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ABSTRACT 

Research suggests hypertension is associated with reduced somatosensory 

perception. Further, natural fluctuations in blood pressure (BP) across the cardiac cycle 

have been shown to modulate nociceptive responding, pain and tactile sensitivity, 

suggesting that arterial baroreceptors may be important moderators of 

somatosensation. This thesis further examined the influence of natural fluctuations in 

BP, and thus baroreceptor activity, across the cardiac cycle on electrocutaneous pain 

and tactile sensory thresholds and pain-related evoked potentials (PREPs) in 

normotensive individuals. Study 1 found pain thresholds were higher, i.e. pain was 

reduced, during systole compared to diastole. Further analysis revealed only 

participants with low-normal systolic BP displayed this cardiac cycle modulation, 

suggesting tonic BP may moderate cardiac cycle-related pain modulation. In the 

second study, tactile sensory thresholds did not vary across the cardiac cycle. 

However, when participants were split into high-normal and low-normal BP groups, 

interactions between BP and tactile sensory thresholds across the cardiac cycle were 

revealed.  This finding suggests tonic BP may be an important factor determining the 

cardiac cycle modulation of tactile sensation. Study 3 found no variation in the N2 or P2 

peak amplitudes, or N2-P2 peak-to-peak amplitudes across the cardiac cycle at scalp 

recording sites Cz, C3, or C4. Furthermore, BP median split analyses revealed no BP 

Group or interaction effect. As previous work reported a systolic dampening of PREPs, 

these data suggest the cardiac cycle-related modulation of PREPs may not be as 

robust as other measures of pain such as the nociceptive flexion reflex. Study 4 

reported, in line with Study 3, no cardiac cycle related modulation of PREPs following 

stimulation of the right and left hands. However, a Hand × Scalp Electrode Site × 

Interval interaction was revealed for N2 peak amplitudes. These data suggest that the 

combination of side of stimulation and scalp recording site may be important in 

determining the patterning of PREPs across the cardiac cycle. Taken together, the 

findings of these studies suggest that pain perception, and to a lesser extent tactile 

sensation, are influenced by natural variations in BP across the cardiac cycle. 

However, modulation appears dependent on tonic BP. Conversely, pain-related brain 

activity across the cardiac cycle was not affected by tonic BP, but may be influenced by 

the combination of stimulation and recording sites. 
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General Introduction 
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At some point in life everyone experiences pain, but what exactly is pain and 

what factors can influence it?  

 

Nociception is the neural process of encoding noxious stimuli (The International 

Association of the Study of Pain, 2012). Whereas, pain is defined as an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage 

or described in terms of such damage (Merskey & Bogduk, 1994). Thus, the pain we 

feel is more complex than simply a physical sensation resulting from the processing 

of noxious stimuli. It also has significant psychological, cognitive and environmental 

components and therefore further research is needed to understand its 

multidimensional nature.  

 

Ancient civilisations associated pain with evil, magic, and demons, but as early 

as Greek and Roman times, theories were being developed that pain was more than 

this introducing the theory of sensation and the idea that the brain and nervous 

system were involved in the perception of pain (NINDS, 2001). Over the centuries 

that followed, the intrigue with pain continued and in 1644 French philosopher René 

Descartes described what we would now regard as a "pain pathway" when 

describing the pain sensation associated with the transmission of fire touching the 

foot travelling to the brain as similar to the ringing of a bell (Descartes, 1644). 

Subsequently, pain research has become even more extensive and has sought to 

unravel the processing of pain and the mechanisms underlying it, but because of the 

complex, multidimensional nature of pain there are still many unanswered questions 

(Brooks & Tracey, 2005).  

 

Pain is generally perceived negatively and chronic pain can certainly be 

debilitating, but pain is important, it is a way of your body telling you something is, or 

could potentially be wrong. So when conditions such as high blood pressure (BP) are 

associated with a reduced sensitivity to pain (see Ghione, 1996 for review), it is 

important to try and understand what causes this and subsequently how best to try 

and treat it. The aim of this thesis was to add to the body of research and 

understanding regarding the possible role of baroreceptors in the modulation of pain 

and other sensations. The studies employed a cardiac cycle paradigm (explained on 
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page 28 in the natural baroreceptor stimulation across the cardiac cycle studies 

section of this introduction) with participants whose resting BP was within the normal 

range (normotensive). The aim was to investigate the effects of natural fluctuations 

in BP, and consequently baroreceptor activation, across the cardiac cycle on various 

sensory indices in a controlled, within-subjects approach.  

 

This chapter describes: (a) a brief overview of hypertension and the 

phenomenon of hypertensive hypoalgesia; (b) the processing of arterial baroreceptor 

afferents and pain signals, and evidence for a possible convergence; (c) the 

methodological techniques used to study baroreceptor influences on pain with an 

emphasis on the cardiac cycle paradigm; d) a brief introduction to the possible 

lateralisation of pain and baroreceptor processing in the brain and; (d) an outline of 

the studies in the present thesis. 

 

1.1 Hypertension 

Hypertension is a chronic medical condition associated with elevated BP in the 

arteries (Chobanian et al., 2003). Blood pressure is measured with two values; 

systolic and diastolic. Systolic BP (SBP) equates to a period of high pressure when 

the ventricles of the heart contract forcing the blood out of the heart and into 

peripheral circulation. Diastolic BP (DBP) corresponds to a period of low pressure 

when the ventricles relax to allow blood to flow in to them for the next contraction, 

and thus give a maximum and minimum BP respectively (Mackenzie & Brown, 

2009). 

 

The continuous nature of BP, and specifically the continuous relationship 

between BP and health risks make the identification of cut-off points for the definition 

between normal BP and high BP (hypertension) difficult (Mancia et al., 2013). 

However, it is necessary to provide guidelines for practitioners to identify and initiate 

treatment for hypertension. The current BP classifications proposed by The Task 

Force for the management of arterial hypertension of the European Society of 

Hypertension and of the European Society of Cardiology (Mancia et al., 2013) are 

outlined in Table 1. When SBP and DBP fall into different categories, the highest 

category is used, although it should also be noted that in addition to the 6 groupings 
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outlined in Table 1, a further classification relates to isolated systolic hypertension 

(SBP above 140 mmHg when DBP is less than 90 mmHg), is graded as 1, 2, or 3, 

according to the SBP level. These guidelines are consistent with the 2011 

Hypertension Guidelines produced in a collaboration between the British 

Hypertension Society (BHS) and National Institute of Health and Clinical Excellence 

(NICE) guidelines (NICE, 2011) and those of The World Health Organization 

(WHO)/International Society of Hypertension (ISH) (World Health Organisation, 

International Society of Hypertension Writing Group, 2003).  

 

Table 1. European Society of Hypertension (ESH) and of the European Society of 

Cardiology (ESC) guidelines for the management of arterial hypertension - 

Definitions and classification of blood pressure levels (Mancia et al., 2013) 

 

Category Systolic BP (mmHg)  Diastolic BP (mmHg) 

Optimal <120 and <80 

Normal 120-129 and/or 80-84 

High Normal 130-139 and/or 85-89 

Grade 1 Hypertension 140-159 and/or 90-99 

Grade 2 Hypertension 160-179 and/or 100-109 

Grade 3 Hypertension >180 and/or >110 

 

 

1.1.1 Prevalence of hypertension, its association with cardiovascular disease 

and increased risk of mortality 

Hypertension is a growing concern in the developed world. According to the 2011 

Health Survey for England 31% of adult men and 28% of women have been 

diagnosed as hypertensive in England (Knott & Mindell, 2011), with similar reports in 

America (Yoon, Burt, Louis, & Carroll, 2012), several European countries (Germany, 

Finland, Sweden, England, Spain, Italy) and Canada (Wolf-Maier et al., 2003).  

 

Raised BP is the single most important cause of death worldwide (Lopez, 

Mathers, Ezzati, Jamison, & Murray, 2006; World Health Organisation, 2009), 

according to the Global Health Risks Report by the WHO High BP accounts for 13% 
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of deaths globally (World Health Organisation, 2009). Specifically, hypertension is a 

highly prevalent risk factor for cardiovascular disease (CVD) throughout the 

developed world. An increase in SBP of 2mmHg has been associated with a 7% 

increased risk of ischaemic heart disease mortality and a 10% increased risk of 

mortality from stroke (Lewington, Clarke, Qizilbash, Peto, & Collins, 2002). 

Cardiovascular disease has been the most common cause of death in England and 

Wales for nearly a century in both males and females; according to the National 

Statistics Death Registrations Summary Statistics for England and Wales in 2011, 

circulatory diseases, such as heart disease and strokes accounted for 29% of all 

deaths (Office for National Statistics, 2011) and the WHO estimates that 51% of 

stroke (cerebrovascular disease), 45% of ischemic heart disease deaths and 45% of 

CVD deaths among those older than 30 years are attributable to high BP (World 

Health Organisation, 2009). Importantly, the leading cause of CVD death is elevated 

BP, with high BP causing between 37% of CVD deaths in the South-East Asia 

Region to 54% of CVD deaths in middle-income European countries (World Health 

Organisation, 2009). Elevated BP increases the risk of CVD due to the effect high 

BP has on the arteries supplying blood to the brain, heart and kidneys which 

significantly increases the risk of stroke and ischaemic heart disease leading to heart 

attacks, as well as contributing to the development of chronic kidney disease and 

cognitive decline (Lewington et al., 2002; Rothwell, 2011).  

 

With these worrying statistics it is clear to see that hypertension is a major 

health problem and therefore an important area of research. Effective hypertension 

treatment can reduce the risk of stroke, heart attack and congestive heart failure, 

hypertensive retinopathy and nephropathy (Sawicka et al, 2011) therefore it is vital to 

maximise our understanding of the condition so that strategies to reduce its impact 

can be developed.  

 

1.2 Hypertensive hypoalgesia 

Hypertension is predominantly asymptomatic, except at extremely elevated levels, 

and as such many sufferers are unaware that anything is wrong (Kannel, 

Dannenberg, & Abbott, 1985; Yurenev, DeQuattro, & Devereux, 1990). Significantly 

this may interfere with early detection of cardiac disease (France, 1999). It is 
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because of the lack of symptoms and the increased risk of premature death 

associated with hypertension outlined above that hypertension is sometimes referred 

to as the silent killer (France, 1999; France & Ditto, 1996). Interestingly, the lack of 

symptoms associated with hypertension may actually be a symptom. It is now well 

established that patients with hypertension exhibit reduced sensitivity to pain 

(Ghione, 1996) and this could be considered a symptom.  

 

1.2.1 Animal research evidencing hypertensive hypoalgesia 

The first reports of an association between hypertension and reduced pain 

perception (hypoalgesia) were in 1979 in experimentally-induced hypertensive rats 

(Dworkin, Filewich, Miller, Craigmyle, & Pickering, 1979; Zamir & Segal, 1979). 

Initially, Zamir and Segal (1979) reported a delayed paw-licking response to noxious 

thermal hot-plate stimulation following experimentally induced hypertension by renal 

artery clipping, compared to pre renal artery clipping. Soon after, Dworkin and 

colleagues (1979) repeated the findings in rats with acutely elevated BP following 

infusion of the drug phenylephrine, which exhibited slower escape-avoidance 

running responses to noxious trigeminal nucleus stimulation compared to saline 

infusion. These findings were repeated in rats in response to the tail flick test 

(Saavedra, 1981), the hot-plate test (Maixner, Touw, Brody, Gebhart, & Long, 1982; 

Sitsen & de Jong, 1983), and an electric foot shock test (Sitsen & de Jong, 1983).  

 

1.2.2 Hypertensive hypoalgesia in humans and the relationship with tonic 

blood pressure 

The hypertensive hypoalgesia phenomenon was first identified in humans in 1980 by 

Zamir and Shuber (1980) who reported that individuals with unmedicated 

hypertension had higher pain thresholds in response to electrical tooth pulp 

stimulation compared to individuals with normal BP. The relationship between BP 

and perceived pain in humans has been found to follow an inverse linear pattern 

throughout the range of tonic BP from low BP (hypotension), through the 

normotensive range, into borderline hypertension and hypertension. Specifically, it 

has been repeatedly reported that in hypertensive populations, as BP increases, 

pain sensitivity reduces in a linear manner (Bruehl, Carlson, & McCubbin, 1992; 

Bruehl, Chung, Ward, Johnson, & McCubbin, 2002; McCubbin & Bruehl, 1994; 



Chapter 1 
 

 
 

7 
 

Ghione, Rosa, Mezzasalma, & Panattoni, 1988; Guasti et al., 1995; Guasti et al., 

1996; Guasti, Gaudio et al., 1999; Guasti, Zanotta et al., 1999; Guasti et al., 2002; 

Rosa, Vignocchi, Panattoni, Rossi, & Ghione, 1994; Sheffield et al., 1997; Sheps et 

al., 1992; Zamir & Shuber, 1980). Individuals with borderline hypertension have been 

shown to have a reduced pain perception compared to normotensive controls (Rau 

et al., 1994; Rosa, Ghione, Panattoni, Mezzasalma, & Giuliano, 1986; Schobel et al., 

1996; Schobel et al., 1998). In normotensive samples it has been well established 

that as BP increases, pain is reduced (al’Absi, Petersen, Wittmers, 2000; Bruehl et 

al., 1992; Campbell & Ditto, 2002; D’Antono, Ditto, Rios, & Moskowitz, 1999; Ditto, 

Seguin, Boulerice, Pihl, & Tremblay, 1998; Fillingim, & Maixner, 1996; Fillingim, 

Maixner, Bunting, & Silva, 1998; France, 1999; McCubbin & Bruehl, 1994; Myers, 

Robinson, Riley, & Sheffield, 2001; Sheffield, Biles, Orom, Maixner, & Sheps, 2000). 

However, the linear relationship between tonic BP and pain and normotensive 

samples is not always evident (Bruehl, Chung, Diedrich, Diedrich, & Robertson, 

2008; Bruehl et al., 2010; Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Mechlin 

et al., 2011; Stewart & France, 1996). Finally, in hypotensive participants (systolic BP 

<100 mmHg) have been shown to present an increase in pain compared to 

normotensives (Duschek & Schandry, 2006). Additionally, there is good evidence that 

individuals with a genetic risk of hypertension (i.e. a parental history of hypertension) 

show reduced pain than individuals without a parental history of hypertension 

(al'Absi, Buchanan, & Lovallo, 1996; Campbell & Ditto, 2002; France, 1999; France 

& Stewart, 1995; Stewart & France, 1996). However, this reduced pain sensitivity in 

individuals with a parental history of hypertension is not always evident (al'Absi et al., 

2000; Ghione et al., 1988). Taken together these data provide strong evidence that 

hypoalgesia is related to risk for hypertension rather than hypertension per se and 

that the degree of pain reduction increases with increasing BP (France, 1999). 

 

1.2.3 Implications of hypertensive hypoalgesia 

Hypertensive hypoalgesia has severe, acute clinical implications; hypertension is 

associated with an increased prevalence of silent myocardial ischemia and 

unrecognized myocardial infarction (Valensi, Lorgis & Cottin, 2011). For example 

analysis of data from the extensive Framingham Heart Study reported that 45% of 

women and 35% of men with hypertension had suffered an asymptomatic 
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myocardial infarction (Kannel, Dannenberg & Abbott, 1985). Subsequent 

experimental data has supported these findings; an inverse relationship between BP 

and levels of chest pain during exercise tolerance tests screening for myocardial 

ischemia has been found (Ditto, D'Antono, Dupuis, & Burelle, 2007) and participants 

with elevated BP have shown a delayed onset of angina pain during episodes of 

exercise-induced myocardial ischemia (Krittayaphong & Sheps, 1996; Sheps et al., 

1989). Additionally, during 24-hr Holter monitoring recordings, as BP increased, so 

did the prevalence of silent myocardial ischemia (Siegel, Cheitlin, Seeley, Black, & 

Hulley, 1992). This data provides evidence that hypertensive hypoalgesia has 

significant negative consequences for health and thus it is important to try and 

further the understanding of the phenomenon. 

 

1.2.4 Mechanisms for hypertensive hypoalgesia 

The hypertensive hypoalgesia phenomenon has been well studied. However the 

mechanisms underlying it are yet to be fully established. France and Ditto (1996) 

proposed three mechanisms to explain hypertensive hypoalgesia; a) elevated central 

and peripheral endogenous opioid levels, b) increased descending supraspinal pain 

inhibition, and c) increased baroreceptor stimulation. This thesis was designed to 

examine the third of these potential mechanisms; the role of arterial baroreceptors in 

pain perception. 

 

1.3 Neural pathways for arterial baroreceptors and nociception 

Maintaining cardiovascular homeostasis requires tight regulation of arterial BP within 

a narrow mean arterial pressure range of 85 and 100 mmHg (Klabunde, 2011). This 

regulation depends on a balance of feed-forward or central command, and feedback 

or reflex mechanisms operating in response to deviations from a state of 

homeostasis (Benarroch, 2008). Baroreceptors are central to the feedback 

mechanism controlling short-term regulation of BP via a fast acting reflex response 

called the baroreflex (Stanfield & Germann, 2008).  

 

Arterial baroreceptors are mechanoreceptors located in the walls of the aortic 

arch and carotid sinuses (at the bifurcation of the external and internal carotids) 

(Bell, 2009). Baroreceptors are stimulated by stretch of the vessel walls and are 
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sensitive to both absolute pressure and the degree of stretch within the structures 

(Angell James, 1971; Dembrowsky & Seller, 1995). At rest, arterial baroreceptor 

firing is maximal during the systolic upstroke when the pulse pressure wave of blood 

surging through the vessels stretches the walls of the aortic arch and carotid sinus 

and is minimal during diastole when the bolus of blood has passed the baroreceptors 

and entered peripheral circulation (Angell James, 1971; Mancia & Mark, 1983). 

Thus, there is natural phasic baroreceptor stimulation during each cardiac cycle 

(Angell James & Lumley, 1974).  

 

1.3.1 The arterial baroreflex 

The arterial baroreflex is a negative feedback mechanism buffering acute changes in 

BP (Benarroch, 2008); an increase in the mean arterial pressure increases the 

tension in the vessel, stimulating the baroreceptors and increasing their afferent 

output. The carotid sinus baroreceptors are innervated by the sinus nerve of Hering, 

a branch of the glossopharyngeal nerve. The aortic arch baroreceptors are 

innervated by the aortic nerve which joins the vagus nerve. Both the 

glossopharyngeal and vagus nerve project to the nucleus tractus solitarius (NTS) in 

the medulla of the brainstem (Eckberg & Sleight, 1992; Benarroch, 2008; Bell, 2009; 

Klabunde, 2011). Sympathetic and parasympathetic neuron activity in the medulla is 

modulated by the NTS (Klabunde, 2011). An increase in baroreceptor afferent input 

to the NTS excites the nucleus ambiguous neurons and inhibits the rostral 

ventrolateral medulla (RVLM) neurons leading to a reduction in BP via an increase in 

parasympathetic nervous system activity and a reduction in sympathetic nervous 

system activity to return the body to a state of homeostasis (Bell, 2009).  

 

1.3.2 Transmission of baroreceptor afferent information to the brain 

Afferent baroreceptor information is transmitted from the baroreceptors locations in 

the aortic arch and the carotid sinuses via myelinated A-δ and unmyelinated C-fibres 

(Coleridge, Coleridge & Schultz, 1987). A-δ have higher conduction velocities, and 

lower firing thresholds than C-fibres (Kunze & Andresen, 1991), but there is no 

difference between the neural pathways, reflex regulation effects or central nervous 

system effects of the two fibre types. Therefore, the main difference between the 
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fibre types appears to be the range of BP in which the operate (Dembrowsky & 

Seller, 1995). 

  

1.3.3 Baroreceptor afferent transmission within the brain 

Baroreceptor afferents reach the first synapse in NTS, which is a major brainstem 

centre for relaying visceral-afferent signals. Baroreceptor stimulation results in the 

parasympathetic efferent branch of the arterial baroreflex exciting the preganglionic 

cardiomotor neurons in the nucleus ambiguus which directly influences the cardiac 

pacemaker to decrease heart rate (Jänig, 2006). Similarly, baroreceptor stimulation 

leads to the sympathetic branch of the arterial baroreflex projecting excitory fibres to 

the caudal ventrolateral medulla (CVLM) which to turn send inhibitory fibres to the 

rostral ventrolateral medulla (RVLM), which subsequently inhibits the autonomic 

nervous system decreasing heart rate and BP (Jänig, 2006). Beyond these brain 

stem reflexes baroreceptor inputs are projected to higher brain centres. Baroreceptor 

afferent information is transmitted both directly, and indirectly (via the lateral 

parabrachial nucleus) to the limbic structures (Dembrowsky & Seller, 1995), and the 

thalamus via the reticular formation (Rau & Elbert, 2001), which both subsequently 

project onto the insular cortex (Dembrowsky & Seller, 1995). Specifically, the insular 

cortex (Butcher & Cechetto, 1995; Zhang, Dougherty, & Oppenheimer, 1999), 

Anterior cingulate cortex (ACC) (Terreberry & Neafsey, 1987; Verberne & Owens, 

1998), amygdala (Cechetto & Calaresu, 1983, 1984, 1985; Gelsema, Agarwal, & 

Calaresu, 1989) and the cerebellum (Bradley, Paton, & Spyer, 1987; Nisimaru, 

Okahara, Yanai, 1998) are all higher brain areas identified as being associated with 

baroreceptor-related cardiovascular function. There is also good recent evidence in 

humans from functional magnetic resonance imaging (fMRI) studies indicating 

changes in autonomic function during baroreceptor unloading activity in the insular 

cortex, ACC, medial prefrontal cortex (MPFC), cerebellum, and amygdala (Kimmerly, 

O'Leary, Menon, Gati, Shoemaker, 2005). 

 

1.3.4 Transmission of nociception in the peripheral nerves 

Nociceptive information is transmitted from peripheral nociceptive receptors to a first 

synaptic relay in the spinal cord via A-δ fibres and C-fibres. The myelinated A-δ 

afferents conduction velocity is approximately 15 m/s (Meyer, Walker, & 
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Mountcastle, 1976), with high firing rates up to 30 Hz and reflect the fast “first pain” 

sensation being pinprick like (Arendt-Nielsen & Chen, 2003). Whereas the 

unmyelinated C fibres have slower conduction velocities approximately 0.86–1.25 

m/s (Gybels, Handwerker, & Van Hees, 1979), have slower firing rates (15-20Hz) 

and reflect the “second pain” described as slow burning (Arendt-Nielsen & Chen, 

2003). 

 

1.3.5 Cerebral representation of pain 

For many years, researchers have sought to map the areas of the brain involved in 

the processing of pain. As a result, studies utilising neuroimaging techniques 

including magnetoencephalography (MEG), functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET) several different structures have 

been identified as contributing to this process of pain perception. The areas identified 

as being activated following painful stimulation include the insular cortex, the ACC, 

the amygdala, the thalamic nuclei, the hippocampus, the primary (SI) and secondary 

(SII) somatosensory cortices, the primary and secondary motor cortices, the 

prefrontal and posterior parietal cortices, the basal ganglia, the periaqueductal grey 

matter, the cerebellum and the posterior parietal cortex (Bushnell & Apkarian, 2006; 

Coghill, et al., 1994; Craig, 2002; Davis, Pope, Crawley, & Mikulis, 2002; Kakigi, Inui, 

& Tamura, 2005; Ogino et al., 2007; Peyron, Garcia-Larrea et al., 2000; Qiu et al., 

2006; Rainville, 2002).The SII, insular regions, and the ACC have been found to be 

most consistently activated following painful stimulation with slightly less consistency 

in the contralateral thalamus and SI (Peyron, Garcia-Larrea et al., 2000; Apkarian, 

Bushnell, Treede, & Zubieta, 2005). With so many different brain areas identified as 

contributing to pain processing, it is safe to suggest that there isn’t a single “pain 

centre” in the brain (Tracey, 2005). On the contrary, it appears that pain processing 

relies on several different brain structures, which collectively are often referred to as 

the ‘pain matrix’ (Melzack, 1999) i.e., a network of cortical areas through which pain 

is generated from nociception (Ingvar, 1999; Peyron, Laurent et al., 2000; Porro, 

2003; Rainville, 2002; Tracey & Mantyh, 2007). Thus it appears that pain perception 

is dependent on the interaction of several different cerebral structures, and that it is 

the pattern and degree of activation of these structures, together with the integration 

of other factors influencing pain perception (e.g., cognition, mood, injury, and so 
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forth) that determine how an individual experiences pain (e.g., Tracey & Mantyh, 

2007). 

 

1.3.6 The convergence of baroreceptor afferent information and pain in the 

brain 

There is substantial support for a baroreceptor role in the modulation of pain 

(Ghione, 1996). With regards to the modulating effects of baroreceptors on pain, 

many of the same areas of the brain identified as contributing to the perception of 

pain have also been identified as being activated by baroreceptor afferent inputs. 

Firstly, direct stimulation of the NTS, which as discussed above is central to the 

baroreflex, has been shown to induce antinociception (Aicher & Randich, 1990). 

Secondly, there is evidence, in monkeys, that somatosensory and baroreceptor 

inputs converge on the same neurons within the insular cortex (Zhang et al., 1999) 

and the insular cortex and thalamus in rats (Hanamori, Kunitake, Kato & Kannan, 

1998; Zhang & Oppenheimer, 1997). Additionally, baroreceptor activity across the 

cardiac cycle has been shown to influence the cortical processing of somatosensory 

stimuli, with an integration of somatosensory stimuli presented either before or 

during early cardiac systole in humans being identified in the insula, amygdala, and 

brain stem nuclei (Gray et al., 2009). Third, several studies have shown significant 

overlap between brain areas involved in baroreflex control and pain modulation. For 

example when the periaqueductal grey matter is stimulated it induces analgesia 

(Bandler, Carrive, & Zhang, 1991), the periaqueductal grey matter is also important 

in arterial baroreflex modulation (Inui, Murase, & Nosaki, 1994; Nosaka, Murata, Inui, 

& Murase, 1993). Additionally, the nucleus raphe magnus in the RVLM plays a 

central role in pain modulation and contains neurons whose activity fluctuate 

spontaneously with both natural and experimentally-induced BP changes (Thurston 

& Randich, 1992; 1995). Taken together these data suggest there is a significant 

overlap in the brain areas regulating BP and processing pain which is important from 

the point of view of identifying a possible baroreceptor role in the modulation of pain. 

 

1.4 Pain stimulation modalities 

Various pain modalities have been used to study pain including noxious electrical 

tooth pulp, thermal, mechanical, intracutaneous, electrocutaneous and laser 
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stimulation. In relation to this thesis the electrocutaneous modality will be the focus 

of this introduction following a brief discussion of laser stimulation. 

 

1.4.1 Noxious laser stimulation in pain study 

Noxious laser stimulation has been used in the study of pain since 1970 (Mor & 

Carmon, 1975). Since its introduction, laser stimulation has been used extensively to 

elicit pain-related evoked potentials (PREPs) to try and identify the cortical brain 

areas involved in pain processing (Carmon, Mor, & Goldberg, 1976; Carmon, Dotan, 

& Sarne, 1978; Bromm & Treede, 1987; Treede, Kief, Holzer, & Bromm, 1988; 

Kakigi, Shibasaki, & Ikeda, 1989; Miyazaki et al., 1994; Xu et al., 1995; Kanda et al., 

1996, 1999; Edwards, Inui, Ring, Wang, & Kakigi, 2008). Laser stimulation is 

regarded as the most reliable assessment tool for selectively stimulating A-δ 

nociceptive fibres and thus studying pain in healthy subjects and patients (Treede, 

Lorenz, & Baumgartner, 2003; Cruccu & García-Larrea, 2004). Laser stimulation has 

a rapid onset and excites a limited number of primary afferent fibres, primarily thin 

myelinated A-δ- and unmyelinated C-fibres which are pain fibres known to respond 

to thermal stimulation (Meyer, Ringkamp, Campbell, & Raja, 2006). However the 

equipment required for laser stimulation is bulky and expensive. The nature of laser 

stimulation also leads to superficial burns, although these are less intense when 

employing thulium lasers (2.03 μm wavelength) compared to carbon dioxide lasers 

(10.6 μm wavelength), due to differences temperature distribution in the skin 

(Spiegel, Hansen, & Treede, 2000). To try and counter these limitations researchers 

have sought to utilise alternative methods to elicit pain, electrocutaneous stimulation 

has been developed as a suitable alternative. 

 

1.4.2 Electrocutaneous stimulus in pain study 

Commonly used electrocutaneous stimulation electrodes, such as the bar electrode, 

is known to stimulate larger A-β tactile fibres in addition to A-δ nociceptive fibres 

(Katsarava et al., 2006; Kaube, Katsarava, Kaufer, Diener, Ellrich, 2000). This is due 

to the lower electrical thresholds of A-β tactile fibres compared to nociceptive A-δ 

fibres. The stimulation of the powerful A-β fibres is felt like an aversive stab or 

vibration without actually being felt as pain (Gracely, 2006). As such the pain 

response may be contaminated and thus the responses may not be truly nociceptive 



Chapter 1 
 

 
 

14 
 

(Katsarava et al., 2006; Kaube et al., 2000). Indeed, studies have confirmed this 

showing that increasing electrical stimulation intensity produces cortical responses 

that, even at noxious levels, are more related to stimulation of non-pain than noxious 

afferents (De Broucker & Willer, 1985; Dowman, 1994).  

 

The pain studies outlined in the current thesis delivered electrocutaneous 

stimulations via a concentric planar electrode (Kaube et al., 2000) designed to more 

selectively stimulate A-δ nociceptive fibres compared to the bar electrode 

electrocutaneous stimulations methods (Katsarava et al., 2006; Kaube et al., 2000). 

The small cathode-anode distance of the concentric planar electrode produces a 

highly superficial current field to more selectively stimulate nociceptive A-δ fibres 

which are closer to the surface of the skin (Katsarava et al., 2006; Kaube et al., 

2000). The sensation associated with the concentric planar electrode is a sharp 

pinprick-like pain, and has been shown to elicit PREPs and nociceptive blink reflexes 

(Katsarava et al., 2006; Kaube et al., 2000; Serrao et al., 2010). Thus, it has been 

proposed that the concentric planar electrode is an efficient method for evaluating 

the nociceptive system. Indeed, PREPs using the concentric planar electrode have 

revealed group abnormalities in HIV and diabetic neuropathic patients (Mueller et al., 

2010; Obermann et al., 2008). These findings indicate the efficiency of the concentric 

electrode in identifying abnormalities in pain processing.  

 

Therefore, it is reasonable to assume, and should be taken into account that 

electrocutaneous stimulation may differentially activate nociceptive and non-

nociceptive fibres compared to laser stimulation (e.g. Lefaucheur et al., 2012; 

Perchet et al., 2012). Indeed, two recent studies (de Tommaso et al., 2011; 

Lefaucheur et al., 2012), reported differences in the latency of the N2 and P2 

components between PREP responses evoked by laser stimuli and concentric 

planar electrode, with laser stimulation demonstrating later peak amplitudes than 

electrical stimulation. The latency differences could be attributed to differences in 

axon activation between the two stimulation modalities. Electrical stimulation directly 

activates peripheral afferents (Perchet et al., 2012), whereas laser stimulation incurs 

a peripheral delay usually about 40 ms, although considerably less (approx.10-20 

ms) when brief duration laser stimulations are used (Iannetti et al., 2004). This 
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difference is due to signal transduction between thermoreceptor heating and action 

potential generation in A-δ nociceptive fibres following laser stimulation (Bromm & 

Treede, 1991; Plaghki & Mouraux, 2003). 

 

1.5 Methods of pain assessment 

Pain is subjective and multidimensional (Clark, Yang, Tsui, Ng, Bennett, & Clark 

2002; Kumar, Tandon, & Mathur, 2002). In terms of research this is a problem as it 

restricts the ability to accurately quantitatively assess it. Commonly used subjective 

self-report measures of pain such as the Visual Analogue Scale (VAS), numerical 

rating scales e.g. 0-10 or 0-20, and category rating scales based on verbal 

descriptions (e.g. nil, mild, moderate, severe, very severe) are limited by their 

measurement of a single aspect of pain i.e. intensity, considerable within-subject and 

between-subject variability (Gracely, 1995) and various kinds of bias such as 

memory bias (Magnusson, List, & Helkimo, 1995) and experimenter bias (Branch, 

Carlson, & Okeson, 2000). Although such self-report measures have limitations they 

still provide important information and their value should not be dismissed. Indeed 

some measures, such as the McGill Pain Questionnaire (Melzack, 1975) permit the 

scaling of multiple dimensions of subjective experience which allows a deeper 

appreciation of the nature of pain experience. 

 

1.5.1 The nociceptive flexion reflex as a method to study pain 

To try and address the issues with subjective measures of pain researchers have 

sought alternative more objective methods for studying pain. The nociceptive flexion 

reflex (NFR) is a polysynaptic spinal reflex that facilitates withdrawal from noxious 

stimuli to avoid tissue injury (Sandrini et al., 2005), and the threshold for which 

serves as a physiological correlate of pain (Hugon, 1973; Willer, 1977). The NFR is 

typically elicited via stimulation of either the cutaneous superficial branch of the 

radial nerve at the wrist or the sural nerve at the ankle. The subsequent withdrawal 

motor response is recorded at the flexor muscle associated with the nerve (Garcia-

Larrea, 2012) e.g. in response to sural nerve stimulation this is the 

electromyographic activity in the biceps femoris is recorded and this is assumed to 

indicate the level of nociceptive responding (Hugon, 1973; Willer, 1977). Studies 
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utilising this methodology to study the hypertensive hypoalgesia phenomenon are 

discussed in detail in section 8.6 of this introduction. 

 

1.5.2 Pain-related evoked potentials as a method for studying pain 

In a further development in the study of pain, researchers have examined the time-

locked derivative of the electroencephalogram (EEG) termed the event-related 

potential (ERP) which in response to painful stimuli is termed the pain-related 

evoked potential (PREP). Electroencephalography represents the electrical activity 

of the brain measured at scalp level (Niedermeyer & da Silva, 2004) and PREPs 

elicited by noxious stimuli are thought to represent the central processing of 

nociception and as such, are seen as an objective measure of pain (Miltner, Larbig, 

& Braun, 1987; Granovsky, Granot, Nir, & Yarnitsky, 2008). 

 

Two components of PREP waveforms have been extensively studied in relation 

to pain; the second negative (N2) and positive (P2) peaks (Kanda et al., 1996; 

Garcia-Larrea, Peyron, Laurent, & Mauguiere, 1997; Fila & Bogucki, 2009). The N2 

occurs approximately 130–240 ms post stimulus and P2 approximately 230–390 ms 

post stimulus (Bromm, 1984; Zaslansky et al., 1996) and have been found to be 

maximal at the midline central area, specifically Cz electrode following hand 

stimulation (Carmon et al., 1976, 1978; Bromm & Treede, 1987; Treede et al., 1988; 

Kakigi et al., 1989; Miyazaki et al., 1994; Xu et al., 1995; Kanda et al., 1996, 1999). 

Evidence suggests the origin of the N2 and P2 components is mainly the ACC, whilst 

SII and insula cortex, bilaterally, also contribute to the N2 component (Bromm & 

Chen, 1995; Tarkka & Treede, 1993; Valeriani, Rambaud, & Mauguiere, 1996). 

These data further suggest, as discussed, above that PREPs are generated in the 

brain areas involved in pain processing and that these same areas are also involved 

in the processing baroreceptor afferents. 

 

Harkins and Chapman (1978) was one of the first studies to report a significant 

relationship between ERP components and subjective pain ratings in response to 

electrical dental pain. These investigators reported that an increase in all major ERP 

components was accompanied by an increase in subjective ratings of pain using a 

VAS (r = 0.67-0.77). These findings were further supported by Chen and colleagues 
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(Chen, Chapman, & Harkins, 1979) who reported that peak-to-peak amplitudes 

between 175 and 260 ms (i.e. N2-P2 peak-to-peak amplitude) in response to painful 

dental stimulation had a strong linear correlation (r = 0.67 and r = 0.41 respectively) 

with subject ratings of painfulness. Further research has added support indicating 

that the amplitude of the N2 and P2 PREP components correlate with the intensity of 

pain stimulus (Becker, Haley, Urena, & Yingling, 2000; Bromm, 1984; Stowell, 1977; 

Zaslansky et al., 1996), as well as with subjective ratings of pain (Kanda et al., 

2002). However it should be acknowledged that this is not always the case. 

Research investigating the habituation of painful stimuli reported that despite a 

decrease in the PREP N150-P360 peak-to-peak amplitudes across trials, there was 

no accompanying reduction in pain ratings (Miltner et al., 1987). 

 

The PREP represents the averaged cortical processing of the nociceptive 

stimulus and thus reflects the cortical activity that is involved in the response to a 

pain stimulus (Iannetti, Hughes, Lee, & Mouraux, 2008). Therefore, one limitation of 

the PREP methodology is its relatively poor spatial resolution due to the electrical 

responses of the PREP being spread over the scalp, compared to more recent brain 

imaging techniques such as PET or fMRI which have a better spatial resolution. This 

makes source localisation of the site of the PREP generation difficult (Devinsky & 

D’Esposito, 2004). The poor spatial resolution of PREPs is being addressed by the 

use of concurrent fMRI and PREPs. However, PREPs make up for their relatively 

poor spatial resolution with exceptional temporal resolution, processes activated 

within milliseconds of the pain stimulus can be measured extremely accurately and 

this makes PREPs the a very direct measure of neuronal activity (Kupers & Kehlet, 

2006). This is vitally important for cardiac cycle studies were stimulus-response 

timings are in milliseconds. 

 

1.6 The role of baroreceptor activation in hypertensive 

hypoalgesia 

1.6.1 Baroreceptor influence on cortical activity 

In addition to regulating short term BP, there is also considerable evidence that 

baroreceptor stimulation generates a widespread inhibition of the central nervous 

system (Rau, Pauli, Brody, Elbert, & Birbaumer, 1993). As early as 1932, Koch 
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reported that prolonged mechanical stimulation of arterial baroreceptors in dogs 

induced lethargy. At a similar time the first reports of baroreceptor effects beyond BP 

control were reported in humans. Weiss and Baker (1933) highlighted a loss of 

consciousness following mechanical stimulation of the carotid baroreceptors, without 

any simultaneous BP changes or cerebral ischemia. Subsequent animal studies 

supported these initial findings reporting that arterial baroreceptor stimulation in 

decerebrate cats increased EEG synchronisation indicating a decrease in cortical 

arousal (Bonvallet, Dell, & Hiebel, 1954; Nakao, Ballim, Gellhorn, & Gellhorn, 1956) 

and inhibited attacks of sham rage (Bartorelli, Bizzi, Libretti & Zanchetti, 1960). 

Taken together these early findings suggested that stimulation of the baroreceptors 

could lead to reduced cortical activity and arousal and this eventually lead to the 

development of the Laceys’ Visceral Afferent Feedback (VAF) hypothesis (Lacey & 

Lacey, 1974), which proposed that increased afferent baroreceptor neural feedback 

integrated into the medullary and cortical structures causes interference with other 

processes within these structures. As a consequence sensory and motor function is 

reduced.  Conversely, when baroreceptor stimulation is reduced, (i.e. lower BP) 

sensory and motor functions would be facilitated (Lacey, 1967). Based on these 

findings it may be concluded that the effects of baroreceptor stimulation may help to 

explain the hypertensive hypoalgesia phenomenon and thus researchers have 

sought to investigate this hypothesis. 

 

In order to study the potential role of baroreceptors in hypertensive hypoalgesia 

three main approaches have been employed; a) pharmacologically, or b) 

mechanically stimulating the baroreceptors and c) utilising the natural fluctuations in 

BP, and thus baroreceptor activation, across the cardiac cycle. The studies included 

in this thesis employed cardiac cycle methodology. 

 

1.6.2 Pharmacological baroreceptor stimulation studies 

In order to investigate a possible baroreceptor influence on cortical activity, 

researchers studied the effects of administrating either a BP enhancer (Norfenefrin–

HCl2), or a placebo on event-related EEG activity (Larbig, Elbert, Rockstroh, 

Lutzenberger & Birbaumer, 1985). The results indicated that event-related EEG 

activity was significantly reduced during administration of the Norfenefrin–HCl2 
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compared to the placebo measured in terms of CNV-like brain potential amplitude 

(Larbig et al., 1985). These findings were supported when the neck cuff approach 

was used, with the CNV-like brain potential amplitudes generated under control 

conditions being found to be significantly reduced during baroreceptor stimulation 

(Elbert et al., 1988; Rau et al., 1988; Elbert & Rau, 1995; Rau, Pauli et al., 1993). 

These findings suggest that baroreceptor activation appears to influence cortical 

activity. 

 

Several animal studies administrating arterial pressure increasing agents 

(initially angiotensin II and subsequently phenylephrine hydrochloride) to rats have 

reported hypoalgesia (Dworkin et al., 1979; Randich & Hartunian, 1983; Randich & 

Maixner, 1984; 1986; Watkins, Thursten, & Fleshner, 1990). Studies employing 

pharmacological manipulation of BP in humans are less common due to ethical 

limitations. However, a few studies have intravenously injected BP raising agents to 

investigate the effects of baroreceptor stimulation on pain. Experimentally elevated 

BP via injection of the pressor drug norfenefrin increased pain tolerance in borderline 

hypertensive participants but reduced pain tolerance in normotensive participants 

compared to a saline placebo (Larbig et al., 1985). A further study in a purely 

normotensive sample, which elevated BP via phenylephrine injection, found pain 

thresholds for electrical tooth pulp stimulation were reduced compared to a placebo 

but this effect was less prominent the higher the tonic BP of the participant 

(Rockstroh et al., 1988). These studies indicate the inconclusive findings regarding 

pharmacological manipulation of the BP. One of the major concerns regarding the 

findings from studies employing pharmacological elevation of BP is a possible direct 

effect of the pressor agents on the central nervous system (CNS) and thus pain 

processing not directly associated with baroreceptor stimulation (Eckberg & Sleight, 

1992; Imaizumi, Brunk, Gupta, & Thames, 1984). 

 

1.6.3 Mechanical baroreceptor stimulation studies 

In order to more directly test the baroreceptor influence on cortical function, early 

studies employed artificial manipulation of baroreceptor afferent output via the 

application of constant neck suction over the carotid sinus for several seconds to 

manipulate the transmural pressure (Eckberg, Cavanaugh, Mark, & Abboud, 1975). 
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Because arterial baroreceptors respond to distension of the arterial wall, lowering the 

pressure in the surrounding tissue via the application of negative pressure, i.e. 

suction to the area of the skin over the carotid sinus in the neck, will stretch the 

artery walls and thus increase baroreceptor firing (Eckberg & Sleight, 1992; Mancia 

& Mark, 1983). On the other hand, when positive pressure is applied to the same 

area the artery walls are compressed and thus baroreceptor firing is reduced 

(Eckberg & Sleight, 1992; Mancia & Mark, 1983). The findings from studies 

employing the constant cuff technique to study hypertensive hypoalgesia were 

mixed, with reports of reduced electrocutaneous pain in borderline hypertensive’s 

(Elbert et al., 1988) whilst electrocutaneous pain was increased (Elbert et al., 1988) 

and ischemic pain unaffected (France, Ditto, & Adler, 1991) in normotensive 

participants.  

 

Advancements in methodology lead to the development initially of the phasic 

pressure technique (Strange, Rowell, Christensen, & Saltin, 1990) whereby brief 

applications of negative pressure were applied to the neck based on the R-wave (i.e. 

the initial upward deflection of the QRS complex in the normal electrocardiogram 

(ECG), representing early depolarization of the ventricles – Dorlan, 2011) of the ECG 

for part or all of the cardiac cycle. This approach was further developed into the 

phase related external suction (PRES) technique (Rau, Elbert, Geiger, & 

Lutzenberger, 1992) which involved precisely timed bursts of negative and positive 

pressure being applied to the neck via the external cuff to coincide with specific 

phases of the cardiac cycle, and thus enhance or counter natural baroreceptor 

stimulation. Maximal baroreceptor stimulation occurred when negative pressure was 

applied during systole and baroreceptor activation was minimised when positive 

pressure was applied during diastole. The PRES technique also benefited from the 

inclusion of a control conditions i.e. when positive pressure is applied during systole 

and negative pressure is applied during diastole the natural baroreceptor activity is 

reduced (Elbert et al., 1992). Studies employing phasic baroreceptor stimulation 

have also produced inconsistent findings. In some studies neck suction during 

systole (baroreceptor stimulation) reduced mechanical (Rau et al., 1994) and 

electrocutaneous pain in normotensives and hypertensives (Al'Absi et al., 2005; 

Angrilli et al., 1997; Brody & Rau, 1994; Droste et al., 1994; Dworkin et al., 1994; 
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Kardos et al., 1994; Mini, Rau, Montoya, Palomba, & Birbaumer, 1995; Rau, 

Schweizer, et al., 1993). However, other studies found that neither thermal pain in 

normotensives or hypertensives (Rau et al., 1994), nor electrocutaneous pain in 

normotensives (Rau, Elbert, & Birbaumber, 1995; Rau, Schweizer, et al., 1993) or 

hypotensives, (Angrilli et al., 1997) was modulated by baroreceptor stimulation. 

