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Mathematical equations as Durkheimian social facts? 

Christian Greiffenhagen and Wes Sharrock 

Introduction 

It is widely assumed that one of the main fracture lines within social thought is 

between those who affirm and those who deny the reality of ‘social facts’ or their 

equivalent, between those who insist that action is constrained by objective social 

structures and those who deny that there are such constraints and adopt what is 

variously called ‘subjectivism’ or ‘voluntarism’ instead. Emile Durkheim’s definition 

of the expression ‘social facts’ is widely viewed as a key precursor of the former view 

and thus remains relevant to contemporary sociological discussions about whether 

society is essentially an ‘objective’ or a ‘subjective’ reality (or a Janus-faced 

combination of the two).  

 Responses to Durkheim’s (1982 [1895]) recommendation that we should 

“consider social facts as things” (60) are often taken as critical for assigning those 

who accept the existence of social facts to the objective side of the argument and 

those who deny this to the subjective side1.  We are sceptical of the suitability of 

social facts as the primary demarcation for the articulation of diverse sociological 

                                                 

1 Since ethnomethodology is typically placed on the denial side, it might seem bewildering that 

Garfinkel would subtitle his Ethnomethodology’s Program (2002) as “Working out Durkheim’s 

Aphorism” and would endorse Anne Rawls’ re-reading of Durkheim (1996, 2004).  See the papers by 

Lynch and Rawls (THIS VOLUME) for further discussion of Garfinkel’s relation to ‘Durkheim’s 

aphorism’ (to treat social facts as things).  



Page 2 of 24 

Greiffenhagen, C. and W. Sharrock (2009). Mathematical equations as Durkheimian social facts? In  
G. Cooper, A. King, and R. Rettie (Eds.), Sociological Objects: Reconfigurations of Social Theory,  
pp. 119-135. Aldershot: Ashgate. 
 

positions, because we do not think that questions about the existence of social facts 

are as clear cut as might seem2.   

 Durkheim uses the model of natural facts to derive what he sees as the 

fundamental characteristics of social facts (that they are external to and independent 

of individual will).  This extension from natural to social facts may make it seem that 

social facts must be strange things indeed, but if we consider the sort of social 

phenomena Durkheim includes under his definition we might see the notion rather 

differently.  Consequently, we will treat Durkheim’s idea of social facts as allowing 

two different estimates of significance. The first one, based on what Durkheim has to 

say about the general nature of social facts, suggests that the identification of social 

facts and relations between them provides the basis for an ambitious new science that 

deals with a new kind of entity and whose results will overturn our existing 

understandings of life in society.  As Garfinkel and Sacks (1970) put it many years 

ago, this ‘inflationary’ reading takes Durkheim’s statement as sociology’s “slogan, 

[…] task, aim, achievement, brag, sales pitch, justification, discovery, […] or research 

constraint” (339).   

 The other reading relates to the examples of social facts that Durkheim gives 

and suggests that the idea of social facts does no more than trace the outline of 

existing understandings that inform the life of the society, pointing to features that are 

integral to anyone’s conduct of their daily affairs.  This ‘deflationary’ reading is not 

sceptical of the existence of social facts (since on this reading there is nothing to be 

sceptical about), but is cautious about the use of the notion of social facts as a 

platform for sociology’s self-promotion.  

                                                 

2 And we should note that the objective—subjective dichotomy does not even strictly apply to 

Durkheim himself (cf., Rawls 2004). 
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 We will review these issues in relation to the argument that mathematical 

equations (such as ‘2 + 2 = 4’) are social facts, developed by one of one of the most 

resolute of contemporary Durkheimians, David Bloor (e.g., Bloor 1982). Our 

disagreement with Bloor is not so much about whether mathematical equations are 

social facts, but more about what saying that they are might amount to.  For Bloor, it 

is the start of the project of a professional sociology, which will yield a new 

understanding of the real nature of mathematics and which is at odds with the 

understandings that – allegedly – underpin practical dependence on mathematical 

calculations. In contrast, we question whether Bloor has pinned down the 

understandings involved in mastery and use of mathematical equations, and whether, 

therefore, showing that and how mathematical equations are social facts involves any 

more than clarificatory reference to an assortment of familiar mathematical 

considerations.   

Two readings of ‘social facts’ 

Durkheim (1982 [1895], 50-51) answers his question “What is a Social Fact?” 

(Chapter 1) thus: 

When I perform my duties as a brother, a husband or a citizen and carry out the commitments I 

have entered into, I fulfil obligations which are defined in law and custom and which are external 

to myself and my actions. Even when they conform to my own sentiments and when I feel their 

reality within me, that reality does not cease to be objective, for it is not I who have prescribed 

these duties; I have received them through education.  Moreover, how often does it happen that we 

are ignorant of the details of the obligations that we must assume, and that, to know them, we must 

consult the legal code and its authorised interpreters!  

