvature, for various water depths. The theoretical plots in Figures (a-l) 

demonstrate that the significant increase in contact force accompanied with slippage 

in the outer layers can lead to decrease the fatigue life of the cable. This may have a 

significant bearing on the estimated operational life span of the structures used in 

deep water applications, which is widely ignored by the designer in the literature. The 

ultimate breaking load (U.B.L) for all the above three strands is 13510 kN. 
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Figure 6-2 (a & b): Unbalanced forces on wires in 127 mm outside diameter strand (α 

= 12° ) in the (a) outermost layer; (b) innermost layer respectively. 
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Figure 6.2 (c & d): Unbalanced forces on wires in 127 mm outside diameter strand (α 

= 18°) in the (c) outermost layer; (d) innermost layer respectively. 
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Figure 6.2 (e & f): Unbalanced forces on wires in 127 mm outside diameter strand (α 

= 24° ) in the (e) outermost layer; (f) innermost layer respectively. 
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Figures 6.2 (a & b), (c & d) and (e & f) show the unbalanced forces in wires that belong 

to the outermost and innermost layers of the three 127 mm outside diameter strands, 

having lay angles of 12°, 18° and 24° respectively. The results in these figures show 

that the unbalanced force is negligible at small values of strand curvature but grows 

exponentially after certain limits of imposed curvatures. This is because it only 

depends on the distance from the neutral axis dy, and therefore the plots of unbalanced 

forces show a symmetry about flexural axis. Results in the Figures 6.2 (a-f) suggest 

that the unbalanced force on wires near the neutral axis are significantly large 

compared with those near the extreme fibre position. Therefore, wires on the neutral 

axis experience maximum slippage causing first wire fractures to occur at the neutral 

axis as observed by Raoof (1992 a & b) in his experiments. It is worth to mention here 

that in the present case of sheathed spiral strands, only interwire contact forces are 

changed by external hydrostatic pressure whereas the magnitude of unbalanced forces 

remain unchanged as in air conditions.  

A wire of the same diameter on the neutral axis is found to experience an unbalanced 

force, 270 times greater than that at the extreme fibre position. For example, in the 

case of 127 mm diameter strand with lay angle 12°, the unbalanced force on a wire at 

the neutral axis (i.e. φ = 0) and near the extreme fibre position (i.e. φ = 88°)  is 74 N, 

20,000 N respectively. Similarly, the results in these figures also show that unbalanced 

force on a wire decreases as the lay angle of the wire in the layer increases. A wire of 

the same diameter on neutral axis is shown to experience an unbalanced force of 

19561 N, 17475 N and 13333 N, for lay angles of 12°, 18° and 24° respectively for a 

selected imposing curvature of 0.05 m-1.   
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Figure 6-3 (a & b): Theoretical predictions of the variations in the flexural rigidity  as 

a function of the bending curvature, for a 127 mm (α = 12°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (a) 500 m; and  (b) 1000 m. 
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Figures 6.3 (c &d)- theoretical predictions of the variations in the flexural rigidity  as 

a function of the bending curvature, for a 127 mm (α = 12°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (c) 1500 m; and  (d) 2000 m. 
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Figures 6.3 (e & f)- theoretical predictions of the variations in the flexural rigidity  as 

a function of the bending curvature, for a 127 mm (α = 18°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (e) 500 m; and  (f) 1000 m. 
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Figures 6.3 (g & h)- theoretical predictions of the variations in the flexural rigidity  as 

a function of the bending curvature, for a 127 mm (α = 18°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (g) 1500 m; and  (h) 2000 m. 
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Figures 6.3 (i & j)- theoretical predictions of the variations in the flexural rigidity  as a 

function of the bending curvature, for a 127 mm (α = 24°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (i) 500 m; and  (j) 1000 m. 
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Figures 6.3 (k & l)- theoretical predictions of the variations in the flexural rigidity  as 

a function of the bending curvature, for a 127 mm (α = 24°) outside diameter sheathed 

spiral strand subjected to an external hydrostatic pressure equivalent to water depth 

of  (k) 1500 m; and  (l) 2000 m; respectively 
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Figures 6.3 (a-d), (e-h) and (i-l) show the variation of the effective bending stiffness as 

a function of cable curvature for various water depths, for all the three different cable 

constructions of 127 mm diameter strands with lay angle of 12°, 18° and 24° 

respectively. For every strand four plots of the magnitude of this theoretically 

determined flexural rigidity are obtained when the sheathed strands are subjected to 

external hydrostatic pressures, equivalent to water depths of 500, 1000, 1500 and 

2000 m respectively. The results clearly demonstrate that external pressures on sealed 

strands suppress the slippage of wires in the cable and, therefore bending stiffness of 

the strand remains at EImax under large bending curvatures. Also, the no-slip and full-

slip values of flexural rigidity are shown to be independent of the level of hydrostatic 

pressure. The no-slip (i.e. EImax) bending stiffness values for above three strands are 

2006667, 1620527 and 1254566 Nm2 respectively. In the case of axial/torsional 

coupling the torsional rigidity of the sheath resists the unwinding of the cable and 

therefore the torsional stiffness of the cable increases. Unlike to the case of 0 m water 

depth (i.e. in atmospheric condition), the transition range of curvature between no-slip 

and full-slip states is found to be governed by the exact magnitude of the external 

hydrostatic pressure on the strand.  

Based on the contact force distributions given Figures 6.4 (a-l), a careful examination 

of these plots reveals very interesting results. For water depths up to somewhere 

between 1000 m to 2000 m the overall bending stiffness for all the three strands starts 

degrading at approximately the same values of imposed curvature. This will lead the 

overall frictional energy dissipation the same for all the three strands. Furthermore, it 

is hoped that the knowledge of the magnitudes of bending stiffness and contact forces 

will be very useful in the fatigue life estimation of the cable. For increasing lay angle, as 

shown in Figures (a-l) the radial contact forces in the outer are greater than the inner 

layers, this will lead the fatigue life to the first outermost wire fractures to occur much 

earlier for larger lay angle.   

Figures 6.4 (a-d) present simple plots for calculating the effective flexural stiffness for 

all the three sheathed strands subjected to water depths of 500 m, 1000 m, 1500 m 

and 2000 m respectively. After conducting a comprehensive theoretical parametric 

study, flexural rigidity of sheathed strands is found to be function of the axial load 
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perturbations and imposed bending curvature, for various levels of hydrostatic 

pressure on sheathed spiral strands in deep water applications. Thus in the present 

case of sheathed spiral strands, once again the reasonable estimate of the newly 

proposed parameter is sufficient for obtaining fairly accurate estimates of the effective 

flexural stiffness of the cable. As opposed to spiral strand in the air-conditions (i.e. 0 m 

water depth) for water depths up to 0-1000 m interwire slippage in the outer layers of 

all the three strands are found to start at approximately same bending curvature.  For 

high levels of water depths (i.e. 1000 – 2000 m) wires in the outer layers of spiral 

strand with lay angle of 12° are found to stick together compared with the other two 

strands. Comparing the results in Figures 6.4 (a-d), the theoretical data is less 

scattered around the fitted curves when external hydrostatic pressure is considered, in 

contrast to the situation of 0 m water depth. For modest curvature, when all the wires 

in the cable are stuck together forming a solid rod, there is an upper bound limit of the 

new parameter given for these plots, i.e. 4. Beyond this value the simple plot developed 

is not applicable and if the value of the proposed parameter is greater than 4, the 

flexure rigidity of the cable will be at its maximum (i.e. EImax). 
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Figure 6-4 (a & b): Simple design curves for the estimation of the bending stiffness of 

the three 127 mm diameter strands having lay angles of 12, 18 and 24 respectively, 

subjected to an external hydrostatic pressure of (a) 500 m; (b) 1000m. 
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Figures 6.4 (c & d)-Simple design curves for the estimation of the bending stiffness of 

the three 127 mm diameter strands having lay angles of 12, 18 and 24 respectively, 

subjected to an external hydrostatic pressure of (c) 1500 m; (d) 2000m. 
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6.4 Simplified Routines for Calculating Flexural 

Rigidity of Sheathed Strand 

As discussed in Chapter 5, the original formulations of the MHDS model for calculating 

bending stiffness of the cable are very complicated and unsuitable for everyday 

engineering applications. Therefore, a similar attempt as in Chapter 5 has been made 

to develop simplified routines for the analysis of sheathed spiral strands. 