 

To conclude artificial baroreceptor manipulation via external neck cuffs 

produced inconclusive evidence for baroreceptor influences on pain, which is 

possibly due to the limitations of artificial baroreceptor stimulation (Rau & Elbert, 

2001). For example, the constant cuff method typically involved application of neck 

suction for several seconds whilst responses were recorded. While initial stimulation 

of the baroreceptors was effective, rapidly increasing their firing rate in response to 

the increased pressure, after approximately 500 ms the baroreceptors adapt 

(Eckberg, 1977) and firing declines over the subsequent few seconds (Bell, 2009) 

thus the effects of increased afferent output on responses beyond the initial 

application of pressure would be questionable. Due to the shorter periods of 

pressure application in the PRES technique, there would be less habituation effect 

(Kardos, Rau, Greenlee, Droste,  & Roskamm, 1995). However, the alternating 

pressures exerted during the neck suction and compression may still have made the 

procedure aversive and distracting to participants (Rau & Elbert, 2001) and this may 

influence the results. Specifically, distraction has been known to reduce the 

contingent negative variation (CNV) amplitude (Rockstroh, Elbert, Canavan, 

Lutzenberger, & Birbaumer, 1989). Additionally, only the baroreceptors located in the 

carotid sinus in the neck are stimulated using the non-invasive neck cuff approach 

and thus the integrated effects of the aortic and carotid baroreceptors cannot be 

determined. As the aortic arch baroreceptor afferent output would continue at its 

natural level, this afferent activity may counter the experimental manipulations 

applied to the carotid sinus baroreceptors. Specifically, the application of positive 

pressure during systole to the carotid sinus baroreceptors, which is designed to 

reduce baroreceptor firing, would coincide with stimulation of the aortic arch 

baroreceptors which would still fire and consequently baroreceptor afferent 

information would still be travelling to the NTS. 
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1.6.4 Natural baroreceptor stimulation across the cardiac cycle studies 

Within a single cardiac cycle, there is a natural fluctuation in BP, which subsequently 

stimulates the baroreceptors in a cyclic manner due to the systolic pressure wave, 

following ventricular contraction, distending the arterial walls and stimulating the 

baroreceptors maximally (e.g. Rowell, 1993). Psychophysiologists have taken 

advantage of this cyclic change in baroreceptor stimulation during the cardiac cycle 

to investigate the influence of arterial baroreceptors on various indices of pain. 

Cardiac cycle studies deliver stimuli to coincide with systole, when BP and 

baroreceptor activation is highest, and diastole, when BP and baroreceptor 

stimulation is lowest, and compare the respective responses. One significant 

advantage of the cardiac cycle paradigm is that due to the intrinsic nature of the 

paradigm the cardiac cycle allows the integrated effect of both the aortic and carotid 

baroreceptors to be studied. A second advantage of the cardiac cycle paradigm for 

studying baroreceptor influences is that the level of baroreceptor stimulation is at 

natural levels, as opposed to artificially elevated stimulation associated with 

mechanical stimulation methods. This means the findings are more applicable to the 

real world. Additionally, as there is no external cuff applied or pharmacological agent 

administered the methodology is; a) less aversive and distracting for participants, 

and; b) the participants have no idea which condition is being applied at which time, 

thus reducing any possible participant influence on the results. 

 

1.7 The cardiac cycle paradigm for investigating baroreceptor 

influences 

 Below is a summary of the development of cardiac cycle studies. The discussion 

starts with studies indicating a general cortical interference associated with the 

cardiac cycle and progresses through studies investigating the cardiac cycle-related 

modulation of simple reaction times, sensory perceptions (auditory, visual & tactile), 

the NFR, PREPs and pain. 

 

1.7.1 The influence of the cardiac cycle on cortical activity 

To better understand how BP effects sensorimotor functioning, cardiac cycle studies 

sought to generate neurophysiological evidence for baroreceptor-related cortical 
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interference. With regards to this, natural fluctuations in BP across the cardiac cycle 

have been shown to inhibit CNS function.  Electroencephalographic studies have 

reported inhibited cortical activity (Koriath & Lindholm, 1986; Koriath, Lindholm, & 

Landers, 1987) and lower frequency EEG oscillations measured in the alpha band 

(Walker & Walker, 1983). 

 

1.7.2 Cardiac cycle-related influence on reaction time 

Early studies employing the cardiac cycle paradigm to investigate the influence of 

natural fluctuations in BP on sensorimotor function looked at reaction time responses 

across the cardiac cycle. The findings from these reaction time studies were mixed 

(Carroll & Anastasiades, 1978). The first such reports were by Birren and colleagues 

(Birren, Phillips, & Cardon, 1963) who reported that reaction times were shorter 

during the P-wave (approx. R-wave + 700ms to R-wave + 810ms) in response to 

auditory stimuli compared to the other intervals investigated (QRS, T and T-P 

cardiac wave intervals). These preliminary findings provided tentative support for 

baroreceptor activity influencing sensorimotor function and thus support the VAF 

hypothesis, and were interpreted as interference by afferent baroreceptor inputs 

integrated in the medullary and cortical structures (Lacey & Lacey, 1974). In 

contrast, later studies found that reaction times did not vary during different phases 

of the cardiac cycle in response to auditory (Thompson & Botwinick, 1970; Salzman 

& Jaques, 1976; Jennings & Wood, 1977) stimuli. 

 

Similar conflicting findings were reported for reaction times in response to 

visual stimuli. Initial reports suggested that reaction times in response to visual 

stimuli were slowest when presented early in the cardiac cycle (Callaway & Layne, 

1964). However, a subsequent study failed to find any effect of cardiac cycle phase 

on reaction times to visual stimuli (Coles, Pellegrini, & Wilson, 1982). 

 

1.7.3 Cardiac cycle-related influence on auditory and visual perception 

As with reaction times, cardiac cycle signal detection studies also produced mixed 

results (Carroll & Anastasiades, 1978). Further support for a baroreceptor influence 

on sensory function was demonstrated using signal detection methods. Saxon 

(1970) reported that auditory stimuli were detected more accurately when presented 
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during the P-wave of the cardiac cycle of the ECG than during the QRS complex 

(approx. R-wave – 40ms to R-wave + 40ms). Supporting these provisional findings, 

Cohen and colleagues (Cohen, Lieb, & Rist, 1980) found that supra-threshold tones 

presented during systole were perceived as quieter than those presented during 

diastole. Additionally, Sandman (1984) reported that auditory evoked potentials were 

reduced during systole compared to diastole. However, some studies found that 

timing of stimulus presentation within the cardiac cycle had no effect on supra-

threshold auditory (Delfini & Campos, 1972; Velden & Juris, 1975) sensitivity. 

 

Similar results have been reported for visual acuity with some researchers 

reporting that visual stimuli were detected more accurately when presented during 

the P-wave of the cardiac cycle of the ECG than during the QRS complex (Requin & 

Brouchon, 1964; Sandman, Mccanne, Kaiser, & Diamond, 1977). Similar to auditory 

evoked potentials, visual evoked potentials have been reported to be reduced during 

systole compared to diastole (Walker & Sandman, 1982; 1979). However, continuing 

the inconsistent theme, other researchers failed to find any effect of the cardiac cycle 

on visual sensitivity (Elliott & Graf, 1972). 

 

Although the reason for the inconclusive findings has not been fully explained 

(Carroll & Anastasiades, 1978), it now seems reasonable to assume that because 

the studies were conducted several decades ago the methods employed may not 

withstand current investigation standards. Specifically, small sample sizes, 

insufficient sampling across the cardiac cycle and primitive equipment (Carroll & 

Anastasiades, 1978) may explain the inconsistent findings. In response to the 

potential methodology limitations of early cardiac cycle studies, the influence of BP 

variation across the cardiac cycle received renewed interest in the 2000’s when 

more robust methodological approaches were introduced. Recent, larger studies 

employing more advanced methodology have repeatedly reported that simple 

reaction times in responses to visual, auditory, electrocutaneous and vibrotactile 

stimuli are slowest for stimuli presented early in the cardiac cycle (Edwards et al., 

2007; McIntyre, Ring, Hamer, & Carroll, 2007; McIntyre, Ring, Edwards, & Carroll, 

2008b) and decrease in a linear manner with increasing time after the R-wave. 
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However, this is not always the case as Stewart and colleagues (Stewart, France, & 

Suhr, 2006) reported slower reaction times during systole compared to diastole. 

 

1.7.4 Cardiac cycle effects on the nociceptive flexion reflex 

Taking this research approach forward, researchers have sought to determine if the 

NFR is modulated by natural fluctuations in BP across the cardiac cycle as a method 

to study the potential role of a baroreceptor mechanism explaining the hypertensive 

hypoalgesia phenomena. The first study to investigate the cardiac cycle-related 

modulation of the NFR was Edwards and colleagues (Edwards, Ring, McIntyre, & 

Carroll, 2001) who reported a reduction in the NFR between 200 and 400 ms after 

the R-wave of the ECG, which coincided with the systolic phase of the cardiac cycle. 

These timings were suggested to correspond to the maximal baroreceptor input to 

the pain related areas of the brain (see Chapter two for a detailed discussion).  

 

Subsequently, the NFR has been repeatedly found to be reduced, or its 

threshold higher during the systolic phase of the cardiac cycle (al’Absi et al., 2005; 

Edwards et al., 2001, 2002, 2003; McIntyre, Edwards, Ring, Parvin, & Carroll, 2006; 

McIntyre, Kavussanu, & Ring, 2008a) compared to diastole. These results suggest 

that nociceptive responding may be dampened when arterial baroreceptor activity is 

maximal and thus provides support for a baroreceptor mechanism modulating 

nociception.  

 

1.7.5 PREPs across the cardiac cycle 

Furthering the cardiac cycle-related modulation of pain indices, only one study has 

utilised the natural variations in BP across the cardiac cycle to investigate the cortical 

processing of noxious thulium-evoked laser stimuli (Edwards et al., 2008). N2 

amplitudes and N2-P2 peak-to-peak amplitudes were attenuated mid cardiac cycle, 

corresponding to maximal baroreceptor activation, compared to early and late 

cardiac cycle when baroreceptor activation is lowest (Edwards et al., 2008). These 

results concurred with several previous artificial baroreceptor stimulation studies 

investigating PREP responses to noxious stimulation (Angrilli, et al., 1997; Mini et al., 

1995), and to the previous cardiac cycle studies investigating NFR responses to 

noxious stimulation (Edwards et al., 2001; 2002; 2003; McIntyre et al., 2006; 2008a) 
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discussed above. Taken together, these studies suggest that stimulation of the 

arterial baroreceptors modulates cortical processing of noxious stimuli. However, as 

with previous reaction time and visual/auditory sensitivity studies not all studies have 

reported a cardiac cycle-related modulation of PREPs. For example, when studying 

the influence of the cardiac cycle on the PREP potentials associated with cued and 

un-cued pain stimuli, Gray and colleagues (Gray, Minati, Paoletti, Critchley, 2010) 

reported that following un-cued pain stimuli there was no cardiac cycle influence on 

PREPs. However, they did find a cardiac cycle modulation of the P2 component of 

the PREP following cued pain stimuli. Cued stimuli were associated with larger P2 

amplitudes than un-cued stimuli, but this effect was abolished when cued stimuli 

were presented during baroreceptor activation (Gray et al., 2010). The authors 

suggest that these findings related to differences in the subjective experiences of 

pain for cued and un-cued stimuli, as the P2 component of the PREP is known to 

correlate with subjective ratings of pain intensity (Gray et al., 2010).  

 

1.7.6 Cardiac cycle effects on pain perception 

Despite the NFR (e.g. Willer, 1977) and PREPs (Miltner et al, 1987; Granovsky et al, 

2008) being considered as a correlate of pain, the aforementioned studies that 

measured pain perception concurrently with the NFR (Edwards et al., 2001, 2002, 

2003) or PREPs (Edwards et al., 2008) found pain ratings were not modulated 

across the cardiac cycle. However these studies were not specifically designed to 

investigate pain perception (Edwards et al., 2001, 2002, 2003, 2008). A recent study 

specifically designed to study the cardiac cycle effects on pain perception reported 

that pain was increased during systole (Martins, Ring, McIntyre, Edwards, & Martin, 

2009). This finding contradicts with previous studies showing null effects on the 

modulation of pain across the cardiac cycle and with reports of systolic dampening of 

the NFR (Edwards et al., 2001, 2002, 2003; McIntyre et al., 2006; 2008a) and 

PREPs (Edwards et al., 2008). However, differences in methodological design may 

help explain these unexpected results. Specifically, the bar electrode used by 

Martins et al., (2009) may not have selectively stimulated A-δ nociceptive fibres. As a 

consequence, the pattern of modulation may not reflect a specific nociceptive effect 

(Martins et al., 2009). Indeed, a recent study found that cutaneous sensory 

thresholds were lower during systole than diastole (Edwards, Ring, McIntyre, Winer, 
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& Martin, 2009). Second, Martins et al. (2009) included higher stimulation intensities 

(i.e., up to pain tolerance) than previous studies (Edwards et al., 2001, 2002, 2003; 

McIntyre et al., 2006; 2008a), this may have induced physiological arousal which has 

been shown to influence cardiac cycle-related NFR modulation (McIntyre et al., 

2006). Notwithstanding the unexpected pattern of modulation, the findings of Martins 

et al. (2009) suggest pain perception may be modulated across the cardiac cycle.  

 

1.7.7 Baroreceptor influence on tactile perception 

The discussions above provide strong evidence for a widespread cardiac cycle-

related modulation of various different sensory processes, and thus it would be 

reasonable to assume that tactile somatosensory processing may also be modulated 

across the cardiac cycle. The hypothesised global baroreceptor modulation of 

sensation is further supported by the early animal neurophysiological research 

discussed earlier, that reported a sedative effect of baroreceptor stimulation in dogs 

(Koch, 1932), and an inhibition of cortical activity when baroreceptor afferents, which 

project to the nucleus tractus solitarius, were stimulated (e.g., Bonvallet & Allen, 

1963; Bonvallet & Bloch, 1961; Bonvallet et al., 1954).  

 

In relation to tactile somatosensory sensitivity recent work by Edwards and 

colleagues (2009) reported a reduction in cutaneous sensory thresholds during 

systole compared to diastole, indicating that in contrast to pain, cutaneous sensitivity 

was heightened during baroreceptor activation. These findings provide further 

evidence of a global baroreceptor influence on the modulation of sensations, but that 

the pattern of modulation may be specific to each sensory modality, rather than 

baroreceptor activation inducing a global diminution of sensations. However, as this 

is the only study specifically investigating the cardiac cycle-related modulation of 

tactile somatosensory processing further studies are required to substantiate the 

findings. 

 

1.7.8 The influence of tonic blood pressure on the cardiac cycle of pain 

In specific relation to the cardiac cycle modulation of pain, according to Elbert et al. 

(1988) one of the most influential variables determining the degree of pain inhibition 

through baroreceptor activation is tonic BP. In PRES studies, during mechanical 
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baroreceptor stimulation, participants with BP towards the higher end of the 

normotensive range have demonstrated reduced pain sensitivity (Angrilli et al., 1997; 

Elbert et al., 1988) and PREPs (Angrilli et al., 1997; Brody et al., 1997), whereas 

individuals with lower normal BP showed no such effects (Angrilli et al., 1997). 

Furthermore, Edwards et al., (2009) reported that individuals with higher diastolic BP 

had larger reductions in tactile sensory thresholds during systole compared to 

diastole than those with lower BP. When taken together with the hypertension 

hypoalgesia studies discussed earlier, the finding that tonic BP influences the 

cardiac cycle-related modulation of pain and tactile sensation adds further support to 

a role of baroreceptors in explaining the hypertensive hypoalgesia phenomenon and 

that baroreceptor influences extend to a range of sensory modalities. 

 

To conclude, there is good evidence to suggest a cardiac cycle-related 

modulation of sensorimotor function, sensory perception and neurophysiological 

functions, indicating a strong baroreceptor influence on cortical processing (e.g. Rau 

& Elbert, 2001). These findings provide support for the VAF hypothesis (Lacey & 

Lacey, 1974), whereby the cardiovascular information transmission appears to 

interfere with cortical processing. It appears that this influence is evident in a range 

of sensory modalities i.e. auditory, visual, pain and tactile sensations, with the 

pattern of modulation varying with sensory modality, presumably indicating 

differences in the different processing pathways. 

 

1.8 Pain & baroreceptor lateralisation 

As discussed in the cerebral representation of pain section above (pages 11-12), 

there is good evidence that the cardiac cycle-related modulation of pain is more than 

a low-level gating phenomenon, with several cerebral structures having been 

identified as being sites of overlap for baroreceptor and pain processing. These 

areas include the anterior insular and ACC (Craig, 2002; Critchley, 2005; Gianaros, 

Jennings, Sheu, Derbyshire, & Matthews, 2007), the periaqueductal grey (PAG) 

matter, amygdala and insula (Gray et al., 2009). However, there is evidence to 

suggest that both pain (e.g. Symonds et al., 2006) and baroreceptor (Critchley, 

Corfield, Chandler, Mathias, & Dolan, 2000; Henderson et al., 2004; Weisz et al., 

2001) processing may be lateralised in the brain with a right hemisphere dominance 



Chapter 1 
 

 
 

29 
 

proposed. Perhaps surprisingly, there has been very little research investigating the 

possibility of lateralisation in specific relation to the cardiac cycle-related modulation 

of pain. 

 

1.8.1 Lateralisation of baroreceptor afferent information 

Research indicates that a major location for integrating baroreceptor information in 

the brain is the insular cortex (Zhang, Dougherty, & Oppenheimer, 1998; Saleh & 

Connell, 1998; Oppenheimer, 2001). There is strong evidence to suggest that 

baroreceptor processing has a right hemispheric bias. In rats, microelectrode 

sampling indicates a significantly greater number of baroreceptor sensitive cells in 

the right posterior insula than other insula areas (Zhang & Oppenheimer, 1997; 

Zhang, Tang, Yuan, & Jia, 1997). Similarly, in monkeys, greater numbers of 

baroreceptor units were identified in the right anterior and mid-insula (Zhang et al., 

1998). Studies employing fMRI have provided further evidence for a right 

lateralisation of baroreceptor processing with greater activity being found in the right 

side of the insula cortex compared to the left. In cats, Henderson and colleagues 

highlighted a right-hemispheric dominance of baroreceptor processing in the insula 

(Henderson et al., 2004). In humans, positron emission tomography (PET) studies 

have also indicated greater activity in the right anterior cingulate and right insula in 

response to changes in BP via exercise and mental arithmetic tasks (Critchley et al., 

2000). Similarly, Weisz and colleagues (2001) reported increased regional cerebral 

blood flow in the right anterior-inferior prefrontal cortex following external neck 

suction to stimulate the carotid sinus baroreceptors. Although the majority of findings 

indicate a predominately right sided baroreceptor processing, it should be noted that 

other studies have suggested a left hemisphere dominance in relation to baroreflex 

sensitivity (Hilz et al., 2001; Sykora, Diedler, Rupp, Turcani, Steiner, 2009). 

 

1.8.2 Lateralisation of pain processing 

It has traditionally been thought that processing of somatosensory stimulation is 

processed contralateral to the side of stimulation i.e. stimulation on one side of the 

body is largely processed in brain areas in the opposite side (Willis & Westlund, 

1997). For example a recent PET study further supports this idea, with reports that 

cerebral blood flow was increased following painful contact thermal stimulation of 
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both the left and right arms in contralateral regions of the SI, SII, insular cortex and 

bilateral regions of the cerebellum, putamen, thalamus, ACC, and frontal operculum 

regardless of side of stimulation (Coghill, Gilron, & Iadarola, 2001). Additionally, 

several further studies in primates and humans have identified the SI, SII ACC and 

insula to be activated contralateral to the side of pain stimulation (see Chapter 5 for 

further details & Peyron, Laurent et al., 2000 for review). 

 

As with baroreceptor processing, there is evidence suggesting that pain 

processing may also be lateralisated with a right hemisphere dominance. In specific 

relation to the lateralisation of electrical pain stimulation, Symonds and colleagues 

(Symonds, Nakia, Bixby, & Mande, 2006) utilised fMRI to investigate lateralisation 

effects following electrocutaneous stimulation of the right and left index fingers. They 

reported that the SII and posterior insula were activated contralateral to the pain 

stimuli, whereas the mid/posterior insula, anterior insula, and posterior cingulate 

were activated bilaterally. Additionally, the middle frontal gyrus, anterior cingulate, 

inferior frontal gyrus, medial/superior frontal gyri, and inferior parietal lobule showed 

either an exclusive or strong lateralisation to the right hemisphere (Symonds et al., 

2006). In addition, Symonds et al. (2006) also reported that activity in the right 

somatosensory cortex, during left hand stimulation was greater than activity seen in 

the left hemisphere during right hand stimulation. Similarly, right anterior cingulate 

activity during left hand stimulation was significantly greater than right hand 

stimulation. Furthermore, Brooks and colleagues (Brooks, Nurmikko, Bimson, Singh, 

& Roberts, 2002) reported a right lateralisation in the anterior insula when pain was 

attended to, and in the ACC regardless of attentional focus, whereas activity in the 

posterior insula was found to be contralateral to the stimulus and no significant 

activation in response to painful stimulation was detected in SI or the thalamus 

following painful thermal stimulation of both the right and left hands.  

 

As evidenced by the Symonds et al (2006) and Brooks et al. (2002) studies, a 

right sided processing bias is not evident in all pain processing areas and several 

further studies have reported no lateralisation effects for certain pain processing 

areas. Utilising fMRI, studies have reported bilateral responses within the SI, SII and 

insula but with a significantly greater contralateral response in SI and the thalamus in 
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response to painful laser stimulation applied to the right and left hands (Bingel et al., 

2003) and right and left lower legs (Youell et al., 2004). Furthermore, Youell and 

colleagues (2004) reported an increase in left insula activity following lower leg 

stimulation.  

 

1.8.3 Lateralisation of cardiac cycle-related modulation 

Based on the proposed lateralised processing of baroreceptor afferents there have 

been a few studies that have sought to determine if cardiac cycle modulation is also 

lateralisated. Visual evoked potentials recorded in the right hemisphere were found 

to be largest during the diastolic phase of the cardiac cycle, whereas the visual 

evoked potentials recorded from the left hemisphere were unaffected by the phase of 

the cardiac cycle (Walker & Sandman, 1982). This suggests that baroreceptor 

activation (systole) appears to impact the processing of visual input in the right 

hemisphere to a greater extent than the left (Walker & Sandman, 1982). Reporting 

similar findings, Schulz and colleagues (2009) found that the systolic dampening of 

startle eye blink was only present following left ear presentation. This result suggests 

that the cardiac cycle modulation of startle eye blink maybe right hemispheric 

dominant reflecting the right brain advantage in relaying viscero afferent and 

baroreceptor afferent information. In contrast, utilising a visual reaction time task, 

Weisz and Adam (1996) found that when right stimuli were presented or responses 

were made with the right hand, reaction time was marginally longer during systole 

than diastole, whereas there was no difference for central and left stimuli or for left 

hand responses. These findings suggest that, sensorimotor functions processed in 

the left cerebral hemisphere may be influenced more by cardiac cycle changes than 

those of the right hemisphere (Weisz & Adam, 1996).  

 

Taken together the discussions regarding lateralisation indicate that 

baroreceptor processing appears to be right-hemispherically biased and certain pain 

processing areas, such as the ACC, SII and insula tend to show contralateral or right 

hemisphere dominance. Thus, it may be suggested that maximal convergence of the 

baroreceptor and pain processing input would occur following left hand stimulation, 

when nociceptive afferent information would activate pain areas including the ACC, 

SII and insula with greater activation evident in the right hemisphere. Whereas right 
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hand noxious stimulation would lead to greatest activity in the left hemisphere for 

brain areas that are stimulated contralaterally (e.g. SII) and reduced activity in the 

right ACC thus convergence with the baroreceptor input would be reduced. 

 

1.9 Overview of thesis 

The four studies presented in this thesis were designed to further study the cardiac 

cycle modulation of pain and tactile stimuli. The first study aimed to further 

investigate the proposed cardiac cycle-related modulation of pain perception. 

Specifically the first two studies (Chapters 2 & 3) investigated the cardiac cycle-

related modulation of pain and tactile sensory thresholds.  

 

Study one (Chapter 2) re-investigated the findings of Martins et al. (2009) who 

were the first researchers to specifically study the cardiac cycle modulation of pain 

perception and reported, unexpectedly, that pain ratings were elevated during 

systole compared to diastole which was contra to the majority of previous research 

indicating a systolic dampening of the NFR (Edwards et al., 2001, 2002, 2003; 

McIntyre et al., 2006; 2008a) and laser evoked PREPs (Edwards et al., 2008). Study 

one employed different methodology to address several potential reasons for the 

unexpected findings.  

 

The second study (Chapter 3) sought to further the findings of Edwards et al. 

(2009) who were the first to report a cardiac cycle-related modulation of cutaneous 

sensory thresholds, indicating heighted tactile sensitivity during baroreceptor 

activation. Specifically, study two aimed to determine if this pattern of modulation 

was evident in a sample of normotensives as the sample studied by Edwards et al. 

(2009) included newly diagnosed, unmedicated hypertensives who may have biased 

the results. The study also sought to increase the resolution of the temporal 

patterning of the cardiac cycle modulation of tactile sensory thresholds by presenting 

stimuli at seven intervals across the cardiac cycle, rather than the three that Edwards 

et al. (2009) used. 

  

The final two studies in the thesis (Chapters 4 & 5) built on the results of the 

first study and sought to further the understanding the mechanisms underlying the 
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cardiac cycle-related modulation of pain. Both studies employed EEG methodology 

to study the influence of the cardiac cycle on electrocutaneous PREPs.  

  

Study three (Chapter 4) was designed to investigate if electrocutaneous PREPs 

were modulated across the cardiac cycle. Previous studies have indicated that laser 

evoked N2 and N2-P2 peak-to-peak amplitudes were attenuated during systole 

compared to diastole (Edwards et al., 2008) as was P2 following cued 

electrocutaneous stimulation (Gray et al., 2010). The study sought to increase the 

resolution of the cardiac cycle related modulation of electrocutaneous PREPs 

reported by Gray et al. (2009) by delivering stimuli at 7 intervals across the cardiac 

cycle compared to just 2 studied by Gray et al. (2009). The study also sought to 

determine if the cardiac cycle-related modulation identified by Edwards et al. (2008) 

at a single midline scalp electrode (Cz) extended beyond this region into brain areas 

identified by fMRI and PET imaging studies as potential sites of interaction for the 

baroreceptor and pain afferents. Specifically, we used a multi-channel EEG system 

with a focus on analysis of data obtained from scalp electrode sites Cz, C3 and C4 

which were identified as overlaying the brain areas associated with pain perception 

and baroreceptor processing i.e. the ACC, SII, insular cortex bilaterally (Bentley, 

Derbyshire, Youell, & Jones, 2003; Bromm & Chen, 1995; Garcia-Larrea, Frot, & 

Valeriani, 2003; Ohara, Crone, Weiss, & Lenz, 2006; Tarkka & Treede, 1993; 

Treede, Lorenz, & Baumgartner, 2003; Valeriani et al., 1996) and the contralateral SI 

(Kakigi et al., 2005) and were also the same electrode sites studied by Gray et al. 

(2009) therefore improving the ability to compare findings between the two studies. 

 

 Study four (Chapter 5) was designed to investigate if the cardiac cycle 

modulation of PREPs may be a lateralised phenomenon. The study rationale was 

based on the discussion above regarding a right hemispheric dominance for 

baroreceptor processing and a right or contralateral bias for pain processing. If we 

accept a potentially greater cardiac cycle modulation in the right hemisphere, right 

hand pain stimulation may activate the right ACC to a lesser extent and a 

contralateral activation of SII would be predominately in the left hemisphere. 

Therefore, there would be less convergence of the pain and baroreceptor inputs in 

the right hemisphere and thus, it is hypothesised that cardiac cycle related 
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modulation of PREPs would be less evident following painful stimulation delivered to 

the right hand than the left hand. Although Edwards et al. (2008) reported modulation 

of laser evoked potentials elicited from the right hand, as did Gray et al. (2009) 

following electrocutaneous stimulation, but using a different type of electrode to the 

concentric planar electrode used in the studies in this thesis, we propose that 

differing stimulation modalities may also be an important consideration.  
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2.1 Abstract 

Arterial baroreceptors may modulate pain. Evidence suggests that the 

neurophysiological correlates of pain are dampened during systole, when 

baroreceptors are naturally stimulated, compared to diastole, when baroreceptor 

stimulation is minimal. However, the influence of the cardiac cycle on perception of 

pain remains unclear. This study examined pain thresholds in 49 healthy adults at 

seven intervals after the R-wave of the electrocardiogram, using an interleaved up-

down staircase procedure. Electrocutaneous stimuli were delivered to the hand and 

participants indicated the presence or absence of pain. Pain thresholds were higher 

mid-cycle, indicative of pain attenuation during systole compared to diastole. 

Analysis using blood pressure median splits revealed that only participants with low 

systolic blood pressure displayed this cardiac cycle modulation of pain, suggesting 

that tonic blood pressure may moderate cardiac cycle-related pain modulation. 

These findings suggest fluctuations in arterial baroreceptor activity across the 

cardiac cycle may influence pain in normotensive individuals.   

 

 

Descriptors: Arterial baroreceptors; Blood pressure; Cardiac cycle; 

Electrocutaneous; Pain threshold 
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2.1 Introduction 

A baroreceptor mechanism may account for the reduced pain perception reported in 

hypertensive patients (France & Ditto, 1996). Arterial baroreceptors, stretch 

receptors located in the aortic arch and carotid sinus, are stimulated during the 

systolic phase of the cardiac cycle by the arrival of the pressure pulse wave 

(Eckberg & Sleight, 1992; Mancia & Mark, 1983). At rest, when mean arterial 

pressure (MAP) is low, arterial baroreceptors are stimulated during the systolic 

upstroke and show a pulsatile discharge (Angell James, 1971; Coleridge, Coleridge, 

& Schultz, 1987). Several studies have examined the influence of the cardiac cycle 

on neurophysiological correlates of pain (Edwards, Ring, McIntyre, & Carroll, 2001; 

Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Edwards et al., 2003; Edwards, 

Inui, Ring, Wang, & Kakigi, 2008; McIntyre, Edwards, Ring, Parvin, & Carroll, 2006; 

McIntyre, Kavussanu, & Ring, 2008a). The majority of these studies examined the 

nociceptive flexion reflex (NFR), a polysynaptic spinal reflex sub-serving withdrawal 

from noxious stimuli (Sandrini et al., 2005), the threshold for which serves as a 

physiological correlate of pain (Hugon, 1973; Willer, 1977). These studies reported 

the NFR to be attenuated during systole compared to diastole (Edwards et al., 2001, 

2002, 2003; McIntyre et al., 2006, 2008a) suggesting nociceptive responding may be 

dampened when arterial baroreceptor activity is maximal. Additionally, pain-related 

evoked brain potential (PREP) amplitudes were shown to be reduced for stimuli 

delivered during systole compared to diastole (Edwards et al., 2008), providing 

further evidence of a cardiac cycle-related pain modulation.  

 

Pain has been defined as an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage (Merskey & Bogduk, 1994). As 

such, the subjective nature of pain is inherently different to its neurophysiological 

correlates (Chen, Arendt-Nielsen, & Plafhki, 1998; Iannetti, Hughes, Lee, & Mouraux, 

2008; Sandrini et al., 2005) described in previous cardiac cycle time studies 

(Edwards et al., 2001, 2002, 2003, 2008; McIntyre et al., 2006, 2008a). Therefore, it 

is important to establish if perception of pain may also be modulated across the 

cardiac cycle. This is particularly relevant in the context of a baroreceptor hypothesis 

to explain hypertensive hypoalgesia. However, those studies that measured pain 

perception concurrently to the NFR or PREPs found pain ratings were not modulated 
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across the cardiac cycle (Edwards et al., 2001, 2002, 2003, 2008). These findings 

are counter to prior reports that pain is attenuated when the carotid baroreceptors 

were artificially stimulated (Rau & Elbert, 2001). Importantly, the studies by Edwards 

and colleagues (2001, 2002, 2003, 2008) were not specifically designed to 

investigate perception of pain across the cardiac cycle. For example, those studies 

examining cardiac cycle-related NFR modulation presented stimuli at intensities 

relative to the NFR threshold, and consequentially the stimuli were not always 

perceived as painful (Edwards et al., 2001, 2002, 2003). Thus, the absence of pain 

modulation in these studies may be, in part, attributable to stimulus intensities that 

were insufficient to induce pain. Another study employing painful stimuli reported no 

cardiac cycle-related pain modulation (Edwards et al., 2008). However, this finding 

may be explained, at least in part, by the unvarying stimulus intensities, possibly 

resulting in some participant disengagement with the pain rating task.  

 

A recent study (Martins, Ring, McIntyre, Edwards, & Martin, 2009) sought to 

address the limitations of previous pain-related cardiac cycle studies by assessing 

pain ratings at a range of pseudorandomly presented stimulus intensities. Pain was 

modulated across the cardiac cycle, with increased pain during systole (Martins et 

al., 2009). This finding contradicts previous reports of systolic dampening of the NFR 

(Edwards et al., 2001, 2002, 2003; McIntyre et al., 2006, 2008a) and PREPs 

(Edwards et al., 2008). However, differences in methodological design may help 

explain these unexpected results. First, the electrode used by Martins et al. may not 

have selectively stimulated A-δ nociceptive fibres, thus the pattern of modulation 

may not reflect a specific nociceptive effect (Martins et al., 2009). Indeed, a recent 

study found cutaneous sensory thresholds were lower during systole than diastole 

(Edwards, Ring, McIntyre, Winer, & Martin, 2009). Second, Martins et al. (2009) 

included higher stimulation intensities (i.e., to pain tolerance) than previous studies 

(Edwards et al., 2001, 2002, 2003; McIntyre et al., 2006, 2008a). The higher 

stimulation intensities utilised by Martins et al. may have induced physiological 

arousal which has previously been shown to influence cardiac cycle-related NFR 

modulation (McIntyre et al., 2006). Notwithstanding the unexpected pattern of 

modulation, the findings of Martins et al. suggest pain perception may be modulated 

across the cardiac cycle.  
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The current study examined pain thresholds at seven intervals within the 

cardiac cycle and included several methodological features. First, stimuli were 

delivered using an electrode considered to more selectively stimulate A-δ 

nociceptive fibres (Katsarava et al., 2006; Kaube, Katsarava, Kaufer, Diener, & 

Ellrich, 2000). Second, stimulus intensities oscillated around pain threshold levels to 

examine cardiac cycle-related pain modulation at lower pain intensities than Martins 

et al., thereby more closely emulating the stimulus intensities used in prior cycle time 

studies which reported NFR modulation (e.g., Edwards et al., 2001, 2002, 2003) and 

minimising the possible influence of physiological arousal. Third, stimulus intensities 

were variable, reducing risk of participant disengagement with the pain task. Last, 

pain assessment at seven cardiac cycle intervals provided greater resolution of 

cardiac cycle effects compared to Martins et al. (2009). Based on the majority of 

prior findings (Edwards et al., 2001, 2002, 2003, 2008; McIntyre et al., 2006, 2008a) 

it was hypothesised that pain thresholds would be higher during systole than diastole 

(cf. Martins et al., 2009).  

 

2.3 Methods 

2.3.1  Participants 

Fifty participants were recruited from the university campus and local community to 

participate in the study. One participant, identified as an extreme outlier (pain 

threshold >3 SDs above the mean), was subsequently removed from the analyses. 

Therefore, the final sample included 49 healthy normotensive adults (10 men, 39 

women) with a mean (SD) age of 27.98 (11.6) years and body mass index (BMI) of 

21.98 (2.73) kg/m2. Mean (SD) resting systolic blood pressure (SBP) was 116.2 

(11.3) mmHg, diastolic blood pressure (DBP) was 70.6 (11.2) mmHg, and resting 

heart rate (HR) was 71.2 (11.8) bpm. Individuals were excluded if they had any 

known health problems including chronic pain disorders, cerebrovascular, 

cardiovascular or neurological diseases, had a cardiac pacemaker, history of a major 

psychiatric disorder, were pregnant or had missed their last menstrual cycle, were 

taking routine prescription medicine except for birth control or were currently using 

any narcotic substances. Participants were asked to refrain from analgesic 

medication for 24 hrs and caffeine, nicotine and vigorous exercise for 2 hrs prior to 
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testing. The Loughborough University Ethical Advisory Committee approved the 

study, and all participants provided written informed consent. 

 

2.3.2 Apparatus and measurements 

Resting blood pressure (BP) and HR were obtained using an automated 

oscillometric sphygmomanometer (705-IT, Omron Healthcare Europe) and a brachial 

cuff attached around the upper non-dominant arm. An electrocardiogram (ECG) was 

recorded continuously at 2500 Hz using three disposable spot electrodes 

(Cleartrace, ConMed) placed in a modified chest configuration and connected to an 

AC amplifier (LP511, Grass). The two active electrodes were placed on the right 

clavicle and a rib below the heart on the left side of the torso; the ground electrode 

was placed on the left clavicle. Stimuli presented for pain threshold assessment 

(triple 0.5 ms monopolar square wave pulse with 5 ms inter-pulse interval at 200Hz) 

were delivered electrocutaneously by a constant current stimulator (DS7A, Digitimer) 

via a concentric planar electrode (Kaube et al., 2000). The concentric planar 

electrode was secured with tape (Transpore, 3M) to the dorsal surface of the right 

hand between the metacarpals of the index and middle fingers. The electrode sites 

were prepared by exfoliating (Nuprep, D.O. Weaver & Co) and degreasing the skin 

using isopropyl alcohol swabs (Sterets, Medlock Medical Ltd.) to reduce impedance. 

Participants sat upright and supported their right forearm on a table while their hand 

rested on a response box. Mounted on the response box (16 cm  16 cm  3 cm) 

were a red light emitting diode (top left), a green light emitting diode (top right), and 

buttons marked “Yes” and “No” (centre left and right, respectively). A computer was 

programmed with Spike2 (CED) to record responses and present stimuli using a 

Micro1401 II (CED).  

 

2.3.3 Procedure 

Participants were tested in a single 1.5 hr session. At the start of the session 

participants sat quietly whilst completing the following questionnaires: Demographics 

questionnaire containing questions about age, sex, health habits, education, 

Spielberger State and Trait Anxiety Inventory (Spielberger, Gorsuch, & Lushene, 

1970), a 40-item inventory which assesses levels of state and trait anxiety and the 

Center for Epidemiologic Studies Depression (CES-D) Scale (Radloff, 1977), a 20-
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item scale which is designed to measure depressive symptomatology in the general 

population (10 min). Next, participants rested quietly while BP and HR were 

measured at 60, 180, and 300 s (6 min). If a participant’s HR exceeded 100 bpm, 

they were to be excluded from the study; however, none were excluded. Following 

instrumentation (15 min) participants undertook two threshold determination 

procedures. First, they completed a cutaneous sensory detection threshold 

assessment (15 min; data not reported here). Next, participants rested for 5 min, 

while the concentric stimulating electrode was fixed in place. Participants then 

completed the pain threshold assessment (20 min). 

 

The pain threshold assessment determined seven pain thresholds at seven 

intervals after the R-wave of the ECG (R+0, R+100, R+200, R+300, R+400, R+500, 

R+600 ms). The pain thresholds were determined concurrently by interleaving seven 

up-down staircases (Levitt, 1971). For each trial, the start was signified by a green 

warning light illuminated for 1000 ms followed by a red light (variable duration; the 

light remained illuminated until the participant made a response, up to a maximum of 

7500 ms) indicating the end of each trial. Following illumination of the green light, a 

1s delay occurred after which the computer program initiated a search for the R-

wave of the ECG. The participants hand was then stimulated at one of the seven R-

wave intervals (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms). The R-

wave interval used in each trial was selected pseudorandomly such that each post 

R-wave interval was stimulated once within seven trials. Participants were informed 

that the stimulus could occur at any time between the illumination of the green and 

red lights. Once the red light was illuminated participants pressed the “Yes” button if 

they perceived the stimulation as painful or the “No” button if they did not perceive it 

as painful. The next trial commenced following the participants response. For each of 

the seven interleaved staircases, stimulation intensity was increased from 0 mA in 1 

mA steps until the participant first reported a painful sensation (first reversal). The 

stimulus intensity then decreased in 0.4 mA steps until the stimulus was no longer 

reported as painful (second reversal). Each staircase then continued in 0.1 mA steps 

until the seven staircases had completed two further ascending and descending 

series (i.e. four more reversals). The pain threshold (mA) was defined as the 

average of the peaks during the second and third series (i.e. the third and fifth 
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reversal points) of each staircase. The maximum allowable stimulus intensity was 30 

mA; however, this stimulus intensity was never reached. The mean (SD) number of 

trials required to determine all seven pain thresholds was 75.10 (17.7). 

 

2.3.4 Data reduction and analyses 

Blood pressure and HR readings were averaged to provide measures of resting 

SBP, DBP and HR. Repeated measures analysis of variance (ANOVA) with R-wave 

to stimulation interval (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms) as a 

within subjects factor were performed on pain thresholds.  

 

To examine the effect of tonic BP on pain thresholds across the cardiac cycle, 

participants were classified as having relatively low and high BP based on SBP and 

DBP median splits. ANOVA revealed differences in BMI between the low SBP (Mean 

= 21.23, SD = 2.80 kg/m2) and high SBP (Mean = 22.77, SD = 2.47 kg/m2) groups, 

F(1, 47) = 4.17, p = .05, p
2 = .081 and between the low DBP (Mean = 20.73, SD = 

2.20 kg/m2) and high DBP (Mean = 23.28, SD = 2.66 kg/m2) groups, F(1, 47) = 

13.42, p = .001, p
2 =.222. There were no BP group differences in age or sex. 

Separate 2 BP Group (low, high)  2 Sex (male, female)  7 Interval (R+0, R+100, 

R+200, R+300, R+400, R+500, R+600 ms) repeated measures ANOVAs were 

performed on pain thresholds for SBP and DBP groups, with Group and Sex as 

between-subjects factors and Interval as the within-subjects factor. Sex was used as 

a between-subjects factor because men typically have higher BPs and there is good 

evidence that pain sensitivity is greater in women (Fillingim et al., 2009). Although 

BMI did not correlate with pain thresholds averaged across intervals (r (49) = –.20, p 

= .17), the analysis was repeated with BMI as a covariate.  

 

ANOVAs were corrected for the assumption of independence of data points 

using Huynh-Feldt correction (). Significant results were followed by Newman-Keuls 

post hoc comparisons (all possible pairwise comparisons were computed). Planned 

orthogonal comparisons were conducted to further examine the patterning of pain 

thresholds across the intervals of the cardiac cycle. Partial eta-squared (p
2), a 

measure of effect size, is reported. A significance level of .05 was adopted. Data 

were analysed using SPSS 16.0 and Statistica Version 10. 
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2.4 Results 

2.4.1 Pain threshold across the cardiac cycle 

A 7 Interval (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms) repeated 

measures ANOVA revealed significant variation in pain thresholds across the cardiac 

cycle,  = .90, F(5.40, 259.21) = 3.74, p = .002, p
2 = .072. Newman-Keuls post hoc 

comparisons confirmed pain thresholds were higher at R+200 and R+300 ms than at 

R+100 and R+500 ms and pain thresholds at R+300 ms were higher than at R+600 

ms (see Figure 1). In addition, planned orthogonal comparisons revealed significant 

quartic, F(1, 48) = 12.95, p = .001, p
2 = .212, and quadratic, F(1, 48) = 5.19, p = 

.027, p
2 = .097, trends. The mean (SD) pain threshold across all cardiac cycle 

intervals was 2.25 (1.62) mA.   

 

 

 

Figure 1. Mean (SE) electrocutaneous pain thresholds as a function of phase of the 

cardiac cycle. 
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2.4.2 Tonic blood pressure and pain thresholds 

The effect of tonic BP on pain thresholds across the cardiac cycle was investigated 

by splitting the participants into low-normal and high-normal SBP and DBP groups. 

The median SBP was 116.00 mmHg; thus the low-SBP group comprised 25 

participants (Mean = 108.03, SD = 5.67 mmHg) and the high-SBP group comprised 

24 participants (Mean = 124.72, SD = 9.15 mmHg). Regarding DBP, the median 

DBP was 69.67 mmHg; thus the low-DBP group comprised 25 participants (Mean = 

62.40, SD = 5.14 mmHg) and the high-DBP group consisted of 24 participants (Mean 

= 78.63, SD = 7.32 mmHg). 