Further: 

Not only are these types of behaviour and thinking external to the individual, but they are endued 

with a compelling and coercive power by virtue of which, whether he wishes it or not, they impose 

themselves upon him. […] If I attempt to violate the rules of law they react against me so as to 
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forestall my action, if there is still time.  Alternatively, they annul it or make my action conform to 

the norm if it is already accomplished but capable of being reversed; or they cause me to pay the 

penalty for it if it is irreparable. […]  In other cases, although it may be indirect, constraint is no 

less effective.  I am not forced to speak French with my compatriots, nor to use the legal currency, 

but it is impossible for me to do otherwise.  If I tried to escape the necessity, my attempt would fail 

miserably.   As an industrialist nothing prevents me from working with the processes and methods 

of the previous century, but if I do I will most certainly ruin myself.  

The important elements in Durkheim’s account of social facts are: 

 that they are external to individuals; 

 that they are endowed with coercive power (they causally compel individuals to 

do things); and 

 that individuals are often ignorant of them (and therefore must consult 

“authorised interpreters”). 

The more common ‘inflationary’ reading takes the identification of social facts as the 

basis for a new kind of science that is modelled after the natural sciences (which deal 

with natural facts): 

Social phenomena must therefore be considered in themselves, detached from the conscious beings 

who form their own mental representations of them. They must be studied from the outside, as 

external things, because it is in this guise that they present themselves to us. (70) 

It is further assumed that members of society have only limited understanding of 

social facts and it is up to social scientists to discover the hidden realities of society. 

On this inflationary reading, sociology will yield, for the first time, a true 

understanding of the nature of social facts and the ways they affect human lives.  

 Note that the challenging part of Durkheim’s proposal “to consider social facts 

as things” (60) is not the suggestion that there are social facts, but the claim that 

social facts are things.  The argument for social facts itself is almost indisputable, 

since it is an argument from truisms: that I speak the native tongue to communicate 

with native speakers; that I employ economically viable technologies in perpetuating 
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a competitive economic enterprise; or that I founded my household, but not the 

institution of the family.  This opens the possibility for a different reading, one that 

does not dispute the existence of the substantive social facts (such as the currency or 

the family), but sees the injunction to treat them as things as unnecessary and 

misleading. This reading takes Durkheim’s innovation as one in nomenclature, not 

ontology. Rather than denying the reality of social facts, this reading follows up on 

the idea that they “present themselves to us”. Rather than pointing away from the 

“mental representations”  “conscious beings” make of social facts, Durkheim’s own 

account of social facts is seen as pointing attention toward them – toward 

understandings available to anyone.  

 Durkheim takes the externality and coercive power of social facts as the basis 

for an argument that a new kind of understanding of our actions is being introduced, 

in which our actions are occasioned not by our individual thoughts but by the demand 

and compulsion of social facts. Hence the label ‘inflationary’, since on this reading 

members of society are being told something new (in particular: that many things that 

they consider as ‘natural’ are in truth ‘social’, i.e., conventional). However, both 

externality and coercive power could equally be seen as expressions of incontestable 

truisms that members of society are aware of. The constraint involved in Durkheim’s 

own examples is more conditional than causal: if I want to speak to someone else and 

be understood by them, then I should speak the language they understand; if I want to 

engage in valid economic exchanges, I should employ a valid currency; if I want to 

prosper economically, I should take measures to avoid operating permanently at a loss 

(and therefore adopt up-to-date business practices). Alternatively, the constraint is 

constitutive in nature (cf., Garfinkel 1963), i.e., defines what counts as valid actions: 

whilst individuals decide to found a family, individuals do not invent the idea of ‘the 
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family’.  Finally, the constraint of social facts may involve a variety of practical and 

ethical considerations.  

 Just as Freud liked to flatter himself that psychoanalysis achieved a triumph 

over the most profound resistance, though it could equally well be understood as 

having pandered to a ready audience, so sociology admires itself for having to 

overthrow pervasive resistance to the truth that human reality is social. Durkheim 

certainly thought in that way, but we have tried to show that there are only two things 

about his case that could possibly be objected to: firstly, the terminological innovation 

‘social facts’ (though in truth there is little enough to be objected to here); secondly, 

the association of the innovation with superfluous realist ontology.  The substantive 

basis for this ontology is something that anyone could agree with – indeed, something 

that everybody acknowledges in practice. It is only if social facts are treated as in a 

certain sense beyond the comprehension of ordinary members of society that 

Durkheim has opened an entire realm accessible only to the sociologist.  On the 

deflationary reading of social facts, sociologists are more akin to Monsieur Jourdain’s 

teacher who explains how a familiar practice – speaking – is identified as ‘speaking 

prose’ in the discourse of grammarians (cf. Molière’s The Bourgeois Gentleman  

[1670], Act 2, Scene 4).  It is only in the inflationary reading that there is a suggestion 

that social science has a more general and complete perspective on social life that it 

aims to share with ordinary members – possibly against their resistance.  

