

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288379697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the Institution of Mechanical Engineers,
Part C Journal of Mechanical Engineering Science, C415/019, pp189-197, 1991
Proceedings of the European Technology Congress and Exhibition, Birmingham

The logical and geometric modelling of a universal
machine control reference architecture

R DOYLE, BEng, MSc and K CASE, BSc, PhD
Department of Manufacturing Engineering, Loughborough University
of Technology

SYNOPSIS This paper reports on new research into the computer modelling and simulation of the
UMC (Universal Machine Control) Reference Architecture. A key factor in the UMC Reference
Architecture is the provision of a set of software configuration tools to facilitate the building
of modular machines and machine control structures. In this respect the roles of geometric
solid modelling and logical control modelling are emphasised in the paper.

1 INTRODUCTION

The UMC Reference Architecture
presents a flexible and expandable
strategy for modular machine design
and machine control design. The
software configuration tools to
facilitate the building of modular
machines and machine control
structures are critical if this
approach is to be successfully
implemented. In particular the
geometric solid modelling and logical
control modelling tools are necessary
in optimising the selection and
aggregation of machine elements for
new machines. For an established
machine where product changes occur
the configuration tools will reduce
down-time through the application of
an 'off-line' programming approach.

2 MODULAR MACHINES

Current trends in manufacturing lean
towards smaller batches and reduced
product life cycle times (1), which
in turn demand a flexible approach to
machine design practices. Highly
complex machines which solve the
problem of flexibility in a generic
fashion inevitably have built-in
redundancy and hence are relatively
expens1ve. An alternative approach
is to build machines exactly to
requirement working from an array of
low level and well defined machine
and control modules (2). This
approach has many clear advantages
such as; rapid design and
construction, simplification of the
tools for construction, and easy
replacement of worn elements. A
further and perhaps more significant
advantage is the ability of this
style of machine to be easily re
configured in line with product

changes (3). Such modifications can
take several forms. The change could
be a software change requiring the
editing of a few parameters or
perhaps the addition of new software
modules. Alternatively the change
may be made in the hardware where
either the machine modules are
relocated or new modules are added.
The key is that modularity is
maintained throughout the whole
machine from the higher levels of
machine control to the individual
machine elements.

The potential applications of modular
machines are broad. They perform
well where a machine consists of a
number of distributed actuators, and
so typical areas of application
include assembly, packaging, machine
loading/unloading and quality control.
Thus, there is a clear demand in
manufacturing industry for flexible
machinery to which a modular approach
is ideally suited (4). However, many
companies currently use special
purpose machinery commissioned from
external sources which inevitably
leads to long changeover times between
product variations.

3 THE UNIVERSAL MACHINE CONTROL

REFERENCE ARCHITECTURE

Current modular machines are
typically controlled by plcs
(programable logic controllers)with
either direct communication between
plcs or indirect communication
through a micro-computer. However,
this type of control is very local
and tends to lead to 'hardwired'
solutions which lack flexibility (5).
Clearly, there is a demand for a high
level control which sits as an

umbrella over all of the machine
control elements. The main function
of this high level of control is to
provide co-ordination for the various
machine control elements, work
pieces, tools and sensors.

With this goal in mind the UMC
(Universal Machine Control) Reference
Architecture has been devised in the
Department of Manufacturing
Engineering at Loughborough
University of Technology over a
number of years through SERC (Science
and Engineering Research Council)
funded research (6).

The solution to this level of control
is not trivial since there are many
possible machine elements which must
be consistently blended together.
Even for a given machine element
function there are often several
manufacturers each with a unique
custom control. The term 'Universal'
in UMC illustrates one of the main
goals of the UMC Reference
Architecture to resolve the diverse
range of controls into a consistent
format in unison with the modular
approach to machine building and
control. Ultimately the UMC
Reference Architecture is intended to
become an open industrial standard
which will benefit the builders of
machines and the manufacturers of
machine elements. 'Open' standards
are currently believed to be vital
across a whole range of computing
activities. For example Open Software
Foundation for UNIX (7) and IGES for
CAD information exchange (8). Similar
benefits should accrue from an open
control structure which will lead to
a larger market with consistent
products which in turn must lead to
advantages for both the suppliers and
consumers of machine modules.