By carefully examining the numerical results, it is noticed that the effective bending 

stiffness of the cable is once again a non-linear function of the previously reported new 

parameter (ρcεc/d).  As the external hydrostatic pressure increases, frictional forces 

between the wires increase, as a result wires start slipping at larger curvature in the 

presence of external pressures. This brings down the upper bound of the newly 

proposed dimensionless parameter for sheathed spiral strands from 10 

(corresponding to 0 m water depth) to 4. After calculating this parameter, the so-

obtained function for the bending stiffness of the cable may very nearly be expressed 

as a polynomial of the second degree of the general form: 

     

     
                                                                     (   ) 

where the constant coefficients A-C are given in Table 6.1 and each set of these 

coefficients correspond to the situations when the cables are subjected to different 

levels of water depths, 500 m   h   2000 m. The correlation coefficients between the 

proposed polynomials and the calculated data are also given in Table 6.1, where the 

minimum correlation coefficient R2 = 0.9656 is thought to be adequate for all practical 

purposes The fitted polynomials for Figures 6.4 (a-d) show that individual numerical 

results are almost independent of the level of hydrostatic pressure, for high levels of 

hydrostatic pressure (i.e. 1000 m and above) the values of the newly proposed 

parameter are slightly less than that for small hydrostatic pressure values (0 -1000 m).   
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Table 6-1: Values of the constant coefficients A-C in Eq. (6.3) for all the fitted curves in 

Figures 6.4 (a-d), along with correlation coefficients R2. 

Reference Water 
depth (m) 

A B C R2 

Fig 6.4a 

Fig 6.4b 

Fig 6.4c 

Fig 6.4d 

500 

1000 

1500 

2000 

-0.0276 

-0.0652 

-0.1118 

-0.184 

0.3465 

0.5198 

0.6809 

0.8888 

-0.0331 

-0.0672 

-0.0555 

-0.0875 

0.9948 

0.9946 

0.9776 

0.9656 
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Table 6-2a: Calculation routines of the newly proposed parameter and bending 

stiffness for an axial strain of 0.003 and external hydrostatic pressure equivalent to 

water depth, h = 500 m, using the Rigorous Method. 

 

 

 

Strand 

outside 

diameter, d 

(m)

Lay angle, 

αi (°)

Strand 

axial 

strain, εc

Strand 

curvature, 

κc (m
-1

)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, EIeff 

(Nm2)

EIeff/EImax

0.127 12 0.003 0.0042 238.10 5.6243 2000285 1

0.127 12 0.003 0.0055 181.82 4.2949 1782000 0.8909

0.127 12 0.003 0.007 142.86 3.3746 1535000 0.7674

0.127 12 0.003 0.009 111.11 2.6247 1330000 0.6649

0.127 12 0.003 0.015 66.67 1.5748 965800 0.4828

0.127 12 0.003 0.025 40.00 0.9449 611600 0.3058

0.127 12 0.003 0.035 28.57 0.6749 391200 0.1956

0.127 12 0.003 0.07 14.29 0.3375 149100 0.0745

0.127 18 0.003 0.005 200.00 4.7244 1628576 1

0.127 18 0.003 0.006 166.67 3.937 1468000 0.9014

0.127 18 0.003 0.008 125.00 2.9528 1232000 0.7565

0.127 18 0.003 0.01 100.00 2.3622 1065999 0.6546

0.127 18 0.003 0.02 50.00 1.1811 611833 0.3757

0.127 18 0.003 0.03 33.33 0.7874 400200 0.2457

0.127 18 0.003 0.05 20.00 0.4724 203200 0.1248

0.127 18 0.003 0.065 15.38 0.3634 127000 0.0780

0.127 24 0.003 0.0048 208.33 4.9213 1251200 1

0.127 24 0.003 0.006 166.67 3.937 1130000 0.9031

0.127 24 0.003 0.008 125.00 2.9528 933000 0.7457

0.127 24 0.003 0.01 100.00 2.3622 811999 0.6490

0.127 24 0.003 0.016 62.50 1.4764 553000 0.4420

0.127 24 0.003 0.03 33.33 0.7874 253200 0.2024

0.127 24 0.003 0.06 16.67 0.3937 101200 0.0809

127 mm diameter strand with lay angle, αi = 18°

127 mm diameter strand with lay angle, αi = 24°

External Hydrostatic pressure on the srand equivalent to water depth, h = 500 m
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Table 6.2b- Calculation routines of the newly proposed parameter and bending 

stiffness for an axial strain of 0.003 and external hydrostatic pressure equivalent to 

water depth, h = 1000 m, using the Rigorous Method. 

 

 

Strand 

outside 

diameter, d 

(m)

Lay 

angle, 

αi (°)

Strand 

axial 

strain, εc

Strand 

curvature, 

κc (m
-1

)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, EIeff 

(Nm2)

EIeff/EImax

0.127 12 0.003 0.0061 163.93 3.872 2000666 1

0.127 12 0.003 0.009 111.11 2.625 1646000 0.8228

0.127 12 0.003 0.012 83.33 1.969 1383456 0.6915

0.127 12 0.003 0.015 66.67 1.575 1162400 0.5810

0.127 12 0.003 0.02 50.00 1.181 870000 0.4349

0.127 12 0.003 0.025 40.00 0.945 684800 0.3423

0.127 12 0.003 0.035 28.57 0.675 434200 0.2170

0.127 12 0.003 0.05 20.00 0.472 252000 0.1260

0.127 12 0.003 0.08 12.50 0.295 141100 0.0705

0.127 18 0.003 0.0062 161.29 3.810 1628576 1

0.127 18 0.003 0.008 125.00 2.953 1468000 0.9019

0.127 18 0.003 0.01 100.00 2.362 1308000 0.8036

0.127 18 0.003 0.014 71.43 1.687 1098250 0.6748

0.127 18 0.003 0.02 50.00 1.181 877333 0.5390

0.127 18 0.003 0.03 33.33 0.787 582600 0.3580

0.127 18 0.003 0.04 25.00 0.591 380400 0.2337

0.127 18 0.003 0.06 16.67 0.394 187700 0.1153

0.127 18 0.003 0.08 12.50 0.295 121100 0.0744

0.127 24 0.003 0.0061 163.93 3.872 1251794 1

0.127 24 0.003 0.008 125.00 2.953 1089999 0.8707

0.127 24 0.003 0.013 76.92 1.817 830000 0.6630

0.127 24 0.003 0.019 52.63 1.243 643333 0.5139

0.127 24 0.003 0.025 40.00 0.945 492666 0.3936

0.127 24 0.003 0.04 25.00 0.591 256000 0.2045

0.127 24 0.003 0.07 14.29 0.337 101700 0.0812

127 mm diameter strand with lay angle, αi = 24°

External Hydrostatic pressure on the srand equivalent to water depth, h = 1000 m

127 mm diameter strand with lay angle, αi = 18°
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Table 6.2c- Calculation routines of the newly proposed parameter and bending 

stiffness for an axial strain of 0.003 and external hydrostatic pressure equivalent to 

water depth, h = 1500 m, using the Rigorous Method. 

