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SYNOPSIS This paper reports on new research into the computer modelling and simulation of the 
UMC (Universal Machine Control) Reference Architecture. A key factor in the UMC Reference 
Architecture is the provision of a set of software configuration tools to facilitate the building 
of modular machines and machine control structures. In this respect the roles of geometric 
solid modelling and logical control modelling are emphasised in the paper. 

 

 
 

1 INTRODUCTION 
 

The UMC Reference Architecture 
presents a flexible and expandable 
strategy for modular machine design 
and machine control design. The 
software configuration tools to 
facilitate the building of modular 
machines and machine control 
structures are critical if this 
approach is to be successfully 
implemented.  In particular the 
geometric solid modelling and logical 
control modelling tools are necessary 
in optimising the selection and 
aggregation of machine elements for 
new machines.  For an established 
machine where product changes occur 
the configuration tools will reduce 
down-time through the application of 
an 'off-line' programming approach. 

 
 
 
 

2 MODULAR MACHINES 
 

Current trends in manufacturing lean 
towards smaller batches and reduced 
product life cycle times (1), which 
in turn demand a flexible approach to 
machine design practices.  Highly 
complex machines which solve the 
problem of flexibility in a generic 
fashion inevitably have built-in 
redundancy and hence are relatively 
expens1ve.  An   alternative approach   
is to build machines exactly to 
requirement working from an array of 
low level and well defined machine 
and control modules (2).  This 
approach has many clear advantages 
such as; rapid design and 
construction, simplification of the 
tools for construction, and easy 
replacement of worn elements.  A 
further and perhaps more significant 
advantage is the ability of this 
style of machine to be easily re 
configured in line with product 

 
 

 
changes (3). Such modifications can 
take several forms.  The change could 
be a software change requiring the 
editing of a few parameters or 
perhaps the addition of new software 
modules.   Alternatively the change 
may be made in the hardware where 
either the machine modules are 
relocated or new modules are added. 
The key is that modularity is 
maintained throughout the whole 
machine from the higher levels of 
machine control to the individual 
machine elements. 
 
The potential applications of modular 
machines are broad.  They perform 
well where a machine consists of a 
number of distributed actuators, and 
so typical areas of application 
include assembly, packaging, machine 
loading/unloading and quality control.  
Thus, there is a clear demand in 
manufacturing industry for flexible 
machinery to which a modular approach 
is ideally suited (4). However, many 
companies currently use special 
purpose machinery  commissioned from 
external sources which inevitably 
leads to long changeover times between 
product variations. 
 
 
 
 
3  THE UNIVERSAL MACHINE CONTROL 

REFERENCE ARCHITECTURE 
 
Current modular machines are 
typically controlled by plcs 
(programable  logic controllers)with 
either direct communication between 
plcs or indirect communication 
through a micro-computer.  However, 
this type of control is very local 
and tends to lead to 'hardwired' 
solutions which lack flexibility (5). 
Clearly, there is a demand for a high 
level control which sits as an 
 
 

 



umbrella over all of the machine 
control elements.  The main function 
of this high level of control is to 
provide co-ordination for the various 
machine control elements, work 
pieces, tools and sensors. 
 
With this goal in mind the UMC 
(Universal Machine Control) Reference 
Architecture has been devised in the 
Department of Manufacturing 
Engineering at Loughborough 
University of Technology over a  
number of years through SERC (Science 
and Engineering Research Council) 
funded research (6). 
 
The solution to this level of control 
is not trivial since there are many 
possible machine elements which must 
be consistently blended together.      
Even for a given machine element 
function there are often several 
manufacturers each with a unique  
custom control. The term 'Universal'  
in UMC illustrates one of the main 
goals of the UMC Reference  
Architecture to resolve the diverse 
range of controls into a consistent 
format in unison with the modular 
approach to machine building and 
control.  Ultimately the UMC   
Reference Architecture is intended to 
become an open industrial standard 
which will benefit the builders of 
machines and the manufacturers of 
machine elements. 'Open' standards   
are currently believed to be vital 
across a whole range of computing 
activities. For example Open Software 
Foundation for UNIX (7) and IGES for 
CAD information exchange (8). Similar 
benefits should accrue from an open 
control structure which will lead to   
a larger market with consistent 
products which in turn must lead to 
advantages for both the suppliers and 
consumers of machine modules. 