The UMC Reference Architecture
describes the control and
coordinating elements and the method
of arrangement of those elements to
form a hierarchical run-time control
structure. The principal role of the
run-time control structure is to
coordinate and drive the modular
machine with a number of custom
control elements. The software which
is generated as a consequence of
applying the concepts embodied in the
UMC Reference Architecture exists in
a real time and parallel operating
system, currently implemented under
OS-9 (9)(10).

Figure 1 shows a simplified form of
the run-time control structure, where
the key components are tasks, data
structures and handlers. Tasks are
processes which run in parallel and
describe the operation of the
machine. They may also provide other
functions such as machine monitoring.

There can be many tasks active at any
one time and coordination is achieved
between them by a system of
signalling events. Reference data
and data transfer is achieved via a
data structure which rests in the
active memory of the computer.
Access to the custom control devices
of the machine elements and
input/output (i/o) elements is made
via the handlers, which are device
dependent interfaces between the run
time UMC system and the device custom
control. From the run-time control
point of view the handlers are
virtual, presenting a consistent
interface to all elements in the
machine.

Whilst the run-time control has a
major role to play it must not be
seen in isolation. The run-time
control is the goal but the machine
designer must be able to reach that
goal in an efficient and sensible
manner. Figure 2 shows an overall
view of the UMC Strategy where it is
clear that issues of machine
definition, configuration and
evaluation are of equal importance to
the run time control.

Although it is possible to write and
work with the run-time software
directly this requires a deep
understanding of the detailed
workings of the run-time control.
Normally machine designers will work
at higher levels using configuration
tools to aggregate the modules which
form the run-time control (11). The
overall logical machine structure can
be defined using the rules in the UMC
Reference Architecture. The
individual elements of the control
structure are defined by a
combination of using design tools and
extracting the information from
libraries where they exist.

4 A DETAILED VIEW OF THE UMC

STRATEGY

For the physical machine the natural
focal point is the run-time control.
However, the key decisions which
determine the characteristics and
performance of the machine are made
at a much higher level. The UMC
strategy allows the focal point to be
moved to a higher level through its
software based approach to control as
opposed to the traditional 'hard
wired' approach.

Figure 3 shows the UMC design
strategy. For even a simple machine
there are many software and data
sources which are required to
properly describe the control of the
machine. The fulcrum for design is

where the aggregation of these
sources occurs. The principal function
of the aggregation phase is one of
organization and reference. The user
must describe the mach1ne in a manner
which is consistent with the UMC
Reference Architecture. The
hierarchical nature of the UMC
Reference Architecture naturally leads
to the organisation of the machine
description and high level task
programming.

On completion of aggregation there are
two possible routes which may be
followed. For well established
machines the code and data is pre
processed directly to generate the run-
time control software. Following this
step the software will still need to
be proved on the machine but adherence
to the UMC Reference Architecture
should ensure this work is minimal.

For machine designs which are new or
a radical modification of existing
designs the logical and geometric
modelling tools are employed to
compare and evaluate designs.
Continuity of design 1s ma1nta1ned by
using the same aggregated information
for both the modelling tools and the
run-time control. As in the case for
run-time control the aggregated data
is pre-processed to a format suitable
for the logical modelling software.
The logical modelling software
processes the aggregated data and
emulates the real time operating
system to generate data suitable for
driving a geometric solid model of
the hardware. The actions of the
logical machine are described in two
formats. The first is on an event by
event basis. The second shows the
action of the machine elements on a
single time base.