 

 

 

Strand 

outside 

diameter, d 

(m)

Lay angle, 

αi (°)

Strand 

axial 

strain, εc

Strand 

curvature, 

κc (m-1)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, EIeff 

(Nm2)

EIeff/EImax

0.127 12 0.003 0.0081 123.46 2.9163 2000666 1

0.127 12 0.003 0.012 83.33 1.9685 1646000 0.8227

0.127 12 0.003 0.02 50.00 1.1811 1261500 0.6305

0.127 12 0.003 0.03 33.33 0.7874 903000 0.4513

0.127 12 0.003 0.04 25.00 0.5906 649000 0.3244

0.127 12 0.003 0.06 16.67 0.3937 347600 0.1737

0.127 12 0.003 0.1 10.00 0.2362 146800 0.0734

0.127 18 0.003 0.0078 128.21 3.0285 1628571 1

0.127 18 0.003 0.014 71.43 1.6873 1262000 0.7749

0.127 18 0.003 0.025 40.00 0.9449 873000 0.5361

0.127 18 0.003 0.035 28.57 0.6749 626800 0.3849

0.127 18 0.003 0.05 20.00 0.4724 385500 0.2367

0.127 18 0.003 0.07 14.29 0.3375 200500 0.1231

0.127 18 0.003 0.09 11.11 0.2625 123500 0.0758

0.127 24 0.003 0.0074 135.14 3.1922 1252000 1

0.127 24 0.003 0.013 76.92 1.8171 981666 0.7841

0.127 24 0.003 0.019 52.63 1.2433 782666 0.6251

0.127 24 0.003 0.025 40.00 0.9449 618666 0.4941

0.127 24 0.003 0.035 28.57 0.6749 426600 0.3407

0.127 24 0.003 0.05 20.00 0.4724 253400 0.2024

0.127 24 0.003 0.08 12.50 0.2953 99500 0.0795

External Hydrostatic pressure on the srand equivalent to water depth, h = 1500 m

127 mm diameter strand with lay angle, αi = 18°

127 mm diameter strand with lay angle, αi = 24°
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Table 6.2d- Calculation routines of the newly proposed parameter and bending 

stiffness for an axial strain of 0.003 and external hydrostatic pressure equivalent to 

water depth, h = 2000 m, using the Rigorous Method. 

 

  

Strand 

outside 

diameter, d 

(m)

Lay angle, 

αi (°)

Strand 

axial 

strain, εc

Strand 

curvature, 

κc (m
-1

)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, EIeff 

(Nm2)

EIeff/EImax

0.127 12 0.003 0.011 90.91 2.147 2000470 1

0.127 12 0.003 0.02 50.00 1.181 1598833 0.7992

0.127 12 0.003 0.03 33.33 0.787 1258166 0.6289

0.127 12 0.003 0.04 25.00 0.591 1006500 0.5031

0.127 12 0.003 0.05 20.00 0.472 816200 0.4080

0.127 12 0.003 0.06 16.67 0.394 640300 0.3201

0.127 12 0.003 0.08 12.50 0.295 339200 0.1696

0.127 12 0.003 0.12 8.33 0.197 141700 0.0708

0.127 18 0.003 0.0091 109.89 2.596 1628571 1

0.127 18 0.003 0.013 76.92 1.817 1400333 0.8599

0.127 18 0.003 0.019 52.63 1.243 1104000 0.6779

0.127 18 0.003 0.025 40.00 0.945 892333 0.5479

0.127 18 0.003 0.035 28.57 0.675 628599 0.3860

0.127 18 0.003 0.05 20.00 0.472 376400 0.2311

0.127 18 0.003 0.07 14.29 0.337 210300 0.1291

0.127 18 0.003 0.1 10.00 0.236 128200 0.0787

0.127 24 0.003 0.0086 116.28 2.747 1251406 1

0.127 24 0.003 0.013 76.92 1.817 1070666 0.8556

0.127 24 0.003 0.019 52.63 1.243 887000 0.7088

0.127 24 0.003 0.03 33.33 0.787 626200 0.5004

0.127 24 0.003 0.04 25.00 0.591 431600 0.3449

0.127 24 0.003 0.06 16.67 0.394 198800 0.1589

0.127 24 0.003 0.09 11.11 0.262 99500 0.0795

127 mm diameter strand with lay angle, αi = 24°

External Hydrostatic pressure on the srand equivalent to water depth, h = 2000 m

127 mm diameter strand with lay angle, αi = 18°
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Tables 6.2 (a-d) present a summary of the calculation routines of the newly proposed 

parameter for the simple method for all the three cable constructions. A summary of 

the final estimates of the flexural rigidity of the cable under varying cable curvature for 

water depths of 500 m, 1000 m, 1500 m and 2000 m are reported in these tables. This 

has been done using the original formulations as presented in chapter 4, catering for 

the effects of external hydrostatic pressures. The numerical results in these tables are 

used to develop a simple curve for the estimation of the bending stiffness of sheathed 

spiral strands. A comparison of the results based on simplified method and actual 

theory demonstrates the reasonable accuracy of the proposed simplified method for 

different levels of water depths and mean axial loads. Also, a careful examination these 

results suggest that under deep water applications slippage pattern for all the three 

strands are almost similar.  

6.5 Discussion 

The smooth transition of the bending stiffness of multi-layered sheathed spiral strands 

from no-slip to full-slip can be now calculated using simplified routines. Spiral strands 

used in deep water applications are subjected to relatively small load disturbances 

superimposed on a given strand tension force. A knowledge of the exact magnitude of 

the cable bending stiffness will also prove useful in the estimation of the natural 

frequencies of the structure supported by cables. The significant increase in the 

interwire/interlayer contact forces suggests that applying external hydrostatic 

pressure to sheathed spiral strands can result in a significant reduction in their axial 

fatigue life, which may have a significant effect on the estimated operational life span 

of the structures used in deep water applications. The newly proposed simple 

parameter may prove very useful as regards the dynamic response of an offshore 

platform or a cable stayed structure. 

The calculated numerical results are found very close to the fitted polynomial for small 

levels of water depths up to 1000 m. For water depths above 1000 m the results 

showed slightly scatter around the fitted curves with a maximum scatter for 2000 m 

water depth. As opposed to the case of in air-condition (0 m water depth) the 

calculated bending stiffness values for cables with larger lay angles (i.e. 24°) are 
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noticed to be higher than the value predicted by simple method. Similarly, cables 

having small lay angles (i.e. 12°) are found to give lower value than the predicted value 

of the simple method. The overall scatter of the data around the fitted curves is noted 

to depend on the level of external hydrostatic pressure. For all the three strands 

subjected to different levels of external hydrostatic pressures, there appears to be a 

slight difference between the constant coefficients for the polynomial of general form 

given in Table 6.1. 

6.6 Conclusion 

By using an extensive series of theoretical parametric studies, simplified routines are 

proposed for obtaining the magnitudes of the effective flexural stiffness of sheathed 

spiral strand subjected to various levels of water depths. The sheathed strands in this 

study covers a wide range of strand construction details, levels of mean axial strains, 

and magnitudes of water depth. This has been done by extending the previously 

reported MHDS model, to cater for the effects of external hydrostatic pressure on 

sheathed spiral strands, which greatly influence the pattern of contact forces between 

wires in the strand. For a given mean axial strain, increasing the level of external 

hydrostatic pressure on sheathed spiral strand increases significantly the contact 

forces in the outer layers. It should be also pointed out that increasing the lay angle 

causes a reduction in the radial load transfer to the inner layers. 