 The point can be reinforced by a juxtaposition of Durkheim’s statements with 

some remarks of Alfred Schutz. These two are commonly seen as embodying 

fundamental oppositions, representing objectivism/realism and 

subjectivism/constructivism respectively. However, there is a striking similarity in 

their remarks about the social world: 
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[…] in the natural attitude of everyday life the following is taken for granted without question: […] 

that a stratified social and cultural world is historically pregiven as a frame of reference for me and 

my fellow-men, indeed in a manner as taken for granted as the ‘natural world’; […] that therefore 

the situation in which I find myself at any moment is only to a small extent purely created by me. 

[…] The life-world is thus a reality which we modify through our acts and which, on the other 

hand, modifies our actions. (Schutz and Luckmann 1973, 5-6) 

Both Durkheim and Schutz argue that the social world is – for the most part – not 

created by individuals and that individuals are often constrained by it.  The main 

difference between them is the intended status of their respective remarks. Schutz is 

not stating his own sociological doctrines, but is engaged in a descriptive enterprise, 

delineating the quality of commonplace experience under the natural attitude, the 

matter-of-course, taken-for-granted orientation of individuals to their practical 

circumstances. We are not suggesting that there is no difference in their treatments of 

social facts, but that their projects differ less in respect of the substantive content than 

might first appear. Durkheim’s arguments are substantively in harmony with Schutz’s, 

i.e., there seems to be little or no disagreement in their statements about happens in 

the world (e.g., about the legal code, about our interactions with others, about our 

social institutions, etc.). Thus while there are considerable differences in 

philosophical convictions between realists and phenomenologists, there is no need to 

introduce the notion of social facts to give rise to those differences. Whatever the 

intellectual gulfs between Durkheim and Schutz, it is not because one is asserting and 

the other rejecting the existence of social facts. 

 We thus want to suggest that much of the recent debates (e.g., objectivism-

subjectivism, structure-agency) are misplaced. These debates treat the disagreements 

between the respective positions as a matter of affirming or denying the existence of 

social facts (or the constraining character of them). Resistance to Durkheim’s 

sociological programme is thus commonly understood as also entailing doubt about 
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whether there are any social facts (i.e., that there are subjective states only).  This is 

the reason why ethnomethodology and phenomenology are typically taken to be on 

the subjective (or agency) side of the traditional dualisms.  In contrast, we have been 

arguing that many of the disagreements with Durkheim’s project are not about 

whether there are social facts, but about the character of social facts – and its 

implications for the project of social science.   

Mathematical facts 

Durkheim’s influence is very directly felt in one of the central contributions to the 

sociology of mathematics, that of David Bloor (cf., 1973, 1976, 1983, 1994). To 

Bloor, mathematical statements (such as ‘2 + 2 = 4’) invite a neo-Durkheimian 

approach, since they are experienced as Durkheimian facts, being external to 

individuals and endowed with a coercive power. If mathematical expressions can be 

treated as facts, what species of facts are they?  Philosophers have tried to establish 

that they are natural facts (empiricism) or that they are logical facts (logicism). A neo-

Durkheimian perspective insists that they are, rather, social facts.  As White (1947) 

put it very early on: 

Mathematics does have objective reality.  And this reality, as Hardy insists, is not the reality of the 

physical world.  But there is no mystery about it. Its reality is cultural: the sort of reality possessed 

by a code of etiquette, traffic regulations, the rules of baseball, the English language or rules of 

grammar. (302-303) 

There is a relatively straightforward way in which everyone could acknowledge 

White’s point. The mathematical symbols that we use today are conventional in the 

sense that other symbols could (and have) been used. Rather than using the symbol 

‘5’ to signify the number five, we could use other symbols – and most of us are aware 

of other symbols to signify this number, e.g., the Roman numeral ‘V’ or five strokes 

‘|||||’. Similarly, rather than using a decimal system (base 10), we could use a 
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duodecimal system (base 12), i.e., be counting in dozens. In that sense, the rules of 

arithmetic are as conventional as the rules of traffic.  

 In this context, sociologists often draw on Wittgenstein’s (1976, 1978) 

reflections on mathematics, which are seen as demonstrations of the conventional 

character of mathematics. For example, Wittgenstein’s discussion of a pupil 

continuing a number series taught by his teacher (1953, §§185-242) or the visual 

proof that 2 + 2 + 2 = 4 (1978, I, §38) are often taken as ‘proof’ that mathematics is 

social in character. However, just as there were two different ways of reacting to 

Durkheim’s ‘discovery’ of social facts, so there are in the case of Wittgenstein’s 

reflections on mathematics.  We will compare Bloor’s understanding with our own, 

which is intended to be more in accord with Wittgenstein’s aims in philosophy.   