The geometric solid modeller, based
on the robotics modelling software
Grasp (12), allows the user to
describe each machine element from
simple shapes such as cuboids and
cylinders or alternatively machine
elements may be extracted from
existing libraries. Figure 4 shows a
typical Grasp solid model of a UMC
modular machine. The logical
structure of the model is derived via
the pre-processor from the
description given at aggregation.
Once complete the designer has the
opportunity to manipulate and
evaluate alternative configurations
of the model. Where machine elements
have the capability of motion the
designer may move the elements
through teach pendant like commands.
(This is the technique used in the
programming of 1ndustr1al robots
where the robot is driven to
particular positions using a
controller accessed via a hand held

'pendant'. Robot postures may be saved
in a sequence which when replayed
represents a program.)

When both the geometric and logical
models are complete the output from
the logical model may be used to
drive the geometric model so the
effect of the design may be observed
and analysed. The analysis may be
numerical as well as visual giving
the designer the opportunity to make
comparative judgments on alternative
designs. Since des1gn often requires
iteration, the strategy allows the
designer to return to the aggregation
phase after analysis so that design
optimization is achieved. The
modelling tools also allow the
machine to be balanced in terms of
time and operating characteristics so
that the parameters of the machine
elements are properly specified.

5 AN EXAMPLE

The purpose of this example is to
illustrate the main principles
embodied in the UMC approach to
machine control. The UMC strategy is
capable of controlling machines of
far greater complexity than is shown
here. The example is set out in two
parts. The first illustrates the
organisation of a UMC machine. The
second highlights the flexibility of
the UMC strategy when compared with
other approaches.

Consider the simple assembly cell
shown in figure 5. The pick and
place unit must select components
from the two automatic feed hoppers
and insert them in the assemblies
which are delivered by the conveyor.
The conveyor stops at an appropriate
position as a result of signals from
the sensor which detects the position
of the assemblies. There are in
total seven elements which the UMC
system must coordinate; the four axes
of the pick and place device, the
single axis of the conveyor, the
sensor i/o and the i/o to open and
close the gripper.

Each moving axis is controlled by a
motion controller and these are
different for the pick and place unit
and the conveyor. The i/o elements
have their own unique interfaces.

The UMC system which coordinates all of
the above elements exists in a real
time environment running under
the OS-9 operating system on a single
Syntel micro-computer.

The interface between the UMC
environment and the machine control
elements is achieved via the UMC

handlers, which are software modules
provided as a part of the UMC system.

The character of the machine is given
by a series of task programs which
are generally written in the C
programming language and run in
parallel. For this part of the
example there are two task programs.
The first controls the conveyor in
response to the sensor, whilst the
second performs the insertion of the
components into the assembly. Co
ordination between the tasks is
achieved via the signalling of
events. In this case the main events
are; start, assembly in position,
assembly complete and stop.

The cell and its function described
above could be achieved using other
methods, perhaps by using a plc based
solution with an equivalent or
slightly lower cost. However, the
advantage of adopting the UMC
approach is realised when an element
of change is introduced.

Currently, it is unrealistic to
expect a product to have a long run
with no change if it is to remain
competitive. Therefore, it follows
that machines must be able to respond
to this demand for product change.
This is the area where the UMC
approach shows a significant
advantage over other approaches.

Consider the same situation described
above 18 months on (see figure 6).
The product has been changed so that
there are a number of different
assemblies requiring the same
component insertions but in different
locations. In order for the system
to recognise the different assemblies
as they arrive on the conveyor a
vision system has been introduced.
Also, the speed of components moving
through the cell has been increased
by replacing the pick and place unit
with a higher specification unit
from a different manufacturer.

In a plc type approach this situation
is essentially a brand new machine,
whereas with the UMC approach the
changes can almost be dealt with as a
change in parameters. Because the
task software is device independent
the change in pick and place unit can
be accommodated by changing the
handlers used. The variation in
component location on the assemblies
merely requires that additional
location data modules be included in
the data structure. The introduction
of the vision system represents the
bulk of the new work but is a
relatively straightforward task since
it has only to set an event
indicating the detection of the
assembly type. The Assembly task can
then respond to this event by

selecting the appropriate location
data module.