 
The UMC Reference Architecture 
describes the control and  
coordinating elements and the method 
of arrangement of those elements to 
form a hierarchical run-time control 
structure. The principal role of the 
run-time control structure is to 
coordinate and drive the modular 
machine with a number of custom 
control elements. The software which 
is generated as a consequence of 
applying the concepts embodied in the 
UMC Reference Architecture exists in  
a real time and parallel operating 
system, currently implemented under 
OS-9 (9)(10). 

 
Figure 1 shows a simplified form of  
the run-time control structure, where 
the key components are tasks, data 
structures and handlers.  Tasks are 
processes which run in parallel and 
describe the operation of the   
machine. They may also provide other 
functions such as machine monitoring. 

 
 

 
 

There can be many tasks active at any 
one time and coordination is achieved 
between them by a system of 
signalling events.  Reference data  
and data transfer is achieved via a 
data structure which rests in the 
active memory of the computer. 
Access to the custom control devices  
of the machine elements and 
input/output (i/o) elements is made  
via the handlers, which are device 
dependent interfaces between the run 
time UMC system and the device custom 
control.  From the run-time control 
point of view the handlers are  
virtual, presenting a consistent 
interface to all elements in the 
machine. 
 
Whilst the run-time control has a  
major role to play it must not be   
seen in isolation.  The run-time 
control is the goal but the machine 
designer must be able to reach that 
goal in an efficient and sensible 
manner.  Figure 2 shows an overall  
view of the UMC Strategy where it is 
clear that issues of machine 
definition, configuration and 
evaluation are of equal importance to 
the run time control. 
 
Although it is possible to write and 
work with the run-time software  
directly this requires a deep 
understanding of the detailed    
workings of the run-time control. 
Normally machine designers will work   
at higher levels using configuration 
tools to aggregate the modules which 
form the run-time control (11). The 
overall logical machine structure can  
be defined using the rules in the UMC 
Reference Architecture. The    
individual elements of the control 
structure are defined by a    
combination of using design tools and 
extracting the information from 
libraries where they exist. 
 
 
 
 
4 A DETAILED VIEW OF THE UMC 

STRATEGY 
 
For the physical machine the natural 
focal point is the run-time control. 
However, the key decisions which 
determine the characteristics and 
performance of the machine are made    
at a much higher level. The UMC  
strategy allows the focal point to be 
moved to a higher level through its 
software based approach to control as 
opposed to the traditional 'hard  
wired' approach. 
 
Figure 3 shows the UMC design   
strategy.   For even a simple machine 
there are many software and data  
sources which are required to    
properly describe the control of the 
machine.  The fulcrum for design is 
 
 
 

 
 



 

where the aggregation of these  
sources occurs. The principal function 
of the aggregation phase is one of 
organization and reference. The user 
must describe the mach1ne in a manner 
which is consistent with the UMC 
Reference Architecture.  The 
hierarchical nature of the UMC 
Reference Architecture naturally leads 
to the organisation of the machine 
description and high level task 
programming. 

 
On completion of aggregation there are 
two possible routes which may be 
followed.  For well established 
machines the code and data is pre 
processed directly to generate the run-
time control software.  Following this 
step the software will still  need to 
be proved on the machine but adherence 
to the UMC Reference Architecture 
should ensure this work is minimal. 