 

As illustrated in Figure 2a, for SBP, a 2 Group (low, high)  2 Sex (male, 

female)  7 Interval (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms) 

ANOVA revealed no Group effect, F(1, 45) = 0.43, p = .51, p
2 = .010. Mean (SD) 

pain thresholds were 2.11 (1.47) mA and 2.40 (1.77) mA in the low and high SBP 

groups, respectively. However, a Group  Interval interaction was found,  = .946, 

F(5.67, 255.34) = 2.23, p = .04, p
2 = .047. Analysis also revealed a main effect for 

Sex, F(1, 45) = 5.86, p = .02, p
2 = .115. Mean (SD) pain thresholds were 3.32 (2.50) 

and 1.98 (1.20) mA for men and women, respectively. There was no Sex  Interval,  

= .946, F(5.67, 255.34) = 1.57, p = .16, p
2 = .034, or Group  Sex  Interval,  = 

.946, F(5.67, 255.34) = 1.57, p = .16, p
2 = .034 effects. Similar analysis for DBP 

revealed a main effect for Sex, F(1, 45) = 4.97, p = .03, p
2 = .099. Mean (SD) pain 

thresholds were 3.32 (2.50) and 1.98 (1.20) mA for men and women, respectively. 

No other significant effects were found (see Figure 2b). These analyses were 

repeated with potential confounding variable BMI entered as a covariate. The results 

of these analyses were the same as those yielded originally.   

 

To further investigate the differing pattern of cardiac cycle modulation between 

SBP groups, 7 Interval (R+ 0, R+100, R+200, R+300, R+400, R+500, R+600 ms) 

repeated measures ANOVAs were conducted separately for the low and high 

groups. Pain thresholds varied across the cardiac cycle in the low SBP group, ε = 

.77, F(4.59, 110.26) = 4.40, p = .002, ηp
2 = .155, but not in the high SBP group, ε = 

.72, F(4.30, 98.94) = 0.67, p = .62, ηp
2 = .028. Post hoc analysis for the low SBP 

group revealed pain thresholds were higher at R+300 ms than R+100, 500 and 600 
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ms and pain thresholds at R+200 ms were higher than R+100 and R+500 ms. 

Planned comparisons indicated that the cardiac cycle modulation of pain thresholds 

in the low SBP group was characterised by quadratic, F(1, 24) = 6.11, p = .02, ηp
2 = 

.203 and quartic, F(1, 24) = 21.51, p = .0001, ηp
2 = .473, terms.  

 

 

 

Figure 2. Mean (SE) electrocutaneous pain thresholds at seven intervals across the 

cardiac cycle as a function of (a) systolic blood pressure (SBP) and (b) diastolic 

blood pressure (DBP). 
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2.5 Discussion 

Pain thresholds were higher, indicating pain perception was reduced, when 

electrocutaneous stimuli were delivered during systole compared to diastole. The 

current study is the first to demonstrate that pain perception at pain threshold levels 

is modulated across the cardiac cycle.  

 

The present findings are in line with previous cardiac cycle studies reporting 

dampening of the NFR (Edwards et al., 2001, 2002, 2003; McIntyre et al., 2006, 

2008a) and PREP amplitudes (Edwards et al., 2008) during systole compared to 

diastole. However, the current findings conflict with the only previous study 

specifically designed to investigate the effect of natural variation in BP across the 

cardiac cycle on pain (Martins et al., 2009). This prior study reported increased pain 

intensity and unpleasantness midcycle, indicating heightened pain during systole. 

Methodological differences may, in part, explain this discrepancy. First, whilst both 

studies used variable stimulus intensities to minimise participant disengagement with 

the pain assessment procedure, stimuli in the current study oscillated around pain 

threshold levels. Conversely, Martins et al. (2009) combined pain ratings elicited by 

stimuli at intensities equal to pain threshold, midway between pain threshold and 

tolerance, and pain tolerance. The differing pain intensities employed by these two 

studies make comparison of the findings difficult as it is unclear how higher pain 

intensities may affect pain modulation. For example, it is possible that stimulus 

intensities approaching pain tolerance may induce physiological arousal which has 

been shown to change pain perception and moderate the midcycle dampening of the 

NFR, probably through reduced transmission of baroreceptor afferents (McIntyre et 

al., 2006). Indeed, elevated heart rates indicative of increased arousal were reported 

by Martins et al. However, further studies are needed to investigate cardiac cycle-

related pain modulation as stimulation intensities increase. 

 

Second, prior to assessing pain across the cardiac cycle, Martins et al. (2009) 

determined pain threshold and tolerance using a single ascending method of limits, 

whereas the current study used a more sophisticated adaptive up-down staircase 

procedure (Levitt, 1971) incorporating three ascending and descending series. 

Further, Martins et al. did not time stimuli in the pain threshold and tolerance 
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assessment task with specific intervals within the cardiac cycle, unlike the present 

study. Thus, in this prior study, stimuli during the pain threshold and tolerance 

determination may not have been equally distributed across the cardiac cycle 

(Martins et al., 2009), potentially influencing pain assessment. Therefore, the present 

study may provide a more precise assessment of pain thresholds. Regardless, the 

use of different pain assessment procedures makes comparison of results difficult.  

 

Finally, pain was elicited using different stimulating electrodes. The present 

study used a concentric planar electrode designed to more selectively stimulate A-δ 

nociceptive fibres (Katsarava et al., 2006; Kaube et al., 2000). Martins and 

colleagues (2009) used a bar electrode to elicit pain. As acknowledged by Martins et 

al. bar electrodes are more likely to stimulate A-β tactile fibres, in addition to A-δ 

nociceptive fibres (Katsarava et al., 2006; Kaube et al., 2000). Possible stimulation of 

tactile fibres may have affected the pattern of cardiac cycle-related pain modulation 

in this prior study (Martins et al., 2009). Indeed, Edwards et al. (2009) found 

cutaneous tactile sensory thresholds were lower during systole compared to diastole, 

indicative of greater sensitivity to tactile stimulation during systole. This pattern of 

modulation is similar to that reported by Martins et al. (2009). Accordingly the current 

study may reflect a cardiac cycle modulation pattern more specific to pain.   

 

Although the precise mechanisms underlying the systolic dampening of pain 

have yet to be established, the temporal patterning of systolic pain dampening is 

consistent with the hypothesis that pain is reduced during systole due to arterial 

baroreceptor activation of pain inhibition pathways (Ghione, 1996). The 

baroreceptors are stimulated during systole when the pulse pressure wave stretches 

the walls of the aortic arch and carotid sinus (Angell James, 1971; Mancia & Mark, 

1983). Increased baroreceptor activation during systole has been reported to result 

in cortical inhibition (e.g. Rau, Elbert, & Birbaumer, 1995) and there is strong 

evidence for an overlap in brain areas involved in cardiovascular control and pain 

modulation, suggesting interactions between cardiovascular and pain systems are 

possible (Ghione, 1996). Indeed, the timing of pain attenuation (R+200 and R+300 

ms) in the current study coincides with the arrival of the afferent signal relayed from 

the aortic and carotid baroreceptors reaching the brainstem areas involved in 
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descending nociceptive inhibition (Dembrowsky & Seller, 1995). Specifically, 

following onset of left ventricular contraction, blood is forced from the heart 

approximately 74 + 14 ms after the R-wave (Kelsey & Guethlein, 1990; Kroeker & 

Wood, 1955). The ensuing systolic pulse wave stimulates aortic baroreceptors 10-15 

ms later and carotid baroreceptors 40-65 ms later (Rushmer, 1976). Transmission of 

baroreceptor afferents from the aortic arch and carotid sinus to the nucleus tractus 

solitarius takes approximately 10-15 ms and projection from the nucleus tractus 

solitarius to brainstem areas involved in the descending inhibition of pain, including 

the rostral ventrolateral medulla, takes approximately 100-150 ms (Dembrowsky & 

Seller, 1995). Further, blood is ejected from the heart for a duration of approximately 

250 ms (Ring, Lui, & Brener, 1994; Stafford, Harris, & Weissler, 1970), with peak 

baroreceptor firing corresponding to peak pulse pressure at around 100 ms (Angell 

James & Lumley, 1974). Therefore, the aortic baroreceptors are potentially active 

70-353 ms after the R-wave and the carotid baroreceptors 100-403 ms after the R-

wave. Thus, it is estimated that the arterial baroreceptors activate pain inhibiting 

brain areas between 180 ms and 568 ms after the R-wave, with maximal inhibition 

approximately 280-418 ms after the R-wave, compatible with the pattern of 

modulation shown in the current study. 

 

To further support the hypothesis of baroreceptor mediated pain modulation, 

we must consider the conduction time for the nociceptive signal to reach the 

brainstem. The conduction time from the hand to the spinal cord (C7) can be 

estimated at 53 ms, based on a hand to C7 peripheral conduction velocity from 

noxious electrical stimulation of A-δ nociceptive fibres of 15.1 m/s (Inui, Tran, 

Hoshiyama, & Kakigi, 2002) and a distance of approximately 80.2 cm (Tran, Inui, 

Hoshiyama, Lam, Kakigi, 2002). Further, the conduction time from C7 to C1 can be 

estimated at 7 ms, based on a spinothalamic tract conduction velocity following 

noxious laser stimulation of 16.8 m/s for signals conveyed through a pathway to the 

primary somatosensory cortex (SI) (Tsuji, Inui, Kojima, & Kakigi, 2006) and a 12.1 

cm distance from C7 to C1 (Smahel & Skvarilova, 1993). Thus, the shortest 

conduction time to brainstem can be estimated at 60ms. Additionally, following 

noxious electrical stimulation of the hand, the onset latency of cortical activity in SI 

has been recorded at 80 ms (Inui et al., 2003). Therefore, it can be estimated that 
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the nociceptive signal should reach the brainstem 60-80 ms following stimulation. 

Given pain modulation begins at R+200 ms and peaks at R+300 ms in the current 

study, these timings fit with a baroreceptor modulation of pain across the cardiac 

cycle. Specifically, the nociceptive signal presented at R+200 ms is anticipated to 

reach brainstem areas between R+260 ms and R+280 ms, which converges with 

baroreceptor activation of brainstem sites (i.e., R+180 to R+568 ms). Moreover, a 

stimulus at R+300 ms will reach the brainstem between R+360 ms and R+380 ms, 

coinciding with peak baroreceptor input to the brainstem (i.e., R+280 to R+418 ms). 

The current finding that pain thresholds for stimuli presented at R+100 and R+500 

ms were lower than those at R+200 and R+300 ms fit with these calculations 

regarding the overlapping of pain and afferent baroreceptor activity in the above 

mentioned brainstem sites. Stimuli presented at R+100 ms would reach these 

brainstem sites between R+160 and R+180 ms and stimuli elicited at R+500 ms 

would reach these same brainstem sites at R+560 to R+580 ms, providing minimal 

overlap with baroreceptor activity within these brainstem sites.   

 

As tonic BP is known to influence pain (e.g. Droste et al., 1994, France, 1999; 

Ghione, 1996), the present study investigated the influence of tonic BP on cardiac 

cycle-related pain modulation. No BP group differences in pain threshold were found, 

counter to several studies that have reported an inverse relationship between BP 

and pain within the normotensive range (for review see France, 1999). However, this 

relationship is not always evident (e.g., Bruehl, Chung, Diedrich, Diedrich, & 

Robertson, 2008; Bruehl et al., 2010; Edwards et al., 2002; France, 1999; Mechlin, 

Heymen, Edwards, & Girdler, 2011; Stewart & France, 1996). Importantly, the 

current study revealed differences in pain threshold modulation across the cardiac 

cycle between the SBP groups. The patterning of modulation illustrated in Figure 2a 

tentatively suggests that cardiac cycle effects on pain thresholds may be reduced at 

higher-normal SBPs. This interpretation is in line with a report of an abolition of 

systolic NFR dampening during a stress task that increased physiological arousal 

(McIntyre et al., 2006).  

 

Although the mechanism for a difference in cardiac-cycle time modulation of 

pain with SBP group is unclear, one possibility may be due to BP group differences 
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in baroreceptor firing patterns. Indeed, acute increases in BP may lead to changes in 

baroreceptor output, with baroreceptor saturation increasing during systole and 

baroreceptor discharge increasing during diastole (Angell James, 1971; Coleridge et 

al., 1987). Consequentially, at higher BPs there may be less difference in 

baroreceptor activity between systole and diastole, potentially resulting in less pain 

modulation across the cardiac cycle. Further, baroreceptors may not completely 

reset when BP is chronically elevated (Thrasher, 2004). However, given that our 

participants’ BP was within the normotensive range, it seems unlikely that BP levels 

would be high enough to result in baroreceptor saturation (Eckberg, 1977). 

Alternatively, the difference in cardiac cycle-related pain modulation between groups 

may be accounted for, in part, by the amount of baroreceptor afferent activity 

reaching the pain inhibition pathways. In line with this hypothesis, an inverse 

relationship between BP and both baroreceptor sensitivity (Sleight, Robinson, 

Brooks, & Read, 1977) and baroreflex sensitivity (Bristow, Honour, Pickering, 

Sleight, & Smyth, 1969; Gribbin, Pickering, Sleight, & Peto, 1971) has been reported. 

Indeed, additional analyses of current data revealed pulse pressures were greater in 

the high (Mean = 48.51, SD = 8.49 mmHg) than low (Mean = 43.31, SD = 7.11 

mmHg) SBP group, F(1, 47) = 5.44, p = .02, p
2 = .104. If we accept that a 

baroreceptor mechanism is responsible for the cardiac-cycle related pain modulation 

and we assume comparable baroreceptor sensitivities between groups, then higher 

pulse pressures in the high SBP group would lead to more exaggerated baroreceptor 

activity in systole (Angell James, 1971) compared to the low SBP group. Such 

augmented baroreceptor activity might be expected to result in greater cardiac cycle-

related pain modulation in the high SBP group. However, the present findings 

indicate the opposite pattern, suggestive of reduced transmission in baroreceptor 

afferents. Regardless of the mechanism, the current data provide preliminary 

evidence that tonic BP may influence the cardiac cycle-related pain modulation 

within the normotensive range. However, further studies are required to investigate 

this relationship. 

 

The current study has many strengths, including the use of a concentric planar 

electrode to deliver nociceptive-specific stimuli, a study design delivering stimulus 

intensities relative to pain thresholds rather than related to neurophysiological 
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correlates of pain (e.g., NFR threshold), variable stimulus intensities, pain thresholds 

determined with a relatively high temporal resolution across the cardiac cycle, and 

the use of an adaptive up-down staircase procedure to determine pain thresholds. 

Nonetheless, some limitations should be acknowledged. Firstly, the participants were 

predominately female. Consistent with previous literature (Fillingim, King, Ribeiro-

Dasilva, Rahim-Williams, & Riley, 2009), women were more sensitive to pain than 

men in the current study. However the present findings suggest sex does not 

influence the modulation of pain across the cardiac cycle. This is in line with previous 

studies that have not found sex differences in the cardiac cycle modulation of pain 

ratings (Martins et al., 2009), nociceptive responding (Edwards et al.,  2001; Martins 

et al., 2009) or reaction times (Birren, Phillips, & Cardon, 1963; Edwards, Ring, 

McIntyre, Carroll, & Martin, 2007; McIntyre, Ring, Hamer, & Carroll, 2007; McIntyre, 

Ring, Edwards, & Carroll, 2008b). Secondly, parental history of hypertension was not 

assessed, which has been found to influence pain perception (France, 1999) and 

baroreflex sensitivity (Parmer, Cervenka, & Stone, 1992). However, prior studies 

suggest that parental history may not influence the cardiac cycle modulation of 

reaction times (McIntyre et al., 2008b; Stewart, France, & Suhr, 2006). Accordingly, 

future studies would be necessary to examine the influence of parental history of 

hypertension on pain modulation across the cardiac cycle. 

 

In summary, the finding of pain dampening during systole compared to diastole 

provides further support for the theory that natural variation in arterial baroreceptor 

activation across the cardiac cycle modulates pain. Further, it appears tonic SBP 

within the normotensive range may also influence cardiac cycle-related pain 

modulation. 
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3.1 Abstract 

Research suggests that hypertensive individuals have reduced sensory perception. 

Further, natural fluctuations in blood pressure (BP) over the cardiac cycle have been 

shown to influence sensory perception in normotensive individuals. A recent study 

comprising individuals with hypertensive and normotensive BP found tactile sensory 

thresholds were reduced during systole, when BP is highest, compared to diastole. 

In this previous study, the magnitude of cardiac cycle modulation was found to 

increase with diastolic BP. The current study examined the influence of the cardiac 

cycle on tactile sensory thresholds in an exclusively normotensive sample and with 

greater temporal resolution. Tactile detection thresholds were determined 

concurrently at 7 intervals (0, 100, 200, 300, 400, 500 and 600 ms) after the R-wave 

of the electrocardiogram in 49 normotensive adults, using an interleaved up-down 

staircase procedure. Tactile sensory thresholds were defined as the average of the 

final four reversals in each staircase. Electrocutaneous stimuli were delivered to the 

dorsal surface of the right index finger and participants indicated the presence or 

absence of sensation using a response box. Tactile sensory thresholds did not vary 

across the cardiac cycle (p > .05). However, when participants were split into high-

normal and low-normal BP groups, significant interactions emerged between BP and 

tactile sensory thresholds across the cardiac cycle. These findings suggest tonic BP 

has an important influence on the cardiac cycle modulation of tactile sensibility. 

 

 

Descriptors: Arterial baroreceptors; Blood pressure; Cardiac cycle; 

Electrocutaneous; Tactile sensory threshold 
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3.2 Introduction 

It is well established that hypertension is characterised by a reduced sensitivity to 

pain (Ghione, 1996). There is also evidence that hypertension affects other sensory 

perceptions, for example reduced visual perception has been reported in individuals 

with hypertension (Mazzucchi et al., 1986; Shapiro, Miller, King, Ginchereau, & 

Fitzgibbon, 1982) suggesting that elevated blood pressure (BP) may affect the visual 

system. Zamir and Shuber (1980) found that sensory, as well as pain thresholds, 

were elevated in hypertensive compared to normotensive subjects in response to 

graded electrical tooth pulp stimulation. Furthermore, higher sensory detection 

thresholds were reported in unmedicated hypertensives compared to normotensives 

following electrocutaneous stimulation of the hand (Edwards, Ring, France, McIntyre, 

& Martin, 2008) and Rosa and colleagues (Rosa, Vignocchi, Panattoni, Rossi, & 

Ghione, 1994) reported that cutaneous perception thresholds and the R2 component 

of the blink reflex were increased in hypertension.  

 

It has been suggested that a baroreceptor mechanism may account for the 

reduced pain perception reported in hypertensive patients (France, 1999; France & 

Ditto, 1996; Ghione, 1996). Arterial baroreceptors are stretch receptors located in the 

aortic arch and carotid sinus and are responsible for monitoring BP and maintaining 

cardiovascular homeostasis (Persson & Kirchheim, 1991), thus providing a link 

between the cardiovascular system and the central nervous system. At rest, when 

mean arterial pressure (MAP) is low baroreceptors are stimulated during the systolic 

phase of the cardiac cycle by the arrival of the pulse pressure wave (Eckberg & 

Sleight, 1992; Mancia & Mark, 1983) and show decreased activity during diastole 

(Angell-James & Lumley, 1974) resulting in a pulsatile discharge (Angell James, 

1971; Coleridge, Coleridge, & Schultz, 1987). 

 

It is less clear if baroreceptor effects are specific to pain or if they influence 

sensation generally. A more global baroreceptor modulation of sensation may be 

hypothesised based on early animal neurophysiological research that reported a 

sedative effect of baroreceptor stimulation in dogs (Koch, 1932), and an inhibition of 

cortical activity when baroreceptor afferents, which project to the nucleus tractus 
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solitarius, were stimulated (e.g., Bonvallet & Allen, 1963; Bonvallet & Bloch, 1961; 

Bonvallet, Dell, & Hiebel, 1954).  

 

The aforementioned animal studies (Koch, 1932; Bonvallet & Allen, 1963; 

Bonvallet & Bloch, 1961; Bonvallet et al., 1954) form the neurophysiological 

foundations for the visceral afferent feedback hypothesis to explain the 

antinociceptive effect associated with baroreceptor activation. The visceral afferent 

feedback hypothesis proposes that natural variations in baroreceptor activation 

across the cardiac cycle lead to changes in cortical inhibition and consequently 

differences in sensorimotor performance across the cardiac cycle (e.g. Lacey & 

Lacey, 1967).  

 

In humans, cardiac cycle time studies have investigated the visceral afferent 

feedback hypothesis. Cardiac cycle time studies deliver stimuli at various points 

across the cardiac cycle and compare the responses between stimulations 

presented during systole, which occurs approximately 50 ms to 300 ms after the R-

wave, when the arrival of the pulse pressure wave stimulates the baroreceptors in 

the aortic arch and carotid sinus, distending the vessel walls and resulting in 

maximal baroreceptor afferent firing, to those presented during diastole, which 

occurs less than 50 ms and greater than 300 ms after the R-wave, when 

baroreceptor activation is lowest (see Eckberg & Sleight, 1992 for review). The 

cardiac cycle provides an ethical paradigm via which to investigate the effects of 

baroreceptors as it takes advantage of a natural fluctuation in BP and is totally non-

invasive. Earlier studies investigating baroreceptor effects in humans involved using 

phenylephrine and nitroprusside to raise or lower the BP pharmacologically, a 

procedure known as the Oxford technique (Raven, Fadel, & Ogoh, 2006). The major 

limitations of such approaches are the ethical constrictions associated with using 

pharmacological interventions and also the possibility of the drugs influencing factors 

other than BP that may influence the outcome of the study. In response to these 

limitations, investigators introduced constant (e.g., Eckberg, Cavanaugh, Mark, & 

Abboud, 1975) or variable (e.g., Brody & Rau, 1994) external suction and 

compression of the neck to directly manipulate the carotid sinus, the main limitations 

of the external suction/compression method are that they only target the carotid and 
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not aortic baroreceptors and therefore the integrated baroreceptor effect is not 

known and they are also distractive to the participants which may also influence the 

individuals BP. 

 

Cardiac cycle time studies have reported attenuated nociception (Edwards, Ring, 

McIntyre, & Carroll, 2001; Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Edwards 

et al., 2003; McIntyre, Edwards, Ring, Parvin, & Carroll, 2006; McIntyre, Kavussanu, 

& Ring, 2008), pain-related evoked potentials (PREPs) (Edwards, Inui, Ring, Wang, 

& Kakigi, 2008)  and pain (Wilkinson, McIntyre, & Edwards, 2013), during systole, 

when baroreceptor activation is greatest, compared to diastole, when baroreceptor 

activation is lowest. Additional evidence from cardiac cycle studies further support a 

hypothesis that baroreceptors may modulate other sensory functions, although the 

findings are mixed; Saxon (1970) reported a reduced ability to detect near threshold 

auditory stimuli during the QRS complex (approx. R-wave – 40ms to R-wave + 

40ms) compared to during the P-wave (approx. R-wave + 700ms to R-wave + 

810ms) of the electrocardiogram (ECG). Additionally, supra-threshold tones 

presented during systole were perceived as quieter than those presented during 

diastole (Cohen, Lieb & Rist, 1980), whereas others have found no cardiac cycle-

related modulation for supra-threshold auditory stimuli detection (Delfini & Campos, 

1972; Velden & Juris, 1975). Similarly, in relation to visual stimuli, recognition was 

increased during the P-wave compared to the R-wave and T-wave of the ECG 

(Sandman, Mccanne, Kaiser, & Diamond, 1977), whereas Elliott and Graf (1972) 

found visual sensitivity was not influenced by phase of the cardiac cycle. 

Additionally, cardiac cycle studies employing electroencephalographic measures 

have reported that amplitudes of auditory (Sandman, Walker & Berka, 1982) and 

visual (Walker & Sandman, 1979) evoked potentials were reduced during systole 

compared to diastole. Although mixed, these findings suggest that baroreceptor 

effects are not limited to pain but influence other sensations too.  

 

Despite a significant number of studies investigating the cardiac cycle 

modulation of pain, very little research has been conducted on the tactile 

somatosensory modality. Recent work by Edwards and colleagues (2009) reported a 

reduction in cutaneous sensory thresholds during systole compared to diastole, 
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indicating that in contrast to pain, cutaneous sensitivity was heightened during 

baroreceptor activation. The study also reported that individuals with higher diastolic 

BP had larger reductions in sensory threshold during systole compared to diastole 

suggesting that the baroreceptor influence on cutaneous sensibility becomes greater 

as tonic BP increases. These findings provide further evidence that baroreceptors 

influence other somatosensory systems, but that the pattern of modulation may be 

specific to each sensory modality, rather than baroreceptor activation inducing a 

global diminution of sensations. 

 

The study by Edwards and colleagues (2009) was the first study to indicate a 

modulation of tactile sensation by natural variations in BP across the cardiac cycle, 

but only included three intervals within the cardiac cycle and included participants 

newly diagnosed and untreated hypertensive patients. As hypertensives may present 

altered baroreceptor function compared to normotensives (e.g. Bristow, Honour, 

Pickering, Sleight, & Smyth, 1969; Gribbin, Pickering, Sleight, & Peto, 1971; Simon, 

Kiowski, & Julius, 1977; Goldstein, 1983), the current study aimed to investigate 

cardiac cycle-related modulation of tactile sensation in a completely normotensive 

group to explore if modulation is evident in normotension, similar to other modalities, 

including nociception (Edwards et al., 2001; 2002), PREPs (Edwards, Inui et al., 

2008) and pain (Martins, Ring, McIntyre, Edwards, & Martin, 2009; Wilkinson et al., 

2013). Moreover, the study will investigate in more detail the temporal pattern of 

cardiac cycle modulation by presenting stimuli at seven intervals across the cardiac 

cycle. 

 

3.3 Methods 

3.3.1  Participants 

Fifty (10 men, 40 women) normotensive adults were recruited from the university 

campus and local community to participate in the study. One participant, identified as 

an extreme outlier (tactile sensory threshold >3 SDs above the mean), was 

subsequently removed from the analyses. Therefore, the final sample included 49 

healthy normotensive adults (9 men, 40 women) with a mean (SD) age of 28.14 

(11.7) years and body mass index (BMI) of 22 (2.7) kg/m2. Mean (SD) resting systolic 

BP (SBP) was 116.02 (10.9) mmHg, diastolic BP (DBP) was 70.5 (10.2) mmHg, and 
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resting heart rate (HR) was 72.0 (11.7) bpm. Individuals were excluded if they had 

any known health problems including chronic pain disorders, cerebrovascular, 

cardiovascular or neurological diseases, had a cardiac pacemaker, history of major 

psychiatric disorders, were pregnant or had missed their last menstrual cycle, were 

taking routine prescription medicine except for birth control, were currently using any 

narcotic substances or had an alcohol intake greater than 28 units per week for men 

and 21 units per week for women. Participants were asked to refrain from analgesic 

medication for 24 hrs and caffeine, nicotine and vigorous exercise for 2 hrs prior to 

testing. The Loughborough University Ethical Advisory Committee approved the 

study, and all participants provided written informed consent. 

 

3.3.2 Apparatus and measurements 

Resting BP (mmHg) and HR (bpm) were obtained using an automated oscillometeric 

sphygmomanometer (Omron 705-IT, Omron Healthcare Europe) and a brachial cuff 

attached around the upper non-dominant arm. An ECG was recorded continuously at 

2500 Hz using three disposable spot electrodes (Cleartrace, ConMed) placed in a 

modified chest configuration and connected to an AC amplifier (LP511, Grass). The 

two active electrodes were placed on the right clavicle and a rib below the heart on 

the left side of the torso; the ground electrode was placed on the left clavicle. Stimuli 

for tactile sensory threshold assessment (1 ms square wave pulses at 250 Hz for 60 

ms) were delivered electrocutaneously by a constant current stimulator (DS7A, 

Digitimer) via a bar electrode (Nicolet) with 9 mm diameter contacts and a 22 mm 

inter-contact spacing secured to the dorsal surface of the intermediate and proximal 

phalanges of the right index finger with tape (Transpore, 3M). The electrode sites 

were prepared by exfoliating (Nuprep, D.O. Weaver & Co) and degreasing the skin 

using isopropyl alcohol swabs (Sterets, Medlock Medical Ltd.) to ensure impedance 

was <10k (Checktrode, UFI). Participants sat upright and supported their dominant 

forearm on a table while their hand rested on the response box. Mounted on the 

response box (16 cm × 16 cm × 3 cm) were a piezo-oscillator (top middle), a red light 

emitting diode (top left), a green light emitting diode (top right), and buttons marked 

“Yes” and “No” (centre left and right, respectively). A computer was programmed with 

Spike2 (CED) to record responses and present stimuli using a Micro II 1401 

(Cambridge Electronic Design). 
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3.3.3 Procedure 

Participants were tested in a single 1.5-hr session. At the start of the session 

participants sat quietly whilst completing the following questionnaires: Demographics 

questionnaire containing questions about age, sex, health habits, education, 

Spielberger State and Trait Anxiety Inventory (Spielberger, Gorsuch, & Lushene, 

1970), a 40-item inventory which assesses levels of state and trait anxiety and the 

Center for Epidemiologic Studies Depression (CES-D) Scale (Radloff, 1977), a 20-

item scale which is designed to measure depressive symptomatology in the general 

population (10 min). Next, participants rested quietly while baseline BP and heart 

rate were measured at 60, 180, and 300 s (6 min). If a participant’s heart rate 

exceeded 100 bpm, they were excluded from the study; however, none were 

excluded. Following instrumentation and instruction (15 min) participants undertook 

two threshold determination procedures. First, they completed a tactile sensory 

thresholds assessment (15 min). Next, participants rested for 5 min, after which a 

pain threshold determination task was completed (15 min, data not reported here). 

 

The tactile sensory threshold assessment concurrently determined seven 

tactile sensory thresholds by interleaving seven up-down staircases (Levitt, 1971). 

Each staircase assessed a tactile sensory threshold at one of seven intervals after 

the R-wave of the ECG (R+0 ms, R+100 ms, R+200 ms, R+300 ms, R+400 ms, 

R+500 ms, R+600 ms). A green warning light (1000 ms duration) illuminated to 

signify the start of each trial and a red light (variable duration; remaining illuminated 

until the participant made a response up to a maximum of 7500 ms) indicated the 

end of each trial. Following illumination of the green light, a 1-s delay occurred after 

which the computer program initiated a search for the R-wave of the ECG. The 

participants finger was then stimulated at one of seven R-wave intervals, selected 

pseudorandomly. Participants were informed that the stimulus could occur at anytime 

between the illumination of the green and red lights. Once the red light was 

illuminated participants pressed the “Yes” button if they perceived the stimulation or 

the “No” button if they did not perceive it. On the first trial of each staircase the 

stimulus intensity was 0 mA and subsequently increased in 1 mA steps until the 

participant first detected a sensation (first reversal), and then decreased in 0.4 mA 

steps until the participant no longer detected a sensation (second reversal). Each 
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staircase then continued in 0.1 mA steps until all seven staircases had completed 

two further ascending and descending series (i.e. four more reversals). The 50% 

tactile detection threshold (mA) was defined as the average of the peaks and troughs 

during the second and third series (i.e. the third, fourth, fifth and sixth reversal points) 

of each staircase. The maximum stimulus intensity was 5 mA.  However, this was not 

reached. The mean (SD) number of trials required to determine all 7 tactile sensory 

thresholds was 51.06 (12.9). 

 

3.3.4 Data reduction and analyses 

The BP and heart rate readings were averaged to provide measures of resting SBP, 

DBP and HR. Repeated measures analysis of variance (ANOVAs) with R-wave to 

stimulation interval (i.e., R+0 ms, R+100 ms, R+200 ms, R+300 ms, R+400 ms, 

R+500 ms, R+600 ms) as a within subjects factor were performed on tactile sensory 

thresholds. 

 

To examine the effect of tonic BP on tactile sensory thresholds across the 

cardiac cycle, participants were classified as having relatively low and high BP based 

on a median split of SBP and DBP. Median SBP was 116.00 mmHg; the SBPlow 

group comprised 25 participants (Mean = 108.03, SD = 5.68 mmHg) and the SBPhigh 

group comprised 24 participants (Mean = 124.07, SD = 8.03 mmHg). Chi-squared 

analysis confirmed there were no significant differences in the distribution of males 

and females between the SBPlow (21 female, 4 male) and SBPhigh (19 female, 5 

male) groups (2 = .191, df = 1, p = .662). For DBP the median was 69.67 mmHg; 

the DBPlow group comprised 25 participants (Mean = 62.40, SD = 5.14 mmHg) and 

the DBPhigh group comprised 24 participants (Mean = 78.15, SD = 5.40 mmHg). Chi-

squared analysis again confirmed there were no significant differences in the 

distribution of males and females between the DBPlow (20 female, 5 male) and 

DBPhigh (20 female, 4 male) groups (2 = .091, df = 1, p = .763). ANOVA revealed 

differences in BMI between the DBPlow (Mean = 20.73, SD = 2.20 kg/m2) and DBPhigh 

(Mean = 23.25, SD = 2.65 kg/m2) groups, F(1, 47) = 13.10, p = .001, p
2 = .218, but 

not between the SBPlow (Mean = 21.23, SD = 2.80 kg/m2) and SBPhigh (Mean = 

22.74, SD = 2.46 kg/m2) groups, F(1, 47) = 4.02, p = .05, p
2 = .079. There were no 

BP group differences in age. A 2 BP Group (low, high) × 2 Sex (male, female) × 7 
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Interval (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms) repeated 

measures ANOVA, with Group and Sex as between-subjects factors and Interval as 

the within-subjects factor, were performed on tactile sensory thresholds. Sex was 

used as a between-subjects factor because men typically have higher BPs and there 

is evidence that sensory thresholds are lower in women than men (e.g. Takekuma, 

Ando, Niino, & Shimokata, 2000; Leong, Lauschke, Rutowski, & Waite, 2010; 

Maffiuletti, Herrero, Jubeau, Impellizzeri, & Bizzini, 2008). Although BMI did not 

correlate with pain thresholds averaged across intervals (r (49) = .05, p = .73), the 

analysis was repeated with BMI as a covariate, as this has been shown to influence 

sensory thresholds (e.g. Hodge et al., 1995; Cheng et al., 1999) and with age as 

covariate as age may also influence electrocutaneous thresholds (e.g. Takekuma et 

al., 2000; Lin, Hsieh, Chao, Chang, & Hsieh, 2005; Deshpande, Metter, Ling, Conwit, 

& Ferrucci, 2008; Sands et al., 1998). 

 

ANOVAs were corrected for the assumption of independence of data points 

using Huynh-Feldt correction (). Significant results were followed by Newman-Keuls 

post hoc comparisons (all possible pairwise comparisons were computed) to further 

examine the patterning of tactile sensory thresholds across the cardiac cycle. Partial 

eta-squared (p
2), a measure of effect size, is reported. A significance level of .05 

was adopted. Data were analysed using SPSS 20.0 and Statistica Version 10. 

 

3.4 Results 

3.4.1 Tactile sensory detection threshold across the cardiac cycle 

A 7 Interval (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms) repeated 

measures ANOVA revealed no significant variation in tactile sensory threshold 

across the cardiac cycle,  = .816, F(4.90, 234.97) = .470, p = .795, p
2 = .010 (see 

Figure 3). The mean (SD) tactile sensory threshold across all cardiac cycle intervals 

was 0.37 (0.14) mA. 
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Figure 3. Mean (SE) electrocutaneous tactile sensory thresholds as a function of 

phase of the cardiac cycle. 

 

3.4.2 Tonic blood pressure and cardiac cycle modulation of tactile sensory 

thresholds 

The effect of tonic BP on tactile sensory thresholds across the cardiac cycle was 

investigated by splitting participants into low-normal and high-normal BP groups. A 2 

Group (SBPlow, SBPhigh) × 2 Sex (male, female) × 7 Interval (R+0, R+100, R+200, 

R+300, R+400, R+500, R+600 ms) ANOVA revealed no Group effect, F(1, 45) = 

0.06, p = .82, p
2 = .001. Mean (SD) tactile sensory thresholds were 0.36 (0.20) mA 

and 0.37 (0.18) mA in the SBPlow and SBPhigh groups, respectively. However there 

was a Group × Interval interaction,  = .866, F(5.20, 233.86) = 4.54, p = <.001, p
2 = 

.092, although Newman-Keuls post hoc comparisons revealed no significant effects 

(Figure 4a). A Group × Sex × Interval interaction,  = .866, F(5.20, 233.86) = 3.88, p 

= .002, p
2 = .079 also emerged. Newman-Keuls post hoc comparisons revealed that 

the cardiac cycle effects were confined only to the male participants with the SBP low 

group demonstrating significantly lower tactile sensory thresholds at R+300 ms than 
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R+0, R+100, R+500 and R+600 ms and significantly higher tactile sensory 

thresholds at R+600 than R+400. In contrast the male SBPhigh group showed higher 

tactile sensory thresholds at R+300 than R+600 (see Figure 5). There were no Sex × 

Interval ( = .866, F(5.20, 233.86) = .73, p = .610, p
2 = .016) or Sex × Group (F(1, 

45) = .037, p = .849, p
2 = .001) interactions.  

 

Similar analysis using DBP also revealed no Group effect, F(1, 45) = 0.20, p = 

.66, p
2 = .004, mean (SD) tactile sensory thresholds were 0.36 (0.18) mA and 0.38 

(0.20) mA in the DBPlow and DBPhigh groups, respectively. However, there was a 

Group × Interval interaction,  = .840, F(5.04, 226.75) = 6.59, p = <.001, p
2 = .128. 

Newman-Keuls post hoc comparisons revealed that tactile sensory thresholds in the 

DBPlow group were higher at R+600 ms than at R+300. (see Figure 4b). A Group × 

Sex × Interval interaction,  = .840, F(5.04, 226.75) = 3.69, p = .003, p
2 = .076 also 

emerged. Newman-Keuls post hoc comparisons revealed that the cardiac cycle 

effects were confined only to the male participants with the DBPlow group 

demonstrating lower tactile sensory thresholds at R+300 ms than R+100, R+500 and 

R+600 ms. The male DBPhigh group presented higher tactile sensory thresholds at 

R+300 ms than R+0, R+500 and R+600 ms (see Figure 6). There were no Sex × 

Interval ( = .840, F(5.04, 226.75) = .52, p = .759, p
2 = .012.) or Sex × Group (F(1, 

45) = .38, p = .539, p
2 = .008) interactions. These analyses were repeated using 

ANCOVA, with potential confounding variables BMI and age entered as covariates. 

The results of were the same as those yielded in the original analysis. 
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Figure 4. Mean (SE) electrocutaneous tactile sensory thresholds at seven intervals 

across the cardiac cycle as a function of (a) systolic blood pressure (SBP) and (b) 

diastolic blood pressure (DBP).  
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Figure 5. Mean (SE) electrocutaneous tactile sensory thresholds at seven intervals 

across the cardiac cycle as a function of systolic blood pressure (SBP) in (a) male 

participants and (b) female participants.  
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Figure 6. Mean (SE) electrocutaneous tactile sensory thresholds at seven intervals 

across the cardiac cycle as a function of diastolic blood pressure (DBP) in (a) male 

participants and (b) female participants.  
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3.5 Discussion 

The current study found that there was no overall difference in tactile sensory 

thresholds across the cardiac cycle in normotensives, suggesting that within the 

normotensive BP range, tactile sensation is not influenced by the natural fluctuations 

in BP across the cardiac cycle. The lack of overall cardiac cycle modulation in the 

current study is in line with a previous study employing artificial baroreceptor 

stimulation via phase related external suction, which similarly reported no difference 

in intracutaneous electrical sensory detection thresholds between stimuli delivered 

during either mechanical stimulation, or inhibition of the carotid baroreceptors 

(Droste et al., 1994).  

 

Conversely, the current findings are counter to the only previous study to 

specifically look at cutaneous thresholds across the cardiac cycle (Edwards et al., 

2009) which reported reported that thresholds were reduced during systole 

compared to diastole, indicating heightened tactile sensitivity when baroreceptor 

activity was highest. The methods employed in the current study were very similar to 

Edwards et al., (2009); however, there are small differences that may help explain 

the differing results. Firstly, Edwards et al., (2009) examined tactile sensory 

thresholds at three intervals across the cardiac cycle (R+0, R+300 and R+600 ms) 

whereas the current study examined tactile sensory thresholds at seven intervals 

across the cardiac cycle (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms). 

To address this difference the current investigators analysed the data from the same 

intervals as Edwards et al., (2009) i.e. R+0, R+300 and R+600 ms using repeated 

measures ANOVA. These analyses also revealed no significant variation in sensory 

thresholds across the cardiac cycle ( = 1.000, F(2, 96) = .50, p = .607, p
2 = .010). 

Therefore, the different range of cardiac cycle intervals used does not appear to be 

an explanation for the differences. A second consideration regarding the greater 

number of cardiac cycle intervals investigated in the current study is that the total 

number of stimuli and the total duration of the study would be longer than Edwards et 

al. (2009). A longer study duration may have resulted in participants disengaging with 

the task and/or possibly lead to fatigue of sensory fibres or central habituation to the 

stimulus which has previously been shown to occur for non-pain stimuli (Milne, Kay, 

& Irwin, 1991). However, as the inter-trial interval was 3 s, plus a 1 s delay as the 
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programme searched for the R-wave, plus the participants’ response time, the inter-

stimulus interval in the current study was relatively long (short inter-stimulus intervals 

have been shown to increase habituation – Milne et al., 1991) and as a variable 

stimulus intensity was employed in the current study, habituation should have kept to 

a low level (Milne et al., 1991). Therefore, study duration is not likely to be a major 

factor determining the differing results between the studies. 

 

Thirdly, although both studies stimulated the hand electrocutaneously, the 

stimulating electrodes used were different as was the exact electrode location. The 

current study used a bar electrode (Nicolet) with 9 mm diameter contacts and a 22 

mm inter-contact spacing secured to the dorsal surface of the intermediate and 

proximal phalanges of the right index finger, whereas Edwards et al., (2009) used a 

stimulating electrode comprising two 10 mm stainless steel disks (Nicolet) secured to 

the dorsolateral surface of distal phalanges. Although small, the slight differences in 

location may influence the sensitivity of the area as it has been shown that the 

density of cutaneous innervation in man varies considerably from one area to 

another (Mountcastle, 1974). Indeed, the over-all density of sensory units in the hand 

increases in the proximo-distal direction, showing a slight increase from the palm to 

the main part of the finger (where the current study electrode was sited) and an 

abrupt increase from the main part of the finger to the distal phalanges (where the 

electrode in the Edwards et al., (2009) was sited) (Johansson & Vallbo, 1979). 

Therefore, it is possible that the lack of modulation in the current study is due to the 

electrode being positioned on a less sensitive area of the hand. A further 

acknowledgement should be made to the mean sensory threshold in the current 

study being lower (0.37 mA) than that in the Edwards et al., (2009) study (0.59 mA). 

Although the same stimulation parameters were used in both studies (1 ms square 

wave pulses at 250 Hz for 60 ms), the higher stimulation intensities reported in the 

Edwards et al., (2009) study may have stimulated the A-δ nociceptive fibres as well 

as the A-β tactile fibres. However as the stimulation intensity was kept below 4 mA, it 

is unlikely that nociceptive A-δ fibres would be stimulated (Ring et al., 2008). 

Additionally, the reported cardiac cycle modulation of tactile sensory thresholds by 

Edwards et al., (2009) was the opposite (i.e. lower tactile sensory thresholds during 

systole) to that reported for the NFR (Edwards et al., 2001, 2002, 2003, McIntyre et 
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al., 2006, 2008) and pain thresholds (i.e. elevated pain thresholds during systole) 

(Study 1 - Wilkinson et al., 2013) further questioning the stimulation of A-δ 

nociceptive fibres in the Edwards et al., (2009) study as a possible explanation for 

the differences between the findings.  

 

The methodological differences between the two studies are small, and therefore 

unlikely to fully explain the contrasting findings. It seems plausible that the difference 

between the current findings and those of Edwards et al., (2009) may be due to 

participant characteristic differences. First, differences in the age of the participants 

in the two studies may have influenced the results. The average age of the 

participants in the current study was lower, 28 (SD=11.7) years compared to 

Edwards et al., (2009) 38 (SD=10.25) years. It has been repeatedly shown that there 

is a reduction in most sensory modalities with age including vision (e.g. Weale, 

1986), hearing (e.g. Helzner et al., 2005), smell (e.g. Schiffman, 1997) and tactile 

sensitivity (Stevens & Cruz, 1996; Gescheider, Bolanowski, Hall, Hoffman, & Verrillo, 

1994; Takekuma et al, 2000). The 10 year difference in average age may not seem 

much, but it has been reported that tactile acuity threshold decreases, on average, 

by about 1% each year between the ages of 20 and 80 (Stevens & Cruz, 1996). 