6 CONFIGURATION TOOLS

When a designer devises a modular
machine there are many aspects to
consider such as specification of
functionality, variability of
function, performance in speed and
cost terms, selection of modular
elements etc. Each aspect is very
different from the others in the way
that it is viewed and applied, and
yet at the same time there is
considerable dependency between these
factors. To build a machine directly
without the aid of design tools
requires the designer to have a great
deal of experience. The interacting
nature of the machine elements makes
it very difficult to predict the
operation and performance of the
final machine on paper and inevitably
paper designed machines require
modification after they have been
built. This approach also tends to
result in a conservative approach to
design with consequent losses in
performance both in terms of cost and
machine efficiency.

Initially, the UMC Reference
Architecture aids the designer by
offering a consistent platform on
which to solve control and co
ordination problems. This frees the
designer to concentrate on the real
problem without having to be
concerned whether control unit X will
operate with control unit Y in
response to sensor z. Following on
from the initial specification phase
the designer requires effective tools
which help measure and compare
designs. Under the UMC strategy
these tools are provided in the form
of the geometric and logical
modellers. The tools allow the
designer to describe design in as
much or as little detail as is
required. Designs can then be
analysed, balanced and optimised in a
dynamic fashion. Configuration tools
are used to greatly reduce the amount
of uncertainty of performance of the
final machine.

7 GEOMETRIC MODELLING TOOLS

The ever increasing availability of
computer processing power makes the
computer based kinematic solid
modelling of machines an attractive
proposition. The value, in terms of
visualisation, of constructing a
solid model and displaying the
actions of a machine is that it

greatly improves the certainty that
designs are correct.

The geometric modelling work in the
project is being conducted in
collaboration with BYG Systems of
Nottingham who produce a successful
robotic modelling and simulation
system called Grasp (12). This
software exhibits many of the
features which are required for the
modelling of modular machines. As a
part of the collaboration a special
version of Grasp has been provided so
that features which are unique to the
UMC approach can be included.

The first phase in making use of
Grasp is the description of the
physical machine. Machine elements
are described by the assembly of a
number of three dimensional shapes
such as cuboids, cylinders,
polyprisms etc. Models can be either
defined in symbolic manner or in
great detail. Once a model of a
machine element has been defined it
may be stored in a library for quick
retrieval at a later date. Usually
symbolic models are used in the early
conceptual stages where there might
be a number of designs to compare.
The detailed models are produced as
the design becomes more fixed and
deeper explorations of the design are
required.

Each element of the machine is
defined in its own right and then
associated with the machine as a
whole. Each element must have a
unique name and is placed relative to
a reference object by position and
orientation. The relationship
between machine elements is described
in terms of ownership. This
relationship is important where one
machine element is located on another
element which moves. If the second
element moves then the first must
automatically maintain its position
relative to the second.

The model as a whole is described in
a data structure so that it is also
possible to define data other than
the geometric description and
position. Often this is data which
is required for reference by the
kinematic modelling of the design,
such as maximum and minimum
positions, maximum velocity and
acceleration.

Once the model is complete it can
viewed from any point to ensure that
it is correct. There are efficient
editing tools available which allow
alterations to the model. Where
dynamic elements exist within the
model these can be manipulated by
making use of a set of robot pendant
like commands. In general a machine

element can be moved to any position
in a range between its maximum and
minimum positions. An element may
also be sent to a pre-defined
position such as a home position.
Also, since the model can comprehend
solids existing within three
dimensional space it is possible to
detect if and where clashes occur
between machine elements.

Although the checking of the physical
layout is important, ultimately the
real value of the geometric model is
in the display of the consequences of
the logical model. The logical model
consists of a set of parallel
programs which are written as a set
of sequential programs which interact
in a parallel fashion. Even with a
small number of parallel processes it
can be difficult to ensure that the
interaction is right. The next
section shows how the logical model
is defined and how it is interfaced
with the geometric model.