The results presented in this chapter should prove to be of great value in providing an 

insight into the bending behavior of sheathed spiral strands.  Reliable estimates of the 

bending stiffness for use in connection with fatigue life estimation and hydrodynamic 

instability calculations. Meanwhile, the application of this idea need to be tested by 

more experiments and simulations. 
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Chapter 7  

Predictions of the Bending Characteristics of Locked 

Coil Cables 

7.1 Introduction. 

The available strand constructions in the literature are normally made up exclusively 

of round wires and considerably less attention has been paid to the strands composed 

of shaped wires. Locked coil cables are cable constructions with one or more outer 

layers made up of of shaped (S and Z sections) wires which make it fully or partially 

lock. These types of configuration makes an important role in holding the cable 

together during bending cycle as well as improve its resistance to corrosion in deep 

water application. Furthermore, the smooth surfaces of locked coil cables enhanced 

the wearing properties compared to cables with round wires. The shaped wires in the 

outer layer have a genuine surface contact at the anchorages, as opposed to the point 

contact between intersecting wires in the case of round wire cables.  However, there 

are few drawbacks associated with this type of cable construction: firstly it makes the 

visual inspection of the inner layers of the cable very difficult. Secondly, the strength to 

weight ratio and the flexibility of the cable is reduced significantly. For example for a 

wire of the same cross-sectional area Timiney et al., (1995) has shown small tensile 

grades of ( 1270-1370 N/mm2) for fully locked wires compared with 1770-1860 

N/mm2 for round wires). 

Both on the experimental and theoretical side, there is very little information available 

on locked coil cables. Although, locked coil cables are extensively used both by offshore 

and onshore industry; as hoisting ropes in mine shafts, stays for cable stayed bridges 

and guyed masts and tractive element in cable cars. Oplatka and Roth (1991) reported 

some experimental results on locked coil cables, investigating the bending fatigue 

characteristics at the end termination. Kopanakis (1992) and Gabriel (1993) also 

studied the bending fatigue phenomenon in the locked cables. 
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Fontanari (2009) studied the fire behaviour of the axially preloaded full locked coil 

ropes. The numerical and experimental results were obtained for two distinct full-

locked coil ropes. Heat fluxes, temperature fields in the rope cross-section and fire 

endurance times were determined to establish how wires mechanical properties 

change with temperature. Subsequently, FE analysis were carried out to correctly 

model the mechanical behaviour of the rope at different temperatures and to predict 

the load redistribution during test among different layers.  

 

 

 

Figure 7-1: Typical locked coil cable constructions 
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7.2 Theory 

As discussed earlier, the orthotropic sheet model is based on the assumption that each 

layer of wires in the strand can be represented by an equivalent orthotropic sheet in 

which the elastic properties in direction parallel and perpendicular to a wire axes are 

different. The approach is felt to be even more appropriate for modeling the layers of 

locked coil cables which very closely resembles the sheets of steel. In the case of round 

wire layers, the equivalent sheet stiffness in the direction perpendicular to the wire 

axes were estimated from the equations of contact mechanics. In the present case of 

locked coil cables, it is taken as equal to the value of Young’s modulus of wire material. 

Thus the orthotropic sheet approach has been used to assess interwire contact forces 

and deformations in the locked coil cables. The mechanical characteristics of the 

locked coil cables subjected to tension and bending have been discussed in this 

chapter. 

7.2.1 Cable Geometry 

The nomenclature of the cable will remain the same as discussed in Chapter 3 for 

round wire cable, likewise a locked coil cable is considered as consisting of N layers 

and a core wire, with    being the outermost layer made up of shaped wires. 

Therefore, the formulations for the shaped wires in the outer layers will be changed 

accordingly. In the layers with shaped wires, the helix radius, ri can be calculated as: 

          
        

 ⁄                                                                   (   ) 

where, the outermost layer is denoted by N with    and      being the thickness of the 

outermost and penultimate layers. The helix radii of the round wire in the inner layers 

are calculated as given in chapter 3, Eq. (3.31). The net steel area,     
  of a layer with 

shaped wires, is then given by: 

      
                                                                           (   ) 

In Eq. (7.2)    and    represents the helix radius and thickness of the layer respectively 

and the net steel area of a layer with round wires can be calculated by as: 
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                                                                           (   ) 

Assuming that the core consists of a single wire of diameter,   , the net steel area of 

the locked coil cable,     can be estimated from: 

      
 

 
  
   ∑       

 

 

     

  ∑       
 

   

   

                                                       (   ) 

7.2.2 Wire Kinematics and Contact Forces 

In the orthotropic sheet model approach a strand consisting of a core and N layers of 

helical wires is mathematically represented by N concentric orthotropic cylinders, 

whose mechanical properties are averaged to as a continuum to match the behaviour 

of their corresponding layer of wires. As the kinematic relations of this approach are 

applicable for any shape wires, therefore the kinematics equations previously derived 

for round wires can be used for the layers with shaped wires.  Therefore, the eight 

compatibility equations defining wire kinematics in spiral strands with round wires 

listed in Chapter 3 [Eq. (3.27), (3.30), (3.34)-(3.39)] can be used for locked coil cables. 

However, the load transfer pattern from the outer layers to the inside is different. The 

radial force     acting as a body force due to the tension force in the wires in ith layer, 

assuming that the wire axial strain    is known Hruska’s (1952): 

         
      
       

 
      
  

                                                                (   ) 

In Eq. (7.5), E is the Young modulus of the wire material,    and    are the helix radius 

and thickness of wires in the ith layer respectively and    is the number of wires in 

layer i. If however the locked coil cable is experiencing water pressure from outside, 

the magnitude of the radial load transfer force,     corresponding to the previously 

calculated radial loads can be given as: 

          
  

  
  (    

  
 
)                                                                  (   ) 
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where,    is the density of water,   is the gravitational acceleration,   is the depth of 

water and    is the number of wires in ith layer. The radial force per unit length of 

shaped wires in an axially preloaded multi-layered assembly     can be found then: 

                 
  

  
  (    

  
 
)                                                     (   )  

If there is no external hydrostatic pressure acting on the cable and the cable is 

composed only a single layer of shaped wires as shown in Table 7.1 (a), then the 

radial load due to the tension force in the wires will transfer from the layer of the 

shaped wires according to Eq. (7.5) and the rest of the strand will be analyzed as 

discussed in Chapter 3. 

The magnitude of the circumferential contact force,      for the shaped wire layer is 

given by Raoof and Hobbs (1988b): 

                                                                                                   (   ) 

where,     is the normal strain between the centres of the two adjacent wires in line 

contact. The values of both     and     can be obtained by solving the set of the 

compatibility equations [Eq. (3.27), (3.30), (3.34)-(3.39)], for a chosen value of the 

strand axial strain,   . 

The axial and circumferential stresses   
  and   

  respectively, acting in the ith layer of  

a shaped wire strand under axial strain   : 

   
                                                                                                  (   ) 

And       
                                                                                                       (    ) 

where, i = N, N-1, for the present strand constructions as given in Tables 7.1 (a & b) 

where the strand consists only the outer one or two layers are made up of shaped 

wires. 