 Bloor sees Wittgenstein as enabling an extension of Mannheim’s (1936) 

sociology of knowledge to mathematics. Mannheim famously excluded mathematics 

(and the natural sciences) from his sociology of knowledge, since the truths of 

mathematics seem to be eternal, true in all times and places, and do not seem to vary 

with socio-cultural formations. For Bloor, Wittgenstein’s demonstrations of the 

conventional character of mathematics open the way for a sociological treatment of 

mathematics. However, for Bloor, Wittgenstein does not go far enough, since he did 

not develop a theory to explain causally the social character of mathematics. 

 In our reading of Wittgenstein, Bloor’s sociology of mathematics does not 

actually add anything to the initial claim that mathematics is social.  Bloor is thus an 

example of an inflationary treatment, since he puts the sociologist in a position to see 

something about mathematics that ordinary members of society are supposedly 

unaware of.  In contrast, we see Wittgenstein as being engaged in a deflationary 

project, where reminding people of what they already know (e.g., that other 
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arithmetics could, and have, been used) is enough to answer – or dissolve – any 

questions that one might have, eliminating the impression that the ‘problem’ of 

mathematical objectivity calls for the creation of an explanatory theory. 

Bloor’s sociology of mathematics 

If mathematical statements are facts, then what endows them with factual status? For 

Bloor, this entails asking what causes mathematical statements to obtain. He 

recognises three possible causes: natural-empirical, logical, or social. Like Durkheim, 

Bloor’s argument is eliminatory: if it can be shown that the objectivity of 

mathematical facts is neither a natural-empirical nor a logical necessity, then 

mathematical statements must be social facts. 

 Bloor (1994)3  takes the equation 2 + 2 = 4 as an example of a mathematical 

fact, since it is typically taken to be an eternal truth (2 + 2 cannot equal 0, 3, or 5, but 

must equal 4).  Bloor also thinks that most people when asked to explain why 2 + 2 = 

4 would argue that it expresses an empirical fact (i.e., a statement about reality) or a 

logical fact (i.e., a fundamental logical principle).  Therefore Bloor aims to establish 

that 2 + 2 = 4 is neither an empirical nor a logical but a social fact. He does so by 

showing that there are alternatives, i.e., by giving examples in which 2 + 2 does not 

equal to 4: 

Sociologists are professionally concerned with the conventional aspects of knowledge. So I will try 

to identify the conventional components of the concepts ‘2’ and ‘4’ and ‘addition’. Conventions 

are shared ways of acting that could in principle be otherwise. They are contingent arrangements, 

not necessary ones. Thus it is conventional that we drive on the side of the road that we do, and (if 

proof were needed) we could point to others who drive on the other side.  Even if everybody, as a 

                                                 

3 See Greiffenhagen and Sharrock (2006) for a discussion of Bloor’s (1976) earlier arguments about 

alternative mathematics. 
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matter of fact, drove on the same side, we could easily imagine the alternative. Demonstrating 

conventionality therefore involves demonstrating alternative possibilities. Although this necessary 

condition is easy to state it isn’t always easy to satisfy in practice. For one thing, our imaginations 

are limited. Another reason is that candidate alternatives often meet objections. Reasons are found 

to sideline, trivialize or re-interpret them so that their character as alternatives is disguised. (Bloor 

1994, 21) 

Bloor thinks that there will be strong objections to the idea that mathematical 

equations are conventional, which sociologists have to overcome. One of the most 

common objections to the idea that mathematics is (only) a convention is that 

mathematics seems to apply to reality. If it is just a convention that 2 + 2 = 4, then 

why do two sheep added to two sheep always make four sheep?  

 Bloor is not denying that two sheep added to two sheep results in four sheep, 

but wants to undermine the idea that this could contribute to an empiricist justification 

of mathematics (i.e., that mathematical equations are true because they correspond to 

reality). Consequently, he gives another purportedly empirical example, in which 2 + 

2 does not equal 4. He asks us to imagine a number wheel with four segments, 

labelled ‘0’, ‘1’, ‘2’, and ‘3’, where turning the wheel in one direction “we think of 

ourselves as adding” (25): 

Just as we felt a naturalness about carrying out our counting technique from one empirical 

circumstance to another in the past, so we feel a naturalness about this. […] Then, of course, we 

make the inevitable discovery: we set the wheel at 2, and then turn it so as to add a further 2, and 

we get back to zero. 2 + 2 = 0. (26) 

Turning the number wheel is as ‘empirical’ as adding sheep. So Bloor has given us 

two examples, one in which 2 + 2 = 4 and one in which 2 + 2 = 0. For Bloor, this does 

not show that mathematical equations aren’t applicable to reality, but that their 
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applicability cannot be used to justify them4.  Having demonstrated that empiricism 

cannot be used to justify mathematical facts, Bloor dismantles logicism (justifying 

mathematical equations as derivative consequences of fundamental logical principles) 

by showing that logicist justifications will be circular, i.e., will have to presuppose the 

principles they aim to deduce. Having eliminated the possibilities that mathematical 

equations are natural or logical facts, Bloor sees himself as having successfully 

demonstrated that they are social facts. 