8 LOGICAL MODELLING TOOLS

The use of high level languages for the
programming of robotics and
associated equipment is well
established (13) and at first sight
could make a contribution to the UMC
approach. Typical examples can be
found in simulation packages such as
Grasp (12) or in more direct robot
programming packages such as SRL
(15). However, these packages were
initially designed to produce a
single sequential program and then
evolved to include parallel features
which coordinate either other robots
or elements such as conveyors. Also,
the task programs which are produced
are often post-processed into code to
drive a specific robot.

Both the quasi-parallel programming
and the non-generic software target
prevent this type of approach from
succeeding within the UMC approach.
For simulation this role is
undertaken by the logical control
model and has the goal of emulating
an actual UMC system as if it were
running in real time. The principal
requirements are as follows;
concurrent programming, inter-task
communication, virtual real time, a
common data structure and an
interface into the data structure of
the geometric model.

The common thread which connects all
of the elements of the UMC design
strategy is the description of the
tasks (or logical sequence of
operation) which a given machine must
perform. The logical model of a UMC
must be directly related to the

actual UMC code; firstly to ensure
that the model is as realistic as is
possible and secondly to maintain a
direct relationship between the
logical model code and the actual
code. However, the same code cannot
be used as there are clearly two
separate environments, the actual and
the virtual, each with their own
unique requirements. For example,
the time for an actual machine
element to perform a move is
determined by the physical device and
its working context, which may vary.
For the logical model a software
routine must be provided which
emulates the action of the machine
and returns a value for the time of
the required move.

The UMC design strategy accommodates
both the similarities and, differences
between the actual and virtual worlds
by allowing the user to define tasks
at a high level where there is
overlap and then preprocessing to
incorporate the differences. Users
can write freely in C and make use of
a relatively small, but powerful set
of functions to achieve the UMC style
of programming. A brief extract of
typical UMC high level code is shown
below.

{
.
.
while (notfinished)

{
UMC OUTPUT (rio, lamp, red);
UMC SIGNAL_EVENT (riouse);
UMC WAIT_EVENT (noboard);
UMC MOVESLP (load, fast);
UMC WAIT_EVENT (neffuse);
UMC MOVESLP (under, fast);
UMC MOVESLP (over, slow);
.
.
.
}
.
.
}

Potentially the UMC code can be
embedded in any language, but so far
C is the only implemented language.
The UMC function calls allow the user
to provide proper control and co
ordination of the designed machine.
The user may communicate and send
instructions to specific axes or axis
groups. For example, 'UMC MOVESLP
(location, speed)' will send an
instruction to the axis group
associated with the current task to
move to a position called 'location'
with a 'speed' ratio of the maximum
velocity and acceleration of the
elements in the axis group. The user
may also achieve inter-task

communication and co-ordination
through a system of events. For
example, 'UMC SIGNAL EVENT
(task_done)' sets the global event
'task done' which would allow any
other-task with 'UMC WAIT EVENT
(task_done)' to continue with its
execution.

On completion the task programs are
processed and compiled according to
whether the programs are for use in a
simulation or in an actual UMC
machine. For an actual machine the
resulting C code may be transferred
onto the OS-9 system and then
compiled or the code may be cross
compiled on the UNIX workstation and
then loaded onto the OS-9 machine.

The processed C code for simulation
is compiled on the UNIX workstation.
The task programs may then be run in
two modes. The first is an event by
event mode for a single task with the
position of the machine elements
being displayed by Grasp via an
interface at the start and end of
each event. This may be done either
step by step or continuously. This
mode is primarily intended for the
development and debugging of task
programs. A useful function is the
ability to declare an unknown
position in the task data. This
unknown position can then be defined
in an interactive manner through
Grasp as the task program is run and
then recorded in the task data. The
second mode is for the display of a
number of tasks running concurrently.
In this case the simulation runs in
virtual real time where the user
declares a start time and time
interval for an animated type
display update to occur in Grasp.