 
For machine designs which are new or   
a radical modification of existing 
designs the logical and geometric 
modelling tools are employed to  
compare and evaluate designs. 
Continuity of design 1s ma1nta1ned by 
using the same aggregated information 
for both the modelling tools and the 
run-time control.  As in the case for 
run-time control the aggregated data  
is pre-processed to a format suitable 
for the logical modelling software.  
The logical modelling software 
processes the aggregated data and 
emulates the real time operating  
system to generate data suitable for 
driving a geometric solid model of   
the hardware.  The actions of the 
logical machine are described in two 
formats.  The first is on an event by 
event basis.  The second shows the 
action of the machine elements on a 
single time base. 
 
The geometric solid modeller, based   
on the robotics modelling software 
Grasp (12), allows the user to  
describe each machine element from 
simple shapes such as cuboids and 
cylinders or alternatively machine 
elements may be extracted from  
existing libraries. Figure 4 shows a 
typical Grasp solid model of a UMC 
modular machine.  The logical 
structure of the model is derived via 
the pre-processor from the   
description given at aggregation.   
Once complete the designer has the 
opportunity to manipulate and   
evaluate alternative configurations    
of the model. Where machine elements 
have the capability of motion the 
designer may move the elements   
through teach pendant like commands. 
(This is the technique used in the 
programming of 1ndustr1al robots   
where the robot is driven to  
particular positions using a  
controller accessed via a hand held 

 
 

 
 
 

'pendant'.  Robot postures may be saved 
in a sequence which when replayed 
represents a program.) 
 
When both the geometric and logical 
models are complete the output from 
the logical model may be used to  
drive the geometric model so the 
effect of the design may be observed 
and analysed.  The analysis may be 
numerical as well as visual giving  
the designer the opportunity to make 
comparative judgments on alternative 
designs. Since des1gn often requires 
iteration, the strategy allows the 
designer to return to the aggregation 
phase after analysis so that design 
optimization is achieved. The 
modelling tools also allow the  
machine to be balanced in terms of 
time and operating characteristics so 
that the parameters of the machine 
elements are properly specified. 
 
 
 
 
5  AN EXAMPLE 

 
The purpose of this example is to 
illustrate the main principles 
embodied in the UMC approach to 
machine control.  The UMC strategy is 
capable of controlling machines of 
far greater complexity than is shown 
here.  The example is set out in two 
parts. The first illustrates the 
organisation of a UMC machine. The 
second highlights the flexibility of 
the UMC strategy when compared with 
other approaches. 
 
Consider the simple assembly cell  
shown in figure 5.  The pick and   
place unit must select components   
from the two automatic feed hoppers  
and insert them in the assemblies  
which are delivered by the conveyor. 
The conveyor stops at an appropriate 
position as a result of signals from 
the sensor which detects the position 
of the assemblies.  There are in  
total seven elements which the UMC 
system must coordinate; the four axes 
of the pick and place device, the 
single axis of the conveyor, the  
sensor i/o and the i/o to open and 
close the gripper. 
 
Each moving axis is controlled by a 
motion controller and these are 
different for the pick and place unit 
and the conveyor.  The i/o elements 
have their own unique interfaces. 
 
The UMC system which coordinates all of 
the above elements exists in a real 
time environment running under       
the OS-9 operating system on a single 
Syntel micro-computer. 
 
The interface between the UMC 
environment and the machine control 
elements is achieved via the UMC 
 

 
 
 



handlers, which are software modules 
provided as a part of the UMC system. 
 
The character of the machine is given 
by a series of task programs which  
are generally written in the C 
programming language and run in 
parallel.  For this part of the 
example there are two task programs. 
The first controls the conveyor in 
response to the sensor, whilst the 
second performs the insertion of the 
components into the assembly.  Co 
ordination between the tasks is 
achieved via the signalling of  
events.  In this case the main events 
are; start, assembly in position, 
assembly complete and stop. 

 
The cell and its function described 
above could be achieved using other 
methods, perhaps by using a plc based 
solution with an equivalent or 
slightly lower cost.  However, the 
advantage of adopting the UMC  
approach is realised when an element 
of change is introduced. 