The conventional character of mathematics 

In order to clarify our differences with Bloor, let us reflect on what Bloor is trying to 

do.  Bloor is asking whether 2 + 2 must equal 4, but he is not really asking about this 

one equation, but rather uses that single (iconic) equation as a proxy for a whole 

system of arithmetic. This system of arithmetic is one that has no ready name to 

identify it, but we will refer to it as the ‘default’ system (which is briefer than other 

correct designations, e.g., ‘arithmetic with base ten and Arabic numerals’).  It is the 

default arithmetic in the sense that it is the one taught in schools and employed across 

a wide diversity of practices.  

                                                 

4 We might notice that in the attempt to make the number wheel out as one that does not fit the ‘2 + 2 = 

4’ case, Bloor conflates cumulatively adding up the total number of points passed through on the 

number wheel with using the points on the number wheel to track the location of the pointer.  That is, 

if we ask how many points on the number wheel we have moved through as we rotate it, then we will 

correctly pronounce that – having moved through initially two points and then two further points – we 

have moved through four points. It is a different question to ask what numbered point on the wheel will 

be reached – if we make two moves and then two more – the answer is, of course, the fourth point in 

the rotation, the one identified as ‘0’. The number wheel is thus not counter-evidence to an empiricist 

view. 
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 The question “Must 2 + 2 = 4?” can be asked as a question about the default 

mathematical system or as a question within the default system.  If asked within the 

default number system, the answer is “yes”, since any other answer is wrong.  That 

this is so is part of what identifies the system, and, also, what identifies the equation 

as belonging to the system.  If asked about the default system, then it is not entirely 

clear what the question is asking: “Can you think of mathematical systems in which 2 

+ 2 is not 4?”; “Are there empirical situations in which 2 + 2 is not 4?”; or: “Are there 

historical reasons why we have this arithmetic system?”. Asked about a system 

(rather than within one), ‘2 + 2’ does not yet have a definite sense, since it only 

constitutes a notational form.  For example, ‘+’ in the case of adding sheep has the 

sense of ‘accumulating a totality’, whereas in the case of the number wheel it has the 

sense of ‘tracking positions in a cycle’. All that Bloor demonstrates is another 

mathematical triviality:  the same symbols can be used differently in different calculi 

(cf., Ambrose 1955, 208). 

 The difficulty in specifying what exactly the question “Must 2 + 2 = 4?” is 

asking points to a second issue, namely: Of whom is this question being asked?  

Asked of a professional mathematician, understood as asking “Is there more than one 

arithmetic system?”, it is mathematically trivial that there are.  Asked of ordinary 

users in the street, unprepared for it, the question may well create difficulties, since it 

is not clear in what sense those using the default system understand that it is a 

distinctive system, let alone what ‘other systems of arithmetic’ might be. This is not 

because they are unaware or unfamiliar with ‘other systems of arithmetic’ (most 

people are familiar with twelve-hour clocks in which 11 + 3 = 2), but because the 

sense of the question is unclear. It is easier to know how to respond to “Could one 
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drive on an alternative side of the road?” then “Are there alternative systems of 

arithmetic?” 

 Of course, Bloor is not so much asking whether 2 + 2 = 4, but why 2 + 2 = 4, 

i.e., what kind of justification one might give for this mathematical fact.  Bloor wants 

to argue that it is true by convention that 2 + 2 = 4 (which is why he is often taken to 

be a relativist).  In contrast, we want to ask: In which sense does convention make it 

true that if we add two things and two things, it always comes out as four?   

 It is certainly the case that the development of a specific arithmetic system is 

contingent (a different ‘default’ system could have been institutionalised). However, 

this does entail that the operations within a particular system are contingent. There is 

a difference between the necessity in adopting a system and the necessity imposed by 

an adopted system. As Wittgenstein, (1976, 241) remarks: “We must distinguish 

between a necessity in the system and a necessity of the whole system”. The 

observation that 2 + 2 is ‘always’ 4 is thus not a false generalisation, rebutted by the 

existence of other arithmetics, but the expression of the necessity imposed by a 

particular system of arithmetic. Whenever one is operating in this number system, 

then if one is given 2 + 2 one must sum it to 4.  