Therefore the lower sensory threshold reported in the younger subjects in the current 

study may be expected. Additionally, baroreceptor sensitivity has also been shown to 

reduce with increasing age (Gribbin et al., 1971; Korner, West, Shaw, & Uther, 1974; 

Randall et al., 1976; Randall, Esler, Culp, Julius, & Zweifler, 1978). Therefore, one 

may expect to find less cardiac cycle modulation in the older individuals with 

potentially diminished sensation and reduced baroreceptor sensitivity, thus it does 

not seem likely that the different ages of participants may have contributed to the 

differing patterns of cardiac cycle modulation reported between the two studies. 

However, it is suggested that further research is required to investigate the possible 

influence of age on the cardiac cycle modulation of sensory detection thresholds. 

 

Second, it must be acknowledged that the participants in the current study were 

predominately female, whereas in the Edwards et al., (2009) study there was a 

relatively even split of males (N=31) and females (N=28). Gender has been shown to 

significantly influence electrocutaneous thresholds, with women typically presenting 
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lower thresholds than men (Takekuma et al., 2000) and as such the differences in 

the distribution of males and females may have influenced the results of the two 

studies. In line with this, the only reported modulation in the current study was 

reported in the male sub-sets during the BP-median split analysis. However due to 

the small sample of males in these sub-sets (N=9) these data should be interpreted 

with extreme caution (see below for further discussion).  

 

Third, the participants in the current study were normotensive, whereas the 

participants in the Edwards et al. (2009) study comprised 30 hypertensives and 29 

normotensives. Given that hypertension is characterised by disruption to the 

baroreflex (Eckberg & Sleight, 1992) and that an inverse relationship has been 

reported between BP and baroreceptor sensitivity (Bristow et al., 1969; Gribbin et al., 

1971), it is not unreasonable to assume that results may be different in a 

normotensive sample.  

 

To further investigate the possible influence of tonic BP on the cardiac cycle 

modulation of tactile sensory thresholds, the current study split the sample into low-

normal and high-normal BP groups. The BP group analysis revealed differences in 

tactile sensory threshold modulation across the cardiac cycle. The patterning of 

modulation illustrated in Figure 4 suggests that the cardiac cycle effects on tactile 

sensory thresholds may be differing at high-normal versus low-normal BP’s. 

Specifically, only individuals in the DBPlow group demonstrated a significant 

variation in tactile sensory thresholds across the cardiac cycle, presenting lower 

tactile sensory thresholds during systole (R+300 ms) compared to diastole (R+600 

ms), whereas the DBPhigh group tended to have higher tactile sensory thresholds 

during systole compared to diastole, although post hoc analysis revealed these 

differences were not significant. These differing findings between the high and low 

DBP groups may contribute to the overall null finding in the current study. Indeed, we 

found a significant SBP × Interval interaction suggesting a similar patterning to DBP 

but post hocs were not significant. This explanation is partially supported by findings 

that electrocutaneous (Edwards, Ring et al., 2008) and electrical tooth pulp (Ghione 

et al., 1985) sensory thresholds are increased in unmedicated essential hypertension 

patients compared to normotensives and a significant correlation between mean 
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arterial BP and sensory threshold in response to electrical tooth pulp has also been 

reported (Ghione, Rosa, Mezzasalma, & Panattoni, 1988). However, the findings in 

the current study regarding the effects of tonic BP contrast with those of Edwards et 

al., (2009) who reported that individuals with higher diastolic BP had larger 

reductions in tactile sensory thresholds during systole compared to diastole, which 

may suggest that baroreceptor influence becomes greater as tonic BP increases.  

 

It should be noted that further analysis revealed that the modulation reported in 

the current study appears to be driven by the males in the sample as evidenced by 

Figures 5 and 6 showing that cardiac cycle effects were confined to the male 

participants. The male DBPlow group demonstrated lower tactile sensory thresholds 

during systole (R+300 ms) than diastole (R+100, R+500 and R+600 ms), whereas 

the male DBPhigh group presented opposing modulation with higher tactile sensory 

thresholds at during systole (R+300 ms) than diastole (R+0, R+500 and R+600 ms). 

No significant differences were found between the DBPhigh and DBPlow female 

groups (see Figure 6). The same differing patterns of cardiac cycle modulation of 

tactile sensory thresholds were found in the male SBPlow and SBPhigh but not 

females (see Figure 5). In partial support of this finding, when using artificial 

baroreceptor stimulation Elbert et al. (1988) found that young men with high-normal 

BP were slower to detect discomfort following electrocutaneous stimulation 

compared to those with normal BP, with the group difference greatest during artificial 

baroreceptor stimulation. However, due to the low sample sizes in the male subsets 

(N=9), these results should be interpreted with extreme caution and further research 

is required to further investigate the true extent of tonic BP and gender interaction 

effects on the cardiac cycle modulation of tactile sensory thresholds. 

 

Despite the contrasting findings, both the current results and those of Edwards et 

al. (2009) support a moderating influence of tonic BP on the cardiac cycle 

modulation of tactile perception. The mechanism for cardiac cycle-related modulation 

of tactile sensory thresholds in each BP group is unclear, but may relate to a 

baroreceptor mechanism (see Edwards et al., 2009). The baroreceptors are 

stimulated during systole when the pulse pressure wave stretches the walls of the 

aortic arch and carotid sinus (Angell James, 1971; Mancia & Mark, 1983), resulting 
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in increased baroreceptor activation during systole and subsequent cortical inhibition 

(e.g. Rau, Elbert, & Birbaumer, 1995). The diverging patterns of cutaneous sensitivity 

across the cardiac cycle between the male low and high BP groups may be due to 

BP group differences in baroreceptor afferent activity reaching brain areas affected 

by baroreceptor activity. In line with this hypothesis, an inverse relationship between 

BP and both baroreceptor sensitivity (Sleight, Robinson, Brooks, & Rees, 1977) and 

baroreflex sensitivity (Bristow et al., 1969; Gribbin et al., 1971) has been reported. 

 

Taken together with the previous study by Edwards et al., (2009), the current 

findings provide preliminary evidence that tonic BP has a moderating influence on 

the cardiac cycle modulation of tactile sensibility. Further studies are required to 

further investigate the mechanisms underlying this relationship. 
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4.1 Abstract 

Natural variations in blood pressure (BP) across the cardiac cycle have been shown 

to modulate nociception and pain. A recent study reported dampened N2 and N2-P2 

laser-evoked potential amplitudes at Cz during systole compared to diastole in men. 

The current study examined the effects of natural variations in BP across the cardiac 

cycle on electrocutaneous pain-related evoked potentials (PREPs) using multi-

channel recordings in 11 men and 15 women. Following determination of 

electrocutaneous pain thresholds using an up-down staircase method, stimuli equal 

to twice the individual pain threshold were delivered to the right hand in 7 blocks of 

21 trials to elicit PREPs. Stimuli were delivered pseudorandomly at 7 cardiac cycle 

intervals (R-wave plus 50, 150, 250, 350, 450, 550, 650 ms). Separate repeated-

measures ANOVAs revealed no significant variations in N2 or P2 peak amplitudes or 

N2-P2 peak-to-peak amplitude across the cardiac cycle at scalp recording sites Cz, 

C3, or C4 (all p’s > .05). Median BP splits were used to examine tonic BP effects on 

the cardiac cycle-related modulation of PREPs. Separate 2 Group (low-normal BP, 

high-normal BP) by 2 Sex (male, female) by 7 Interval repeated-measures ANOVAs 

for systolic and diastolic BP revealed no BP Group or interaction effects for N2 or P2 

peak amplitudes or N2-P2 difference at Cz, C3 or C4 (all p’s > .05). These data 

suggest that the cardiac cycle-related modulation of PREPs may not be as robust as 

other measures of pain such as the nociceptive flexion reflex, and that the modality 

of stimulation may influence the cardiac cycle-related modulation of pain processing. 

 

 

Descriptors: Arterial baroreceptors; Blood pressure; Cardiac cycle; 

Electrocutaneous; Pain-related evoked potentials 
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4.2 Introduction 

It is well established that individuals with hypertension have a reduced sensitivity to 

both clinical and experimental pain (Ghione, 1996). A baroreceptor mechanism may 

provide an explanation for this hypertension hypoalgesia (France & Ditto, 1996; 

France, 1999; Ghione, 1996). Baroreceptors are stretch receptors located in the 

aortic arch and carotid sinus and are responsible for regulating blood pressure (BP) 

(Persson & Kirchheim, 1991). At rest, baroreceptors are stimulated during the 

systolic phase of the cardiac cycle by the arrival of the pulse pressure wave 

(Eckberg & Sleight, 1992; Mancia & Mark, 1983) and have reduced output during 

diastole (Angell James & Lumley, 1974) resulting in a pulsatile discharge (Angell 

James, 1971; Coleridge, Coleridge, & Schultz, 1987). As well as maintaining 

cardiovascular homeostasis, baroreceptors may also modulate the activity in areas 

of the brain related to pain (Ghione, 1996). There appears to be a significant overlap 

between the areas of the brain involved in cardiovascular and pain regulation, for 

example stimulation of the nucleus tractus solitarius induces antinociception (Aicher 

& Randich, 1990) as does the periaqueductal grey matter (Bandler, Carrive, & 

Zhang, 1991), which is also an important modulator of the arterial baroreflex (Inui, 

Murase, & Nosaka, 1994; Nosaka, Murata, Inui, & Murase, 1993).  

 

A growing body of evidence suggests that natural fluctuations in BP across the 

cardiac cycle, which cause variations in baroreceptor activity, influence pain and 

nociception (e.g. Edwards et al., 2008). Cardiac cycle time studies utilise the natural 

variations in BP across the cardiac cycle, and thus, variations in the combined aortic 

and carotid baroreceptor stimulation. The cardiac cycle paradigm involves timing the 

delivering stimuli to coincide with systole, when BP and baroreceptor activation is 

highest, and diastole, when BP and baroreceptor is lowest, and comparing the 

respective responses. Several studies (Edwards, Ring, McIntyre, & Carroll, 2001; 

Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Edwards et al., 2003; McIntyre, 

Edwards, Ring, Parvin, & Carroll, 2006; McIntyre, Kavussanu, & Ring, 2008a) have 

examined the influence of the cardiac cycle on the nociceptive flexion reflex (NFR). 

The NFR is defined as a polysynaptic spinal reflex sub-serving withdrawal from 

noxious stimuli (Sandrini et al., 2005), the threshold for which serves as a 

physiological correlate of pain (Hugon, 1973; Willer, 1977). These studies have 
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reported the NFR to be attenuated during systole compared to diastole (Edwards et 

al., 2001; 2002; 2003; McIntyre et al., 2006; 2008a) suggesting nociceptive 

responding may be dampened when arterial baroreceptor activity is maximal.  

 

Pain is “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage” (Merskey & Bogduk, 1994, p. 210) and as such, 

subjective in nature. Therefore, pain perception is inherently different to its 

neurophysiological correlates (Chen, Arendt-Nielsen, & Plaghki, 1998; Iannetti, 

Hughes, Lee, & Mouraux, 2008; Sandrini et al., 2005) described in the cardiac cycle 

time studies above (Edwards et al., 2001; 2002; 2003; McIntyre et al., 2006; 2008a). 

In response to this, a recent study by our group reported that pain perception 

thresholds were also attenuated during systole compared to diastole (Chapter 2 - 

Wilkinson, McIntyre, & Edwards, 2013).  

 

To further the understanding of the mechanisms underlying the baroreceptor 

modulation of pain and nociception, investigators have also examined the pain-

related evoked potential (PREP) response to painful stimuli. Pain-related evoked 

potentials elicited by noxious stimuli are thought to represent the central processing 

of nociception and as such, many researchers have used PREPs as objective 

measures of pain. The most commonly studied components of the PREP waveform 

are the second negative (N2) and positive (P2) peaks (Kanda et al., 1996; Garcia-

Larrea, Peyron, Laurent, & Mauguiere, 1997; Fila & Bogucki, 2009), with N2 

occurring approximately 130–240 ms post stimulus and P2 approximately 230–390 

ms post stimulus (Bromm, 1985; Zaslansky et al., 1996). The amplitude of the N2 

and P2 PREP components have been shown to correlate with the intensity of pain 

stimulus (Becker, Haley, Urena, & Yingling, 2000; Bromm, 1984; Stowell, 1977; 

Zaslansky et al., 1996), as well as with subjective ratings of pain (Kanda et al., 

2002). In response to painful stimuli of the hand, both the N2 and P2 components 

have been found to be maximal at the midline central area, specifically scalp 

electrode site Cz (Bromm & Treede, 1987; Carmon, Mor, & Goldberg, 1976; 

Carmon, Dotan, & Sarne, 1978; Carmon, Friedman, Coger, & Kenton, 1980; Kakigi, 

Shibasaki, & Ikeda, 1989; Kanda et al., 1996; Kanda et al., 1999; Miyazaki et al., 

1994; Treede, Kief, Holzer, & Bromm, 1988). Supporting evidence suggesting the 
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origin of the N2 and P2 components is mainly the anterior cingulate cortex (ACC), 

whilst the secondary somatosensory cortex (SII) and insula cortex, bilaterally, also 

contribute to the N2 component (Bromm & Chen, 1995; Tarkka & Treede, 1993; 

Valeriani, Rambaud, & Mauguiere, 1996).  

 

Studies employing artificial baroreceptor stimulation have reported that the N2 

and P2 amplitudes (Mini, Rau, Montoya, Palomba, & Birbaumer, 1995) and the N2-

P2 peak-to-peak amplitude (Angrilli, Mini, Mucha, & Rau, 1997) elicited by noxious 

intracutaneous electrical stimulation of the finger were reduced during neck suction, 

whereas another study reported that the N2–P2 peak-to-peak amplitude elicited by 

noxious intracutaneous electrical stimulation of the finger was increased during neck 

suction (Brody et al., 1997). However, it is unclear what effect, if any, the artificial 

baroreceptor stimulation may have on the study participants and subsequent results. 

For example, the pressures exerted during the neck suction and compression may 

have made the procedure more aversive and distracting to participants, which may 

have influenced results. Additionally, Edwards and colleagues (2003) suggest that 

the neck cuff method for artificial baroreceptor stimulation may induce widespread 

physiological effects such as increased muscle tension indicated by increased 

muscle activity during trials when the neck cuff was applied compared to control 

trials. Such increase in muscle activity may contribute noise to the PREP recording 

as well as directly influencing baroreceptor effects of nociception. 

 

To our knowledge only two studies have utilised the natural variations in BP 

across the cardiac cycle to investigate the cortical processing of noxious stimuli 

(Edwards, Inui, Ring, Wang, & Kakigi, 2008; Gray, Minati, Paoletti, & Critchley, 

2010). The study by Edward et al. (2008) delivered noxious thulium-evoked laser 

stimulations were delivered to the dorsum of the right hand of 10 male participants 

and PREPs recorded at the vertex (Cz scalp electrode). The results reported that N2 

amplitudes and N2-P2 peak-to-peak amplitudes were attenuated mid cardiac cycle, 

corresponding to maximal baroreceptor activation, compared to early and late 

cardiac cycle when baroreceptor activation is lowest.  

Gray and colleagues (2010) investigated the effect of cue-induced expectancy 

and natural variations in BP across the cardiac cycle on electrocutaneously evoked 
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PREPs in a group of 11 female participants. Stimuli were delivered to the right 

ventral wrist during either the systolic or diastolic phase of the cardiac cycle, either 

with or without a visual cue prior to the pain stimulus. The results indicated that P2 

amplitudes were significantly greater for cued stimuli than for uncued stimuli. 

However, when cued stimuli were presented during systole, the larger P2 amplitude 

was abolished without any corresponding changes in BP or heart rate. In contrast to 

Edwards et al. (2009) no amplitude differences were reported for the N2 component 

between cued or uncued stimuli and there was no significant cardiac cycle effect. 

The findings of these two studies concurred with several previous artificial 

baroreceptor stimulation studies investigating PREP responses to noxious 

stimulation (Angrilli et al., 1997; Mini et al., 1995), and to previous cardiac cycle 

studies investigating NFR responses to noxious stimulation (Edwards et al., 2001; 

2002; 2003; McIntyre et al., 2006; 2008a). Taken together, these studies suggest 

that stimulation of the arterial baroreceptors modulates cortical processing of noxious 

stimuli.  

 

It should be noted that the aforementioned cardiac cycle studies investigating 

baroreceptor effects on PREP responses to noxious stimuli employed different 

methods of stimulation, namely thulium-evoked laser (Edwards et al., 2008) and 

electrical (Gray et al., 2010). Gray et al. (2010) only delivered stimuli at 2 intervals 

within the cardiac cycle (Baroreceptor active & baroreceptor silent), whereas 

Edwards et al. (2008) delivered stimuli at 8 intervals (R+50, R+150....R+750 ms). 

Therefore, it is important to consider investigating the effects of natural variations in 

BP across the cardiac cycle on electrocutaneous stimulations at a greater number of 

cardiac cycle intervals to determine if the patterning of PREPs across the cardiac 

cycle is consistent across pain modalities. In addition, Edwards et al. (2008) included 

only male participants in their sample and Gray et al. (2010) only included females. 

As males and females present differing pain sensitivities (Fillingim, King, Ribeiro-

Dasilva, Rahim-Williams, & Riley, 2009) it is important to investigate the PREP 

response across the cardiac cycle in a mixed sex sample to increase the 

generalisation of the results. Furthermore, Edwards et al. (2008) only determined the 

PREP response at scalp electrode Cz, whereas Gray et al. investigated possible 

modulation at sites lateral to the midline i.e. electrode sites C3 and C4.  
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Research regarding the precise location of pain processing in the brain is 

somewhat inconclusive with many studies indicating that following painful stimulation 

some of the pain processing areas are activated bilaterally, some contralaterally and 

some with a left or right hemisphere dominance regardless of side of stimulation. For 

example, Symonds and colleagues (Symonds, Gordon, Bixby, & Mande, 2006) 

reported using fMRI that following painful electrical stimulation, of the right and left 

hands, the somatosensory cortex and posterior insula were activated contralateral to 

the pain stimuli, whereas the mid/posterior insula, anterior insula, and posterior 

cingulate were activated bilaterally. Additionally, the middle frontal gyrus, anterior 

cingulate, inferior frontal gyrus, medial/superior frontal gyri, and inferior parietal 

lobule showed either an exclusive or strong lateralisation to the right hemisphere 

(Symonds et al., 2006). Additionally, further studies utilising fMRI have found 

bilateral responses within the SI, SII and insula but with a significantly greater 

contralateral response in SI and the thalamus in response to painful laser stimulation 

applied to the right and left hands (Bingel et al., 2003) and right and left lower legs 

(Youell et al., 2004). Left insula activity was also elevated following lower leg 

stimulation in the later study (Youell et al., 2004). Similar mixed findings were 

reported using PET, with increased cerebral blood flow following painful contact 

thermal stimulation of both the left and right arms in contralateral regions of the 

primary somatosensory cortex (SI), SII, insular cortex and bilateral regions of the 

cerebellum, putamen, thalamus, ACC, and frontal operculum regardless of side of 

stimulation (Coghill, Gilron, & Iadarola, 2001).Consequently, there is no clear 

consensus on the precise location of pain processing, although a meta-analysis of 

pain imaging studies suggests that in humans and primates the SI, SII ACC and 

Insula are consistently activated contralateral to the side of pain stimulation (see 

Peyron et al., 2000b for review). 

 

In addition to the imaging studies discussed above, in specific relation to 

PREPs, studies have consistently identified the ACC as generating the N2 and P2 

components, and SII and insular cortex, bilaterally additionally contributing to the N2 

component (Bromm & Chen, 1995; Tarkka & Treede, 1993; Valeriani et al., 1996). 

Therefore, considering that the key pain regions (i.e. the SI, SII, ACC and Insula) as 

these extend anatomically laterally beyond the midline of the scalp (Nolte, 2002), 
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and previous studies have consistently identified contralateral, bilateral and 

lateralised activation of these pain processing areas (Apkarian et al., 2005; Bushnell 

& Apkarian, 2006; García-Larrea et al., 2003; Ingvar, 1999; Peyron et al., 2000b; 

Porro, 19 2003; Rainville, 2002; Tracey & Mantyh, 2007; Treede et al., 1999) 

electrode sites C3 and C4 would be expected to overlay these regions of possible 

pain processing. 

 

The current study aimed to further the knowledge relating to the effects of 

natural fluctuations in BP across the cardiac cycle, on the cortical processing of 

noxious stimulation. Several methodological features were included to address the 

questions raised above, specifically, (a) to determine if stimulus modality influences 

the cardiac cycle modulation of PREPs, electrical stimulations were delivered via a 

concentric planar electrode (Kaube, Katsarava, Kaufer, Diener, & Ellrich, 2000) 

which has been shown to selectively stimulate A-δ nociceptive fibres (Katsarava et 

al., 2006; Kaube et al., 2000), (b) to increase the generalisation of the findings 

participants included both males and females, and (c) to determine if the cardiac 

cycle modulation of PREPs is evident in brain areas beyond Cz, PREP responses 

will be analysed at scalp electrode sites identified as overlaying potential sites of 

pain and cardiovascular system overlap i.e. Cz, C3 and C4. Based on previous 

findings that the N2-P2 peak-to-peak amplitude and the N2 amplitude, both shown to 

correlate with subjective pain reports and stimulus intensity (Bromm & Meier, 1984; 

Bromm & Lorenz, 1998; Granovsky, Granot, Nir, & Yarnitsky, 2008; Greffrath, 

Baumgartner, & Treede, 2007; Kanda et al., 2002), were attenuated during systole in 

response to noxious laser stimulation (Edwards et al., 2008) and that the NFR 

(Edwards et al., 2001; 2002; 2003; McIntyre et al., 2006; 2008a) and pain (Wilkinson 

et al., 2013) have been found to be reduced during systole, it was hypothesised that 

the N2–P2 peak-to-peak amplitude and N2 amplitudes would be reduced during 

systole compared to diastole at Cz. As previous studies have reported contributions 

to the N2 component of the PREP from SII and insular cortex bilaterally (Bromm & 

Chen, 1995; Tarkka & Treede, 1993; Valeriani et al., 1996) it was also hypothesised 

that the N2–P2 peak-to-peak amplitude and the N2 amplitudes would be reduced 

during systole compared to diastole at C3 and C4.  
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4.3 Methods 

4.3.1 Participants 

Twenty-Six (11 men, 15 women) normotensive adults with a mean (SD) age of 19.3 

(2.3) years and body mass index (BMI) of 24 (5.4) kg/m2 were recruited from the 

Loughborough University campus and local community to participate in the study. 

Mean (SD) resting systolic BP (SBP) was 120.3 (12.0) mmHg, diastolic BP (DBP) 

was 71.4 (7.2) mmHg, and resting heart rate (HR) was 71.4 (12.0) bpm. Individuals 

were excluded if they had any known health problems including chronic pain 

disorders, cerebrovascular, cardiovascular or neurological diseases, had a cardiac 

pacemaker, history of major psychiatric disorders, were pregnant or had missed their 

last menstrual cycle, were taking routine prescription medicine except for birth 

control, were currently using any narcotic substances, had an alcohol intake greater 

than 28 units per week for men and 21 units per week for women or had a resting 

HR above 92 bpm. Participants were asked to refrain from analgesic medication for 

24 hrs and caffeine, nicotine and vigorous exercise for 2 hrs prior to testing. The 

Loughborough University Ethical Advisory Committee approved the study, and all 

participants provided written informed consent. 

 

4.3.2 Apparatus and measurements 

Resting BP (mmHg) and HR (bpm) were obtained using an automated oscillometeric 

sphygmomanometer (Omron 705-IT, Omron Healthcare Europe) and a brachial cuff 

attached around the upper non-dominant arm. An electrocardiogram (ECG) was 

recorded continuously at 2500 Hz using three disposable spot electrodes 

(Cleartrace, ConMed) placed in a modified chest configuration and connected to an 

AC amplifier (LP511, Grass). Pain stimuli (triple 1 ms monopolar square wave pulse 

with 5 ms inter-pulse interval at 200Hz) were delivered electrocutaneously by a 

constant current stimulator (DS7A, Digitimer) via a concentric planar electrode 

(Kaube et al., 2000). The concentric planar electrode was secured with tape 

(Transpore, 3M) to the dorsal surface of the right hand between the metacarpals of 

the index and middle fingers. Electrode sites were prepared by exfoliating (Nuprep, 

D.O. Weaver & Co) then degreasing the skin using isopropyl alcohol swabs (Sterets, 

Medlock Medical Ltd.). Electroencephalographic (EEG) data was recorded via a 

flexible nylon headcap (Biosemi) containing 32 electrode holders positioned 
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according to the internationally recognised 10-20 coordinate system (Jasper, 1958). 

A blunted needle (16G ¾ blunt square grind, Becton Dickinson and Company) and 

syringe (5ml syringe luer-lok tip, BD) were used to part the participants hair and fill 

each electrode holder (Biosemi Active electrode holders) with conductive gel 

(Electro-Gel, ECI). Thirty-two active version pin electrodes - sintered Ag-AgCl 

electrode tip (Biosemi) plus two feedback loop electrodes; a) Common Mode Sense 

(CMS) active electrode and b) Driven Right Leg (DRL) passive electrode were 

inserted into the corresponding electrode holders and checked to ensure electrode 

offset was below 25 mV. In addition to the head cap electrodes, six external 

electrodes flat type active electrodes - 4mm diameter sintered Ag-AgCl electrode 

pallet (Biosemi) were used to measure horizontal (HEOG) eye movement (2 

electrodes) and vertical (VEOG) eye movement (2 electrodes) and to later act as 

reference for the scalp electrodes (2 electrodes). The cavity of each flat-type active 

electrode was filled with conductive gel and secured in place with double sided 

adhesive disks (Biosense Medical Ltd.) and with tape (Medipore, 3M). Both the 

Biosemi pin and flat electrodes are designed to provide very low noise, low offset 

voltages and very stable DC performance due to signal amplification occurring at the 

electrode which results in high electrode impedances not influencing the signal 

quality (Metting van Rijn, Kuiper, Dankers, & Grimbergen, 1996). 

 

4.3.3 Procedure 

Participants were tested in a single 2.5-hr session. At the start of the session 

participants sat quietly whilst completing the following questionnaires: (a) 

Demographics questionnaire containing questions about age, sex, health habits, 

education, (b) Spielberger State and Trait Anxiety Inventory (Spielberger, Gorsuch, & 

Lushene, 1970) , a 40-item inventory which assesses levels of state and trait anxiety 

and (c) the Center for Epidemiologic Studies Depression (CES-D) Scale (Radloff, 

1977), a 20-item scale which is designed to measure depressive symptomatology in 

the general population (10 min total). Next, participants rested quietly while baseline 

BP and HR were measured at 60, 180, and 300 s (6 min). If a participant’s HR 

exceeded 92 bpm, they were excluded from the study, as HR’s above 92bpm would 

mean that stimuli presented at R-wave + 650ms would fall within the next cardiac 

cycle; however, none were excluded. Following instrumentation (30 min) participants 
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firstly undertook a pain threshold determination procedure (15 min). Participants then 

rested for 5mins after which a PREP assessment was completed (70 min). 

 

4.3.4 Instrumentation 

Electrode sites for the ECG were prepared by exfoliating then degreasing the skin to 

reduce impedance. Three electrodes were placed in a modified chest configuration; 

the two active electrodes were placed on the right clavicle and a rib below the heart 

on the left side of the torso and the ground electrode was placed on the left clavicle.  

 

 The same skin preparation procedure was applied to the ear lobes, an area 

between the outer canthus of the eyes and the temples, areas directly below each 

eye (infra-orbital point) and the forehead. Subsequently, the two external HEOG 

electrodes were attached to the skin approximately 1 cm out from the outer canthus 

of each eye, the two external VEOG electrodes were attached on the infra-orbital 

point below each eye and the two external reference electrodes were attached to the 

ear lobes. Next, the circumference of the participants head was measured to 

determine the appropriate size EEG head cap. The head cap was then placed on the 

participants head and secured in place with the chin strap. The location of the central 

(Cz) electrode was identified as half way between two anatomical landmarks; (a) the 

nasion, which is the distinctly depressed area between the eyes, just above the 

bridge of the nose, and (b) the inion, which is the lowest point of the skull from the 

back of the head and is normally indicated by a prominent bump. Lateral positioning 

of the Cz electrode was determined by investigator positioning and participant 

feedback from the insertion of the blunt needle into the Cz electrode holder. Once 

the head cap was in position the blunt needle and syringe were used to part the hair 

and fill each electrode holder with conductive gel to ensure contact with the scalp. 

The 32 electrodes, plus the CMS and DRL electrodes were then inserted into the 

corresponding electrode holder and their electrode offset checked. 

 

Finally, the skin on the dorsal surface of the right hand between the 

metacarpals of the index and middle fingers was cleaned as previously described 

and the concentric planar electrode secured in position with tape. 
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4.3.5 Pain threshold assessment 

Participants sat upright and supported their right forearm on a table while their hand 

rested on the response box. Mounted on the response box (16 cm × 16 cm × 3 cm) 

were a piezo-oscillator (top middle), a red light emitting diode (top left), a green light 

emitting diode (top right), and buttons marked “Yes” and “No” (centre left and right, 

respectively). A computer was programmed in Spike2 (CED) to record responses 

and trigger stimuli using a Micro II 1401 (Cambridge Electronic Design). 

 

Pain detection thresholds were determined using an up-down staircase 

procedure (Levitt, 1971). A green warning light (1000 ms duration) illuminated to 

signify the start of each trial and a red light (variable duration; the light remained 

illuminated until the participant made a response, up to a maximum of 7500 ms) 

indicated the end of each trial. Following illumination of the green light, a 1s delay 

occurred after which the search for the R-wave of the ECG commenced and 

subsequently the participants hand was stimulated by a series of 3 square-wave 

pulses of 1 ms duration and 5 ms interval (200 Hz) at R+50 ms. Participants were 

informed that the stimulus could occur at any time between the illumination of the 

green and red lights. Once the red light was illuminated participants pressed the 

“Yes” button if they perceived the stimulation as painful or the “No” button if they did 

not perceive it as painful. The next trial commenced following the participants 

response. On the first trial the stimulus intensity was 0 mA, and subsequently 

increased in 0.8 mA steps until the participant first reported a painful sensation (first 

reversal). The stimulus intensity then decreased in 0.4 mA steps until the stimulus 

was no longer reported as painful (second reversal). Each staircase then continued 

in 0.1 mA steps until the staircase had completed two further ascending and 

descending series (i.e. four more reversals). The pain threshold (mA) was defined as 

the average of the peaks during the second and third series (i.e. the third and fifth 

reversal points) of each staircase. The maximum allowable stimulus intensity was 30 

mA; however, this stimulus intensity was never reached. 

 

4.3.6 Pain-related evoked potential procedure 

Stimulation intensity was calculated as two times each individuals pain threshold and 

electrocutaneous stimulations were delivered using the same parameters as for the 



Chapter 4 
 

 
 

137 
 

threshold assessment procedure. Participants sat upright in a quiet room with their 

hands resting on their knees. They were instructed to focus on a fixation point (a 

black circle 2cm in diameter) positioned on the wall directly in front of them 

throughout each experimental block, to relax their muscles and to remain as still as 

possible. Each participant completed 7 experimental blocks of 21 trials, separated by 

a 5 minute rest period. During each block the participants hand was stimulated at 

each of seven R-wave intervals (R+50, R+150, R+250, R+350, R+450, R+550, 

R+650 ms) three times, thus over the 7 experimental blocks each interval was 

presented 21 times. The R-wave interval used in each trial was selected 

pseudorandomly and the inter-stimulus interval 12, 16, or 20s was pseudorandomly 

selected. At the start of each block an additional pain stimulus was delivered, but no 

data recorded, to prevent startle contamination affecting subsequent EEG activity. 

Participants were informed that the stimulus could occur at any time during the 

experimental period and that the experimental block would last approximately five 

minutes.  

 

The Spike 2 programme marked the EEG data when each pain stimulus was 

delivered and also marked the EEG data with a beat-before trigger at the same R-

wave interval in the preceding cardiac cycle as the subsequent pain stimulus. One 

problem with cardiac cycle studies is the potential for contamination of the EEG data 

by ECG artefacts (Gray, Minati, Paoletti, & Critchley, 2010). Marking the data during 

a cardiac cycle when no pain stimuli where delivered meant we were able to 

generate a beat-before average of EEG data representing the ECG-related artefacts 

and subtract this from the corresponding PREP average and thus remove any 

potential ECG contamination.  

 

To ensure the stimulus remained painful, participants completed the Short-

Form McGill Pain Questionnaire (Melzack, 1987) after each experimental block. The 

questionnaire included participants rating the average intensity of the pain stimuli 

during the proceeding block on a rating scale of 0-100 with anchors of ‘0’ (no 

sensation), ‘1’ (first sensation), ‘25’ (uncomfortable), ‘50’ (just noticeable pain), ‘75’ 

(very painful), and ‘100’ (maximum tolerable pain). If participants rated the intensity 

of the stimuli less than 50 (just noticeable pain) the stimulation in the following 
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experimental block was increased to double that used in the proceeding block. 

However, no participants rated the intensity below 50. 

 

4.3.7 Electroencephalographic data recording and analysis 

The EEG activity was recorded reference free, continuously using 32 electrodes via 

a battery-powered amplifier (Biosemi ActiveTwo AD-box, Mk 2) at a sample rate of 

2048 Hz. Raw EEG and external electrode data were processed offline using BESA 

Research 5.2.2. The data were re-referenced to a linked ears reference off-line and 

filtered using a 30 Hz, 12 db/oct, ZeroType low-pass filter and a 0.1 Hz, 12 db/oct, 

Forward Type high-pass filter. Beat-before and pain stimulus data were segmented 

into 900 ms epochs (− 100 ms to 800 ms). The baseline was defined as 100ms pre-

stimulus to stimulus onset. EEG data were corrected for ocular movement artifacts 

using manual definition of each participants blink topography and applying an 

adaptive artifact correction (Ille, Berg, & Scherg, 2002). Following correction of 

ocular movement artifacts, data were automatically scanned for epochs containing a 

voltage change of greater than 100 μV and these were rejected. Remaining trials 

were averaged according to R-wave interval (R+50, R+150, R+250, R+350, R+450, 

R+550, R+650 ms) resulting in a single PREP and one corresponding beat-before 

average for each R-wave interval. If more than 50% of the total pain or beat before 

trials were rejected, the participant was removed from further analysis. No 

participants were removed. The mean number of accepted trials per R-wave interval 

was 20 for both pain stimulus and beat-before (range = 13 to 21). Figure 7 shows, 

(a) the variation in one representative participants PREP potentials in consecutive 

trials across one experimental block, and (b) the average PREP waveform generated 

for an individual cardiac cycle interval after averaging 21 individual trials.  

 

Prior to analysis of the PREP components, each R-wave beat-before average 

(e.g. Figure 8a) was subtracted from the corresponding PREP average (e.g. Figure 

8a) to generate a difference PREP (e.g. Figure 8c). Such subtraction aimed to 

remove any ECG artefacts from the PREP for each individual cardiac cycle interval. 

However as shown in Figure 8, the beat-before waveform (8b) actually appears to 

contain very few ECG artifacts and there is therefore little difference between the 

original PREP waveform (8a) and the PREP minus beat-before waveform (8c). 
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Figure 7. Pain-related evoked potential waveforms for (a) 21 consecutive trials in a 

single experimental block (Block 1) and, (b) the average PREP for a single cardiac 

cycle interval (R+350ms) when 21 trials are combined in a representative participant. 
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Figure 8. Pain-related evoked potential waveforms for a) an average PREP 

waveform, b) average beat-before waveform and c) an average PREP minus beat-

before waveform for a representative participant 
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4.3.8 Pain-related evoked potential analysis 

There are three main approaches to analysing PREPs, (a) peak amplitudes, (b) 

mean amplitudes, and (c) area analysis. Mean amplitudes are a linear measure and 

may be more reflective of components extending over time, especially if the time 

window is longer, compared to the single peak amplitude value which may be 

distorted by high frequency noise as mean amplitudes are less susceptible to high 

frequency noise (Luck, 2005). Area analysis reduces the influence of latency 

variability reducing amplitudes, as the area under the curve calculated from the 

waveform generated from several trials is always equal to the average of the area 

under the curve in each individual trial (Luck, 2005). However, as the pain response 

is generally a well defined, high frequency component the peak amplitude is likely to 

be the most appropriate method of analysis (Luck, 2005) and therefore in order to 

focus and streamline the results only the peak amplitude data will be reported in this 

chapter. 

 

4.3.9 Peak Amplitude Detection 

Peak detection windows for identification of the N2 and P2 component of the 

difference PREPs were identified as the latency of the visually identified N2 and P2 

peak amplitudes from the grand average difference waveform for all participants and 

all intervals +40ms. Therefore the analysis windows for the N2 and P2 components 

of the averaged difference waveforms were 97-177ms and 263-343ms respectively. 

This fits with the typical electrically induced PREPS’s being characterised by a 

negative peak (N2) at approximately 130–240 ms post stimulus followed by a 

positive peak (P2) approximately 230–390 ms post stimulus (Bromm, 1985; 

Zaslansky et al., 1996). Peak amplitudes were identified automatically within each 

analysis window for each R-wave interval. Peak amplitudes were defined as the 

baseline to highest peak in the detection window.  Peak-to-peak measurements were 

also calculated as the difference between the peak in the 97-177ms window (N2) 

and the peak in the 263-343ms window (P2). 

 

On the basis of previous neuroimaging studies identifying cerebral regions 

activated by painful stimulation (see Introduction), analyses were conducted on the 

following electrodes; Cz, C3 and C4. These electrodes are thought to reflect the 
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activity of brain areas associated with pain perception i.e. the ACC, SII, insular 

cortex bilaterally (Bentley, Derbyshire, Youell, & Jones, 2003; Bromm & Chen, 1995; 

Garcia-Larrea, et al., 2003; Ohara, Crone, Weiss, & Lenz, 2006; Tarkka & Treede, 

1993; Treede, Lorenz, & Baumgartner, 2003; Valeriani et al., 1996) and the 

contralateral SI (Bushnell & Apkarian, 2006; Craig, 2002; Kakigi et al., 2005; Peyron 

et al., 2000a; Rainville, 2002). 

 

4.3.10 Data reduction and analyses 

The BP and HR readings were averaged to provide measures of resting SBP, DBP 

and HR. A series of repeated measures analysis of variance (ANOVAs) with R-wave 

to stimulation interval (i.e., R+0 ms, R+150 ms, R+250 ms, R+350 ms, R+450 ms, 

R+550 ms, R+650 ms) as a within subjects factor were performed separately on N2 

and P2 peak amplitudes and N2-P2 amplitudes for Cz, C3 and C4 scalp electrodes.  

 

Tonic BP has been shown to effect baroreceptor modulation of pain (e.g., 

Droste et al., 1994). Therefore, to examine the effect of tonic BP on PREPs across 

the cardiac cycle, participants were classified as having relatively low and high BP 

based on a median split of SBP and DBP. Median SBP was 120.17 mmHg; the 

SBPlow and SBPhigh group comprised 13 participants each. For DBP the median was 

70.00 mmHg; the DBPlow and DBPhigh group comprised 13 participants each. Chi-

squared analysis revealed differences for sex between the SBPlow and SBPhigh 

groups, χ2(1) = 7.72, p = .005. The SBPlow group comprised 2 Males and 11 

Females, whereas the SBPhigh group contained 9 Males and 4 Females. There were 

no significant differences for sex between the DBP groups, χ2(1) = 0.16, p = .691. 

The DBPlow group contained 5 Males and 8 Females, and the DBPhigh group 

consisted of 6 Males and 7 Females. A series of ANOVA’s were performed on the 

continuous variables; SBP, DBP, BMI, height, weight and mean pain threshold 

across all intervals. Analyses revealed that the SBPhigh group had significantly higher 

SBP, DBP, weight, height, BMI and mean pain thresholds than the SBPlow group. 

There were no significant differences between the groups in terms of age (Table 2). 

Similar ANOVA’s using DBP group revealed significant differences between the 

groups only in terms of SBP and DBP, there were no other significant group 

differences (Table 3). 
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Table 2. Mean (SE) Characteristics of the SBPlow and SBPhigh Groups as well as 

Degrees of Freedom, F Values & Statistical Significance Level of the Group Effects and 

Associated Effect Size 

 

Variable SBPlow SBPhigh df F p p
2
 

Systolic blood 

pressure (mmHg) 
109.59 (1.05) 131.10 (1.64) 1, 24 121.34 <.001* .835 

Diastolic blood 

pressure (mmHg) 
67.36 (1.41) 75.46 (1.87) 1, 24 11.96 .002* .333 

Age (years) 19.62 (0.84) 18.92 (1.12) 1, 24 0.59 .449 .024 

Weight (kg) 59.54 (10.59) 83.15 (23.64) 1, 24 10.80 .003* .310 

Height (m) 1.67 (0.09) 1.78 (0.11) 1, 24 7.22 .013* .231 

BMI (kg/m
2
) 21.18 (0.63) 26.20 (1.78) 1, 24 7.05 .014* .227 

Mean Pain 

Threshold (mA) 
1.00 (0.12) 1.52 (0.22) 1, 24 4.32 .049* .153 

*significant at 0.05 

 

 

Table 3. Mean (SE) Characteristics of the DBPlow and DBPhigh Groups as well as 

Degrees of Freedom, F Values & Statistical Significance Level of the Group Effects and 

Associated Effect Size 

 

Variable DBPlow DBPhigh df F p p
2
 

Systolic blood 

pressure (mmHg) 

114.62 

(3.30) 
126.08 (2.59) 1, 24 7.45 .012* .237 

Diastolic blood 

pressure (mmHg) 
65.33(0.68) 77.49 (1.27) 1, 24 71.37 <.001* .748 

Age (years) 19.39 (0.83) 19.15 (0.37) 1, 24 0.07 .802 .003 

Weight (kg) 64.58 (5.22) 78.12 (6.33) 1, 24 2.73 .112 .102 

Height (m) 1.70 (0.29) 1.75 (0.33) 1, 24 1.21 .282 .048 

BMI 22.49 (0.89) 24.89 (1.90) 1, 24 1.32 .263 .052 

Mean Pain 

Threshold (mA) 
1.25 (0.17) 1.28 (0.21) 1, 24 0.01 .910 .001 

*significant at 0.05 
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A series of 2 BP Group (low, high) × 2 Sex (male, female) × 7 Interval (R+50, 

R+150, R+250, R+350, R+450, R+550, R+650 ms) repeated measures ANOVA, with 

Group and Sex as between-subjects factors and Interval as the within-subjects 

factor, were performed on N2 and P2 peak amplitudes and N2-P2 difference for Cz, 

C3 and C4 scalp electrodes. Sex was used as a between-subjects factor due to the 

SBP group differences identified, because men typically have higher BPs (e.g. 

Reckelhoff, 2001) and because there is good evidence that pain sensitivity is greater 

in women (Fillingim et al., 2009). As BMI has been shown to influence pain 

thresholds (e.g. Hodge & Zimmet, 1994) and in the current study BMI correlated with 

pain thresholds averaged across intervals (r (26) = .479, p = .013), BMI was entered 

as a covariate. 

 

ANOVAs were corrected for the assumption of independence of data points 

using Huynh-Feldt correction (). In addition to significance levels, partial eta-

squared (p
2), a measure of effect size, is also reported, indicating the proportion of 

total variation attributable to the factor, partialling out (excluding) other factors from 

the total non-error and range from 0 to 1 (Cohen, 1973). As partial eta-squared may 

over estimate effect sizes in repeated measures studies, effect sizes of 0.01, 0.09 

and 0.25 are accepted as representing small, medium and large effects respectively 

(Hanna & Dempster, 2012). A significance level of .05 was adopted. Data were 

analysed using SPSS 20.0 and Statistica Version 10. 

 

4.4 Results 

4.4.1 Cardiac cycle effects on pain-related evoked potentials 

Separate 7 Interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) 

repeated measures ANOVA’s were performed on N2, P2 amplitudes and N2-P2 

peak-to-peak amplitude for Cz, C3 and C4 scalp electrodes, means (SD) are shown 

in table 4 and presented graphically in figure 9. As shown in table 5, these analyses 

revealed no significant variations in any of the variables of interest across the cardiac 

cycle (all p’s >.05). 
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Table 4. Mean (SD) N2, P2 peak amplitudes and N2-P2 peak-to-peak amplitudes at 

seven intervals across the cardiac cycle for electrocutaneous PREPs at Cz, C3 and 

C4 electrodes. 