 
Currently, it is unrealistic to  
expect a product to have a long run 
with no change if it is to remain 
competitive.  Therefore, it follows 
that machines must be able to respond 
to this demand for product change. 
This is the area where the UMC 
approach shows a significant  
advantage over other approaches. 

 
Consider the same situation described 
above 18 months on (see figure 6).  
The product has been changed so that 
there are a number of different 
assemblies requiring the same 
component insertions but in different 
locations.  In order for the system   
to recognise the different assemblies 
as they arrive on the conveyor a 
vision system has been introduced. 
Also, the speed of components moving 
through the cell has been increased  
by replacing the pick and place unit 
with  a higher specification unit   
from a different manufacturer. 

 
In a plc type approach this situation 
is essentially a brand new machine, 
whereas with the UMC approach the 
changes can almost be dealt with as a 
change in parameters.  Because the  
task software is device independent 
the change in pick and place unit can 
be accommodated by changing the 
handlers used.  The variation in 
component location on the assemblies 
merely requires that additional 
location data modules be included in 
the data structure.  The introduction 
of the vision system represents the 
bulk of the new work but is a 
relatively straightforward task since 
it has only to set an event  
indicating the detection of the 
assembly type. The Assembly task can 
then respond to this event by 

 
 

 
 

selecting the appropriate location 
data module. 
 
 
 
 
6 CONFIGURATION TOOLS 
 
When a designer devises a modular 
machine there are many aspects to 
consider such as specification of 
functionality, variability of 
function, performance in speed and 
cost terms, selection of modular 
elements etc.  Each aspect is very 
different from the others in the way 
that it is viewed and applied, and  
yet at the same time there is 
considerable dependency between these 
factors. To build a machine directly 
without the aid of design tools 
requires the designer to have a great 
deal of experience. The interacting 
nature of the machine elements makes 
it very difficult to predict the 
operation and performance of the  
final machine on paper and inevitably 
paper designed machines require 
modification after they have been 
built. This approach also tends to 
result in a conservative approach to 
design with consequent losses in 
performance both in terms of cost and 
machine efficiency. 
 
Initially, the UMC Reference 
Architecture aids the designer by 
offering a consistent platform on  
which to solve control and co 
ordination problems. This frees the 
designer to concentrate on the real 
problem without having to be   
concerned whether control unit X will 
operate with control unit Y in  
response to sensor z. Following on 
from the initial specification phase 
the designer requires effective tools 
which help measure and compare  
designs. Under the UMC strategy    
these tools are provided in the form  
of the geometric and logical  
modellers. The tools allow the  
designer to describe design in as   
much or as little detail as is 
required. Designs can then be  
analysed, balanced and optimised in a 
dynamic fashion. Configuration tools 
are used to greatly reduce the amount 
of uncertainty of performance of the 
final machine. 
 
 
 
 
7 GEOMETRIC MODELLING TOOLS 
 
The ever increasing availability of 
computer processing power makes the 
computer based kinematic solid 
modelling of machines an attractive 
proposition.  The value, in terms of 
visualisation, of constructing a   
solid model and displaying the   
actions of a machine is that it 
 
 

 
 



greatly improves the certainty that 
designs are correct. 
 
The geometric modelling work in the 
project is being conducted in 
collaboration with BYG Systems of 
Nottingham who produce a successful 
robotic modelling and simulation 
system called Grasp (12). This 
software exhibits many of the  
features which are required for the 
modelling of modular machines. As a 
part of the collaboration a special 
version of Grasp has been provided so 
that features which are unique to the 
UMC approach can be included. 
 
The first phase in making use of  
Grasp is the description of the 
physical machine.  Machine elements 
are described by the assembly of a 
number of three dimensional shapes 
such as cuboids, cylinders, 
polyprisms etc.  Models can be either 
defined in symbolic manner or in  
great detail.  Once a model of a 
machine element has been defined it 
may be stored in a library for quick 
retrieval at a later date.  Usually 
symbolic models are used in the early 
conceptual stages where there might  
be a number of designs to compare. 
The detailed models are produced as 
the design becomes more fixed and 
deeper explorations of the design are 
required. 
 