 The origin of confusing the different kinds of necessity is to take mathematical 

expressions as propositions, i.e., as descriptions of states of affairs. As Wittgenstein 

emphasised, equations should not be treated as representations of any kind of realities 

(natural, logical, or social), but rather as means of representation, i.e., as providing a 

framework within which description of states of affairs may be constructed 

(Wittgenstein 1978, VII, §2). That is to say, Wittgenstein argued that mathematical 

statements should (in order to avoid confusion) be considered as rules – and rules 

although ‘conventional’ are in themselves neither true nor false.  
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 Bloor, in a sense, is asking where the correctness of an arithmetic system 

resides.  He rebuts the two traditional answers (in nature or in logic), which leaves 

him, through a process of elimination, with the answer: in society. In contrast, 

Wittgenstein questions whether it makes sense to ask about the correctness of an 

arithmetic system without specifying a particular context or purpose. For 

Wittgenstein, ‘correct’ is not constant across different systems of conventions, but has 

a different sense, a different application, depending upon the system of conventions.  

It cannot be that all systems of conventions are equally correct, because there is no 

general, independent standard of ‘correctness’.  The puzzle as to how conventions can 

apply to reality is thereby dissolved, for compliance with the rules of the arithmetic 

establishes what we mean by ‘correspondence with reality’.  

Why ‘the sociologist’? 

Wittgenstein, by characterising mathematical expressions as rules, is making a 

‘sociological turn’ that reminds us of the roles that arithmetical expressions play in 

our practices and the kinds of questions that can be sensibly asked of them. Need the 

sociological turn go further? Bloor thinks so. Our above claim to be more in tune with 

Wittgenstein does not mean that Bloor misguidedly thinks of himself as following 

through Wittgenstein’s approach. Bloor is aware that Wittgenstein thinks 

philosophical inquiries require no controversial empirical evidence, but Bloor rejects 

this idea and reproaches Wittgenstein for chickening out on the necessity to move on 

from philosophical to empirical (scientific) investigations.  It is this claim that is the 

nub of our disagreement with him. 

 In our view, pointing out that mathematical equations are rules is sufficient to 

undermine traditional philosophical positions. Furthermore, the observation that there 
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is no necessary arithmetical system points toward mathematical truisms, not to either 

sociological findings or the need for an explanatory sociological theory.  Wittgenstein 

argues that rather than making extensive historical and anthropological investigations 

into the different kinds of mathematics one can find (although such enterprises may 

be interesting), we pay more careful attention to the form of the mathematical 

statements that are to be found in the mathematics we are already familiar with.  The 

status of ‘2 + 2 = 4’ as a universal truth is not undermined by showing that there are 

circumstances in which it is false, but by realising that the idea of ‘universal truth’ is 

misleading, because ‘2 + 2 = 4’ does not function as an empirical proposition but 

more like a rule and, as such, can be neither true nor false5.      

 Bloor is insistent that the sociologist plays a part, but the idea that this is 

necessary arises, we think, from the fact that Bloor has taken an argument addressed 

to the source of philosophical problems and treated it as a diagnosis of the functional 

structure of the practical understanding of arithmetic. Bloor construes the ‘problem’ in 

the following way: 

Food is a cultural universal, because everybody has to eat to survive.  Does this preclude the 

sociologist having significant things to say about food? Clearly not, because there is still the 

                                                 

5 If there is any difficulty in understanding why ‘2 + 2 = 4’ is said to be a rule, recognise that one is 

taught it as an injunction, saying what one has to do: “whenever you see ‘2 + 2 = ’ then write ‘4’”.  In 

other words, arithmetical equations can be seen as rules for the transformation of notations. In applied 

calculations, they are rules for the transformation of empirical propositions – if you have two sheep and 

you buy two sheep you can then (correctly) say you have four sheep.  There is no opportunity here to 

venture into the background debates between David Bloor and Michael Lynch over Wittgenstein and 

rules (Bloor, 1992; Lynch 1992a, b), but our views are much closer to Lynch’s than Bloor’s, and agree 

with Friedman’s (1998, 266) observation that “Lynch’s Wittgenstein is both closer to the actual 

Wittgenstein and more sophisticated philosophically than Bloor’s”. 



Page 17 of 24 

Greiffenhagen, C. and W. Sharrock (2009). Mathematical equations as Durkheimian social facts? In  
G. Cooper, A. King, and R. Rettie (Eds.), Sociological Objects: Reconfigurations of Social Theory,  
pp. 119-135. Aldershot: Ashgate. 
 

question of how people eat, who eats what, and when, and with whom.  We might say that while 

‘nutrition’ is a biological category, ‘the meal’ is a sociological category. […] We must see if 

analogous ideas and distinctions apply in the case of 2 + 2 = 4.  Can numbers be divided into their 

physical, biological and social aspects in the way that the ingesting of food can? (Bloor 1994, 22) 

The term ‘sociological’ can be applied in two ways: firstly, to identify a certain genre 

of observations, which note the connection of activities to social groups, cultural 

traditions, social relations, etc.; secondly, to characterise remarks originating with 

those who are sociologists by occupational title and theoretical affiliation (thereby 

implying that it is through specific sociological tools – methods or theories – that 

these remarks were discovered or are validated).  That there are local cuisines and 

local culinary practices is ‘sociological’ in the first sense, for such observations did 

not and need not originate as deliverances of sociological professionals. Although 

travellers would not necessary label these observations as ‘sociological’, observations 

about cultural diversity can and are made by non-sociologists. In contrast, a 

comparison of the birth rates among the lower, middle, and upper classes more clearly 

belongs to the sociologist as a professional. 