 

 Mean (SD) Pain Thresholds (mA)  

Variable 
R+50 

ms 

R+150 

ms 

R+250 

ms 

R+350 

ms 

R+450 

ms 

R+550 

ms 

R+650 

ms 

Cz Electrode        

    N2 Amplitude (µV) 
-13.04 

(9.21) 

-11.83 

(5.93) 

-14.05 

(6.92) 

-13.92 

(7.81) 

-12.43 

(6.50) 

-14.23 

(7.60) 

-12.34 

(6.34) 

    P2 Amplitude (µV) 
11.24 

(8.26) 

12.24 

(8.90) 

11.28 

(9.06) 

11.25 

(9.74) 

11.87 

(8.14) 

11.35 

(9.19) 

11.13 

(8.54) 

    N2-P2 peak-to- 

    peak Amplitude  

    (µV) 

26.47 

(13.44) 

26.44 

(10.47) 

27.65 

(11.00) 

27.54 

(12.42) 

26.40 

(9.72) 

27.83 

(12.14) 

25.94 

(10.91) 

C3 Electrode        

    N2 Amplitude (µV) 
-12.41 

(8.03) 

-11.74 

(5.88) 

-12.78 

(5.97) 

-13.00 

(7.56) 

-12.03 

(5.76) 

-12.95 

(6.27) 

-11.59 

(5.90) 

    P2 Amplitude (µV) 
7.63 

(7.45) 

7.86 

(7.37) 

7.59 

(7.00) 

7.89 

(7.95) 

7.54 

(6.40) 

7.72 

(7.74) 

7.00 

(7.20) 

    N2-P2 peak-to- 

    peak Amplitude  

    (µV) 

21.40 

(11.75) 

21.46 

(9.75) 

21.98 

(9.07) 

22.72 

(10.62) 

20.92 

(9.84) 

22.29 

(10.14) 

20.35 

(9.53) 

C4 Electrode        

    N2 Amplitude (µV) 
-11.19 

(7.05) 

-10.98 

(5.17) 

-11.87 

(6.35) 

-12.08 

(6.22) 

-10.78 

(5.07) 

-11.90 

(6.21) 

-11.30 

(5.58) 

    P2 Amplitude (µV) 
7.01 

(5.91) 

6.85 

(6.21) 

5.90 

(5.87) 

6.34 

(6.98) 

7.82 

(6.76) 

6.27 

(5.86) 

6.84 

(7.23) 

    N2-P2 peak-to- 

    peak Amplitude  

    (µV) 

18.79 

(10.50) 

19.48 

(8.66) 

19.19 

(9.19) 

20.20 

(8.98) 

20.12 

(7.62) 

19.86 

(9.49) 

20.03 

(9.90) 
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Table 5. Seven Interval repeated measure ANOVA statistics for N2, P2 peak 

amplitudes and N2-P2 peak-to-peak amplitudes across the cardiac cycle for 

electrocutaneous PREPs at Cz, C3 and C4 electrodes. 

 

Variable  df F p p
2
 

Cz Electrode      

    N2 Amplitude (µV) .902 
5.41, 

135.28 
1.61 .156 .061 

    P2 Amplitude (µV) .774 
4.64, 

116.05 
0.51 .753 .020 

    N2-P2 peak-to-peak                   

    Amplitude (µV) 
.944 

5.66, 

141.54 
0.71 .637 .027 

C3 Electrode      

    N2 Amplitude (µV) .878 
5.27, 

131.66 
0.71 .627 .027 

    P2 Amplitude (µV) .933 
5.60, 

139.94 
0.24 .955 .010 

    N2-P2 peak-to-peak   

    Amplitude (µV) 
.953 

5.72, 

142.93 
0.99 .433 .0.38 

C4 Electrode      

    N2 Amplitude (µV) .978 
5.87, 

146.75 
0.58 .744 .023 

    P2 Amplitude (µV) .862 
5.17, 

129.31 
1.11 .357 .043 

    N2-P2 peak-to-peak  

     Amplitude (µV) 
.963 

5.78, 

144.43 
0.41 .866 .016 

*significant at 0.05 
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FIGURE 9. Mean (SE) a) N2 peak amplitude, b) P2 peak amplitude, and c) N2-P2 

peak-to-peak amplitude electrocutaneous PREP components as a function of phase 

of the cardiac cycle.  
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4.4.2 Tonic BP and pain-related evoked potentials across the cardiac cycle 

The effect of tonic BP on PREP amplitudes across the cardiac cycle was 

investigated by splitting the participants into low-normal and high-normal SBP and 

DBP groups. A series of separate 2 BP Group (low, high) × 2 Sex (male, female) × 7 

Interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) ANOVA’s were 

performed on N2, P2 amplitudes and the N2-P2 peak-to-peak amplitude for Cz, C3 

and C4 electrodes. 

 

4.4.3 N2 peak amplitudes across the cardiac cycle 

A series of 2 Group × 2 Sex × 7 Interval ANOVA’s revealed no main effects for 

Group (all p’s >.05) or Sex (all p’s >.05) at any scalp electrode of interest (Cz, C3, 

C4) for N2 peak amplitudes. Analysis also revealed no Group × Interval, Sex × 

Interval or Group × Sex × Interval interactions (all p’s >.05) at any electrode of 

interest (Cz, C3, C4). Similar analysis using a DBP median split, also revealed no 

main or interaction effects at Cz, C3 or C4 (all p’s >.05). 

 

4.4.4 P2 peak amplitudes across the cardiac cycle 

As with N2 peak amplitudes, a series 2 Group × 2 Sex × 7 Interval ANOVA’s 

revealed no main or interaction effects at Cz, C3 or C4 electrodes (all p’s >.05) for 

both SBP and DBP analyses.  

 

4.4.5 N2-P2 peak-to-peak amplitude across the cardiac cycle 

Further 2 Group × 2 Sex × 7 Interval ANOVA’s on N2-P2 peak-to-peak amplitude 

revealed a significant main effect for Sex at C3, F(1, 21) = 5.22, p = .033, p
2 = .199. 

Males had higher N2-P2 peak-to-peak amplitudes than females at C3, mean (SD) 

26.49µV (11.28) and 17.99 µV (11.97) respectively.  No other main or interaction 

effects were significant at Cz, C3 or C4 (all p’s >.05). 

 

When the ANOVA analyses was repeated using a DBP median split, no main 

or interaction effects were significant at any of the electrodes of interest (Cz, C3, C4) 

(all p’s >.05).  
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4.5 Discussion 

The current study examined the effect of natural fluctuations in BP across the 

cardiac cycle on electrocutaneous PREPs in a group of healthy participants at scalp 

electrodes Cz, C3 and C4 which are hypothesised to overlay cortical areas involved 

in pain processing i.e. Somatosensory areas located in the parietal operculum 

(Bushnell & Apkarian, 2006; Craig, 2002; Peyron et al., 2000b; Rainville, 2002), the 

insula and the ACC (Bentley et al., 2003; Frot, Rambaud, Guenot, & Mauguiere, 

1999; Garcia-Larrea et al., 2003; Lenz et al., 1998; Ohara et al., 2006; Treede et al., 

2003). The main findings were that the N2 and P2 peak amplitudes and the N2-P2 

peak-to-peak amplitude, which have been shown to correlate with the intensity of 

pain stimulus (Becker et al., 2000; Bromm, 1984; Stowell, 1977; Zaslansky et al., 

1996) as well as with subjective ratings of pain (Kanda et al., 2002), were unaffected 

by natural variations in BP across the cardiac cycle.  

 

The current findings partially agree with those of Gray and colleagues (2010) 

who reported no cardiac cycle effects for cued or uncued N2 peak amplitudes or for 

uncued P2 peak amplitudes. However, cued P2 peak amplitudes were modulated 

across the cardiac cycle, with reduced amplitudes during systole. No cue was 

presented prior to delivery of the pain stimulus in the current study. Therefore, 

presenting a cue prior to stimulation may be important in determining cardiac cycle 

modulation. In a second previous study which reported a systolic dampening of laser 

evoked PREPs (Edwards et al., 2008), participants were presented with a fixation 

point from 10 to 15 s before each stimulus, therefore the participants were aware 

that the stimuli was going to be presented and thus, is in line with Gray et al. (2010) 

suggests that cueing stimuli may be an important factor in cardiac cycle-related 

modulation. The reasons why cueing may influence cardiac cycle related modulation 

may relate to cardiac deceleration being induced by the cue (Graham & Clifton, 

1966; Lacey & Lacey, 1970). Such cardiac deceleration has been shown to reduce 

the cardiac cycle effects on visual evoked potentials (Walker & Sandman, 1982). 

Alternatively, cueing may lead to a shift in attention towards the pain (Gray et al., 

2010) which has been shown to increase its perceived intensity of pain (e.g. Angrilli, 

Mini, Mucha, & Rau, 1997) and increases PREP amplitudes (e.g. Lorenz & Garcia-

Larrea, 2003).  
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As mentioned above, the lack of cardiac cycle-related modulation of PREPs in 

the current study contrasts with a reported reduction in electrocutaneous evoked P2 

peak amplitudes during systole compared to diastole (Gray et al., 2010) and the 

systolic dampening of N2 peak amplitudes and N2-P2 peak-to-peak amplitudes in 

response to noxious laser stimulation at Cz electrode (Edwards et al., 2008). The 

findings are also contrasting to reports of a dampening of the NFR (Edwards et al., 

2001; 2003; McIntyre et al., 2006; 2008a) and pain perception (Wilkinson et al., 

2013) during systole compared to diastole. However, methodological differences 

may help explain the diverging results reported between the current study and the 

previous PREP cardiac cycle studies (Edwards et al., 2008; Gray et al., 2010). 

Firstly, the stimulus modality used to deliver the noxious stimulation was different; 

Edwards et al. (2008) used thulium-evoked laser stimulations whereas Gray et al. 

(2010) and the current study delivered electrocutaneous stimulations. However, it 

should be noted that the electrodes used to deliver the electrical stimulation were 

different. We used a concentric planar electrode (Kaube et al., 2000), were as Gray 

et al. (2010) used two standard EEG electrodes separate by approximately 1 cm, 

making its stimulation delivery very similar to a standard bar electrode. 

 

The different types of stimulation may differentially active nociceptive and non-

nociceptive fibres (e.g. Lefaucheur et al., 2012; Perchet et al., 2012). Laser 

stimulation has a rapid onset and excites a limited number of primary afferent fibres, 

primarily thin myelinated A-δ- and unmyelinated C-fibres (Meyer, Ringkamp, 

Campbell, & Raja, 2006). The myelinated A-δ afferents conduction velocity is 

approximately 15 m/s (Meyer, Walker, & Mountcastle, 1976), with high firing rates up 

to 30 Hz and reflect the fast “first pain” sensation being pinprick like (Arendt-Nielsen 

& Chen, 2003). Whereas the unmyelinated C fibres have slower conduction 

velocities approximately 0.86–1.25 m/s (Gybels, Handwerker, & Van Hees, 1979), 

have slower firing rates (15-20Hz) and reflect the “second pain” described as slow 

burning (Arendt-Nielsen & Chen, 2003). Traditional electrical stimulation, similar to 

that used by Gray et al. (2010) is known to cause powerful A-β fibre stimulation 

related to pressure-vibration which are felt like an aversive stab or vibration without 

actually being felt as pain (Gracely, 2006). Activation of A-β sensory fibres may have 

influenced the generation of PREPs in the current study, potentially reducing the 
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nociceptive nature of the stimulation and thus masking evidence of a cardiac cycle-

related modulation of the electrocutaneous PREPs. In relation to Melzack & Wall’s 

(1965) Gate Control Theory of Pain, stimulation of the larger A-β sensory fibres may 

result in stimulation of inhibitory interneurons within the dorsal horn. As stimulation of 

these inhibitory neurons inhibits the projection cells from sending nociceptive signals 

to the brain, the result is a closing of the gate and thus a reducing the pain signals 

reaching the brain. However, the concentric planar electrode used to deliver the pain 

stimuli in the current study is designed to selectively stimulate A-δ nociceptive fibres 

(Katsarava et al., 2006; Kaube et al., 2000) and indeed all participants described the 

sensation as painful and akin to a pin prick suggesting the activation of A-δ 

nociceptive fibres. Additionally, the PREP waveforms generated in the current study 

(Figure 7b) show the morphology and timings of the N2 and P2 components typically 

associated with electrocutaneous PREPs (Luck, 2005) and therefore it is likely that 

the electrical stimulation delivered in the current study was activating primarily A-δ 

pain fibres and thus generating PREPs reflecting brain responses to noxious rather 

than non-pain stimulation.  

 

Laser stimulation is a thermal pain and two recent studies (de Tommaso et al., 

2011; Lefaucheur et al., 2012) have reported differences in the latency of the N2 and 

P2 components between PREP responses evoked by laser stimuli and concentric 

planar electrode, with laser stimulation demonstrating later peak amplitudes than 

electrical. The latency differences could be attributed to differences in axon 

activation between the two stimulation modalities. Electrical stimulation directly 

activates peripheral afferents (Perchet et al., 2012), where as laser stimulation incurs 

a peripheral delay usually about 40 ms, although considerably less (approx.10-20 

ms) when brief duration laser stimulations are used (Iannetti et al., 2004), due to 

signal transduction between thermoreceptor heating and action potential generation 

in A-δ nociceptive fibres (Bromm & Treede, 1991; Plaghki & Mouraux, 2003). 

However, recent studies (de Tommaso et al., 2011; Perchet et al., 2012) concluded 

that the difference in latency between laser and concentric planar electrode PREP’s 

was greater (55-80 ms) than that generally associated with the receptor activation 

delay in brief laser stimulations (approx 10-20 ms). Therefore the authors conclude 

that the difference between the PREPs is likely indicative of a coactivation of A-β 
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fibres by the concentric planar electrode and thus suggest it may not be a specific 

nociceptive stimulation. Such differences in the PREP between laser and 

electrocutaneous stimulation may influence the cardiac cycle modulation of painful 

stimuli and help explain the lack of cardiac cycle modulation in the current study. If 

the concentric planar electrode coactivates a significant proportion of large 

myelinated sensory A-β fibres, which when stimulated dominate the cortical 

response, the results would concur with the lack of cardiac cycle modulation reported 

in Study 2 (Chapter 3) of this thesis in relation to sensory thresholds. However, it 

should also be noted that Gray et al. (2010) report a cardiac cycle modulation of P2 

peak amplitudes using typical electrical stimulation electrodes. However, the PREP 

components which were modulated (P2) was different to the N2 and N2-P2 peak-to-

peak components reported to be modulated by Edwards et al. (2008) perhaps 

suggesting that electrical and laser evoked PREPs are modulated differently across 

the cardiac cycle. To investigate this further, studies are required directly comparing 

the PREP response to laser, concentric planar electrode and tactile stimulation 

across the cardiac cycle in the same individuals.  

 

Secondly, the current study aimed to increase the generalisation of the findings 

of Edwards et al. (2008) and Gray et al. (2010) who only included male and female 

participants respectively. The current study addressed this by including both male 

and female participants in the sample group. Consistent with previous literature 

suggesting women are more sensitive to pain than men, the current study revealed 

lower mean (SD) pain thresholds in females, 0.96 mA (0.40) compared to males, 

1.67 mA (0.77). The present findings suggest sex does not influence PREP 

amplitudes across the cardiac cycle. This is in line with previous studies that have 

not found sex differences in the cardiac cycle modulation of pain ratings (Martins, 

Ring, McIntyre, Edwards, & Martin, 2009) , nociceptive responding (Edwards et al., 

2001; Martins et al., 2009), pain thresholds (Study 1 – Wilkinson, McIntyre & 

Edwards, 2013) or reaction times (Birren, Phillips, & Cardon, 1963; Edwards, Ring, 

McIntyre, Carroll, & Martin, 2007; McIntyre, Ring, Hamer, & Carroll, 2007; McIntyre, 

Ring, Edwards, & Carroll, 2008b). However, this is not always the case as Study 2 

(Chapter 3) in this thesis indicated that cardiac cycle modulation of tactile sensory 

detection thresholds was only evident in a subset of male participants with low-
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normal BP. The only significant difference in the current study in relation to PREP 

amplitudes was that men had higher N2-P2 peak-to-peak amplitudes at C3 electrode 

than females when SBP median splits were applied. However, due to the relatively 

low number of male participants (n=11), these findings should be interpreted with 

caution. Further studies are needed with larger sample sizes to investigate the 

possible influence of sex on the cardiac cycle modulation of pain and PREPs. 

 

Third, the duration and total number of noxious stimulations delivered was also 

different between the studies and these differences may result in varying levels of 

peripheral nerve fibre fatigue (Greffrath et al., 2007) and/or central habituation to the 

painful stimuli (Bingel, Schoell, Herken, Buchel, & May, 2007; Bingel, Herken, 

Teutsch, & May, 2008; Milne, Kay, & Irwin, 1991). The current study employed 7 

blocks of 21 trials, Edwards et al. (2008) delivered 5 blocks of 12 trials and Gray et 

al. (2010) asked participants to complete 4 blocks of 50 trials. If the mean inter-

stimulus interval used in the current study (16 s) is applied, each experimental block 

would total approximately 320 s. Similarly, with a mean inter-stimulus interval of 17.5 

s, the Edwards et al. study would total 192s. Gray et al (2010) report that their 

experimental blocks lasted about 380 s. Therefore the total duration of the PREP 

task in the current study, including rest periods, was approximately 70 minutes (5 

min rest periods between blocks), compared to approximately 55 minutes (10 min 

rest periods between blocks) for Edwards et al. (2008) and 30 minutes (140 s rest 

period between blocks) for Gray et al. (2010).Thus, the current study had a longer 

total study time. 

 

A common occurrence following repetitive painful stimulation is habituation, i.e. 

a decrease in pain and pain-related responses to continuous or repetitive pain stimuli 

(LeBlanc & Potvin, 1966; Strempel, 1976; Strempel, 1978). In response to painful 

electrical stimulation applied to the same skin area every 30s, habituation was found 

over the course of 10 minutes (Milne et al., 1991). The response to painful stimuli 

has been shown to recover completely within 2 minutes of cessation of the 

stimulation (Milne et al., 1991) and thus the rest period (5 min) between each 

experimental block in the current study should have been sufficient to reduce 

habituation. However, the extended duration of the current study may have been 
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sufficient to dampen the pain responses to a greater extent than the previous studies 

(Edwards et al., 2008; Gray et al., 2010), although it should be noted that Gray et al. 

(2010) had longer individual experimental blocks (380 s vs. 320 s). 

 

The source of pain habituation has not been fully determined. Repetitive 

stimulation at the same skin site has been shown to potentially induce fatigue of 

peripheral nociceptive neurons (Greffrath et al., 2007) as well as central habituation 

to the painful stimuli (Handwerker & Kobal, 1993; Milne et al., 1991; Valeriani et al., 

2005). With regards to peripheral neuron fatigue due to the nature of laser 

stimulation and the potential for actual skin damage Edwards et al. (2008) moved the 

site of stimulation each time and thus may have reduced the effect of peripheral 

nociceptive neuron fatigue, whereas the current study stimulated at the same site 

throughout the experiment thus potentially exacerbating the effect of any neuron 

fatigue. Gray et al. (2010) did not move the stimulation site; however, the total 

experimental time was less. Recent functional neuroimaging studies have proposed 

that habituation to painful stimulation is related to central factors and specifically to 

increased activity in the rostral ACC (Bingel et al., 2007; Bingel et al., 2008). Indeed 

in response to electrical stimulation, habituation was shown not to depend on 

changes to peripheral nociceptive fibre recruitment or fatigue because the median 

nerve afferent volley remained constant throughout the period of stimulation (Milne et 

al., 1991). Therefore, it seems more plausible that the habituation to painful 

stimulation is a central mechanism which may be stimulus specific. In relation to 

central habituation, the longer experimental protocol may also have led to participant 

disengagement with the task indeed research has repeatedly shown that participant 

attention towards or away from the pain stimuli (Arntz, Dreessen, & Merckelbach, 

1991; Bantick et al., 2002; Coen et al., 2008; Iannetti et al., 2008) modulates the 

neural correlates of pain. Therefore, if the participants in the current study became 

disengaged with the task over time, drawing attention away from the pain stimulus, 

this may have reduced the PREP amplitudes (Arntz et al., 1991; Rutter, Dahlquist, & 

Weiss, 2009; Tan, 1982) and thus affected the cardiac cycle effects in the present 

study.  
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It could be suggested that the shorter inter-stimulus interval and rest periods 

employed by Gray et al. (2010) would be expected to cause a greater habituation to 

the pain (Milne, Kay, & Irwin, 1991). However, the design of the Gray study included 

visual cues for 50% of the stimuli which may have helped maintain participant 

engagement with the task to a greater extent than the current study. Indeed, it was 

only for cued stimuli that Gray et al. (2010) found a cardiac cycle modulation of P2 

amplitudes, and not for uncued stimuli, perhaps suggesting that participant focus is 

an important factor determining cardiac cycle effects.  

 

Although it is not clear what type of EEG hardware Edwards et al. (2008) used, 

high impedance EEG systems such as the Biosemi system used in the current study 

require a greater number of trials to achieve significance than comparable low 

impedance systems because although high electrode impedances do not 

significantly reduce the amplitude of the EEG signal (Johnson et al., 2001), they 

may, due to an increased size or incidence of skin potentials increase the noise 

level, thus lowering the signal-to-noise ratio (Kappenman & Luck, 2010). Although 

the Biosemi system is specifically designed to tolerate high electrode impedances 

(Metting van Rijn, Kuiper, Dankers, & Grimbergen, 1996), Kappenman and Luck, 

(2010) suggest that to achieve an 80% chance of statistical significance for the P300 

component using a high impedance system such as the Biosemi system with a 0.1 

Hz high-pass filter as used in the current study would require approximately 25  

individual trials per condition to be averaged whereas low impedance systems 

require approximately 10 trials. However, it should be noted that the number of 

required trials suggested by Kappenman and Luck (2010) was based on a study of 

just 12 particpants, whereas the current study had 26 participants. With respect to 

this, the current study demonstrated a higher number of accepted trials per cardiac 

cycle interval than Edwards et al. (2008), mean (SD) accepted trials for all cardiac 

cycle intervals was 19.9 (1.7) and 5.7 (2.4) respectively; data regarding accepted 

trials isn’t available for Gray et al. (2010). Kappenman and Luck (2010) suggest that 

the chance of achieving statistical significance can be improved by increasing the 

number of trials and/or the number of participants. Therefore, the current study 

aimed to improve the signal to noise ratio by recruiting more participants (N=26) than 

both Edwards et al. (2008) and Gray et al. (2008) who had just 10 and 11 
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participants respectively. However, it should be acknowledged that there may be an 

insufficient number of trials and or participants to achieve a significant result. 

Therefore, it would be advisable for future studies to increase the number of trials 

averaged per cardiac cycle interval or collapse data across intervals to improve the 

chance of achieving significance. Indeed post hoc power analysis using the G*power 

computer program (Faul, Erdfelder, Buchner, & Lang, 2009) indicated that adopting 

the reported effect size for the main effect for interval in the current study (f(U) = 

.255), with an alpha of .05 and power of .80, the study would require a total sample 

of 40 to detect, by repeated measures ANOVA, a difference in N2 peak amplitudes 

across the cardiac cycle. 

 

A significant aim of the current study was to determine if the proposed cardiac 

cycle-related modulation of PREPs extended beyond the single electrode (Cz) 

analysed by Edwards et al. (2008) indicating other brain areas potentially involved in 

the baroreceptor modulation of pain. Neuroimaging studies have documented a 

widespread “pain matrix” extending across both cortex hemispheres (Casey, 1999; 

Davis, 2000; Peyron et al., 2000b). To investigate the possible involvement of areas 

within this “pain matrix” beyond Cz in the cardiac cycle modulation of pain the current 

study assessed PREPs at C3 and C4 electrode sites. These sites were expected to 

overlay additional areas identified as interaction sites between the pain and 

cardiovascular systems i.e. ACC, SII and insular cortex bilaterally (Bromm & Chen, 

1995; Tarkka & Treede, 1993; Valeriani et al., 1996), the SI areas located in the 

parietal operculum (Bushnell & Apkarian, 2006; Craig, 2002; Peyron et al., 2000a; 

Rainville, 2002). Counter to our hypothesis, there was no cardiac cycle modulation at 

either C3 or C4. However, as the current study also revealed no significant 

modulation at Cz, this may be due to the methodological differences discussed 

above rather than disproving any wider spread interaction of pain and cardiovascular 

systems.  

 

As tonic BP is known to influence pain (e.g. France, 1999; Ghione, 1996), the 

present study also investigated the influence of tonic BP on the cardiac cycle-related 

modulation of PREPs. We found that participants in the high-normal SBP group had 

higher pain thresholds than the low-normal SBP group. However, we conclude that 
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this is likely to be due to the predominately male participants in the high-normal SBP 

group, who typically have higher pain thresholds than females (Fillingim et al., 2009). 

No BP group or interaction differences in PREPs were found. This is counter to 

several studies that have reported an inverse relationship between BP and pain 

within the normotensive range (for review see France, 1999). However, this 

relationship is not always evident (e.g., Bruehl, Chung, Diedrich, Diedrich, & 

Robertson, 2008; Bruehl et al., 2010; Edwards et al., 2002; France, 1999; Mechlin, 

Heymen, Edwards, & Girdler, 2011; Stewart & France, 1996). Future studies would 

do well to further investigate the possible influence of tonic BP on the cardiac cycle 

modulation of PREPs specifically looking at wider range of BP’s from the 

hypotensive through to hypertensive. 

 

In summary, the lack of cardiac cycle modulation of the N2 and P2 peak 

amplitude and N2-P2 peak-to-peak amplitude in the current study suggests that 

electrocutaneous PREPs are not influenced by the natural fluctuations in BP across 

the cardiac cycle. The data suggests that the cardiac cycle-related modulation of 

PREPs may not be as robust as other measures of pain such as the NFR, and that 

the modality of pain stimulation and attention, may influence the cardiac cycle-

related modulation of pain processing. Indeed, it appears that the NFR which is a 

spinal withdrawal reflex is consistently modulated across the cardiac cycle, whereas 

other responses including pain thresholds and PREP’s, which are generated 

cortically are less robust. This may suggest that the site of cardiac cycle modulation 

of pain is lower down the central nervous system than the central cortical regions 

investigated in the current study. Further studies are required to further investigate 

the possible differences between the cardiac cycle-related modulation of different 

pain modalities and possible sites of the modulation, and it would also be 

recommended to recruit larger numbers of participants. 
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5.1 Abstract 

Natural variations in blood pressure (BP) across the cardiac cycle have been shown 

to modulate nociception and pain. However, the findings for cortical measures i.e. 

pain-related evoked potentials (PREPs) may be less robust than the nociceptive 

flexion reflex (a spinal reflex response). One possible reason for this may be a 

lateralisation of pain and baroreceptor processing in the brain. Studies appear to 

suggest a right hemisphere dominance for both pain and baroreceptor input. The 

current study examined the effects of natural variations in BP across the cardiac 

cycle on electrocutaneous PREPs delivered to the right and left hand using multi-

channel recordings in 7 men and 10 women. Following determination of 

electrocutaneous pain thresholds using an up-down staircase method, stimuli equal 

to twice individual pain threshold were delivered to each hand on separate days in 7 

blocks of 21 trials to elicit PREPs. Stimuli were delivered pseudorandomly at 7 

cardiac cycle intervals (R-wave plus 50, 150, 250, 350, 450, 550, 650 ms). Separate 

2 Hand (Left, Right) × 3 Scalp Electrode Site (C3, Cz, C4) × 7 Interval repeated-

measures ANOVAs for N2 and P2 peak amplitudes and N2-P2 peak-to-peak 

amplitudes, revealed a significant main effect for scalp electrode site for N2 and P2 

peak amplitudes and N2-P2 peak-to-peak amplitudes, with amplitudes being highest 

at Cz scalp electrode. Additionally, a significant 2 Hand × 3 Scalp Electrode Site × 7 

Interval interaction for N2 peak amplitudes was also found, although subsequent 

ANOVA analyses to interrogate this finding were not significant. The findings 

tentatively suggest that both the side of stimulation and the site of scalp recording 

may be important in explaining the significant 2 Hand × 3 Scalp Electrode Site × 7 

Interval interaction for N2 peak amplitudes, and thus the cardiac cycle-related 

patterning of pain processing. 

 

 

Descriptors: Arterial baroreceptors; Lateralisation; Cardiac cycle; Electrocutaneous; 

Pain-related evoked potentials 
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5.2 Introduction 

It is well established that blood pressure (BP) influences pain. Individuals with 

essential hypertension present a reduced sensitivity to pain (Ghione, 1996). The 

precise mechanisms underlying this phenomenon are yet to be clearly identified. 

However, there is growing evidence that a baroreceptor mechanism may contribute 

to the reduced pain sensitivity associated with elevated BP (France & Ditto, 1996; 

France, 1999; Ghione, 1996). Arterial baroreceptors are stretch receptors located in 

the aortic arch and carotid sinus and are important in the regulation of BP (Katona, 

Poitras, Barnett, & Terry, 1970; Persson & Kirchheim, 1991). At rest, baroreceptors are 

stimulated during the systolic phase of the cardiac cycle by the arrival of the pulse 

pressure wave (Eckberg & Sleight, 1992; Mancia & Mark, 1983) and have reduced 

output during diastole (Angell James & Lumley, 1974), resulting in a pulsatile 

discharge (Angell James, 1971; Coleridge, Coleridge, & Schultz, 1987).  

 

As well as maintaining cardiovascular homeostasis, baroreceptors may also 

modulate the activity in areas of the brain related to pain (Ghione, 1996). There 

appears to be a significant overlap between the areas of the brain involved in 

cardiovascular and pain regulation. The BP regulating role of baroreceptors primarily 

occurs in the brainstem (Gilbey & Spyer, 1993; McAllen & Malpas, 1997; Janig, 

2006; Gilbey, 2007), specifically baroreceptor afferents project to the nucleus tractus 

solitarius (NTS) in the medulla of the brainstem (Eckberg & Sleight, 1992; 

Benarroch, 2008; Bell, 2009; Klabunde, 2011) and both sympathetic and 

parasympathetic neuron activity in the medulla is modulated by the NTS (Klabunde, 

2011). Stimulation of the NTS has also been shown to induce antinociception (Aicher 

& Randich, 1990). Baroreceptor afferents also project beyond the brainstem into 

multiple brain regions within both forebrain hemispheres including the thalamus 

(Oppenheimer et al., 1998; Zhang & Oppenheimer, 2000) and insular cortex (Zhang, 

Dougherty, & Oppenheimer, 1998, 1999), specifically the anterior cingulate cortex 

(ACC), bilateral insular cortex, amygdala and orbitofrontal cortices (Gray, Rylander, 

Harrison, Wallin, & Critchley, 2009; Henderson et al., 2004; Kimmerly, O'Leary, 

Menon, Gati, & Shoemaker, 2005; Sykora, Diedler, Rupp, Turcani, & Steiner, 2009;, 

Zhang et al., 1998). 
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Although the mechanisms through which baroreceptor activity effects sensation 

is less well established than their control of BP, recent studies utilising neuroimaging 

techniques suggest that the anterior insular cortex and ACC are brain areas central 

to integrating the baroreceptor afferents and influencing feeling states (Craig, 2002; 

Critchley, 2005; Gianaros, Jennings, Sheu, Derbyshire, & Matthews, 2007). Previous 

research using functional magnetic resonance imaging (fMRI) has also identified a 

baroreceptor influence on neural activity in response to painful electrocutaneous 

shocks in the periaqueductal grey (PAG) matter, amygdala and insular cortex (Gray 

et al., 2009). Direct stimulation of the PAG matter has also been found to induce 

antinociception (Bandler, Carrive, & Zhang, 1991). Taken together these data 

suggest that several brainstem and cortical areas may be involved in the integration 

of somatosensory and baroreceptor information and thus deserve further 

investigation in relation to understanding the mechanisms underlying hypertension 

hypoalgesia. 

 

The cardiac cycle experimental paradigm provides an opportunity to study the 

effects of baroreceptor activity on various stimuli. Cardiac cycle studies take 

advantage of the natural variations in BP within an individual heart beat. Stimuli are 

delivered to coincide with systole, when BP and baroreceptor activation is highest, 

and diastole, when BP and baroreceptor activation is lowest, and the response 

compared. Recent studies have examined the effect of the cardiac cycle on the 

nociceptive flexion reflex (NFR), a polysynaptic spinal reflex sub-serving withdrawal 

from noxious stimuli (Sandrini et al., 2005), the threshold for which serves as a 

physiological correlate of pain (Hugon, 1973; Willer, 1977). These studies found the 

NFR to be attenuated during systole compared to diastole (Edwards, Ring, McIntyre, 

& Carroll, 2001; Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Edwards et al., 

2003; McIntyre, Edwards, Ring, Parvin, & Carroll, 2006; McIntyre, Kavussanu, & 

Ring, 2008). Taken together the findings discussed above suggest that nociceptive 

responding may be dampened when arterial baroreceptor activity is maximal.  

 

The International Association of the Study of Pain (IASP) define pain is “an 

unpleasant sensory and emotional experience associated with actual or potential 

tissue damage” (Merskey & Bogduk, 1994). As such pain has a strong emotional-
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affective component (e.g. Ossipov, Dussor & Porreca, 2010; Ohara, Vit & Jasmin, 

2005), it is subjective in nature (IASP, 2011) and thus includes a significant element 

of cortical modulation rather than being only a reflex response (see Ohara et al., 

2005 for review). As such pain is inherently different to its neurophysiological 

correlates i.e. the NFR and PREPs (Chen, Arendt-Nielsen, & Plaghki, 1998; Iannetti, 

Hughes, Lee, & Mouraux, 2008; Sandrini et al., 2005) described in the cardiac cycle 

time studies above (Edwards et al., 2001; 2002; 2003; 2008; McIntyre et al., 2006; 

2008) and thus may be influenced differently by baroreceptor activation. In relation to 

this, the first study in this thesis (Chapter 2) found that pain thresholds were 

modulated across the cardiac cycle, specifically pain was attenuated during systole 

(i.e. baroreceptor activation). This contrasts NFR studies which concurrently 

assessed pain perception and reported that although the NFR, which is considered a 

correlate of pain (e.g. Willer, 1977), was modulated across the cardiac cycle pain 

ratings were not (Edwards et al., 2001, 2002, 2003). However these studies were not 

specifically designed to investigate pain perception (Edwards et al., 2001, 2002, 

2003). 

 

To further the understanding regarding the cortical processing of nociception 

across the cardiac cycle, investigators have examined the pain-related evoked 

potential (PREP) response to painful stimuli. Pain-related evoked potentials elicited 

by noxious stimuli are thought to represent the central processing of nociception and 

as such, many researchers have used PREPs as objective measures of pain 

(Miltner, Larbig, & Braun, 1987; Granovsky, Granot, Nir, & Yarnitsky, 2008). The 

most commonly studied components of the PREP waveform are the second negative 

(N2) and positive (P2) peaks (Kanda et al., 1996; Garcia-Larrea, Peyron, Laurent, & 

Mauguiere, 1997; Fila & Bogucki, 2009), with N2 occurring approximately 130–240 

ms post stimulus and P2 approximately 230–390 ms post stimulus (Bromm, 1985; 

Zaslansky et al., 1996). The amplitude of the N2 and P2 PREP components have 

been shown to correlate with the intensity of pain stimulus (Becker, Haley, Urena, & 

Yingling, 2000; Bromm, 1984; Stowell, 1977; Zaslansky et al., 1996), as well as with 

subjective ratings of pain (Kanda et al., 2002). In response to painful stimuli of the 

hand, both the N2 and P2 components have been found to be maximal at the midline 

central area, specifically scalp electrode site Cz (Bromm & Treede, 1987; Carmon, 
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Mor, & Goldberg, 1976; Carmon, Dotan, & Sarne, 1978; Carmon, Friedman, Coger, 

& Kenton, 1980; Kakigi, Shibasaki, & Ikeda, 1989; Kanda et al., 1996; Kanda et al., 

1999; Miyazaki et al., 1994; Treede, Kief, Holzer, & Bromm, 1988). Supporting 

evidence suggesting the origin of the N2 and P2 components is mainly the ACC, 

whilst the secondary somatosensory cortex (SII) and insular cortex, bilaterally, also 

contribute to the N2 component (Bromm & Chen, 1995; Tarkka & Treede, 1993; 

Valeriani, Rambaud, & Mauguiere, 1996). 

 

Two recent studies reported that N2 and N2-P2 peak-to-peak amplitudes 

(Edwards et al., 2008) or P2 peak amplitudes (Gray et al., 2010) were reduced 

during systole compared to diastole. This finding agrees with earlier studies 

indicating cardiac-related cortical inhibition (Koriath & Lindholm, 1986; Koriath, 

Lindholm, & Landers, 1987). Further studies also reported reduced visual (Walker & 

Sandman, 1982) and auditory (Sandman, 1984) evoked potential amplitudes during 

systole compared to diastole. However, it appears that modulation of cortical 

responses to painful stimulation across the cardiac cycle may be less robust than the 

NFR indeed within in this thesis, PREPs generated in response to painful 

electrocutaneous stimulation were found not to be modulated across the cardiac 

cycle (Chapter 4) which contrasts the findings of Edwards et al. (2008) using painful 

laser stimulation and Gray et al. (2010) using electrocutaneous pain. The reasons for 

these different results may relate to methodological differences between the studies. 

For a full discussion regarding the methodological differences see the previous 

chapter (Chapter 4). However, to summarise, first, noxious stimulation was delivered 

via different methods. We (Chapter 4) used a concentric planar electrode (Kaube, 

Katsarava, Kaufer, Diener, & Ellrich, 2000) to deliver electrocutaneous stimulation, 

whereas Edwards et al. (2008) used thulium-evoked laser stimulations and Gray et 

al. (2010) used a different type of electrocutaneous electrode. It is possible that the 

differing pain delivery modes may differentially stimulate nociceptive and non-

nociceptive fibres (e.g. Lefaucheur et al., 2012; Perchet et al., 2012) which may have 

influenced the generation of the PREPs and thus the cardiac cycle modulation may 

also be affected. Second, the duration of the studies was also different, our study 

(Chapter 4) having a longer total duration than both Edwards et al. (2008) and Gray 

et al. (2010). This may have lead to habituation to the painful stimulation due to 
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fatigue at a peripheral nociceptive neuron level (Greffrath, Baumgartner, & Treede, 

2007) and /or at a central/cortical level (Handwerker & Kobal, 1993; Milne, Kay, & 

Irwin, 1991; Valeriani et al., 2005) which may have influenced the PREPs. The 

extended duration may also lead to disengagement with the task, drawing attention 

away from the task and this may influence PREP generation (Arntz, Dreessen, & 

Merckelbach, 1991; Rutter, Dahlquist, & Weiss, 2009; Tan, 1982). Related to this 

point, the possible role of attention influencing the cardiac cycle related modulation 

of PREPs was also considered. Gray et al. (2010) only reported a cardiac cycle 

effect for P2 when pain stimuli were cued, no modulation was present for uncued 

stimuli. Edwards et al. also presented a focal point prior to delivery of the pain 

stimuli, whereas study 3 (Chapter 4) presented the pain stimuli totally uncued and 

thus cueing may influence the cardiac cycle modulation of PREPs. Finally, the 

studies used different EEG systems. We (Chapter 4) used a Biosemi system which 

is a high impedance EEG system which requires a greater number of trials to 

achieve significance than comparable low impedance systems. It should be noted 

that although we (Chapter 4) achieved a high number of accepted trials (20 per 

condition) and had greater participant numbers (N = 26) this may not have been 

enough to achieve an 80% chance of statistical significance which Kappenman and 

Luck (2010) suggest would require 25 trials per condition. However, it should be 

noted that the number of suggested trials was based on a sample of just 12 

(Kappenman & Luck, 2010) and additionally, the N2 and P2 components may 

require a different number of trials to achieve significance compared to the P300. 

Additionally, although, the greater number of participants in Study 4 aimed to offset 

the lower number of trials, it is still possible that the lack of cardiac cycle-related 

modulation of PREPs may be due to low power.  

 

Although the methodological differences between the studies may go some 

way to explaining the differential findings, a further area which may contribute to the 

contrasting findings is a possible lateralisation effect. Both Edwards et al. (2008), 

Gray et al. (2010) and ourselves (Chapter 4) delivered stimulation to the right hand 

and although Edwards et al. and Gray et al. found modulations, there is evidence to 

suggest that there may be a right hemispheric dominance for cardiac cycle-related 

modulation. For example it has been found that visual evoked potential amplitudes 
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recorded in the right hemisphere during systolic and diastolic pressure differed 

significantly, whereas those recorded in the left hemisphere did not (Walker & 

Sandman, 1982). However, as Edwards et al. (2008) only measured PREPs at Cz 

electrode, it isn’t possible to determine if there were any recording side laterality 

effects. Additionally, Gray et al. (2010) measured PREPs at electrode sites C3, Cz 

and C4 but pooled the data for analyse and also only stimulated one hand, meaning 

it is not possible to fully analysis lateralisation effects. Although we measured PREPs 

in both the left and right hemisphere, it may be that the cardiac cycle-related effects 

on PREPs may be more pronounced for left hand stimulation. 

 

The insular cortex is important in integrating baroreceptor information in the 

brain (Zhang et al., 1998; Saleh & Connell, 1998) and there is growing evidence to 

suggest that processing of baroreceptor afferents is lateralised with a right sided 

dominance (Critchley, Corfield, Chandler, Mathias, & Dolan, 2000; Henderson et al., 

2004; Weisz et al., 2001). Functional magnetic resonance imaging in cats following 

baroreceptor activation has shown the baroreflex-mediated BP regulation in the right 

insular cortex (Henderson et al., 2004). Similarly, in rats (Zhang, Tang, Yuan, & Jia, 

1997) and monkeys (Zhang et al., 1998) more baroreceptor neurons in the right 

insular cortex responded to changes in BP than in the left insular cortex. Evidence 

for lateralisation of baroreceptor processing in humans has been aided significantly 

by the development of neuroimaging techniques. Critchley and colleagues (2000) 

employed PET to observe increased activity in the right ACC and right insular cortex 

in response to changes in systemic BP generated via exercise and mental arithmetic 

tasks. Also using PET, Weisz and colleagues (2001) reported that following external 

neck suction to stimulate the carotid sinus baroreceptors regional cerebral blood flow 

increased in the right anterior–inferior prefrontal cortex. However this is not always 

the case. Other studies have suggested a left hemisphere dominance in relation to 

baroreflex sensitivity (Hilz et al., 2001; Sykora et al., 2009), although the majority of 

findings indicate a predominantly right sided baroreceptor processing. 

 

It has been the general consensus for many years that somatosensory 

stimulation of the body surface is largely processed by brain regions contralateral to 

the side of stimulation (Bingel et al., 2003; Youell et al., 2004; Coghill, Gilron, & 
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Iadarola, 2001). However, there is evidence for pain-related lateralisation having a 

right hemisphere dominance. Studies have indicated pain thresholds are lower and 

pain ratings higher when noxious stimuli are presented to the left side of the body 

than when applied to the right, independent of handedness (e.g., Lugo, Isturiz, Lara, 

Garcia, & Eblen-Zaijur, 2002; Pauli, Wiedemann, & Nickola, 1999; Sarlani, Farooq, & 

Greenspan, 2003; Spernal, Krieg, & Lautenbacher, 2003; Merskey &Watson, 1979; 

Schiff & Gagliese, 1994). However, other studies have failed to find any lateralisation 

effects for pain (Coghill et al, 2001; Hall, Hayward, & Chapman, 1981; Seltzer, 

Yarczower, Woo, & Seltzer, 1992).  

 

Research has been somewhat inconclusive when it comes to identifying 

specific locations of pain processing. However Peyron and colleagues (Peyron, 

Laurent, & Garcia-Larrea, 2000) suggest that in humans and primates the SI, SII 

ACC and Insula are the most consistently activated, typically contralateral to the side 

of pain stimulation. More recently, research has sought to identify if the processing of 

painful stimuli may be lateralised. Most relevant to this study is work by Symonds 

and colleagues (Symonds, Nakia, Bixby, & Mande, 2006), who utilised fMRI to 

investigate lateralisation effects following electrocutaneous stimulation of the right 

and left index fingers. As many previous studies have found, Symonds et al. (2006) 

report that different pain processing areas were activated uniquely by the same pain 

stimuli i.e. some areas were activated bilaterally, some contralaterally and some 

showed a hemispheric bias regardless of side of stimulation. Specifically, the 

somatosensory cortex and posterior insula were activated contralateral to the pain 

stimuli, whereas the mid/posterior insula, anterior insula, and posterior cingulate 

were activated bilaterally. Additionally, the middle frontal gyrus, anterior cingulate, 

inferior frontal gyrus, medial/superior frontal gyri, and inferior parietal lobule showed 

either an exclusive or strong lateralisation to the right hemisphere (Symonds et al., 

2006). Symonds et al. (2006) also reported that activity in the right somatosensory 

cortex, during left hand stimulation was greater than activity seen in the left 

hemisphere during right hand stimulation. Similarly, right sided anterior cingulate 

activity during left hand stimulation was significantly greater than right hand 

stimulation. In support of the findings by Symonds et al. (2006), an fMRI study 

investigating the lateralisation of thermal pain delivered to both the right and left 
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hands (Brooks, Nurmikko, Bimson, Singh, & Roberts, 2002) reported a right 

lateralisation in the anterior insula when pain was attended to, and in the ACC 

regardless of attentional focus, whereas the posterior insula was found to be 

activated contralateral to the stimulus and no significant activation in response to 

painful stimulation was detected in the primary somatosensory cortex (SI) or the 

thalamus. Taken together these studies suggest that pain may be processed 

predominately in the right hemisphere. 