Using Eqs. [(7.5)-(7.7)], the radial and circumferential contact forces in the outer or 

the penultimate layer of the locked coil cables with outermost or penultimate layers 
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made up of shaped wires and inner layers made up of round wires. After the 

calculations of contact forces      and     ,  in the layers of shaped wires, the 

magnitude of the hoop direction force,     , considering the effect of all outer layers 

taken into account, can be calculated from the knowledge of the corresponding radial 

force,     . In the inner layers with round wires, the calculation of contact forces both 

in radial and hoop directions are calculated the same way as already presented in 

Chapter 3. 

7.2.3 Orthotropic Sheet Compliances for Shaped Wire Layer 

The equations defining the compliances for layers of round wires have already been 

given in Chapter 3, Eqs. [(3.50)-(3.53)]. In the present case of shaped wires, the 

compliances in the direction of wire axes    , perpendicular    , and coupled 

compliance,     are the functions of the Young’s modulus and Poisson’s ratio of the 

wire material, whereas the tangential compliance    , varies from no-slip to full-slip, 

when the interwire friction is being overcome with a full sliding taking place between 

the wires in line contact. 

For a layer of shaped wires, the compliances in the directions parallel and 

perpendicular to the wire axes that are different from the layer of round wires [(3.50)-

(3.53)] are given as: 

         
 

 
                                                                                    (    ) 

                                                                                                  (    ) 

In Eq. (7.11) and (7.12), E and   is the Young modulus and Poisson’s ratio of the wire 

material. As in the case of shaped wires, contact is achieved across the full width of the 

layer and unlike to the case of round wire layers,  there is no accommodation made for 

the gaps between the wires in the layer while calculating the axial and normal 

compliances for the layer. The tangential compliance        , as in the case of shaped 

wires, there is no gradual increases in the full-slip area and full sliding can be assumed 

to take place over the full width of the contact regions for the whole range of the 

tangential loads. The transformation of the orthotropic sheet compliances into the 
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direction of strand principal axes follows the same procedure as given in Chapter 3, 

Eqs. 3.48 (a-f). 

7.3 Results and Discussion 

Table 7-1a: Construction details of a locked coil cable of 31 mm outside diameter. 

 

Table 7-1b: Construction details of a locked coil cable of 62 mm outside diameter. 

 

 

Layer  

No

Number 

of Wires 

(n)

Lay 

Direction

Size of 

Wires 

(mm)

Shape 

of 

Wires

Lay 

Angle 

αi (°)

Helix 

Radius 

ri (mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area An 

(mm²)

1 28 RH 3.5 ( = t) Z 19.79 13.71 301.538 383.88

2 24 LH 2.65 ( =D ) R 17.49 10.64 132.388 168.54

3 18 RH 2.65 R 16.1 7.93 99.291 126.41

4 12 LH 2.65 R 16.81 5.33 66.194 84.27

5 6 RH 2.65 R 18.55 2.76 33.097 42.14

King 1 - 3 R - - 7.070 -

Layer  

No

Number 

of Wires 

(n)

Lay 

Direction

Size of Wires 

(mm)

Shape of 

Wires

Lay 

Angle 

αi (°)

Helix 

Radius 

ri (mm)

Net Steel 

Area   

An(mm²)

Gross 

Steel 

Area An 

(mm²)

1 39 RH 5.21 ( = t) Z 14 28.22 923.913 1176.210

2 17/17 LH 5.08x3.05/5 ( =D )
half 

lock/round
14 23.77 541.000 688.733

3 10,4/14 RH
5.08x2.54 

5.08x3.05/5 ( =D )

half 

lock/round
14 18.49 425.000 541.057

4 18 LH 4.40 ( =D ) R 14 13.75 273.731 348.480

5 12 RH 4.4 R 14 9.35 182.487 232.320

6 6 LH 4.4 R 14 4.95 91.244 116.160

King 1 - 5.5 R - - 23.761 -
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Figure 7-2 (a & b): Interlayer radial contact force in all the layers of two different 

locked coil cables of (a) 31 mm and; (b) 62 mm diameters.  

0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200

S
tr

a
n

d
 a

x
ia

l 
st

ra
in

, ε
c 

Radial normal contact force, XRi (N/mm) 

µ = 0.12 

α = 17.75° 

Innermost layer 

Innermost layer 

0

0.001

0.002

0.003

0.004

0.005

0.006

0 50 100 150 200 250

S
tr

a
n

d
 a

x
ia

l 
st

ra
in

, ε
c 

Radial normal contact force, XRi (N/mm) 

µ = 0.12 

α = 14° 

Innermost layer 

In
n

er
m

o
st

 la
y

er
 



 

Page | 175  

 

The construction details of the two locked coil cables used in the present analysis are 

given in Tables 7.1 (a & b). These cables consist of several layers, having two external 

layers of shaped helical wires. The 31 mm locked coil cable consists of four layers of 

round wires and one outer layer of Z shaped wires, which was used by Oplatka and 

Roth (1991), in their restrained bending fatigue tests. Similarly, the 62 mm outer 

diameter cable composed of three layers of round wires, two layers with half 

lock/round wires and an outer layer of Z shaped wires. This cable was used in the axial 

and restrained bending fatigue tests of Transport Research Laboratories. 

Figures 7.2 (a & b) present the interlayer radial contact force in all the layers of two 

different locked coil cable constructions of 31 and 62 mm diameter cable as a function 

of cable axial strain. The external helically interlocked wires not only resist the radially 

inward forces but also help in holding the cable together. In calculating the normal 

force acting on wires in the inner layers, an account has been made for the 

accumulation of normal forces from the wires in the outer layers (including shaped 

wire layer). For locked coil cables with its ends fixed against rotation, it is now possible 

to assess the distribution of the reaction to the contact forces between the hoop and 

radial components, and hence to calculate the bending stiffness of the cable as a 

function of these forces under increasing curvature. The results of the tension force in 

the wires are estimated by considering the deformations due to these contact forces 

and the Poisson’s ratio effect of the material. These contact forces give rise to a friction 

force acting at the contact patches between any two wires.   
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Figure 7-3 (a & b): Unbalanced force on individual wires of 31 mm diameter locked 

coil cable in (a) outermost layer and; (b) innermost layer respectively. 
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Figure 7.3 (c & d): Unbalanced force on individual wires of 62 mm diameter locked 

coil cable in (c) outermost layer and; (d) innermost layer respectively. 
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The mathematical model in this chapter is validated numerically, by producing results 

for two locked coil cables of 31 and 62 mm respectively. The upper bound of the cable 

curvature is approximated for these two cables, when the cable behaves as a solid bar. 

Figures 7.3 (a-d) show the plots for unbalanced force on wires in the outermost and 

innermost layers of 31 and 62 mm diameter locked coil cable subjected to an axial 

strain of εc = 0.003. Initially, when there is no load applied on the cable and the cable is 

in straight configuration (i.e. εc = 0, κc = 0); both the unbalanced forces and friction 

forces are zero. The wires in the cable are assumed to simply in contact with each 

other with no friction. Secondly, when the cable is subjected to tensile load only (i.e. εc 

> 0, κc = 0). In this case, the unbalanced force on wires is zero whereas friction forces 

exist because of the tension force in the cable. The flexural stiffness of the cable in this 

case remain at its maximum (EImax) and the cable behaves fully composite behaviour. 

Finally, when the cable is subjected to tension and bending (i.e. εc > 0, κc > 0) with the 

assumed coefficient of friction µ = 0.12, both unbalanced and frictional forces are 

acting on wires in all the layers of the cable .  