 Now remember that Bloor sees his project as establishing “the conventional 

aspects of knowledge”, i.e., “to identify the conventional components of the concepts 

‘2’ and ‘4’ and ‘addition’” (21). We have argued that Bloor’s observations about the 

“conventional components” of arithmetic are ‘sociological’ in our first sense.  It is not 

that people are always aware that there are a multitude of arithmetic systems, but  

rather that ‘demonstrating’ the conventional aspects of knowledge resembles the 

neighbour coming back from a trip to China and telling everyone: “They eat rice 

rather than potatoes over there, and they use chopsticks rather than forks and knives.” 

– thereby ‘demonstrating’ the cultural diversity of the meal and cutlery.   
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 Bloor believes that such observations may be acceptable to non-sociologists in 

the case of traffic rules or meals, but not in the case of mathematics. In other words, 

the attempt to show that there are alternative mathematics will meet with resistance: 

“candidate alternatives often meet objections. Reasons are found to sideline, trivialize 

or re-interpret them so that their character as alternatives is disguised” (21). This is 

why Bloor thinks that demonstrating the conventional aspects of knowledge is the 

task of the professional sociologist, since it is presumably only the sociologist who is 

able to see the implications of the availability of alternatives and who is able to 

prevent those implications being sidelined, trivialized, or re-interpreted. Our 

disagreement with Bloor is thus not on whether there are alternatives, but whether 

there are those reactions to those alternatives.    

 In our view, Bloor does not adequately clarify the implications of the 

availability of alternatives for the default system.  In other words, once we have read 

his paper on 2 + 2 = 0, what has changed? That there are alternative arithmetics does 

not make any difference to everyday practical computations using the default system. 

In particular, the number wheel system does not have an impact on most practical 

calculations: buying two pairs of apples is still four apples – and not ‘0’ apples (since 

this is not a situation to which the number wheel system is applicable).  For many 

everyday calculations, it simply does not matter that the default arithmetic system is 

not a unique system.  Nor do we think that it is appropriate to conceive everyday users 

of the default arithmetic as though they are in denial about the conventionality of 

mathematics. Just as we did with Durkheim, we would argue for a deflationary 

reading of Bloor, which puts members of society in M. Jourdain’s situation: his 

difficulty is not that he does not know how to speak prose (for that is what he does 

before and after being taught by the philosopher), but that he simply isn’t familiar 
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with the name that grammarians give to the activity of which he is a practical master.  

Equally, there are grounds to suppose that many members of the society are 

practically familiar with more than a single arithmetic system and that they can and 

do, in practice, comfortably switch from using one form to using another when it is 

appropriate (e.g., when using a twelve-hour clock or counting in dozens).   In that 

sense, Bloor does not demonstrate something new to members of society, but simply 

reminds them of something that they are already familiar with (but perhaps incapable 

of recognising as the intended referent of ‘conventional’). 

 None of this really matters to Bloor, since his target is not the computational 

validity of calculations that people perform, but the ‘justificatory underpinnings’ of 

those calculations.  We say this, because we are trying to make sense of the fact that 

the availability of alternative arithmetics for us is more like a triviality, whereas for 

Bloor it has epistemological implications. Bloor seems to be engaged in a therapy of 

ideology, which supposedly accompanies, even underpins, the practical mastery of 

arithmetic. Bloor seems to suppose that children being drilled in arithmetic are 

additionally supplied with justifications for using this practice as a means of binding 

them into it (i.e., they will act in accord with it, because they are under the delusion 

that they could not do otherwise).  In line with critique of ideology more generally, 

Bloor supposes that in the case of arithmetic ideology takes the form of naturalising a 

practice, i.e., as treating arithmetic as though it originates in the natural order of things 

and therefore is immutable. For Bloor, the typical reaction to 2 + 2 = 4 (that it is 

impossible to do otherwise) is evidence for this ideology. 