 

Despite indicating a preferential processing of pain in the right hemisphere for 

certain pain processing areas, as evidenced by the Symonds et al (2006) and 

Brooks et al. (2002) studies, not all pain processing areas demonstrate a right sided 

bias, and indeed several studies have reported no lateralisation effects. For example 

Coghill and colleagues (2001) reported an increase in cerebral blood flow assessed 

via PET in contralateral regions of SI, SII, insular cortex and bilateral regions of the 

cerebellum, putamen, thalamus, ACC, and frontal operculum regardless of side of 

stimulation. Similar findings from fMRI studies have reported bilateral responses 

within the SI, SII and insula but with a significantly greater contralateral response in 

SI and the thalamus in response to painful laser stimulation applied to the right and 

left hands (Bingel et al., 2003) and right and left lower legs (Youell et al., 2004). 

Furthermore, Youell and colleagues (2004) also reported an increase in left insula 

activity following lower leg stimulation. 

 

Supporting evidence for a potential lateralisation of pain processing comes from 

the well documented cerebral hemispheric lateralisation of emotional processing 

which has a proposed right hemispheric dominance (Ji & Neugebauer, 2009). 

Affective stimuli have been found to be more accurately processed when presented 

to the left ear, which projects mainly onto right-hemispheric brain structures (Carmon 

& Nachshon, 1973; Haggard & Parkinson, 1971; Joseph, 1988). In addition, affective 

startle modulation appears to be specific to left ear stimulation, whereas presentation 

to the right ear produced none or inconsistent affective startle modulation (Bradley, 

Cuthbert, & Lang, 1991, 1996; Kettle, Andrewes, & Allen, 2006).  
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Cardiac cycle studies have taken into account the proposed lateralised 

processing of baroreceptor input and investigated if this may contribute to a 

lateralisation of cardiac cycle modulation. Early work by Walker and Sandman (1982) 

indicated that baroreceptor activation (systole) appears to impact the processing of 

visual input in the right hemisphere to a greater extent than the left. They reported 

that visual evoked potentials recorded in the right hemisphere were found to be 

smaller during the systolic phase of the cardiac cycle than the diastolic phase, 

whereas the visual evoked potentials recorded from the left hemisphere were 

unaffected by the phase of the cardiac cycle (Walker & Sandman, 1982). More 

recently the cardiac cycle modulation of startle eye blink was suggested to show a 

right hemispheric dominance, as the startle eye blink response was found to be 

reduced during systole only following presentation to the left ear (Schulz et al., 

2009). However, a right side bias is not always evident. Weisz and Adam (1996) 

propose greater influence on the cardiac cycle modulation of reaction times for 

processing in the left hemisphere. They found that reaction time was marginally 

longer during systole than diastole when stimuli were presented to the right, or 

responses were made with the right hand, whereas there was no difference for 

central and left stimuli or for left hand responses.  

 

Based on the discussions above, it appears reasonable to conclude that 

research supports a right sided processing of baroreceptor information, and that 

evidence for greater activation of the right hemisphere pain areas (e.g. right ACC) 

when the left hand is stimulated. Therefore, it is possible that the lack of cardiac 

cycle-related modulation in our previous study (Chapter 4) may be due to the 

stimulation of the participants right hand, which may present a less evident cardiac 

cycle-related modulation than pain delivered to the left hand. Taken together this 

suggests the increased activity in response to pain stimulation of the left hand would 

offer greater opportunity for convergence during systole, when baroreceptor afferent 

input to the right hemisphere is proposed to be maximal ( e.g. Zhang & 

Oppenheimer, 1997). Therefore it may be hypothesised that cardiac cycle related 

modulation would be most evident following left hand stimulation. Whereas right 

hand stimulation would be processed both contralateral to the stimulation (i.e., in the 

left hemisphere) and although right hand stimulation would likely activate right 
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hemisphere pain areas (e.g. ACC), this activation appears not to be as pronounced 

in the right hemisphere and thus convergence with the baroreceptor input would be 

reduced and thus cardiac cycle-related modulation not as pronounced. 

 

It is also interesting to note that the majority of previous cardiac cycle research 

indicating a reduction in the NFR (Edwards et al., 2001; 2002; 2003; McIntyre et al., 

2006) delivered stimuli to the left side. However, there are also a studies 

demonstrating a cardiac cycle-relation attenuation of the NFR (McIntyre et al., 2008), 

PREPs (Edwards et al., 2008; Gray et al., 2010), neural activity in the brain (Gray et 

al., 2009) and pain thresholds (Wilkinson, McIntyre & Edwards, 2013) when stimuli 

were delivered to the right hand. 

 

Therefore, the aim of the current study was to directly compare PREP 

responses to painful electrocutaneous stimulation delivered to both the left and right 

hands at 7 intervals across the cardiac cycle in the same subjects. The current study 

specifically aimed to determine if the cardiac cycle-related modulation of PREPs is 

influenced by the side of stimulation i.e. left and right hand, and/or location of 

cerebral processing of noxious afferent information i.e. scalp electrode sites C3, Cz 

and C4. If the proposed right hemispheric dominance of baroreceptor afferent 

information processing and pain processing outlined above is considered, it is 

hypothesised that the cardiac cycle-related modulation of pain would be greater 

following stimulation of the left hand than the right hand and may be more evident in 

the scalp electrodes covering the central and right sites i.e. scalp electrode C4 

compared to C3. 

 

5.3 Methods 

5.3.1  Participants 

Seventeen (7 men, 10 women) normotensive adults with a mean (SD) age of 18.4 

(0.6) years and body mass index (BMI) of 22 (2.7) kg/m2 were recruited from the 

Loughborough University campus and local community to participate in the study. 

Four of the participants had participated in the original PREP study reported in this 

thesis (Chapter 4) and were recalled to undertake the assessment with their left 

hand, the remainder of the participants were new recruits. Across the two testing 
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sessions mean (SD) resting systolic BP (SBP) was 118.7 (8.9) mmHg, diastolic BP 

(DBP) was 70.5 (7.2) mmHg, and resting heart rate (HR) was 70.9 (12.8) bpm. 

Individuals were excluded if they had any known health problems including chronic 

pain disorders, cerebrovascular, cardiovascular or neurological diseases, had a 

cardiac pacemaker, history of major psychiatric disorders, were pregnant or had 

missed their last menstrual cycle, were taking routine prescription medicine except 

for birth control, were currently using any narcotic substances, had an alcohol intake 

greater than 28 units per week for men and 21 units per week for women or had a 

resting HR above 92 bpm. Participants were asked to refrain from analgesic 

medication for 24 hrs and caffeine, nicotine and vigorous exercise for 2 hrs prior to 

testing. The Loughborough University Ethical Advisory Committee approved the 

study, and all participants provided written informed consent. Participants returning 

from the original PREP study (Chapter 4) were paid an inconvenience payment of £5 

(4 participants) and new recruits who were first year psychology students received 

credits towards their course (13 participants). 

 

5.3.2 Apparatus and measurements 

Resting BP (mmHg) and HR (bpm) were obtained using an automated oscillometeric 

sphygmomanometer (Omron 705-IT, Omron Healthcare Europe) and a brachial cuff 

attached around the upper non-dominant arm.  

 

An electrocardiogram (ECG) was recorded continuously at 2500 Hz using three 

disposable spot electrodes (Cleartrace, ConMed) placed in a modified chest 

configuration; the two active electrodes were placed on the right clavicle and a rib 

below the heart on the left side of the torso and the ground electrode was placed on 

the left clavicle, and connected to an AC amplifier (LP511, Grass).  

 

Pain stimuli (triple 1 ms monopolar square wave pulse with 5 ms inter-pulse 

interval at 200Hz) were delivered electrocutaneously by a constant current stimulator 

(DS7A, Digitimer) via a concentric planar electrode (Kaube et al., 2000). The 

concentric planar electrode was secured with tape (Transpore, 3M) to the dorsal 

surface of the hand between the metacarpals of the index and middle fingers. 
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Electrode sites were prepared by exfoliating (Nuprep, D.O. Weaver & Co) then 

degreasing the skin using isopropyl alcohol swabs (Sterets, Medlock Medical Ltd.).  

 

During the determination of pain thresholds participants indicated if each 

stimulus was painful or not via a push button response box (16 cm ×16 cm × 3 cm). 

Mounted on the response box were a piezo-oscillator (top middle), a red light 

emitting diode (top left), a green light emitting diode (top right), and buttons marked 

“Yes” and “No” (centre left and right, respectively). A computer was programmed in 

Spike2 (CED) to record responses and trigger stimuli using a Micro II 1401 

(Cambridge Electronic Design). 

 

Electroencephalographic data was recorded via a flexible nylon headcap 

(Biosemi) containing 32 electrode holders positioned according to the internationally 

recognised 10-20 coordinate system (Jasper, 1958). A blunted needle (16G ¾ blunt 

square grind, Becton Dickinson and Company) and syringe (5ml syringe luer-lok tip, 

BD) were used to part the participants hair and fill each electrode holder with 

conductive gel (Electro-Gel, ECI). Thirty-two active version pin electrodes sintered - 

Ag-AgCl electrode tip (Biosemi) plus two feedback loop electrodes; a) Common 

Mode Sense (CMS) active electrode and b) Driven Right Leg (DRL) passive 

electrode were inserted into the corresponding electrode holders and checked to 

ensure electrode offset was below 25 mV. In addition to the head cap electrodes, six 

external flat type active electrodes - 4mm diameter sintered Ag-AgCl electrode pallet 

(Biosemi) were used to measure horizontal (HEOG) eye movement (2 electrodes) 

and vertical (VEOG) eye movement (2 electrodes) and to later act as reference for 

the scalp electrodes (2 electrodes). The cavity of each flat-type active electrode was 

filled with conductive gel and secured in place with double sided adhesive disks 

(Biosense Medical Ltd.) and with tape (Medipore, 3M). Both the Biosemi pin and flat 

electrodes signal was amplified at the electrode, reducing the impact of high 

electrode impedance influencing the signal quality (Metting van Rijn, Kuiper, 

Dankers, & Grimbergen, 1996). 
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5.3.3 Procedure 

Participants were tested in two 2-hr sessions separated by at least 2 days (typical 

range 2-4days). Testing was conducted in a quiet room with no windows and the 

participants were separated from the experimenter with access via a closed door. At 

the start of the first session participants completed an informed consent form (also 

completed at the start of the second session for returning participants) and sat 

quietly whilst completing the following questionnaires: (a) a brief questionnaire 

containing questions about age, sex, health habits, education, (b) Spielberger State 

and Trait Anxiety Inventory (Spielberger, Gorsuch, & Lushene, 1970), a 40-item 

inventory used to assess levels of state and trait anxiety and (c) the Center for 

Epidemiologic Studies Depression (CES-D) Scale (Radloff, 1977), a 20-item scale 

designed to measure depressive symptomatology in the general population (10 min 

total). During both sessions participants rested quietly while baseline BP and HR 

were measured at 60, 180, and 300 s (6 min). If a participant’s HR exceeded 92 

bpm, they were excluded from the study, as HR’s above 92bpm would mean that 

stimuli presented at R-wave + 650ms would fall within the next cardiac cycle; 

however, none were excluded. Following instrumentation (30 min) participants firstly 

undertook a pain threshold determination procedure (15 min). Participants then 

rested for 5mins after which a PREP assessment was completed (70 min). The hand 

to which the pain stimulus was delivered first was counterbalanced throughout the 

study to eliminate order effects. 

 

5.3.4 Instrumentation 

Following attachment of the ECG electrodes, the same skin preparation procedure 

described above was applied to the ear lobes, an area between the outer canthus of 

the eyes and the temples, areas directly below each eye (infra-orbital point) and the 

forehead. Subsequently, the two external HEOG electrodes were attached to the 

skin approximately1 cm out from the outer canthus of each eye, the two external 

VEOG electrodes were attached on the infra-orbital point below each eye and the 

two external reference electrodes were attached to the ear lobes. Next, the 

circumference of the participants head was measured to determine the appropriate 

size EEG head cap. The head cap was then placed on the participants head and 

secured in place with the chin strap. The location of the central (Cz) electrode was 



Chapter 5 
 

 
 

190 
 

identified as half way between two anatomical landmarks; (a) the nasion, which is 

the distinctly depressed area between the eyes, just above the bridge of the nose, 

and (b) the inion, which is the lowest point of the skull from the back of the head and 

is normally indicated by a prominent bump. Lateral positioning of the Cz electrode 

was determined by investigator positioning and participant feedback from the 

insertion of the blunt needle into the Cz electrode holder. Once the head cap was in 

position the blunt needle and syringe were used to part the hair and fill each 

electrode holder with conductive gel to ensure contact with the scalp. The 32 

electrodes, plus the CMS and DRL electrodes were then inserted into the 

corresponding electrode holder and their electrode offset checked. 

 

Finally, the skin on the dorsal surface of the hand to which the pain stimulus 

was to be delivered was cleaned in an area between the metacarpals of the index 

and middle fingers as previously described and the concentric planar electrode 

secured in position with tape. 

 

5.3.5 Pain threshold assessment 

Participants sat upright and supported the forearm of the hand for stimulation testing 

on a table while their opposite hand rested on the response box. Pain detection 

thresholds were determined using an up-down staircase procedure (Levitt, 1971). A 

green warning light (1000 ms duration) illuminated to signify the start of each trial 

and a red light (variable duration; the light remained illuminated until the participant 

made a response, up to a maximum of 7500 ms) indicated the end of each trial. 

Following illumination of the green light, a 1s delay occurred after which the 

programme searched for the R-wave of the ECG and subsequently the participants 

hand was stimulated at R+0ms. Participants were informed that the stimulus could 

occur at any time between the illumination of the green and red lights. Once the red 

light was illuminated participants pressed the “Yes” button if they perceived the 

stimulation as painful or the “No” button if they did not perceive it as painful. The next 

trial commenced following the participants response. On the first trial the stimulus 

intensity was 0 mA, and subsequently increased in 0.8 mA steps until the participant 

first reported a painful sensation (first reversal). The stimulus intensity then 

decreased in 0.4 mA steps until the stimulus was no longer reported as painful 
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(second reversal). Each staircase then continued in 0.1 mA steps until the staircase 

had completed two further ascending and descending series (i.e. four more 

reversals). The pain threshold (mA) was defined as the average of the peaks during 

the second and third series (i.e. the third and fifth reversal points) of each staircase. 

The maximum allowable stimulus intensity was 30 mA; however, this stimulus 

intensity was never reached. Mean (SD) pain threshold for the right hand was 1.15 

(0.65) mA and for the left hand 1.12 (0.54) mA. An Independent Samples t-test found 

no significant difference between the mean pain thresholds for the right and left 

hands (t (32) = .157, p = .876). 

 

5.3.6 Pain-related evoked potential procedure 

Stimulation intensity for PREP elicitation was calculated as two times each 

individual’s pain threshold and electrocutaneous stimulations were delivered to the 

dorsal surface of the experimental hand with the same stimulus parameters as for 

the threshold assessment procedure. Participants sat quietly upright with their hands 

resting on their knees. They were instructed to focus on a fixation point (a black 

circle 2cm in diameter) positioned on the wall directly in front of them throughout 

each experimental block, to relax their muscles, remain as still as possible and 

minimise the number of blinks they took. Each participant completed 7 experimental 

blocks of 21 trials, with each block separated by a 5 minute rest period. During each 

block the participants hand was pseudorandomly stimulated 3 times at each of seven 

R-wave intervals (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms), thus 

over the 7 experimental blocks each interval was presented 21 times. The inter-

stimulus interval of 12, 16, or 20s was pseudorandomly selected. At the start of each 

block an additional pain stimulus was delivered, but no data recorded, to reduce 

startle contamination affecting subsequent EEG activity. Participants were informed 

that the stimuli could occur at any time during the experimental block, which would 

last approximately five minutes. The Spike 2 programme marked the EEG data with 

event codes, sent by the 1401. These event codes were evident; (a) when pain 

stimuli were elicited, and (b) in the cardiac cycle before a pain stimulation (i.e. a 

beat-before event) at the same R-wave interval at which the pain stimuli was to be 

subsequently delivered. The beat-before event code enabled us to subsequently 

generate an ERP waveform containing EEG data without a pain stimuli presented 
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and containing any ECG-related artifact and subtract this from an ERP waveform 

containing EEG data in which a pain stimulus was delivered. The subtraction of the 

beat-before ERP waveform from the stimulation ERP waveform was undertaken 

because one problem with cardiac cycle studies is the potential for contamination of 

the EEG data by ECG artefacts (Allen et al., 1998).  

 

It has been reported that a common occurrence following repetitive painful 

stimulation is habituation, i.e. a decrease in pain and pain-related responses to 

continuous or repetitive pain stimuli (LeBlanc & Potvin, 1966; Strempel, 1976; 

Strempel, 1978). This may be due to peripheral nerve fibre fatigue (Greffrath et al., 

2007) and/or central habituation to the painful stimuli (Bingel, Schoell, Herken, 

Buchel, & May, 2007; Bingel, Herken, Teutsch, & May, 2008; Milne et al., 1991). 

Therefore to ensure the stimulus remained painful, participants completed the Short-

Form McGill Pain Questionnaire (Melzack, 1987) after each experimental block. The 

questionnaire included participants rating the average intensity of the pain stimuli 

during the preceding block using a rating scale of 0-100 with anchors of ‘0’ (no 

sensation), ‘1’ (first sensation), ‘25’ (uncomfortable), ‘50’ (just noticeable pain), ‘75’ 

(very painful), and ‘100’ (maximum tolerable pain). If participants rated the intensity 

of the stimuli less than 50 (just noticeable pain) the stimulation in the following 

experimental block was increased to double that used in the proceeding block. 

However, no participants rated the intensity below 50. 

 

5.3.7 Electroencephalographic data recording and analysis 

The EEG activity, VEOG, HEOG and ear lobe references was recorded reference 

free, continuously via a battery-powered amplifier (Biosemi ActiveTwo AD-box, Mk 2) 

and Actiview acquisition software (Biosemi) at a sample rate of 2048 Hz. Raw EEG, 

VEOG, HEOG  and reference electrode data were processed offline using BESA 

Research 5.2.2. The EEG data were re-referenced to linked ears reference off-line 

and filtered using a 30 Hz, 12 db/oct, ZeroType low-pass filter and a 0.1 Hz, 12 

db/oct, Forward Type high-pass filter. Beat-before and pain stimulus data were 

segmented into 900 ms epochs (− 100 ms to 800 ms). The baseline epoch was 

defined as 100ms pre-stimulus to stimulus onset. EEG data were corrected for 

ocular movement artifacts using manual definition of each participants blink 
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topography and applying an adaptive artifact correction (Ille, Berg, & Scherg, 2002). 

Following correction of ocular movement artifacts, data were automatically scanned 

for epochs containing a voltage change of greater than 100 μV and these were 

rejected. Remaining beat-before and pain stimuli trials were separately averaged 

according to R-wave interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 

ms) resulting in a single PREP waveform and one corresponding beat-before 

average waveform for each R-wave interval. If more than 50% of the total pain or 

beat before trials were rejected, the participant was removed from further analysis. 

No participants were removed. The mean number of accepted trials per R-wave 

interval was 19 for both pain stimulus and beat-before (range = 14 to 21).  

 

Prior to peak detection analysis of the PREP components, for each R-wave 

interval the beat-before average waveform was subtracted from the corresponding 

PREP waveform to generate a difference waveform with ECG artifacts removed 

whilst preserving the PREP components for each R-wave interval (Figures outlining 

the effects of the subtraction of the beat-before average waveform from the 

corresponding PREP waveform can be seen in Chapter 4 of the thesis – Figures 7 & 

8).  

 

As discussed in the Chapter 4 there are three main approaches for the 

measurement of PREP components, (a) peak amplitudes, (b) mean amplitudes, and 

(c) area analysis. However, as the pain response is generally a well defined, high 

frequency component the peak amplitude is likely to be the most appropriate method 

of PREP component measurement (Luck, 2005). Therefore in order to focus and 

streamline the results only the peak amplitude data will be reported in this chapter. 

 

5.3.8 Peak amplitude detection 

Peak detection windows for identification of the N2 and P2 component of the 

difference PREPs were identified as the latency of the visually identified N2 and P2 

peak amplitudes from the grand average difference waveform averaged across all 

participants and all intervals +40ms. Separate analysis windows for the right and left 

hand data were determined based on the grand average waveforms for each side. 

Therefore, the analysis windows for the N2 and P2 components of the averaged 



Chapter 5 
 

 
 

194 
 

difference waveforms were 97-177 ms and 105-185 ms for N2 in the right and left 

hand respectively, and 263-343 ms and 258-338ms for P2 in the right and left hands 

respectively. These timings fit with the typical electrically induced PREPs being 

characterised by a negative-going peak (N2) at approximately 130–240 ms post 

stimulus followed by a positive-going peak (P2) approximately 230–390 ms post 

stimulus (Bromm, 1985; Zaslansky et al., 1996). The largest negative-going peak 

was automatically identified in the N2 window and the largest positive-going peak 

automatically in the P2 window for each R-wave interval for each hand. Peak 

amplitudes were defined as the baseline to highest peak in the detection window.  

Peak-to-peak measurements were also calculated as the difference between the N2 

peak amplitude and the P2 peak amplitude. 

  

On the basis of previous neuroimaging studies identifying cerebral regions 

activated by painful stimulation (see Introduction) and the focus of the current study 

on lateralisation effects, analyses were conducted on the following scalp electrodes; 

Cz, C3 and C4. These electrodes are thought to reflect the activity of brain areas 

associated with pain perception i.e. the ACC, SII, insular cortex bilaterally (Bentley, 

Derbyshire, Youell, & Jones, 2003; Bromm & Chen, 1995; Garcia-Larrea, Frot, & 

Valeriani, 2003; Ohara, Crone, Weiss, & Lenz, 2006; Tarkka & Treede, 1993; 

Treede, Lorenz, & Baumgartner, 2003; Valeriani et al., 1996) and the contralateral SI 

(Kakigi, Inui, & Tamura, 2005). Specifically, Cz overlays the central cerebral cortex, 

C3 electrode overlays the left cerebral hemisphere and C4 overlays the right 

cerebral hemisphere. 

 

5.3.9 Data reduction and analyses 

The BP and HR readings were averaged to provide measures of resting SBP, DBP 

and HR over both sessions. A series of repeated measures analysis of variance 

(ANOVAs) with 2 Hand (right, left) × 3 Scalp Electrode Site (C3, Cz, C4) × 7 R-wave 

to stimulation Interval (i.e., R+0 ms, R+150 ms, R+250 ms, R+350 ms, R+450 ms, 

R+550 ms, R+650 ms) were performed separately on N2 and P2 peak amplitudes 

and the N2-P2 difference amplitudes. Such analysis enabled the following to be 

investigated; 1) the 2 × 7 interaction determined if there is a difference in the cardiac 

cycle modulation of PREP components of interest between hands regardless of 
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scalp electrode location i.e. stimulus-related laterality; 2) the 3 × 7 interaction 

investigates if there is a difference in the cardiac cycle modulation of PREP 

components between the three scalp electrode locations regardless of which hand 

was stimulated  i.e. hemisphere-related laterality; 3) the 2 × 3 interaction determines 

if PREP component amplitudes across scalp electrode sites differ between hands 

regardless of cardiac cycle phase and; 4) the 2 × 3 × 7 interaction determines if there 

is a difference in the cardiac cycle-related modulation of PREP components between 

hands with scalp electrode site.  

 

Subsequently, significant 2 × 3 × 7 findings were followed by separate 2 Hand 

(right, left) × 7 Interval (R+0 ms, R+150 ms, R+250 ms, R+350 ms, R+450 ms, 

R+550 ms, R+650 ms) at each scalp electrode site to test for an interaction effect in 

isolation. This would determine if any difference in cardiac cycle modulation of the 

PREP components between hands depends on scalp electrode. Following these 

analyses, separate 3 Scalp Electrode Site (C3, Cz, C4) × 7 Interval (R+0 ms, R+150 

ms, R+250 ms, R+350 ms, R+450 ms, R+550 ms, R+650 ms) repeated measures 

ANOVA’s were conducted for each hand (i.e. right and left) to determine if any 

difference in the cardiac cycle modulation of PREP components between the three 

scalp electrode locations depended on which hand was stimulated. In addition 6 

separate 7 Interval (R+0 ms, R+150 ms, R+250 ms, R+350 ms, R+450 ms, R+550 

ms, R+650 ms) repeated measures ANOVAs on N2 and P2 peak amplitudes and 

N2-P2 difference amplitudes were conducted to investigate if, when tested in 

isolation, the Interval effect may help to explain any interactions in the preceding 2 × 

3 × 7 ANOVAs. The following individual 7 Interval repeated measures ANOVAs were 

conducted; a) left hand stimulation recorded in right hemisphere (C4 scalp 

electrode), b) left hand stimulation recorded in left hemisphere (C3 scalp electrode), 

c) left hand stimulation recorded at midline (Cz scalp electrode), d) right hand 

stimulation recorded in right hemisphere (C4 scalp electrode), e) right hand 

stimulation recorded in left hemisphere (C3 scalp electrode) and f) right hand 

stimulation recorded at midline (Cz scalp electrode).  

 

ANOVAs were corrected for the assumption of independence of data points 

using Huynh-Feldt correction (). Significant results were followed by Newman-Keuls 
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post hoc comparisons (all possible pairwise comparisons were computed). In 

addition to significance levels, partial eta-squared (p
2), a measure of effect size, is 

also reported, indicating the proportion of total variation attributable to the factor, 

partialling out (excluding) other factors from the total non-error and range from 0 to 1 

(Cohen, 1973). As partial eta-squared may over estimate effect sizes in repeated 

measures studies, effect sizes of 0.01, 0.09 and 0.25 are accepted as representing 

small, medium and large effects respectively (Hanna & Dempster, 2012). A 

significance level of .05 was adopted. Data were analysed using SPSS 20.0 and 

Statistica Version 10. 

 

5.4 Results 

5.4.1 N2 peak amplitudes 

As shown in Table 6, a 2 Hand × 3 Scalp Electrode × 7 Interval repeated measures 

ANOVA revealed a main effect for scalp electrode site. Post hoc pairwise 

comparisons showed N2 peak amplitudes to be significantly higher at scalp 

electrode Cz than scalp electrode C3 (Figure 10a). Mean (SD) N2 peak amplitudes 

for scalp electrode site C3, Cz and C4 were -7.45 (4.82) µV, -8.56 (5.52) µV and -

8.31 (5.97) µV respectively. In addition, the 2 Hand × 3 Scalp Electrode Site × 7 

Interval interaction was also significant. No other main or interaction effects were 

significant. 

 

5.4.2 P2 peak amplitudes 

The results of the 2 Hand × 3 Scalp Electrode Site × 7 Interval repeated measures 

ANOVA can be found in Table 6. Analysis revealed a main effect for scalp electrode 

site. As shown in Figure 10b post hoc pairwise comparisons showed P2 peak 

amplitudes were higher at scalp electrode site Cz than C3 and C4 scalp electrodes. 

Mean (SD) P2 peak amplitudes for scalp electrode site C3, Cz and C4 were 18.89 

(4.53) µV, 24.31 (5.52) µV and 19.06 (4.71) µV respectively. No other main or 

interaction effects were significant. 

 

5.4.3 N2-P2 peak-to-peak amplitude 

As shown in Table 6, a 2 Hand × 3 Scalp Electrode Site × 7 Interval repeated 

measures ANOVA revealed a main effect for scalp electrode site. Post hoc pairwise 
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comparisons showed N2-P2 difference amplitudes were higher at scalp electrode 

site Cz than C3 and C4 scalp electrodes (Figure 10c). Mean (SD) P2 amplitudes for 

scalp electrode site C3, Cz and C4 were 26.34 (7.76) µV, 32.87 (9.33) µV and 27.37 

(8.99) µV respectively. No other main or interaction effects were significant. 

 

5.4.4 Separate 2 Hand (Right, Left) × 7 Cardiac Cycle Interval (R+50, R+150, 

R+250, R+350, R+450, R+550, R+650 ms) repeated measures ANOVAs at 3 

scalp electrode sites (C3, Cz, C4)  

To further investigate the significant 2 Hand × 3 Scalp Electrode Site × 7 Interval 

interaction identified above for N2 peak amplitudes, separate 2 Hand × 7 Interval 

repeated measures ANOVAs were conducted at each scalp electrode site for N2 

peak amplitudes. These analyses would help to further understand if the significant 

Hand × Scalp Electrode × Interval interaction for N2 amplitudes could be driven by a 

2 × 7 interaction that varies across the scalp electrode sites. As shown in Table 7 

and Figure 11 below, none of the main effects (interval or hand) or interactions (hand 

× interval) at any scalp electrode site (C3, Cz, C4) were significant. 
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Table 6. Statistical values for separate 2 Hand (right, left) × 3 Scalp Electrode Site 

(C3, Cz, C4) × 7 Interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) 

repeated measures ANOVAs for N2, P2 and N2-P2 peak-to-peak amplitudes. 

 

Variable  df F p p
2 

N2 Peak amplitude      

     Interval 1.00 6, 96 .913 .489 .054 

     Hand 1.00 1, 16 2.86 .110 .151 

     Scalp Electrode Site .995 2, 31.8 3.75 .035* .190 

     Interval × Hand .860 5.2, 82.5 1.00 .422 .059 

     Interval × Scalp Electrode Site .777 9.3, 149.2 .768 .651 .046 

     Hand × Scalp Electrode Site 1.00 2, 32 .213 .810 .013 

     Interval × Hand x Scalp  

     Electrode Site 
.738 5.6, 141.7 2.38 .016* .129 

P2 Peak amplitude      

     Interval .807 4.9, 77.5 .202 .958 .012 

     Hand 1.00 1, 16 2.5 .133 .135 

     Scalp Electrode Site .832 1.7, 26.6 94.28 <.001* .885 

     Interval × Hand 1.00 6, 96 1.54 .174 .088 

     Interval × Scalp Electrode Site .799 9.6, 153.4  .763 .659 .045 

     Hand × Scalp Electrode Site .864 1.7, 27.7 1.42 .258 .081 

     Interval × Hand x Scalp  

     Electrode Site 
.748 9, 143.7 .859 .563 .051 

N2-P2 Peak-to-Peak amplitude      

     Interval .819 4.9, 78.6 .803 .549 .048 

     Hand 1.00 1, 16 3.36 .085 .174 

     Scalp Electrode Site 1.00 2, 32 54.53 <.001* .773 

     Interval × Hand 1.00 6, 96 1.66 .139 .094 

     Interval × Scalp Electrode Site .754 9, 144.8  1.42 .186 .081 

     Hand × Scalp Electrode Site .946 1.9, 30.3 .285 .742 .017 

     Interval × Hand × Scalp  

     Electrode Site 
.973 

11.7, 

186.8 
1.35 .196 .078 

*significant at 0.05 

 

  



Chapter 5 
 

 
 

199 
 

 

 

Figure 10. Mean (SE) (a) N2 peak amplitudes, (b) P2 peak amplitudes and (c) N2-P2 

peak-to-peak amplitudes at 3 scalp electrode sites (C3, Cz, C4) in response to painful 

electrocutaneous stimulation.  
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Table 7. Statistical values for separate 2 hand (right, left) × 7 Interval (R+50, R+150, 

R+250, R+350, R+450, R+550, R+650 ms) repeated measures ANOVAs for N2 

peak amplitudes at each scalp electrode site (C3, Cz, C4). 

 

 Variable  df F p p
2
 

C3 Scalp Electrode      

     Interval 1.00 6, 96 .805 .568 .048 

     Hand 1.00 1, 16 2.89 .109 .153 

     Interval × Hand .760 4.6, 72.9 1.61 .173 .092 

Cz Scalp Electrode      

     Interval 1.00 6,96 1.28 .273 .074 

     Hand 1.00 1, 16 1.12 .306 .065 

     Interval × Hand .825 5, 79.2 1.63 .162 .093 

C4 Scalp Electrode      

     Interval .902 5.4, 86.6 .521 .773 .032 

     Hand 1.00 1, 16 3.26 .090 .169 

     Interval × Hand 1.00 6, 96 .372 .895 .023 

*significant at 0.05 
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Figure 11. Mean (SE) N2 peak amplitudes as a function of the cardiac cycle following 

painful stimulation of the right and left hands recorded at scalp electrode sites (a) C3, (b) 

Cz and (c) C4.  
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5.4.5 Separate 3 Scalp Electrode Site (C3, Cz, C4) × 7 Cardiac Cycle Interval 

(R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) repeated measures 

ANOVAs in the right and left hands 

To further explore if the significant 2 × 3 × 7 interaction identified above may be 

explained by a 3 x 7 interaction that varies in left and right hands, two separate 3 

Scalp Electrode Site × 7 Interval repeated measures ANOVAs were performed on 

N2 peak amplitudes in the left and right hands. As shown in Table 8, a 3 Scalp 

Electrode Site × 7 Interval repeated measures ANOVA for N2 peak amplitudes for 

pain stimuli delivered to the right hand revealed no significant main (Interval or scalp 

electrode site) or interaction (Interval × Scalp Electrode Site) effects (Figure 12a ). 

Similarly, for pain stimuli delivered to the left hand no main (cardiac cycle interval or 

scalp electrode site) significant effects. However, there was a marginal interaction 

effect (Interval × Scalp Electrode Site). Newman-Keuls post hoc analysis revealed 

that N2 peak amplitudes at scalp electrode site C3 were significantly smaller at 

cardiac cycle interval R+50ms than all cardiac cycle intervals at scalp electrode site 

C4 and at cardiac cycle intervals R+250, R+350, R+450, R+550 and R+650ms at 

scalp electrode site Cz. Similarly, N2 peak amplitudes at scalp electrode C3 cardiac 

cycle interval R+150ms were significantly smaller than at C4 electrode site at cardiac 

cycle intervals R+350 and R+550ms, and at Cz cardiac cycle intervals R+350, 

R+550 and R+650ms. At scalp electrode site C3 N2 peak amplitudes at cardiac 

cycle interval R+250ms were significantly smaller than R+150, R+350, R+450, 

R+550 and R+650 cardiac cycle intervals at scalp electrode site C4 and smaller than 

Cz scalp electrode site cardiac cycle intervals R+350, R+450, R+550 and R+650ms. 

Finally at cardiac cycle interval R+550ms at scalp electrode site C3 N2 amplitudes 

were smaller than cardiac cycle interval R+550ms at C4 scalp electrode site and 

R+350 and R+650ms at scalp electrode site Cz (Figure 12b). Planned orthogonal 

comparisons indicated that the Scalp Electrode Site × Interval interaction was 

characterised by a combined linear and quintic trend for scalp electrode site and 

interval, respectively, F(1,16) = 7.45, p = .01 and also by a combined quadratic and 

quartic trend for scalp electrode site and interval, respectively, F(1,16) = 5.40, p = 

.03. 
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Table 8. Statistical values for two separate 3 Scalp Electrode Site (C3, Cz, C4)× 7 

Interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) repeated 

measures ANOVAs for N2 peak amplitudes in the right and left hands. 

 

Variable  df F p p
2
 

Right Hand      

     Interval .821 4.9, 78.8 .872 .502 .052 

     Scalp Electrode Site .985 2, 31.5 1.88 .170 .105 

     Interval x Scalp   

     electrode site 
.784 

9.4, 

150.1 
1.54 .135 .088 

Left Hand      

     Interval 1.00 6, 96 1.08 .383 .063 

     Scalp Electrode Site 1.00 2, 32 1.47 .246 .084 

     Interval x Scalp  

     electrode site 
.743 

8.9, 

142.7 
1.73 .088 .098 

*significant at 0.05 
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Figure 12. Mean (SE) N2 peak amplitudes as a function of the cardiac cycle recorded at 

3 scalp electrode site (C3, Cz, C4) in the a) right and b) left hands.  
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5.4.6 Individual cardiac cycle interval effects 

A series of 6 separate 7 Interval repeated measures ANOVAs were conducted for 

each different combination of hand and scalp electrode site for N2 peak amplitudes. 

The rationale for testing each combination of hand and scalp electrode site in 

isolation was to explore if there was any disparity in cardiac cycle-related modulation 

when different combinations of hand and scalp positions were tested (i.e. was there 

a significant cardiac cycle effect in some conditions but not others conditions) that 

may help us understand the 2 × 3 × 7 interaction.  

 

As shown in Table 9, the following combinations of hand and scalp electrode 

location were subjected to repeated measures ANOVA analysis; a) left hand 

stimulation recorded at C4 scalp electrode, b) left hand stimulation recorded at C3 

scalp electrode, c) left hand stimulation recorded at Cz scalp electrode, d) right hand 

stimulation recorded at C4 scalp electrode, e) right hand stimulation recorded at C3 

scalp electrode, and f) right hand stimulation recorded at Cz scalp electrode. There 

were no Interval effects at any of the hand / scalp electrode recording site 

combinations. 

 

Table 9. Statistical values for six separate 7 Interval (R+50, R+150, R+250, R+350, 

R+450, R+550, R+650 ms) repeated measures ANOVAs for N2 peak amplitudes at 

each hand / scalp electrode site combination. 

 

 Variable  df F p p
2
 

Left hand / C4 scalp electrode .995 6, 95.6 .348 .909 .021 

Left hand / C3 scalp electrode .979 5.9, 94 1.81 .106 .102 

Left hand / Cz scalp electrode 1.00 6, 96 1.24 .292 .072 

Right hand / C4 scalp electrode .947 5.7, 90.9 .498 .799 .030 

Right hand / C3 scalp electrode .819 6, 78.6 .739 .594 .044 

Right hand / Cz scalp electrode .810 4.9, 77.8 1.69 .148 .096 

*significant at 0.05 
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5.5 Discussion 

The first significant finding from the current study was a significant variation in N2 

and P2 peak amplitudes, and N2-P2 peak-to-peak amplitudes between the three 

scalp electrodes assessed (C3, Cz, C4) following painful electrocutaneous 

stimulation. For all three PREP components, amplitudes at scalp electrode site Cz 

were significantly larger than C3 and for P2 peak amplitudes and N2-P2 peak-to-

peak amplitudes Cz amplitudes were also larger than those measured at C4. These 

findings are in agreement with a large proportion of previous pain studies which have 

reported that both the N2 and P2 PREP components were found to be maximal at 

the midline central area, specifically scalp electrode site Cz (Bromm & Treede, 1987; 

Carmon et al., 1976; Carmon et al., 1978; et al., 1980; Kakigi et al., 1989; Kanda et 

al., 1996; Kanda et al., 1999; Miyazaki et al., 1994; Treede et al., 1988). It has been 

suggested that the origin of the N2 and P2 components is primarily the ACC, whilst 

the SII and insular cortex, bilaterally, also contribute to the N2 component (Bromm & 

Chen, 1995; Tarkka & Treede, 1993; Valeriani et al., 1996). These areas correspond 

to the scalp measurement at Cz and thus are in line with the findings from the 

current study. However, findings from fMRI studies have reported a right hemisphere 

dominance for pain processing (Brooks et al., 2002; Symonds et al., 2006), which is 

different to our results. Specifically right lateralisation was evident in the right anterior 

insula when pain was attended to, and in the ACC regardless of attentional focus 

(Brooks et al., 2002). Symonds et al. (2006) found the middle frontal gyrus, anterior 

cingulate, inferior frontal gyrus, medial/superior frontal gyri, and inferior parietal 

lobule showed either an exclusive or strong lateralisation to the right hemisphere. At 

least some of these are areas would have been expected to underlay the right 

electrode site (C4) in the current study (Bentley, Derbyshire, Youell, & Jones, 2003; 

Bromm & Chen, 1995; Garcia-Larrea, Frot, & Valeriani, 2003; Ohara, Crone, Weiss, 

& Lenz, 2006; Tarkka & Treede, 1993; Treede, Lorenz, & Baumgartner, 2003; 

Valeriani et al., 1996) and thus, greater PREP amplitudes had been hypothesised 

from electrode site C4 than C3. However, other studies utilising fMRI (Bingel et al., 

2003; Youell et al., 2004) and PET (Coghill et al., 2001) imaging techniques have 

failed to find a right lateralisation effect for pain. Coghill and colleagues (2001) 

reported bilateral processing in the regions of the cerebellum, putamen, thalamus, 

ACC, and frontal operculum and contralateral processing in the regions of the SI, SII 
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and insular cortex regardless of side of stimulation. Similarly, bilateral processing 

was evident in SI, SII and insular cortex but with a significantly greater contralateral 

response in SI and the thalamus (Bingel et al., 2003; Youell et al., 2004).  

 

 As we had found no cardiac cycle-related modulation of electrocutaneous 

PREPs in our previous study (Chapter 4), we suggested that this may be due to a 

potential lateralisation of cardiac cycle-related modulation. In our previous study only 

the right hand was stimulated, thus if we take into consideration the crossing of 

neural pathways following stimulation, whereby most of the axons carrying afferent 

information cross transversely through the anterior white comissure of the spinal 

cord within several segments of their origin (Almeida, Roizenblatt & Tufik, 2003), 

pain afferent information from the right side of the body would terminate in the left 

hemisphere of the brain. However, as discussed in the introduction, there is also 

good evidence proposing a right hemispheric dominance (Brooks et al., 2002; 

Symonds et al., 2006) or contralateral (Bingel et al., 2003; Youell et al., 2004; Coghill 

et al., 2001) dominance of pain processing. As well as strong support indicating that 

processing of baroreceptor afferent information processing is predominately in the 

right cerebral hemisphere (e.g. Critchley et al., 2000; Henderson et al., 2004; Weisz 

et al., 2001). Therefore, the main hypothesis for the current study was that the 

cardiac cycle-related modulation of pain would be more apparent following 

stimulation of the left hand than the right hand and be more evident in the scalp 

electrodes covering the right side of the cerebral cortex i.e. scalp electrode C4. This 

is due to the suggested greater convergence of the baroreceptor and pain 

processing input in the right side of the brain following left hand stimulation. As the 

analysis presented in Table 10 shows, the current study found that there was no 

significant variation in PREPs across the cardiac cycle at scalp electrode site C4 

following left hand stimulation. Indeed, contra to our hypothesis, this study found no 

significant differences between the cardiac cycle modulation of painful stimuli 

delivered to the right or left hand, nor any difference between the cardiac cycle-

related modulation of noxious stimuli at scalp electrode sites covering the left (C3), 

right (C4) or central (Cz) brain areas. 
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The second significant finding in the current study was a significant three-way 

interaction between hand, scalp electrode site and cardiac cycle interval for N2 peak 

amplitudes suggesting that although neither hand nor scalp electrode site in isolation 

appear to be important in the cardiac cycle patterning of pain, together stimulation 

side and scalp electrode site may influence the cardiac cycle patterning of N2 peak 

amplitudes. To further investigate the significant Hand × Scalp Electrode Site × 

Interval interaction, a series of separate ANOVA s were conducted on each 

individual interaction i.e. Hand × Interval ANOVAs at each scalp electrode site, Scalp 

Electrode Site × Interval ANOVAs for each hand, and Hand × Scalp Electrode Site 

ANOVAs at each cardiac cycle interval. These analyses revealed no significant 

interaction effects and thus we must interpret the significant Hand × Scalp Electrode 

Site × Interval interaction with extreme caution.  

 

However, the separate Hand × Interval ANOVAs at each scalp electrode site 

did reveal a marginal main effect for hand at scalp electrode site C4 (Table 7). Visual 

inspection of the graphs associated with the Hand x Interval ANOVAs (Figure 11) 

appears to suggest that there may be weak disparity in the Hand × Interval 

interaction across electrode sites. At C3 (Figure 11a) and Cz (Figure 11b) electrode 

sites there appears to be a greater divergence of N2 peak amplitudes between the 

left and right hands later in the cardiac cycle i.e. R+350ms to R+650ms than at 

electrode site C4  which appears to show consistently smaller amplitudes across the 

cardiac cycle in the right hand (Figure 11c). In addition, Scalp Electrode Site × 

Interval analysis indicated a marginal interaction effect in the left hand (Table 8) and 

subsequent post hocs (described in the “Separate 3 Scalp Electrode Site (C3, Cz, 

C4) × 7 cardiac cycle Interval (R+50, R+150, R+250, R+350, R+450, R+550, R+650 

ms) repeated measures ANOVAs in the right and left hands” results section above) 

confirmed that N2 peak amplitudes were significantly smaller at scalp electrode site 

C3 than scalp electrodes C4 and Cz particularly at the early cardiac cycle intervals 

i.e. R+50, R+150 and R+250ms in the left hand (Figure 12). Taken together these 

marginally significant effects very tentatively suggest that the significant Hand × 

Scalp Electrode Site × Interval interaction could be the result of a combination of 

both side of stimulation and scalp electrode site influencing the patterning of N2 peak 

amplitudes across the cardiac cycle. However, due to lack of statistical significance it 
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is not appropriate to draw any definitive conclusions from these suggestions and 

further research with greater numbers of participants is required to further investigate 

the origins of this possible interaction. 