As shown in Figures 7.3 (a-d), unbalanced force on wires in the outermost and 

innermost layers of the two cables is negligible at small values of bending curvature 

but, increase exponentially under increasing curvature. It is important to mention here 

that unbalanced force is symmetrical about flexural axis as opposed to frictional forces 

in the wires. The point at which unbalanced force acting on a wire in any layer exceeds 

the frictional force acting on it, the wire starts slippage until equilibrium is reached. It 

is clearly shown in Figures 7.3 (a-d) that the wires near the neutral axis experience 

largest unbalanced force as compared with the wires at the extreme fibre position 

(both in the lower and upper halves of the cable). For example, unbalanced force on 

wires in the outermost layer of 62 mm locked coil cable, is 4537 N and 30 N for a wire 

at neutral axis and extreme fibre position respectively.  Similarly, the magnitude of 

unbalanced force on wire decreases for inner layers of the cable, because of the 

decreasing radial distance from the centre of the cable. A wire on the neutral axis in 

the outermost layer of 62 mm locked coil cable experiences an unbalanced force of 

4537 N as opposed to 519 N for a wire on the neutral axis in the innermost layer.  
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Figure 7-4 (a & b): Friction forces on individual wires of 31 mm diameter locked coil 

cable in (a) outermost layer and; (b) innermost layer respectively. 
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Figure 7.4 (c & d): Friction forces on individual wires of 62 mm diameter locked coil 

cable in (c) outermost layer and; (d) innermost layer respectively. 
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Figures 7.4 (a-d) show the frictional forces on wires in the outermost and innermost 

layers of the above two locked coil cables for a selective axial strain of εc = 0.003. The 

frictional forces of the wires in the upper half (i.e. convex side) of the cable are higher 

than those in the lower half (i.e. concave side) of the cable. This is because the positive 

curvature is assumed to cause maximum stress at the extreme fibre position in 

bending term. Thus, frictional forces on wires in different layers are shown to increase 

or decrease rapidly under increasing curvature. Frictional forces in the cable are non 

zero even for the cable in the straight configuration (i.e. κc = 0). Under larger values of 

imposed curvature, frictional forces in the wires decrease with tremendous increase in 

the unbalanced force on them, causing the entire lower half of the cable to be in slip 

state. The approximate upper bound of the cable curvature, for which the BEN 

kinematic beam assumption is valid to evaluate the stresses in the wires near end 

termination, have been shown for both the cables. Unlike a straight beam, there is no 

constant neutral axis along the cable length, and the location of the so called neutral 

axis rotated between the two extreme positions.  

As predicted by the theory, due to minimal frictional force and high unbalanced force, 

wires near the neutral axis in the outermost layer start slippage and spread inward 

towards the centre of the cable. Figures 7.5 (a & b) show the values of the critical 

curvatures at which interwire slippage initiated at the neutral axis for all the three 

layers of two locked coil cable of 31 and 62 mm diameters respectively. As tension 

force in the cable increases, wires stick together under larger curvature, and the upper 

bound of the cable curvature, for which BEN beam assumption is valid increased. The 

locked cable in the present analysis was subjected to a wide range (0.001 ≤ εc ≤ 0.005) 

of mean axial load. It has been shown previously that unbalanced force on wires grows 

linearly with the increasing diameter of the strand, therefore, wires in the outermost 

layer of 62 mm cable slides much earlier than the outer wires in 31 mm cable. For 

example for a given axial strain of 0.001, the wires at the neutral axis of 31 mm cable 

slide at a curvature value of κc = 0.0062 m-1, whereas for 62 mm cable this occurs at κc 

= 0.0022 m-1. It is also demonstrated that the differences in the behaviour of the two 

sections are due to the helical nature of the wires and therefore, bending curvature has 

no influence on the core tension force and friction force. Also, this difference in the 
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behaviour of two sections will vanish when the lay angle tends to zero (i.e. parallel 

wire cable). 

It is worth to mention, that the layers of the shaped wires in locked coil cable 

experience gross sliding throughout the cable for different load perturbations and 

bending curvatures. In gross sliding regime, the contact forces between the wires in 

line and point contact were determined by the previously summarized method in 

Chapter 3. As opposed to round wire cable, the outer layer of shaped wires hold the 

cable together and prevent kinking and bird caging, when the loads are compressive or 

there is a sudden drop in tension. As impact loads cause tensile and torsional wave 

through the cable and helical wires can separate from inner layers, Conway and 

Costello (1990). 
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Figure 7-5 (a & b): Plots of the critical curvature at which interwire slippage initiated 

for all the layers two locked coil cables of (a) 31 mm; (b) 62 mm outside diameter 

respectively.  
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Figures 7.6 (a & b) present the effective bending stiffness for the above two locked coil 

cable for a wide range (0.001 εc ≤ 0.005) of axial strains. The effective bending stiffness 

in the present analysis is shown to have a gradual transition from no-slip to full slip. 

The explicit formulation of slip initiation and progression in the helical layers of both 

shaped and round wires of the cable demonstrates the bending behaviour of cable to 

be modelled in the transition range. The strain distribution in the wires depends on 

the imposing curvature range. In line with the previous analysis, three distinct stages 

are evidenced in the bending behaviour of the cable. Initially, the cable behaves 

linearly when all the wires are in stick state, and the bending stiffness of the cable is 

maximum at this stage. In the second stage, the wires in the cable start slipping against 

each other, some parts in the cable are slipped and others did not. When, the slippage 

in the cable progressed from neutral axis to the extreme fibre position, all the wires in 

the cable are slipped, and the effective bending stiffness of the cable dropped down to 

a constant minimum value, depending on the friction coefficient. It is important to 

mention here that if the bending moment in the cable is reduced, the wires will tend to 

slip back; but the unbalanced force will oppose this slip. As a result the wires lockup 

and the cable return back to its fully stick state. A further reduction in the bending 

moment will cause slippage in the reverse direction. In line with the previous results, 

the behaviour of the locked coil cable under cyclic bending moment is analogous to the 

behaviour of an elastic-plastic material with hardening.  
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Figure 7-6 (a & b): Effective bending stiffness of two different locked coil cables of (a) 

31 mm and; (b) 62 mm diameter. 
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Figure 7-7: Simple design curve for the determination of bending stiffness of the given 

two locked coil cables. 

7.4 Simple Method for Calculating Bending Stiffness 

From the theoretically obtained results of bending stiffness for the two locked coil 

cable a simple curve has been developed as shown in Figure 7.7. This enables one to 

obtain the effective bending stiffness for the above two locked coil cables, as a function 

of the newly proposed dimensionless parameter. The data showed very small scatter 

around the fitted polynomial of a second degree. Therefore, fairly accurate values of 

the bending stiffness can be obtained by means of this simple method. The general 

form of the fitted line can be given as follows: 

     

     
                                                                     (   ) 

where X = ρεc/d is the dimensionless parameter, and A-C are the constant coefficients 

which are; A = -0.0136, B = 0.2329 and C = 0.0214 for the present case of locked coil 

cable. 

As mentioned previously, the theoretical model developed in this chapter has already 

been verified and numerical results are obtained for the above two locked coil cables. 
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Tables 7.2 (a & b) demonstrate the calculation routines of the numerical results for the 

given two locked coil cables of 31 and 62 mm diameter respectively. The simple 

method developed for locked coil cables is based on these results. The significant effect 

of the shaped wires in the outer layers has already been demonstrated in this chapter. 

This has been done using the original formulations as presented in this chapter for 

locked coil cables. The numerical results obtained for two locked coil cable suggest 

that the wires in the outer layers of shaped wires slip at larger curvature as compared 

to the round wire cable, resulting bending stiffness of the cable to remain at EImax. On 

the other the bending stiffness values predicted by the simple method closely resemble 

to the values given in Tables 7.2 (a & b) and show very small scatter around the fitted 

polynomial. Therefore, the simple two degree polynomial can be used reliably to 

estimate the overall effective bending stiffness of these locked coil cables. 
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Table 7-2 (a & b): Calculation routines and numerical results for two locked coil 

cables of (a) 31 mm; and (b) 62 mm diameter respectively. 