9 CONCLUSION

The research work into logical and
geometric modelling as reported here
is at the midway stage and good
progress has been made. The
requirements for such an approach
have been specified and many of the
lower level constructions have been
implemented within the special
version of Grasp. Future work will
concentrate on higher level aspects
such as task programming, and off-
line programming of modular machines
will inevitably begin to assume equal
importance with machine design and
evaluation.

The scope of the UMC architecture
itself is being widened constantly so
as to for example encompass modern
concepts such as software cams and
gearboxes. These advances, although
essential to the evolution of modular

machines, are seen as providing a
major challenge to the ingenuity of
machine designers and programmers
alike. Configuration tools such as
those described in this paper then
become essential to overcome the
problems arising from the complexity
and sophistication of machine design.

The importance of doing all this in
the context of an open systems
approach cannot be over-emphasised.
The objectives and methodologies for
modular machine design and
implementation absolutely require a
genuinely open approach. We believe
that the concepts of the reference
architecture implemented via
graphical user tools meets this
objective.

ACKNOWLEDGEMENTS

This work is being carried out under
the Science and Engineering Research
Council grant number GR/F 13492. The
authors would also like to
acknowledge the support of various
industrial collaborators, especially
BYG Systems and Quin Systems.

REFERENCES

(1) KRUSE, G. Excellence in
Manufacturing, Production
Engineer, Vol 67 No 4, April,
1988, pp 54-56.

(2) WESTON, R.H. HARRISON, R. BOOTH,

A.H. and MOORE, P.R. Universal
Machine Control System Primitives
for Modular Distributed
Manipulator Systems. Special Issue
of International Journal of
Production Research on Robotics,
January, 1989.

(3) CHALLIS, H. Where is Robotics

Going ? Automation, UK, May,
1989, pp 23-29.

(4) HARRISON, R. WESTON, R.H. MOORE,

P.R. and THATCHER, T.W. A Study of
Application Areas for Modular
Robots. Robotica, Vol 5, 1987,
pp 217-221.

(5) JASANY, L.C. PLCs into the

1990s. Automation, USA, April,
1989, pp 20-24.

(6) WESTON, R.H. HARRISON, R. BOOTH,

A.H. and MOORE, P.R. A New
Approach to Machine Control.
Computer Aided Engineering
Journal,February, 1989, pp 27-
32.

(7) Anon, Standards One For All.

CADCAM International, November,
1988, pp 39-42.

(8) OWEN, W. The Data Format Puzzle.

CADCAM International, September,
1986, pp 29-32. .

(9) DAVIS, D.F. (Ed.) The OS-9

Catalog January, 1989 (Microware
Systems Corporation Des Moines,
Iowa, USA).

(10) DIBBLE, P. OS-9 Insights: An

Advanced Programmers Guide to OS-
9/68000, 1989 (Microware Systems
Corporation, Des Moines, Iowa,
USA).

(11) BLUME, C. and JAKOB, W.

Programming Languages for
Industrial Robots, 1986
(Springer-Verlag).

(12) YONG, Y.F. GLEAVE, J.A. GREEN,

J.L. BONNEY, M.C.
Off-Line Programming of Robots.
Handbook of Industrial Robotics,
1985, pp 366-386 (John Wiley and
Sons, N.Y. USA)

(13) LAUGIER, C. Les Apparts Respectifs

des Languages Symboliques et de la
CAO en Programmation des Robots.
Robotica, Vol 6, 1988, pp 243-
253.

(14) BUSTARD, D. ELDER, J. and WELSH,

J. Concurrent Program
Structures, 1988 (Prentice
Hall).

(15) BLUME, C. and JAKOB, W. Design of

the Structured Robot Language
(SRL). Proceedings of the
Conference on Advanced Software
for Robotics, Liege, 1983.

Fig 1 UMC run-time control structure

Fig 2 The overall UMC strategy

Fig 3 The UMC design strategy

Fig 4 A typical Grasp solid model

Fig 5 Example part A

Fig 6 Example part B