 

Very few studies have investigated the potential lateralisation of cardiac cycle-

related modulation but those that have typical report a lateralisation effect. However, 

the side of the lateralisation is yet to be determined. Specifically, Walker and 

Sandman (1982) reported that baroreceptor activation (systole) appeared to impact 

the processing of visual stimuli in the right hemisphere but not in the left. This 

conclusion was evidenced by visual evoked potentials recorded from the right 

hemisphere being larger during the diastolic phase of the cardiac cycle than the 

systolic phase, whereas visual evoked potentials recorded from the left hemisphere 

were uninfluenced by the phase of the cardiac cycle. These findings suggest that the 

side of recording visual evoked potentials, rather than the side of presentation is 

important in determining the lateralisation of the cardiac cycle-related modulation. 

This right hemispheric bias for cardiac cycle modulation was also found to be evident 

for startle responding (Schulz et al., 2009).  Startle response was found to be 

reduced during systole compared to diastole only following stimulation presented to 

the left ear and this was independent of recording side (Schulz et al., 2009). The 

authors conclude that this finding is likely to reflect the crossing of sensory 

information from the left side of presentation to the right cerebral hemisphere (as 

discussed above) combining with the visceral afferent and baroreceptor afferent 

signals which are predominately processed in the right hemisphere (Schulz et al., 

2009). These findings suggest that the side of stimulus presentation is important in 

determining the lateralisation of the cardiac cycle-related modulation of startle 

responding rather than stimulus presentation side. In contrast simple visual reaction 

time for stimuli presented to the right side and for right hand responses was 

marginally longer during systole than diastole, compared to no differences between 

systole and diastole for central and left stimuli or for left hand responses (Weisz & 

Adam, 1996). This finding suggests that reaction time was influenced to a greater 

extent by cardiac cycle-related modulation in the left cerebral hemisphere than the 

right hemisphere (Weisz & Adam, 1996) and that both side of stimulation and 

recording side are important in determining the lateralisation of the cardiac cycle-
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related modulation of simple reaction times. Therefore, it may be suggested that the 

cardiac cycle modulation of different stimulation modalities may be lateralised 

differently or that both are important factors. Thus, the significant Hand × Scalp 

Electrode Site × Interval interaction for electrocutaneous PREPs in the current study 

may indicate that both the side of stimulation and the scalp recording site are 

important in the cardiac cycle-related modulation of pain. 

 

The current study found no main effect for cardiac cycle interval in either hand 

or any electrode site for N2 and P2 peak amplitudes or the N2-P2 peak-to-peak 

amplitude, which have been shown to correlate with the intensity of pain stimulus 

(Becker et al., 2000; Bromm, 1984; Stowell, 1977; Zaslansky et al., 1996) as well as 

with subjective ratings of pain (Kanda et al., 2002). The lack of cardiac cycle-related 

modulation of PREPs in the current study is in line with our previous study 

investigating the cardiac cycle-related modulation of electrocutaneous PREPs 

(Chapter 4). However, it should be noted that the current study included participants 

who’s data was also included in the first study (N=4).  

 

The current findings also partially agree with those of Gray and colleagues 

(Gray, Minati, Paoletti, & Critchley, 2010) who reported no modulation of N2 peak 

amplitudes but that P2 amplitudes were modulated across the cardiac cycle, with 

reduced amplitudes during systole; however, this effect was only present for cued 

stimuli. No cardiac cycle effect was found for un-cued stimuli, which suggests that 

presenting a cue prior to stimulation may be important in determining the degree of 

cardiac cycle modulation. Specifically, the presentation of a cue stimuli may induce 

cardiac deceleration (Graham & Clifton, 1966; Lacey & Lacey, 1970) which it is 

suggested may reduce the impact of the cardiac cycle effects on visual evoked 

potentials (Walker & Sandman, 1982). Alternatively, as Gray et al. (2010) suggest 

the expectancy associated with the cueing of pain stimuli may shift attention towards 

the imminent pain stimuli. Attention towards pain has been shown to increase its 

perceived intensity (e.g. Angrilli, Mini, Mucha, & Rau, 1997) and increase the 

associated PREP amplitudes (e.g. Lorenz & Garcia-Larrea, 2003). Indeed Gray et al. 

(2010) reported increased PREP amplitudes when stimuli were cued, which was 

abolished during baroreceptor activation thus providing the cardiac cycle modulation. 



Chapter 5 
 

 
 

211 
 

They suggest baroreceptor firing disrupts the attentional modulation and thus 

accounts for the attenuated PREPs during baroreceptor activation. The current 

study, and the PREP study presented in Chapter 4 of this thesis presented un-cued 

stimuli, the stimuli occurred at variable intervals throughout each experimental block 

without warning and both studies failed to find a cardiac cycle modulation of PREPs. 

In a previous study reporting a systolic dampening of laser evoked N2 PREPs 

(Edwards et al., 2008), participants were presented with a fixation point from 10 to 15 

s before each stimulus. This may have shifted participants attention towards the 

imminent pain compared to our studies and thus, is in line with Gray et al.’s (2010) 

suggestion, that cueing stimuli may be an important factor in cardiac cycle-related 

modulation.  

 

However, the current findings contrast with the systolic dampening of N2 peak 

amplitudes and N2-P2 peak-to-peak amplitudes in response to noxious laser 

stimulation at Cz reported by Edwards et al. (2008). The reasons for the differing 

findings between the current study and Edwards et al. (2008) are discussed in detail 

in Chapter 4, but most likely relate to methodological differences. Specifically, the 

modality of pain stimuli (i.e. laser used by Edwards et al. (2008) vs. electrocutaneous 

used in the current study), sex of the participants (Edwards et al. (2008) only studied 

men, the current study included men and women), the duration of the study and the 

total number of pain stimuli was greater in the current study than Edwards et al. 

(2008) and the EEG systems used to record the PREPs were also different (the 

current study employed a high impedance system (Biosemi)). In addition, as 

discussed above, the different findings between the current study and Edwards et al. 

(2008) may be partially explained by the presentation of un-cued stimuli in the 

current study compared to the cued stimuli presented by Edwards et al.  

 

The lack of cardiac cycle modulation in the current study also contrasts several 

previous cardiac cycle studies reporting a dampening of the NFR (Edwards et al., 

2001, 2002, 2003; McIntyre et al., 2006, 2008) and pain perception (Study 1 -

Wilkinson et al., 2013) during systole compared to diastole. However, some of these 

studies were designed to investigate cardiac cycle-related modulation of NFR 

(Edwards et al., 2001, 2002, 2003; McIntyre et al., 2006, 2008) and pain (Wilkinson 
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et al., 2013) thresholds and thus stimulation intensity may be lower than the painful 

stimuli (2 times pain threshold) delivered in the current study. The higher stimulation 

intensities may have induced physiological arousal which has been shown to 

influence pain perception and moderate the midcycle dampening of the NFR, 

probably through reduced transmission of baroreceptor afferents (McIntyre et al., 

2006). Indeed, a recent study (Martins et al., 2009) employing presentation of 

unpredictable pain stimuli at different pain intensities up to pain tolerance failed to 

find a cardiac cycle modulation of the NFR and contra to the typical systolic 

dampening of the NFR in previous studies (Edwards et al., 2001, 2002, 2003; 

McIntyre et al., 2006, 2008) the pain intensity was heightened during systole 

compared to diastole (Martins et al., 2009). These findings suggest that higher 

stimulation intensities when presented un-cued may differentially influence the 

previously demonstrated cardiac cycle-related modulation. However, as participants 

in the current study rated the intensity of the painful stimuli as 56 (average of all 

experimental blocks), this does not appear to be notably higher than threshold (50) 

and thus, a very high pain stimulation appears an unlikely explanation for the lack of 

cardiac cycle modulation in the current study. However, further studies investigating 

the possible effects of cued and un-cued stimulation, and different pain stimulation 

intensities moderating the cardiac cycle-related modulation requires further 

investigation.  

 

The current study should be viewed in the light of several limitations. Firstly, the 

sample size was only 17. Although a previous cardiac cycle study investigating 

laterality effects had a similar sample size (Walker & Sandman, 1982, N=18) found 

effects, as did recent studies regarding the cardiac cycle modulation of laser 

(Edwards et al., 2008) and electrocutaneous (Gray et al., 2010) PREPs which only 

had 10 and 11 participants respectively, it maybe that the lack of significant findings 

in the current study was due to a lack of power. Indeed post hoc power analysis 

using the G*power computer program (Faul, Erdfelder, Buchner, & Lang, 2009) 

indicated that adopting the reported effect size for the main effect for interval in the 

current study (f(U) = .239), with an alpha of .05 and power of .80, the study would 

require a total sample of 42 to detect, by repeated measures ANOVA, a difference in 

N2 peak amplitudes across the cardiac cycle. 
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Additionally, the lack of cardiac cycle modulation in the current study may also 

be partially explained, as discussed in Chapter 4, by the EEG system used in the 

current study (Biosemi) being a high impedance system. Such systems require a 

greater number of trials to achieve significance than comparable low impedance 

systems (Kappenman & Luck, 2010). The Biosemi system is designed to tolerate 

high electrode impedances (Metting van Rijn et al., 1996), but it is still suggested that 

to achieve an 80% chance of statistical significance for the P300 component, 

approximately 25 trials per condition are required (Kappenman & Luck, 2010) 

although this was in a sample of just 12 participants. Although it must be 

acknowledged that this was calculated for the P300 rather than N2 or P2 which may 

require a different number of trials to achieve significance. However, the average 

number of trials accepted per cardiac cycle interval in the current study (Mean 

across all cardiac cycle intervals = 19) is below this suggested level. Although the 

increased number of participants compared to Edwards et al. (2008) and Gray et al. 

(2010) aimed to improve the chances of reaching statistical significance, it appears 

that future studies would do well to either increase the number of trials averaged per 

cardiac cycle interval or collapse data across intervals to improve the signal-to-noise 

ratio and subsequently the chance of achieving significance.  

 

Notwithstanding the limitations outlined above, the findings of the current study 

suggest that although the cardiac cycle-related modulation of PREPs may not be as 

robust as other pain indices, such as the NFR, further study is warranted to 

investigate a possible role of lateralisation indicated in the current study. 
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The main purpose of this thesis was to expand the current knowledge regarding the 

role of natural fluctuations in blood pressure (BP) across the cardiac cycle on the 

modulation of pain and tactile stimuli. This concluding chapter aims to summarise the 

findings obtained from the experimental chapters within this thesis, and to discuss 

these in relation to the current understanding and future directions of the cardiac 

cycle-related modulation of sensation. Finally, the chapter concludes with 

acknowledgment of the main limitations of the studies present and suggestions for 

future research. 

 

6.1 Summary of Findings 

6.1.1 Study 1 

The first study (Chapter 2) was designed to further investigate the cardiac cycle-

related modulation of electrocutaneous pain thresholds and thus pain perception. 

Specifically, the study re-investigated the findings of a recent study by Martins and 

colleagues (Martins, Ring, McIntyre, Edwards, & Martin, 2009) who reported, 

unexpectedly, that pain ratings were elevated during systole compared to diastole. 

This finding was contra to the majority of previous research indicating a systolic 

dampening of the nociceptive flexion reflex (NFR) (Edwards, Ring, McIntyre, & 

Carroll, 2001; Edwards, McIntyre, Carroll, Ring, & Martin, 2002; Edwards et al., 2003 

McIntyre, Edwards, Ring, Parvin, & Carroll, 2006; McIntyre, Kavussanu, & Ring, 

2008a) and laser evoked pain-related evoked potentials (PREPs) (Edwards, Inui, 

Ring, Wang, & Kakigi, 2008a). Despite the different patterning of modulation, the 

Martins et al. (2009) finding’s suggested that pain perception may be modulated 

across the cardiac cycle. However, the specific patterning of the cardiac cycle 

modulation of pain perception remained to be established by further research. 

Therefore, the first study employed several different methodological features to 

address possible reasons for the unexpected findings reported by Martins and 

colleagues (2009).  

 

The study determined electrocutaneous pain thresholds in 49 healthy adults 

at seven intervals after the R-wave of the electrocardiogram (EEG) (R+0, R+100, 

R+200, R+300, R+400, R+500, R+600 ms), using an interleaved up-down staircase 
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procedure. Stimuli were pseudorandomly delivered to the right hand and participants 

indicated the presence or absence of pain via a button press. 

Results indicated that pain thresholds were higher mid-cycle (R+200 and 

R+300ms), indicating that pain perception was attenuated during systole compared 

to diastole. Furthermore, analysis using BP median splits revealed no difference 

between pain thresholds in the high and low BP groups, however, a Group × Interval 

interaction was found. Further analysis revealed that only participants with low 

Systolic BP (SBP) displayed the reported cardiac cycle modulation of pain. 

 

6.1.2 Study 2  

Having reported a cardiac cycle modulation of pain perception in Study 1 (Chapter 

2), the second study (Chapter 3) aimed to further explore if the cardiac cycle-related 

modulation identified for pain thresholds (Study 1) and for other modalities including 

the NFR (Edwards et al., 2001, 2002, 2003), PREPs (Edwards et al., 2008a) and 

pain (Martins et al., 2009) was evident for tactile thresholds. The study aimed to 

expand previous work by Edwards and colleagues (Edwards, Ring, McIntyre, Winer, 

Martin, 2009) which was the first to report a cardiac cycle-related modulation of 

cutaneous sensory thresholds. They found that tactile thresholds were lower during 

systole compared to diastole, which indicates that in contrast to pain, tactile 

sensitivity was increased during baroreceptor activation. However, the effect of the 

inclusion of unmedicated hypertensives in the sample assessed by Edwards et al. 

(2009) is unknown and therefore Study 2 (Chapter 3) aimed to determine if 

electrocutaneous tactile sensation was modulated across the cardiac cycle by 

natural variation in baroreceptor activity in a normotensive group. The second study 

also sought to provide greater resolution regarding the modulation of tactile 

thresholds across the cardiac cycle by presenting stimuli at seven cardiac cycle 

intervals as opposed to the three used by Edwards et al. (2009).  

 

Electrocutaneous stimuli were delivered via a bar electrode to the participants 

right index finger and they indicated if they felt anything or nothing via a button press. 

Tactile thresholds were determined concurrently at seven cardiac cycle intervals 

after the R-wave of the ECG (R+0 ms, R+100 ms, R+200 ms, R+300 ms, R+400 ms, 

R+500 ms, R+600 ms) by interleaving seven up-down staircases (Levitt, 1971). 
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Stimuli were delivered pseudorandomly to ensure variability in stimulus intensity and 

cardiac cycle interval. 

The main finding from this study was no overall cardiac cycle-related 

modulation of electrocutaneous tactile thresholds across the cardiac cycle in 

normotensives. Similar to the first study in this thesis (Chapter 2), when investigating 

the possible influence of tonic BP on the cardiac cycle modulation of tactile 

thresholds, we found no group differences in tactile thresholds, however, we did 

report significant Group × Interval interactions for both the SBP and Diastoic BP 

(DBP) groups. Further analysis confirmed a diverging pattern of tactile threshold 

modulation across the cardiac cycle between the DBP groups. Only the DBPlow group 

showed significant variation in tactile thresholds across the cardiac cycle, with lower 

tactile thresholds during systole (R+300 ms) compared to diastole (R+600 ms), 

whereas the DPBhigh group tended to have higher tactile thresholds during systole 

compared to diastole, although this wasn’t significant. Such opposing patterns may 

have contributed to the null overall findings in the study. Additional analysis revealed 

that the cardiac cycle effects were limited to males, but as the participant split in the 

study was heavily biased towards females (Female = 40, Male = 10), interpretation 

of the tonic BP effects should be treated with caution. 

 

6.1.3 Study 3 

Having found a significant variation in pain thresholds across the cardiac cycle in the 

first study (Chapter 2), the third study (Chapter 4) aimed to further understand the 

factors underlying the cardiac cycle modulation of pain. Specifically, the study aimed 

to expand the knowledge of the cortical processing of painful stimuli across the 

cardiac cycle. As previous research has reported a systolic dampening of the N2 and 

N2-P2 peak-to-peak components of laser-evoked PREPs at the central scalp 

electrode site, Cz, in men (Edwards et al., 2008a), and a systolic dampening of P2 

peak amplitudes in females following electrocutaneous stimulation (Gray, Minati, 

Paoletti, & Critchley, 2010) the third study sought to determine if the same modulation 

was evident for electrocutaneous PREPs as a greater number of cardiac cycle 

intervals than the 2 used by Gray et al. (2010). To further the findings of these two 

studies (Edwards et al., 2008a; Gray et al., 2010), and based on several functional 

magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and positron 
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emission tomography (PET) imaging studies indicating that areas beyond the midline 

are activated by painful stimulation, Study 3 used multi-channel 

electroencephalogram (EEG) recording to determine if modulation of PREPs was 

more evident at scalp sites located more laterally. Specifically, PREPs were also 

analysed at scalp electrode sites positioned lateral to Cz i.e. scalp electrode sites C3 

and C4, which were proposed to overlay brain areas involved in the processing of 

both pain and baroreceptor afferent information i.e. anterior cingulate cortex, the 

secondary somatosensory and insular cortex bilaterally (Bromm & Chen, 1995; 

Tarkka & Treede, 1993; Valeriani, Rambaud, & Mauguiere, 1996), and the primary 

somatosensory areas located in the parietal operculum (Bushnell & Apkarian, 2006; 

Craig, 2002; Peyron et al., 2000; Rainville, 2002). Finally, the study recruited both 

male and female participants to increase the generalisation of the findings as 

Edwards et al. (2009) who had only studied males and Gray et al. (2010) who only 

studied females. 

 

Following determination of individual pain thresholds via an up-down staircase 

procedure (Levitt, 1971), EEG activity was recorded via 32 electrodes. Participants 

completed 7 separate experimental blocks each containing 21 painful stimuli 

delivered to the right hand at an intensity equal to two times pain threshold. Within 

each block pain stimuli were delivered three times at each of seven intervals after 

the R-wave of the ECG (R+50, R+150, R+250, R+350, R+450, R+550, R+650 ms) 

resulting in 21 stimuli being presented at each interval over the 7 experimental 

blocks. EEG data was subsequently corrected for ocular artifacts, beat-before 

epochs were subtracted from stimulation epochs to remove ECG artefacts from 

contaminating the EEG data (Gray et al., 2010) and analysed off-line with BESA. 

Peak N2, and P2 amplitudes and N2-P2 peak-to-peak amplitudes for the average 

waveforms for each cardiac cycle interval were then determined. 

 

 The results of the study showed that there was no significant variation in the 

N2 or P2 peak amplitudes or N2-P2 peak-to-peak amplitudes across the cardiac 

cycle at scalp recording sites Cz, C3, or C4. As with studies 1 (Chapter 2) and 2 

(Chapter 3) the possible influence of tonic BP on the cardiac cycle modulation of 

PREPs was investigated, however, in contrast to the previous two studies (Chapters 
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2 & 3) median BP split analysis revealed no main effect for BP Group or interaction 

effects between BP Group × Cardiac Cycle Interval for N2 or P2 peak amplitudes or 

N2-P2 peak-to-peak amplitudes at Cz, C3 or C4. 

 

6.1.4 Study 4 

Due to the lack of cardiac cycle-related modulation of PREPs reported in Study 3 

(Chapter 4), the fourth study (Chapter 5) sought to determine if this may be due to a 

lateralisation of cardiac cycle-related modulation in the brain. Specifically, in Study 3 

(Chapter 4) only the right hand was stimulated and although a cardiac cycle-related 

modulation of laser evoked (Edwards et al., 2008a) and electrocutaneous (Gray et 

al., 2010) PREPs has been reported following right hand stimulation, it is possible 

that modulation may be more evident following left hand stimulation. A full discussion 

regarding the evidence justifying this hypothesis is presented in the Introduction of 

Chapter 5 in this thesis. By delivering stimuli to both the left and right hands, and 

measuring cortical responses at Cz, and at sites lateral to Cz (i.e., C3 & C4) in the 

same subjects allowed us to directly compare responses and thus investigate the 

importance of both side of stimulation and site of recording in the cardiac cycle-

related modulation of PREPs, and possibly contribute to explaining the lack of 

cardiac cycle-related modulation of PREPs in Study 3 (Chapter 4). In addition, 

previous studies indicating a systolic dampening of the NFR (Edwards et al., 2001, 

2002, 2003; McIntyre et al., 2006) delivered stimuli to the left side. Further support 

for a hypothesised laterality of PREP processing came from the few studies that 

have looked at the lateralisation of cardiac cycle-related modulation. The site of 

recording visual evoked potentials was found to be important in the cardiac cycle 

modulation of these visual evoked potentials (Walker & Sandman, 1982). With visual 

evoked potentials recorded from the right hemisphere being larger during the 

diastolic phase of the cardiac cycle than the systolic phase, whereas visual evoked 

potentials recorded from the left hemisphere were uninfluenced by the phase of the 

cardiac cycle. Similarly, startle response was found to be reduced during systole 

compared to diastole only following stimulation presented to the left ear and this was 

independent of recording side (Schultz et al., 2009), which suggest that the side of 

stimulus presentation is important in determining the lateralisation of the cardiac 

cycle-related modulation. Finally, both side of stimulation and recording side may be 
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important in determining the lateralisation of the cardiac cycle-related modulation of 

simple visual reaction time (Weisz & Adam, 1996). Reaction time for stimuli 

presented to the right side and for right hand responses was marginally longer during 

systole than diastole, compared to no differences between systole and diastole for 

central and left stimuli or for left hand responses (Weisz & Adam, 1996). Although 

Edwards et al. (2008a) and Gray et al. (2010) reported cardiac cycle effects for 

PREPs, as both studies only stimulated the right hand and Edwards et al. (2008a) 

only recorded PREPs at Cz, it is not possible to determine if PREPs delivered to the 

left hand may have shown a greater cardiac cycle modulation than that reported for 

the right hand. Furthermore, as suggested in the Discussion of Study 3 (Chapter 4), 

laser evoked PREPs may be modulated differently to electrocutaneous PREPs due 

to differentially stimulating nociceptive and non-nociceptive fibres (e.g. Lefaucheur et 

al., 2012; Perchet et al., 2012). 

 

 The EEG methodology and procedures used in Study 4 (Chapter 5) were the 

same as those used in Study 3 (Chapter 4), the only difference being that subjects 

were required to attend the laboratory twice and PREPs were recorded following 

stimulation of the left and right hands on separate days. As in Study 3 (Chapter 4) 

PREP responses were recorded and compared at scalp electrode sites Cz, C3 and 

C4. 

 

 The results of the study indicated that N2 and P2 peak amplitudes, and N2-P2 

peak-to-peak amplitudes were significantly larger at scalp electrode site Cz than C3, 

and P2 peak amplitudes and N2-P2 peak-to-peak amplitudes at Cz were also larger 

than those measured at C4.  

  

The second result reported was that there was no significant differences 

between the cardiac cycle modulation of PREP amplitudes following painful stimuli 

delivered to the right or left hand, nor any difference among the cardiac cycle-related 

modulation of PREP amplitudes at scalp electrode sites covering the left (C3), right 

(C4) or central (Cz) brain areas. 
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 Finally, there was no main effect for cardiac cycle interval for N2 peak 

amplitudes, P2 peak amplitudes or N2-P2 peak-to-peak amplitudes. However, 

analysis did reveal a significant interaction between the hand, scalp electrode site 

and cardiac cycle interval for N2 peak amplitudes. 

  

6.2 Discussion and Interpretation 

The results of Study 1 (Chapter 2) showed that pain thresholds were higher mid-

cycle (R+200 and R+300ms), indicative of pain attenuation during systole compared 

to diastole. Thus, the results of Study 1 (Chapter 2) suggest that pain perception, at 

threshold level, is modulated by natural fluctuations in BP across the cardiac cycle. 

Whereas, Study 2 (Chapter 3) revealed that tactile detection thresholds were not 

modulated across the cardiac cycle and similarly studies 3 and 4 (Chapters 4 & 5) 

found that electrocutaneous PREPs were not modulated by natural fluctuations in BP 

across the cardiac cycle. Interestingly, the participants in studies 1 and 2 (Chapters 2 

& 3) were the same, suggesting that in a group of normotensive individuals the 

influence of the cardiac cycle is different between pain and tactile detection, possibly 

indicting that pain perception is more sensitive to natural fluctuations in BP than 

tactile perception. 

 

The pattern of modulation reported in Study 1 (Chapter 2) agrees with previous 

studies reporting a systolic dampening of the NFR (Edwards et al., 2001, 2002, 

2003; McIntyre et al., 2006; 2008a) and PREPs (Edwards et al., 2008a). However, 

the pattern of modulation reported in Study 1 is contra to the only previous study to 

specifically study the cardiac cycle modulation of pain (Martins et al., 2009) who 

reported an increase in pain ratings during systole.  

 

The findings of Study 2 (Chapter 3), indicating no cardiac cycle-related 

modulation of electrocutaneous tactile thresholds was counter to the only previous 

study investigating the cardiac cycle-related modulation of sensory thresholds 

(Edwards et al., 2009) who reported cutaneous sensory thresholds were lower, 

indicating heightened sensitivity during systole compared to diastole. The lack of 

cardiac cycle-related modulation of tactile thresholds in Study 2 (Chapter 3) was, 

however, in line with a previous studying reporting no difference in intracutaneous 
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electrical sensory detection thresholds when stimuli were delivered during either 

mechanical stimulation or inhibition of the carotid baroreceptors (Droste et al., 1994). 

However, comparison of studies utilising the natural fluctuations in BP across the 

cardiac cycle with those employing artificial stimulation of baroreceptors should be 

done with caution due to the aversive nature of artificial baroreceptor stimulation. 

During the artificial baroreceptor stimulation procedure participants may become 

more aroused, be more distracted from the task and the action of compression and 

suction may induce wider spread physiological effects such as increased muscle 

tension (Edwards et al., 2003), the effects of which on the cardiac cycle-related 

modulation are not known. 

 

The lack of cardiac cycle-related modulation of PREPs following painful 

electrocutaneous stimulation reported in studies 3 and 4 (Chapters 4 & 5), is contra 

to reports of reduced N2 and N2-P2 peak-to-peak amplitudes following painful laser 

stimulation (Edwards et al., 2008a). However, the lack of cardiac cycle modulation in 

studies 3 and 4 (Chapters 4 & 5) is in partial agreement with the findings of Gray et 

al. (2010) who reported that although P2 peak amplitudes were modulated, this 

patterning was only evident for pain stimuli delivered following presentation of a 

warning cue. Indeed, Gray et al. (2010) reported that N2 peak amplitudes were not 

modulated across the cardiac cycle, and neither N2 nor P2 peak amplitudes were 

modulated across the cardiac cycle when presented without a warning cue. These 

findings suggest that presentation of a cue prior to stimulus may be an important 

factor determining cardiac cycle effects. The null finding from studies 3 and 4 

(Chapter 4 & 5) are also contra to the typically reported dampening of the NFR 

during systole compared to diastole (Edwards et al., 2001, 2002, 2003; McIntyre et 

al., 2006; 2008a) and the reduced pain thresholds during systole compared to 

diastole reported in Study 1 of this thesis (Chapter 2 – Wilkinson, McIntyre, & 

Edwards, 2013). 

 

A possible explanation for the contrasting findings between Study 1 (Chapter 2) 

and the study closest related to it (Martins et al., 2009) may relate to differences in 

stimulation intensity. Martins et al. (2009) delivered pain stimuli unpredictably, up to 

and including pain tolerance and this may have induced physiological arousal which 
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has been shown to influence cardiac cycle modulation (McIntyre et al., 2006). 

Whereas Study 1 (Chapter 2) delivered stimuli that oscillated around pain threshold 

and thus the ‘threat’ of very high intensity stimulation was removed, potentially 

reducing participant arousal. Indeed, additional analysis (data not reported here but 

available in Wilkinson et al., 2013) in a subsample of 40 participants from Study 1 

(Chapter 2) revealed a decrease in heart rate from baseline to pain assessment, 

which suggests participants did not experience increased physiological arousal 

during the pain task. The lack of cardiac cycle-related modulation of PREPs reported 

in studies 3 and 4 (Chapters 4 & 5) in the current thesis may provide partial support 

to the suggestion that stimulation intensity may be an important factor in determining 

the cardiac cycle modulation of pain. The stimuli delivered during studies 3 (Chapter 

4) and 4 (Chapter 5) were equal to two times individual pain thresholds, and thus 

one could suggest that the lack of cardiac cycle modulation in these studies 

(Chapters 4 & 5) may in part, be due to the higher stimulation intensity inducing 

arousal and thus reducing the cardiac cycle effects as indicated by McIntyre et al. 

(2006) in relation to the cardiac cycle-related modulation of the NFR. However, 

during Study 3 and 4 (Chapter 5 & 6) we ensured that the average intensity of each 

experimental block of pain stimuli was rated at an intensity above 50 on the 0-100 

VRS scale (with anchors ‘0’ (no sensation), ‘1’ (sensory threshold), ‘25’ 

(uncomfortable), ‘50’ (just noticeable pain), ‘75’ (very painful), and ‘100’ (maximum 

tolerable pain). The average pain rating for studies 3 and 4 (Chapters 4 & 5) was 

56.8 (Range 50-77), which one might suggest is not significantly greater than pain 

threshold thus, differing pain stimuli intensities may not be an explanatory reason for 

the differing results. Additionally, it must be acknowledged that a cardiac cycle-

related modulation of PREPs has been reported following painful laser stimulation 

(Edwards et al., 2008a). The intensity of the stimuli delivered by Edwards et al. 

(2008a) was equal to a rating of 50 on the visual analogue scale which has anchors 

at ‘0’ (no painful sensation) and ‘100’ (imaginary intolerable pain sensation). A rating 

of 50 equates to ‘moderate pain’ (Jensen, Chen, & Brugger, 2003). Gray et al. (2010) 

asked participants to rate the intensity of stimuli using a VRS scale ranging from 1 

(barely identifiable as pain) to 10 (imaginary worst possible pain) and the average 

(SD) rating given by participants was 4.1 ± 1.0 which would be similarly defined as 

moderate pain. Although the use of different rating scales makes direct comparison 
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difficult, the average pain rating of 56.7 in studies 3 and 4 (Chapters 4 & 5) also 

appears to equate to moderate pain, thus suggesting that the perceived intensity of 

the stimuli in studies 3 and 4 was similar to that of Edwards et al. (2008a) and Gray 

et al. (2010) further suggesting pain intensity may not be the primary factor 

influencing the different results between the studies. 

 

The finding that PREPs were not modulated across the cardiac cycle in studies 3 

and 4 (Chapters 4 & 5), whilst we did find a modulation of pain thresholds in Study 1 

(Chapter 2), may partially relate to the fact studies 3 and 4 (Chapters 4 & 5) were 

examining the PREP response to painful stimuli and not pain ratings, which due to 

the subjective nature of pain ratings are inherently different (Chen, Arendt-Nielsen, & 

Plafhki, 1998; Iannetti, Hughes, Lee, & Mouraux, 2008; Sandrini et al., 2005) and 

thus the difference in cardiac cycle-related modulation may be understandable. 

Indeed, when pain ratings have previously been assessed concurrently to the NFR 

(Edwards et al., 2001, 2002, 2003, McIntyre et al., 2006; 2008a) and PREPs 

(Edwards et al., 2008a), which are thought to serve as a physiological correlate of 

pain (Hugon, 1973; Willer, 1977), pain ratings, in contrast to the NFR and PREPs, 

were not modulated across the cardiac cycle. Similarly, Martins et al. (2009) found 

that although pain ratings were modulated across the cardiac cycle, the NFR wasn’t. 

This suggests that pain perception and the neurophysiological correlates of pain may 

be modulated differently across the cardiac cycle and thus contribute to explaining 

the differing results between studies 3 & 4 (Chapters 4 & 5) in the current thesis and 

those of Study 1 (Chapter 2) and Martins et al. (2009). 

 

It is possible that methodological differences may partially explain the differing 

results from studies 3 and 4 (Chapters 4 & 5) reported in this thesis and Edwards et 

al. (2008a). Firstly, pain modality was different. All studies in this thesis delivered 

electrocutaneous stimuli, whereas Edwards et al. (2008a) delivered noxious thulium 

laser stimuli. Differences in the activation of nociceptive and non-nociceptive fibres 

following electrocutaneous and laser stimulation (e.g. Lefaucheur et al., 2012; 

Perchet et al., 2012) may help explain the differing results. A detailed discussion 

about the differences between electrocutaneous and laser stimulation is presented in 

chapter 4 of this thesis, but to summarise, laser stimulation has a rapid onset and 
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excites a limited number of primary afferent fibres, primarily thin myelinated A-δ and 

unmyelinated C-fibres (Meyer, Ringkamp, Campbell, & Raja, 2006). Myelinated A-δ 

fibres have a rapid conduction velocity (Meyer, Walker, & Mountcastle, 1976), high 

firing rates and reflect “first, pinprick” pain (Arendt-Nielsen & Chen, 2003), 

unmyelinated C fibres have slower conduction velocities (Gybels, Handwerker, & 

Van Hees, 1979), slower firing rates and reflect “second, slow burning” (Arendt-

Nielsen & Chen, 2003). Electrical stimulation is known to stimulate A-β fibres which 

are felt like pressure or vibration without actually being painful (Gracely, 2006). Such 

A-β fibre activation may have influenced the modulation of PREPs across the cardiac 

cycle in studies 3 and 4 (Chapters 4 & 5) in the current thesis. Additionally, electrical 

stimulation directly activates A-δ afferents (Perchet et al., 2012), whereas laser 

stimulation incurs a peripheral delay due to laser initially stimulating thermoreceptors 

which subsequently generate an action potential in A-δ nociceptive fibres (Bromm & 

Treede, 1991; Plaghki & Mouraux, 2003). Although the concentric planar electrode, 

used in studies 1, 3 and 4 (Chapters 2, 4 & 5) is thought to more selectively stimulate 

A-δ nociceptive fibres than a bar electrode (Katsarava et al., 2006; Kaube, 

Katsarava, Kaufer, Diener, & Ellrich, 2000), it is possible differential activation of A-δ 

nociceptive- and A-β sensory-fibres may partially explain the different cardiac cycle 

modulation results between studies 3 and 4 (Chapters 4 & 5) in the current thesis 

and Edwards et al. (2008a). However, it should be acknowledged that Gray et al. 

(2010) delivered electrocutaneous stimuli via a more traditional electrode design and 

reported a cardiac cycle-related modulation of the P2 peak amplitudes. As the 

electrode used by Gray et al. (2010) would be expected to activate A-β sensory-

fibres to a greater extent than the concentric electrode used  in the current studies 

(Katsarava et al., 2006; Kaube et al., 2000), this suggests that differing patterns of 

fibre activation may not explain the differing results. However, as Gray et al. (2010) 

only reported a cardiac cycle modulation following cued pain stimulation, as stimuli in 

the current thesis were uncued, this may contribute to the differing findings. Also, the 

two previous studies (Edwards et al., 2008a; Gray et al., 2010) reported modulation 

of different PREP components (Edwards et al. (2008a) reported modulation of N2 

peak amplitude & N2-P2 peak-to-peak amplitude, Gray et al. (2010) reported 

modulation for P2 peak amplitudes) it may be suggested that pain stimulation 

delivered by different electrodes is modulated differently, possibly due to different 
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fibre type activation. Further studies directly comparing the cardiac cycle related 

modulation of PREPs evoked by different electrode types is required to further 

investigate this suggestion. Additionally, it should however be noted that Martins et 

al. (2009) found a cardiac cycle-related modulation of pain ratings following pain 

stimuli delivered via a bar electrode, and Study 1 (Chapter 2) also reported a 

modulation when delivering stimuli via the concentric planar electrode. However, as 

discussed above the different stimulation intensities used in Study 1 (Chapter 2) (i.e. 

pain threshold) and by Martins et al. (2009) (i.e. up to pain tolerance) may partially 

explain the differing results. Furthermore, in partial support for the co-activation of A-

δ nociceptive- and A-β sensory-fibres by the concentric planar electrode contributing 

to the null findings in studies 3 and 4 of this thesis, Study 2 (Chapter 3) reported that 

electrocutaneous tactile thresholds showed no cardiac cycle-related modulation, 

suggesting, perhaps, that stimulation of A-β tactile fibres is less sensitive to cardiac 

cycle-related effects than A-δ pain fibres. However, it should be noted that contra to 

this hypothesis previous work has indicated that cutaneous tactile thresholds evoked 

via a bar electrode were elevated during systole compared to diastole (Edwards et 

al., 2009). If we accept that at tactile detection levels the bar electrode stimulates A-β 

sensory-fibres, the findings of Edwards et al. (2009) suggest that stimulation of A-β 

sensory-fibres is influenced by variations in BP across the cardiac cycle. However, 

the inclusion of hypertensive participants in the Edwards et al. (2009) study may 

have influenced the results (see below for further discussion regarding this). 

 

Alternatively, the lack of cardiac cycle-related modulation of electrocutaneous 

PREPs may be explained to some extent by further methodological differences, a full 

discussion is presented in chapter 4, but to summarise these may include; a) Studies 

3 and 4 (Chapters 4 & 5) had a longer total study duration compared to Edwards et 

al. (2008a) and Gray et al. (2010) and additionally a greater number of total number 

of noxious stimulations compared to Edwards et al. (2008a). These may have lead to 

differing levels of peripheral nerve fibre fatigue (Greffrath, Baumgartner, & Treede, 

2007) and/or central habituation to the painful stimuli (Bingel, Schoell, Herken, 

Buchel, & May, 2007; Bingel, Herken, Teutsch, & May, 2008; Milne, Kay, & Irwin, 

1991). However due to Study 3 and 4 (Chapters 4 & 5) recording EEG via the 

Biosemi system which is a high impedance EEG system, a greater number of trials 
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were required to achieve significance than comparable low impedance systems, due 

to an increased size or incidence of skin potentials increasing the noise level, thus 

lowering the signal-to-noise ratio (Kappenman & Luck, 2010). Therefore, based on 

previous research using the P300 component, Study 3 and 4 (Chapters 4 & 5) 

needed to deliver approximately 25 stimuli per condition to achieve an 80% chance 

of statistical significance (Kappenman and Luck, 2010). However, the suggested 

number of trials related to P300 and it is possible that N2 and P2 components 

require a different number of trials to reach significance and we also included a 

greater number of participants (N=26) to increase the chance of reaching 

significance. None the less, as the mean accepted number of trials for all cardiac 

cycle intervals in Study 3 and 4 (Chapters 4 & 5) was 20 and 19 respectively, 

reducing the total number of trials would have reduced the chance of attaining 

significance and thus the potential for habituation must be acknowledged as a 

potential confounding factor for the differences between Study 3 and Edwards et al. 

(2008a).  

 

The patterning of modulation in the Edwards et al. (2009) study, i.e. heightened 

tactile sensibility during systole, was perhaps surprising considering the well 

documented systolic inhibition of the NFR (Edwards et al., 2001, 2002, 2003; 

McIntyre et al., 2006; 2008a) and PREPs (Edwards et al., 2008a). Study 2 (Chapter 

3) aimed to closely replicate the methods of the study (Edwards et al., 2009) to 

further the understanding of the cardiac cycle modulation of tactile sensation. 

Therefore, the differing patterns of cardiac cycle-related modulation between Study 2 

(Chapter 3) and Edwards et al. (2009) are unlikely to relate to big methodological 

differences. However, it should be acknowledged that to increase the resolution of 

the cardiac cycle-related modulation of tactile thresholds Study 2 (Chapter 3) 

delivered stimuli at 7 intervals across the cardiac cycle compared to just 3 used by 

Edwards et al. (2009). The total duration nor the total number of stimuli delivered are 

reported by Edwards et al., (2009), however, one can assume that a greater number 

of trials would be required to determine tactile thresholds at 7 intervals as opposed to 

3.  The mean (SD) number of trials required to determine all 7 tactile thresholds was 

51.06 (12.9) and the task typically lasted 10-15 minutes and thus the total duration of 

Study 2 (Chapter 3) is likely to be longer than Edwards et al. (2009). Thus, it could 
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be suggested that the longer duration of Study 2 (Chapter 3) may have lead to 

participant disengagement or habituation to the stimuli, which has been shown to 

reduce pain in pain studies (LeBlanc & Potvin, 1966; Strempel, 1976; Strempel, 

1978) and discussed above in relation to the PREPs studies in this thesis (Chapters 

4 & 5). Indeed Gray et al. (2010) found that P2 amplitudes were only modulated 

when stimuli were delivered following a cue. The authors suggest that drawing 

attention to the imminent stimulation may be an important factor determining cardiac 

cycle-related modulation and thus if disengagement occurred and attention was 

drawn away from the stimuli this may help explain the null findings in the current 

thesis.  

 

However, the most probable explanation for the different results between Study 2 

(Chapter 3) and Edwards et al. (2009) is differing participant characteristics. First, 

when comparing Study 2 (Chapter 3) and the Edwards et al. (2009) study, the 

participants in Study 2 were on average 10 years younger than those in the Edwards 

et al. (2009). Although this may seem a small difference, sensory acuity has been 

shown to reduce in most sensory modalities with age, including vision (e.g. Weale, 

1986), hearing (e.g. Helzner et al., 2005), smell (e.g. Schiffman, 1997) and tactile 

sensitivity (Stevens & Cruz, 1996; Gescheider, Bolanowski, Hall, Hoffman, & Verrillo, 

1994; Takekuma, Ando, Niino, & Shimokata, 2000), as has baroreceptor sensitivity 

(Gribbin, Pickerin, Sleight, & Peto 1971; Korner, West, Shaw, & Uther, 1974; Randall 

et al., 1976; Randall, Esler, Culp, Julius, & Zweifler, 1978). However, this reduced 

sensitivity with increasing age may suggest we would be expected to see less 

cardiac cycle modulation in older adults. Therefore, the differing ages of participants 

is an unlikely explanation for the differences. Second, the tonic BP status of the 

participants was also different between the two studies. Participants in Study 2 

(Chapter 3) were normotensive, whereas Edwards et al. (2009) included newly 

diagnosed, unmedicated hypertensives. As hypertension is characterised by 

disruption to the baroreflex (Eckberg & Sleight, 1992) and an inverse relationship 

between BP and baroreceptor sensitivity has been reported (Bristow, Honour, 

Pickering, Sleight, & Smyth, 1969; Gribbin et al., 1971), it may be to be expected that 

results would differ between a normotensive and a hypertensive/normotensive mixed 

sample. Indeed research has shown heightened electrocutaneous (Edwards, Ring, 
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France, McIntyre, & Martin, 2008b) and electrical tooth pulp (Ghione et al., 1985) 

sensory thresholds in unmedicated essential hypertension patients compared to 

normotensives. 