Each element of the machine is  
defined in its own right and then 
associated with the machine as a 
whole.  Each element must have a 
unique name and is placed relative to 
a reference object by position and 
orientation.  The relationship  
between machine elements is described 
in terms of ownership.  This 
relationship is important where one 
machine element is located on another 
element which moves.  If the second 
element moves then the first must 
automatically maintain its position 
relative to the second. 
 
The model as a whole is described in  
a data structure so that it is also 
possible to define data other than  
the geometric description and 
position.  Often this is data which  
is required for reference by the 
kinematic modelling of the design, 
such as maximum and minimum  
positions, maximum velocity and 
acceleration. 
 
Once the model is complete it can 
viewed from any point to ensure that 
it is correct.  There are efficient 
editing tools available which allow 
alterations to the model.  Where 
dynamic elements exist within the 
model these can be manipulated by 
making use of a set of robot pendant 
like commands.   In general a machine 
 

 
 
 

element can be moved to any position  
in a range between its maximum and 
minimum positions.  An   element may 
also be sent to a pre-defined   
position such as a home position.  
Also, since the model can comprehend 
solids existing within three 
dimensional space it is possible to 
detect if and where clashes occur 
between machine elements. 
 
Although the checking of the physical 
layout is important, ultimately the 
real value of the geometric model is  
in the display of the consequences of 
the logical model.  The logical model 
consists of a set of parallel   
programs which are written as a set   
of sequential programs which interact 
in a parallel fashion.  Even with a 
small number of parallel processes it 
can be difficult to ensure that the 
interaction is right.  The next 
section shows how the logical model   
is defined and how it is interfaced 
with the geometric model. 
 
 
 
 
8 LOGICAL MODELLING TOOLS 
 
The use of high level languages for the 
programming of robotics and   
associated equipment is well 
established (13) and at first sight 
could make a contribution to the UMC 
approach.  Typical examples can be 
found in simulation packages such as 
Grasp (12) or in more direct robot 
programming packages such as SRL   
(15). However, these packages were 
initially designed to produce a   
single sequential program and then 
evolved to include parallel features 
which coordinate either other robots 
or elements such as conveyors. Also, 
the task programs which are produced 
are often post-processed into code to 
drive a specific robot. 
 
Both the quasi-parallel programming  
and the non-generic software target 
prevent this type of approach from 
succeeding within the UMC approach.  
For simulation this role is   
undertaken by the logical control  
model and has the goal of emulating   
an actual UMC system as if it were 
running in real time.  The principal 
requirements are as follows;  
concurrent programming, inter-task 
communication, virtual real time, a 
common data structure and an   
interface into the data structure of 
the geometric model. 
 
The common thread which connects all  
of the elements of the UMC design 
strategy is the description of the 
tasks (or logical sequence of 
operation) which a given machine must 
perform.  The logical model of a UMC 
must be directly related to the 
 

 
 
 
 



actual UMC code; firstly to ensure  
that the model is as realistic as is 
possible and secondly to maintain a 
direct relationship between the  
logical model code and the actual  
code. However, the same code cannot   
be used as there are clearly two 
separate environments, the actual and 
the virtual, each with their own  
unique requirements.  For example,   
the time for an actual machine   
element to perform a move is  
determined by the physical device and 
its working context, which may vary. 
For the logical model a software 
routine must be provided which  
emulates the action of the machine   
and returns a value for the time of  
the required move. 

 
The UMC design strategy accommodates 
both the similarities and, differences 
between the actual and virtual worlds 
by allowing the user to define tasks  
at a high level where there is   
overlap and then preprocessing to 
incorporate the differences. Users   
can write freely in C and make use of  
a relatively small, but powerful set  
of functions to achieve the UMC style 
of programming. A brief extract of 
typical UMC high level code is shown 
below. 
 