 

 

Cable  

outside 

diameter, 

d (m)

Lay 

angle, 

αi (°)

Cable  

axial 

strain, εc

Cable  

curvature, 

κc (m-1)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm
2
)

EIeff/EImax

0.062 14 0.003 0.0063 158.73 7.68 128095 1

0.062 14 0.003 0.007 142.86 6.91 124228 0.97

0.062 14 0.003 0.008 125.00 6.05 114940 0.90

0.062 14 0.003 0.009 111.11 5.38 107400 0.84

0.062 14 0.003 0.01 100.00 4.84 99899 0.78

0.062 14 0.003 0.015 66.67 3.23 76000 0.59

0.062 14 0.003 0.02 50.00 2.42 61000 0.48

0.062 14 0.003 0.03 33.33 1.61 41600 0.32

0.062 14 0.003 0.04 25.00 1.21 31900 0.25

0.062 14 0.003 0.05 20.00 0.97 24300 0.19

0.062 14 0.003 0.06 16.67 0.81 20800 0.16

0.062 14 0.003 0.07 14.29 0.69 18700 0.15

0.062 14 0.003 0.08 12.50 0.60 15600 0.12

0.062 14 0.003 0.09 11.11 0.54 16478 0.13

0.062 14 0.003 0.1 10.00 0.48 15987 0.12

0.062 14 0.003 0.14 7.14 0.35 16423 0.13

Cable  

outside 

diameter, 

d (m)

Lay 

angle, 

αi (°)

Cable  

axial 

strain, εc

Cable  

curvature, 

κc (m-1)

Radius of 

curvature, 

ρc (m)

ρcεc/d

Effective 

bending 

stiffness, 

EIeff (Nm2)

EIeff/EImax

0.031 17.7 0.003 0.0165 60.61 5.87 7392 1

0.031 17.7 0.003 0.02 50.00 4.84 6814 0.92

0.031 17.7 0.003 0.025 40.00 3.87 5480 0.74

0.031 17.7 0.003 0.03 33.33 3.23 4660 0.63

0.031 17.7 0.003 0.035 28.57 2.76 4133 0.56

0.031 17.7 0.003 0.04 25.00 2.42 3756 0.51

0.031 17.7 0.003 0.05 20.00 1.94 3157 0.43

0.031 17.7 0.003 0.06 16.67 1.61 2843 0.38

0.031 17.7 0.003 0.07 14.29 1.38 2500 0.34

0.031 17.7 0.003 0.08 12.50 1.21 2300 0.31

0.031 17.7 0.003 0.09 11.11 1.08 2100 0.28

0.031 17.7 0.003 0.1 10.00 0.97 1900 0.26

0.031 17.7 0.003 0.12 8.33 0.81 1650 0.22

0.031 17.7 0.003 0.14 7.14 0.69 1550 0.21

0.031 17.7 0.003 0.16 6.25 0.60 1500 0.20
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7.5 Conclusions 

A theoretical model is proposed for estimating wire kinematics, pattern of interwire 

contact forces and effective bending stiffness of the axially preloaded locked coil 

cables. The model is the extension of the formulation proposed in Chapter 4, and fully 

takes into account interwire normal contact forces both in radial and hoop directions. 

Numerical results have been obtained for two different locked coil cables of 31 and 62 

mm respectively, suggesting that the outer layers with the shaped wires play an 

important role in the pattern of contact force distribution and slip initiation. The 

overall frictional forces for the shaped wires are found to be higher than round wire 

cables of the same diameter. This delays the initiation of wire slippage in the outer 

layers and therefore bending stiffness of the cable keeps the maximum value at EImax 

for larger values of bending curvatures. The plots for the variable bending stiffness for 

the two cables have been obtained and discussed.  
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Chapter 8  

Conclusions and Future Work 

8.1 Introduction 

The aim of this work was to investigate the bending behaviour of helically wound steel 

cables of various types (i.e. spiral strands, sheathed spiral strands and locked coil 

cables) in presence of friction, and to propose theoretical models for their analysis. 

Bending of such cables may induce slippage between individual wires, which is mainly 

governed by interwire frictional forces acting at the contact patches between them. 

The phenomenon is particularly difficult to model mathematically, also because the 

friction forces are difficult to determine experimentally, and strongly depend on the 

manufacturing process.  

In this work, the local bending behaviour of various types of helically wounded large 

diameter multi-layered cable has been examined. Relatively straightforward 

formulations have been developed for the determination of bending moment versus 

curvature relationships. This enables one to estimate the bending stiffness of the cable 

as a function of imposed cable curvature. The proposed formulations give an insight 

into the inner state of the cable, regarding relative displacements of individual wires 

and the stress distribution. The model fully takes into account the non-linearity of 

cable caused by sliding individual helical wires in the cable. The effect of 

interwire/ineterlayer contact forces, both in radial and hoop directions are taken into 

account. The model parameters have been identified from experimental data, and 

numerical analysis has been performed on a variety of cable constructions. Guided by 

previously reported experimental results, the theoretical analysis demonstrates that, 

similar to the simple case of the shear stress in a solid homogenous beam in bending, 

unbalanced force on wires is maximum at the neutral axis of the cable cross section 

and minimum at the extreme fire positions. Thus initially interwire slippage initiates at 

neutral axis and spread almost symmetrically towards the lower and upper halves of 

the cable. 
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The proposed model has been used to obtain a large body of numerical results for a 

variety of cable constructions, covering a wide range of geometrical  and material 

parameters using the proposed model. Effective bending stiffness of the cable is shown 

to be a function of bending curvature, interlayer friction coefficients and interlayer 

normal contact forces. It is further shown that the effective bending stiffness of the 

cable vary between two extremes, corresponding to no-slip and full-slip cases. Initially 

the cable behaves as a solid bar when all the wires are in stick state and therefore, 

bending stiffness of the cable is at its maximum. The theoretical results of the model 

are compared with the previously available experimental results for two different 

cable constructions of 39 and 41 mm diameters and were found in good correlation. 

Regarding the magnitude of the bending stiffness, the theoretical predictions of the 

theory are compared with experimentally determined values of 164 mm diameter 

strand. 

The model is further extended to cater for the effects of external hydrostatic pressure 

in deep water applications, which greatly influence the pattern of interwire contact 

forces and wire slippage. A theoretical model is also proposed for estimating wire 

kinematics, pattern of interwire contact forces and effective bending stiffness of the 

axially preloaded locked coil cables 

Finally, a dimensionless parameter has been proposed, by means of which the effective 

bending stiffness of large diameter multi-layered cables may be estimated with an 

acceptable accuracy under any loading condition and applied bending.  

8.2 Main Findings 

A large body of available literature on wire ropes and spiral strands has been critically 

examined, and the gaps in previously reported models have been highlighted. Keeping 

in mind the growing demand for increasingly large diameter cables, the impression is 

gained that both on experimental and theoretical sides, too much attention has been 

paid to small diameter (seven wires) strands. It is also noted that most of the earlier 

researchers ignored the effect of interwire friction and contact deformations in their 

analysis. It is argued that predicting various characteristics of large diameter strands, 

based on the knowledge of the behaviour of small diameter cables, by extrapolation is 
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a very risky process.  After the pioneering effort of Hruska, various other authors 

proposed different models of varying complexities and accuracy, to predict the 

response of wire ropes and spiral strands to various loading conditions. Accordingly, 

an effort has been made to assess contact forces and the associated relative 

displacements between wires, taking into account the friction between them. 