 The rather standard sociological assumption that practices are sustained by 

virtue of associated justifications is perhaps too easily made, and only serves to ensure 

a sociological surplus above what is required to understand the problem at issue.  The 
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idea is that the naturalisation of a practice prevents its participants for calling it into 

question (since they cannot doubt what must inevitably be the case).  If the practice is 

de-naturalised, then it will be apparent that they could do otherwise, enabling them to 

withdraw support from this practice. However, even if people with practical mastery 

of arithmetic did labour under such a naturalising illusion, it does not follow that they 

could simply resign from the default arithmetic and make up their own, since many 

practices that they engage in have the default arithmetic installed in their 

organisational and technological infrastructures.  More importantly, we have been 

arguing that mastery of arithmetic does not depend upon any such naturalising 

justification.   Practical mastery of calculation in our society involves a fundamental 

familiarity with the default arithmetic, but the practical familiarity with it as the 

default one does not exclude practical participation with other, non-default, arithmetic 

practices. In other words, the conventions of the default system are not destabilised by 

the fact that its users ‘could do otherwise’ when, in fact, they cannot, because, in fact, 

people have no difficulty in already ‘doing otherwise’ in the sense that they frequently 

operate according to conventions other than those of the default system.  

Conclusion 

We have tried to suggest that buying into the idea of ‘social facts’ does not involve 

any very momentous decision, since it can be seen as simply a nomenclatural matter, 

i.e., as only naming a range of unremarkable, entirely familiar, and in a practical way 

very well understood affairs.  It is not the recognition that one lives amongst 

collectively accumulated institutions and practices that causes the trouble, but that 

Durkheim moves from this observation to ontological doctrines about social facts.   

 Rafanell (THIS VOLUME, XX) quotes Durkheim arguing that we are under 

“an illusion [if] we believe that we ourselves have produced what has been imposed 
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upon us externally”.  On what we have termed the inflationary reading, ordinary 

members of society commonly believe that they have freely created what is in reality 

imposed upon them.  However, Durkheim’s documentations of the existence of social 

facts allow for a deflationary interpretation, where ‘having to’ use the local language 

and local currency is a practical rather than causal necessity: living in society does 

consist in acting within its local institutions and customs, but this does not entail 

believing that these are the only institutions and customs there could possibly be. 

 Using David Bloor’s campaign for a Durkheimian sociology of mathematics as 

an illustration, we argued that the notion that people are subject to illusions about the 

objectivity of the practices they engage in becomes an a priori assumption that is 

projected onto the workings of practices with the effect of distorting the sense that 

attaches to the ways of these practices6. Bloor’s whole argument on mathematical 

equations assumes that their users are under such an illusion, believing that when 

asked “2 + 2 = ?” they have no choice but to answer “4”.  Bloor seeks to demonstrate 

users’ delusional state by establishing that they ‘could do otherwise’, i.e., that 

alternative mathematical systems might accommodate different answers to “2 + 2 = 

?”.   However, it is not so much the idea that equations are conventions that propels 

Bloor’s argument as ambiguity about ‘could do otherwise’.  One certainly could do 

otherwise then write 4, since one could refuse to complete the question or reinterpret 

the question. However, giving a different answer to a different question (e.g., 

interpreting the equation as part of a different arithmetic system), says nothing about 

what one ‘has’ to do to if one wants to complete this equation correctly.  Bloor’s 

                                                 

6 Sociologists are apt, at crucial moments, to think of individual consciousness as solipsist, which is 

perhaps why they have had such a hard time recognising that positions which they keep (critically) 

designative as ‘subjective’ actually emphasise intersubjectivity. 
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attempt to invoke alternate mathematical systems itself depends upon the very thing 

that it purports to explain, namely that if one understands (for example) the number 

wheel system properly, then one understands that if asked “2 + 2 = ?” one has no 

choice but to say “0”.  The compulsion does not result from any causal force, but from 

the identifying requirements of that system delimiting what are valid actions within it. 

Bloor has not shown that there is space for a sociological explanation as to why the 

users of arithmetic need to operate under a socially necessary illusion, since there is 

no such illusion.   

 Bloor sees the sociologist’s job as therapeutic, i.e., as convincing members of 

society of the conventional aspects of knowledge in the face of their reluctance to 

accept this. However, this therapeutic strategy only works by assuming that members’ 

practical doings (their use of the default system) are underpinned by a naturalised 

ideology of that practice (universalistic beliefs). In contrast, Wittgenstein’s 

therapeutic method (cf., Anderson et al. 1986, Chapter 6) cures us of the idea that 

practices are founded in theoretical presuppositions.  With respect to mathematics, 

Wittgenstein does not replace empiricism or universalism with social constructivism 

or relativism, since he argues that the understanding of philosophical problems does 

not come from any theory, but from careful reflection on our mastery of the relevant 

practice, e.g., of elementary arithmetic. While Bloor’s therapy is a therapy from one 

(ideological) theory to another (correct) theory, Wittgenstein’s therapy is a therapy 

away from theory. 
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