 

 
{ 
. 
. 
while ( notfinished ) 

{ 
UMC OUTPUT ( rio, lamp, red ); 
UMC SIGNAL_EVENT ( riouse ); 
UMC WAIT_EVENT ( noboard ); 
UMC MOVESLP ( load, fast ); 
UMC WAIT_EVENT ( neffuse ); 
UMC MOVESLP ( under, fast ); 
UMC MOVESLP ( over, slow ); 
. 
. 
. 
} 
. 
. 
} 

 
 
Potentially the UMC code can be 
embedded in any language, but so far 
C is the only implemented language. 
The UMC function calls allow the user 
to provide proper control and co 
ordination of the designed machine. 
The user may communicate and send 
instructions to specific axes or axis 
groups.  For example, 'UMC MOVESLP 
(location, speed)' will send an 
instruction to the axis group 
associated with the current task to 
move to a position called 'location' 
with a 'speed' ratio of the maximum 
velocity and acceleration of the 
elements in the axis group.  The user 
may also achieve inter-task 

 
 

communication and co-ordination 
through a system of events.  For 
example, 'UMC SIGNAL EVENT 
(task_done)' sets the global event 
'task done' which would allow any 
other-task with 'UMC WAIT EVENT 
(task_done)' to continue with its 
execution. 
 
On completion the task programs are 
processed and compiled according to 
whether the programs are for use in a 
simulation or in an actual UMC 
machine.  For an actual machine the 
resulting C code may be transferred 
onto the OS-9 system and then  
compiled or the code may be cross 
compiled on the UNIX workstation and 
then loaded onto the OS-9 machine. 
 
The processed C code for simulation  
is compiled on the UNIX workstation. 
The task programs may then be run in 
two modes. The first is an event by 
event mode for a single task with the 
position of the machine elements  
being displayed by Grasp via an 
interface at the start and end of  
each event. This may be done either 
step by step or continuously.  This 
mode is primarily intended for the 
development and debugging of task 
programs.  A useful function is the 
ability to declare an unknown  
position in the task data.  This 
unknown position can then be defined 
in an interactive manner through  
Grasp as the task program is run and 
then recorded in the task data.  The 
second mode is for the display of a 
number of tasks running concurrently. 
In this case the simulation runs in 
virtual real time where the user 
declares a start time and time 
interval for an animated type   
display update to occur in Grasp. 
 
 
 
 
9  CONCLUSION 
 
The research work into logical and 
geometric modelling as reported here   
is at the midway stage and good  
progress has been made. The  
requirements for such an approach    
have been specified and many of the  
lower level constructions have been 
implemented within the special     
version of Grasp. Future work will 
concentrate on higher level aspects   
such as task programming, and off-    
line programming of modular machines  
will inevitably begin to assume equal 
importance with machine design and 
evaluation. 
 
The scope of the UMC architecture 
itself is being widened constantly so 
as to for example encompass modern 
concepts such as software cams and 
gearboxes. These advances, although 
essential to the evolution of modular 
 

 



machines, are seen as providing a 
major challenge to the ingenuity of 
machine designers and programmers 
alike. Configuration tools such as 
those described in this paper then 
become essential to overcome the 
problems arising from the complexity 
and sophistication of machine design. 
 
The importance of doing all this in 
the context of an open systems  
approach cannot be over-emphasised.  
The objectives and methodologies for 
modular machine design and 
implementation absolutely require a 
genuinely open approach. We believe 
that the concepts of the reference 
architecture implemented via   
graphical user tools meets this 
objective. 
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Fig 1 UMC run-time control structure 

 
Fig 2 The overall UMC strategy 

Fig 3 The UMC design strategy 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
 

 



  

 

 
 

Fig 4  A typical Grasp solid model 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig 5  Example part A 
 
 
 
 
 
 
 

Fig 6  Example part B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