Explicit formulations for the smooth transition of the flexural rigidity from no-slip to 

full-slip regimes of the cable as a function of bending curvature have been developed 

as part of the present study. Based on the newly proposed formulations, it is now 

possible to describe the cable sag at specific tension force and cable curvature along its 

axis. The relative displacement of the wires, the tensile, hoop and the bending stresses 

in the individual wires of the cable can be determined. Certain oversights in original 

HDS model (Hong et al., 2005) have been highlighted and subsequently improved. 

Normal contact forces in the hoop direction have shown to have a significant effect on 

the values of interlayer radial contact forces over the trellis contact patches and hence 

the interlayer slippage for the given value of mean axial strain and imposed curvature. 

An extensive parametric study has been carried out on a variety of spiral strand 

constructions covering a wide range of geometrical parameters using the modified 

model. Effective bending stiffness of the cable is shown to be a function of bending 

curvature, interlayer friction coefficients and interlayer normal contact forces. It is 

argued that the small curvature assumption of the cable may be valid in parts away 

from termination, but the possible development of a large curvature at the bearings 

and end terminations cannot be ignored nor avoided. The effective bending stiffness of 

the cable is shown to vary between two extremes, corresponding to no-slip and full-

slip cases. Initially the cable behaves as a solid bar when all the wires are in stick state 

and therefore, bending stiffness of the cable is maximum. Under increasing bending 

the slippage initiates at neutral axis and the effective bending stiffness of the cable 

decreases and eventually reaches a constant value. All the wires in slip state are shown 

to behave as an independent helical springs bending about their own axis in the 

presence of friction. The theoretical results of the model have been compared with the 

previously available experimental results for two different cable constructions of 39 

and 41 mm diameters respectively and are found in good correlation.  
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A simple method for obtaining the effective bending stiffness of large diameter multi-

layered cables has been developed. A sound understanding of the fundamental 

parameters influencing steel cable characteristics is obtained from the numerical 

results presented in Chapter 4. The simplified method is shown to have nominally very 

close values of the bending stiffness as the original formulations of MHDS model. This 

method can be used to hand calculations (using a pocket calculator). 

The modified MHDS model in Chapter 4 has further extended, to cater for the effects of 

external hydrostatic pressure on sheathed spiral strands, which greatly influence the 

pattern of contact forces between wires in the strand. Numerical results have been 

obtained for three different 127 mm strands with lay angles of 12°, 18° and 24° 

experiencing a wide range of external hydrostatic pressures of 0 to 2000 m. Under 

such external pressures, the contact forces caused by the hydrostatic water pressure 

have been shown to become more significant compared with contact forces inside the 

cable by the tension force in the cable. The significant increase in normal contact 

forces between wires is shown to suppress the slippage of wires in the cable. Under 

such conditions, interwire fretting actions are believed to accompany with high levels 

of localized heating. Consequently, the axial and restrained bending fatigue life of the 

cable can be reduced in long term applications.  

The no-slip and full-slip values of flexural rigidity of sheathed spiral strands are shown 

to be independent of the level of hydrostatic pressure. The practical importance of the 

bending stiffness for use in connection with fatigue life estimation and hydrodynamic 

instability calculations is demonstrated. It is argued that knowledge of the exact 

magnitude of the cable bending stiffness will also prove useful in the estimation of the 

natural frequencies of the structure supported by cables. Finally, simplified routines 

are proposed for obtaining the magnitudes of the effective flexural stiffness of 

sheathed spiral strand subjected to various levels of water depths. 

Finally, a theoretical model is proposed for estimating wire kinematics, pattern of 

interwire contact forces and effective bending stiffness of the axially preloaded locked 

coil cables. The model is the extension of the proposed formulations in Chapter 4, and 

fully takes into account interwire normal contact forces both in radial and hoop 

directions. The proposed model has been applied to two different locked coil cables of 
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31 and 62 mm respectively. Numerical results suggest that the outer layers with the 

shaped wires play an important role in the pattern of contact force distribution and 

slip initiation. The overall frictional forces for the shaped wires are found higher than 

round wire cables of the same diameter. This delayed the initiation of wire slippage in 

the outer layers and therefore, bending stiffness of the cable remained at EImax for large 

values of bending curvatures. In addition to this, the outer shaped wires layer resists 

the unwinding of the strand during bending. 

Wherever possible, the theoretical results have been compared with experimental 

results from the available literature and very good correlations have been found. 

8.3 Future Work 

The study in this thesis can be extended further to investigate the following issues: 

1. Fatigue life estimation of the cable 

The work reported here may be regarded as an important step towards the fatigue life 

estimation of the cable. The study in this thesis throws some light on whether the 

traditional method of assuming a constant effective bending stiffness for predicting the 

minimum radii of curvature, at the fixed terminations to spiral strand, is a reasonable 

approach. It has been shown that for large diameter multi-layered strands, the 

difference between no-slip and full slip stiffnesses is unacceptably large, and therefore 

the fatigue life estimation based a constant bending stiffness value could be 

misleading. The results of the interwire contact forces and variable bending stiffness 

can be used in the future as an input to develop new bending fatigue design curves, e.g. 

following Raoof (1993b) method.  

2. Hysteresis during combined tension and bending of the cable 

A further important subject for future investigation is the hysteresis during bending of 

the cable. The axial and torsional hysteresis of cables and electrical conductors is of 

prime importance in the analysis of certain aero-hydrodynamic problems. The 

nonlinear properties of the cables are mostly caused by internal damping. Two main 

sources of internal losses are identified by Hobbs and Raoof (1984) for a vibrating 
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cable, these are; (i) dry friction between the wires; and (ii) viscous damping of the 

material of the wires. The combination of these two mechanisms of losses results in 

the hysteresis loop of the structure. The response of light and flexible structures to 

such dynamic forces (aero-or hydrodynamic and traffic load) are central to understand 

and for sufficiently large vibrations the effect of viscous damping of the material 

become negligible.  

There are two types of interwire friction at play within a cable: (1) line contact 

between wires in the same layer; (2) trellis contact between two wires from different 

layers. When the wires in the cable start sliding with respect to each other, the normal 

force and friction coefficient result in a friction force directed opposite to the sliding 

direction. For each interwire slippage within a layer, energy dissipation can be 

determined by taking the surface area enclosed by the hysteresis loop. Where the 

overall energy dissipation during the bending cycle is mainly governed by interwire 

contact forces, and friction coefficient between wires.  The results of the contact forces 

and slippage for the assumed friction coefficient can be used in future to calculate 

energy dissipation in these cables during bending.  

3. An attempt to extend and implement the proposed formulation for wire 

rope (i.e. double helix wires) 

The proposed model has been successfully implemented to various types spiral strand  

constructions (i.e. wire in the cable follows a single helical path around the core). The 

behaviour of the strand is perhaps best understood, because the single level (cf. ropes, 

double level) of twist in a given wire has made it possible to develop a strong body of 

analytical work (supported by experimental studies). It can be applied again the same 

way for determining the mechanical properties of wire ropes for double helices (i.e. 

wire in the cable following a double helical path around the core). In the case of wire 

ropes, due to the double helical configuration of wire around the core, the response of 

a wire rope is totally different than spiral strands. The parametric equations 

describing the double helix of a wire in the cable need to be derived. The radial 

component of the curvature can be used the same way for helical strand in the wire 

rope to determine the contact deformations.   
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