 

One of the main aims of the third Study (Chapter 4) was to determine if the 

cardiac cycle-related modulation of PREPs extended beyond the Cz analysed by 

Edwards et al. (2008a). However, the results indicated there was no cardiac cycle-

related modulation at C3 or C4 electrode sites, this finding was also repeated in 

Study 4 (Chapter 5) following electrocutaneous noxious stimulation of the right and 

left hands. As we did not find a modulation of PREPs at Cz, a site which has 

previously shown maximal N2 and P2 amplitudes following hand stimulation 

(Carmon, Mor, & Goldberg, 1976, 1978; Bromm & Treede, 1987; Treede, Kief, 

Holzer, & Bromm, 1988; Kakigi, Shibasaki, & Ikeda, 1989; Miyazaki et al., 1994; Xu 

et al., 1995; Kanda et al., 1996, 1999), it is perhaps not surprising that we did not 

see modulation at C3 or C4 either. We propose that this is, at least in part, due to the 

methodological differences (see chapter 4 for a full discussion) discussed above 

rather than necessarily disproving any wider spread interaction of pain and 

baroreceptor systems. Indeed, we hypothesised that the overall lack of cardiac 

cycle-related modulation of electrocutaneous PREPs in Study 3 (Chapter 4) may be 

due to lateralisation of the baroreceptor and pain processing in the brain and thus 

the cardiac cycle-related modulation may be more evident following stimulation of 

the left hand rather than the right which was stimulated in Study 3 (Chapter 4). In line 

with the previous Study (Chapter 4), Study 4 (Chapter 5) also reported no overall 

cardiac cycle modulation of any electrocutaneous PREP component (N2 peak 

amplitude, P2 peak amplitude or N2-P2 difference) at any scalp electrode site 

following stimulation of the right or left hand. These results were contra to our 

hypothesis that cardiac cycle-related modulation of electrocutaneous PREP 

amplitudes would be more evident following stimulation of the left hand and in the 

scalp electrodes covering the central (Cz) and right side of the cerebral cortex (C4) 

than in scalp electrodes over the left hemisphere (C3). As some of the participants in 

Study 4 (Chapter 5) also took part in Study 3 (Chapter 4) (N=4, 24% of the total 

participants), and the remaining participants in Study 4 (Chapter 5) were recruited 

from the same university pool, this finding should perhaps not be unexpected. 
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However, analysis revealed an interaction between hand, scalp electrode site and 

cardiac cycle interval, suggesting that together stimulation side and site of recording 

are both important in determining the patterning of N2 peak amplitudes across the 

cardiac cycle. Study 4 (Chapter 5) is the first study to our knowledge to investigate a 

potential lateralisation of the cardiac cycle-related modulation of pain and the 

findings provide initial, although limited evidence for a potential cardiac cycle 

lateralisation. The few previous studies that have studied the phenomenon of cardiac 

cycle related lateralisation have reported differing conclusions regarding the relative 

importance of the side of stimulation versus the side of cerebral recording in 

determining the cardiac cycle-related modulation. For example the side of recording 

visual evoked potentials appears to be more important than side of stimulation 

(Walker & Sandman, 1982), whereas side of presentation appears to be the 

determining factor for startle response (Schultz et al., 2009) and similar to our 

suggestion in relation to PREPs, both side of presentation and recording side appear 

important in determining the cardiac cycle-related modulation of simple visual 

reaction time (Weisz & Adam, 1996). Therefore, it may be suggested that the cardiac 

cycle modulation of different stimulation modalities may be lateralised differently. 

 

With regards to the influence of natural fluctuations in BP across the cardiac 

cycle, it may be concluded that the temporal patterning of systolic pain dampening 

reported in Study 1 (Chapter 2) is consistent with the hypothesis that pain is inhibited 

during systole due to arterial baroreceptor activation of pain inhibition pathways 

(Ghione, 1996). A full description of the specific timings relating to the divergence of 

the baroreceptor and pain processing pathways following painful stimulation during 

systole is presented in chapter 2 of this thesis. Thus, the results from Study 1 

provide further support for a baroreceptor role in the hypertensive hypoalgesia 

phenomenon (see Introduction (Chapter 1) for a full description of the hypertensive 

hypoalgesia phenomenon). Despite not presenting a pattern of cardiac cycle-related 

modulation consistent with a baroreceptor mediated modulation of tactile thresholds 

and PREPs, the lack of cardiac cycle-related modulation reported in studies 2, 3 and 

4 (Chapters 3, 4 and 5) suggests that tactile sensibility and PREPs may not be as 

sensitive to natural fluctuations in BP across the cardiac cycle as the NFR and pain 

perception (Study 1). However, it is possible that differing methodology and 
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participant characteristics may explain the contrasting findings and that PREPs 

specifically may be influenced by the combination of stimulation and recording sites. 

 

As tonic BP has been shown to influence the baroreceptor modulation of pain 

(e.g., Droste et al., 1994), a second aim of the current thesis was to further 

understand the role of tonic BP in cardiac cycle-related modulation. Such an aim 

also enabled the suggested role of tonic BP contributing to the lack of cardiac cycle 

modulation of tactile thresholds in Study 2 (Chapter 3) to be further investigated. 

Participants in studies 1, 2 and 3 were split into high-normal and low-normal DBP 

and SBP groups using a median BP split for comparison. With regards to Study 2 

(Chapter 3), only participants in the DBPlow group presented a cardiac cycle 

modulation of tactile thresholds. The DBPlow group displayed a pattern similar to the 

overall cardiac cycle related modulation reported by Edwards et al. (2009), i.e. lower 

tactile thresholds at R+300 ms compared to R+600 ms. In contrast, the DBPhigh 

group tended to have higher tactile thresholds during systole compared to diastole, 

although these differences were not significant. These results suggest that cardiac 

cycle effects on tactile sensibility become less as tonic BP increases. Contrastingly, 

when investigating tonic BP effects Edwards et al. (2009) reported that individuals 

with higher diastolic BP had larger reductions in sensory threshold during systole 

compared to diastole. However, as mentioned before the inclusion of hypertensives 

in the subject group for this study is likely to have influenced the results. It should be 

noted that the male participants appeared to drive the cardiac cycle modulation in 

the DBPlow group, and as the sample of males was small (N=9, 18% of the total 

sample) this finding should be interpreted with caution. Regardless, the opposing 

findings between the high and low BP groups in Study 2 (Chapter 3) may have 

contributed to the overall null finding in the current study and supports the 

suggestion that the conflicting results reported between Study 2 (Chapter 3) and 

Edwards et al., (2009) may be due, in part, to differences in tonic BP status of the 

participants. 

 

Similar BP group analysis was also conducted in studies 1 and 3 in relation to 

the cardiac cycle-related modulation of pain thresholds and PREPs, respectively. In 

relation to pain thresholds, similar to tactile thresholds, only participants with low-
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normal SBP displayed the systolic dampening of pain thresholds. However, as the 

participants in Studies 1 and 2 (Chapters 3 & 4) were the same, this may not be 

surprising. Whereas, in relation to PREPs no BP group or group × Interval interaction 

was found.  

 

The mechanism for the differing cardiac cycle-related modulation of pain and 

tactile thresholds in the low-normal and high-normal BP group is unclear, but may 

relate to a baroreceptor mechanism. Baroreceptors are stimulated during systole 

when the pulse pressure wave stretches the walls of the aortic arch and carotid sinus 

(Angell James, 1971; Mancia & Mark, 1983), resulting in increased baroreceptor 

activation during systole and subsequent cortical inhibition (e.g. Rau, Elbert, & 

Birbaumer, 1995). The differing patterns of cardiac cycle-related modulation between 

the low-normal and high-normal BP groups may be due to BP group differences in 

baroreceptor afferent activity reaching brain areas affected by baroreceptor activity. 

Evidence supporting this hypothesis comes from the reported inverse relationship 

between BP and both baroreceptor sensitivity (Sleight, Robinson, Brooks, & Rees, 

1977) and baroreflex sensitivity (Bristow et al., 1969; Gribbin et al., 1971). 

 

Taken together the findings from Studies 1, 2 and 3 (Chapters 2, 3 & 4) suggest 

that tonic BP may moderate the cardiac cycle-related modulation of subjective 

perception of sensation, but that objective measures of pain, i.e. PREPs, may not be 

subject to the same tonic BP influence. 

 

6.3 Limitations and recommendations for future research 

It should be acknowledged that the studies presented in this thesis have a few 

limitations. Considering the first two studies, a major critique is the ratio of males and 

females in the participant group, which was predominately female (Study 1 Males N 

= 10, Female N = 39; Study 2 Males = 10, Female = 40). Typically men have higher 

pain (e.g. Fillingim, King, Ribeiro-Dasilva, Rahim-Williams, & Riley, 2009) and tactile 

(e.g. Takekuma et al, 2000) thresholds than women. Indeed we reported that women 

were more sensitive to pain and presented lower tactile thresholds than men. 

However, in line with previous studies that have not found sex differences in the 

cardiac cycle modulation of pain ratings (Martins et al., 2009), nociceptive 
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responding (Edwards et al.,  2001; Martins et al., 2009) or reaction times (Birren, 

Phillips, & Cardon, 1963; Edwards, Ring, McIntyre, Carroll, & Martin, 2007; McIntyre, 

Ring, Hamer, & Carroll, 2007, McIntyre, Ring, Edwards, & Carroll, 2008b), we found 

no sex differences for the modulation of pain thresholds in Study 1. However, in 

relation to the cardiac cycle modulation of tactile thresholds, we reported a Group × 

Sex × Interval interaction. Males with low-normal diastolic BP were the only sub-set 

of participants to present a cardiac cycle modulation. But due to the limited number 

of participants in this group (N=5) this finding should be interpreted with extreme 

caution and future studies would do well to examine the cardiac cycle modulation of 

both pain and tactile thresholds in a more evenly balanced sample of males and 

females to increase the understanding of any potential sex effects and increase the 

generalisation of the findings. With regards to this, studies 3 and 4 (Chapters 4 & 5) 

had a better ratio of males to females (Study 3 Males N = 11, Female N = 15; Study 

4 Male N = 7, Female N = 10) and in line with study 1, we reported in study 3 

(Chapter 4) we found no sex differences in the cardiac cycle influence on PREPs. 

 

Secondly, none of the studies in this thesis assessed parental history of 

hypertension, which has been found to influence pain perception (France, 1999) and 

baroreflex sensitivity (Parmer, Cervenka, & Stone, 1992). Therefore, we cannot rule 

out that individuals with a parental history of hypertension did not influence the 

results of the studies in this thesis.  However, several prior studies have indicated 

that parental history may not influence the cardiac cycle modulation of reaction times 

(McIntyre et al., 2008b; Stewart, France, & Suhr, 2006). Future studies would be 

necessary to examine the influence of parental history of hypertension on pain 

modulation across the cardiac cycle. 

 

Third, the effects of tonic BP were investigated using a median split design 

which transforms a continuous variable into a categorical variable and thus has 

limitations. A median split results in all participants above and below the median 

being considered the same and thus resolution of the effects is reduced. By grouping 

the data, there is also a loss of power (Aiken & West, 1991) and therefore effects are 

harder to find. Additionally, when using a median split, participants positioned close 

to the median may actually be more similar in terms of the factor of interest than 
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individuals at the extremes of each high and low group. Thus, it is worth 

acknowledging that the data could have been split into three groups with the middle 

group removed from analysis or regression analysis conducted. However, the limited 

sample sizes, especially in Studies 3 and 4 (Chapter 4 & 5) limited the use of these 

statistical techniques.  

 

The PREP methodology employed in studies 3 and 4 (Chapters 4 & 5) has 

many strengths, especially when studying stimulus-responses activated in 

milliseconds as is the case with cardiac cycle studies, as they have exceptional 

temporal resolution. However, it should be acknowledged that PREPs also have 

limitations. The PREP response is a measure of the electrical activity of the brain 

recorded at scalp level and it represents the averaged cortical processing of the 

nociceptive stimulus (Iannetti et al., 2008). Therefore, the PREP does not provide 

information about exactly which areas of the brain are generating the response i.e. it 

has poor spatial resolution and thus makes source localisation of the areas 

generating the PREP difficult (Devinsky & D’Esposito, 2004). To improve the ability 

of studies to identify which areas of the brain are central to the cardiac cycle-related 

modulation of pain, future studies would be advised to utilise the growing 

methodology incorporating concurrent fMRI and PREP analysis. 

 

Time constraints prevent a full analysis of the PREP data regarding 

habituation or disengagement with task as a potential factor contributing to the lack 

of cardiac cycle related modulation reported in studies 3 and 4 (Chapter 4 & 5). 

Indeed, changes in PREP amplitudes across the seven experimental blocks could 

have analysed to identify if there was any changes in the amplitudes of interest. A 

reduction in the amplitude of the PREP components across the seven blocks may 

suggest that habituation to the pain stimuli and/or distraction or disengagement with 

the task was occurring (Bingel et al., 2007; 2008; Milne et al., 1991). Indeed, as 

discussed above, Gray et al. (2010) propose that the cardiac cycle-related 

modulation of P2 peak amplitudes only following cued stimulation may be due to 

participants attention being drawn to the imminent pain. Future studies would do well 

to further investigate a possible role of attention and distraction on the cardiac cycle 

modulation of PREPs by directly comparing responses when attention is focused on 
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the pain stimuli, away from the pain stimuli or presented unexpectedly. Additionally, 

future studies would be required to explore if PREPs do indeed habituate over the 

duration of a cardiac cycle study and aim to identify what the cause of any changes 

in PREP amplitudes may be i.e. fibre fatigue, central fatigue, distraction etc. If such 

an habituation in PREPs over the duration of a study was confirmed, further research 

would also be required to investigate the cardiac cycle effects during conditions 

when habituation was not occurring. 

 

As acknowledged in the discussion of Study 4 (Chapter 5), the sample size for 

this study, and this may equally apply to Study 3 (Chapter 4) was relatively small 

(Study 3 N= 26, Study 4 N = 17). Thus, the lack of significant findings may be at 

least part attributable to low power. Although Edwards et al. (2008a) found significant 

effects for laser evoked PREPs with just 10 subjects and Gray et al. (2010) also 

reported effects for electrocutaneous PREPs in 11 subjects, it may be possible that 

the high impedance Biosemi EEG system used in the studies in this thesis may 

mean that either a larger number of trials per interval or a greater number of 

participants is required to achieve statistical significance. Indeed, post hoc analysis 

using the G*power computer program (Faul, Erdfelder, Buchner, & Lang, 2009) 

indicated that to detect, by repeated measures ANOVA, a difference in N2 peak 

amplitudes across the cardiac cycle in Study 3 (Chapter 4) would require a total 

sample of 40 and in Study 4 (Chapter 5) a total sample of 42. Therefore, although we 

increased the number of trials per interval, Studies 3 and 4 (Chapters 4 & 5) 

presented 21 stimuli per cardiac cycle interval, with an acceptance of 10 (Study 3) 

and 19 (Study 4) compared to 12 stimuli presented, but just 5 accepted per interval 

by Edwards et al. (2008a), this was still below the 25 suggested to reach statistical 

significance for the P300 (Kappenman & Luck, 2010). The inclusion of 7 cardiac 

cycle intervals in studies 3 and 4 sought to increase the resolution of the cardiac 

cycle-related modulation of electrocutaneous PREPs compared to Gray et al. (2010) 

who only delivered stimuli at 2 cardiac cycle intervals. However, assessing 7 

intervals across the cardiac cycle made it impractical to increase the total number of 

trials further and indeed as discussed above an even greater number of trials may 

have lead to habituation or disengagement with the task. Therefore, future studies 

employing high impedance EEG systems into study PREPs would be advised to 



Chapter 6 
 

 
 

254 
 

increase the number of participants and maybe deliver stimuli at fewer intervals 

across the cardiac cycle to reduce the duration of the study whilst increase the total 

number of trials per condition. 

 

In relation to all the studies in this thesis, stimuli were delivered based on the 

assumption that baroreceptor stimulation would be minimal at R+0/R+50 ms and 

R+600/R+650 ms and maximal at around R+300/R+350 ms. This assumption is well 

grounded in the literature, but it should be acknowledged that we did not directly 

measure BP or baroreceptor activity during the experimental studies and therefore 

there may be some individuals for whom this assumption did not hold true. 

 

 It should be acknowledged that had time not been a limiting factor, it would 

have been interesting to analyse the data from the current thesis further. Specifically, 

with regards to studies 3 and 4 (Chapters 4 & 5), by re-analysing the PREP data and 

binning the individual cardiac cycle intervals into early, mid and late periods would 

have increased the number of trials per condition, improving the signal to noise ratio 

and thus the chance of reaching significance. Furthermore, although we did not find 

cardiac cycle effect at scalp electrode sites C3, Cz or C4 as we had hypothesised, it 

maybe that baroreceptor and pain interactions would be evident at other scalp sites 

and thus further work could have been conducted at further electrode sites thought 

to overlay potential sites of interaction. For example elements of the anterior and 

posterior ACC and insula may also be potential sites of interaction (Symonds, 

Gordon, Bixby, & Mande, 2006) and therefore examination of sites positioned to the 

front and back of Cz would also be worth investigating. 

 

It should be noted that during the studies in the current thesis, data regarding 

state and trait anxiety were collected via the Spielberger State Trait Anxiety Index 

(STAI) (Spielberger, Gorsuch, & Lushene, 1970) and data regarding depressive 

symptomatology in the general population via the Center for Epidemiologic Studies 

Depression (CES-D) Scale (Radloff, 1977). However, aside from being analysed for 

extreme outliers, these data were not used to investigate the possible influence of 

these emotional factors on the results.  
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Many environmental and psychological factors have been shown to interact to 

influence an individual’s perception of pain and one of the most extensively studied 

psychological factors influencing pain perception is anxiety (Tang & Gibson, 2005). 

Anxiety is an emotion involving appraisal of a threat that is uncertain or 

uncontrollable and is typically associated with feelings of fear about impending or 

anticipated harm (Spielberger, 1972). It is proposed that anxiety can be divided into 

state and trait anxiety. State anxiety is the level of anxiety an individual is 

experiencing at the present time, measuring subjective feelings of tension, worry, 

apprehensiveness and autonomic arousal, and is influenced by situational factors. 

Whereas trait anxiety is an individual’s general disposition to be anxious and 

measures proneness to be anxious and personality variables, such as low self 

esteem and low self-confidence (Spielberger & Rickman, 1990). 

 

In relation to pain, research has typically found that state anxiety which is 

directly relevant to the source of pain (e.g. highlighting the pain that is to come) 

increases reported pain, whereas anxiety which is irrelevant to the source of pain 

(e.g. highlighting a shock that may be about to occur) reduces pain reports (e.g. Absi 

& Rokke, 1991). Further support suggesting that state anxiety effects pain comes 

from several studies that have reported that higher levels of state anxiety results in 

higher pain intensity ratings for cold pressor pain (Jones, Spindler, Jorgensen, & 

Zachariae, 2002), decreased pressure pain tolerance (Carter et al., 2002) and 

pressure pain thresholds (Michelotti, Farella, Tedesco, Cimino, & Martina, 2000). 

There has been less research regarding the effects of trait anxiety on pain; however, 

trait and state anxiety are inter-linked with individuals recording higher trait anxiety 

typically reporting higher state anxiety for the same potentially threatening situation 

compared to low trait anxiety individuals (Spielberger, 1972) suggesting that trait 

anxiety may have a similar effect on pain as state anxiety. Indeed, research has 

shown that individuals with higher trait anxiety have lower pain tolerance during a 

cold pressor test, compared to individuals with low trait anxiety (James & 

Hardardottir, 2002). 

 

Similarly, research has also reported that depression affects pain (Dickens, 

McGowan, & Dale, 2003). An initial experimental study reported that depressed 
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participants had higher thermal pain perception thresholds than non-depressed 

participants, suggesting that depression reduced pain sensitivity (Hemphill & 

Crookes, 1952). Further experimental studies produced inconsistent results with 

some studies reporting that pain perception was reduced in depressed participants, 

whereas others reported heightened pain perception in participants with depression 

compared to those without depression (see Lautenbacher & Krieg, 1994 for review). 

However, a recent meta-analysis regarding the impact of depression on 

experimental pain perception (Dickens et al., 2003) concluded that participants with 

depression had higher pain perception thresholds, following experimental pain 

compared to non-depressed participants. Notwithstanding the variable findings, it is 

reasonable to suggest that as with anxiety, depression may influence pain 

perception. Therefore, it is recommended that further research would do well to 

examine the possible effects of both state and trait anxiety and depression on the 

cardiac cycle related modulation of pain thresholds and PREPs. Indeed the data 

collected within the experimental chapters of this thesis could be analysed to 

examine what, if any, effect state and trait anxiety and depression within the normal 

range may have on the pain indices examined. 

 

6.4 Future Research 

In addition to the suggestions made above regarding addressing the limitations 

identified in the studies of this thesis, below are further ideas for future research 

based on the findings of the studies in this thesis. As all of the studies in this thesis 

should be considered preliminary, future research would do well to replicate the 

studies to increase the strength of the findings. 

 

Study 1 is the first study to our knowledge to indicate that pain perception, at 

threshold levels, is modulated across the cardiac cycle in the manner expected if a 

baroreceptor mechanism is accepted as explaining the modulation i.e. a dampening 

of pain thresholds during systole compared to diastole. Whereas Martins et al. 

(2009) reported increased perception of pain during systole compared to diastole 

when using a range of pain intensities up to and including pain tolerance. Taken 

together these findings suggest that different intensities of electrocutaneous 

stimulation may be modulated differently by natural fluctuations in BP. Therefore, to 
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further investigate this suggestion, future studies would do well to assess a range of 

electrocutaneous stimulation intensities such as pain threshold, half way between 

pain threshold and pain tolerance and pain tolerance in the same subjects. 

 

 Based on the suggestions made above regarding the possibility that different 

pain stimulation modalities may be modulated differently, future studies would do 

well to directly compare the cardiac cycle-related modulation of electrocutaneous 

and laser stimulation at the same relative intensity in the same participants. This 

potential difference would be best investigated for both a perceptual measure of pain 

(i.e. pain threshold) and objective measures of pain (i.e. PREPs) to provide a fuller 

picture regarding the potential factors influencing the cardiac cycle modulation 

effects. Additionally, as is suggested above, different electrocutaneous electrodes 

may activate different proportions of A-δ nociceptive fibres and A-β sensory fibres 

and thus may be modulated differently across the cardiac cycle. Studies would be 

advised to directly compare the cardiac cycle related modulation of pain perception 

and PREPs for stimuli delivered via a bar electrode and a concentric planar 

electrode (Kaube et al., 2000).   

 

Studies 1 and 2 suggest that tonic BP may be an important moderator of 

cardiac cycle effects and previous research suggests a linear relationship between 

increasing BP levels and decreasing pain (France, 1999). Therefore, although there 

have already been a few studies investigating differences in cardiac cycle effects in 

hypertensives versus normotensives (e.g. Edwards et al., 2007) and in hypotensives 

vs. normotensives using mechanical baroreceptor stimulation (Angrilli, Mini, Mucha, 

& Rau, 1997), future research would be recommended to look at the cardiac cycle 

effects on pain and tactile thresholds in a wider range of tonic BPs including 

hypotensives, a spectrum of normotensives, pre-hypertensives and clinical 

hypertensives. 

  

Finally, having suggested that it would be reasonable to potentially expect a 

lateralisation of cardiac cycle effects, although we did not find a lateralisation effect 

for PREPs (Study 4), as we did not originally find a cardiac cycle modulation of 

PREPs (Study 3) this may, as discussed above relate to methodological factors. 
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However, as we did report a cardiac cycle effect for pain thresholds, future research 

would be recommended to determine if cardiac cycle-related modulation of pain 

thresholds may be a lateralised phenomenon.  
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ELECTROCUTANEOUS PAIN THRESHOLDS ARE HIGHER DURING SYSTOLE 

THAN DIASTOLE 

Mary Wilkinson a,*, David McIntyre b, Louisa Edwards a 

a Loughborough University 

b University of Birmingham 

* Corresponding author.  Address: School of Sport, Exercise & Health Sciences, 

Loughborough University, Leicestershire, LE11 3TU, UK. Tel.: +44 (0)1509 228 151; 

E-mail address: m.j.wilkinson@lboro.ac.uk 

 

The nociceptive flexion reflex and pain-related evoked potentials have been shown 

to be dampened during the systolic phase of the cardiac cycle compared to diastole. 

The impact of the cardiac cycle on pain perception is less clear. The current study 

examined the effects of natural variations in blood pressure (BP) across the cardiac 

cycle on pain thresholds in 49 healthy adults. Pain thresholds were determined 

concurrently at 7 cardiac cycle intervals (R-wave plus 0, 100, 200, 300, 400, 500 and 

600 ms) using an interleaved up-down staircase procedure. Electrocutaneous stimuli 

were delivered to the back of the hand using a concentric planar electrode. After 

each stimulation participants indicated the presence or absence of pain using a 

response box. Repeated-measures ANOVA revealed variations in pain thresholds 

across the cardiac cycle (p = .002); pain thresholds were higher mid-cycle compared 

to early and late cycle. Further analyses, using BP median splits, revealed that only 

participants with low-normal systolic BP (p = .002), diastolic BP (p = .0005) and 

mean arterial pressure (p = .004) displayed this cardiac cycle-related pain 

modulation. The present study provides preliminary evidence that pain perception, at 

least at threshold levels, is attenuated during systole compared to diastole. Further, 

these data suggest that tonic BP may have a moderating effect on cardiac cycle-

related pain modulation. The current findings provide further support for the 

hypothesis that natural variations in arterial baroreceptor activity across the cardiac 

cycle influence pain. 
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EFFECTS OF THE CARDIAC CYCLE ON ELECTROCUTANEOUS PAIN 

RELATED EVOKED POTENTIALS 

Mary Wilkinson a,*, David McIntyre b, Louisa Edwards a 

a Loughborough University 

b University of Birmingham 

* Corresponding author.  Address: School of Sport, Exercise & Health Sciences, 

Loughborough University, Leicestershire, LE11 3TU, UK. Tel.: +44 (0)1509 228 151; 

E-mail address: m.j.wilkinson@lboro.ac.uk 

 

Natural variations in blood pressure (BP) across the cardiac cycle have been shown 

to modulate pain. A recent study reported dampened N2 and N2-P2 laser evoked 

potential amplitudes at Cz during systole compared to diastole in men. The current 

study examined the effects of natural variations in BP across the cardiac cycle on 

electrocutaneous pain-related evoked potentials (PREPs) using multi-channel 

recordings in 10 men and 10 women. Following determination of pain thresholds 

using an up-down staircase method, PREPs were elicited at seven cardiac cycle 

intervals (R-wave plus 50, 150, 250, 350, 450, 550, 650 ms). Electrocutaneous 

stimuli equal to twice individual pain threshold were pseudorandomly delivered to the 

right index finger in 7 blocks of 21 trials. Separate repeated-measures ANOVAs 

revealed no variation in N2, P2 or N2-P2 amplitudes across the cardiac cycle at Cz 

(all p > .05) or C3, a recording site considered to cover the contralateral primary and 

secondary somatosensory cortices (all p > .05). Median BP splits were used to 

examine tonic BP effects on the cardiac cycle-related modulation of PREPs. 

Separate 2 Group (low-normal BP, high-normal BP) by 7 Interval repeated-measures 

ANOVAs for systolic and diastolic BP revealed no Group or Interaction effects for 

N2, P2 or N2-P2 amplitudes at Cz or C3 (all p > .05). Similar 2 Sex by 7 Interval 

ANOVAs revealed no Group or Interaction effects for N2, P2 or N2-P2 amplitudes at 

Cz or C3 (all p > .05). These data suggest the modality of pain stimulation may 

influence the cardiac cycle-related modulation of pain processing.  
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Abstract 

 

Arterial baroreceptors may modulate pain. Evidence suggests the neurophysiological 

correlates of pain are dampened during systole, when baroreceptors are stimulated, compared to 

diastole, when stimulation is minimal. However, the influence of the cardiac cycle on perception of 

pain remains unclear. This study examined pain thresholds in 49 healthy adults at seven intervals after 

the R-wave of the electrocardiogram, using an interleaved up-down staircase procedure. 

Electrocutaneous stimuli were delivered to the hand and participants indicated the presence or absence 

of pain. Pain thresholds were higher mid-cycle, indicative of pain attenuation during systole compared 

to diastole. Analyses using blood pressure median splits revealed only participants with low systolic 

blood pressure displayed cardiac cycle modulation of pain, suggesting that tonic blood pressure may 

moderate cardiac cycle-related pain modulation. These findings suggest fluctuations in arterial 

baroreceptor activity across the cardiac cycle may influence pain in normotensive individuals.   

 

Descriptors: Baroreceptor; Blood pressure; Cardiac cycle; Pain threshold 
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1. Introduction 

A baroreceptor mechanism may account for hypertensive hypoalgesia (France and Ditto, 1996). 

Arterial baroreceptors are stimulated during the systolic phase of the cardiac cycle and show a 

pulsatile discharge (Eckberg and Sleight, 1992; Coleridge et al., 1987). Studies investigating the 

influence of the cardiac cycle on neurophysiological correlates of pain have reported dampening of 

the nociceptive flexion reflex (NFR) (Edwards et al., 2001; 2002; 2003; McIntyre et al., 2006; 2008) 

and reduced amplitude pain-related evoked potentials (PREPs) (Edwards et al., 2008) for stimuli 

delivered during systole compared to diastole.  

The subjective nature of pain is different to its neurophysiological correlates (Chen et al., 1998; 

Iannetti et al., 2008; Sandrini et al., 2005).  Some cardiac cycle studies concurrently measured the 

NFR or PREPs and pain but found no cardiac cycle-related pain modulation (Edwards et al., 2001; 

2002; 2003; 2008). Crucially, these studies (Edwards et al., 2001; 2002; 2003; 2008) were not 

specifically designed to investigate pain modulation with some presenting stimuli at intensities 

relative to NFR thresholds that were not necessarily painful (Edwards et al., 2001; 2002; 2003), or, 

having employed painful stimuli, used constant stimulus intensities that may have caused participant 

disengagement with the task (Edwards et al. 2008).  Although one study (Martins et al., 2009) 

reported pain increasing during systole, methodological differences may explain this unexpected 

result (see Discussion). The current study examined pain thresholds across the cardiac cycle and 

comprised several methodological features, including (a) a stimulating electrode that more selectively 

stimulates Aδ fibres (Katsarava et al., 2006; Kaube et al., 2000), (b) pain intensities focussed at 

threshold levels to minimise physiological arousal, and (c) variable stimulus intensities to limit 

participant disengagement. It was hypothesised that pain thresholds would be higher during systole 

than diastole.  

 

2. Methods 

2.1  Participants 
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Forty nine healthy adults (10 men, 39 women) were tested with a mean (SD) age of 27.98 

(11.6) years, resting systolic blood pressure (SBP) of 116.2 (11.3) mmHg, diastolic blood pressure 

(DBP) of 70.6 (11.2) mmHg, and heart rate (HR) of 71.2 (11.8) bpm. Individuals with HRs ≥100 

bpm were excluded from the study. Participants refrained from analgesics for 24 hrs and caffeine, 

nicotine and vigorous exercise for 2 hrs before testing. Loughborough University ethics committee 

approved the study and participants provided written consent. 

 

2.2  Apparatus and Measurements 

Resting blood pressure (BP) and HR were obtained using an oscillometric 

sphygmomanometer (705-IT, Omron). An electrocardiogram (ECG) was recorded using a modified 

chest configuration (see Edwards et al., 2001). Electrocutaneous stimuli  (triple 0.5 ms monopolar 

square-wave pulse at 200Hz) were delivered via a concentric planar electrode (Kaube et al., 2000), 

attached to the dorsal surface of the right hand between the metacarpals of the index and middle 

fingers. Participants sat upright with their hand on a response box with “Yes” and “No” buttons.  A 

computer programmed with Spike2 (CED) recorded responses and presented stimuli using a 

Micro1401 II (CED).  

 

2.3  Procedure 

Following three baseline BP and HR measurements, participants first completed a sensory 

threshold assessment (not reported here) and, following attachment of the concentric stimulating 

electrode, completed the pain threshold assessment. 

The pain threshold assessment determined pain thresholds at seven intervals after the R-wave of 

the ECG (R+0, R+100, R+200, R+300, R+400, R+500, R+600 ms). Thresholds were determined 

concurrently by interleaving seven up-down staircases (Levitt, 1971). During each trial the 

participant’s hand was stimulated at one of the seven R-wave intervals following which participants 
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pressed the “Yes” button if they perceived the stimulation as painful or the “No” button otherwise.  

For each staircase, stimulation intensity increased from 0 mA in 1 mA steps until the participant first 

reported pain. Stimulus intensity then decreased in 0.4 mA steps until the stimulus was not painful 

then continued in 0.1 mA steps until the seven staircases completed two further ascending and 

descending series. Pain threshold (mA) was defined as the average of the peaks during the second and 

third series of each staircase.  

 

2.4 Data Reduction and Analyses 

The BP and HR readings were averaged to provide measures of tonic SBP, DBP and HR. 

Repeated measures analysis of variance (ANOVA) with R-wave to stimulation interval (R+0, R+100, 

R+200, R+300, R+400, R+500, R+600 ms) as a within-subjects factor were performed on pain 

thresholds. To examine the effect of tonic BP on cardiac cycle-related pain thresholds, participants 

were divided into low-normal and high-normal BP groups based on SBP median split.  Separate 2 BP 

Group (low, high)  2 Sex  7 Interval repeated measures ANOVAs were performed on pain 

thresholds. Sex was included as a factor because men typically have higher BPs and women have 

greater pain sensitivity (Fillingim et al., 2009).  ANOVAs were corrected with Huynh-Feldt 

correction (). Significant results were followed by Newman-Keuls post hoc comparisons and planned 

orthogonal comparisons. Partial eta-squared (p
2
) is reported. A significance level of .05 was adopted. 

 

3. Results 

Repeated measures ANOVA revealed significant variation in pain thresholds across the cardiac 

cycle,  = .90, F(5.40, 259.21) = 3.74, p = .002, p
2
 = .072. Post hoc comparisons confirmed pain 

thresholds were higher at R+200 and R+300 ms than R+100 and R+500 ms and pain thresholds at 

R+300 ms were higher than R+600 ms (see Figure 1). Planned orthogonal comparisons revealed 
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significant quartic, F(1, 48) = 12.95, p = .001, p
2
 = .212, and quadratic, F(1, 48) = 5.19, p = .027, p

2
 

= .097, trends.    

Median SBP was 116.00 mmHg; accordingly the low-SBP group comprised 25 participants 

(Mean = 108.03, SD = 5.67 mmHg) and the high-SBP group comprised 24 participants (Mean = 

124.72, SD = 9.15 mmHg). A 2 Group  2 Sex  7 Interval ANOVA revealed no Group effect. Mean 

(SD) pain thresholds were 2.11 (1.47) mA and 2.40 (1.77) mA in the low- and high-SBP groups, 

respectively. However, a Group  Interval interaction was found,  = .946, F(5.67, 255.34) = 2.23, p = 

.04, p
2
 = .047 (see Figure 2). Analysis also revealed a main effect for Sex, F(1, 45) = 5.86, p = .02, 

p
2
 = .115. Mean (SD) pain thresholds were 3.32 (2.50) for men and 1.98 (1.20) mA for women.    

To further investigate the differing pattern of cardiac cycle modulation between 

SBP groups, 7 Interval repeated measures ANOVAs were conducted separately for each SBP group. 

Pain thresholds varied across the cardiac cycle in the low-SBP group, ε = .77, F(4.59, 110.26) = 4.40, 

p = .002, ηp
2
 = .155, but not in the high-SBP group. Post-hocs for the low-SBP group revealed higher 

pain thresholds at R+300 ms than R+100, 500 and 600 ms and higher pain thresholds at R+200 ms 

than R+100 and R+500 ms. Planned comparisons indicated this modulation of pain thresholds was 

characterised by quadratic, F(1, 24) = 6.11, p = .02, ηp
2
 = .203 and quartic, F(1, 24) = 21.51, p = 

.0001, ηp
2
 = .473, terms.  

 

4. Discussion 

Pain thresholds were higher, indicating reduced pain, during systole compared to diastole. These 

findings are consistent with previous studies reporting dampening of the NFR (Edwards et al., 2001; 

2002; 2003; McIntyre et al., 2006; 2008) and PREPs (Edwards et al., 2008) during systole compared 

to diastole. However, our findings conflict with Martins et al. (2009), who reported increased pain 

midcycle. Methodological differences may explain this discrepancy. In our study, stimulus intensities 

oscillated around pain threshold whilst Martins et al. presented stimuli between pain threshold and 
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pain tolerance. High stimulus intensities may induce physiological arousal, which has been shown to 

change pain perception and moderate midcycle NFR dampening (McIntyre et al., 2006). Indeed, 

elevated HRs, indicative of increased arousal, were reported by Martins and colleagues. Further, we 

used a stimulus electrode designed to more selectively stimulate Aδ nociceptive fibres compared to 

the electrode used by Martins and colleagues, which may also stimulate Aβ tactile fibres (Kaube et al., 

2000). Indeed, lower cutaneous sensory thresholds have been reported during systole (Edwards et al., 

2009). Accordingly, the current study may reflect a cardiac cycle modulation more specific to pain.  

Regardless, the temporal patterning of systolic pain inhibition found in our study is consistent with the 

hypothesis that pain is inhibited due to baroreceptor activation of pain inhibition pathways (Ghione, 

1996).   

Interestingly, no BP group differences in pain threshold were found in our study, counter to 

studies reporting an inverse BP-pain relationship within the normotensive range (see France, 1999). 

However, this relationship is not always evident (e.g., Edwards et al., 2002; France, 1999).  Notably, 

our study revealed differences in cardiac cycle-related pain modulation between SBP groups, 

suggesting cardiac cycle-related pain modulation may be reduced at higher-normal SBPs. This finding 

may be accounted for by the amount of baroreceptor afferent activity reaching the pain inhibition 

pathways. Indeed, an inverse relationship between BP and both baroreceptor sensitivity (Sleight et al., 

1977) and baroreflex sensitivity (Bristow et al., 1969; Gribbin et al., 1971) has been reported. 

Regardless of the mechanism, the current data provide preliminary evidence that tonic BP may 

influence the cardiac cycle-related pain modulation within the normotensive range. 
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Figure Captions 

Figure 1. Mean (SE) electrocutaneous pain thresholds as a function of phase of the cardiac cycle. 

 

Figure 2. Mean (SE) electrocutaneous pain thresholds at seven intervals across the cardiac cycle as a 

function of systolic blood pressure (SBP). 

  



Appendix 
 

 
 
 

 

 

 

 

 

 

 

 

APPENDIX B 

Recruitment Material & Questionnaires 
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Can you spare just 1.5 hours & get information about 

your Blood Pressure, Heart Rate, Tactile & Pain 

thresholds? 

 

WHAT WILL I HAVE TO DO? 

1. Fill out some short questionnaires  
2. Have your heart beat and blood pressure measured  
3. Have your touch threshold assessed: we will assess when you first perceive the 

presence of a sensation  

4. Have your pain threshold assessed: we will assess when you first perceive a pin-prick 
like sensation  

 
You cannot participate if you have: 

a chronic disease or major psychiatric disorder, an artificial cardiac pacemaker, you are pregnant or have 

missed your last menstrual cycle females), you currently take opiates or use any narcotic medication, you take 

prescription medication (excluding birth control), you drink >28 units/week if male, >21 units/week if female. 

For more information contact Mary Wilkinson e-mail: m.j.wilkinson@lboro.ac.uk, School of Sport, 
Exercise and Health Sciences, Loughborough University 
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FOR A STUDY 

INVESTIGATING HOW 

BLOOD PRESSURE 

INFLUENCES SENSATION 
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Modulation of Tactile and Pain Thresholds across the Cardiac Cycle 

 

INFORMED CONSENT FORM 

(to be completed after Participant Information Sheet has been read) 
 

The purpose and details of this study have been explained to me.  I understand that this study is 

designed to further scientific knowledge and that all procedures have been approved by the 

Loughborough University Ethical Advisory Committee.  

 

I have read and understood the information sheet and this consent form. 

I have had an opportunity to ask questions about my participation. 

I understand that I am under no obligation to take part in the study. 

I understand that I have the right to withdraw from this study at any stage for any reason, and that I 

will not be required to explain my reasons for withdrawing. 

I understand that all the information I provide will be treated in strict confidence. 

I agree to participate in this study. 

 

                    Your name 

 

              Your signature 

 

Signature of investigator 

 

                               Date 

 

 

 

Please address any complaints to the Secretary of the Loughborough University Ethical Advisory 

Committee (e-mail: m.r.coney@lboro.ac.uk). 



Appendix 
 

 
 
 

 

Demographic / Health Behaviour / SES Questionnaire 

 

 

Age    _____ years 

 

 

Sex     Man    Woman   

 

 

Ethnic Origin   African Caribbean     Asian   

African      Other Black  

White / UK   White / Irish  

Other White   Mixed Race  

    (Details: _____________) 

 

 

Marital status  Single    

     Married / Cohabiting   

Widowed / Divorced  

 

 

Smoking   Never smoked     

     Used to smoke   

     Currently smoke    

     Cigarettes per day______ 

 

 

How many units of alcohol do you drink in an average week? _______ units/week 

(1 unit = 284 ml of beer, 125 ml of wine, or 25 ml of spirits) 

 

 

How many units of alcohol would you usually drink in one session? ___________ 

 

 

How many drinking sessions would you have in an average week? ____________ 

 

 

For how many years were you in full-time education ? ______________________ 
(e.g., years in education starting from 1st year at primary school)  
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Centre for Epidemiologic Studies Depression (CES-D) Scale 

Circle the number for each statement which best describes how often you felt or behaved this way 

during the past week. 

 Rarely or 
 none of 
 the time 
(less than 1 day) 

Some or a  
little of  
the time  
(1 to 2 days) 

Occasionally 
 or a moderate 
amount of time 
(3 to 4 days) 

Most or  
all of  
the time 
(5 to 7 days) 

During the past week… 
1.  I was bothered by things that 

don’t usually bother me 
 

0 1 2 3 

2.  I did not feel like eating: my 
appetite was poor  

 

0 1 2 3 

3.  I felt that I could not shake off 
the blues even with help from 
my family or friends 

 

0 1 2 3 

4.  I felt that I was just as good as 
other people 

 

0 1 2 3 

5.  I had trouble keeping my mind 
on what I was doing 

 

0 1 2 3 

6.  I felt depressed 
 

0 1 2 3 

7.  I felt that everything I did was an 
effort 

 

0 1 2 3 

8.  I felt hopeful about the future 
 

0 1 2 3 

9.  I thought my life had been a 
failure 

 

0 1 2 3 

10.  I felt tearful 
 

0 1 2 3 

11.  My sleep was restless 
 

0 1 2 3 

12.  I was happy 
 

0 1 2 3 

13.  I talked less than usual 
 

0 1 2 3 

14.  I felt lonely 
 

0 1 2 3 

15.  People are unfriendly 
 

0 1 2 3 

16.  I enjoyed life 
 

0 1 2 3 

17.  I had crying spells 
 

0 1 2 3 

18.  I felt sad 
 

0 1 2 3 

19.  I felt that people disliked me 
 

0 1 2 3 

20.  I could not ‘get going’ 0 1 2 3 
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State Anxiety Inventory (title to be removed for participants) 

DIRECTIONS: Please read the statements below and then circle the number that 

corresponds with how you feel right now, that is at this moment.  There are no right 

or wrong answers.  Use the following scale: 

        1 = Not at all 
        2 = Somewhat 
        3 = Moderately 
        4 = Very Much 
 

 

1. I feel calm 1          2          3          4 

2. I feel secure 1          2          3          4 

3. I am tense 1          2          3          4 

4. I am regretful 1          2          3          4 

5. I feel at ease 1          2          3          4 

6. I feel upset 1          2          3          4 

7. I am presently worrying over possible misfortunes 1          2          3          4 

8. I feel rested 1          2          3          4 

9. I feel anxious 1          2          3          4 

10. I feel comfortable 1          2          3          4 

11. I feel self-confident 1          2          3          4 

12. I feel nervous 1          2          3          4 

13. I am jittery 1          2          3          4 

14. I feel “high strung” 1          2          3          4 

15. I am relaxed 1          2          3          4 

16. I feel content 1          2          3          4 

17. I am worried 1          2          3          4 

18. I feel over-excited and “rattled” 1          2          3          4 

19. I feel joyful 1          2          3          4 

20. I feel pleasant 1          2          3          4 

 

 

 

 

 



Appendix 
 

 
 
 

 

 Trait Anxiety Inventory (title to be removed for participants) 

DIRECTIONS: Please read the statements below and then circle the number that 
corresponds with how you generally feel.  There are no right or wrong answers.  

Use the following scale: 
 
1 = Not at all  2 = Somewhat 3 = Moderately  4 = Very Much 
 

1. I feel pleasant 1          2          3          4 

2. I tire quickly 1          2          3          4 

3. I feel like crying 1          2          3          4 

4. I wish I could be as happy as others seem to be 1          2          3          4 

5. I am losing out on things because I can’t make up my mind 

soon enough 

1          2          3          4 

6. I feel rested 1          2          3          4 

7. I am “calm, cool and collected” 1          2          3          4 

8. I feel difficulties are piling up so that I cannot overcome them 1          2          3          4 

9. I worry too much over something that doesn’t really matter 1          2          3          4 

10. I am happy 1          2          3          4 

11. I am inclined to take things hard 1          2          3          4 

12. I lack self-confidence 1          2          3          4 

13. I feel secure 1          2          3          4 

14. I try to avoid facing a crisis or difficulty 1          2          3          4 

15. I feel blue 1          2          3          4 

16. I am content 1          2          3          4 

17. Some unimportant thoughts run through my mind & bother me 1          2          3          4 

18. I take disappointments so keenly that I can’t put them out of 

my mind 

1          2          3          4 

19. I am a steady person  1          2          3          4 

20. I get in a state of tension or turmoil as I think over my recent 

concerns and interests 

1          2          3          4 
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25 

1 

No Sensation 0 

Sensory Threshold 

Maximum Tolerable Pain 100 

Just Noticeable Pain 

Uncomfortable but Not Painful 

50 

75 Very Painful 


